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Neutrality investigations of markers with forensic use are important to see if a phenotypic trait is being
expressed in relation to the alleles of the marker. MiniSTR marker D22S1045 (locus 22q12.3) is localized
near the breakpoint region of the EWS gene (22q12.2), which leads to the development of Ewing’s
Sarcoma. Analyzing allele frequencies and linkage disequilibrium in Ewing’s sarcoma patients and non-
affected populations, we found that the marker mD22S1045 was neutral when related to Ewing’s
Sarcoma.

� 2013 Elsevier Ireland Ltd. All rights reserved.
1. Introduction

To recover information more effectively from degraded DNA
samples, miniSTR typing systems have been developed to obtain
smaller PCR products [1]. The amplicon sizes are reduced by mov-
ing the PCR primers closer to the short tandem repeat (STR) regions
while retaining the same information [2]. The European Network
of Forensic Science Institutes (ENFSI) and the European DNA
Profiling Group (EDNAP) recommend that European laboratories
adopt new miniSTR loci, including the marker mD22S1045, as
additional loci to CODIS (Combined DNA Index System) for human
identification using degraded DNA samples. However, one of the
objective criteria to an eligible new locus is no known association
with medical conditions or defects (refers to whether there is a re-
ported association of the locus with a medical condition or disease
status) [3,4]. If a locus is close to a gene or a specific chromosome
region linked to a disease, it is important to determine if a partic-
ular forensic allele is associated or is in linkage disequilibrium with
a disease state and hence subject to selection or to expose a
phenotype [5]. The miniSTR marker D22S1045 (locus 22q12.3) is
relatively close to the breakpoint region of the EWS gene (locus
22q12.2), which leads to the development of Ewing’s Sarcoma
(ES). Breakage hot spots around the EWS gene have been identified
as being points to chromosome translocations responsible for this
rare bone cancer [6]. Although the physical distance between
mD22S1045 and EWS gene is �6Mp, ES is the pathology most
physically related to this miniSTR marker. We aimed to investigate
if there was any linkage disequilibrium or any association between
miniSTR D22S1045 marker alleles and Ewing’s sarcoma phenotype.
2. Materials and methods

We enrolled in this study 24 Ewing’s sarcoma patients
(geographically matched with a control group) diagnosed at the
Pediatric Oncology Unit of the UFRGS university hospital (HCPA),
and 54 of their family members, including parents and healthy sib-
lings. Our control population consisted of 296 DNA donors from
Southern Brazil, which has mainly Portuguese, Italian, Spanish,
and German descendants [7,8]. Informed consent was obtained
from all participants. DNA was extracted from peripheral blood
leukocytes following the protocol of Lahiri and Nurnberger [9] or
purified from blood spots on Whatman FTA cards (Whatman
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Table 1
Allele frequencies of miniSTR marker D22S1045 in patients and different populations.

Alleles ESP RS CA AA HI IT GE

8 0.010
9

10 0.003 0.043 0.018
11 0.083 0.117 0.140 0.130 0.061 0.115 0.132
12 0.042 0.003 0.015 0.056 0.018 0.020 0.019
13 0.007 0.009 0.004 0.011
14 0.021 0.025 0.058 0.080 0.025 0.045 0.035
15 0.396 0.373 0.332 0.259 0.454 0.415 0.403
16 0.417 0.353 0.326 0.187 0.311 0.300 0.298
17 0.021 0.11 0.079 0.210 0.096 0.100 0.093
18 0.021 0.008 0.005 0.016 0.007 0.005 0.016
19 0.006 0.004
N 24 296 265 257 140 100 133
H 0.791 0.73 0.785 0.817 0.721 0.680 0.721

ESP: Ewing’s sarcoma patients; RS: Rio Grande do Sul (control group); CA: Caucasians from USA [17]; AA: African Americans [17]; HI: Hispanics from USA [17]; IT: Italians
[18]; GE: Germans [19]; N: Sample size; H: observed heterozygosis.

Table 2
Comparison of allele frequencies between patients and different populations.

Populations ESP RS CA AA HI IT GE

ESP – – – – – – –
RS p = 0.119 – – – – – –
CA p = 0.264 p = 0.267 – – – – –
AA p = 0.002* p < 0.001* p < 0.001* – – – –
HI p = 0.527 p = 0.138 p = 0.030* p < 0.001* – – –
IT p = 0.463 p = 0.706 p = 0.833 p = 0.004* p = 0.575 – –
GE p = 0.433 p = 0.523 p = 0.616 p < 0.001* p = 0.285 p = 0.992 –

ESP: Ewing’s sarcoma patients; RS: Rio Grande do Sul (control group); CA: Caucasians from USA [17]; AA: African Americans [17]; HI: Hispanics from USA [17]; IT: Italians
[18]; GE: Germans [19].
* Statistically significant, Chi-Square Test.

336 D.S.B.S. Silva et al. / Legal Medicine 15 (2013) 335–337
Bioscience, Cambridge, UK). Amplification was performed
following the parameters outlined by Coble and Butler [10] for
the non-CODIS 01 miniplex. Electrophoresis of the amplified frag-
ments was performed in an ABI PRISM� 3100-Avant Genetic Ana-
lyzer using the separation medium performance optimized
polymer (POP) 4 and 47 cm capillaries (Applied Biosystems, Foster
City, USA). Allelic designation was determined using Applied Bio-
systems GeneMapper�ID-X Software v1.2. Using Fisher’s or Pear-
son’s Chi-Square Test, we compared allele frequencies from ES
patients with those obtained from non-affected populations from
Rio Grande do Sul (Brazil), Italy, Germany and USA (Caucasian,
African American, and Hispanic). Transmission Disequilibrium Test
(TDT) was performed to determine if there was a presence of
genetic linkage between allelic inheritance and Ewing’s sarcoma
phenotype. A p-value <0.05 was assumed as significant in all tests
conducted.
3. Results and discussion

Allele frequencies are presented in Table 1. Association study in
a complex disease can be difficult, and we detected seven alleles
from our 24 patients. Even though our patient sample number
may seem low, it is in accordance with the number of cases of ES
expected to occur in Rio Grande do Sul (ES frequency is 2–3 per
million in Caucasian populations in Western countries [11] and
Rio Grande do Sul has a population of 10.5 million people (IBGE
Census 2010 – http://www.censo2010.ibge.gov.br/dados_divulga-
dos/index.php?uf=43). No differences in allele frequencies were
found between patients and the other populations with the same
genetic background, but we found significant differences between
the African American population and all other groups (Table 2).
These results indicate a genetic background effect but no associa-
tion between ES and any D22S1045 allele. We believe this compar-
ison strategy is appropriate for our purpose, since a case-control
study would be very difficult with ES patients.

Randall et al. [12] found an incidence of Ewing’s sarcoma in
siblings [13–15], evidencing a familial predisposition and a notice-
able genetics contribution to Ewing’s sarcoma. To examine if any
allele could have been preferentially inherited by affected individ-
uals but not by healthy siblings, we performed a Transmission Dis-
equilibrium Test comparing data from ES patients and their
relatives. No statistically significant result was found (p > 0.05).

Although loss of heterozygosis (LOH) and microsatellite insta-
bility (MSI) usually occur when loci containing microsatellite re-
peated regions are amplified in patients with any type of cancer
[16], these alterations were not found in our sample because
DNA was extracted from non-tumor leukocytes. LOH and MSI are
most likely to be found in cells from the bone tumor. When analyz-
ing the families pedigree, allele frequencies in the first generation
are similar to those in the second generation (Chi Square Test;
p > 0.05). We can notice that all alleles found in patients are also
present in their parents, showing a classic mendelian heritage
and absence of LOH and MSI.
4. Conclusion

Analyzing allele frequencies and linkage disequilibrium, we
concluded that the miniSTR D22S1045 was neutral when related
to Ewing’s Sarcoma trait. This result is a contribution to neutrality
studies of non-CODIS miniSTR D22S1045 forensic marker.
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