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A B S T R A C T   

Breast cancer (BC) is the most prevalent cancer worldwide. The prognosis and survival of these patients are 
directly related to the diagnostic stage. Even so, the gold standard screening method (mammography) has a long 
waiting period, high rates of false positives, anxiety for patients, and consequently delays the diagnosis by core 
needle biopsy (invasive method). Alternatively, the Attenuated Total Reflection Fourier Transform Infrared 
(ATR-FTIR) spectroscopy is a noninvasive, low-cost, rapid, and reagent-free technique that generates the spectral 
metabolomic profile of biomolecules. This makes it possible to assess systemic repercussions, such as the BC 
carcinogenesis process. Blood plasma samples (n = 56 BC and n = 18 controls) were analyzed in the spectro-
photometer in the ATR-FTIR mode. For the exploratory analysis of the data, interval Principal Component 
Analysis (iPCA) was used, and for predictive chemometric modeling, the Orthogonal Partial Least Squares 
Discriminant Analysis (OPLS-DA) algorithm with validation by leave-one-out cross-validation. iPCA in the region 
of 1118–1052 cm− 1 (predominantly DNA/RNA bands) showed significant clustering of molecular subtypes and 
control. The OPLS-DA model achieved 100% accuracy with only 1 latent variable and Root Mean Square Error of 
Cross-Validation (RMSECV) < 0.005 for all molecular subtypes and control. The wavenumbers (cm− 1) with the 
highest iPCA peaks (loadings: 1117, 1089, 1081, 1075, 1057, and 1052) were used as input to MANOVA (Wilks’ 
Lambda, p < 0.001 between molecular subtypes and control). The rapid and low-cost detection of BC molecular 
subtypes by ATR-FTIR spectroscopy would plausibly allow initial screening and clinical management, improving 
prognosis, reducing mortality and costs for the health system.   

1. Introduction 

Female breast cancer is the leading cause of global cancer incidence 
and fifth leading cause of cancer mortality worldwide [1]. The mortality 
scenario can be plausibly explained in the lack of understanding of the 
biological heterogeneity of breast cancer [2] and late diagnosis stage 
[3]. In turn, diagnosis stage is based on different criteria such as path-
ological stage, clinical stage and grade combined with molecular sub-
types [4]. This work as a guide for personalized treatment, cost-cutting 

[5,6], and helping to understand different clinicopathological charac-
teristics and distinct patterns of survival that affect clinical management 
[7]. 

The pathological stage is based on surgical findings and combines the 
characteristic of the tumor (T, from 0 to 4) with the presence of lymph 
node metastasis (N, from 1 to 3) or disseminated metastasis to other 
organs (M, from 0 to 1). Therefore, the pathological stage is directly 
related to tumor size and dissemination, while molecular subtypes ex-
press significant metabolomic varieties that can serve as biomarkers. 
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Clinical stage, on the other hand, combines clinical and Breast Imaging- 
Reporting Data System (BIRADS) findings. Grade assesses tumor 
aggressiveness (grades I-III) and is based on association of microscopic 
findings including gland differentiation, nuclear features, and mitotic 
activity [4]. 

Screening in molecular subtypes is decisive as predictive and prog-
nostic factor [8]. The main molecular subtypes can be represented by 4 
immunohistochemical types (Luminal A, Luminal B, HER2+ and 
Triple-negative) according to the expression of estrogen receptors (ER), 
progesterone receptors (PR), human epidermal growth receptor factor 2 
(HER2) and cell proliferation marker (Ki-67). Thus, Luminal A is char-
acterized by (PR+ and/or ER+, and ki67 < 14%), Luminal B (PR+
and/or ER+, and ki67 > 14%), HER2 (HER2+), and Triple-negative 
(PR-, ER- and HER2-) [7,9]. 

Age, histologic type, stage at diagnosis, hormonal contraceptive 
methods, postmenopausal hormone therapy, genetic factor, smoking, 
and other risk factors admittedly affect survival [10]. But stage at 
diagnosis is the strongest predictor of survival. Patients in stage IV have 
27 to 38 times more risk of death when compared to early stages I and II 
depending on the molecular subtype and highlighting the need for early 
screening [11]. 

Breast cancer is a pathology that requires a diagnostic evaluation 
that includes self-examination, physical examination by a professional, 
mammography (gold standard screening technique), and when nodules 
are suspected (BIRADS ≥ 3), a biopsy is performed for definitive diag-
nosis. This series of steps can take a long time to wait, generating anxiety 
for the patient, worse prognosis, and rising costs for the health system. 
Furthermore, mammography has its effectiveness reduced with higher 
tumor densities and with smaller tumors (less than 1 mm, about 
100,000 cells) and does not provide any indication of eventual disease 
outcome [12,13]. Core biopsy, on the other hand, has high sensitivity 
and specificity, but it is an invasive method that causes insecurity in the 
patients and it may take a long time until its realization and results [14]. 
Ultrasound is another common screening technique, but it is 
operator-dependent, excessive levels of subcutaneous fat spoil the re-
sults, and it has low resolution for very small masses [13]. 

Attenuated total reflection Fourier transform infrared (ATR-FTIR) 
spectroscopy is a technique capable of extracting chemical information 
from the vibrational energy of chemical bonds in biomolecules (nucleic 
acids, carbohydrates, lipids, and proteins) when applied to blood plasma 
[15]. Thus, complex biochemical samples can be globally analyzed 
quantitatively (to determine the concentration of a specific molecule) 
and qualitatively (through the analysis of spectral differences of the 
characteristic bands of biomolecules that are associated with the 
analyzed pathology) [16,17]. Due to its high sensitivity, specificity, and 
possibility to detect biochemical changes by analyzing all molecules 
simultaneously, ATR-FTIR becomes an excellent tool for screening 
numerous pathologies early. Depending on the molecular subtype and 
stage of breast cancer there are fluctuations of analytes such as nucleic 
acids, extracellular vesicles, lipids, proteins, and other biological com-
ponents that are released into the bloodstream by tumor cells [18,19]. 
Therefore, ATR-FTIR spectroscopy can be used as a technique to perform 
liquid biopsy, identifying biomolecular changes in spectral bands [20, 
21]. 

Several studies have been presented to differentiate cancer from non- 
cancer or detect cancer stages using infrared spectroscopy [22–26]. 
However, this present study is a pioneer in the differentiation of mo-
lecular subtypes of BC using ATR-FTIR coupled with chemometric 
techniques. This makes this methodology much simpler, faster, and 
cheaper to be adapted as point-of-care testing or as an alternative to 
current screening methods for BC. 

Considering metabolic fluctuations and carcinogenic variability (due 
to molecular subtype, tumor size, location, stage of diagnosis, among 
others) of BC, this study evaluates the applicability of ATR-FTIR spec-
troscopy coupled with chemometric techniques to discriminate the 
molecular subtypes of breast cancer in blood plasma samples. 

2. Materials and methods 

2.1. Sampling 

Blood samples from women were collected at the Hospital of the 
Federal University of Santa Maria (UFSM), Rio Grande do Sul, Brazil. 
Women diagnosed with stage I, II, and III of breast cancer (n = 56) by 
core biopsy regardless of the histological type were included in this 
study. Tumor tissue obtained by core biopsy was used in immunohis-
tochemical analysis to determine molecular subtypes. The control group 
[n = 18, age 41 (34–48)] was composed of random healthy women in 
routine appointment without a diagnosis of breast cancer. Women with 
benign neoplasia were not included. Blood samples were collected by 
venipuncture into tubes containing K3 EDTA as anticoagulant. The 
plasma was obtained by centrifugation at 1500 g. The study was 
approved by the Ethics Committee of Pontifical Catholic University of 
Rio Grande do Sul, RS, Brazil (CAAE: 01509918.2.0000.5336; Evalua-
tion Report: 3101887). Only individuals who formally consent to 
participate by signing the Informed Consent Form were included in the 
study. The descriptive analysis of women with breast cancer in this study 
is presented in Table 1. 

2.2. ATR-FTIR acquisition 

The plasma aliquots of 74 samples were deposited on the reading 
UATR-ZnSe crystal and dehydrated in air current (60–65 ◦C) for 1.5 min. 
The readings were performed in triplicate in a spectrometer (Spectum™ 
400 FT-IR/FT-NIR, PerkinElmer) in the attenuated total reflectance 
mode (ATR-FTIR), in the range of 650–4000 cm− 1, with 4 cm− 1 of 
spectral resolution and 4 scan pulses. Prior to the spectral acquisition of 
a new sample, the crystal was cleaned with distillated water and a 
background spectrum was collected to minimize environmental varia-
tions and other interferences. 

2.3. ATR-FTIR spectra 

The mean spectrum without data pre-treatment of each molecular 
subtype and control was plotted to analyze the absorbance differences in 
each wavenumber (Fig. 1a). Fig. 3c shows the mean spectrum of control 
and BC (mean of the four molecular subtypes). Fig. 3b,d is the magni-
fication of the selected region (1118-1052 cm− 1) used to perform prin-
cipal component analysis (PCA). The main vibration of interest for 
breast cancer analysis selected in PCA loadings (symmetric stretching 
vibration of PO2

− ) is highlighted. Analysis of variance (one-way ANOVA) 
and Tukey’s Post-Hoc test were applied to the wavenumbers (cm− 1) 
selected in the PCA loadings (1117, 1089, 1081, 1075, 1057, and 1052) 
to verify whether there was a significant difference in the absorption of 
these wavenumbers between the molecular subtypes and control. In 
addition, multivariate analysis of variance (one-way MANOVA) was 
applied considering all these wavenumbers at once. The multivariate 
analysis complements the univariate analysis, as it verifies the influence 
of the set of variables in relation to the outcome. 

Table 1 
Descriptive analysis of women with breast cancer.  

Breast cancer (n = 56)  

LA (n = 31) LB (n = 10) HER2+ (n = 12) TN (n = 3) 

Age 55 (46–67) 55 (48–65) 50 (41–59) 49 (48–58) 
Stage     

I. 9 1 3 1 
II. 17 8 9 2 
III. 5 1 0 0 

Size (cm) 2.6 (1.7–3.4) 2.8 (2.5–3.2) 1.8 (1.5–2.5) 2.3 (1.7–3.1) 

Age and size are represented as median (25%–75%). Abbreviations: LA: Luminal 
A; LB: Luminal B; TN: Triple-negative. 

N.M. Pereira de Souza et al.                                                                                                                                                                                                                 



Talanta 254 (2023) 123858

3

2.4. Interval principal component analysis (iPCA) 

PCA is an unsupervised chemometric technique for exploratory 
analysis of spectral data [27]. It works reducing the dimensionality of 
the data preserving the greatest variance of the data and projecting it 
into a new system of axes (principal components, PC) that retain as 
much information as possible, joining the groups that have the highest 
correlations between their variables [28]. The PCA version by intervals 
(iPCA) divides the ATR-FTIR spectrum into equal fragments. Therefore, 
the greater the number of fragments, the smaller the number of wave-
numbers per interval. This means that you can find regions with higher 
group separation potential than using the total ATR-FTIR spectrum. 

iPCA was applied aiming to find groupings of molecular subtypes and 
control with better separation in a specific spectral interval (Fig. 2). The 
total ATR-FTIR spectrum (4000-650 cm− 1) was empirically fragmented 
in 10, 20, 30, 40, 50, and 60 regions with the same number of wave-
numbers in each interval. The purpose of this was to determine which 
biomolecular region would have the greatest potential for grouping 
samples belonging to the same class (molecular subtypes or control). 
The data was mean-centered. The region chosen was the one that 
demonstrated the best grouping of classes in visual inspection. The 
loadings (in this case, the weight of each wavenumber in determining 
the spatial position of each sample in the orthogonal plane of the PC) for 

the selected region were plotted in Fig. 2d. The wavenumbers corre-
sponding with the peaks of the loadings are highlighted. To verify 
whether the spatial separation of the groups shown in the iPCA (Fig. 2) 
was significant, the non-parametric Kruskal-Wallis test and Dunn’s Post- 
Hoc multiple comparisons with Holm correction (Table 2) was applied 
considering the PC1, PC2, PC3, and PC4 scores values. Table 3 describes 
the chemical correspondence of the wavenumber peaks selected in the 
iPCA loadings. The iPCA was performed with the ChemoStat V.2 soft-
ware (Santa Cruz do Sul, RS, Brazil) and univariate statistics with Jasp 
0.14.1 (Amsterdam, North Holland, Netherlands). 

2.5. Orthogonal partial least squares discriminant analysis (OPLS-DA) 

OPLS-DA works by maximizing the covariance between the inde-
pendent and dependent variable in a new linear subspace with reduction 
in the number of factors (latent variables, LVs). With this, it is possible to 
make the prediction of new dependent variables and discriminate them 
[29,30]. 

OPLS-DA was used for supervised classification of molecular sub-
types and control. The spectral data were processed in the following 
sequence: min-max normalization (0–1) of spectral replicates, calcula-
tion of the mean spectrum of each spectral triplicate set, derivative of 
Savitzky-Golay algorithm (filter width = 5, polynomial order = 2, and 

Fig. 1. Average ATR-FTIR spectra without pre-treatment with appointment of symmetric phosphate stretching modes [νs(PO2
− )] originate from the phosphodiester 

groups in nucleic acids. (a) Total spectra (4000-650 cm− 1) of breast cancer molecular subtypes and control. (b) Magnification of the spectral region used in PCA 
(1118-1052 cm− 1). (c) Total spectra (4000-650 cm− 1) of women with breast cancer (mean of all molecular subtypes) and control. (d) Magnification of the spectral 
region used in PCA (1118-1052 cm− 1). Abbreviations: νs: symmetric stretching vibration; PCA: principal component analysis. 
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derivative order = 1) and 1 component of orthogonal signal correction 
(OSC) concerning each mean spectrum. Leave-one-out cross-validation 
(LOOCV) was used to evaluate the performance of OPLS-DA models and 
determine the most robust number of latent variables (Fig. 3) according 
to ASTM E1655-17 rule [31]. LOOCV was chosen as the validation 
method due to the small number of samples per class (molecular 

subtype). The OPLS-DA models were constructed using the total spec-
trum (4000-650 cm− 1) and performed with the Pirouette 4.0 software 
(Infometrix, Bothell, Washington, USA). 

3. Results 

3.1. Spectral analysis 

In Fig. 1d it is observed that the area under the curve (AUC, integral) 
of the mean spectrum of women with breast cancer is greater than that of 
women without cancer (controls). This is important because this region 
selected in the iPCA (1118-1052 cm− 1) is predominantly composed of 
molecular vibrations associated with nucleic acids. There was a signif-
icant difference for all wavenumbers selected by iPCA loadings (1117, 
1089, 1081, 1075, 1057, and 1052) only between control and HER2+ (p 
< 0.05). Among the other subtypes and control there was no difference. 
However, it was obtained significant difference (p < 0.001) at Wilks’ 
Lambda of MANOVA among all molecular subtypes and control in all 
loadings selected in the iPCA. This highlights the importance of multi-
variate analysis of the joint contribution of wavenumbers. This occurs 
because different wavenumbers can have chemical correspondence in 
the same biological group of molecules. This may justifies the fact that 
the mean AUC of patients with BC is greater than that of the control, due 
to the greater contribution of absorbance of several wavenumbers with 
correspondence of vibrations of DNA/RNA molecules. 

3.2. Chemometrics 

3.2.1. iPCA 
The region with the best visual separation was 1118–1052 cm− 1 

(when spectrum fragmented into 50 regions) with 67 variables (wave-
numbers). Data were only mean-centered without normalization. When 
min-max normalization or vector normalization was applied, satisfac-
tory results were not obtained with loss of information in the chosen 
region. The best combinations of PCs that demonstrated visual differ-
entiation between molecular subtypes and control were chosen (Fig. 2). 
Fig. 2b (PC2 x PC3) is the one that presents the best difference between 

Fig. 2. PCA of spectral region of 1118–1052 cm− 1 with data mean-centered. (a) PCA scores (PC1 x PC2). (b) PCA scores (PC2 x PC3). (c) PCA scores (PC2 x PC4). (d) 
Loadings of PC1, PC2, PC3, and PC4 with peak marking. Abbreviations: PCA: principal component analysis; PC: principal component. 

Table 2 
Kruskal-Wallis test and Dunn’s Post-Hoc multiple comparisons with Holm 
correction for each Principal Component (PC).   

PC1 PC2 PC3 PC4 

Kruskal-Wallis Test 0.004a <0.001a <0.001a 0.004a 

Control - Luminal A 0.324 <0.001a 0.012a 0.002a 

Control - Luminal B 0.18 <0.001a 0.072 0.963 
Control - HER2+ 0.07 0.06 <0.001a 0.187 
Control - Triple-negative 0.006a 0.103 0.897 0.479 
Luminal A - Luminal B 0.286 0.592 0.897 0.074 
Luminal A - HER2+ 0.194 0.023a <0.001a 0.708 
Luminal A - Triple-negative 0.019a 0.592 0.897 0.963 
Luminal B - HER2+ 0.392 0.022a 0.008a 0.578 
Luminal B - Triple-negative 0.18 0.469 0.897 0.646 
HER2+ - Triple-negative 0.194 0.592 0.024a 0.963  

a Significant values (p < 0.05). 

Table 3 
Selected wavenumbers (peaks) in principal component analysis loadings and 
their chemical correspondence.  

Peak 
(cm− 1) 

Assignment Reference 

1052 Phosphate I band for two different C–O vibrations of 
deoxyribose in DNA in A and B forms of helix 

[34] 

1057 Stretching C–O deoxyribose [35] 
1075 Symmetric stretching vibration of PO2

− [36] 
1081 Symmetric stretching vibration of PO2

− and one of the 
triad peaks of nucleic acids (along with 1031 and 1060) 

[36] 

1089 Symmetric stretching of PO2
− in RNA [34] 

1117 C–O stretching vibration of C–OH group of ribose (RNA) [37]  
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the molecular subtypes evidenced by the Dunn’s Post Hoc test (Table 2). 
The combination of PC1 x PC2 x PC3 was able to significantly differ-
entiate the control of all molecular subtypes (p-values in Table 2). PC2 
discriminated the control group from Luminal A and Luminal B with a 
significant spatial difference (p < 0.001). Only PC3 was able to 
discriminate between control and HER2+ (p < 0.001) and only PC1 was 
able to differentiate the control from the Triple-negative (p < 0.01). 
HER2+ had significant spatial separation by PC3 for control (p < 0.001), 
Luminal A (p < 0.001), Luminal B (p < 0.01), and Triple-negative (p <
0.05). Luminal A and Luminal B were not separated by any PC. This 
probably occurred due to the similar immunohistochemical profile of 
both. 

The chemical designations of the peaks selected in the iPCA loadings 

are represented in Table 3. Notably vibrations related to nucleic acid 
bonds have been selected. 

3.2.2. OPLS-DA 
Fig. 3f indicates the root mean square error of cross-validation 

(RMSECV) for each latent variable in each class. When the number of 
LVs is increased, the RMSECV decreases. However, there is a risk of 
overfitting the model to the intrinsic characteristics of the dataset with 
higher numbers of LVs. Considering that only 1 latent variable already 
presented RMSECV < 0.005 for all classes, only this one was used to 
create the OPLS-DA model. The variance conserved in LV1 for each 
model of prediction of molecular subtypes and control were: control 
(94.64%), Luminal A (96.47%), Luminal B (90.81%), HER2+ (91.39%), 

Fig. 3. OPLS-DA prediction model generated by leave-one-out cross-validation for 1 latent variable (LV) for Luminal A (a), Luminal B (b), HER2+ (c), Triple-negative 
(d), and control = normal (e). The value “1′′ refers to the samples of interest to be predicted and the value “0′′ to the other samples. The model classified 100% of the 
samples correctly for all 5 models. (f) The variations of RMSECV with the increase in the number of latent variables for each class (control and molecular subtypes). 
Abbreviations: OPLS-DA: orthogonal partial least squares discriminant analysis; RMSECV: root mean square error of cross-validation. 
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and Triple-negative (73.19%). The lowest variance value for Triple- 
negative is due to the smallest number of samples for this class. Thus, 
there is less representativeness of the variation of this class in LV1 when 
arranging the orthogonalization process. However, for all other classes, 
a high variance (>90%) was obtained. Therefore, considering the high 
variance of LV1 and the low RMSECV, we can infer that the model is 
very suitable for predicting new external samples. 

Fig. 3a–e shows the values predicted by the OPLS-DA model. The 
class to be predicted is represented by number 1 and everything else by 
number 0. The model was able to correctly classify 100% of all classes 
considered. 

The effects of molecular subtype and cancer stage were differentiated 
by the loadings of LV1 observed in OPLS-DA models elaborated for each 
subtype and control (Fig. 4). This is because the molecular subtypes have 
different metabolomic profiles, while the stages relate more to the 
concentration of certain analytes than to the metabolomic variety [32, 
33]. Furthermore, the stages are mainly associated with the size of the 
tumor. In our sample of subjects (Table 1) there was no significant dif-
ference (Kruskall-Wallis test, p > 0.05) in tumor size between molecular 
subtypes. In the analysis of the OPLS-DA models loadings, can be 
observed the most relevant positive contributions at 1700-1650 cm− 1 

(Amide I) and 1555-1540 cm− 1 (Amide II), and negative contributions at 
1635-1620 cm− 1 (Amide I) and 1520-1470 cm− 1 (Amide II). The other 
region with the highest loadings outside the amide spectrum was at 
1420-1400 cm− 1 (positive contribution) and 1390-1375 cm− 1 (negative 
contribution). This region between 1420 and 1375 cm− 1 is a combina-
tion of the vibrations of ν(C–N), δ(C–H), and δ(N–H) [38]. 

4. Discussion 

The major goal of differentiating molecular subtypes is early 
screening with the possibility of personalized treatment. The luminal A 
and luminal B molecular subtypes tend to have a better prognosis and 
the possibility of antiestrogenic treatment with tamoxifen or aromatase 
inhibitors [39]. The HER2+ subtype is more aggressive and character-
ized by the high expression of the HER2 oncoprotein and the 
non-expression of estrogen or progesterone receptors [40]. Thus, 

patients with the HER2+ subtype benefit from therapy with the mono-
clonal antibody trastuzumab, which acts by binding to the HER2 re-
ceptor and down-regulating it. Adjuvant trastuzumab reduces the risk of 
recurrence by half and mortality by one third in cancer patients primary 
stage breast. The Triple-negative subtype has the worst prognosis, with 
no possibility of therapy with trastuzumab, tamoxifen or aromatase in-
hibitors [41,42]. The benefits of therapy for early stages of breast cancer 
were estimated in the study by Burstein et al. [43]. Because of this, our 
methodology based on ATR-FTIR spectroscopy aims to screening mo-
lecular subtypes in early stages, considering the therapeutic and prog-
nostic benefits. 

The selected region (1052-1118 cm− 1) for principal component 
analysis has numerous bonds that are mainly associated with DNA and 
RNA molecules [38]. Emphasis on the wavenumbers 1075 and 1081 
cm− 1, which were among the highest weights in loadings in the 
discrimination of molecular subtypes. These wavenumbers are related to 
symmetric phosphate stretching modes [νs(PO2

− )] originate from the 
phosphodiester groups in nucleic acids and suggest an increase in the 
nucleic acids in the malignant tissues [36,38]. In the study by Sitnikova 
et al. [44], for detection of patients with BC and without BC in blood 
serum by ATR-FTIR, a significant difference was observed in the same 
phosphate region highlighted in our findings. As well as previous studies 
that discuss oscillations in the structure of DNA and RNA in BC [45] and 
other cancers such as colorectal [46] and lung [47]. In the analysis of 
DNA of breast tissue with infrared microscope by Malins et al. [45], 
substantial oxidative changes in DNA base structures in mutagenesis and 
carcinogenesis of BC were verified. These changes were also reflected in 
the phosphodiester backbone and the deoxyribose moiety. In addition, 
the study by Zelig et al. [48] using FTIR spectroscopy in peripheral 
blood, they found two regions with a significant difference (p < 0.05, 
t-test) between patients with breast cancer and without cancer. The first 
region (1700-1450 cm− 1, Amide I and Amide II) corresponds to the same 
region that is most prominent in the loadings of our OPLS-DA models. 
The second region (1180-1000 cm− 1, mainly due to symmetric PO2

- 

stretching, C–C symmetric vibrations, and C–O symmetric vibrations of 
proteins, nucleic acids, carbohydrates, and phospholipids) corresponds 
approximately to the same spectrum selected in our iPCA analysis. 

Considering the intense spectral discriminatory band involving 
DNA/RNA between BC molecular subtypes and the control evidenced in 
the ATR-FTIR analysis (Fig. 1), this could also be explained by the higher 
concentration of circulating cell-free DNA (cfDNA) in breast cancer 
patients [49,50]. It is released into the blood plasma by apoptosis, ne-
crosis, or active secretion. Many factors are associated with increased 
release of circulating tumor DNA (ctDNA) into the bloodstream, such as 
tumor volume, localization, vascularization, and antitumoral treatments 
(surgery, chemotherapies, radiotherapy) [51,52]. ctDNA can potentially 
carry deletions, translocations, methylations, different types of integrity 
that interfere with the structural pattern of DNA and that will likely be 
verified in the ATR-FTIR spectrum [53]. 

The OPLS-DA model proved to be an excellent supervised chemo-
metric algorithm for dimensionality reduction and classification of BC 
molecular subtypes, considering 100% accuracy and RMSECV < 0.005 
for all models with only 1 LV. The model was constructed using the total 
spectrum and not only the region selected in the iPCA. This was 
accomplished to avoid overfitting. Although the region selected in the 
iPCA presented significant separation between molecular subtypes and 
control, it is still more appropriate to consider the joint contributions of 
biomolecular regions. This was evidenced by the loadings of the OPLS- 
DA model, where the regions of Amide I and Amide II had the greatest 
contributions. This high contribution was also influenced by min-max 
normalization (0–1). 

As limitations of the model, the OPLS-DA is invariable with the 
insertion of new external samples, having to create the model again to 
improve it. However, the model is extremely functional with few sam-
ples. As a solution to this problem, there is the possibility of using 
artificial neural networks (ANN) with the backpropagation algorithm 

Fig. 4. Loadings of the five OPLS-DA models for breast cancer molecular sub-
types and control. It can be observed the most relevant positive contributions at 
1700-1650 cm− 1 (Amide I), 1555-1540 cm− 1 (Amide II), and 1420-1400 cm− 1, 
and negative contributions at 1635-1620 cm− 1 (Amide I), 1520-1470 cm− 1 

(Amide II), and 1390-1375 cm− 1. This region between 1420 and 1375 cm− 1 is a 
combination of the vibrations of ν(C–N), δ(C–H), and δ(N–H). Abbreviations: 
OPLS-DA: orthogonal partial least squares discriminant analysis; ν: stretching 
vibration; δ: deformation vibration. 
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associated with PCA or PLS to reduce dimensionality and serve as input 
data. In the ANN, for each new sample inserted, the model recalculates 
the weights and rebuilds the model, being able to create a permanent 
and self-adjusting classifying model. However, ANN tend to require a 
greater number of samples and computational demand [54,55]. 

The OPLS-DA model was developed only with plasma from patients 
with an indication for biopsy, in this case, all patients had BIRADS ≥ 3. 
In this condition, the model is more adequate to differentiate molecular 
subtypes of patients with indication for biopsy. The inclusion of patients 
classified as benign tumors would be more appropriate for the devel-
opment of a model for screening cancer patients. A proposal to be 
developed later. 

5. Conclusion 

The OPLS-DA model with only 1 LV (RMSECV < 0.005 for all classes) 
and high variance in this LV obtained 100% accuracy for discrimination 
of molecular subtypes and control. The selected region in iPCA (1052- 
1118 cm− 1, mainly composed of DNA/RNA vibrations) was able to 
significantly differentiate the molecular subtypes and control. There-
fore, our study obtained exciting results towards the translation of ATR- 
FTIR spectroscopy to the clinic. The methodology proposed in this study 
is simple, fast, low cost, and reagent-free. Nonetheless, the operation 
flowchart still has some limitations, such as the centrifugation step to 
obtain blood plasma and the sample drying step to eliminate interfer-
ence from the water bands. Even so, this methodology would plausibly 
allow molecular subtypes of BC screening and consequently improve the 
prognosis by instituting early treatment. 
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