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Zebrafish is a prominent vertebrate model, with many of its advantages related to its
development, life cycle, and translational ability. While a great number of behavioral
phenotypes and tasks to evaluate them are available, longitudinal studies across
zebrafish life stages are scarce and made challenging because of the differences
between protocols and endpoints assessed at each life stage. In this mini review, we
highlight the relevance that longitudinal studies could have for neurobehavioral
pharmacology using this model. We also present possible strategies to standardize
behavior endpoints in domains related to human diseases throughout the life cycle,
especially between larvae and adult fish. Furthermore, we discuss the remaining
difficulties of these analyses and explore future advances needed to bridge this
knowledge gap.
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1 INTRODUCTION

Zebrafish is a widely used vertebrate model species in research fields such as genetics, pharmacology,
developmental biology, neuroscience, among others (Senger et al., 2004; Egan et al., 2009; Spence
et al., 2011; Siebel et al., 2015). As an alternative to rodents, zebrafish has numerous advantages. Their
habits are diurnal, they reproduce throughout the year and produce a large number of eggs with each
reproduction (Kalueff et al., 2014). Furthermore, external development and the absence of parental
care reduce the epigenetic influences of parental animals (Mushtaq et al., 2013) and allow
manipulations during embryonic development (Kalueff et al., 2014). Initial development is rapid
- embryogenesis lasts approximately 24 h (Dahm et al., 2006) - with most neurochemical pathways
already functional, although immature, at around 60 h post-fertilization (hpf) (Arenzana et al., 2005;
Sallinen et al., 2009; Cocco et al., 2017; Monesson-Olson et al., 2018).

The high capacity of behavioral analysis is also a feature of this model. The importance of
behavioral traits in research stems mostly from it being a functional readout of neural activity (Gerlai
et al., 2000; Valente et al., 2012; Orger and De Polavieja, 2017). In this sense, although zebrafish and
mammals have marked anatomical differences in the structural organization of the central nervous
system (CNS) (Wullimann and Mueller, 2004; Sager et al., 2010), there is a strong functional
homology, reflected in the similarity of effects in response to exposure to compounds between
zebrafish and mammals (Bailey et al., 2013) and in the successful adaptation of many behavioral

Edited by:
Yuhei Nishimura,

Mie University, Japan

Reviewed by:
Rebecca Ann Wingert,

University of Notre Dame,
United States

*Correspondence:
Carla Denise Bonan
cbonan@pucrs.br

Specialty section:
This article was submitted to
Translational Pharmacology,

a section of the journal
Frontiers in Pharmacology

Received: 13 December 2021
Accepted: 03 January 2022
Published: 20 January 2022

Citation:
Petersen BD, Bertoncello KT and
Bonan CD (2022) Standardizing
Zebrafish Behavioral Paradigms

Across Life Stages: An Effort Towards
Translational Pharmacology.

Front. Pharmacol. 13:833227.
doi: 10.3389/fphar.2022.833227

Frontiers in Pharmacology | www.frontiersin.org January 2022 | Volume 13 | Article 8332271

MINI REVIEW
published: 20 January 2022

doi: 10.3389/fphar.2022.833227

http://crossmark.crossref.org/dialog/?doi=10.3389/fphar.2022.833227&domain=pdf&date_stamp=2022-01-20
https://www.frontiersin.org/articles/10.3389/fphar.2022.833227/full
https://www.frontiersin.org/articles/10.3389/fphar.2022.833227/full
https://www.frontiersin.org/articles/10.3389/fphar.2022.833227/full
https://www.frontiersin.org/articles/10.3389/fphar.2022.833227/full
http://creativecommons.org/licenses/by/4.0/
mailto:cbonan@pucrs.br
https://doi.org/10.3389/fphar.2022.833227
https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org/journals/pharmacology#editorial-board
https://doi.org/10.3389/fphar.2022.833227


paradigms of rodents to this species (Kalueff et al., 2014). In
zebrafish, behavioral assessments can be performed as early as
17 hpf, still inside the eggs (Kokel et al., 2010), and more complex
tasks are available when the animals reach a state of free-
swimming and active search for food within 5 days after
fertilization (dpf) (Neuhauss, 2003). As fish develops,
behaviors increase in complexity. Most studies focus on either
larval or adult stages, with around 190 distinct behavioral
phenotypes already described for zebrafish (Kalueff et al.,
2013). These phenotypes combined can be arranged in
behavioral domains (Kalueff et al., 2013; Kalueff et al., 2014)
and serve as significant endpoints in biomedical and human
disease translational research (Ninkovic and Bally-Cuif, 2006;
Kalueff et al., 2014; Fontana et al., 2018), toxicology, and
pharmacology (Goldsmith, 2004; Bailey et al., 2013; MacRae
and Peterson, 2015; Costa et al., 2020).

Granting all this, translationality of behavior across life stages
in zebrafish is still poorly explored, mainly because paradigms for
larvae and adult fish differ in form and endpoints, thus not
allowing direct comparisons between stages. In this review, we
will discuss the significance of this gap focusing on behavioral
responses to pharmacological interventions, the currently used
paradigms to each life stage and behavioral domain, the
alternative paradigms that can potentially be used across
stages to close this gap, and the drawbacks and benefits of
each strategy.

2 VARIABILITY OF PHARMACOLOGICAL
RESPONSES BY LIFE STAGES

Age is a factor that might influence zebrafish behavior and its
pharmacological responses, especially in early life stages when
results reflect specific time windows in which the neural systems
are not yet mature (Orger and De Polavieja, 2017). Despite the
difficulties for transposing results across ages, posed by the
variations of endpoints, studies of chemicals in varying
developmental stages indicate the advantages zebrafish could
have if this gap was diminished. One drug that was extensively
studied throughout zebrafish development is the NMDA receptor
antagonist MK-801. In general, neurobehavioral actions of this
drug are conserved in zebrafish (Chen et al., 2010; Sison and
Gerlai, 2011), and the findings are comparable to those previously
described in rodents (Löscher and Hönack, 1992). Some studies
using MK-801 demonstrate different behavioral responses of
zebrafish during its development.

Age-related locomotor responses to MK-801 were reported in
zebrafish (Menezes et al., 2015). In this study, the locomotor
response of zebrafish to MK-801 through the development, from
30 dpf to 2 years post-fertilization (ypf) was evaluated. Distance
traveled showed that 30-day-old zebrafish did not respond to
MK-801, whereas in animals aged 60 dpf, 120 dpf, and 2 ypf, the
antagonist promoted an increase in locomotor activity at the
concentration of 5 µM. When the NMDA receptor subunit gene
expression was analyzed through the development (7 dpf–2 ypf),
the results showed variations in the expression of NR1.1 and
NR2A.2 and NR2C.1 subunits throughout the development.

With this, the changes in locomotor responses to MK-801
exposure through the development could be a consequence of
differential NMDA receptor subunit expression (Menezes et al.,
2015). This result of developmental responses to MK-801
highlights the significance of cross-ages studies, and how this
model can uncover characteristics of neural development useful
for pharmacological interventions.

The effects of MK-801 were assessed in more complex
behaviors. Social interactions variations in response to MK-
801 demonstrated that zebrafish submitted to a preference/
interaction assay show a social behavior that starts to emerge
by 2 weeks post-fertilization (wpf) and is robust at 3 wpf (Dreosti
et al., 2015). At this point (3 wpf), acute treatment with 100 µM
MK-801 disrupted social preference, as was previously shown in
adults (Sison and Gerlai, 2011). This suggests that blocking
NMDA receptors interferes with the circuitry required for
social interactions, both in larva and in adult fish. Cognition,
as tested with novel object recognition paradigms, was also
evaluated both in larvae and adult zebrafish, demonstrating
different responses to MK-801. While in larvae MK-801 did
not affect memory retrieval in short- or long-term memory
assay in zebrafish at 10 dpf (Andersson et al., 2015), MK-801
impaired object location memory in adult zebrafish on a novel
object recognition test (Gaspary et al., 2018). It indicates
dependent differences in the action of the antagonist
according to age, once in zebrafish larvae MK-801 did not
influence the retrieval of memories obtained before the
treatment, as was expected by previous adult outcomes.

The studies described here serve as an example and highlight
the importance of a better understanding of behavioral
phenotypes at different stages of zebrafish development.
Results to MK-801 vary depending on age, the complexity of
behavior, and endpoint assessed. Therefore, assessing equivalent
endpoints throughout life can potentially bring zebrafish
pharmacology to a new level. It may facilitate the observations
of how responses develop and increase zebrafish potential as a
translational model that enables the study of ontogenic changes of
molecular drug targets.

3 ZEBRAFISH BEHAVIORAL PARADIGMS

3.1 General Behavior and Anxiety
General behavior and anxiety in zebrafish are generally evaluated
together, although specific tests to evaluate anxiety are available.
Regarding the general well-being of zebrafish, this assessment can
be performed during behavioral tasks, with the main parameters
common to the various tasks being total distance traveled, erratic
movements (usually measured by the angle of rotation), and
immobility (Westerfield, 2000; Kalueff and Stewart, 2012; Kalueff
et al., 2013). The animal’s body position can be observed during
these tests and indicate disease or exposure responses to
compounds (Kalueff et al., 2013). The assessment of these
parameters together can lead to the characterization of
complex behaviors such as hypolocomotion, hyperlocomotion,
sickness behavior, motor incoordination, among others (Kalueff
et al., 2013).
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Although these behavioral phenotypes can be evaluated in a
wide variety of tests, the general aspects of zebrafish locomotion
are usually analyzed in the novel tank or open field tests (Bridi
et al., 2017; Nabinger et al., 2020; Petersen et al., 2021). In adults,
novel tank and open tank tests are performed in a rectangular or
trapezoid aquarium and the typical zebrafish behavior is to stay at
the bottom of the apparatus for the first few minutes of testing,
followed by top exploration, a phenomenon called bottom-
dwelling (Kalueff et al., 2013). Animals also tend to exhibit
thigmotaxis, that is, to remain close to the walls of the
apparatus, although this is rarely assessed by the difficulty of
measuring time at the bottom/top and thigmotaxis
simultaneously with a single camera (Kalueff and Stewart,
2012). In larvae, the paradigm used to assess exploration is
usually carried out with the camera below or above 24 or 96-
well plates, so that thigmotaxis, but not depth preference, is
assessed (Creton, 2009). In both larvae and adults, locomotion in
these scenarios follows a sinusoidal oscillatory pattern, with
alternating phases of higher and lower velocities with a
frequency of approximately 5 min (Kalueff and Stewart, 2012;
Kalueff et al., 2013).

With this, the main differences in the above-mentioned
paradigms for larvae and adults are the positioning of the
camera, which impact the endpoints that can be retrieved later
with automated analysis software (bottom-dwelling or
thigmotaxis), and the form of the apparatus (rectangular or
round). Although unusual, the rectangular novel tank test has
recently been adapted for older larvae (Golla et al., 2020). In this
variation, fish were filmed in groups, and bottom dwelling was
measured not by time but by ratio. Despite this, the protocol can
be used as an alternative to access larvae in a similar way to adult
fish. The main con of this proposal would be to lose the
assessment of thigmotaxis.

Another alternative regarding standardization of general
behavior across life stages could be filming adult fish from
above, in round tanks. This alternative is especially promising
for pharmacological studies, once it allows coupling with the
Light Motor Response (LMR) test and reduces the number of
animals used. The LMR test, also called motor response to light/
dark transitions, is widely used in zebrafish larvae, mainly due to
its high sensitivity to neuroactive compounds (Emran et al., 2008;
Legradi et al., 2014; Klüver et al., 2015; Leuthold et al., 2019), and
has already been adapted for adult animals (Shao et al., 2017). For
the LMR, after habituation to the tank or well, light condition is
changed periodically from light to darkness and behavior is
recorded with an infrared enabled camera, with different
number and length of cycles described in the literature
(Emran et al., 2008; Legradi et al., 2014; Klüver et al., 2015;
Leuthold et al., 2019). Alike the novel/open tank, the parameters
retrieved are distance traveled, erratic movements, thigmotaxis,
immobility, and more, only the analysis is coupled by light
condition, hence there are typical behavioral changes exhibited
by animals in dark and light environments, and in the transitions
between these two conditions.

The three paradigms discussed (rectangular novel tank, round
novel tank, and LMR) can also be used to evaluate anxiety-like
states in zebrafish. Stress and anxiety models are widely used in

research related to neuroscience and as a behavioral parameter
for drug discovery studies with effects on the CNS (Kysil et al.,
2017). In other experimental models, but especially in zebrafish,
the behavioral phenotypes of fear, stress, and anxiety are
confusing, and species-specific patterns that help in their
differentiation are not well established (Maximino et al.,
2010a). Thus, we will use the term “anxiety” to describe the
set of these phenotypes. In the novel tank test, anxiety is assessed
together with exploratory behavior, by observing the parameters:
the latency to swim to the upper half of the tank, the number of
transitions between the lower and upper half, the time in each of
these zones, the instances of erratic movements and immobility
and freezing responses (Maximino et al., 2010a; Kysil et al., 2017).
Finally, regarding outcomes that can be evaluated in non-specific
paradigms for anxiety, thigmotaxis (time, frequency, crossings
between center and borders of the well) is used as an parameter
for indicating anxiety in larvae, and in some tests used to assess
cognition based on aversive stimuli and also on light transition
tests (Maximino et al., 2010a; Schnörr et al., 2012).

Among the specific tests for anxiety, the most recognized is the
light/dark preference test, based on the animals’ natural
scototaxis. This test has already been adapted for different
stages of development and presented with some
methodological variations (Serra et al., 1999; Maximino et al.,
2010b; Stewart et al., 2011; Golla et al., 2020). In general, the
paradigm consists of placing the animal individually in an
apparatus with a zone with white walls and floor and another
zone with black walls and floor. The parameters used to measure
anxiety are number of transitions between zones, latency for the
aversive zone, number of risk assessment episodes (rapid entries,
without permanence in the aversive zone), thigmotaxis in the
aversive zone, time in the aversive zone, number of freezing
episodes and erratic movements (Maximino et al., 2010b;
Steenbergen et al., 2011; Kysil et al., 2017). The main variation
in responses to being placed in this half-black, half-white tank
between life stages is that while animals in the larval stage prefer
light zones, juvenile and adult animals prefer dark zones (Kalueff
et al., 2013; Kysil et al., 2017). Exactly when this transition of
preference occurs is still an unknown point. Thus, to enable
comparisons between life stages, the researcher must be aware of
the preference the animals exhibit and evaluate the outcomes
about the zone that the animal tends to avoid (light for adults,
dark for larvae) or prefer. Another point of care is the variation of
the paradigm that will be used, depending on the age and size of
animals. Given that the size of the tank should be adapted to the
animal’s size (Buske and Gerlai, 2011) when using smaller
animals such as young larvae, the use of sliding doors may be
non-practical, thus the paradigm of Serra et al. (1999) should be
preferred.

3.2 Cognition
The cognition domain comprises the processes involved in
learning and memory. The diversity of behavioral paradigms
aimed to study this domain in zebrafish is high, however, themost
used tasks are based on conditioning to aversive or rewarding
stimuli, or based on the natural preference of these animals for
new objects or situations (Blank et al., 2009; Cognato et al., 2012;
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Gaspary et al., 2018; Yashina et al., 2019). Concerning to the tasks
based on classical or operant conditioning, the main stimuli are
usually aversive, most notably the use of electric shocks (Blank
et al., 2009; Hinz et al., 2013; Harmon et al., 2017; Yashina et al.,
2019). This type of test is usually performed in multiple sessions
and generates long-term memories, and the main outcomes
measured are permanence in the zone considered safe or the
latency to enter the zone where the animal previously received the
aversive stimulus (Blank et al., 2009; Valente et al., 2012; Yashina
et al., 2019).

How early zebrafish can learn and retrieve memories is still a
point of debate. Classical conditioning tasks have been
successfully performed in animals in the early stages of
development at 6 dpf (Aizenberg and Schuman, 2011; Harmon
et al., 2017) and ∼ 3 wpf (Valente et al., 2012; Matsuda et al.,
2017). Regarding operant conditioning, Yashina et al. (2019)
tested animals at 7, 14, and 21 dpf, demonstrating that
learning varies according to animal size at 7 and 14 dpf,
suggesting that body length, not age in days, reflects the brain
development necessary for learning in this age group. The
duration of memories acquired through conditioning protocols
also seems to depend on the test used and the age of the animals
(Roberts et al., 2013; Yashina et al., 2019). For short-term
memories, the Y-maze is used in adult animals (Cognato
et al., 2012; Fontana et al., 2021; Petersen et al., 2021). This
paradigm is based on visual cues and the preference of zebrafish
for novel situations to form a spatial memory of animals
(Cognato et al., 2012). The Y-Maze has not yet been
characterized in animals in their early stages of development;
however, a paradigm based on visual cues and the presence of a
new object in 10 dpf animals was characterized, demonstrating
that older larvae can learn spatial tasks (Andersson et al., 2015).

In such a case, studying cognitive alterations across zebrafish
development is still a challenge. Although classical conditioning
appears to be the safest option, results in young larvae are
inconsistent depending on the size of animals, inter-trial interval,
and specific paradigm (Valente et al., 2012; Harmon et al., 2017;
Yashina et al., 2019). Given the importance of cognitive symptoms in
many health conditions, the adaptation and validation of a paradigm
suited for such purposes present as major gap in the behavioral
neuroscience of zebrafish.

3.3 Sociability
The social behavior of zebrafish encompasses the interaction with
conspecifics, aggression, and sexual behaviors (Kalueff et al., 2013),
all of which are highly conserved in this species (Scott and Sloman,
2004; Stednitz andWashbourne, 2020). So far, studies related to this
domain have focused on non-sexual interaction and aggressiveness
(Buske and Gerlai, 2011). This behavioral domain starts to develop a
little further in development. Non-sexual social interaction
encompasses a set of behaviors that develop from the preference
for conspecifics at around 3 wpf, and around 45 dpf culminates in
ordered swimming in groups (known as shoaling) (Engeszer et al.,
2007; Buske and Gerlai, 2011; Dreosti et al., 2015; Stednitz and
Washbourne, 2020). The main test for the evaluation of this
characteristic is the social interaction test, where the animals are
exposed to the vision of conspecifics and their proximity and

distance from the zone close to them is evaluated. Factors that
influence the results and may be crucial in the observed age
differences are the number of fish tested and stimulus fish used,
the pairing or not of the size between test fish and stimulus fish, and
the living conditions of the animals before the test (Dreosti et al.,
2015; Groneberg et al., 2020; Stednitz andWashbourne, 2020).With
regard to aggressive behavior, using the tilted mirror and dyadic
struggles paradigms, respectively, CarreñoGutiérrez et al. (2018) and
Ricci et al. (2013) found results suggesting that the onset of
aggressive behavior occurs around 28 dpf.

The current data suggest that social behaviors in zebrafish can be
evaluated only at early juvenile stages. It is unknown, however, if
more subtle indications of sociability exist and can be explored
earlier on. Nonetheless, with the current tests available, the social
interaction/preference and the tilted mirror aggression paradigms
depend less on group behavior than the shoaling and dyadic fight
variations, as well as social preference responses develop earlier than
the shoaling responses.

4 CONCLUSION AND FUTURE
PERSPECTIVES

Since the 1970s, when zebrafish started to be used as an animal
model, advances have been made in decoupling interfering variables
in studies. Some examples of this are the relatively recent availability
of isogenic strains (Lange et al., 2013; Kalueff et al., 2014), and the
funding of researcher networks that aim to reduce environmental
variability between laboratories, such as ZFIN and ZIRC. These and
other initiatives have brought zebrafish to a new light as a
translational model. However, unlike other animal models,
longitudinal studies focused on behavior that could help to
uncover developmental pharmacological mechanisms,
developmental origins of health and disease, effects of epigenetics
and other environmental processes, normal aging, as well as
transgenerational effects are still scarce (Lange et al., 2013;
Kalueff et al., 2014; Tal et al., 2020). In this review, we aimed to
highlight the significance of such studies in light of pharmacological
interventions and to examine possible adaptations in already
established behavioral paradigms that would allow such
longitudinal studies to be feasible throughout zebrafish life cycle.
However, questions around this subject are left open.

First, while some of the studies presented here point to the
feasibility of adapting tasks across ages, the face and construct
validity of these strategies must be tested. Even more so given
that other developmental stages such as the juvenile and old-age
stages are less characterized than larvae and adults. Secondly, for
some behavioral domains, such as cognition and sociability
presented here, the adaptation of existing protocols is a
challenging task. This is due mainly because of inconsistencies of
results at early life stages, about when these behaviors start. To bridge
this gap, a close observation of some points must be made. Early
neural development in zebrafish is highly dependent on
environmental factors such as temperature and housing density
(Parichy et al., 2009). Data suggest that body length rather than age
in days post-fertilization is a better indicator of the neural stage
(Polverino et al., 2016; Yashina et al., 2019; Stednitz and
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Washbourne, 2020). Therefore, standardizing behavioral paradigms
in zebrafish can also serve as a tool to find sensitive time points to
assess different behavioral domains in this species. It is also
important to note that while behavioral phenotypes are a
complex product of CNS activity (Stewart et al., 2014), the effort
to standardize behavioral paradigms must be coupled with the
studies on the pharmacokinetics and pharmacodynamics of drugs
and how thesemechanisms develop along with the developing brain.
Finally, it would be beneficial for the field if for the proposal and
construction of new paradigms that the viability of its use across the
developmental stages of zebrafish may be considered.
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