
The Journal of Systems & Software 194 (2022) 111491

V
S

t
s
i
o
t
2
b
t
i
c
c
p
v

m
(

h
0

Contents lists available at ScienceDirect

The Journal of Systems & Software

journal homepage: www.elsevier.com/locate/jss

IADA: A dynamic interference-aware cloud scheduling architecture for
latency-sensitiveworkloads✩

inícius Meyer ∗, Matheus L. da Silva, Dionatrã F. Kirchoff, Cesar A.F. De Rose
chool of Technology, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Building 32, Av. Ipiranga, 6681 Porto Alegre, RS, Brazil

a r t i c l e i n f o

Article history:
Received 18 January 2022
Received in revised form 14 June 2022
Accepted 22 August 2022
Available online 26 August 2022

Keywords:
Interference-aware
Resource management
Dynamic workloads
Machine learning
Cloud computing

a b s t r a c t

Cloud computing allows several applications to share physical resources, yielding rapid provisioning
and improving hardware utilization. However, multiple applications contending for shared resources
are susceptible to interference, which might lead to significant performance degradation and con-
sequently an increase in Service Level Agreements violations. In previous work, we started to
analyze resource contention and its impact on performance degradation and hardware utilization.
Then, we created an interference-aware application classifier based on machine learning techniques
and evaluated it comparing two classification strategies: (i) unique, when a single classification is
performed over the entire applications’ execution; and (ii) segmented, when the classification is
carried out over multiple static-defined intervals. Moving towards a dynamic scheduling solution,
we combine and improve on previous work findings and, in this work, we present IADA, a full-
fledged dynamic interference-aware cloud scheduling architecture for latency-sensitive workloads. Our
approach consists in improving on a segmented interference classification of applications to a dynamic
classification scheme based on workload variations. Aiming at using the available resource more
efficiently and respecting Quality of Services requirements, the proposed architecture was developed
supported by machine learning techniques, heuristics, and a bayesian changepoint detection algorithm
for online inference. We conducted a set of real and simulated experiments, utilizing a developed
extension of CloudSim Toolkit to analyze and compare the proposed architecture efficiency with related
studies. Results evidenced that IADA reduces by 25%, on average, the overall performance degradation.

© 2022 Elsevier Inc. All rights reserved.
1. Introduction

Due to the promise of unlimited computing resources and
he pay-per-use model, many internet-based applications have
tarted to target cloud computing infrastructures as an attract-
ng solution (Meyer et al., 2019a). Cloud environments provide
n-demand resources through the benefits of the virtualization
echnology for users to execute many services (Alboaneen et al.,
021). Such technology reduces operational costs in data centers
y minimizing the number of hardware in use and increasing
heir utilization by loading more than one virtual machine (VM)
nstance on the same physical machine (PM). However, several
loud-applications contending for shared resources can produce
ross-application interference, which may lead to considerable
erformance degradation and consequently to an increase in Ser-
ice Level Agreement (SLA) violations (Meyer et al., 2021b). When

✩ Editor: J.C. Duenas.
∗ Corresponding author.

E-mail addresses: vinicius.meyer@edu.pucrs.br (V. Meyer),
atheus.lyra@edu.pucrs.br (M.L. da Silva), dionatra.kirchoff@edu.pucrs.br

D.F. Kirchoff), cesar.derose@pucrs.br (C.A.F. De Rose).
ttps://doi.org/10.1016/j.jss.2022.111491
164-1212/© 2022 Elsevier Inc. All rights reserved.
scheduling users’ services, cloud providers have to carefully place
the VMs to the hosts in a way that the objectives from both
providers and users would be optimized, which is a non-trivial
task.

In previous work (Meyer et al., 2020), it has been presented
that when there exists more than one application using the
same resource (CPU, memory, network, cache, or disk), depending
on the most stressed one, the resulting performance degrada-
tion index is different. For instance, by comparing applications
contending for distinct hardware resources, we have observed
that disk-intensive is the one that presents the highest interfer-
ence levels, subsequently producing a substantial performance
degradation among applications. To deeply mitigate this prob-
lem, Ludwig et al. (2019) created an interference classification
based on levels for placement policies to improve resource uti-
lization. However, their classification method was developed us-
ing fixed and empirically-defined thresholds. Aiming at tackling
this issue, in previous work (Meyer et al., 2020), we introduced
an interference-aware application classifier which is assisted by
machine learning techniques to automatically define interference
levels, and based on that, classify the applications. When com-
pared to related studies, our classification approach demonstrates

https://doi.org/10.1016/j.jss.2022.111491
http://www.elsevier.com/locate/jss
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2022.111491&domain=pdf
mailto:vinicius.meyer@edu.pucrs.br
mailto:matheus.lyra@edu.pucrs.br
mailto:dionatra.kirchoff@edu.pucrs.br
mailto:cesar.derose@pucrs.br
https://doi.org/10.1016/j.jss.2022.111491


V. Meyer, M.L. da Silva, D.F. Kirchoff et al. The Journal of Systems & Software 194 (2022) 111491

a
a
d

a
e
i
f
a
c
u
r
d
v
s
p
s
s
o

w
f
w
a
c
c
a
t
s
e
t
i
a
r
I
r
m

n improvement in placement decisions efficiency by 23%, on
verage, reducing resource consumption and also performance
egradation at the application level.
Likewise (Ludwig et al., 2019), our classification strategy cre-

ted an interference level label for each application over its entire
xecution. Even though the resource utilization presented overall
mprovements, we believed that just a single interference label
or the entire application’s execution cycle does not represent
ccurately its behavior, especially when abrupt changes may oc-
ur. Within a scenario with dynamic workloads, the hardware
tilization may vary significantly, generating distinct interference
ates throughout the application’s execution and, consequently,
irectly affecting the application’s degradation. Therefore, in pre-
ious work (Meyer et al., 2021b), we proposed a classification
cheme that analyzes interference indexes’ changes over the ap-
lications to evaluate the benefits of static-defined segmented
cheduling. Preliminary results revealed an improvement in re-
ource utilization efficiency by 27%, on average, when applying
ur classification approach in cloud infrastructures.
With these results, we have noticed we started moving to-

ards dynamic interference-aware scheduling. To advance a step
orward in this direction, we combine and improve on previous
ork findings and, in this work, we present IADA, an interference-
ware scheduling architecture for dynamic workloads in cloud
omputing environments. The main goal is to analyze appli-
ations workloads, and based on the interference they gener-
te, make dynamic scheduling decisions, in real-time. IADA has
hree principal components that profiles, analyzes, and performs
cheduling decision. Aiming at using the available resource more
fficiently and respecting Quality of Services (QoS) requirements,
he proposed architecture was built supported by machine learn-
ng techniques, heuristics, and a bayesian changepoint detection
lgorithm for online inference. We compare our solution with
elated work using real workloads patterns and results show that
ADA reduces the resulting performance degradation by 26% in
eal experiments, and by 24% in simulated ones. Concretely, the
ain contributions of this work are:

• We proposed a resource scheduling architecture observing
cross-application interference aspects for dynamic work-
loads. Unlike previous work, which has tackled partial is-
sues, in this study, we present a full scheduling architecture
solution targeting real production systems.

• We used an online bayesian changepoint detection (OBCD)
algorithm to find time-points automatically to perform clas-
sification and scheduling decisions. This specific topic was
considered a gap found in previous work (Meyer et al.,
2021b). Since we did not know how to find the best mo-
ments to run classification and scheduling actions, we used
a static-defined interval scheme to analyze our strategy.
Therefore, we included an OBCD algorithm as a new feature
in the proposed architecture to overcome this issue.

• We create an optimized version of Ludwig et al. (2019)
Simulated Annealing heuristic to tackle dynamic scheduling
aspects. The original version, presented by Ludwig et al.
(2019), was built upon static interference models, and to
apply it in a dynamic scenario, we had to perform some
modifications.

• We developed an extension for the CloudSim toolkit to
execute interference-aware scheduling, using real case pro-
visioning requirements and constraints, making it available
in a GitHub repository1 to allow reproducibility.

• We conducted a set of real and simulated experiments to
analyze and compare the proposed architecture efficiency.

1 https://github.com/ViniciusMeyer/CloudSimInterference.
2

The remaining of this document is organized as follows: Sec-
tion 2 discusses related work and background material. Sec-
tion 3 introduces the proposed interference-aware scheduling
architecture, its functionalities, and capabilities. Section 4 de-
scribes an evaluation performed to compare our solution with
related studies and its results. Section 5 introduces related work
in the literature. Finally, Section 6 depicts conclusions and future
directions.

2. Background and state-of-the-art

This section outlines the state-of-the-art concepts intrinsic to
the work. Firstly, we present an overview of resource manage-
ment and virtualization technologies. Secondly, we characterize
interference and its impact on performance. Lastly, we introduce
the dynamic workload application concept.

2.1. Resource management and virtualization

In data centers, orchestration systems need highly elastic and
scalable infrastructures that allow the dynamic allocation of dif-
ferent resources (such as compute, storage, networking, software,
or a service) in the right location and, in short, times, enable the
deployment of applications (Tosatto et al., 2015). The elasticity in
cloud environments is obtained by abstracting physical resources
from an underlying layer through virtualization. There are dif-
ferent virtualization technologies, but the two most relevant in
the cloud computing landscape are Hardware virtualization and
System-level virtualization:

• Hardware virtualization (Hypervisors) abstracts the underly-
ing hardware layers to enable complete operating systems
to run inside the hypervisor as if they were an application.
Paravirtualization solutions (Xen2) and hardware virtual-
ization solutions (KVM3), in combination with hardware-
specific support, integrated into modern CPU (Intel VT-x and
AMD-V), can achieve a low level of overhead due to the new
layer added between the virtual instance and the hardware.

• System-level virtualization (Containers) is based on fast and
lightweight process virtualization and allows to tie up an
entire application with its dependencies in a virtual con-
tainer that can run on every Linux distribution. It provides
its users an environment as close as possible to a standard
Linux distribution. Since containers are more lightweight
than VMs, the same host can achieve higher densities with
containers than with VMs. This approach has radically de-
creased both the start-up time of instances and the process-
ing and storage overhead, which are typical drawbacks of
Hypervisor-based virtualization (Rosen, 2014).

Containerization is the state-of-art virtualization of the cloud
platform (Merkel, 2014). Containers only need seconds to boot-
strap, initiate, versus minutes for a regular VM (Zhang et al., 2019)
(seen in Table 1). Container technologies effectively virtualize the
operating system and are becoming popular in cloud computing.
By encapsulating runtime contexts of software components and
services, containers improve portability and efficiency for cloud
application deployment (Hu et al., 2020; Pahl et al., 2019). In
addition, one container can be scaled out/in within a minute, and
consequently can react immediately when encountering possible
unforeseen crashes. Therefore, containers are capable of tolerat-
ing fluctuating stress and reducing overhead (Scheepers, 2014),
the features that autoscaling coincidentally needs.

2 https://xenproject.org/.
3 https://www.linux-kvm.org/.

https://github.com/ViniciusMeyer/CloudSimInterference
https://xenproject.org/
https://www.linux-kvm.org/


V. Meyer, M.L. da Silva, D.F. Kirchoff et al. The Journal of Systems & Software 194 (2022) 111491

t
I
t
L

a
I
f
M
s
d
b
L
l
n
n

o
i
d
p
t
i
i
c
l
c

l
S
d
a
c
u
a
L
2

t
L
c
t
c
c
o

a
i
o
a

Table 1
Comparison between container and virtual machine (Zhang et al., 2019).
Performances Kinds of virtualization

Container Virtual Machine

Size Megabytes Hundreds Megabytes
Start time Seconds Minutes
Management overhead Low High
Portability High Low

Due to the characteristics presented above, we used container
echnology to implement the virtualization layer in this work.
n the next paragraphs we present the main container solu-
ions available in the literature, namely OpenVZ,4 Linux-VServer,5
XC,6 and Docker.7
OpenVZ is developed on top of kernel namespaces, allowing

n isolated subset of resource to each container. It uses PID and
PC namespaces to reach isolation between processes from dif-
erent contexts. OpenVZ also implements network namespaces.
oreover, it also provides different network operation modes,
uch as Route-based, Bridge-based and Physical-based. The main
istinction between them lies at operation layer. While Route-
ased works in Layer 3 (network layer), Bridge-based works in
ayer 2 (data link layer) and Physical-based in Layer 1 (physical
ayer). In the Physical-based mode, it is possible to assign a real
etwork device (such as eth0) to a container, improving the
etwork performance (OpenVZ, 2022).
Instead of using namespaces, Linux-VServer implements its

wn kernel mechanisms to provide process, network and CPU
solation. The system limits the scope of the file system from
ifferent processes through the traditional chroot system call and
rohibits unwanted communications between them by using a
echnique called global PID space. Since it is impossible to re-
nstantiate processes with the same PID, Linux-VServer does not
mplement usual virtualization techniques, such as live migration,
heckpoint and resume. Also, it does not virtualize the network
ayer, so that all network subsystems are shared among the
ontainers and also with the host system (Xavier et al., 2014).
Like OpenVZ, LXC uses kernel namespaces to guarantee iso-

ation among container instances. LXC implements PID, IPC, File
ystem and Network namespaces. Furthermore, it also offers
ifferent types of network configurations, namely: Route-based
nd Bridge-based. Resource management is only performed via
groups. With cgroups it is possible to define network config-
rations, limiting the CPU usage and accomplishing isolation
mong processes from different containers contexts. By default,
XC adopts the CFQ scheduler to control I/O operations (Menage,
022).
Similar to LXC, Docker shares Linux cgroups, namespaces, and

he Linux kernel. Although Docker was originally developed over
XC, over time Docker incorporates its own environment engine,
alled libcontainer. Different from LXC, where each container con-
ains its own operating system, Docker provides an environment
onsisting of only one guest operating system, on which all pro-
esses run packed in containers, with each application having its
wn isolated environment (Docker Engine Overview, 2022).
A Docker application container packages a single process or

pplication, while a LXC system container simulates a full operat-
ng system and allows users to run multiple processes simultane-
usly. Docker provides separate components, while LXC delivers
full solution of libraries, applications, databases, and so on. In

4 https://openvz.org/.
5 http://www.linux-vserver.org.
6 https://linuxcontainers.org/.
7 http://www.docker.com.
3

addition, it is possible to use LXC to create different user spaces
and isolate all processes belonging to each userspace, which
is not what docker is intended for. In addition, LXC performs
live migration without modifications. Therefore, due to all cited
advantages, LXC was the container implementation used in this
work.

2.2. Performance interference

With the resource sharing techniques evolution, each clus-
ter node can host several applications. However, when multiple
services intensively use a specific resource simultaneously, re-
source contention issues will occur. This problem is labeled as
performance interference and may lead to severe performance
degradation (Chen et al., 2015).

Virtualization technologies and server consolidation are the
main drivers of high resource utilization in modern data cen-
ters (Meyer et al., 2019b). The authors of Jersak and Ferreto
(2016) state that applications are affected by virtual machines
that use the same resource intensively in the same physical
machine and each resource is affected differently. CPU intensive
applications led to performance degradation of 14%. Memory and
disk I/O intensive applications, the performance degradation was
as high as 90%. Therefore, it is clear that performance interference
is a problem, and the performance degradation varies depending
on the most used resource.

Not only hardware virtualization is affected by performance
interference, but container-based environments are as well. Disk-
intensive applications running over containers promote perfor-
mance degradation that uses different resources intensively. The
authors of Xavier (2019) have tested a bunch of co-hosted work-
load combinations. While some of these combinations led to per-
formance degradation up to 38%, there are those which cause no
interference indexes. In Shah et al. (2013), the authors claim that
mapping performance data related to shared resources onto time
slices can establish the simultaneity of application usage across
jobs, which can be indicative of inter-application interference.
In some cases, inter-application interference causes performance
degradation by up to 50%.

Both works (Xavier, 2019; Shah et al., 2013) focus on ana-
lyze the interference from co-hosted applications in cluster en-
vironments. While (Xavier, 2019) presents a novel interference
instrumentation tool, Shah et al. (2013) introduces an approach
to correlate the performance behavior of applications running
side by side. In this work, to accomplish our goal, we use both
strategies (interference instrumentation and performance anal-
ysis), and on top of that, we include algorithms to efficiently
schedule applications across cluster nodes.

2.3. Dynamic workload applications

In data centers, applications may present a variety of work-
load patterns, and QoS demands. Non-interactive batches are
an example that requires completion time, while transactional
web services are concerned with throughput guarantees. Differ-
ent application workloads require a diverse type and amount of
resources. For instance, batch jobs tend to be relatively stable,
unlike latency-sensitive, which tends to be highly unpredictable
and bursty in nature (Garg et al., 2014). Besides, latency-sensitive
applications can include short latency-critical user-facing tasks,
responding to web requests, for example. Also, this workloads’
type can be characterized by short deadlines in the order of tens
of milliseconds (Chen et al., 2017).

Multi-tenancy services need to efficiently manage resources
within and among data centers taking time-varying demands into

account (Iqbal et al., 2018). Their workload is not deferrable, and

https://openvz.org/
http://www.linux-vserver.org
https://linuxcontainers.org/
http://www.docker.com


V. Meyer, M.L. da Silva, D.F. Kirchoff et al. The Journal of Systems & Software 194 (2022) 111491

t
s
a
s
k
o
r
l
c
w

t
s
d
s
S
t
a
s
c
e

t
o
d
w
t
p
c
d
s
r
m

a
i
A
a
c
t
V
s
p
s

2

p
C

his means that every time a request is received, the response
hould be generated immediately afterward. Consequently, such
pplications must perform real-time scheduling of the load, en-
uring the quality of requests flow (Toosi et al., 2017). This
ind of application presents an unpredictable intensity variation
f resource utilization at run time due to the user’s different
equest patterns and periodicity (Iqbal et al., 2018). Therefore,
atency-sensitive applications and multi-tenant services are ideal
andidates for evaluating interference effects suffered by dynamic
orkloads and will be considered target applications in this work.
Garg et al. (2014) creates a scheduling mechanism to guaran-

ee the meeting of users’ QoS requirements, according to SLAs
pecifications. They state that it is important to be aware of
ifferent types of SLAs and the mix of workloads for better re-
ource provisioning. Results present an improvement in reducing
LA violations. Sampaio et al. (2015) address the resource alloca-
ion issues running different application workloads types (CPU-,
nd network-intensive ones). After performing experiments with
ynthetic workloads, results indicate that the authors’ strategy
an fulfill contracted SLAs of real-world scenarios while reducing
nergy expenses.
In Ebadifard and Babamir (2021), authors developed an au-

onomous load balancing method to alleviate the communication
verhead among servers. Based on the resources, requests are
ivided into CPU-bound and I/O-bound. Results using dynamic
orkloads indicate that this proposed algorithm can distribute
he workload among them equally and allocate requests to ap-
ropriate VMs based on the required resources, decreasing the
ommunication overhead. In Daraje and Shaikh (2021), authors
eveloped a hybrid approach combining vertical and horizontal
caling to increase resource utilization and better adapt to user
equests. The results demonstrate that the proposed approach is
ore efficient in comparison with the existing ones.
Works (Garg et al., 2014; Sampaio et al., 2015; Ebadifard

nd Babamir, 2021; Daraje and Shaikh, 2021) propose schedul-
ng strategies to improve the use of computational resources.
lthough these works have the same goal as we have, we apply
n interference-aware scheduling, not just considering resource
apacities in our solution. Besides, we developed our solution on
op of a container-based cluster, while they explored traditional
Ms. Furthermore, rather than just evaluating our work through
imulation, as they did, we also performed experiments in a
hysical environment to validate the simulation and show the
calability of our solution.

.4. Scheduling approaches

To evaluate the efficacy of the proposed architecture, we com-
ared our solution to three schedulers from the literature: EVEN,
IAPA, and Segmented:

• EVEN implements the EvenScheduler algorithm, which is the
Apache Storm8 default scheduler. This algorithm distributes
computation tasks across nodes in a Round-Robin man-
ner (Al-Sinayyid and Zhu, 2020). When tasks are scheduled,
this approach counts all available slots on each node and
places application instances to be scheduled one at a time
to each node while keeping the order of nodes constant.
Although not interference-aware, we have decided to use
this method as a baseline because Apache Storm is a well-
known framework that processes real-time data, like cloud
multi-tenant systems, which are the target applications in
this work. In this case, applications are placed into the
cluster nodes in a round-robin fashion, meaning that they
are not moved during the experiment execution.

8 https://storm.apache.org/.
4

• CIAPA (Ludwig et al., 2019) evaluates the profile of the
application workloads and uses a static interference clas-
sification with three levels. Its classification is static, done
only one-time in the beginning of the execution using an
average of an application generated interference over the
entire execution. The definition of interference levels is done
used fixed thresholds that are empirically defined. In a first
phase, applications are placed in a round-robin manner, and
after a 10-min interval, the collected data is analyzed and
only one scheduling movement is done, not changing the
placement of the applications after that.

• Segmented (Meyer et al., 2021b) applies a pseudo-dynamic
interference classification with levels, similar to CIAPA. The
difference is that the Segmented scheduler arbitrarily di-
vides the applications’ executions into four parts (propor-
tional), and based on that division, classifies the gener-
ated interference of an application per segment, considering
some level of change during execution. This allows the first
placement to be changed three times during execution. The
goal of this approach is to classify applications’ interference
considering the workload variability, not only using a simple
average over the entire execution.

3. Dynamic interference-aware scheduling architecture

Performance interference is known to adversely impact QoS
properties of applications and dynamic service demands with
workload profiles further raise the challenges for cloud service
providers in managing resources on-demand to satisfy SLAs while
minimizing operational costs (Nathuji et al., 2010). Therefore, any
solution that addresses these challenges requires an approach
that should account for the workload variability and the perfor-
mance interference (Shekhar et al., 2018). Due to the dynamic
nature of the process, some questions come up, such as: How to
classify applications in real-time based on the interference they
generate? When to execute the classification? When to schedule
them and how to tradeoff migration costs?

Finding a solution that comprehensively covers all the men-
tioned issues is not a straightforward task. Recently proposed
approaches present significant improvements regarding interfer-
ence classification and dynamic scheduling strategies. However,
there are still gaps in the state-of-the-art. One example, is the lack
of a complete scheduling architecture that automatically handles
dynamic workloads, finding the best intervals to classify and
schedule applications among cluster nodes. Besides, this archi-
tecture should address performance interference aspects without
earlier workload know-how and with no user mediation.

Standing for the concept that dynamic interference-based
scheduling algorithms, which analyzes workload variations over
time, could improve even more resource utilization, and conse-
quently reduce SLA violations, in this section, we propose IADA, a
full-fledged dynamic interference-aware cloud scheduling archi-
tecture for latency-sensitive workloads. This architecture aims to
efficiently schedule applications based on the interference they
generate, without user intervention and with no previous work-
load knowledge. The main goal is to analyze hardware events and
supported by classification, time interval detection, and schedul-
ing algorithms, to find the best applications’ placement set at
runtime.

In the next subsections, we introduce the proposed architec-
ture, describing its capabilities and functionalities in detail.

https://storm.apache.org/


V. Meyer, M.L. da Silva, D.F. Kirchoff et al. The Journal of Systems & Software 194 (2022) 111491

3

c
T
W
r
(
n
S
o
F
t
t
p

a
l
t
a
b
s
p

b
i
i
a
o
c
a
n
M
D
a
t
t
b
S
r
p
a

p
t
i
a
l
t

Fig. 1. System architecture.
.1. Proposed architecture

Usually, interference-aware task schedulers are performed by
ombining three main steps (Chiang and Huang, 2011; Zhu and
ung, 2012; Bu et al., 2013; Zhang et al., 2014; Xavier, 2019;
ang et al., 2019): (i) profiling queued tasks based on their

esource needs; (ii) predicting the performance interference; and
iii) scheduling the task on the best-suited node, which is the
ode that causes the lowest performance interference effects.
ince we are interested in scheduling real-time applications based
n the workload variability, we decide to use a reactive approach.
or this reason, we adjusted the prediction step by splitting it into
wo more ones: (ii-A) classifying interference and (ii-B) analyzing
he best time intervals from applications at runtime in order to
erform the scheduling (next) step.
Therefore, to build a dynamic interference-aware scheduling

rchitecture, we used four main components, presented as fol-
ows: (i) a profiler that reads hardware metrics; (ii) a technique
hat gets significant workload changes, based on profiling data
t runtime; (iii) an interference classification method supported
y a combination of machine learning techniques; and (iv) a
cheduling algorithm that interprets all data generated by the
revious components and makes efficient placement decisions.
The choice of using a reactive technique is normally adopted

efore applying a proactive one, however as a matter of fact we
ntend to investigate and compare proactive approaches as well
n the future. To perform the proposed architecture, all these
forementioned components were assigned in a node that works
ver the entire computational environment analyzing and exe-
uting scheduling decisions, referred here as Node Manager. Also,
n interference profiler module is executed inside each cluster
ode, profiling all applications and sending all data to the Node
anager. First, these metrics are received and analyzed by the
ata Analyzer component, which is responsible for examining
nd finding abrupt changes in the application’s behavior. After,
hese metrics are also sent to the Classifier component that has
he duty of classifying each application in a given period, defined
y the previous component, into interference levels. Then, the
cheduler module performs hardware orchestration decisions by
unning an algorithm based on generated data from the two
revious components. Fig. 1 presents an overview of the proposed
rchitecture, distinguishing each layer.
The Node Manager is continually monitoring and analyzing

otentially interference information from the cluster infrastruc-
ure. It is worth noting that the Profiler module is always mon-
toring the entire infrastructure while feeding the Data Analyzer
nd Classifier components. While both mentioned modules ana-
yze and classify the received data, when they find there is room
o make scheduling decisions, they send that information to the
5

Fig. 2. Architecture data flow.

Scheduler module to apply it over the cluster infrastructures.
Fig. 2 depicts the architecture data flow, where it is possible
to observe how collected metrics are processed through each
component.

This cycle will always run while there exists more than one
application running in the cluster. To clarify, let us take an ex-
ample: suppose that application1 starts on Node1, together with
application2. In a given moment, application1 and application2
become to contend for CPU (or another resource, i.e.), and the
Node Manager perceives it and decides to migrate the container
which runs application2 to Node2. This scheduling action aims
to use the resources more efficiently, improving QoS and con-
sequently reducing SLA violations. In the next subsections, each
component is presented in detail.

3.1.1. Interference profiler
Profiling runtime applications is not a straightforward task,

given that different tasks may burst arbitrary resources, causing
variation in resource consumption. In addition, an intrusive pro-
filer can induce the performance of applications and compromise
the reliability thereof. The literature presents works that care
about resource contention aspects among applications in a simple
way, existing or not (Ludwig et al., 2019). Also, a number of ap-
plication profiling mechanisms, ranging from kernel-based (Linux
Trace Toolkit Project Page, 2002) to runtime (Urgaonkar et al.,
2003) profiling that uses especially linked libraries, have been
proposed in the past. Recently, a tool called IntP (Xavier, 2019)
has been developed, an open-source system-level monitoring
tool which analyzes selected architectural counters and operat-
ing systems data structures to estimate the stress an applica-
tion puts on each hardware’s subsystem and consequently infer
the potential interference it could generate in other applications
hosted in the same physical machine. Different from tools that
apply a more high-level approach using micro benchmarks and
application metrics, IntPs low level instrumentation enables a
more accurate prediction of the performance degradation that
results from contention on shared resources, with less monitoring
overhead.

IntP is subdivided into modules responsible for each access
method on specific resources at the infrastructure level and out-
comes the percentage of their utilization relative to the total



V. Meyer, M.L. da Silva, D.F. Kirchoff et al. The Journal of Systems & Software 194 (2022) 111491

s
s
a
c
b
t

(
i
t

3

o
c
s
n
n
w
m
s
t
p
S
d
c
t
H
t
i
c
t
e
s

e
u
a
A
c
T
i

o
w
t
e
i
f
m
w
o
s
w
p
o
o

ystem capacity, for each running application. This isolated mea-
urement provides analytical information to infer how much an
pplication could potentially interfere with other applications
onsolidated in the same physical machine, so that conflicts can
e avoided by the scheduler. More specifically, the tool provides
he following metrics:

• netp - physical network;
• nets - network queue;
• blk - disk;
• mbw - memory bandwidth;
• llcmr - last-level cache miss rate;
• llcocc - last-level cache occupation;
• cpu - CPU utilization;

IntP is used in this work to profile applications at runtime
every second), so it is possible to perform an analysis on how
nterference is potentially hurting consolidated applications over
ime, and trigger a new scheduling operation if needed.

.1.2. Time-series analysis
We aim to evaluate the influence of application interference

ver time, but dealing with dynamic workloads at runtime is a
hallenging task. Whether we wish to perform scheduling deci-
ions in an online trend, time is an important factor that must
ow be considered in our model. For example, to perform dy-
amic scheduling actions on the fly, it is necessary to define at
hat moments our architecture will execute them. As already
entioned, in previous work (Meyer et al., 2021b), we moved a
tep forward and created a static-defined time interval scheme
o start analyzing segmented scheduling, and preliminary results
resented a considerable improvement in hardware efficiency.
ince we are interested in accomplishing automatic scheduling
ecisions based on interference levels generated across appli-
ations, we need to carry out a statistical time-series analysis
hat deals with the profiled data and points trend patterns out.
owever, some questions come into play when working with
ime series, such as: Is this data stationary? Is there seasonal-
ty? To work around these questions, we performed an online
hange point analysis (Pagotto, 2019) aiming at determining the
ime points with the most significant behavior changes, consid-
red crucial for analyzing and classifying the profiled data, and
ubsequently, performing scheduling actions.
Change points are abrupt variations in the generative param-

ters of a data sequence. Online detection of change points is
seful in modeling and prediction of time series in application
reas such as finance, biometrics, and robotics (Pagotto, 2019).
time series consists of multiple assessments of a specific out-

ome measure, at group level, at regularly spaced time intervals.
he ‘‘interruption’’ or ‘‘change point’’ of the time series is an
dentifiable real-world event.

Since IntP profiles each application in an isolated manner and
utcomes multiple metrics (different resources) from each one,
e first had to reduce its dimensionality. To do that, we apply
he Principal Component Analysis (PCA) (R Core Team, 2019) over
ach application. PCA is a dimensionality-reduction method that
s often used to reduce the dimensionality of datasets, by trans-
orming a set of variables into a smaller one that still contains
ost of the valuable information in the large dataset. In our case,
e decided to reduce seven metrics profiled from IntP to only
ne for each application. Depending on the order the algorithm
ort those metrics, the PCA outcome changes. So, to find out
hat is the best order to arrange interference metrics, we have
erformed several tests and decided to place those metrics in an
rder that follows its performance degradation priority. In previ-
us work (Meyer et al., 2021b), we introduced such priority order,
6

Fig. 3. Data scheme of data profiling (IntP), dimensionality reduction (PCA), and
discovering change points over time (OCPD).

presenting that when there is resource contention incidence,
some hardware components present more elevated performance
degradation indexes than others, so that we decided to apply
PCA with the following resource order: disk, memory, cpu, cache,
and network. This means that performance degradation caused
by disk resource contention is bigger than caused by network,
for example. If there will be no disk usage, PCA takes the next
resource in the queue order, memory in this case. If there will be
no memory utilization, the next resource will be considered as
the principal, and so on.

After reducing the profiled data from each application to a
single dimension, observing its performance degradation priority,
we apply the Online Change Point Detection (OCPD) function,
from R Package (Pagotto, 2019), overall applications’ metrics.
Such a technique provides an implementation of Bayesian online
change point detection that handles multivariate data, computing
the set of change points with the highest probability in an online
way (updating the results with each incoming point). This method
outputs a list of change points over time (x-axis) during running
the model, in an online fashion. The entire process of reducing
and analyzing profiled data is depicted in Fig. 3.

To present a simple use case example, we run an experiment
adopting Node-Tiers.9 This tool is a multi-tier benchmark that
allows fine-grained personalization of resource utilization. Node-
Tiers stresses the computer system in various selectable ways
and was designed to exercise various physical subsystems of
a computer through web requests. This tool explores the web
applications concept (client–server) and allows the creation of
workload variations. First, we choose two memory-intensive ap-
plications from the Node-Tiers suite, then we created a synthetic
workload for each one. On purpose, each workload produced an
interval with a high-load request rate: (A) between 60 and 120 s;
and (B) between 180 e 240 s, accordingly Table 2.

Both applications (A and B) were executed together while
profiled with IntP, and the results are presented at the top of
Fig. 4.

The collected metrics passed through the PCA phase and then
produced A and B resulting data, depicted at the bottom of the
same Figure. Finally, this data was submitted to the OCPD func-
tion, returning the moments where both applications presented
abrupt behavior changes (60 s, 120 s, 180 s, and 240 s), seen in the

9 https://github.com/uillianluiz/node-tiers.

https://github.com/uillianluiz/node-tiers


V. Meyer, M.L. da Silva, D.F. Kirchoff et al. The Journal of Systems & Software 194 (2022) 111491

q
t
w
n
B
o
c

f
u
w
c
t
r
t
c

c
v
q
A
a
p
e
i

c
S
a
O
w

m
t
e
h
c
e

3

c
T
p
i
g
d
I
s
O
r

c
t

Table 2
A and B applications’ workloads behavior.
Intervals (s) A (req/s) B (req/s)

0–60 100 100
61–120 200 100
121–180 100 100
181–240 100 200
241–300 100 100

Fig. 4. Profiled data (IntP) from A and B execution (top); PCA resulting data
along with found OCPD change points (bottom).

same image. It is possible to observe that OCPD handles multiple
applications due to its multivariate characteristics, being a good
candidate function for our architecture.

3.1.3. Interference classification
A number of techniques have been proposed regarding inter-

ference classification, such as: collaborative filtering (Delimitrou
and Kozyrakis, 2013), decision-tree (Moreno et al., 2013; Javadi
and Gandhi, 2017), major interference source (Kumar and Setia,
2017; Devarajan et al., 2018) and resources historic mean (Caglar
et al., 2014; Caglar et al., 2016). The authors from Ludwig et al.
(2019), the most closely related to our study, developed a
scheduling model that considers interference levels among ap-
plications to increase resource usage. Even though the authors’
approach increases the state-of-the-art in the scheduling re-
source field, the proposed classification was developed with fixed
thresholds, empirically defined.

Aiming at finding out alternatives to minimize interference
overhead effects over scheduling decisions, in previous work
(Meyer et al., 2020; Meyer et al., 2021b), we have proposed a
classifier that quantifies cross-application interference in levels
over time, standing for the concept that an interference classi-
fier method that better represents the workload variability im-
proves hardware utilization. The main purpose of our classifi-
cation method is to return the hardware resources’ interference
produced by applications, within a time slice, to a given degree.
7

This is achieved by exploiting the combination of two differ-
ent machine learning algorithms: (i) SVM for classification and
(ii) K-Means for clustering. Initially, SVM receives interference
data from applications, collected each second by IntP, and those
metrics are classified and stored into resource queues for their
respective classes: memory, CPU, disk, network, and cache. Subse-
uently, K-Means quantifies values for each queue and returns
heir interference level for a specific period. More specifically,
e adopted four interference levels: (i) absent, when there is
o interference incidence; (ii) low; (ii) moderate; and (iv) high.
oth machine learning algorithms use a training dataset, previ-
usly defined, to assist their decisions. More details about the
lassification method are presented in Meyer et al. (2021a).
The proposed ML-based interference classifier dynamically de-

ines thresholds and assigns interference levels for each resource
sed by the monitored applications for a particular time slice,
ithout the need for user intervention. This classification pro-
ess is repeated until the end of the execution, characterizing
he dynamicity of our approach, where interference levels are
eevaluated regularly, accordingly to OCPD function (seen in Sec-
ion 3.1.2), so that we are able to better react to significant
hanges in the workload.
To present an example, we use a decision support benchmark

alled TPC-H.10 This benchmark evaluates the performance of
arious decision support systems by the execution of sets of
ueries against a standard database under controlled conditions.
lso, we create an increased workload, starting with a low load
nd gradually going to a high load. This workload execution was
rofiled with IntP, arbitrarily divided into four segments, and
ach one was classified by our approach. The classification result
s depicted in Fig. 5.

It is possible to notice that there are resources that do not
hange their labels, for instance, memory, disk, and network.
ince they keep their interference metrics at the same level, on
verage, with no expressive variation, their labels are maintained.
n the other hand, also some resources do change their labels,
hich are the CPU and Cache cases.
The CPU has a smooth increase in its behavior, moving from

oderate to high label. In addition, Cache keeps its labels with
he highest levels while executing, changing from high to mod-
rate, and from moderate to high interference levels again. This
ighlights that, due to the dynamic workload nature, the appli-
ation execution present different interference labels during its
xecution.

.1.4. Scheduling algorithm
Scheduling consists of ordering running jobs across available

omputational resources (Hu et al., 2020; Thamsen et al., 2020).
o do this with interference awareness, first, the Node Manager
ulls the tasks into available node slots. After, it profiles the
nterference from each application and, based on the information
enerated on previous components, suits them on the best can-
idate nodes that minimize the overall performance interference.
ADA is an architecture that relies mainly on a reactive approach
o that the applications are constantly profiled and when the
CPD technique finds significant workload variations, the most
ecent interval data is used to perform scheduling decisions.

The applications start at time zero and they are monitored
ontinuously every second. The time-series analysis evaluates
he data and returns P , which is the point found by the OCPD
function with the greatest representativeness in the workload
variation of the applications (according to Section 3.1.2). When
P is found, the classification module generates an interference
label for each application resource running in each container. The

10 http://www.tpc.org/tpch/.

http://www.tpc.org/tpch/


V. Meyer, M.L. da Silva, D.F. Kirchoff et al. The Journal of Systems & Software 194 (2022) 111491
Fig. 5. Segmented TPC-H static interference classification. To facilitate the visualization, a Loess function was applied to smooth short-term variations in each resource.
Resources labels that changed are shown in bold in the bottom plot. IntP metrics that do not suffer any interference were not depicted.
interval between P(n−1) and Pn is defined as ∆Tn. When a ∆Tn is
found, the scheduling is performed based on the most recent data,
which means, the last ∆Tn outcome.

The traditional view for real-time scheduling problems focuses
on how to find a feasible schedule for an application set. However,
the scheduling of a given application set is not a straightforward
task. With the rapid increase in the use of powerful cloud sys-
tems, an efficient task scheduling policy, which deals with the
assignment of tasks to resources, is required to reduce perfor-
mance degradation. Task scheduling is an established NP-Hard
optimization problem that can be effectively tackled with meta-
heuristic algorithms (Chhabra et al., 2020). Taking this statement
into account, we decided to use a heuristic algorithm to solve
our problem. Ludwig et al. (2019) tested many heuristics to
schedule applications with interference awareness and concluded
that Simulated Annealing (SA) presented the best overall results.
So, in this work, we decided to apply a modified SA algorithm
that addresses interference-aware aspects.

The SA algorithm is an optimization method that mimics the
slow cooling of metals, which is characterized by a progressive
reduction in the atomic movements that reduce the density of
lattice defects until a lowest-energy state is reached (Kirkpatrick
et al., 1983). Similarly, the simulated annealing algorithm gen-
erates a new potential solution to the problem by altering the
current state, according to a predefined criterion. The new state
solution is then based on the satisfaction criterion and may be
accepted even if they do not lead to an improvement in the
objective function.

Since our architecture moves applications among cluster
nodes at runtime, we developed an algorithm based on SA to
find the best applications’ arrangement set in order to minimize
performance degradation. The algorithm 1 presents how our
architecture scheduling policy works.

Initially, the algorithm creates an application set S, in which
each container receives one application instance to execute. All
containers are distributed among cluster nodes by a RoundRobin
function that receives a set of physical machines P and a set of
applications A to be executed. Every SA iteration generates one
new solution Smodified that is compared to the best solution at
that point. This new solution is generated by the Random Swap
Function, presented in Algorithm 2.

This function relies on a randomized approach, in which the
function has a 50% chance of swapping random applications in
the cluster and a 50% chance of swapping the application of the
cluster node with the highest score to the cluster node with the
lowest score.
8

Algorithm 1: Optimized Simulated Annealing
Data: P , A, temperature, coolingRate
Result: solutionbest
s = roundRobin(P ,A);
bestsolution = s;
while (temperature > 1) do

newsolution = randomFunction(s);
bestscore = bestsolution.getInterferenceScore();
newscore = newsolution.getInterferenceScore();
if (newscore < bestscore ) then

if (bestsolution.getMig() < newsolution.getMig() )
then

bestsolution = newsolution;
end

end
temperature *= 1 - coolingRate;

end

Algorithm 2: Random Swap Function
Data: solution
Result: Smodified
p = Math.random();
if (p < 0.5) then

app1 = getRandomApp(solution);
app2 = getRandomApp(solution) ;

else
app1 = getHigherScoreApp(solution);
app2 = getLowerScoreApp(solution);

end
swap(app1, app2, solution);

After finding the new solution, if Smodified presents an interfer-
ence degradation index lower than the current one, the algorithm
replaces the current (best) solution with the new one. To com-
pare both solutions, we create a function InterferenceScore() that
analyzes the interference levels in ∆Tn and returns a total in-
terference score, which is calculated by using the function seen
in Eq. (1).

TotalIntScore∆T =

N∑
IntScoreHost , ∀k ∈ s | k ≥ 1. (1)
k=1



V. Meyer, M.L. da Silva, D.F. Kirchoff et al. The Journal of Systems & Software 194 (2022) 111491

i
t
o
f

I

w
n
e
n
c
a
i

I

a
i
v

r
m
r
m
h
r
h
u

I

Fig. 6. Interference degradation index by resource.

The total interference score is the result of the sum of all
nterference scores from each cluster node, where k represents
he hosts’ number in the environment. Each cluster node has its
wn interference score as well, this score is calculated with a
unction demonstrated by Eq. (2).

ntScoreHost =

{∏N
j=1 IntScoreApp, if j ≥ 2

0, otherwise
(2)

here, j denotes the applications’ number running in each cluster
ode, ranging from 2 to N (total number of applications). If there
xists less than 2 applications running in a cluster node, it will
ot generate interference incidence in that specific node and
onsequently will return a zero-score, since only one or no one
pplication does not cause interference. Finally, the application
nterference score is calculated by Eq. (3).

ntScoreApp = cpu(L) × mem(L) × disk(L) × net(L) × cache(L) (3)

All resource interference metrics (cpu, memory, disk, network,
nd cache) were measured and allocated into an level L. Depend-
ng on the level they are set, the interference overhead index
alue varies, according to Fig. 6.
To find these Interference Degradation Indexes (IDI), first, we

an applications with each resource-intensive (e.g. CPU-intensive,
emory-intensive, and so on) in isolation and took the average

esponse time. After, we ran each one again co-hosted with one
ore application instance at a specific level (low, moderate, and
igh), according to the classifier method, and found the average
esponse time from both. With those metrics we discovered
ow much each resource degraded at each interference level by
sing Eq. (4).

DI =
ResponseTime(level+absent)

ResponseTimeabsent
(4)

To illustrate this scenario for memory, let us take an exam-
ple: We executed a memory intensive application in isolation,
which resulted in ResponseTimeabsent = 23.2 ms. While co-hosting
with a Low-intensive memory application, the runtime increased
to ResponseTime(low+absent) = 24.4 ms, which gives IDI of 1.10.
When co-hosting with a Moderate-intensive application, the re-
sponse time increases to ResponseTime(moderate+absent) = 39.2 ms,
resulting in an IDI of 1.69. Finally, when co-hosting with a High-
intensive memory application, the response time increased to
ResponseTime(high+absent) = 41.5 ms, resulting in an IDI of 1.79.

Another important aspect that is analyzed in the SA algorithm,
is the number of migrations done with the newly generated solu-
tion. If the number of migrations performed in the new solution
is bigger than the best solution, this new solution is disregarded
and another one is considered. The migrations number is taken

with the help of the getMig() function, as seen in algorithm 1.

9

4. Evaluation and results

In this section, we describe how the experiments were con-
ducted, the scope, and the limits of the project. Also, the details
about workload, application, and the computational environment
adopted in this work are discussed.

4.1. Application and workload

To investigate applications that present dynamic workload
(unpredictable load variation) by stressing different hardware re-
sources, Node-Tiers (seen in Section 3.1.2) has been adopted. This
tool explores the latency-sensitive application’s concept (client–
server) and allows the creation of workload variations. The goal
is to stress hardware resources in many ways (distinct resources)
through many latency-sensitive applications from this suite
benchmark, increasing and decreasing the request arrival rate,
executing scheduling decisions at runtime, handling changes in
the workload. Node-Tiers tool also provides an intensive-data
pressure to the target server/cluster. Its disk and memory ap-
plications stress hardware resources likewise real intensive-data
workloads do.

To create a most realistic scenario, we evaluated our architec-
ture using three real-world workload traces. The first one is from
the Wikimedia project, found in Wikipedia11 traces. Specifically,
we collected the page view statistics for the main page in the
English language for the month of January 2021. The second one
is from Alibaba Open Cluster Trace,12 this one is sampled from
one of Alibaba production clusters. There are both online services
and batch workloads, and we collected only information from
Sigma, the online service scheduler. The last one is from NASA13

dataset, consisting of all web requests made to the 1998 World
Cup Web site between April 30, 1998, and July 26, 1998. Although
this particular workload is not considered as a newer one, it
remains being adopted by recent studies (Mallikharjuna Rao and
Rama Satish, 2022; Radhika and Sudha Sadasivam, 2021; Chhetri
et al., 2021).

In addition to these workloads being widely used in related
work in the resource management field, they were chosen also
because they are not drawn from synthetic functions or inde-
pendent distributions, but rather represent real-world traces that
exhibit the realistic patterns of a workload resulting from user-,
program- and operating system behaviors. In addition, they are
lengthy traces obtained over extended periods of time, allowing
us to evaluate if the proposed architecture can cope with dynamic
real time applications, while improving resource utilization.

4.2. Experiments scenarios

To explore the efficiency of our architecture, we dived all
experiments into two phases: first, we use a real-scenario with
a small number of machines to ensure all proposed steps work
correctly together and to guarantee the simulation phase out-
comes are in accordance to the reality, reflecting reliable results;
and second, based on the previous phase, we build a simulated
environment, to test our architecture with a bigger number of
cluster nodes, and consequently, more applications. In the next
sections we describe how each phase was performed and its
results.

11 https://dumps.wikimedia.org/other/analytics/.
12 https://github.com/alibaba/clusterdata/tree/master/cluster-trace-v2018.
13 ftp://ita.ee.lbl.gov/html/contrib/.

https://dumps.wikimedia.org/other/analytics/
https://github.com/alibaba/clusterdata/tree/master/cluster-trace-v2018
ftp://ita.ee.lbl.gov/html/contrib/


V. Meyer, M.L. da Silva, D.F. Kirchoff et al. The Journal of Systems & Software 194 (2022) 111491

4

c
P
e
R
A
o
p

n
N
w
A
w
p
i
t
o
f
U
c
p
t
e
w

t
a
e
o
S
c
f
b
s

c
1
r
w
r
p
n
r

.2.1. Real experiments
To run our experiments within a real testbed, we used a

luster called Pantanal that belongs to the LAD Laboratory14 from
UCRS. This cluster has Dell PowerEdge R740xd nodes, each one
quipped with: 2x Intel Xeon Gold 5118 Processor, 300 GB DDR4
AM Memory, 1TB Hard Drive, and 4x Gigabit Ethernet Interface.
lso, as the Node Manager, we used one Dell Optiplex 990 outside
f the cluster, equipped with 8 GB of RAM, and one Core i5
rocessor.
To stress different resources subsystems (CPU, memory, disk,

etwork, and cache), we used different applications from the
ode-Tiers suite. The server-side was performed over the cluster,
hile the client-side was configured on a single computer, using
rtillery15, a load stress testing tool. The server-side applications
ere executed inside containers, more specifically one container
er application. Since containers present many benefits concern-
ng traditional virtual machines (seen in Section 2.1), we decide
o adopt LXC/LXD containers as target virtualization technol-
gy, allowing us to schedule the applications with live migration
acilities across the cluster nodes with Checkpoint/Restore In
serspace (CRIU16) functionalities. All pieces of equipment were
onnected through a Gigabit Ethernet Network. We ran four ap-
lications inside each cluster node, and each one was submitted
o a period of 2-h workload trace (randomly chosen), mixing the
lected datasets and creating greater variation among application
orkloads.
To evaluate the proposed architecture, we compared our work

o the references presented in the related work section that
pply similar scheduling strategies and target the same type of
nvironments and applications so that a direct comparison to
ur results is possible, namely CIAPA (Ludwig et al., 2019) and
egmented (Meyer et al., 2021b). We also included EVEN – not
ited in related work section because it does not consider inter-
erence aspects – that uses a round-robin scheduling strategy, as a
aseline. This strategy is widely applied nowadays by schedulers
uch as Apache Storm, for example.
For this experiment phase, we used four nodes of the Pantanal

luster, each one executing four Node-tiers applications, totaling
6 applications. When using latency-sensitive applications, the
esponse time (latency) metric quantifies how long the user must
ait for a response to a query, regardless of the quality of the
esponse. Together with data quality metrics, latency metrics
rovide the best indication of the end-user experience under
ormal conditions and during outages (Broadwell, 2004). For this
eason, we decided to use the Average Response Time as the main
performance metric in this work, which represents the total la-
tency for the test divided by the number of requests submitted to
the server-side by the users-side. The response time was collected
from each application during the entire experiment with Artillery,
and their total average is presented in Fig. 7.

It is worth noting that in all experiments, our proposed ar-
chitecture presented the best results, improving in average the
response time by 26% when compared to CIAPA, EVEN, and Seg-
mented scheduling approaches. Also, it is interesting to note
that EVEN scheduler reaches the higher response time indexes
(worst results), as predicted since this scheduling strategy is not
interference-optimized.

By running 16 applications with a mix of workloads variations,
IADA detected 12-time points with an expressive (global) behav-
ior change. Consequently, 12 periods were classified and each
one provoked scheduling actions. As mentioned before, the Data
Analyzer component uses a bayesian change point detection to

14 https://www.pucrs.br/ideia/lablad/.
15 https://artillery.io/.
16 https://criu.org/.
10
Fig. 7. Average Response Time from real experiments phase.

Fig. 8. Average interference indexes in Node1 and Node2 while performing a
scheduling action. Applications which have migrated across nodes are shown
in bold. *This image presents only data from 2 of 4 nodes used in the real
experiment.

find workload behavior modification, but this does not imply that
all applications, in all analyzed intervals, had their interference
labels modified, exchanging their interference degree (levels).
The applications only have their labels modified if the workload
variation has an abrupt alteration.

To give an example of how much the interference in a node is
affected by scheduling actions, we collected the average interfer-
ence generated in Node1 and Node2 within a given period, every
second, while a scheduling rearrangement was performed, and
presented in Fig. 8.

This image illustrates the average of interference generated by
the 8 applications running in Node1 and Node2 before and after
a scheduling movement. The red dashed line demonstrates the
exact moment the scheduling was executed.

By looking at the interference measures, it is possible to per-
ceive two interesting facts: (i) after the scheduling, Node1 and
Node2 exchanged app2 (disk intensive) and app6 (cpu intensive)
applications (in bold at the image); and (ii) after this rearrange-
ment, Node1 had its disk interference ratios considerably reduced
while Node2 had its disk ratios increased. Also, Node2 had its
cpu interference indexes reduced while Node1 had its overall
cpu usage increased. In general, it is possible to observe that this

https://www.pucrs.br/ideia/lablad/
https://artillery.io/
https://criu.org/


V. Meyer, M.L. da Silva, D.F. Kirchoff et al. The Journal of Systems & Software 194 (2022) 111491

s
d
r

f
t
f
t
i
c
t

4

a
f
s
s
t
C
c
i
t
c
d
S
t
p
t
t
t
c
u
C
(
i
C
a
p
t
w
C
C
i
k
t
r
w
i
a

C
o
p
m
m
(

c
c
c
w
t
t
w

e
e
t
s
a
c
i

r
p

o
r
i
(
s
c
s

b
o
i
r
s
C
r
t
r

w
d

cheduling operation provided a balance across interference in-
exes, improving the resources’ usage and reducing applications’
esponse time.

Therefore, these results show that a technique that analyzes
requently the generated interference over time is able to reduce
he overall system’s overhead, using the infrastructure more ef-
iciently, and consequently, improving QoS requirements. Also,
his experiments show that the proposed architecture presents
nteresting and trustworthy outcomes, and they will be used to
alibrate and perform the simulation experiments, presented in
he next section.

.3. Simulated experiments

In order to carry out experiments closer to a real scenario,
large physical machine set is necessary, and to have more

lexibility to perform different host arrangements, we decide to
cale our approach out through simulation as well. First, we
earch in the literature for tools that simulate cloud infrastruc-
ures (Lim et al., 2009; Kliazovich et al., 2012; nez et al., 2012;
alheiros et al., 2011). After exploring each simulation tool, we
onclude no one of them offers an environment that handles
nterference aspects from applications. Then, we have confirmed
hat CloudSim (Calheiros et al., 2011) is the most widely spread
loud simulator and by far also the most sophisticated. It is
eveloped as an add-on-top of the grid network simulator Grid-
im (Casanova, 2001). CloudSim is a completely customizable tool
hat supports modeling, creation of one or more VMs, and map-
ing tasks to appropriate virtual machines. This gives CloudSim
he ability to handle a complex simulation environment. It mainly
argets application developers or testers as it gives the ability
o configure several variables such as the number of users, data
enters, and cloud resources along with the location of both
sers and data centers. Besides many other studies extending
loudSim, such as Beloglazov and Buyya (2012), Guérout et al.
2013), Xavier et al. (2017) and Krzywda et al. (2020), there is one
n particular that supports Container as a Service (CaaS), namely
ontainerCloudSim (Piraghaj et al., 2017). This extension provides
platform for modeling and simulating containerized cloud com-
uting environments. Therefore, it is the most fitting simulation
ool to use nowadays and the one we have chosen to extend
ith applications interference features. We have developed the
loudSimInterference plug-in, a trace-driven extension to the
loudSim simulation tool. First, each application was monitored
n a physical machine (previously), and all IntP metrics were
ept and used as input to our workload simulations. This means
hat we did not use the workload trace itself, but rather the
esulting resource utilization levels from a real scenario. Since
e measured all interference levels from all resources (seen

n Section 3.1.4), we used those metrics to perform scheduling
ctions instead of generating them within the simulation tool.
Because bandwidth sharing is not considered by default in

loudSim, we introduced a migration degradation overhead to
vercome this limitation. This overhead was measured in isolated
hysical machines, considering several migration scenarios, with
any different workloads. Each time the simulator performs a
igration, this overhead is added to the total interference cost

TotalIntScore), being considered in the simulated experiments.
To implement our simulation plugin, we have made many

lasses modifications in ContainerCloudSim. First, we extend the
ontainerCloudlet() class to InterferenceContainerCloudlet(). This
lass is responsible for representing the application behavior, and
e include all Interference metrics measured with IntP inside
hem, each one keeps the information from each application
race generated from real execution. Another major modification,
as the integration with the R algorithms to perform the OCPD
11
Table 3
Hosts/application arrangements used in simulated experiments.
Hosts Applications

6 24
12 48
24 96
48 192

Fig. 9. Average Response Time from simulated experiments phase in each host
arrangement (6, 12, 24, and 48).

and ML functions, presented in the Sections 3.1.2 and 3.1.3. To
perform this integration, we include the JRI (Java-R-Integration)
library on the java side and the rJava library on the R side.
Also, we extended containerDatacenter() class to Interference-
ContainerDatacenter(), including several functions to handle the
modifications done with interference metrics utilization.

To generate a considerable number of applications (Interfer-
nceContainerCloudlets) for the simulation experiments, we have
xecuted several hours of each workload trace (seen in Sec-
ion 4.1) with five applications instances from Node-Tiers suite,
tressing the main hardware resources (cpu, memory, disk, net,
nd cache). After, we randomly divided those execution traces
ollected with IntP into two-hour segments to use as input data
n our simulation experiments.

To run the simulated experiments, we use four different ar-
angements of cluster node numbers and application instances,
resented in Table 3.
As mentioned before, we used real experiments to calibrate

ur simulator. To produce more reliable results, compatible with
eal case scenarios, we applied the same number of applications
n each cluster node, as done in practical experiments phase
four application instances per node). All results shown in this
ection display the average over 10 simulation trials with 95%
onfidence interval level. Fig. 9 presents the results from the
imulated experiment’s phase.
It is noteworthy that, in all experiments, IADA achieves the

est results (lower indexes). When compared to EVEN scheduler,
ur proposed architecture reached a reduction of 37% on average
n the response time. Not surprisingly, EVEN reaches the worst
esults as well, similar to the real experiments, because this
cheduler was not developed based on interference-awareness.
ompared to the CIAPA approach, IADA reduced the average
esponse time in 21% and, in contrast to Segmented, the state-of-
he-art strategy, IADA obtained a reduction of 14% in the average
esponse time.

To analyze how much the response time varies over time,
e took the average response time in each scheduled interval,
uring the experiments running with 24 nodes (96 applications),



V. Meyer, M.L. da Silva, D.F. Kirchoff et al. The Journal of Systems & Software 194 (2022) 111491
Fig. 10. Average Response Time in each scheduled interval from the 24-nodes
experiment.

and compare them with EVEN, CIAPA, and Segmented schedulers’
results. These results are presented in Fig. 10.

It is interesting to observe that EVEN scheduler places the
applications at the beginning of the execution and after that, they
are not rearranged anymore. That is the reason its representation
in the image is a straight line, depicting the total average in
the entire execution. Something similar happens with the CIAPA
strategy, within the first 300 s the interference metrics are col-
lected and analyzed, and after that just one placement decision
is taken, not being executed again, and its representation also
is a straight line, representing the total average in the entire
execution. In the Segmented approach, the application execution
was divided into four segments, and at the end of each one,
scheduling actions were taken. This strategy improves the overall
response time when compared to EVEN and CIAPA strategies
because it adjusts the infrastructure to applications, taking into
account the variability of workloads (Meyer et al., 2021b), even
considering only a few segments (four in this case).

In general, IADA reaches the lowest response time rates (best
results). However, there was an interval that presented worst
results than CIAPA’s scheduler, for example, depicted in point A.
This happened because IADA relies on a reactive approach, using
the most recent data and not a general view to make scheduling
decisions, so that in interval A the workload had an abrupt be-
havior change, not presenting the best scheduling arrangement,
but still is considered as an acceptable result.

There were intervals that IADA touches CIAPA’s outcomes,
which were the B and C intervals’ cases. Also, the major response
time reduction can be seen in the interval D, reaching an average
improvement of 57% in relation to EVEN, CIAPA, and Segmented
scheduling approaches.

It is important to highlight that the proposed scheduling ar-
chitecture adjusts applications over the hardware based on the
workload oscillation, in real-time, and in a reactive manner. So
far, the outcomes found in this work support our idea that an
interference-aware dynamic scheduling architecture designed to
observe workloads tends to reduce the overhead generated by
cross-application interference over the system, and consequently
utilizing the available hardware resources more efficiently.

4.4. Overhead evaluation

Considering the dynamic nature of the problem, it was neces-
sary to run some preliminary steps in order to make the schedul-
ing decisions. As mentioned in Section 3, those steps are pro-
filing applications, analyzing time-series data, and performing
interference classification with ML techniques. After that, with a
heuristic-oriented algorithm, it was possible to execute schedul-
ing actions.
12
Fig. 11. Resources’ behavior while running a container migration across cluster
nodes.

Table 4
Number of intervals found by Data Analyzer component and how many
migrations were performed per host arrangement.
Hosts App. Intervals Migrations Mig./Interval

6 24 18 115 6
12 48 23 245 11
24 96 24 712 30
48 192 27 1323 49

All these techniques put some overhead pressure on the clus-
ter system, as well as on the Node Manager. To examine these
aspects, in the next sections, we performed some analysis to find
out if the overhead generated by the proposed architecture could
make its use infeasible.

4.4.1. Migration
When running experiments within the real scenario, we per-

formed many container migrations across the cluster. In terms of
hardware resource usage, the overhead rate created by a single
LXC/LXD migration can be considered low over the entire compu-
tational environment. To present how much this operation affects
the system, we executed one container migration and profiled
LXC/LXD processes with IntP. Fig. 11 illustrates the hardware
utilization while performing a single container migration across
the cluster.

In our experiments the mean migration time was about 18 s,
depending on the resource the applications is stressing more, it
can take more or less time to conclude this operation.

However, when the number of container migrations increases,
the resulting overhead can considerably increase as well. So,
such operations should be minimized as much as possible. As
mentioned in Section 3.1.4, IADA uses a heuristic to find the best
applications’ set to schedule applications over the cluster. We
developed an optimized version of CIAPA (Ludwig et al., 2019)
scheduler algorithm, taking the number of migrations into ac-
count when deciding the best scheduling actions. IADA schedul-
ing algorithm was developed to dynamically deals with workload
behavior changes, adjusting its decisions considering the most
recent data and its behavior. So that it is important to keep the
number of migration operations at the minimum, and for this
reason, the amount of migrations operations is contemplated as
a quality measure to decide if the new solution created is better
than the actual one.

Considering IADA automatically finds the best moments to
classify data intervals, and based on that, it runs scheduling deci-
sions, in all experiments we also observe the number of intervals
found by the Data Analyzer component and how many migration
actions were performed. These metrics are presented in Table 4

for each host arrangement.



V. Meyer, M.L. da Silva, D.F. Kirchoff et al. The Journal of Systems & Software 194 (2022) 111491

I
s
d
l
c
g
a
a
o
n
g
a
n
b
t
b
t
d

4

e
p
t
a
f
p
a
p
a
t
i
l
t
p
t
t
t

c
t
p
w
p
t

w
s
a
b
F
a
e
f
(
F

s
t
w
M
3
w
q
c
h

Observing this table, it is evident that the more applications
ADA is controlling, the more intervals will be found. The rea-
on this happens is that the more data (more applications with
istinct workload patterns) the proposed architecture is ana-
yzing, the greater the amount of information to be processed,
onsequently increasing the dynamism in the environment and
enerating greater optimization opportunity. Of course, this is
lso highly dependent on the variation of workloads, but since we
re monitoring dynamic applications, these are not unexpected
utcomes. Looking at the number of migrations performed, it is
oticeable that the more applications running in the cluster, the
reater the number of migrations as well, practically following
linear trend with applications’ number. At the first look, the
umber of migrations performed with 192 applications seems to
e exaggerated, but when dividing the number of migrations by
he interval (Mig./interval), it is possible to notice that the num-
er of migrations makes sense, being proportional in relation to
he number of hosts, almost one migration per host per interval,
emonstrating a reasonable outcome.

.4.2. Machine learning
According to Section 3.1.4, when P is defined, then ∆T is

stablished. After, this data interval is sent to the Classifier com-
onent so that depending on the data quantity (interval length),
his process time can vary. On average, in our experiments, each
pplication took about 1 s to be classified. To improve the per-
ormance of this proceeding, we used the doParallel library (Cor-
oration and Weston, 2020) from R packages. This library can be
dopted to send tasks (encoded as function calls) to each of the
rocessing cores on a machine in parallel. This is done by using
function that distributes the tasks to multiple processors. After,
his function gathers the responses up from each process call and
t returns a list of responses, which is the same length as the
ist or vector of input data (one return per input item). To speed
he classification process up, we performed the ML training phase
reviously, generating .RDA files. These files are the results from
he R programming language within the training dataset phase so
hat it is not necessary to execute the model training phase each
ime the classification process is performed.

Depending on the number of applications running inside the
luster and the length of data sent to the Classifier component,
he ML analysis can take longer to be performed. In our ex-
eriments, the largest classified interval took less than 25 s,
hich is very reasonable, since each scheduling decision was not
erformed within less than a 20-s interval, that is the meantime
o migrate containers across the cluster nodes.

To measure the overhead of the classification process even
ith a high number of running applications, we performed a
calability experiment with this component. Therefore, we cre-
ted a set of application workloads with varied interval lengths
etween 30 and 600 s, testing short, medium, and long periods.
or each interval, we gradually increased the number of running
pplication workloads (24, 48, 96, and 192) to ensure that the
xecution time of the classification (y axis) is not significant even
or many applications (colors) executing in a long interval of time
x axis), what would invalidate its use in a dynamic environment.
ig. 12 presents these results.
When looking at this figure, it is possible to observe the clas-

ification follows a linear trend, which is already expected since
he classification is not a distributed process, and at certain times
e are allocating more tasks than the number of cores our Node
anager owns. It is interesting to notice that it takes less than
0 s to accomplish the classification of 192 application workloads
ith a 10-min interval length, meaning the biggest application
uantity with the largest period in this experiment. This result
an be considered acceptable if the target applications do not
ave workloads with extreme behavior patterns variability.
13
Fig. 12. Classification makespan from a set of applications with different interval
lengths. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

Fig. 13. NAS Parallel Benchmark (NPB) algorithms’ executions with and without
IntP profiling them.

Summing it up, if there will be performed an expressive num-
ber of applications or the length of the monitored period will
be increased, it could be necessary to adopt a different machine
with more computational power (more CPUs) than ours as Node
Manager, in order to ensure the architecture works correctly.

4.4.3. Profiler
To enforce IntP does not input a considerable overhead over

the hardware, we have run an experiment with NAS Parallel
Benchmarks (NPB),17 which are a small set of programs designed
to help evaluate the performance of parallel supercomputers.
First, we ran BT.d, CG.c, DC.b, EP.d, LU.c, MG.d, and UA.c algo-
rithms without any profiler. After, we ran each one again with
IntP profiling them. Each execution was performed 10 times and
the resulting meantime of them are presented in Fig. 13.

Since IntP core works with low-level kernel events instrumen-
tation, in our experiments, when it was enabled, its execution
practically did not generate overhead. Meaning that IntP plays a
non-intrusive role over the entire system.

5. Related work

Virtualization technology enables highly scalable services to
be easily delivered by cloud providers within different contexts.

17 https://www.nas.nasa.gov/publications/npb.html.

https://www.nas.nasa.gov/publications/npb.html


V. Meyer, M.L. da Silva, D.F. Kirchoff et al. The Journal of Systems & Software 194 (2022) 111491

H
n
i
R
i
p

i
f
i
m
g
a
f
i
s
t
p
t
d
m
w
e

n
d
p
a
t
e
f
A
m
p
i
p
r
s

t
o
l
s
e
w
3
(
e
e
r
e
t

i
t
i
w
d
s
p
t
i
e
t
i
t

owever, many real applications present dynamic workloads and
eed to be managed to avoid interference problems, minimiz-
ng performance degradation in resource-shared environments.
ecently, several research efforts were conducted addressing
nterference-aware scheduling strategies, and in this section, we
resent them and provide a contrast to our work.
Bu et al. (2013) introduce a task scheduling strategy to mit-

gate interference and meanwhile preserve task data locality
or MapReduce applications. The authors’ strategy includes an
nterference-aware scheduling policy, based on a task perfor-
ance prediction model, and an adaptive delay scheduling al-
orithm for data locality improvement. Results show that the
uthors’ proposal is able to achieve a speedup of 1.5 to 6.5 times
or individual jobs and yield an improvement of up to 1.9 times
n system throughput in comparison with four other MapReduce
chedulers. Zhang et al. (2014) propose two schedulers: one in
he virtualization layer designed to minimize interference on high
riority interactive services, and one in the Hadoop framework
hat helps batch processing jobs meet their own performance
eadlines. The evaluation shows that both schedulers allow a
ixed cluster to reduce web response times by more than tenfold
hile meeting more Hadoop deadlines and lowering total task
xecution times by 6.5%.
Chen et al. (2015) present CloudScope, a system that diag-

oses interference for multi-tenant cloud sources. It employs a
iscrete-time Markov Chain model for the online prediction of
erformance interference of co-resident VMs. The interference-
ware scheduler improves virtual machine performance by up
o 10% compared to the default scheduler, achieving an average
rror of 9%. The authors also claim that the hypervisor recon-
iguration can improve network throughput by up to 30%. Melo
lves et al. (2018) have developed an interference-aware virtual
achine placement strategy for HPC applications in cloud com-
uting. The authors’ approach implements a method that predicts
nterference levels in order to minimize the number of used
hysical machines. Results presented that the authors’ method
educed interference by more than 40%, using the same hardware
et.
Shekhar et al. (2018) present an online, data-driven approach

o build runtime predictive performance models. The predictive
nline models are then used in dynamically adapting to the work-
oad variability by vertically auto-scaling co-located applications
uch that performance interference is minimized and QoS prop-
rties of latency-sensitive applications are met. A comparison
ith a representative latency-sensitive application reveals up to
9.46% lower tail latency than reactive approaches. Wang et al.
2019) developed data-driven analytical models to estimate the
ffect of interference among multiple Apache Spark jobs on job
xecution time in virtualized cloud environments. Experimental
esults show that the scheduling algorithm reduces the average
xecution time of individual jobs (between 47 and 26%) and the
otal execution time (2 to 13%).

Ludwig et al. (2019) propose placement algorithms based on
nterference levels for different workload scenarios. As a result,
hey achieve a 10% reduction in response time compared to
nterference strategies. Evolving the author’s efforts, in previous
ork (Meyer et al., 2021b), we propose a machine learning-
riven classification scheme for dynamic interference-aware re-
ource scheduling in cloud computing environments. We have
resented how a classification approach, that better represents
he workload variations, affects resource scheduling. By analyz-
ng how hardware resources react to different applications, we
xplored distinct interference classification formats and evaluate
heir efficiency, taking the dynamic nature of cloud workloads
nto account. Then, we applied an interference-aware applica-

ion classifier (Meyer et al., 2020) based on machine learning

14
techniques and compare it with related work, adopting a variety
of workload patterns. Preliminary results revealed an improve-
ment of 27% hardware utilization efficiency when applying our
classification approach in cloud data centers.

Our work differs from related studies due to evolution of
technology and the update of operating systems and Kernels
versions. Such evolution makes possible to extract information
from hardware in a manner that was not possible in the recent
past. One example of that, is the advanced feature developed by
Intel, called Intel Cache Monitoring Technology (CMT), now it is
entirely viable to collect information about the usage of the cache
by applications running inside any piece of equipment. This is
something essential since multi-thread architectures are in an
exponential growth within the computer market. This technology
allows us to use an ID denominated Resource Monitoring ID
(RMID) to metrify the number of threads scheduled among the
operation system. For each thread, there is one ID associated with
it, therefore, those metrics can be collected within an MSR inter-
face. Something that could not be possible before the creation of
this technology.18

Bu et al. (2013) study is limited to analyze only CPU from
hypervisor through xentop counters and disk metrics through
linux iostat from hadoop workloads. Similar to Bu et al. (2013)
work, Zhang et al. (2014) proposes ILA, in which only CPU and
disk counters are monitored from hadoop applications. Likewise
our work, Chen et al. (2015) includes in Cloudscope strategy some
different components to distribute systems’ responsibilities. Also,
authors’ approach profiles specific virtual machines characteris-
tics, such as VCPUs and VNICs. The main difference from ours
architecture is that we run applications over containers instead of
traditional virtual machines, as mentioned before, this kind of vir-
tualization presents many benefits over the traditional method,
such as low management overhead and portability (Zhang et al.,
2019). Melo Alves et al. (2018) work utilizes a slowdown factor
that measures the applications’ time and how much (in percent)
each one increased its time regarding isolated execution. Also,
an average period is calculates over each host to compare them
with each other. Our work is different in the sense that we apply
interference levels instead of the raw percent of performance
degradation, and on top of that we also use automatic techniques
that outcome the interference levels, with no user intervention.

Similar to our work, Shekhar et al. (2018) investigate the
interference generated by container-based instances with work-
load variations. However, our work is distinctive in the following
ways: (i) instead of focusing on a single server, our proposed
approach is performed over a distributed architecture (cluster).
Further, our proposed architecture focuses exclusively on appli-
cations that have dynamic workloads, such as latency-sensitive
applications, while authors mix them with batch-job ones. Wang
et al. (2019) are interested in improving Apache Spark jobs’
makespan. Since this type of application is workflow-oriented,
they present multiple jobs’ stages, and the authors analyze each
stage separately, stating that each one has different (specific)
resources behavior. The authors consider only execution time,
CPU usage, disk I/O rate, and network I/O rate, not observing
cache and memory metrics, which our approach does.

6. Conclusion and future directions

Cloud service providers offer many services through virtual-
ization techniques to users over the Internet. As many virtual
machines (VMs) run on the same computational node, they share
physical resources, and consequently there exists great oppor-
tunity to produce resource contention, which results in appli-
cations’ performance degradation. Therefore, how to place VMs

18 https://github.com/intel/intel-cmt-cat.

https://github.com/intel/intel-cmt-cat


V. Meyer, M.L. da Silva, D.F. Kirchoff et al. The Journal of Systems & Software 194 (2022) 111491

t
m
h
c
m

w
d
p
t
r
m
a

a
n
f
l
c
i
t
i
A
r
c
i

y
n
a
p
s
g
n
t
t
t
c
p
t
a

a
a
h
c
r
t

C

I
v
t
o

D

c
t

o reduce performance degradation and guarantee QoS require-
ents is still a challenging task. Recently, many related studies
ave proposed strategies to tackle these issues, but none of them
onsider cross-application interference aspects to dynamically
ake scheduling decisions.
In previous work (Meyer et al., 2020; Meyer et al., 2021b)

e proposed a machine learning-driven classification scheme for
ynamic interference-aware resource scheduling in cloud com-
uting environments. It has been presented how a classifica-
ion approach, that deals better with workload variability, affects
esource scheduling. Preliminary results revealed an improve-
ent in resource utilization efficiency by 27%, on average, when
pplying this classification approach in cloud scenarios.
In this work, we further analyze this topic and develop IADA,

full-fledged interference-aware scheduling architecture for dy-
amic workloads in clouds. IADA combines and improves dif-
erent techniques studied in previous work, including machine
earning, bayesian algorithms, and heuristics to find abrupt
hanges in applications’ workload behavior, classifying and plac-
ng them in a way that minimizes the overall resource con-
ention. We compare our solution with close-related studies
n this field using real workloads from NASA, Wikimedia, and
libaba Open Cluster Trace datasets and results show that IADA
educes the resulting performance degradation by 26% when
ompared to EVEN, CIAPA, and Segmented scheduling approaches
n real experiments, and by 24% in simulated experiments.

Moreover, we also performed and presented an overhead anal-
sis under the Migration, Machine Learning, and Profiler tech-
iques used by IADA and we have concluded that: the scheduling
lgorithm was developed and optimized to reduce as much as
ossible the number of migrations. Our solution presents rea-
onable numbers of scheduling actions per interval, keeping the
eneral overhead at a acceptable rate; the machine learning tech-
iques used generate a layer of overhead, but in our experiments,
hese indexes are considered acceptable. However depending on
he number of nodes and applications the architecture is going
o control, the resulting overhead could be bigger than ours, and
onsequently, the Node Manager might be resized; the chosen
rofiler (IntP) practically does not put any overhead pressure over
he system, since this tool was built to analyze hardware events
t the kernel layer.
In future work, we expect to evaluate proactive scheduling

pproaches by applying machine learning prediction algorithms
nd comparing them with the current work. The goal is to analyze
ow much the performance degradation can be reduced by fore-
asting the workload variability and anticipating the hardware
esource’s arrangement within a dynamic scheduling architec-
ure.

RediT authorship contribution statement

Vinícius Meyer: Conceptualization, Methodology, Software,
nvestigation, Data curation, Writing. Matheus L. da Silva: Re-
iew, Validation, Writing. Dionatrã F. Kirchoff: Review, Valida-
ion, Writing. Cesar A.F. De Rose: Conceptualization, Methodol-
gy, Validation, Supervision.

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared
o influence the work reported in this paper.
15
Acknowledgments

This study was financed in part by the Coordenação de Aper-
feiçoamento de Pessoal de Nível Superior - Brazil (CAPES) - Fi-
nance Code 001. This work has been partially supported by the
project ‘‘GREEN-CLOUD: Computação em Cloud com Computação
Sustentável’’ (#16/2551-0000 488-9), from FAPERGS and CNPq
Brazil, program PRONEX 12/2014. Also, this work was achieved in
cooperation with HP Brasil Indústria e Comércio de Equipamentos
Eletrônicos LTDA using incentives of Brazilian Informatics Law
(Law n◦ 8.2.48 of 1991).

References

Al-Sinayyid, A., Zhu, M., 2020. Job scheduler for streaming applications in
heterogeneous distributed processing systems. J. Supercomput. http://dx.doi.
org/10.1007/s11227-020-03223-z.

Alboaneen, D., Tianfield, H., Zhang, Y., Pranggono, B., 2021. A metaheuristic
method for joint task scheduling and virtual machine placement in cloud
data centers. Future Gener. Comput. Syst. 115, 201–212. http://dx.doi.org/
10.1016/j.future.2020.08.036.

Beloglazov, A., Buyya, R., 2012. Optimal online deterministic algorithms and
adaptive heuristics for energy and performance efficient dynamic consoli-
dation of virtual machines in cloud data centers. Concurr. Comput.: Pract.
Exper. 24 (13), 1397–1420. http://dx.doi.org/10.1002/cpe.1867.

Broadwell, P.M., 2004. Response time as a performability metric for online
services. In: Report No. UCB//CSD-04-1324. Computer Science Division
(EECS),University of California, Berkeley, California 94720, pp. 1–49.

Bu, X., Rao, J., Xu, C.-z., 2013. Interference and locality-aware task scheduling
for MapReduce applications in virtual clusters. In: Proceedings of the 22Nd
International Symposium on High-Performance Parallel and Distributed Com-
puting. HPDC ’13, ACM, New York, NY, USA, pp. 227–238. http://dx.doi.org/
10.1145/2493123.2462904.

Caglar, F., Shekhar, S., Gokhale, A.S., 2014. Towards a performance interference-
aware virtual machine placement strategy for supporting soft real-time
applications in the cloud. In: REACTION 2014, 3rd IEEE International Work-
shop on Real-Time and Distributed Computing in Emerging Applications,
Proceedings, Rome, Italy. December 2nd, 2014. pp. 15–20.

Caglar, F., Shekhar, S., Gokhale, A., Koutsoukos, X., 2016. Intelligent, perfor-
mance interference-aware resource management for IoT cloud backends. In:
2016 IEEE First International Conference on Internet-of-Things Design and
Implementation (IoTDI). pp. 95–105. http://dx.doi.org/10.1109/IoTDI.2015.36.

Calheiros, R.N., Ranjan, R., Beloglazov, A., De Rose, C.A.F., Buyya, R., 2011.
CloudSim: a toolkit for modeling and simulation of cloud computing envi-
ronments and evaluation of resource provisioning algorithms. Softw. - Pract.
Exp. 41 (1), 23–50. http://dx.doi.org/10.1002/spe.995.

Casanova, H., 2001. Simgrid: a toolkit for the simulation of application schedul-
ing. In: 1st IEEE/ACM International Symposium on Cluster Computing and
the Grid. pp. 430–437.

Chen, S., GalOn, S., Delimitrou, C., Manne, S., Martínez, J.F., 2017. Workload
characterization of interactive cloud services on big and small server plat-
forms. In: 2017 IEEE International Symposium on Workload Characterization
(IISWC). pp. 125–134. http://dx.doi.org/10.1109/IISWC.2017.8167770.

Chen, X., Rupprecht, L., Osman, R., Pietzuch, P., Franciosi, F., Knottenbelt, W.,
2015. CloudScope: Diagnosing and managing performance interference in
multi-tenant clouds. In: 2015 IEEE 23rd International Symposium on Model-
ing, Analysis, and Simulation of Computer and Telecommunication Systems.
pp. 164–173. http://dx.doi.org/10.1109/MASCOTS.2015.35.

Chhabra, A., Singh, G., Kahlon, K.S., 2020. Multi-criteria HPC task scheduling on
iaas cloud infrastructures using meta-heuristics. Cluster Comput..

Chhetri, M.B., Forkan, A.R.M., Vo, Q.B., Nepal, S., Kowalczyk, R., 2021. Exploiting
heterogeneity for opportunistic resource scaling in cloud-hosted applications.
IEEE Trans. Serv. Comput. 14 (6), 1739–1750. http://dx.doi.org/10.1109/TSC.
2019.2908647.

Chiang, R.C., Huang, H.H., 2011. TRACON: Interference-aware scheduling for
data-intensive applications in virtualized environments. In: Proceedings of
2011 International Conference for High Performance Computing, Networking,
Storage and Analysis. SC ’11, ACM, New York, NY, USA, pp. 47:1–47:12.
http://dx.doi.org/10.1145/2063384.2063447.

Corporation, M., Weston, S., 2020. doparallel: Foreach parallel adaptor for the
‘parallel’ package. R package version 1.0.16. URL https://CRAN.R-project.org/
package=doParallel.

Daraje, M., Shaikh, J., 2021. Hybrid resource scaling for dynamic workload in
cloud computing. In: 2021 IEEE International Conference on Mobile Networks
and Wireless Communications (ICMNWC). pp. 1–6. http://dx.doi.org/10.1109/
ICMNWC52512.2021.9688556.

http://dx.doi.org/10.1007/s11227-020-03223-z
http://dx.doi.org/10.1007/s11227-020-03223-z
http://dx.doi.org/10.1007/s11227-020-03223-z
http://dx.doi.org/10.1016/j.future.2020.08.036
http://dx.doi.org/10.1016/j.future.2020.08.036
http://dx.doi.org/10.1016/j.future.2020.08.036
http://dx.doi.org/10.1002/cpe.1867
http://refhub.elsevier.com/S0164-1212(22)00169-8/sb4
http://refhub.elsevier.com/S0164-1212(22)00169-8/sb4
http://refhub.elsevier.com/S0164-1212(22)00169-8/sb4
http://refhub.elsevier.com/S0164-1212(22)00169-8/sb4
http://refhub.elsevier.com/S0164-1212(22)00169-8/sb4
http://dx.doi.org/10.1145/2493123.2462904
http://dx.doi.org/10.1145/2493123.2462904
http://dx.doi.org/10.1145/2493123.2462904
http://refhub.elsevier.com/S0164-1212(22)00169-8/sb6
http://refhub.elsevier.com/S0164-1212(22)00169-8/sb6
http://refhub.elsevier.com/S0164-1212(22)00169-8/sb6
http://refhub.elsevier.com/S0164-1212(22)00169-8/sb6
http://refhub.elsevier.com/S0164-1212(22)00169-8/sb6
http://refhub.elsevier.com/S0164-1212(22)00169-8/sb6
http://refhub.elsevier.com/S0164-1212(22)00169-8/sb6
http://refhub.elsevier.com/S0164-1212(22)00169-8/sb6
http://refhub.elsevier.com/S0164-1212(22)00169-8/sb6
http://dx.doi.org/10.1109/IoTDI.2015.36
http://dx.doi.org/10.1002/spe.995
http://refhub.elsevier.com/S0164-1212(22)00169-8/sb9
http://refhub.elsevier.com/S0164-1212(22)00169-8/sb9
http://refhub.elsevier.com/S0164-1212(22)00169-8/sb9
http://refhub.elsevier.com/S0164-1212(22)00169-8/sb9
http://refhub.elsevier.com/S0164-1212(22)00169-8/sb9
http://dx.doi.org/10.1109/IISWC.2017.8167770
http://dx.doi.org/10.1109/MASCOTS.2015.35
http://refhub.elsevier.com/S0164-1212(22)00169-8/sb12
http://refhub.elsevier.com/S0164-1212(22)00169-8/sb12
http://refhub.elsevier.com/S0164-1212(22)00169-8/sb12
http://dx.doi.org/10.1109/TSC.2019.2908647
http://dx.doi.org/10.1109/TSC.2019.2908647
http://dx.doi.org/10.1109/TSC.2019.2908647
http://dx.doi.org/10.1145/2063384.2063447
https://CRAN.R-project.org/package=doParallel
https://CRAN.R-project.org/package=doParallel
https://CRAN.R-project.org/package=doParallel
http://dx.doi.org/10.1109/ICMNWC52512.2021.9688556
http://dx.doi.org/10.1109/ICMNWC52512.2021.9688556
http://dx.doi.org/10.1109/ICMNWC52512.2021.9688556


V. Meyer, M.L. da Silva, D.F. Kirchoff et al. The Journal of Systems & Software 194 (2022) 111491

D

D

D
E

G

G

H

I

J

J

K

K

K

K

L

L
L

M

M

M

M

M

M

elimitrou, C., Kozyrakis, C., 2013. Paragon: QoS-aware scheduling for hetero-
geneous datacenters. SIGPLAN Not. 48 (4), 77–88. http://dx.doi.org/10.1145/
2499368.2451125.

evarajan, H., Kougkas, A., Challa, P., Sun, X., 2018. Vidya: Performing code-block
I/O characterization for data access optimization. In: 2018 IEEE 25th Inter-
national Conference on High Performance Computing (HiPC). pp. 255–264.
http://dx.doi.org/10.1109/HiPC.2018.00036.

ocker Engine Overview, 2022. URL https://docs.docker.com/engine/.
badifard, F., Babamir, S.M., 2021. Utonomic task scheduling algorithm for

dynamic workloads through a load balancing technique for the cloud-
computing environment. Cluster Comput. 24 (2), 1075–1101. http://dx.doi.
org/10.1007/s10586-020-03177-0.

arg, S.K., Toosi, A.N., Gopalaiyengar, S.K., Buyya, R., 2014. SLA-based virtual
machine management for heterogeneous workloads in a cloud datacenter.
J. Netw. Comput. Appl. 45, 108–120. http://dx.doi.org/10.1016/j.jnca.2014.07.
030.

uérout, T., Monteil, T., Costa, G.D., Calheiros, R.N., Buyya, R., Alexandru, M.,
2013. Energy-aware simulation with DVFS. Simul. Model. Pract. Theory 39,
76–91.

u, Y., Zhou, H., de Laat, C., Zhao, Z., 2020. Concurrent container scheduling
on heterogeneous clusters with multi-resource constraints. Future Gener.
Comput. Syst. 102, 562–573. http://dx.doi.org/10.1016/j.future.2019.08.025.

qbal, W., Erradi, A., Mahmood, A., 2018. Dynamic workload patterns prediction
for proactive auto-scaling of web applications. J. Netw. Comput. Appl. 124,
94–107. http://dx.doi.org/10.1016/j.jnca.2018.09.023.

avadi, S.A., Gandhi, A., 2017. DIAL: Reducing tail latencies for cloud applications
via dynamic interference-aware load balancing. In: 2017 IEEE International
Conference on Autonomic Computing (ICAC). pp. 135–144. http://dx.doi.org/
10.1109/ICAC.2017.17.

ersak, L.C., Ferreto, T., 2016. Performance-aware server consolidation with
adjustable interference levels. In: 31st Annual ACM Symposium on Applied
Computing. SAC ’16, ACM, New York, NY, USA, pp. 420–425. http://dx.doi.
org/10.1145/2851613.2851625.

irkpatrick, S., Gelatt, C.D., Vecchi, M.P., 1983. Optimization by simulated
annealing. Science 220 (4598), 671–680. http://dx.doi.org/10.1126/science.
220.4598.671.

liazovich, D., Bouvry, P., Khan, S.U., 2012. GreenCloud: a packet-level simu-
lator of energy-aware cloud computing data centers. J. Supercomput. 62,
1263–1283. http://dx.doi.org/10.1007/s11227-010-0504-1.

rzywda, J., Meyer, V., Xavier, M.G., Ali-Eldin, A., Östberg, P., De Rose, C.A.F.,
Elmroth, E., 2020. Modeling and simulation of qos-aware power budgeting
in cloud data centers. In: 2020 28th Euromicro International Conference
on Parallel, Distributed and Network-Based Processing (PDP). pp. 88–93.
http://dx.doi.org/10.1109/PDP50117.2020.00020.

umar, R., Setia, S., 2017. Interface aware scheduling of tasks on cloud. In: 2017
4th International Conference on Signal Processing, Computing and Control
(ISPCC). pp. 654–658. http://dx.doi.org/10.1109/ISPCC.2017.8269758.

im, S., Sharma, B., Nam, G., Kim, E.K., Das, C.R., 2009. MDCSim: A multi-tier
data center simulation, platform. In: 2009 IEEE International Conference
on Cluster Computing and Workshops. pp. 1–9. http://dx.doi.org/10.1109/
CLUSTR.2009.5289159.

inux Trace Toolkit Project Page, 2002. URL https://www.opersys.com/LTT/.
udwig, U.L., Xavier, M.G., Kirchoff, D.F., Cezar, I.B., De Rose, C.A.F., 2019.

Optimizing multi-tier application performance with interference and affinity-
aware placement algorithms. Concurr. Comput.: Pract. Exper. e5098. http:
//dx.doi.org/10.1002/cpe.5098, e5098 cpe.5098.

allikharjuna Rao, K., Rama Satish, A., 2022. A comprehensive study on work-
loads in cloud computing. In: Bianchini, M., Piuri, V., Das, S., Shaw, R.N.
(Eds.), Advanced Computing and Intelligent Technologies. Springer Singapore,
Singapore, pp. 505–514.

elo Alves, M., Teylo, L., Frota, Y., Drummond, L.M.A., 2018. An interference-
aware virtual machine placement strategy for high performance computing
applications in clouds. In: 2018 Symposium on High Performance Comput-
ing Systems (WSCAD). pp. 94–100. http://dx.doi.org/10.1109/WSCAD.2018.
00024.

enage, P., 2022. Control groups definition, implementation details, examples
and api. URL https://www.kernel.org/doc/Documentation/cgroup-v1/cgroups.
txt.

erkel, D., 2014. Docker: Lightweight linux containers for consistent
development and deployment. Linux J. 2014 (239).

eyer, V., Kirchoff, D.F., da Silva, M.L., César, D.R.A.F., 2020. An interference-
aware application classifier based on machine learning to improve schedul-
ing in clouds. In: 2020 28th Euromicro International Conference on Parallel,
Distributed and Network-Based Processing (PDP). pp. 80–87. http://dx.doi.
org/10.1109/PDP50117.2020.00019.

eyer, V., Kirchoff, D.F., da Silva, M.L., De Rose, C.A.F., 2021a. Interference-
aware application classifier for dynamic scheduling in cloud infrastructures.
http://dx.doi.org/10.24433/CO.3183391.v1, https://www.codeocean.com/.
16
Meyer, V., Kirchoff, D.F., Da Silva, M.L., De Rose, C.A., 2021b. ML-driven classifi-
cation scheme for dynamic interference-aware resource scheduling in cloud
infrastructures. J. Syst. Archit. 116, 102064. http://dx.doi.org/10.1016/j.sysarc.
2021.102064.

Meyer, V., Ludwig, U.L., Xavier, M.G., Kirchoff, D.F., De Rose, C.A.F., 2020. To-
wards interference-aware dynamic scheduling in virtualized environments.
In: Job Scheduling Strategies for Parallel Processing. Springer International
Publishing, Cham, pp. 1–24.

Meyer, V., Righi, R.R., Rodrigues, V.F., Costa, C.A.D., Galante, G., Both, C.,
2019a. Pipel: Exploiting resource reorganization to optimize performance
of pipeline-structured applications in the cloud. Int. J. Comput. Syst. Eng.
http://dx.doi.org/10.1504/IJCSYSE.2019.10015444.

Meyer, V., Xavier, M., Kirchoff, D., Righi, R., De Rose, C.F., 2019b. Performance
and cost analysis between elasticity strategies over pipeline-structured
applications. In: Proceedings of the 9th International Conference on Cloud
Computing and Services Science - CLOSER. SciTePress, INSTICC, pp. 404–411.
http://dx.doi.org/10.5220/0007729004040411.

Moreno, I.S., Yang, R., Xu, J., Wo, T., 2013. Improved energy-efficiency in
cloud datacenters with interference-aware virtual machine placement. In:
2013 IEEE Eleventh International Symposium on Autonomous Decentralized
Systems (ISADS). pp. 1–8. http://dx.doi.org/10.1109/ISADS.2013.6513411.

Nathuji, R., Kansal, A., Ghaffarkhah, A., 2010. Q-clouds: Managing performance
interference effects for qos-aware clouds. In: Proceedings of the 5th Euro-
pean Conference on Computer Systems. EuroSys ’10, ACM, New York, NY,
USA, pp. 237–250. http://dx.doi.org/10.1145/1755913.1755938.

nez, A.N., L., V.-P.J., Caminero, A.C., Castañé, G.G., Carretero, J., Llorente, I.M.,
2012. iCancloud: A flexible and scalable cloud infrastructure simulator. J.
Supercomput. 10, 185–209. http://dx.doi.org/10.1007/s10723-012-9208-5.

OpenVZ, 2022. URL https://openvz.org/.
Pagotto, A., 2019. ocp: Bayesian online changepoint detection. R package version

0.1.1. URL https://CRAN.R-project.org/package=ocp.
Pahl, C., Brogi, A., Soldani, J., Jamshidi, P., 2019. Cloud container technologies:

A state-of-the-art review. IEEE Trans. Cloud Comput. 7 (3), 677–692. http:
//dx.doi.org/10.1109/TCC.2017.2702586.

Piraghaj, S.F., Dastjerdi, A.V., Calheiros, R.N., Buyya, R., 2017. ContainerCloudSim:
An environment for modeling and simulation of containers in cloud data
centers. Softw. - Pract. Exp. 47 (4), 505–521. http://dx.doi.org/10.1002/spe.
2422.

R Core Team, 2019. R: A Language and Environment for Statistical Computing.
R Foundation for Statistical Computing, Vienna, Austria, URL https://www.R-
project.org/.

Radhika, E., Sudha Sadasivam, G., 2021. A review on prediction based autoscaling
techniques for heterogeneous applications in cloud environment. Mater.
Today Proc. 45, 2793–2800. http://dx.doi.org/10.1016/j.matpr.2020.11.789,
International Conference on Advances in Materials Research - 2019.

Rosen, R., 2014. Linux containers and the future cloud. URL https://www.
linuxjournal.com/content/linux-containers-and-future-cloud.

Sampaio, A.M., Barbosa, J.G., Prodan, R., 2015. PIASA: A power and interference
aware resource management strategy for heterogeneous workloads in cloud
data centers. Simul. Model. Pract. Theory 57, 142–160. http://dx.doi.org/10.
1016/j.simpat.2015.07.002.

Scheepers, M.J., 2014. Virtualization and containerization of application infras-
tructure : A comparison. In: 21st Twente Student Conference on IT. pp.
1–7.

Shah, A., Wolf, F., Zhumatiy, S., Voevodin, V., 2013. Capturing inter-application
interference on clusters. In: IEEE International Conference on Cluster
Computing (CLUSTER). pp. 1–5. http://dx.doi.org/10.1109/CLUSTER.2013.
6702665.

Shekhar, S., Abdel-Aziz, H., Bhattacharjee, A., Gokhale, A., Koutsoukos, X.,
2018. Performance interference-aware vertical elasticity for cloud-hosted
latency-sensitive applications. In: 2018 IEEE 11th International Conference
on Cloud Computing (CLOUD). pp. 82–89. http://dx.doi.org/10.1109/CLOUD.
2018.00018.

Thamsen, L., Verbitskiy, I., Nedelkoski, S., Tran, V.T., Meyer, V., Xavier, M.G.,
Kao, O., De Rose, C.A.F., 2020. Hugo: A cluster scheduler that efficiently
learns to select complementary data-parallel jobs. In: Schwardmann, U.,
Boehme, C., B. Heras, D., Cardellini, V., Jeannot, E., Salis, A., Schifanella, C.,
Manumachu, R.R., Schwamborn, D., Ricci, L., Sangyoon, O., Gruber, T., An-
tonelli, L., Scott, S.L. (Eds.), Euro-Par 2019: Parallel Processing Workshops.
Springer International Publishing, Cham, pp. 519–530.

Toosi, A.N., Qu, C., de Assunção, M.D., Buyya, R., 2017. Renewable-aware
geographical load balancing of web applications for sustainable data centers.
J. Netw. Comput. Appl. 83, 155–168. http://dx.doi.org/10.1016/j.jnca.2017.01.
036.

Tosatto, A., Ruiu, P., Attanasio, A., 2015. Container-based orchestration in cloud:
State of the art and challenges. In: 2015 Ninth International Conference
on Complex, Intelligent, and Software Intensive Systems. pp. 70–75. http:
//dx.doi.org/10.1109/CISIS.2015.35.

Urgaonkar, B., Shenoy, P., Roscoe, T., 2003. Resource overbooking and application
profiling in shared hosting platforms. SIGOPS Oper. Syst. Rev. 36 (SI),
239–254. http://dx.doi.org/10.1145/844128.844151.

http://dx.doi.org/10.1145/2499368.2451125
http://dx.doi.org/10.1145/2499368.2451125
http://dx.doi.org/10.1145/2499368.2451125
http://dx.doi.org/10.1109/HiPC.2018.00036
https://docs.docker.com/engine/
http://dx.doi.org/10.1007/s10586-020-03177-0
http://dx.doi.org/10.1007/s10586-020-03177-0
http://dx.doi.org/10.1007/s10586-020-03177-0
http://dx.doi.org/10.1016/j.jnca.2014.07.030
http://dx.doi.org/10.1016/j.jnca.2014.07.030
http://dx.doi.org/10.1016/j.jnca.2014.07.030
http://refhub.elsevier.com/S0164-1212(22)00169-8/sb22
http://refhub.elsevier.com/S0164-1212(22)00169-8/sb22
http://refhub.elsevier.com/S0164-1212(22)00169-8/sb22
http://refhub.elsevier.com/S0164-1212(22)00169-8/sb22
http://refhub.elsevier.com/S0164-1212(22)00169-8/sb22
http://dx.doi.org/10.1016/j.future.2019.08.025
http://dx.doi.org/10.1016/j.jnca.2018.09.023
http://dx.doi.org/10.1109/ICAC.2017.17
http://dx.doi.org/10.1109/ICAC.2017.17
http://dx.doi.org/10.1109/ICAC.2017.17
http://dx.doi.org/10.1145/2851613.2851625
http://dx.doi.org/10.1145/2851613.2851625
http://dx.doi.org/10.1145/2851613.2851625
http://dx.doi.org/10.1126/science.220.4598.671
http://dx.doi.org/10.1126/science.220.4598.671
http://dx.doi.org/10.1126/science.220.4598.671
http://dx.doi.org/10.1007/s11227-010-0504-1
http://dx.doi.org/10.1109/PDP50117.2020.00020
http://dx.doi.org/10.1109/ISPCC.2017.8269758
http://dx.doi.org/10.1109/CLUSTR.2009.5289159
http://dx.doi.org/10.1109/CLUSTR.2009.5289159
http://dx.doi.org/10.1109/CLUSTR.2009.5289159
https://www.opersys.com/LTT/
http://dx.doi.org/10.1002/cpe.5098
http://dx.doi.org/10.1002/cpe.5098
http://dx.doi.org/10.1002/cpe.5098
http://refhub.elsevier.com/S0164-1212(22)00169-8/sb34
http://refhub.elsevier.com/S0164-1212(22)00169-8/sb34
http://refhub.elsevier.com/S0164-1212(22)00169-8/sb34
http://refhub.elsevier.com/S0164-1212(22)00169-8/sb34
http://refhub.elsevier.com/S0164-1212(22)00169-8/sb34
http://refhub.elsevier.com/S0164-1212(22)00169-8/sb34
http://refhub.elsevier.com/S0164-1212(22)00169-8/sb34
http://dx.doi.org/10.1109/WSCAD.2018.00024
http://dx.doi.org/10.1109/WSCAD.2018.00024
http://dx.doi.org/10.1109/WSCAD.2018.00024
https://www.kernel.org/doc/Documentation/cgroup-v1/cgroups.txt
https://www.kernel.org/doc/Documentation/cgroup-v1/cgroups.txt
https://www.kernel.org/doc/Documentation/cgroup-v1/cgroups.txt
http://refhub.elsevier.com/S0164-1212(22)00169-8/sb37
http://refhub.elsevier.com/S0164-1212(22)00169-8/sb37
http://refhub.elsevier.com/S0164-1212(22)00169-8/sb37
http://dx.doi.org/10.1109/PDP50117.2020.00019
http://dx.doi.org/10.1109/PDP50117.2020.00019
http://dx.doi.org/10.1109/PDP50117.2020.00019
http://dx.doi.org/10.24433/CO.3183391.v1
https://www.codeocean.com/
http://dx.doi.org/10.1016/j.sysarc.2021.102064
http://dx.doi.org/10.1016/j.sysarc.2021.102064
http://dx.doi.org/10.1016/j.sysarc.2021.102064
http://refhub.elsevier.com/S0164-1212(22)00169-8/sb41
http://refhub.elsevier.com/S0164-1212(22)00169-8/sb41
http://refhub.elsevier.com/S0164-1212(22)00169-8/sb41
http://refhub.elsevier.com/S0164-1212(22)00169-8/sb41
http://refhub.elsevier.com/S0164-1212(22)00169-8/sb41
http://refhub.elsevier.com/S0164-1212(22)00169-8/sb41
http://refhub.elsevier.com/S0164-1212(22)00169-8/sb41
http://dx.doi.org/10.1504/IJCSYSE.2019.10015444
http://dx.doi.org/10.5220/0007729004040411
http://dx.doi.org/10.1109/ISADS.2013.6513411
http://dx.doi.org/10.1145/1755913.1755938
http://dx.doi.org/10.1007/s10723-012-9208-5
https://openvz.org/
https://CRAN.R-project.org/package=ocp
http://dx.doi.org/10.1109/TCC.2017.2702586
http://dx.doi.org/10.1109/TCC.2017.2702586
http://dx.doi.org/10.1109/TCC.2017.2702586
http://dx.doi.org/10.1002/spe.2422
http://dx.doi.org/10.1002/spe.2422
http://dx.doi.org/10.1002/spe.2422
https://www.R-project.org/
https://www.R-project.org/
https://www.R-project.org/
http://dx.doi.org/10.1016/j.matpr.2020.11.789
https://www.linuxjournal.com/content/linux-containers-and-future-cloud
https://www.linuxjournal.com/content/linux-containers-and-future-cloud
https://www.linuxjournal.com/content/linux-containers-and-future-cloud
http://dx.doi.org/10.1016/j.simpat.2015.07.002
http://dx.doi.org/10.1016/j.simpat.2015.07.002
http://dx.doi.org/10.1016/j.simpat.2015.07.002
http://refhub.elsevier.com/S0164-1212(22)00169-8/sb55
http://refhub.elsevier.com/S0164-1212(22)00169-8/sb55
http://refhub.elsevier.com/S0164-1212(22)00169-8/sb55
http://refhub.elsevier.com/S0164-1212(22)00169-8/sb55
http://refhub.elsevier.com/S0164-1212(22)00169-8/sb55
http://dx.doi.org/10.1109/CLUSTER.2013.6702665
http://dx.doi.org/10.1109/CLUSTER.2013.6702665
http://dx.doi.org/10.1109/CLUSTER.2013.6702665
http://dx.doi.org/10.1109/CLOUD.2018.00018
http://dx.doi.org/10.1109/CLOUD.2018.00018
http://dx.doi.org/10.1109/CLOUD.2018.00018
http://refhub.elsevier.com/S0164-1212(22)00169-8/sb58
http://refhub.elsevier.com/S0164-1212(22)00169-8/sb58
http://refhub.elsevier.com/S0164-1212(22)00169-8/sb58
http://refhub.elsevier.com/S0164-1212(22)00169-8/sb58
http://refhub.elsevier.com/S0164-1212(22)00169-8/sb58
http://refhub.elsevier.com/S0164-1212(22)00169-8/sb58
http://refhub.elsevier.com/S0164-1212(22)00169-8/sb58
http://refhub.elsevier.com/S0164-1212(22)00169-8/sb58
http://refhub.elsevier.com/S0164-1212(22)00169-8/sb58
http://refhub.elsevier.com/S0164-1212(22)00169-8/sb58
http://refhub.elsevier.com/S0164-1212(22)00169-8/sb58
http://refhub.elsevier.com/S0164-1212(22)00169-8/sb58
http://refhub.elsevier.com/S0164-1212(22)00169-8/sb58
http://dx.doi.org/10.1016/j.jnca.2017.01.036
http://dx.doi.org/10.1016/j.jnca.2017.01.036
http://dx.doi.org/10.1016/j.jnca.2017.01.036
http://dx.doi.org/10.1109/CISIS.2015.35
http://dx.doi.org/10.1109/CISIS.2015.35
http://dx.doi.org/10.1109/CISIS.2015.35
http://dx.doi.org/10.1145/844128.844151


V. Meyer, M.L. da Silva, D.F. Kirchoff et al. The Journal of Systems & Software 194 (2022) 111491

W

X

X

X

Z

Z

Z

V

ang, K., Khan, M.M.H., Nguyen, N., Gokhale, S., 2019. Design and implemen-
tation of an analytical framework for interference aware job scheduling on
apache spark platform. Cluster Comput. 22 (1), 2223–2237. http://dx.doi.org/
10.1007/s10586-017-1466-3.

avier, M.G., 2019. Data Processing With Cross-application Interference Control
via System-level Instrumentation (Ph.D. thesis). Pontifical Catholic University
of Rio Grande do Sul, Porto Alegre, Brazil.

avier, M.G., Neves, M.V., Rose, C.A.F.D., 2014. A performance comparison of
container-based virtualization systems for MapReduce clusters. In: 2014
22nd Euromicro International Conference on Parallel, Distributed, and
Network-Based Processing. pp. 299–306. http://dx.doi.org/10.1109/PDP.2014.
78.

avier, M.G., Rossi, F.D., Rose, C.A.F.D., Calheiros., R.N., Gomes, D.G., 2017.
Modeling and simulation of global and sleep states in ACPI-compliant
energy-efficient cloud environments. Concurr. Comput.: Pract. Exper. 29 (4),
e3839. http://dx.doi.org/10.1002/cpe.3839, e3839 cpe.3839.

hang, W., Rajasekaran, S., Wood, T., Zhu, M., 2014. MIMP: Deadline and
interference aware scheduling of hadoop virtual machines. In: 2014 14th
IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing.
pp. 394–403. http://dx.doi.org/10.1109/CCGrid.2014.101.

hang, F., Tang, X., Li, X., Khan, S.U., Li, Z., 2019. Quantifying cloud elasticity
with container-based autoscaling. Future Gener. Comput. Syst. 98, 672–681.
http://dx.doi.org/10.1016/j.future.2018.09.009.

hu, Q., Tung, T., 2012. A performance interference model for managing con-
solidated workloads in qos-aware clouds. In: 2012 IEEE Fifth International
Conference on Cloud Computing. pp. 170–179. http://dx.doi.org/10.1109/
CLOUD.2012.25.

inícius Meyer received his bachelor’s degree in Computer Engineering from the
Univates University in 2014 and his master’s degree in Applied Computing from
the Unisinos University in 2016. Currently, he is a Ph.D. student in Computer
Science at the Pontifical Catholic University of Rio Grande do Sul (PUCRS),
17
working mainly with dynamic resource scheduling based on cross-application
interference. His research interests are Distributed Systems, Cloud Computing,
Machine Learning and Simulated Environments.

Matheus L. Da Silva received the B.S. degree from University from Passo
Fundo, Brazil, in 2017, and the master’s degree in computer science from the
Pontifical Catholic University of Rio Grande do Sul, Brazil, in 2020, where he
is currently pursuing the Ph.D. degree with the Computer Science Graduate
Program. His research interests include Parallel and Distributed Processing and
Edge Computing.

Dionatrã F. Kirchoff was born in Brazil in 1990. He received the B.E degree
from the Faculdade Meridional (IMED, Passo Fundo, Brazil, 2013). He holds a
specialist degree in Governance of Information Technology based on interna-
tional standards from the University of Vale do Rio dos Sinos (UNISINOS, São
Leopoldo, Brazil, 2015). Also, he has an M.Sc. in Computer Science from the
Pontifical University Catholic of Rio Grande do Sul (PUCRS, Porto Alegre, Brazil,
2019). Since 2019 he is a Ph.D. candidate at the same university. His main areas
of research interest are Resource Management, Cloud Computing, and Machine
Learning.

Cesar A. F. De Rose has a B.Sc. degree in Computer Science from PUCRS, a M.Sc.
in Computer Science from PGCC/UFRGS and a Doctoral degree from Karlsruhe
Institute of Technology (KIT - Karlsruhe, Germany). In 1998 he joined the School
of Technology at PUCRS as an associate professor and member of the Resource
Management and Virtualization Group (Full Professor since 2012). His research
interests include several aspects of resource management, including dynamic
provisioning and allocation, monitoring and profiling techniques, scheduling
and optimization in parallel and distributed environments (Cluster, Grid, Cloud)
and virtualization. In 2009 he founded PUCRS High Performance Computing
Laboratory (LAD-PUCRS) being nowadays senior researcher.

http://dx.doi.org/10.1007/s10586-017-1466-3
http://dx.doi.org/10.1007/s10586-017-1466-3
http://dx.doi.org/10.1007/s10586-017-1466-3
http://refhub.elsevier.com/S0164-1212(22)00169-8/sb63
http://refhub.elsevier.com/S0164-1212(22)00169-8/sb63
http://refhub.elsevier.com/S0164-1212(22)00169-8/sb63
http://refhub.elsevier.com/S0164-1212(22)00169-8/sb63
http://refhub.elsevier.com/S0164-1212(22)00169-8/sb63
http://dx.doi.org/10.1109/PDP.2014.78
http://dx.doi.org/10.1109/PDP.2014.78
http://dx.doi.org/10.1109/PDP.2014.78
http://dx.doi.org/10.1002/cpe.3839
http://dx.doi.org/10.1109/CCGrid.2014.101
http://dx.doi.org/10.1016/j.future.2018.09.009
http://dx.doi.org/10.1109/CLOUD.2012.25
http://dx.doi.org/10.1109/CLOUD.2012.25
http://dx.doi.org/10.1109/CLOUD.2012.25

	IADA: A dynamic interference-aware cloud scheduling architecture for latency-sensitive workloads
	Introduction
	Background and state-of-the-art
	Resource management and virtualization
	Performance interference
	Dynamic workload applications
	Scheduling approaches

	Dynamic interference-aware scheduling architecture
	Proposed architecture
	Interference profiler
	Time-series analysis
	Interference classification
	Scheduling algorithm


	Evaluation and results
	Application and workload
	Experiments scenarios
	Real experiments

	Simulated experiments
	Overhead evaluation
	Migration
	Machine learning
	Profiler


	Related work
	Conclusion and future directions
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	References


