
Assessing Rules in Memory Controllers with

Hardware Simulator Executing Real Programs

Authors and affiliations omitted for a blind review process

Abstract— Electronic memories are subject to failure due to

magnetic fields and radiation, causing temporary faults that can

be mitigated by error correction codes. Evaluating the efficacy

of these mechanisms in hardware can make the design more

expensive, take a long prototyping time, and even lose time to

market. Hardware simulators or emulators are often generic,

requiring specific and specialized development to evaluate

memory controllers. This work proposes Absimth to assess the

computational system behavior in the presence of memory

errors. Absimth is a hardware simulator focusing on memory

controller data flow, allowing the creation and configuration of

custom modules. The simulator aims to optimize the design of

next-generation memory controller architectures, meeting fault

tolerance requirements with fast validation before the hardware

implementation phases.

Keywords— Hardware Simulator; Memory Controller; Fault

Tolerance evaluation.

I. INTRODUCTION

Hardware reliability is a central requirement for high-
performance computing and storage projects [1]. The memory
reliability is particularly sensitive to variation in the
manufacturing process, environmental conditions, or wear
caused by the time of use [2][3]. Many areas are affected by
memory errors, like (i) big service providers such as Facebook
[4] with 2.5% per month and Google with 8% of memory
modules per year [1]; (ii) personal computers turned on for 30
days have a 0.059% chance of failing, according to Microsoft
[5]; and (iii) space projects, where it is common to use
commercial memories due to their high density and low cost.
However, commercial memories are not resilient to the
numerous problems that can occur due to radiation, with the
loss of cell functionality being the main consequence in
intense radiation scenarios [6][7][8][9].

Fast and accurate simulation tools are essential for
computer architects to analyze problems and compare the
efficacy of each solution. It is even more critical to try a new
set of constraints or incorporate an emerging technology with
widely different properties than the standard technologies
[10]. Computer system simulators are built for general
purposes and cannot run native programs in general. Besides,
there are few proposals regarding memory controller
simulators, like FaultSim [10], whose operation is based on an
analytical model.

This work proposes Absimth, an extensible fast memory
controller simulator for improving studies of memory
controller architectures used in various mobile devices to
extreme-scale supercomputers. Absimth enables the behavior
evaluation of the traditional applications over intense bitflips
with different Error Correction Codes (ECC). To reach the
behavior assessment, we simulated a homogeneous
multiprocessor architecture composed of RISC-V 32I
processors that access memory modules from a DDR4
SDRAM with ECC model MT40A1G16 from Micron [11],
applying a synthetic application described in C.

Absimth allows evaluating the ECC flow applied to
memories; it enables configuring and creating custom
modules for processors, memory devices, and memory
controllers. Additionally, the simulator provides error
injection models into memory for assessing the system
behavior in the face of memory runtime faults with tons of
metrics.

II. RELATED WORK

The design of general and specific purpose simulators is a
significant research challenge, addressed over decades by
several works. This section discusses some recent work and
presents the motivation for proposing Absimth.

Nair et al. [10] proposed FaultSim, a configurable
simulator to assess the reliability of memories, employing the
Monte Carlo algorithm that generates pattern faults equivalent
to the real world. The authors implemented and evaluated
BCH-1 and Chipkill ECCs in real executions to validate
FaultSim; the experiments show a deviation between 0.036%
and 8.41%.

Dong et al. [12] presented a simulator to model Non-
Volatile Memory (NVM) at the circuit level. The simulator
evaluates timing, energy, and area consumption, supporting
validating various NVM technologies, such as STT-RAM,
PCRAM, ReRAM, and the traditional NAND FLASH.

Balasubramonian et al. [13] added a model to assess
memory energy consumption to CACTI [14], allowing
defining new interconnection types. The analysis has shown
that the design parameters significantly impact energy
consumption. A simple topology change can increase
performance by 22% and reduce cost by 65%. Additionally,
the article presents DDR3 and DDR4 designs that improve
performance by 18% and reduce energy consumption by 23%.

Kim, Yang, and Mutlu [15] introduced Ramulator, a
generic memory simulator that supports several standards like
DDR3/4 LPDDR3/4, GDDR5, WIO1/2 HBM, and other
academic proposals like SALP, AL-DRAM, ROW Clone, TL-
DRAM, and SARP.

Mittal, Wang, and Vetter [16] presented Destiny, a tool to
model, at the semiconductor level, the manufacturing process
of 2D and 3D memories, such as SRAM, resistive STT-RAM,
eDRAM, SOT-RAM, DWM, and flash. The simulator enables
latency and area validation and provides comprehensive
design modeling and spatial exploration. Destiny results were
validated with several commercial prototypes, including the
2D and 3D designs of SRAMs and eDRAMs. The experiments
presented less than 10% of modeling errors for most cases and
less than 20% for all cases.

Chatterjee et al. [17] described the USIMM (Utah
SIMulated Memory Module), an infrastructure for simulating
DRAM memory, focusing on the energy consumption of the
request schedulers that are part of the memory controller.

20
22

 X
II

Br
az

ili
an

 S
ym

po
siu

m
 o

n
Co

m
pu

tin
g

Sy
st

em
s E

ng
in

ee
rin

g
(S

BE
SC

) |
 9

78
-1

-6
65

4-
74

25
-2

/2
2/

$3
1.

00
 ©

20
22

 IE
EE

 |
 D

O
I:

10
.1

10
9/

SB
ES

C5
67

99
.2

02
2.

99
64

88
0

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on April 04,2023 at 17:57:38 UTC from IEEE Xplore. Restrictions apply.

Wang et al. [18] developed MEMRES, a fast simulator to
test the main memory reliability. MEMRES enables
simulating memory failures, being computationally efficient
in obtaining failure probabilities, and optimizing the memory
system reliability. The authors performed a case study based
on Spin-Transfer Torque Random Access Memory (STT-
RAM); the results indicated that in-memory ECC could
significantly mitigate the write error rate of STT-RAM.

Binkert et al. [19] proposed the gem5 simulator, a modular
platform for researching computer system architecture,
ranging from system level to processor microarchitecture.
Gem5 is an open software project conceived initially for
research into computer architecture in academia. Still, it has
been used in academic works and industrial research by
companies such as ARM, AMD, Google, HP, and Samsung.

Several works focus on the modeling and simulation of
general-purpose computational systems, and some are
dedicated to evaluating specific aspects of memories.
Nevertheless, to the best of our knowledge, this is the first
work on memory controller modeling and simulation focusing
on fault tolerance. The Absimth simulator allows evaluation
techniques and architectures of memory controllers, enabling
the exploration of tradeoffs between error correction efficacy
and implementation costs.

III. ABSIMTH ARCHITECTURE DESCRIPTION

This chapter details the Absimth simulator and the
functionalities available to evaluate the behavior of memory
controllers in a stressful environment.

A. Absimth Architecture

Fig. 1 displays a high-level description of Absimth for
creating and configuring custom modules of processors,
memory controllers, and a memory device split into memory
modules. Absimth also disposes of a low complex Operating
System (OS) for task management and a virtual module for
simulating memory error injection.

Fig. 1. High-level description of the Absimth platform.

All modules described next have a standardized interface
allowing them to be customized or changed.

Processor

Absimth includes the three following RISC-V 32-bit
compatible processors [20] and allows executing several
programs on single or multiple heterogeneous processors.

• RISC-V 32I (32 bits and ISA composed by integer
instructions);

• RISC-V 32Im (including multiplication and division
instructions at the RISC-V32I), and

• RISC-V 32f (the same features of RISC-V 32Im but
including floating point).

Memory Controller

Absimth connects the processor and memory modules
through customizable memory controllers and includes many
types of memory controllers available, including or not ECCs;
the available ECCs are Parity, Hamming, and Reed-Solomon.

Memory Device

Absimth helps to create memory according to the user
configuration, and OS accesses the memory devices using the
memory controller address. The designer can navigate the
memory hierarchy by examining any bit, byte, or word value
of modules, rank, bank group, or each bank regarding any
column, row, or height.

Error Injection Module

Employing a virtual module for error injection, the
designer can create several error scenarios based on the
predefined templates, such as creating bitflip at random
memory addresses in a given execution cycle. Absimth
encompasses four error injection models based on [1][5] and
a five-error injection based on error occurrence probability:

• NoFaultError – meaning a memory without errors to
assess the application execution time and amount of
data transferred. It is the basis for comparing with other
scenarios, occurring in about 91.78% of server cases
[1][5].

• OneError – implying a single bitflip to simulate the
most common error scenario, occurring in
approximately 8% of server cases [1][5]. This model
makes the simulator generate an error at a specific
address and bit position.

• MultipleErrors – describing a memory with multiple
corrupted bits to simulate scenarios representing from
0.044% to 0.066% of server cases [1][5].

• One2MultipleErrors – one bit corrupted initially
followed by multiple bitflips to simulate 0.154% to
0.176% of the multiple-error scenarios [1][5]. The
simulator executes the OneError configuration; next, it
performs the MultipleErrors format to evaluate the
system behavior from one to multiple errors, one
common memory scenario.

• BitFlipProbability – enables to configure the following
bitflip modes and probability rates: (a) probability rate
of a bitflip occurring in every tick; (b) the maximum
number of bitflips can occur in one cycle; (c) random
or specific error address; (d) module memory subject
to error occurrence; (e) the address distance between
bitflip occurrence; (f) range allowed to bitflip inside the
address (bit position range); (g) probability rate to
generate a bitflip out of the address range; and (h) a
seed for generating random errors.

Operating System

Absimth implements a simple distributed OS that uses
specific memory space; all data used by OS is neither passed
nor allocated in the memory defined by the configuration. OS
loads instruction from one task into memory per time or
executes the instruction in application load mode. OS executes
a specific number of user-defined instructions (quantum);
once the quantum is completed, OS schedules the next task.

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on April 04,2023 at 17:57:38 UTC from IEEE Xplore. Restrictions apply.

Absimth employs a global Round-Robin with random-order
task choices within each quantum as default scheduling. When
the execution cycles reach the quantum defined by the user,
OS saves the processor context, looks for the next task
according to the scheduling algorithm, and loads its context
into the processor. The current Absimth version does not allow
disabling the default OS or implementing a customized OS.

Reports

At the end of the application execution, Absimth creates a
simulation report containing the following information:

• Programs – containing a list of programs executed,
each one containing the (i) name and identification of
the program, (ii) initial memory address, (iii)
instruction length, (iv) initial data address, (v) stack
size, (vii) a total of allocated memory used, (vii) last
allocated address, (viii) first data address used, (ix)
total of data address used, (x) last data address used,
(xi) processor identifier (processor + core), (xii)
processor number, (xiii) core number, (xiv) processor
type, (xv) the total of cycles executed by the
application, (xvi) task identification and (xvii)
information if the program was executed with success.

• Memory – comprising the number of instructions, data,
and total reading and writing operations.

• Memory faults – encompassing a list of physical
memory addresses with error and the associated error
type. An error injected is classified as INVERTED
when the program execution does not access the error
address; if the program accesses the error address, the
error is classified as FIXED or UNFIXED, depending
on the success of the error correction algorithm.

• Memory controller – containing information about the
numbers of memory read and write performed by the
memory controller module.

• Processor list – containing a list of processors with the
(i) identification, (ii) type, (iii) core number, and (iv)
number of the last tick executed.

• General information – including (i) the entire
simulation execution time (in milliseconds), (ii) the
total number of ticks, and (iii) the maximum tick for
each core.

B. Absimth Execution Flow

The Absimth execution flow goes through two macro
phases. The first phase, called Task Initialization, defines the
simulator initialization activities; the second phase, called
Task Simulation, implements the execution, insertion of
errors, and application task monitoring.

Task Initialization

Absimth initializes loading the application settings defined
by the designer; in this step, the simulator allocates the
memory areas of each task and maps these tasks to the
processors of the target architecture.

The simulator checks the PeripheralAddressSize
parameter, which contains the memory size allocated to each
peripheral, allowing mapping peripherals into the memory
addresses. Therefore, if the developer creates a specific
module, the simulator allocates part of the memory address for
this module operation. Afterward, Absimth loads the
application tasks, forwarding the following items to OS: (i) the
chosen processor identification and target architecture; (ii)
task identification; (iii) total memory used according to the

stack size configured at program compilation time, and (iv) a
reference for application loading.

Task Simulation

Fig. 2 displays that Absimth randomly selects the
processor order execution inside a quantum - i.e., a predefined
number of clock cycles, simulating random concurrency
among processors. Although the order of processors is
random, all processors must execute a quantum before starting
a new random sequence of processor execution. After
choosing the processor, OS schedules the task that must be
executed in each processor. For each task in each processor,
Absimth executes an instruction and waits for the next cycle.

Fig. 2. Example of Task Simulation phase encompassing four processors

(P1…P4) execution during q quanta of simulation. This figure emphasizes

intra-quantum scheduling of P4, covering task1 and task4.

IV. MEMORY BITFLIP OBSERVATION

This section shows the memory bitflip observation
processes, exemplifying three synthetic tasks executing in a
single processor (Fig. 3). This processor is connected to a
DDR4 through a memory controller that performs reading and
writing operations using Hamming ECC.

Fig. 3. Target architecture and tasks employed in the simulation example.

A. Synthetic Application and Hardware Description

Fig. 4 describes SimplePrint, ReadEcc, and SimpleSum -
three synthetic low-complex tasks developed to observe the
behavior of an application operating over a memory RAM
with bitflip. Fig. 4(a) displays the small source code of the
program SimplePrint, which only sends a message to the
standard output. Fig. 4(b). shows the ReadEcc source code.
The program starts by executing a loop to simulate reading and
writing in the final position of the memory allocated for this
task; since OS allocates the initial memory area for the
program code and the final memory area for the program data.
Subsequently, the program reads the information provided by
the memory controller, informing which address has an error.
This error information enables the beginning of reading the
affected page, making the memory controller change the
application encoding and OS transparently. Fig. 4(c) exhibits
the SimpleSum source code, a simple program that sums and

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on April 04,2023 at 17:57:38 UTC from IEEE Xplore. Restrictions apply.

returns two values.

#include "../library/absimth.hpp"
void main() {
 print_str("HELLO");
}

int main() {
 int a = 1, int b = 499999;
 return a+b;
}

(a) (c)

#include "../library/absimth.hpp"
int main() {
 int *eccLocation = (int *)0x4;
 int *zeroAdd = (int *)0x0;
 int appIniAdd = read_initial_add();
 int eccAddContError = *(eccLocation - appIniAdd);
 int errorAdd = 0;
 int len = 50000;
 int arr[len];
 for(int k = 0; k < len; k++)
 arr[k] = k;
 errorAdd = *(zeroAdd - appIniAdd + eccAddContError);
 for(int k = 0; k < len; k++)
 arr[k] = *(errorAdd + k);
 return 0;
}

(b)

Fig. 4. Source code of three synthetic tasks: (a) SimplePrint (b) ReadEcc,

and (c) SimpleSum.

Fig. 5 shows the Absimth configuration, encompassing (i)
memory size reserved for hardware modules; (ii) processors
used, in this case, two RISC-V 32i; (iii) memory configured
with a DDR4 based on MT40A2G8 model [11] but with a
smaller size, since for these applications require few kilobytes.

----- HARDWARE ------
Reserved Peripheral Address size for Modules:0x00000008
PROCESSOR
Processors Model=RISCV32i
Number of Processors=2
Frequency=1000Mhz

MEMORY
Name=smallDDR4
Frequency=1000Mhz
Maximum memory bandwidth=18000000000 Bytes/s-(18.0GB/s)
Latency for memory access=20.0 nanoseconds
Total of address=0x00a12200
Channel mode=SINGLE_CHANNEL
Word size=72
Lines per clock=2
Column Address Strobe (CAS) latency=10
Module amount=2
Rank amount=1
Chip amount=9
Bank Group amount=4
Bank amount=4
Cell=330, 1000

------ CUSTOM MODULES LOADED ------
MEMORY
Controller type=HammingMemoryController
Fault injection type=OneError; error position=0x3E8

------ PROGRAMS LOADED ------
Operational System
Cycles by Program=5

Task mapping...
at CPU_0, program=simplePrint
at CPU_0, program=readEcc
at CPU_1, program=simpleSum

Fig. 5. Simulation Setup.

B. Memory Inspector

Absimth allows us to look in-depth at the processor status
or memory during each execution or in the final process. Fig.
6 presents the Memory Area Inspector, exemplifying a
memory data region. The memory information is grouped in
32 bits, with eight columns per line, for better screen use and
to demonstrate a more significant amount of simultaneous
data. Data containing errors are colored in red, in this case at
address 0x3E8. When selecting an address, the rightmost
column shows its physical breakdown. Consequently, in
addition to the Address field, it shows the following fields: (i)
Module, (ii) Rank, (iii) Bank Group, (iv) Bank, (v) Row, (vi)
Column, and (vii) Height range. The simulator does not
provide information on the chip, as each chip receives 1 byte.

Fig. 6. Memory Area Inspector tool, containing an error in address 0x3E8.

Absimth provides the DDR memories default hierarchical
model, enabling the designer to navigate throughout all the
memory addresses, giving the spatial location. Besides, the
designer can provide a customized memory structure by
adjusting the memory template of Absimth.

The spatial location is crucial to evaluate and simulate
scenarios where memory has a location more susceptible to
bitflips than other locations – e.g., the rightmost location of
the memory is close to a heated area because of the processor
place. Fig. 7(a) presents the highest memory level for
navigating the structure of memory modules, ranks, and chips.
The leftmost column reports the module number, rank, and
addressing range. In case of an error in any data, the units are
colored in red. It is possible to go into any chips to see the
internal memory structure, exploring the error neighborhood
in a three-dimensional (3D) format. The hierarchical view
continues selecting a given module, rank, and chip. For
instance, considering that chip 0 of module 0, rank 0 contains
errors since it is colored in red in Fig. 7(a), Fig. 7(b) shows the
visualization inside this chip, encircling the organization of
memory banks inside each bank group.

(a)

(b)

Fig. 7. (a) The highest memory level, including memory modules, rank,

and chips, showing that Chip 0, Module 0, and Rank 0, contain at least one

bit with error; (b) Memory bank organization inside the bank groups. The

Bank 0 of Bank Group 0 contains errors since it is colored in red.

Fig. 8 displays the Absimth window when selecting the
memory bank 0, which enables browsing the bank by memory
address and physical cell placement - i.e., row, column, and
height. The designer can also see the 3D view of a memory
cell (along with height); Fig. 9 exemplifies a 3D view.

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on April 04,2023 at 17:57:38 UTC from IEEE Xplore. Restrictions apply.

Fig. 8. Memory cell window; this view displays a single error on bit 0

(colored in red) of address 0x3E8.

Fig. 9. 3D memory cell preview window.

C. Execution Investigation

The execution exemplification employs a memory
controller with Hamming ECC and a virtual module
generating a bitflip at address 0×3E8 to simulate a stuck bit.
The Processor Management tool helps to watch the exact
moment the instruction or data is corrupted and enables
selecting a given processor and task. Each instruction of the
assigned task can be executed step by step on the designated
processor - the OS is bypassed in this execution.

Fig. 10 shows the Processor Management tool running
ReadEcc on CPU_0, covering the object code of the task, the
status of the processor registers, and the memory address
accessed at the instruction moment.

Fig. 10. Processor Management tool, covering processor registers, task code

objects, and memory data addresses.

At the end of the simulation, Absimth provides a timeline
window of the target architecture processors displaying the
execution of each processor task, as demonstrated in Fig. 11.

Fig. 11. Window for viewing the timeline of all processors.

D. Execution Report

Absimth finishes the target architecture simulation
generating the report of Fig. 12, containing statistics on (i)
tasks performed; (ii) data traffic among processors; (iii)
execution status (with error or success); (iv) number of data
reads/written from/in memory; (v) memory positions with
errors; and (vi) data traffic and instructions on the memory
controller with each ECC used.

[SIMULATION]
Application bytes: 3145803

[PROGRAMS]
simpleSum
 programId=2
 MEMORY
 initialAddress=0x000800cf
 instructionLength=0x00000014
 initialDynDataAddress=0x000800e3
 stackSize=0x00040000
 totalOfMemory=0x00040014
 lastAddress=0x000c00e3
 DYNAMIC MEMORY USED
initialMemoryAddressUsed=0x000c00c9
totalMemoryAddressUsed=0x00000005
lastMemoryAddressUsed=0x000c00ce
 CPU
 cpu=0
 core=1
 cpuId=1
 cpuType=RISCV32i
 totalOfTicks=40
 OTHERS
 task=0
 successful=true
simplePrint
 programId=0
 MEMORY
 initialAddress=0x00000002
 instructionLength=0x00000032
 initialDynDataAddress=0x00000034
 stackSize=0x00040000
 totalOfMemory=0x00040032
 lastAddress=0x00040034
 DYNAMIC MEMORY USED
initialMemoryAddressUsed=0x0003fff9
totalMemoryAddressUsed=0x00000008
lastMemoryAddressUsed=0x00040001
 CPU
 cpu=0
 core=0
 cpuId=0
 cpuType=RISCV32i
 totalOfTicks=131
 OTHERS
 task=0
 successful=true
readEcc
 programId=1
 MEMORY
 initialAddress=0x00040034
 instructionLength=0x0000009b
 initialDynDataAddress=0x000400cf
 stackSize=0x00040000
 totalOfMemory=0x0004009b
 lastAddress=0x000800cf
 DYNAMIC MEMORY USED

InitialMemoryAddressUsed=0x1fffffff
totalMemoryAddressUsed=0xe0040035
lastMemoryAddressUsed=0x00040034
 CPU
 cpu=0
 core=0
 cpuId=0
 cpuType=RISCV32i
 totalOfTicks=156
 OTHERS
 task=1
 successful=true

[MEMORY]
Instructions
Number of instructions read: 408
Number of instructions written: 900
Number of instructions r+w: 1308
#Bytes of instructions read: 918
#Bytes of instructions written: 2025
#Bytes of instruction r+w: 2943
Data
Number of data read: 52
Number of data written: 28
Number of data r+w: 80
#Bytes of data read: 117
#Bytes of data written: 63
#Bytes of data r+w: 180
Total
Number of totals read: 460
Number of totals written: 928
Number of totals r+w: 1388
#Bytes of totals read: 1035
#Bytes of total written: 2088
#Bytes of total r+w: 3123

[MEMORY ECC STATUS]
address=0x000003e8, type=INVERTED,
position=[0]

[MEMORY CONTROLLER]
READ HAMMING_SECDEC: 115
WRITTEN HAMMING_SECDEC: 232

[Processor List]
CPU 0
Cpu Type = RISCV32i
Core 0
CpuId 0
 Last Tick at: 287
Core 1
CpuId 1
 Last Tick at: 40

[General information]
Simulation took 2472 milliseconds
Total of Ticks:327
Last Ticks At:287

Fig. 12. Simulation Report.

The report demonstrates the exact point of bitflip in
Section Memory ECC Status, allowing us to explore the
memory area and final status of the memory. Section

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on April 04,2023 at 17:57:38 UTC from IEEE Xplore. Restrictions apply.

Programs - item Successful is another relevant point that
determines if the application finished the execution
successfully or was affected by the bitflip occurrence.

V. BENCHMARK EXPLORATION

Table I displays the results of a benchmark executing in
scenarios combining different error rates and computational
resource combinations. This benchmark encompasses 15
applications: (i) Binary Sort, (ii) Black Scholes, (iii) Blowfish,
(iv) Bubble Sort, (v) CRC8, (vi) Factorial, (vii) Fibonacci,
(viii) Frequent Pattern Growth, (ix) Greatest Common
Divisor, (x) Hanoi, (xi) Huffman Encoding, (xii) Insertion
Sort, (xiii) JKiss32, (xiv) Matrix Multiplication, (xv) Prime
Number.

We explored four combinations of programs and
computation scenarios: (1) single-task, single-processor [i, xv]
- all the benchmark programs running separately in a single
processor (CPU 0); (2) multi-task, single-processor [xvi] -
Bubble Sort and CRC8 executing in the same processor; (3)
single-task, multiprocessor [xvii] - Bubble Sort and CRC8
executing on processors 0 and 1, respectively; (4) multi-task,
multiprocessor [xviii] - Bubble Sort and CRC8 executing on
processor 0, and two Bubble Sort tasks executing on
processors 1 and 2.

The Benchmark Information contains the (a) last tick,
(b) sum of all ticks executed by the processors, (c) total of
instruction read and written in bytes, (d) total of data read and
written in bytes, and the number of (e) writes and (f) reads
to/from memory.

All simulations were executed considering the four All
simulations were performed considering the five following
error scenarios:

1. WithoutError – a straightforward scenario without
bitflip occurrence;

2. SingleBitflip – a minimum error occurrence scenario;
3. One2Many – states a scenario with minimal

occurrence of errors, and after a period, multiple
errors occur;

4. RandomNearError – a scenario with a random
number of bitflips placed in a nearby neighborhood;

5. RandomArbitratyError – describes a scenario with
a random number of bitflips arbitrarily placed.

The RandomNearError and RandomArbitratyError
characteristics are detailed in Table II, according to the

following: (α) probability of bitflips occurring during each
clock; (β) interval containing the minimum and maximum
numbers of bitflips that can occur during each clock period;
(γ) range containing the minimum and maximum distances of
the address of the next bitflip from the occurrence of the
previous bitflip – the objective is to explore bitflips inside or
outside the same word; (δ) range containing the minimum and
maximum distances of the bitflip in the same memory address
– the objective is to explore bitflips within a memory module
(note that the same word is physically placed in more than one
memory module); (ω) probability of the next bitflips occurring
outside the intervals defined in (γ) and (δ).

TABLE II – CHARACTERIZATION OF BITFLIP SCENARIOS.

Scenario α β γ δ ω

Bitflips in random places 0.2% [0, 2] - - 100%

Bitflips in a nearby neighborhood 0.2% [0, 2] [0, 3] [1, 16] 0.2%

Additionally, for each one of the five error scenarios, we

verified situations without ECC (WE) and with Hamming
(HM) and Reed Solomon (RS) codes.

Table I produces results consistent with the ones explored
on Google and Microsoft servers [1][5], opening opportunities
for a vast behavior study of memory devices and memory
controllers. Table I highlights two results: (i) the HM encoding
increases the correct execution probability slightly, but it is not
acceptable for critical applications, and (ii) the RS encoding
can handle all the scenarios evaluated but with high energy
consumption and memory area costs. Considering the above
scenarios, one of the possibilities to increase the execution
quality is to employ ECCs with different correction potentials
according to the occurrence of errors in the memory module;
the next section evaluates this approach.

VI. MEMORY CONTROLLER ALTERNATIVE EXPLORATION

As demonstrated in Section V, some applications do not
finish the execution due to a bitflip error; one alternative to
this issue could be to start reading and writing a more powerful
ECC, like RS over HM when the first bitflip occurs.

To reach this exploration, we implement the Double ECC
Memory Controller (DEMC), using the architecture defined in
Section III, having a RISC-V 32 Bits operating with a DDR4.
DEMC stops to use HM and starts using RS when it finds any
bitflip. The rightest bit of ECC identifies the encoding type
used to write/read data (0: HM and 1:RS).

TABLE I - SIMULATION SUMMARY.

Benchmark information WithoutError SingleBitflip One2Many RandomNearError RandomArbitraryError

a b c d e f WE HM RS WE HM RS WE HM RS NºBF WE HM RS NºBF WE HM RS

i 782 782 7038 738 656 208

OK OK OK NOK OK OK NOK OK OK

1
OK OK

OK

4
OK

OK

OK

ii 4210 4210 37890 10766 1536 4546 10 9

iii 225329 225329 2027961 1167094 43718 316652 334 NOK NOK 341 NOK

iv 4183 4183 37647 9785 993 4936 10 OK OK 9 OK

v 100949 100949 908541 219267 13897 127079 150 NOK NOK 153 NOK

vi 678 678 6102 693 571 184 1
OK OK

4
OK

vii 1310 1310 11790 5114 347 1766 0 4

viii 30622 30622 275598 137994 8206 43493 14 NOK NOK 50 NOK NOK

ix 691 691 6219 792 581 178 1

OK OK

4

OK

OK

x 3635 3635 32715 18166 1112 4542 9 8

xi 34349 34349 309141 114747 8416 44570 52 76

xii 2721 2721 24489 9351 859 2901 7 8

xiii 1352 1352 12168 2456 635 1193 3 4 NOK

xiv 3880 3880 34920 6256 1153 3994 9 9

OK

xv 1641 1641 14769 7092 371 2058 3 4

xvi 8363 8363 75267 15525 2307 9022 207 205

xvii 100949 105132 946188 228892 14890 131995 207 205

xviii 8363 16729 150561 34855 4293 18884 210 219

Legend: – “OK” and “NOK” means that the simulation finished without or with error, respectively

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on April 04,2023 at 17:57:38 UTC from IEEE Xplore. Restrictions apply.

We evaluated this scenario using the ReadECC application
with the configuration explained in Section III:

• Use the NoFaultError to simulate 91.78% of the cases;

• OneError to simulate approximately 8%;

• MultipleErrors, which represents around 0.055%;

• One2MultipleErrors, which represents about 0.16% of
the multiple error scenarios, and

• One2MultipleErrors with two applications running
simultaneously over this environment.

For the scenario without faults or with one bitflip, it was
possible to run the program successfully for the three
controllers. With one bit corrupted initially, followed by
multiple errors, the DEMC and RS controllers were effective.
For a scenario with multiple faults, only RS executed the
program successfully; DEMC, having started with HM, could
not correct the data but changed the ECC to RS, making the
next application better protected as it is.

Table III contains the synthesis of the results obtained with
the number of reads and writes performed by the memory
controller.

TABLE III – ALTERNATIVE MEMORY CONTROLLER EXPLORATION.

Scenario i ii. iii iv v

HM
Read 2400133 2400133 * 900094 * 900094 * 1800188

Write 200180 200180 * 100178 * 100178 * 200356

RS
Read 2400133 2400133 2400133 2400133 4800266

Write 200180 200180 200180 200180 400360

DEMC

HM Read 2400133 1369107 1369107 * 900094 ** 2268218

HM Write 200180 200180 200180 * 100178 ** 2268218

RS Read - 1031028 1031028 - ** 1032011

RS Write - - - - -

Legend: * application did not finish
 ** only one application did not finish

DEMC mitigates approximately 80% of the cases of
multiple bitflips that previously had one corrupted bit, thus
guaranteeing an increment of 0.17% more in the total
probability of the application to continue executing, resulting
in 99.956% of efficacy, as shown in Table IV.

TABLE IV – MEMORY ERROR PROBABILITY.

State Without ECC Hamming. DEMC Reed Solomon

OK 91.780% 99.780% 99.956% ~99.999%

Fail 8.220% 0.220% 0.044% ~0.001%

DEMC demonstrates another benefit, greater efficiency

and efficacy for 91.78% of the cases in which it is unnecessary
to have a robust fault tolerance coding, ensuring lower energy
consumption and latency, and a powerful and assertive coding
for only the addresses with high error incidence.

VII. CONCLUSION

Fault tolerance strategies in memories have a significant
impact on providing computational reliability to higher levels.
Evaluating techniques in memory controllers is a challenge
widely researched with a high time cost. Absimth facilitates
the memory controller and ECC research in an era when main
memory is undergoing rapid changes.

This paper evaluates a wide range of scenarios with the
Absimth tool based mainly on research from Google and
Microsoft [1][5] and understands their behavior. With the
understanding of these scenarios, it was possible to prototype
a Double ECC Memory Controller (DEMC) with a slight
alteration of the memory controller but with a significant

impact on the error correction rate.

The fast memory controller prototyping on Absimth
enables much research and ideas evaluation before the
hardware prototype and how the application will behave under
this memory controller, such as the proposed DEMC.

This work also introduces Absimth, a tool for building and
simulating multiprocessor target architectures that access
memory modules through memory controllers. The simulator
enables some tools for performing injection error patterns and
evaluating fault tolerance techniques with support for many
ECC standards.

ACKNOWLEDGMENT

This study was financed in part by the Coordenação de
Aperfeiçoamento de Pessoal de Nível Superior - Brasil
(CAPES) - Finance Code 001.

REFERENCES

[1] B. Schroeder, E. Pinheiro, W. Weber, “DRAM Errors in the Wild: A
large-scale field study”, Communications of the ACM, vol. 54, n. 2, pp.
100-107. Feb. 2011.

[2] S. Mittal, “A survey of architectural techniques for managing process
variation”, ACM Computing Surveys, vol. 48, n. 4, pp. 1-29, May
2016.

[3] A. Rahimi, L. Benini, R. Gupta, “Variability mitigation in nanometer
CMOS integrated systems: A survey of techniques from circuits to
software”, Proceedings of the IEEE, vol. 104, n.7, pp. 1410-1448. Jul.
2016.

[4] J. Meza, Q. Wu, S. Kumar, O. Mutlu, “Revisiting memory errors in
large-scale production data centers: analysis and modeling of new
trends from the field”, Proceedings of the IEEE/IFIP International
Conference on Dependable Systems and Networks (DSN), pp. 415-
426, 2015.

[5] E. Nightingale, J. Douceur, V. Orgovan, “Cycles. cells and platters: an
empirical analysis of hardware failures on a million consumer PCs”,
Proceedings of the sixth conference on Computer systems (EuroSys).
pp. 343-356, 2011.

[6] H. Quinn, P. Graham, T. Fairbanks, “SEEs Induced by High-Energy
Protons and Neutrons in SDRAM”, Proceeding of the IEEE Radiation
Effects Data Workshop, pp. 1-5, 2011.

[7] S. Duzellier, D. Falguère, R. Ecoffet, “Heavy ion/proton test results on
high integrated memories”, IEEE Radiation Effects Data Workshop,
pp. 36-42,1993.

[8] H. Shindou, S. Kuboyama, N. Ikeda, T. Hirao, S. Matsuda, “Bulk
damage caused by single protons in SDRAMs”, , IEEE Transactions on
Nuclear Science vol. 50, n. 6, pp. 1839-1845, Dec. 2003.

[9] D. Freitas, D. Mota, C. Marcon, J. Silveira, J. Mota, “LPC: An Error
Correction Code for Mitigating Faults in 3D Memories”, IEEE
Transactions on Computers, vol. 70, n. 11, Nov. 2021.

[10] P. Nair, D. Roberts, M. Qureshi, “FaultSim: A fast, configurable
memory-reliability simulator for conventional and 3D-stacked
systems”, ACM Transactions on Architecture and Code Optimization
(TACO), vol. 14, n. 4, art. 44, pp.1-24, Jan. 2016.

[11] Micron, “DDR4 SDRAM - MT40A4G4, MT40A2G8, MT40A1G16”,
https://datasheet.octopart.com/MT40A2G8JC-062E%3AE-Micron-
datasheet-141417503.pdf. Jun. 2022.

[12] X. Dong, C. Xu, Y. Xie, N. Jouppi; “NVSim: A circuit-level
performance, energy, and area model for emerging non-volatile
memory”. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 31, n.7, pp. 994-1007, Jul. 2012.

[13] R. Balasubramonian, A. Kahng, N. Muralimanohar, A. Shafiee, V.
Srinivas, “CACTI 7: New Tools for Interconnect Exploration in
Innovative Off-Chip Memories”, ACM Transactions on Architecture
and Code Optimization (TACO), vol. 14, n. 2, pp. 1-25, Jul. 2017.

[14] HP Labs, “CACTI - An integrated cache and memory access time,
cycle time, area, leakage, and dynamic power model”,
https://www.hpl.hp.com/research/cacti/, Agu. 2022.

[15] Y. Kim, W. Yang, O. Mutlu, “Ramulator: A fast and extensible DRAM
simulator”, IEEE Computer Architecture Letters, vol. 15, n. 1, pp. 45-
49, Jun. 2016.

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on April 04,2023 at 17:57:38 UTC from IEEE Xplore. Restrictions apply.

[16] S. Mittal, R. Wang, J. Vetter, “DESTINY: A comprehensive tool with
3D and multi-level cell memory modeling capability”, Journal of Low
Power Electronics and Applications, vol. 7, n. 23, pp. 1-24, Apr. 2017.

[17] N. Chatterjee, R. Balasubramonian, M. Shevgoor, S. Pugsley, A. Udipi,
A. Shafiee, K. Sudan, M. Awasthi, Z. Chishti. “USIMM: the Utah
SImulated Memory Module”. University of Utah, Technical Report
UUCS-12-002, 24p., Feb. 2012.

[18] S. Wang, H. Hu, H. Zheng, P. Gupta, “MEMRES: A Fast Memory
System Reliability Simulator”, IEEE Transactions on Reliability, vol.
65, n. 4, pp. 1783-1797, Dec. 2016.

[19] N. Binkert, B. Beckmann, G. Black, S. Reinhardt, A. Saidi, A. Basu, J.
Hestness, D. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell, M.

Shoaib, N. Vaish, M. Hill, D. Wood. “The gem5 simulator”. ACM
SIGARCH Computer Architecture News, vol. 39, n. 2, pp. 1-7. May
2011.

[20] RISC-V, “Specifications”, https://riscv.org/technical/specifications/,
Agu. 2022.

[21] A. Waterman, K. Asanovic´, “The RISC-V Instruction Set Manual -
Volume II: Privileged Architecture - Document Version 20190608-
Priv-MSU-Ratified”, Section 2.4, Load and Store Instructions,
https://github.com/riscv/riscv-isa-manual/releases/download/Ratified-
IMFDQC-and-Priv-v1.11/riscv-privileged-20190608.pdf, Agu. 2022.

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on April 04,2023 at 17:57:38 UTC from IEEE Xplore. Restrictions apply.

