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Abstract— Electronic memories are subject to failure due to 

magnetic fields and radiation, causing temporary faults that can 

be mitigated by error correction codes. Evaluating the efficacy 

of these mechanisms in hardware can make the design more 

expensive, take a long prototyping time, and even lose time to 

market. Hardware simulators or emulators are often generic, 

requiring specific and specialized development to evaluate 

memory controllers. This work proposes Absimth to assess the 

computational system behavior in the presence of memory 

errors. Absimth is a hardware simulator focusing on memory 

controller data flow, allowing the creation and configuration of 

custom modules. The simulator aims to optimize the design of 

next-generation memory controller architectures, meeting fault 

tolerance requirements with fast validation before the hardware 

implementation phases. 

Keywords— Hardware Simulator; Memory Controller; Fault 

Tolerance evaluation. 

I. INTRODUCTION 

Hardware reliability is a central requirement for high-
performance computing and storage projects [1]. The memory 
reliability is particularly sensitive to variation in the 
manufacturing process, environmental conditions, or wear 
caused by the time of use [2][3]. Many areas are affected by 
memory errors, like (i) big service providers such as Facebook 
[4] with 2.5% per month and Google with 8% of memory 
modules per year [1]; (ii) personal computers turned on for 30 
days have a 0.059% chance of failing, according to Microsoft 
[5]; and (iii) space projects, where it is common to use 
commercial memories due to their high density and low cost. 
However, commercial memories are not resilient to the 
numerous problems that can occur due to radiation, with the 
loss of cell functionality being the main consequence in 
intense radiation scenarios [6][7][8][9]. 

Fast and accurate simulation tools are essential for 
computer architects to analyze problems and compare the 
efficacy of each solution. It is even more critical to try a new 
set of constraints or incorporate an emerging technology with 
widely different properties than the standard technologies 
[10]. Computer system simulators are built for general 
purposes and cannot run native programs in general. Besides, 
there are few proposals regarding memory controller 
simulators, like FaultSim [10], whose operation is based on an 
analytical model. 

This work proposes Absimth, an extensible fast memory 
controller simulator for improving studies of memory 
controller architectures used in various mobile devices to 
extreme-scale supercomputers. Absimth enables the behavior 
evaluation of the traditional applications over intense bitflips 
with different Error Correction Codes (ECC). To reach the 
behavior assessment, we simulated a homogeneous 
multiprocessor architecture composed of RISC-V 32I 
processors that access memory modules from a DDR4 
SDRAM with ECC model MT40A1G16 from Micron [11], 
applying a synthetic application described in C. 

Absimth allows evaluating the ECC flow applied to 
memories; it enables configuring and creating custom 
modules for processors, memory devices, and memory 
controllers. Additionally, the simulator provides error 
injection models into memory for assessing the system 
behavior in the face of memory runtime faults with tons of 
metrics. 

II. RELATED WORK 

The design of general and specific purpose simulators is a 
significant research challenge, addressed over decades by 
several works. This section discusses some recent work and 
presents the motivation for proposing Absimth. 

Nair et al. [10] proposed FaultSim, a configurable 
simulator to assess the reliability of memories, employing the 
Monte Carlo algorithm that generates pattern faults equivalent 
to the real world. The authors implemented and evaluated 
BCH-1 and Chipkill ECCs in real executions to validate 
FaultSim; the experiments show a deviation between 0.036% 
and 8.41%. 

Dong et al. [12] presented a simulator to model Non-
Volatile Memory (NVM) at the circuit level. The simulator 
evaluates timing, energy, and area consumption, supporting 
validating various NVM technologies, such as STT-RAM, 
PCRAM, ReRAM, and the traditional NAND FLASH. 

Balasubramonian et al. [13] added a model to assess 
memory energy consumption to CACTI [14], allowing 
defining new interconnection types. The analysis has shown 
that the design parameters significantly impact energy 
consumption. A simple topology change can increase 
performance by 22% and reduce cost by 65%. Additionally, 
the article presents DDR3 and DDR4 designs that improve 
performance by 18% and reduce energy consumption by 23%. 

Kim, Yang, and Mutlu [15] introduced Ramulator, a 
generic memory simulator that supports several standards like 
DDR3/4 LPDDR3/4, GDDR5, WIO1/2 HBM, and other 
academic proposals like SALP, AL-DRAM, ROW Clone, TL-
DRAM, and SARP. 

Mittal, Wang, and Vetter [16] presented Destiny, a tool to 
model, at the semiconductor level, the manufacturing process 
of 2D and 3D memories, such as SRAM, resistive STT-RAM, 
eDRAM, SOT-RAM, DWM, and flash. The simulator enables 
latency and area validation and provides comprehensive 
design modeling and spatial exploration. Destiny results were 
validated with several commercial prototypes, including the 
2D and 3D designs of SRAMs and eDRAMs. The experiments 
presented less than 10% of modeling errors for most cases and 
less than 20% for all cases. 

Chatterjee et al. [17] described the USIMM (Utah 
SIMulated Memory Module), an infrastructure for simulating 
DRAM memory, focusing on the energy consumption of the 
request schedulers that are part of the memory controller. 
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Wang et al. [18] developed MEMRES, a fast simulator to 
test the main memory reliability. MEMRES enables 
simulating memory failures, being computationally efficient 
in obtaining failure probabilities, and optimizing the memory 
system reliability. The authors performed a case study based 
on Spin-Transfer Torque Random Access Memory (STT-
RAM); the results indicated that in-memory ECC could 
significantly mitigate the write error rate of STT-RAM. 

Binkert et al. [19] proposed the gem5 simulator, a modular 
platform for researching computer system architecture, 
ranging from system level to processor microarchitecture. 
Gem5 is an open software project conceived initially for 
research into computer architecture in academia. Still, it has 
been used in academic works and industrial research by 
companies such as ARM, AMD, Google, HP, and Samsung. 

Several works focus on the modeling and simulation of 
general-purpose computational systems, and some are 
dedicated to evaluating specific aspects of memories. 
Nevertheless, to the best of our knowledge, this is the first 
work on memory controller modeling and simulation focusing 
on fault tolerance. The Absimth simulator allows evaluation 
techniques and architectures of memory controllers, enabling 
the exploration of tradeoffs between error correction efficacy 
and implementation costs. 

III. ABSIMTH ARCHITECTURE DESCRIPTION 

This chapter details the Absimth simulator and the 
functionalities available to evaluate the behavior of memory 
controllers in a stressful environment. 

A. Absimth Architecture 

Fig. 1 displays a high-level description of Absimth for 
creating and configuring custom modules of processors, 
memory controllers, and a memory device split into memory 
modules. Absimth also disposes of a low complex Operating 
System (OS) for task management and a virtual module for 
simulating memory error injection. 

 
Fig. 1. High-level description of the Absimth platform. 

All modules described next have a standardized interface 
allowing them to be customized or changed. 

Processor 

Absimth includes the three following RISC-V 32-bit 
compatible processors [20] and allows executing several 
programs on single or multiple heterogeneous processors. 

• RISC-V 32I (32 bits and ISA composed by integer 
instructions); 

• RISC-V 32Im (including multiplication and division 
instructions at the RISC-V32I), and 

• RISC-V 32f (the same features of RISC-V 32Im but 
including floating point). 

Memory Controller 

Absimth connects the processor and memory modules 
through customizable memory controllers and includes many 
types of memory controllers available, including or not ECCs; 
the available ECCs are Parity, Hamming, and Reed-Solomon. 

Memory Device 

Absimth helps to create memory according to the user 
configuration, and OS accesses the memory devices using the 
memory controller address. The designer can navigate the 
memory hierarchy by examining any bit, byte, or word value 
of modules, rank, bank group, or each bank regarding any 
column, row, or height. 

Error Injection Module 

Employing a virtual module for error injection, the 
designer can create several error scenarios based on the 
predefined templates, such as creating bitflip at random 
memory addresses in a given execution cycle. Absimth 
encompasses four error injection models based on [1][5] and 
a five-error injection based on error occurrence probability: 

• NoFaultError – meaning a memory without errors to 
assess the application execution time and amount of 
data transferred. It is the basis for comparing with other 
scenarios, occurring in about 91.78% of server cases 
[1][5]. 

• OneError – implying a single bitflip to simulate the 
most common error scenario, occurring in 
approximately 8% of server cases [1][5]. This model 
makes the simulator generate an error at a specific 
address and bit position. 

• MultipleErrors – describing a memory with multiple 
corrupted bits to simulate scenarios representing from 
0.044% to 0.066% of server cases [1][5]. 

• One2MultipleErrors – one bit corrupted initially 
followed by multiple bitflips to simulate 0.154% to 
0.176% of the multiple-error scenarios [1][5]. The 
simulator executes the OneError configuration; next, it 
performs the MultipleErrors format to evaluate the 
system behavior from one to multiple errors, one 
common memory scenario. 

• BitFlipProbability – enables to configure the following 
bitflip modes and probability rates: (a) probability rate 
of a bitflip occurring in every tick; (b) the maximum 
number of bitflips can occur in one cycle; (c) random 
or specific error address; (d) module memory subject 
to error occurrence; (e) the address distance between 
bitflip occurrence; (f) range allowed to bitflip inside the 
address (bit position range); (g) probability rate to 
generate a bitflip out of the address range; and (h) a 
seed for generating random errors. 

Operating System 

Absimth implements a simple distributed OS that uses 
specific memory space; all data used by OS is neither passed 
nor allocated in the memory defined by the configuration. OS 
loads instruction from one task into memory per time or 
executes the instruction in application load mode. OS executes 
a specific number of user-defined instructions (quantum); 
once the quantum is completed, OS schedules the next task. 
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Absimth employs a global Round-Robin with random-order 
task choices within each quantum as default scheduling. When 
the execution cycles reach the quantum defined by the user, 
OS saves the processor context, looks for the next task 
according to the scheduling algorithm, and loads its context 
into the processor. The current Absimth version does not allow 
disabling the default OS or implementing a customized OS. 

Reports 

At the end of the application execution, Absimth creates a 
simulation report containing the following information: 

• Programs – containing a list of programs executed, 
each one containing the (i) name and identification of 
the program, (ii) initial memory address, (iii) 
instruction length, (iv) initial data address, (v) stack 
size, (vii) a total of allocated memory used, (vii) last 
allocated address, (viii) first data address used, (ix) 
total of data address used, (x) last data address used, 
(xi) processor identifier (processor + core), (xii) 
processor number, (xiii) core number, (xiv) processor 
type, (xv) the total of cycles executed by the 
application, (xvi) task identification and (xvii) 
information if the program was executed with success. 

• Memory – comprising the number of instructions, data, 
and total reading and writing operations. 

• Memory faults – encompassing a list of physical 
memory addresses with error and the associated error 
type. An error injected is classified as INVERTED 
when the program execution does not access the error 
address; if the program accesses the error address, the 
error is classified as FIXED or UNFIXED, depending 
on the success of the error correction algorithm. 

• Memory controller – containing information about the 
numbers of memory read and write performed by the 
memory controller module. 

• Processor list – containing a list of processors with the 
(i) identification, (ii) type, (iii) core number, and (iv) 
number of the last tick executed. 

• General information – including (i) the entire 
simulation execution time (in milliseconds), (ii) the 
total number of ticks, and (iii) the maximum tick for 
each core. 

B. Absimth Execution Flow 

The Absimth execution flow goes through two macro 
phases. The first phase, called Task Initialization, defines the 
simulator initialization activities; the second phase, called 
Task Simulation, implements the execution, insertion of 
errors, and application task monitoring. 

Task Initialization 

Absimth initializes loading the application settings defined 
by the designer; in this step, the simulator allocates the 
memory areas of each task and maps these tasks to the 
processors of the target architecture. 

The simulator checks the PeripheralAddressSize 
parameter, which contains the memory size allocated to each 
peripheral, allowing mapping peripherals into the memory 
addresses. Therefore, if the developer creates a specific 
module, the simulator allocates part of the memory address for 
this module operation. Afterward, Absimth loads the 
application tasks, forwarding the following items to OS: (i) the 
chosen processor identification and target architecture; (ii) 
task identification; (iii) total memory used according to the 

stack size configured at program compilation time, and (iv) a 
reference for application loading. 

Task Simulation 

Fig. 2 displays that Absimth randomly selects the 
processor order execution inside a quantum - i.e., a predefined 
number of clock cycles, simulating random concurrency 
among processors. Although the order of processors is 
random, all processors must execute a quantum before starting 
a new random sequence of processor execution. After 
choosing the processor, OS schedules the task that must be 
executed in each processor. For each task in each processor, 
Absimth executes an instruction and waits for the next cycle. 

 
Fig. 2. Example of Task Simulation phase encompassing four processors 

(P1…P4) execution during q quanta of simulation. This figure emphasizes 

intra-quantum scheduling of P4, covering task1 and task4. 

IV. MEMORY BITFLIP OBSERVATION 

This section shows the memory bitflip observation 
processes, exemplifying three synthetic tasks executing in a 
single processor (Fig. 3). This processor is connected to a 
DDR4 through a memory controller that performs reading and 
writing operations using Hamming ECC. 

 
Fig. 3. Target architecture and tasks employed in the simulation example. 

A. Synthetic Application and Hardware Description 

Fig. 4 describes SimplePrint, ReadEcc, and SimpleSum - 
three synthetic low-complex tasks developed to observe the 
behavior of an application operating over a memory RAM 
with bitflip. Fig. 4(a) displays the small source code of the 
program SimplePrint, which only sends a message to the 
standard output. Fig. 4(b). shows the ReadEcc source code. 
The program starts by executing a loop to simulate reading and 
writing in the final position of the memory allocated for this 
task; since OS allocates the initial memory area for the 
program code and the final memory area for the program data. 
Subsequently, the program reads the information provided by 
the memory controller, informing which address has an error. 
This error information enables the beginning of reading the 
affected page, making the memory controller change the 
application encoding and OS transparently. Fig. 4(c) exhibits 
the SimpleSum source code, a simple program that sums and 
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returns two values. 

#include "../library/absimth.hpp" 
void main() { 
    print_str("HELLO"); 
} 

 
int main() { 
    int a = 1, int b = 499999; 
    return a+b; 
} 

(a)  (c) 

#include "../library/absimth.hpp" 
int main() { 
    int *eccLocation = (int *)0x4; 
    int *zeroAdd = (int *)0x0; 
    int appIniAdd = read_initial_add(); 
    int eccAddContError = *(eccLocation - appIniAdd); 
    int errorAdd = 0; 
    int len = 50000; 
    int arr[len]; 
    for(int k = 0; k < len; k++) 
        arr[k] = k; 
    errorAdd = *(zeroAdd - appIniAdd + eccAddContError); 
    for(int k = 0; k < len; k++) 
        arr[k] = *(errorAdd + k); 
    return 0; 
} 

(b) 

Fig. 4. Source code of three synthetic tasks: (a) SimplePrint (b) ReadEcc, 

and (c) SimpleSum. 

Fig. 5 shows the Absimth configuration, encompassing (i) 
memory size reserved for hardware modules; (ii) processors 
used, in this case, two RISC-V 32i; (iii) memory configured 
with a DDR4 based on MT40A2G8 model [11] but with a 
smaller size, since for these applications require few kilobytes. 

----- HARDWARE ------ 
Reserved Peripheral Address size for Modules:0x00000008 
PROCESSOR 
Processors Model=RISCV32i 
Number of Processors=2 
Frequency=1000Mhz 
 
MEMORY 
Name=smallDDR4 
Frequency=1000Mhz 
Maximum memory bandwidth=18000000000 Bytes/s-(18.0GB/s) 
Latency for memory access=20.0 nanoseconds 
Total of address=0x00a12200 
Channel mode=SINGLE_CHANNEL 
Word size=72 
Lines per clock=2 
Column Address Strobe (CAS) latency=10 
Module amount=2 
Rank amount=1 
Chip amount=9 
Bank Group amount=4 
Bank amount=4 
Cell=330, 1000 
 
------ CUSTOM MODULES LOADED ------ 
MEMORY 
Controller type=HammingMemoryController 
Fault injection type=OneError; error position=0x3E8 
 
------ PROGRAMS LOADED ------ 
Operational System 
Cycles by Program=5 
 
Task mapping... 
at CPU_0, program=simplePrint 
at CPU_0, program=readEcc 
at CPU_1, program=simpleSum 

Fig. 5. Simulation Setup. 

B. Memory Inspector 

Absimth allows us to look in-depth at the processor status 
or memory during each execution or in the final process. Fig. 
6 presents the Memory Area Inspector, exemplifying a 
memory data region. The memory information is grouped in 
32 bits, with eight columns per line, for better screen use and 
to demonstrate a more significant amount of simultaneous 
data. Data containing errors are colored in red, in this case at 
address 0x3E8. When selecting an address, the rightmost 
column shows its physical breakdown. Consequently, in 
addition to the Address field, it shows the following fields: (i) 
Module, (ii) Rank, (iii) Bank Group, (iv) Bank, (v) Row, (vi) 
Column, and (vii) Height range. The simulator does not 
provide information on the chip, as each chip receives 1 byte. 

 
Fig. 6. Memory Area Inspector tool, containing an error in address 0x3E8. 

Absimth provides the DDR memories default hierarchical 
model, enabling the designer to navigate throughout all the 
memory addresses, giving the spatial location. Besides, the 
designer can provide a customized memory structure by 
adjusting the memory template of Absimth. 

The spatial location is crucial to evaluate and simulate 
scenarios where memory has a location more susceptible to 
bitflips than other locations – e.g., the rightmost location of 
the memory is close to a heated area because of the processor 
place. Fig. 7(a) presents the highest memory level for 
navigating the structure of memory modules, ranks, and chips. 
The leftmost column reports the module number, rank, and 
addressing range. In case of an error in any data, the units are 
colored in red. It is possible to go into any chips to see the 
internal memory structure, exploring the error neighborhood 
in a three-dimensional (3D) format. The hierarchical view 
continues selecting a given module, rank, and chip. For 
instance, considering that chip 0 of module 0, rank 0 contains 
errors since it is colored in red in Fig. 7(a), Fig. 7(b) shows the 
visualization inside this chip, encircling the organization of 
memory banks inside each bank group. 

(a) 

 

(b) 

 
Fig. 7. (a) The highest memory level, including memory modules, rank, 

and chips, showing that Chip 0, Module 0, and Rank 0, contain at least one 

bit with error; (b) Memory bank organization inside the bank groups. The 

Bank 0 of Bank Group 0 contains errors since it is colored in red. 

Fig. 8 displays the Absimth window when selecting the 
memory bank 0, which enables browsing the bank by memory 
address and physical cell placement - i.e., row, column, and 
height. The designer can also see the 3D view of a memory 
cell (along with height); Fig. 9 exemplifies a 3D view. 
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Fig. 8. Memory cell window; this view displays a single error on bit 0 

(colored in red) of address 0x3E8. 

 
Fig. 9. 3D memory cell preview window. 

C. Execution Investigation 

The execution exemplification employs a memory 
controller with Hamming ECC and a virtual module 
generating a bitflip at address 0×3E8 to simulate a stuck bit. 
The Processor Management tool helps to watch the exact 
moment the instruction or data is corrupted and enables 
selecting a given processor and task. Each instruction of the 
assigned task can be executed step by step on the designated 
processor - the OS is bypassed in this execution. 

Fig. 10 shows the Processor Management tool running 
ReadEcc on CPU_0, covering the object code of the task, the 
status of the processor registers, and the memory address 
accessed at the instruction moment. 

 
Fig. 10. Processor Management tool, covering processor registers, task code 

objects, and memory data addresses. 

At the end of the simulation, Absimth provides a timeline 
window of the target architecture processors displaying the 
execution of each processor task, as demonstrated in Fig. 11. 

 
Fig. 11. Window for viewing the timeline of all processors. 

D. Execution Report 

Absimth finishes the target architecture simulation 
generating the report of Fig. 12, containing statistics on (i) 
tasks performed; (ii) data traffic among processors; (iii) 
execution status (with error or success); (iv) number of data 
reads/written from/in memory; (v) memory positions with 
errors; and (vi) data traffic and instructions on the memory 
controller with each ECC used. 

[SIMULATION] 
Application bytes: 3145803 
 
[PROGRAMS] 
simpleSum 
  programId=2 
 MEMORY 
  initialAddress=0x000800cf 
  instructionLength=0x00000014 
  initialDynDataAddress=0x000800e3 
  stackSize=0x00040000 
  totalOfMemory=0x00040014 
  lastAddress=0x000c00e3 
 DYNAMIC MEMORY USED 
initialMemoryAddressUsed=0x000c00c9 
totalMemoryAddressUsed=0x00000005 
lastMemoryAddressUsed=0x000c00ce 
 CPU 
  cpu=0 
  core=1 
  cpuId=1 
  cpuType=RISCV32i 
  totalOfTicks=40 
 OTHERS 
  task=0 
  successful=true 
simplePrint 
  programId=0 
 MEMORY 
  initialAddress=0x00000002 
  instructionLength=0x00000032 
  initialDynDataAddress=0x00000034 
  stackSize=0x00040000 
  totalOfMemory=0x00040032 
  lastAddress=0x00040034 
 DYNAMIC MEMORY USED 
initialMemoryAddressUsed=0x0003fff9 
totalMemoryAddressUsed=0x00000008 
lastMemoryAddressUsed=0x00040001 
 CPU 
  cpu=0 
  core=0 
  cpuId=0 
  cpuType=RISCV32i 
  totalOfTicks=131 
  OTHERS 
  task=0 
  successful=true 
readEcc 
  programId=1 
 MEMORY 
  initialAddress=0x00040034 
  instructionLength=0x0000009b 
  initialDynDataAddress=0x000400cf 
  stackSize=0x00040000 
  totalOfMemory=0x0004009b 
  lastAddress=0x000800cf 
 DYNAMIC MEMORY USED 

InitialMemoryAddressUsed=0x1fffffff 
totalMemoryAddressUsed=0xe0040035 
lastMemoryAddressUsed=0x00040034 
  CPU 
  cpu=0 
  core=0 
  cpuId=0 
  cpuType=RISCV32i 
  totalOfTicks=156 
  OTHERS 
  task=1 
  successful=true 
 
[MEMORY] 
Instructions 
Number of instructions read: 408 
Number of instructions written: 900 
Number of instructions r+w: 1308 
#Bytes of instructions read: 918 
#Bytes of instructions written: 2025 
#Bytes of instruction r+w: 2943 
Data 
Number of data read:  52 
Number of data written:  28 
Number of data r+w:  80 
#Bytes of data read: 117 
#Bytes of data written: 63 
#Bytes of data r+w: 180 
Total 
Number of totals read: 460 
Number of totals written: 928 
Number of totals r+w: 1388 
#Bytes of totals read: 1035 
#Bytes of total written: 2088 
#Bytes of total r+w: 3123 
 
[MEMORY ECC STATUS] 
address=0x000003e8, type=INVERTED, 
position=[0] 
 
[MEMORY CONTROLLER] 
READ HAMMING_SECDEC: 115 
WRITTEN HAMMING_SECDEC: 232 
 
[Processor List] 
CPU 0 
Cpu Type = RISCV32i 
Core 0 
CpuId 0 
  Last Tick at: 287 
Core 1 
CpuId 1 
  Last Tick at: 40 
 
[General information] 
Simulation took 2472 milliseconds  
Total of Ticks:327 
Last Ticks At:287 

Fig. 12. Simulation Report. 

The report demonstrates the exact point of bitflip in 
Section Memory ECC Status, allowing us to explore the 
memory area and final status of the memory. Section 
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Programs - item Successful is another relevant point that 
determines if the application finished the execution 
successfully or was affected by the bitflip occurrence. 

V. BENCHMARK EXPLORATION 

Table I displays the results of a benchmark executing in 
scenarios combining different error rates and computational 
resource combinations. This benchmark encompasses 15 
applications: (i) Binary Sort, (ii) Black Scholes, (iii) Blowfish, 
(iv) Bubble Sort, (v) CRC8, (vi) Factorial, (vii) Fibonacci, 
(viii) Frequent Pattern Growth, (ix) Greatest Common 
Divisor, (x) Hanoi, (xi) Huffman Encoding, (xii) Insertion 
Sort, (xiii) JKiss32, (xiv) Matrix Multiplication, (xv) Prime 
Number. 

We explored four combinations of programs and 
computation scenarios: (1) single-task, single-processor [i, xv] 
- all the benchmark programs running separately in a single 
processor (CPU 0); (2) multi-task, single-processor [xvi] - 
Bubble Sort and CRC8 executing in the same processor; (3) 
single-task, multiprocessor [xvii] - Bubble Sort and CRC8 
executing on processors 0 and 1, respectively; (4) multi-task, 
multiprocessor [xviii] - Bubble Sort and CRC8 executing on 
processor 0, and two Bubble Sort tasks executing on 
processors 1 and 2. 

The Benchmark Information contains the (a) last tick, 
(b) sum of all ticks executed by the processors, (c) total of 
instruction read and written in bytes, (d) total of data read and 
written in bytes, and the number of (e) writes and (f) reads 
to/from memory. 

All simulations were executed considering the four All 
simulations were performed considering the five following 
error scenarios: 

1. WithoutError – a straightforward scenario without 
bitflip occurrence; 

2. SingleBitflip – a minimum error occurrence scenario; 
3. One2Many – states a scenario with minimal 

occurrence of errors, and after a period, multiple 
errors occur; 

4. RandomNearError – a scenario with a random 
number of bitflips placed in a nearby neighborhood; 

5. RandomArbitratyError – describes a scenario with 
a random number of bitflips arbitrarily placed. 

The RandomNearError and RandomArbitratyError 
characteristics are detailed in Table II, according to the 

following: (α) probability of bitflips occurring during each 
clock; (β) interval containing the minimum and maximum 
numbers of bitflips that can occur during each clock period; 
(γ) range containing the minimum and maximum distances of 
the address of the next bitflip from the occurrence of the 
previous bitflip – the objective is to explore bitflips inside or 
outside the same word; (δ) range containing the minimum and 
maximum distances of the bitflip in the same memory address 
– the objective is to explore bitflips within a memory module 
(note that the same word is physically placed in more than one 
memory module); (ω) probability of the next bitflips occurring 
outside the intervals defined in (γ) and (δ). 

TABLE II – CHARACTERIZATION OF BITFLIP SCENARIOS. 

Scenario α β γ δ ω 

Bitflips in random places 0.2% [0, 2] - - 100% 

Bitflips in a nearby neighborhood 0.2% [0, 2] [0, 3] [1, 16] 0.2% 

 
Additionally, for each one of the five error scenarios, we 

verified situations without ECC (WE) and with Hamming 
(HM) and Reed Solomon (RS) codes. 

Table I produces results consistent with the ones explored 
on Google and Microsoft servers [1][5], opening opportunities 
for a vast behavior study of memory devices and memory 
controllers. Table I highlights two results: (i) the HM encoding 
increases the correct execution probability slightly, but it is not 
acceptable for critical applications, and (ii) the RS encoding 
can handle all the scenarios evaluated but with high energy 
consumption and memory area costs. Considering the above 
scenarios, one of the possibilities to increase the execution 
quality is to employ ECCs with different correction potentials 
according to the occurrence of errors in the memory module; 
the next section evaluates this approach. 

VI. MEMORY CONTROLLER ALTERNATIVE EXPLORATION 

As demonstrated in Section V, some applications do not 
finish the execution due to a bitflip error; one alternative to 
this issue could be to start reading and writing a more powerful 
ECC, like RS over HM when the first bitflip occurs. 

To reach this exploration, we implement the Double ECC 
Memory Controller (DEMC), using the architecture defined in 
Section III, having a RISC-V 32 Bits operating with a DDR4. 
DEMC stops to use HM and starts using RS when it finds any 
bitflip. The rightest bit of ECC identifies the encoding type 
used to write/read data (0: HM and 1:RS). 

TABLE I - SIMULATION SUMMARY. 

Benchmark information WithoutError SingleBitflip One2Many RandomNearError RandomArbitraryError 

# a b c d e f WE HM RS WE HM RS WE HM RS NºBF WE HM RS NºBF WE HM RS 

i 782 782 7038 738 656 208 

OK OK OK NOK OK OK NOK OK OK 

1 
OK OK 

OK 

4 
OK 

OK 

OK 

ii 4210 4210 37890 10766 1536 4546 10 9 

iii 225329 225329 2027961 1167094 43718 316652 334 NOK NOK 341 NOK 

iv 4183 4183 37647 9785 993 4936 10 OK OK 9 OK 

v 100949 100949 908541 219267 13897 127079 150 NOK NOK 153 NOK 

vi 678 678 6102 693 571 184 1 
OK OK 

4 
OK 

vii 1310 1310 11790 5114 347 1766 0 4 

viii 30622 30622 275598 137994 8206 43493 14 NOK NOK 50 NOK NOK 

ix 691 691 6219 792 581 178 1 

OK OK 

4 

OK 

OK 

x 3635 3635 32715 18166 1112 4542 9 8 

xi 34349 34349 309141 114747 8416 44570 52 76 

xii 2721 2721 24489 9351 859 2901 7 8 

xiii 1352 1352 12168 2456 635 1193 3 4 NOK 

xiv 3880 3880 34920 6256 1153 3994 9 9 

OK 

xv 1641 1641 14769 7092 371 2058 3 4 

xvi 8363 8363 75267 15525 2307 9022 207 205 

xvii 100949 105132 946188 228892 14890 131995 207 205 

xviii 8363 16729 150561 34855 4293 18884 210 219 

Legend:  –  “OK” and “NOK” means that the simulation finished without or with error, respectively 
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We evaluated this scenario using the ReadECC application 
with the configuration explained in Section III: 

• Use the NoFaultError to simulate 91.78% of the cases; 

• OneError to simulate approximately 8%; 

• MultipleErrors, which represents around 0.055%; 

• One2MultipleErrors, which represents about 0.16% of 
the multiple error scenarios, and 

• One2MultipleErrors with two applications running 
simultaneously over this environment. 

For the scenario without faults or with one bitflip, it was 
possible to run the program successfully for the three 
controllers. With one bit corrupted initially, followed by 
multiple errors, the DEMC and RS controllers were effective. 
For a scenario with multiple faults, only RS executed the 
program successfully; DEMC, having started with HM, could 
not correct the data but changed the ECC to RS, making the 
next application better protected as it is. 

Table III contains the synthesis of the results obtained with 
the number of reads and writes performed by the memory 
controller. 

TABLE III – ALTERNATIVE MEMORY CONTROLLER EXPLORATION. 

Scenario i ii. iii iv v 

HM 
Read 2400133 2400133 * 900094 * 900094 * 1800188 

Write 200180 200180 * 100178 * 100178 * 200356 

RS 
Read 2400133 2400133 2400133 2400133 4800266 

Write 200180 200180 200180 200180 400360 

DEMC 

HM Read 2400133 1369107 1369107 * 900094 ** 2268218 

HM Write 200180 200180 200180 * 100178 ** 2268218 

RS Read - 1031028 1031028 - ** 1032011 

RS Write - - - - - 

Legend: * application did not finish 
  ** only one application did not finish 

DEMC mitigates approximately 80% of the cases of 
multiple bitflips that previously had one corrupted bit, thus 
guaranteeing an increment of 0.17% more in the total 
probability of the application to continue executing, resulting 
in 99.956% of efficacy, as shown in Table IV. 

TABLE IV – MEMORY ERROR PROBABILITY. 

State Without ECC Hamming. DEMC Reed Solomon 

OK 91.780% 99.780% 99.956% ~99.999% 

Fail 8.220% 0.220% 0.044% ~0.001% 

 
DEMC demonstrates another benefit, greater efficiency 

and efficacy for 91.78% of the cases in which it is unnecessary 
to have a robust fault tolerance coding, ensuring lower energy 
consumption and latency, and a powerful and assertive coding 
for only the addresses with high error incidence. 

VII. CONCLUSION 

Fault tolerance strategies in memories have a significant 
impact on providing computational reliability to higher levels. 
Evaluating techniques in memory controllers is a challenge 
widely researched with a high time cost. Absimth facilitates 
the memory controller and ECC research in an era when main 
memory is undergoing rapid changes. 

This paper evaluates a wide range of scenarios with the 
Absimth tool based mainly on research from Google and 
Microsoft [1][5] and understands their behavior. With the 
understanding of these scenarios, it was possible to prototype 
a Double ECC Memory Controller (DEMC) with a slight 
alteration of the memory controller but with a significant 

impact on the error correction rate. 

The fast memory controller prototyping on Absimth 
enables much research and ideas evaluation before the 
hardware prototype and how the application will behave under 
this memory controller, such as the proposed DEMC. 

This work also introduces Absimth, a tool for building and 
simulating multiprocessor target architectures that access 
memory modules through memory controllers. The simulator 
enables some tools for performing injection error patterns and 
evaluating fault tolerance techniques with support for many 
ECC standards. 
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