
Microelectronics Reliability 128 (2022) 114444

Available online 13 December 2021
0026-2714/© 2021 Elsevier Ltd. All rights reserved.

New decoding techniques for modified product code used in 
critical applications 

David C.C. Freitas a,*, César Marcon b, Jarbas A.N. Silveira a, Lirida A.B. Naviner c, João C. 
M. Mota a 

a Federal University of Ceará, Fortaleza, CE, Brazil 
b Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, RS, Brazil 
c LTCI, Télécom Paris, Institut Polytechnique de Paris, 91128 Palaiseau, France   

A R T I C L E  I N F O   

Keywords: 
Error Correction Code (ECC) 
Fault tolerance 
Radiation effect 
ECC algorithms 

A B S T R A C T   

The shrinking of memory devices increased the probability of system failures due to the higher sensitivity to 
electromagnetic radiation. Critical memory systems employ fault-tolerant techniques like Error Correction Code 
(ECC) to mitigate these failures. This work explores error correction techniques and algorithms employing the 
Line Product Code (LPC), a product-like ECC. We propose to decode LPC codewords using a single error 
correction algorithm (AlgSE) followed by a double error correction algorithm (AlgDE). Both algorithms explore 
the LPC characteristics to attain greater decoding efficiency. AlgSE is implemented with an iterative technique 
associated with a correction heuristic, while AlgDE is an innovative proposal that allows increasing correction 
effectiveness through the inference of errors. AlgDE allows increasing the efficiency of the LPC decoder signif-
icantly when used together with AlgSE. It corrects 100% of the cases up to three bitflips as well as 98% and 92%, 
respectively, for four and five upsets in exhaustive tests. Besides, we present tradeoffs concerning the error 
correction potential versus the costs of implementing the correction algorithms.   

1. Introduction 

The continued miniaturization of electronic components allows 
adding many more features within the same Integrated Circuit (IC), 
providing higher performance and energy efficiency. As a result, the 
functional and non-functional requirements of several applications were 
implemented entirely within the same IC, known as System-on-Chip 
(SoC) [1]. These applications include critical safety systems, where a 
failure can lead to significant economic losses or damage to people or the 
environment [2]. The scaling down of the electronic components implies 
physical changes that make them more susceptible to failures due to 
electromagnetic radiation [3]. These failures studied almost 60 years 
ago [4–6] occur when high-energy alpha particles or neutrons collide 
with a device, changing the content of one or more cells permanently or 
transiently [7–10]. 

This work focuses on random transient errors, usually caused by 
Single Event Effects (SEEs), such as (i) Single Event Transient (SET), 
which changes the current or voltage of a combinational node; (ii) Single 

Event Upset (SEU), which changes the value of a memory cell; (iii) 
Multiple Cell Upsets (MCU), which changes the values of more than one 
memory cell. Multiple Bit Upsets (MBU) is an MCU, in which the affected 
memory cells belong to the same logical word; and (iv) SEFI (Single 
Event Function Interrupt) that produces an error in a unit affecting other 
components; e.g., an error that occurs in a memory control unit and 
affects several words in memory or even the entire system [11,12]. 

Several techniques mitigate failures in space applications, such as 
Hardened Memory Cell, Triple Modular Redundancy (TMR), and Error 
Correction Code (ECC). In hardened memory cells, parts of the original 
circuit are replaced by their hardened versions that are less susceptible 
to failure [7]. TMR uses three copies of the same information and uses a 
voter to decide the correct result [13,14]. In turn, ECCs use encoding and 
decoding algorithms to restore the correct data value, protecting data 
from faults occurring in memory cells or transmission channels [7]. 
Nowadays, one-dimensional ECCs fail to achieve the effectiveness 
needed to address the increasing number of bitflips caused by a single 
radiation event [15–18]. Consequently, n-dimensional ECCs have been 

* Corresponding author. 
E-mail addresses: davidciarlinifreitas@gmail.com (D.C.C. Freitas), cesar.marcon@pucrs.br (C. Marcon), lirida.naviner@telecom-paris.fr (L.A.B. Naviner), mota@ 

gtel.ufc.br (J.C.M. Mota).  

Contents lists available at ScienceDirect 

Microelectronics Reliability 

journal homepage: www.elsevier.com/locate/microrel 

https://doi.org/10.1016/j.microrel.2021.114444 
Received 5 January 2021; Received in revised form 25 October 2021; Accepted 1 December 2021   

mailto:davidciarlinifreitas@gmail.com
mailto:cesar.marcon@pucrs.br
mailto:lirida.naviner@telecom-paris.fr
mailto:mota@gtel.ufc.br
mailto:mota@gtel.ufc.br
www.sciencedirect.com/science/journal/00262714
https://www.elsevier.com/locate/microrel
https://doi.org/10.1016/j.microrel.2021.114444
https://doi.org/10.1016/j.microrel.2021.114444
https://doi.org/10.1016/j.microrel.2021.114444
http://crossmark.crossref.org/dialog/?doi=10.1016/j.microrel.2021.114444&domain=pdf


Microelectronics Reliability 128 (2022) 114444

2

proposed to provide higher error detection and correction power [16]. 
Gracia-Morán et al. [18] explain that these complex ECCs, build for use 
in critical applications, increase error correction and detection capacity 
but implying higher redundancy, area usage, energy consumption, and 
critical path delay [16]. This work focuses on Two-Dimensional (2D) 
ECCs, also called product codes, designed to protect memories used in 
critical applications like the space ones [18–24]. 

Section 2 presents a brief history of product codes, the state-of-the- 
art, and the product ECCs focusing on fault-tolerant memories used on 
space applications. Section 3 describes the capabilities of the Line 
Product Code (LPC), exploring its decoding algorithms and error 
correction techniques in detail. Section 4 shows the methodology 
adopted in this work to examine the potential of the proposed decoding 
algorithms and techniques. Sections 5 to 7 describe, respectively, the 
algorithm employed for Single Error (SE) correction, the correction 
technique with row-column correlation, and the Double Error (DE) 
correction method. Finally, Section 8 describes and discusses the 
experimental results used to validate the proposed algorithms and 
techniques. 

2. Related work 

Elias [25] introduced in 1954 the pioneering work in the product 
code area, proposing a simple and efficient way to build long codes 
based on smaller ones. Later, several authors proposed improving the 
product code performance, changing the encoder, decoder, or code 
structure. The algorithms presented in this work employ the iterative 
decoding of product codes, originally proposed in [25]. Alexey, Victor, 
and Eygene [26] report that the iterative decoder through rows and 
columns is the most used algorithm for product codes, as it has low 
complexity and can correct various error patterns. The iterative algo-
rithm decodes all columns in the matrix correcting errors with the ECC 
placed in each column; next, the algorithm makes the same on the 
matrix row. The algorithm is called iterative because it repeats these 
correction steps several times. Changuel, Bidan, and Pyndiah [27] 
describe the standard iterative decoder, which repeats the number of 
iterations in rows and columns until it cannot fix any more errors. The 
authors claim that this iterative decoder is effective, correcting error 
patterns with more bits than half the Hamming distance. 

Li, Miao, and Wang [28] proposed an encoding scheme using Turbo 
Product Code (TPC) for reducing transmission latency and improving 
the bit error rate. Zhou and Li [29] proposed a parallel TPC decoder 
based on GPU that simultaneously decodes all rows and columns of the 
two-dimensional matrix of the product code. The experimental results 
show that the decoding latency is significantly reduced compared to the 
TPC decoder based on a conventional CPU. Lopacinski et al. [30] pro-
posed a new concept that uses vertical and horizontal Bose-Chaudhuri- 
Hocquenghem (BCH) codewords to increase the TPC decoder effec-
tiveness. Swaminathan, Madhukumar, and Guohua [31] presented new 
algorithms for estimating two-dimensional parameters of the product 
codes BCH and Reed-Solomon on noisy channel conditions. The exper-
imental results showed that the proposed code is more effective than 
BCH with an area overhead. Senger [32] described an iterative decoding 
algorithm for product codes based on Reed-Solomon, which performs 
better than the classic method without adding significant complexity. 
Guo et al. [33] proposed the Decimal Matrix Code (DMC) that detects 
and corrects errors by adding and subtracting decimal integers. The 
DMC matrix structure is divided into eight four-bit symbols checked 
throughout vertical parity bits and horizontal check bits, containing the 
decimal result. 

Khittiwitchayakul, Phakphisut, and Supnithi [34] introduced two 
Weighted Bit-Flipping (WBF) decoding algorithms for the Low-Density 
Parity-Check (LDPC) product code; the authors use the Page-WBF and 
Row-Column-WBF algorithms to evaluate tradeoffs in error correction 
capacity and implementation complexity. Jeong and Lee [35] [36] 
proposed a product code using LDPC to improve the performance of a 

magnetic storage system, reaching effectiveness for random and burst 
error scenarios. Erozan and Çavuş [15] proposed 2D ECC based on 
Euclidian Geometry-LDPC and single parity check bits to reach high 
error correction levels. Arslan et al. [37] introduced a product code for 
transferring data from specific storage media. ECCs are placed in the 
headers of these transfers, allowing errors to be detected or corrected. 

Sheikh, Amat, and Liva [38] proposed the iterative Bounded Dis-
tance Decoding with scalable reliability (iBDD-SR) algorithm for prod-
uct codes to improve performance with low complexity increase; 
experiments using LDPC and BCH show the efficacy of the proposed 
algorithm for high-transfer rate applications. Li, Lin, and Wang [39] 
proposed the Soft-Assisted-iBDD to improve the iBDD algorithm; they 
presented a voting strategy to assess whether a codeword should be 
corrected. This proposal enhances decoding performance without 
significantly increasing complexity and requiring extra memory. Cos-
kun, Jerkovits, and Liva [40] investigated the Successive Cancellation 
List decoding of product codes with single parity-check and extended 
Hamming for product codes used on wireless communication systems. 

Sheikh et al. [41] proposed to improve the iBDD algorithm with the 
iterative Generalized Minimum Distance (iGMD) with scaled reliability 
decoding algorithm, which is more effective than its predecessor with a 
small complexity increase. To increase the decoding efficiency, Sheikh, 
Amat, and Liva [42] propose Binary Message Passing-GMD Decoding 
(BMP-GMDD), a new algorithm for decoding product codes based on 
iGMD that uses the Hamming distance metric in the last stage. 

Liu et al. [43] introduced a technique to improve the reliability of 
product code encoders and decoders that detects errors based on the 
parity forecast. Li et al. [44] described a method for reducing the 
number of parity bits in a product code. The method also reduces the 
MCU memory probability due to fewer redundancy cells. Tawfeek, 
Mahran, and Abdel-Hamid [45] proposed a new ending criterion in the 
iterative decoding of product codes based on the reliability limit; the 
purpose of this criterion is to prevent the iterative nature of decoding 
from increasing computational latency and complexity. Condo et al. 
[46] proposed a decoder for polar code in a matrix format that uses two 
steps to reduce the decoding latency. Yang et al. [47] used a product 
code in NAND Flash to avoid retention errors and program interference 
errors. The proposal uses a linear block code for parity check on rows 
and columns. 

Some works on product codes focus on correcting errors in space 
application memories [19–24]. In 2007, Argyrides et al. [48] published 
the Matrix code, a 2D ECC with 16 data bits and 16 redundancy bits for 
correcting bitflips in space applications with Hamming check bits in 
rows and parity bits in columns. Four years later, the same authors [49] 
improved Matrix to a 32-bit code, obtaining about 100 citations in both 
works and making Matrix ECC a reference in this field. Several other 
authors based on [48,49] develop advances in the area, as Freitas et al. 
[19], that introduced the Product Code for Space Applications (PCoSA), 
which applies extended Hamming in rows and columns. PCoSA corrects 
any three bitflips and achieves high correction rates for up to five upsets. 
Silva et al. [20] proposed the Matrix Region Section Code (MRSC) for 
detecting and correcting MBUs in volatile memories with a low imple-
mentation cost. These same authors [21] extended the basic MRSC to a 
32-bit data format, employing a technique to reduce the number of 
redundancy bits with high reliability and low implementation cost. 
Castro et al. [22] introduced the Column-line-Code (CLC), a product 
code with a high MCU-correction rate, considering the costs of area, 
energy, and delays. Silva et al. [23] extended the CLC to a format sup-
porting an additional correction operation called the CLC-extended, 
reaching high correction rates with more complex MCU patterns. Gra-
cia-Morán et al. [18] discussed the tradeoffs between the encoding/ 
decoding costs and correction capacity, displaying low redundancy 
ECCs, capable of correcting MCUs with reduced delay and area and 
power consumptions. Finally, Magalhães, Alcântara, and Silveira [24] 
introduced the Parity Hamming Interleaved Correction Code (PHICC), 
an ECC product that achieves a fair correction rate with a minimal 

D.C.C. Freitas et al.                                                                                                                                                                                                                            



Microelectronics Reliability 128 (2022) 114444

3

additional implementation cost. 
As the miniaturization of electronic devices is a determining factor 

for increasing memory bitflips during space applications, this work 
proposes to increase the error correction efficacy of a 16-bit data ECC 
using the same structure and base codes already known. We introduce 
LPC, a modified product code with a mixed decoding approach, 
composed of an iterative simple error correction algorithm (AlgSE), 
followed by a DE correction algorithm (AlgDE). The main originality of 
AlgSE is to carry out a preliminary analysis of the number of SEs in the 
rows and columns to apply correction heuristics. AlgDE is an original 
proposal for increasing the error correction efficacy through error 
inference. 

3. Theoretical foundations of Hamming code and line product 
code (LPC) 

Fig. 1 generalizes the linear code structure proposed by R. Hamming 
[50], which is referenced by Ham(n, k). Eqs. (1), (2), and (3) describe the 
relations among n, r, and k, the numbers of bits of the codeword, data, 
and redundancy, respectively. 

The Minimum Hamming Distance (MD) is the smallest number of bit 
changes required to pass from any codeword to any other codeword. MD 
is a metric used to measure the code capacity in correcting and detecting 
errors. Eqs. (4) and (5) calculate the maximum number of errors in any 
codeword position that a Hamming-based code can correct EC or detect 
EC [51], respectively. 

EC = ⌊
MD − 1

2
⌋ (4)  

ED = MD − 1 (5) 

Eqs. (4) and (5) are exclusives, i.e., EC or ED, but not EC and ED 
simultaneously. The simultaneity relationship among EC, ED, and MD is 
given by Eq. (6) (further details in [52]). 

ED = MD − EC − 1 (6) 

The basic Hamming code has MD=3, so it can correct a SE (i.e., 
EC=1) or detect an error caused by a double bitflip without knowing 
whether this error has a SE or DE source. The extended Hamming adds a 
parity bit into the basic Hamming code, increasing MD to 4. Eqs. (4) and 
(6) show that extended Hamming can correct a SE and detect a DE 
simultaneously, i.e., an SEC-DED code [53]. 

A product code is the combination of two linear codes C1(n1, k1) and 
C2(n2, k2), which is denoted by C1C2 [53]. A product code applies two 
sets of check bits on the same data field; additionally, it employs check 
on check bits, increasing the correction and detection capacity [53]. 
However, this large code also implies a significant increase in the 
Redundancy Rate (RR), i.e., the relation between the number of 
redundancy bits and the total number of codeword bits. 

LPC is a modified product code whose MD depends on the composition 
of the MDs of each linear code C1 and C2, as described by Eq. (7). LPC 
was designed to enforce fault-tolerance on data bits only, as check and 
parity can be recalculated from the data bits; thus, this code does not 
implement checks on check bits, reaching a high correction rate while 
reducing the RR. 

MDC1C2 = MDC1 +MDC2 − 1 (7) 

LPC has the same linearity as the product code; thus, the LPC 
encoding can respect the format C1, followed by C2, or vice versa 
[51,54]. Fig. 2 illustrates the LPC generic structure composed by two 
symmetric Ham(8, 4) codes; i.e., C1=C2, and n1=n2=8, k1=k2=4 and 
r1=r2=4. Additionally, LPC adopts even parity so that the total of 1 s in 
the codeword is even, including the additional parity bit [55]. 

Eq. (7) shows that the LPC has MD = 7 since it implements Ham(8, 4) 
as C1 and C2 that have MD = 4. The logical reason for MD=7 lies in the 
LPC organization implying that rows and columns always cross in one, 
and only one, data bit; a bitflip in one data bit implies varying three 
other bits in the column, and three other bits in the row since rows and 
columns use Ham(8, 4), which has MD = 4. Additionally, Eqs. (4) and (6) 
show that LPC can correct 3 errors (EC = 3) and detect 3 errors (ED = 3). 
Besides, LPC can correct even more errors, depending on their location. 

Fig. 3 shows LPC in a (48, 16) format - 48 bits encode 16 data bits (D), 
12 row-check bits (Cr), 4 row-parity bits (Pr) 12 column-check bits (Cc), 
and 4 column-parity bits (Pc). 

Let q be a bit position index and ⊕ be an XOR operation, then Eqs. (8) 
to (10) and (11) to (13) compute the recalculated check bits of rows (Ĉr) 
and columns (Ĉc), respectively. Additionally, Eqs. (14) and (15) 
compute the recalculated parity bits of rows (P̂r) and columns (P̂c), 
respectively. 

Ĉrq,0 = Dq,1 ⊕ Dq,2 ⊕ Dq,3 ∀0 ≤ q ≤ 3 (8)  

Ĉrq,1 = Dq,0 ⊕ Dq,2 ⊕ Dq,3 ∀0 ≤ q ≤ 3 (9)  

Ĉrq,2 = Dq,0 ⊕ Dq,1 ⊕ Dq,3 ∀0 ≤ q ≤ 3 (10)  

Ĉc0,q = D1,q ⊕ D2,q ⊕ D3,q ∀0 ≤ q ≤ 3 (11)  

Ĉc1,q = D0,q ⊕ D2,q ⊕ D3,q ∀0 ≤ q ≤ 3 (12)  

Ĉc2,q = D0,q ⊕ D1,q ⊕ D3,q ∀0 ≤ q ≤ 3 (13)  

P̂rq = Dq,0 ⊕ Dq,1 ⊕ Dq,2 ⊕ Dq,3 ⊕ Crq,0 ⊕ Crq,1 ⊕ Crq,2 ∀0 ≤ q ≤ 3 (14)  

... ...

Fig. 1. Representation of a generic Hamming code Ham(n, k); k and r are the 
numbers of data and redundancy bits, respectively. 
n = r+ k (1)  

r = log2(n+ 1) (2)  

k = 2r − r − 1 (3)    

Row 
check 
bits

Data
bits rP

ar
ity

cParity

Column 
check 
bits rParity and cParity are 

row and column parity 
bits, respec�vely

Fig. 2. Generic representation of the LPC structure.  

D.C.C. Freitas et al.                                                                                                                                                                                                                            



Microelectronics Reliability 128 (2022) 114444

4

P̂cq = D0,q ⊕ D1,q ⊕ D2,q ⊕ D3,q ⊕ Cc0,q ⊕ Cc1,q ⊕ Cc2,q ∀0 ≤ q ≤ 3 (15) 

Eqs. (16) to (19) compute the syndromes of each row and column, 
which are used to verify if the check bits calculated during the LPC 
encoding are equal to the ones recalculated by the LPC decoding; thus, 
enabling us to detect bitflips. 

sCrq,k = Crq,k ⊕ Ĉrq,k
∀0 ≤ q ≤ 3
∀0 ≤ k ≤ 2 (16)  

sPrq = Prq ⊕ P̂rq ∀0 ≤ q ≤ 3 (17)  

sCck,q = Cck,q ⊕ Ĉck,q
∀0 ≤ q ≤ 3
∀0 ≤ k ≤ 2 (18)  

sPcq = Pcq ⊕ P̂cq ∀0 ≤ q ≤ 3 (19) 

Eqs. (20) and (21) describe the computations of sCRq and sCCq, which 
are achieved by applying a logical OR in the check-bit syndromes of the 
rows and columns, respectively. 

sCrq = sCrq,0 OR sCrq,1 OR sCrq,2 ∀0 ≤ q ≤ 3 (20)  

sCcq = sCc0,q OR sCc1,q OR sCc2,q ∀0 ≤ q ≤ 3 (21) 

Table 1 shows that sCrq and sCcq, together with sPrq and sPcq, are 
used to analyze whether the decoded data contains errors and the type of 
error that has been detected. For each row and column q, a SE is rep-
resented by SErq and SEcq, respectively; similarly, a DE is denoted by 
DErq and DEcq. 

Once an SE is detected, the row and column error positions are ob-
tained by combining the weights of the check-bit syndromes. Eqs. (22) 
and (23) describe the error addresses in the row and column q, 
respectively. 

EArq = 4× sCrq,0 + 2× sCrq,1 + sCrq,2 ∀0 ≤ q ≤ 3 (22)  

EAcq = 4× sCc0,q + 2× sCc1,q + sCc2,q ∀0 ≤ q ≤ 3 (23)  

4. Applied methodology 

Fig. 4 illustrates the main aspects of the work methodology to 
explore the error correction effectiveness achieved by LPC decoding 

algorithms. The research axis A1 proposes to perform the LPC decoding 
with two successive algorithms, an algorithm that corrects SEs (AlgSE) 
and another one that corrects DEs (AlgDE); the structure of the modified 
product code results in lines and columns crossing, which allows using 
DE detection information to infer errors occurring in these crossings, 
increasing the correction power. 

This work employs 16-bit data encoded with LPC and stored in a 
memory in codewords of 48-bit format. Each data reading implies using 
an LPC decoding process over codeword1. Initially, AlgSE decodes 
codeword1, which was extracted from a memory containing LPC- 
encoded data. AlgSE corrects the SEs of codeword1, generating the 
output data1 and the codeword2, which is an input to AlgDE that uses the 
error address provided by Hamming coding to infer DE combinations. 
Finally, AlgDE produces the output data2, which contains fewer or equal 
errors than the output data1. 

Correcting an error placed on a row/column a of the data area 
changes the coding of the column/row b that crosses with the row/ 
column a. This interdependence allows reducing the number of errors in 
the corresponding column/row b, enabling to compute a new Hamming 
coding for exploring novel error corrections. This logical reasoning, 
illustrated in axis A2, led to the exploration of an AlgSE that performs 
consecutive interlaced row/column loops. The goal is to identify the 
maximum number of loops after which an AlgSE can no longer correct 
SEs or the number of errors corrected is insignificant compared to the 
total number of errors. 

The A3 research axis explores the algorithm efficacy when the error 
correction procedure is performed only to the data bits and applied to all 
codeword bits (i.e., data, check, and parity). Besides, the modified 
product code allows us to verify the rows/columns that cross the errors 
occurring in the data area and decide whether the correction should be 
made from this analysis. 

All experiments have a codeword as input produced by the LPC 
coding algorithm. This codeword is changed according to synthetic error 
patterns, enabling the analysis of the correctness of the proposed tech-
niques. The data corrected by the LPC decoder is obtained from the 
AlgSE and AlgDE outputs. Additionally, we implemented versions of 
AlgSE and AlgDE to analyze tradeoffs about the ability to correct versus 
the implementation cost. 

5. Correction technique correlating row-column 

While Ham(8, 4) allows fixing the data and check bits with the same 
efficacy, the way it is used in the LPC affects the error correction rate. 
The LPC matrix format enables to cross row and column data and choose 
fixing errors based on this information. Besides, as the LPC decoder fo-
cuses on the data correction, it is possible to decide whether to correct 
errors in the redundancy bits; this decision increases the data correction 
ability in a subsequent step of the decoder. 

D0,0
D1,0
D2,0
D3,0

Cr0,0
Cr1,1

Cr2,2

Pr0D0,1
D1,1
D2,1
D3,1

Cr0,1
Cr1,2

Cr3,0

Pr1
D0,2
D1,2
D2,2
D3,2

Cr0,2

Cr2,0
Cr3,1

Pr2

D0,3
D1,3
D2,3
D3,3

Cr1,0
Cr2,1

Cr3,2 Pr3
Cc0,0
Cc1,0
Cc2,0
Pc0

Cc0,1
Cc1,1
Cc2,1
Pc1

Cc0,2
Cc1,2
Cc2,2
Pc2

Cc3
Cc1,3
Cc2,3
Pc3

Fig. 3. LPC(48, 16) structure encompassing five regions: data (D), row-check 
(Cr), column-check (Cc), row-parity (Pr), and column-parity (Pc). 

Table 1 
Meaning of the combinations of the syndrome bits.  

sC sP Error detection 

0  0 None – or a possible quadruple error 
0  1 Parity bit – or a possible triple error 
1  0 Even error – a possible Double Error (DE) 
1  1 Odd error – a possible Single Error (SE) 

(sC, sP) are the tuples (sCrq, sPrq) or (sCcq, sPcq) ∀0 ≤ q ≤ 3. 

A1

A3

A2

Codeword1
(48-bit) LPC encoding

SE Correc�on Algorithm (AlgSE)

AlgDE

DE Correc�on 
Algorithm (AlgDE)

LPC decoding

AlgSE0 AlgSE1 AlgSE2 AlgSE3

DCO DRC DCOC DRCC

Codeword2
(48-bit)

Output data1
(16-bit)

Output data2
(16-bit)

MEMreading

Data0Data1. . .DataN-1DataN

Input data (16-bit)

Fig. 4. Methodology applied to LPC decoding.  

D.C.C. Freitas et al.                                                                                                                                                                                                                            



Microelectronics Reliability 128 (2022) 114444

5

This work implemented and analyzed four error correction tech-
niques applied to AlgSE, which use Ham(8, 4) and rows and columns 
correlation: Data Correction Only (DCO), Data and Redundancy bits 
Correction (DRC), Data Correction Only with Crosscheck (DCOC) and 
Data and Redundancy bits Correction with Crosscheck (DRCC). 

The decoder fixes only the data bits pointed out by the check-bit 
syndromes (i.e., Eqs. (22) and (23)) when applying the DCO tech-
nique; thus, instead of correcting the check and parity bits, they are 
recalculated from the data. 

The DRC technique enables the decoder to correct data, check, or 
parity bits depending on the error address pointed out by the check and 
parity syndromes. 

The decoder corrects data, check, or parity bits pointed by the check 
and parity syndrome bits when using the DRCC technique; however, the 
data bits are only corrected if there is a corresponding row/column 
informing the existence of some error. To correct an error in a row/ 
column, the decoder checks through the SE and DE control variables if 
there is any bit with an error within the corresponding column/line, 
“independent” of this error position. 

The decoder implementing the DCOC technique corrects only the 
data bits and only when the corresponding row/column indicates an 
error. Table 2 summarizes the correction region and whether there is 
crosscheck verification of all AlgSE correction techniques. 

6. Single error correction algorithm - AlgSE 

AlgSE applies SE corrections of type Ham(8, 4) for rows and columns; 
this correction starts recalculating the check and parity bits (Ĉr, Ĉc, P̂r, 
P̂c) using Eqs. (8) to (15), and with these values and the input codeword, 
Eqs. (16) to (19) calculate the syndromes. The Control bits calculation box 
of Fig. 5 implements the set of calculus described above. 

SEs can be corrected iteratively by applying Hamming first on rows 
and then on columns, or vice-versa. We assessed several alternatives 
combining the number of successive errors on column or row correc-
tions. Our experiments demonstrated that AlgSE is more effective when 
starting the error correction for the set (i.e., rows or columns) with the 
highest number of SEs followed by one correction with the other set (i.e., 
rows followed by column or vice-versa). Therefore, AlgSE performs a 
heuristic that decides the correction order using the SEr and SEc vari-
ables, calculated by Eqs. (24) and (25), respectively. 

SEr =
∑3

q=0
SErq (24)  

SEc =
∑3

q=0
SEcq (25) 

If SEc = SEr = 0, the algorithm considers that no SE was detected and 
ends the codeword decoding. Otherwise, AlgSE executes a loop sequence 
controlled by the cont counter. Each algorithm loop corrects first col-
umns and then rows if SEc ≥ SEr, or the opposite when SEc < SEr. 
Corrections to columns and rows occur in the Apply Hamming on col-
umns/rows boxes. 

The experiments used in this work explore up to 4 iterations through 
a sequence of column/row error corrections; because the LPC organi-
zation containing 4 rows and 4 columns does not allow a SE pattern 

needing more than 4 correction passages. 
Fig. 6(a) shows a pattern with 7 SEs in the data area. Fig. 6(b) shows 

these same errors with the corresponding control variables indicating 
whether the algorithm detects an SE or DE in each row and column. The 
double arrows show whether the correction refers to the row or column, 
and the arrow number describes the sequence of correction steps. 

Fig. 6(b) shows that the execution of the method Apply Hamming on 
columns box on steps 1 allows correcting D0, 2. Next, Fig. 6(c) displays 
that the execution of the Control bits calculation box produces two SEs 
(D0, 0 and D1, 1) on rows, which are corrected executing Apply Hamming 
on rows box. Subsequently, AlgSE starts a new loop recomputing SEr and 
SEc variables. Once again, SEc ≥ SEr, thus, Fig. 6(d) illustrates that 
AlgSE applies Hamming on columns to fix bits D3, 0 and D2, 1 in step 3. 
Finally, Fig. 6(d) shows that the control bits are recalculated, resulting in 
two SEs in rows (D2, 3 and D3, 3) that are corrected executing Apply 
Hamming on rows. AlgSE starts the last loop recomputing SEr and SEc 
variables. At this moment, Fig. 6(f) shows that this error pattern was 
entirely correct; thus, SEr = SEc = 0 forcing to stop the AlgSE execution. 

The cont < N test defines the number of loops to be executed by the 
algorithm. The name of the algorithm illustrated in Fig. 4 is associated 
with N; i.e., AlgSE0, …, AlgSE3 correspond to N = 0, …, 3, respectively. 
Any AlgSE greater or equal than AlgSE1 could correct the error pattern 
scenario illustrated in Fig. 6(a). 

The AlgSE loop technique can be done automatically if the algorithm 
evaluates the number of loops needed to correct each pattern dynami-
cally. This evaluation can be done by checking if at least one error 
correction was performed after each loop, and the algorithm ends if 
there are no more error corrections. However, this type of exploration is 
not the focus of this work. 

Table 2 
Crosscheck and correction regions of the AlgSE correction techniques.  

Technique Correction Crosscheck verification 

Data bits Data + check bits 

DCO X   
DRC  X  
DCOC X  X 
DRCC  X X  

Stop

Start

SEr and SEc 
computa�on 

SEr = 0
SEc = 0

n

y

cont++

cont < N

n

y

SEc ≥ SEr
y n

Control bits 
calcula�on

Control bits 
calcula�on

Control bits 
calcula�on

Control bits 
calcula�on

Apply Hamming on 
columns

Apply Hamming on 
rows

Control bits 
calcula�on

Apply Hamming on 
rows

Apply Hamming on 
columns

cont=0

Fig. 5. High-level description of AlgSE.  

D.C.C. Freitas et al.                                                                                                                                                                                                                            



Microelectronics Reliability 128 (2022) 114444

6

7. Double error correction strategy 

The DE correction makes a cross-analysis of DEs detected in rows and 
columns, increasing the ability to correct data in a product code. This 
technique is based on the LPC matrix format, which checks all data bits 
using Ham(8, 4) arranged in columns and rows. While Ham(8, 4) is a 
SECDED code, the rows and columns crossing allows inferring DEs by 
the majority analysis of the error events.  

A. Technique description 

The correction technique analyzes all DE combinations with the 
corresponding error values obtained by the syndrome computation. 
Each DE combination produces a one-bit codeword address that the 
syndromes would point to as the cause of a SE. Although this address 
does not point to the real source of the error, it is used to associate 
groups of DEs. 

The extended Hamming code does not employ the parity bit in the 
error-bit address calculation; thus, although Ham(8, 4) consists of 8 bits, 

only 7 bits are used, resulting in 21 combinations of DEs 
(

7
2

)

. The 

syndromes produce 7 error addresses computed by Eqs. (22) and (23), 
with DEs being homogeneously distributed in 21 combinations, so each 
address corresponds to 3 DEs. For example, address 1 is produced 
whenever there are DEs described in the following three tuples: (D2,D3), 
(D0,C1) and (D1,C0). Fig. 7 partially shows the 21 DE combinations, 

with the corresponding syndromes and the reference address for each 
combination. 

Fig. 7 does not show the parity bits of the recalculated codeword and 
the syndrome fields to emphasize only the combinatorial analysis. 
However, it is essential to note that no error tuple changes the recal-
culated parity bits, as they are only DEs; thus, the parity syndromes are 
zeroed. For each codeword, the OR-logic of the verification syndrome 
bits results in one (Eqs. (20) and (21)), and the parity syndrome is zero, 
indicating the DE presence (refer to Table 1). 

Table 3 displays the 21 combinations, shown in Fig. 7, grouped in 
sets of three tuples. Table 3 also shows the address used to reference the 
bitflip in the case of SE correction.  

B. Description of the DE correction algorithm - AlgDE 

Fig. 8 illustrates that AlgDE encompasses two steps. The first step 
contains two nested loops (between lines 5 and 37) used to fill the data 
matrix, which points out the bits of the data area where the DEs may 
have occurred. The second step contains two other nested loops (be-
tween lines 38 and 43) that invert the data bits identified as DE in the 
data matrix. 

AlgDE has, as inputs, the EAr and EAc integer vectors (Eqs. (22) and 
(23)), the Boolean vectors DEr and DEc, and the tab matrix, which is 
constructed from the logic described in Table 3, as illustrated in Fig. 9. 
Additionally, the algorithm can read/write from/in the decWord matrix 
that contains the data in the LPC format. 

AlgDE starts by zeroing the data matrix, which has the same size as 
the LPC data area; the redundancy bits are not part of this matrix, as only 
the data region is double-checked. 

The outermost loop of the first step controls the correction of the DEs 
detected in the rows (rc = 0) and, later, in the columns (rc = 1), using the 
variable rc in all decisions corresponding to the row or column. The 
innermost loop runs through the four rows or four columns of the data 
matrix. The variable vDE informs that rows or columns are analyzed 

SE
DE

X
X

X

SE
0

2
1

3

0 1 2 3 DE

(f)
X

X
X

X

SE

SE

0

2
1

3

0 1 2 3

XDE

X
X

DE

(e)

X

X

XX
X

X

X
X

X

SE

SE

0

2
1

3

0 1 2 3

X X XDE

X

X
X

DE

(b)
1

2

X
X X

X
X X

SE

SE

0

2
1

3

0 1 2 3

X X XDE

X
X

DE

(d)
3

X

X

XX
X

X

X
X

SE

SE

0

2
1

3

0 1 2 3

X X XDE

X

X
X

DE

(c)

X

X

X
X

X

X
X

0

2
1

3

0 1 2 3

(a)

4

Fig. 6. Example of SE correction in the data area obtained through consecutive AlgSE loops. The check and parity bits did not contain errors and were omitted to 
avoid overloading the figure. 

Co
m

b. Codeword Recomp. Syndromes Double 
errorD0 D1 D2 D3 C0 C1 C2 C0 C1 C2 sC0 sC1 sC2 EA

1 E E E 0 0 1 1 D2 D3
2 E E E E 0 0 1 1 D0 C1
3 E E E E 0 0 1 1 D1 C0
4 E E E 0 1 0 2 D1 D3
5 E E E E 0 1 0 2 D0 C2
6 E E E E 0 1 0 2 D2 C0

...
19 E E E E 1 1 1 7 D0 C0
20 E E E E 1 1 1 7 D1 C1
21 E E E E 1 1 1 7 D2 C2

3 5 6 7 4 2 1
Error address (EA)

Legend: symbol ‘E’ represents an error in a bit within the codeword.

Fig. 7. DE combinations for Ham(8, 4). The parity bit is not represented, as it is 
not used to calculate the reference address, which is limited to 21 combina-

tions 
(

7
2

)

. 

Table 3 
The 21 combinations of DEs grouped according to the address produced by the 
check-bit syndromes.  

Address Single error Double errors 

1 C2 D2, D3 D0, C1 D1, C0 
2 C1 D1, D3 D0, C2 D2, C0 
3 D0 D1, D2 D3, C0 C1, C2 
4 C0 D0, D3 D1, C2 D2, C1 
5 D1 D0, D2 D3, C1 C0, C2 
6 D2 D0, D1 D3, C2 C0, C1 
7 D3 D0, C0 D1, C1 D2, C2  

D.C.C. Freitas et al.                                                                                                                                                                                                                            



Microelectronics Reliability 128 (2022) 114444

7

only if there is a DE. In case of an error, the add variable receives the 
address that identifies the DE in the row or column. The add variable is 
decremented from 1 to point to the first index of the tab matrix (see the 

relationship of the Address column to the tab indexes in Fig. 9). 
The variables b1 and b2 receive the first and second elements of the 

error tuples associated with the second index of the tab matrix; this 
second level has dimension 3, implying that the loop between lines 11 
and 29 is executed three times. The DE pointed in a row is checked with 
the corresponding columns that must also point to a DE; if so, e1 and/or 
e2 receive 1. However, this check is not performed when b1 or b2 points 
to a redundancy bit (i.e., b1 ≥ 4 or b2 ≥ 4) since LPC does not double- 
check redundancies. 

Lines 21 and 25 increment the positions equivalent to each tuple 
element in the data matrix for any valid error tuple. The goal is to get the 
data matrix to indicate the correct DE combination by crossing rows and 
columns. If there is a DE in the data, the data matrix will have at least 
one bit incremented twice due to the passage through the rows and 
columns, resulting in a cell with value 2. The combinations (C1,C2), (C0, 
C2), and (C0,C1), described in lines 3, 5, and 6 of Table 3, respectively, 
have only check bits. Thus, these combinations do not change the data 
matrix; they are placed in the tab matrix only for the logical complete-
ness of the matrix. 

AlgDE uses the variable expt to catch an exception when the variable 
vDE informs that there is a DE in a row/column, but there is no indi-
cation of this DE in the corresponding column/row. This exception 
happens when DE is a combination of the parity bit and a data or check 
bit. AlgDE considers only the parity and data bits combinations since the 
code correction is done only in the data area. If the loop execution be-
tween lines 11 and 29 does not produce at least one DE entry, lines 22 
and 26 will not be executed, keeping expt at 0; thus, the algorithm de-
duces that the DE was related to the parity, causing the data associated 
with the parity bit to be increased in the data matrix (line 33). Line 31 
associates the address of each data with the address obtained in the EAr 
or EAc vector. In this case, the address of the DE is the same as the 
address of an SE since the parity bit does not change EAr or EAc; i.e., add 
equal 3, 5, 6, and 7 means data bits D0, D1, D2 and D3, respectively. 

Instead of using an exception mechanism, the tab matrix could have 
dimensions [7,4,2], making each address have four possible DE combi-
nations instead of just 3. However, the analysis performed within the 
AlgDE execution showed that the number of errors fixed was higher 
when using an exception mechanism. By increasing the number of valid 
combinations, the number of false DEs also increased, reducing the ef-
ficacy of the algorithm. 

AlgDE finishes by performing the second step, which makes a nested 
double loop changing all the positions of the codeword that had a double 
increment in the data matrix.  

C. AlgDE application examples 

Fig. 10 to Fig. 12 exemplify three scenarios containing several types 

Fig. 8. Pseudo-code of the DE correction algorithm - AlgDE.  

0
0 1 2

2 3 0 5 1 410 10 10

1
0 1 2

1 3 0 6 2 410 10 10

2
0 1 2

1 3 3 4 5 610 10 10

3
0 1 2

0 3 1 5 2 510 10 10

4
0 1 2

0 2 3 5 4 610 10 10

5
0 1 2

0 1 3 6 4 510 10 10

6
0 1 2

0 4 1 5 2 610 10 10

tab[7][3][2]

Double errors Address

D2, D3 D0, C1 D1, C0 1

D1, D3 D0, C2 D2, C0 2

D1, D2 D3, C0 C1, C2 3

D0, D3 D1, C2 D2, C1 4

D0, D2 D3, C1 C0, C2 5

D0, D1 D3, C2 C0, C1 6

D0, C0 D1, C1 D2, C2 7

Fig. 9. Composition of the tab matrix from Table 3.  

D0 D1 D2 D3 Cr0 Cr1 Cr2 sCr0 sCr1 sCr2 EAr DEr
D0 E E 1 1 6 1
D1 E E 1 1 6 1
D2
D3
Cc0 D0 D1 D2 D3 Cr0Cr1Cr2

D0 2 2 1 1
D1 2 2 1 1
D2
D3
Cc0 1 1

LPCCc1 1 1
Cc2

Cc1
Cc2
sCc0 1 1
sCc1 1 1
sCc2
EAc 6 6
DEc 1 1

Fig. 10. Scenario containing four bitflips that generate four DEs annotated in 
the row control variables (DEr) and columns (DEc). A rectangle with double 
edges represents the data matrix. 

D.C.C. Freitas et al.                                                                                                                                                                                                                            



Microelectronics Reliability 128 (2022) 114444

8

of DEs with the related syndromes (sC0, sC1, sC2), DE control signals 
(DEr and DEc), as well as addresses regarding the computed error (EAr 
and EAc). The lower right rectangle of each figure depicts the structure 
of the LPC code with the data matrix computation; additionally, the 
areas referring to the check bits are presented, although they are not 
present within AlgDE, to show the computed error tuples. For easy 
viewing, cells with a value of 0 are shown without content. 

Fig. 10 contains only DEs with address 6, indicating that the error 
tuples are (D0,D1), (D3,C2), and (C0,C1). The execution of AlgDE ver-
ifies that the pair (D3,C2) cannot be a source of DE since the column and 
the row associated with D3 have vDE = 0. Therefore, only the tuples 
(D0,D1) and (C0,C1) could be the source of DE. Since the redundancy 
bits are not double-checked, only the pair (D0,D1) is incremented in the 
data matrix. Consequently, at the end of the first step, the data matrix 
will have only the bits that had an error noted with the value 2, allowing 
the second step of AlgDE to invert these four bits, correcting the entire 
data area. 

Fig. 11 illustrates three columns and three rows with DEs; i.e., only 
the row associated with D3 and the column associated with D1 are 
correct. These lines are used to reduce the possibility of valid error 
tuples. Thus, address 4 for the first line indicates that only the tuples 
(D0,D3) and (D2,C1) are valid, while the tuple (D1,C2) is not valid. A 
similar situation occurs with address one on the line, which invalidates 
the tuple (D1,C0), and with addresses 5, 3, and 6 in the columns, where 
the tuples (D3,C1), (D3,C0), and (D3,C2), respectively, are not valid. 
After only increasing the cells referring to the valid tuples, the data 
matrix has a set of cells with a value of 2, another with a value of 1, and 
the rest with a value of 0 (cells without content). Again, the final step of 
AlgDE can correctly invert all the DEs contained in the data, reaching 
100% efficiency in correction and errors. 

The error scenario of Fig. 12 contains DEs in data and redundancy 
bits, as well as SEs in some redundancy bits. SEs are not reported to 
AlgDE, so the algorithm assumes that rows or columns have no error in 
these cases. This situation causes EAr = 5 to refer only to the tuples (D3, 
C1) and (C0,C2), and EAr = 2 to refer only to the tuple (D0,C2). Simi-
larly, EAc = 6 points only to the tuples (D3,C2) and (C0,C1), and EAc = 7 
points only to the tuple (D0,C0). When executing AlgDE, the data matrix 
will contain only the DEs occurring in the data bits annotated with the 
value 2. The final step of AlgDE inverts the two corresponding bits in the 
decWord matrix, making all the data have the correct values; i.e., the 
algorithm achieves 100% effectiveness in correcting errors.  

D. LPC miscorrection discussion 

This section discusses some miscorrection cases of LPC regarding 
AlgSE and AlgDE algorithms. 

Ham(8, 4) presents anomalies with three or more error patterns. An 
anomaly example happens when having errors in the first three data bits 

(D0,D1,D2) since the check bits remain the same, preventing error 
detection. The parity bit included in the extended Hamming code en-
ables to infer this anomaly but not detect the error position; thus, 
reducing the efficacy of 1D ECCs based on Hamming. Another anomaly 
example is the occurrence of errors in the three check bits; in this case, 
the code points to an error in D3, and the parity would wrongly confirm 
the error and, consequently, 1D ECCs based on Hamming perform a 
miscorrection. Fortunately, 2D ECCs like LPC can crosscheck rows and 
columns to mitigate this anomaly and other complex error patterns, only 
failing when the number of errors is very high. Fig. 13 displays two 
specific error patterns cases of miscorrection. 

On the one hand, Fig. 13(a) shows that the first three bits of the first 
row are changed and the check-bit syndromes of this row cannot identify 
the errors. However, the syndromes of the first three columns identify 
the errors in the D0 bit, enabling to carry out the correction through the 
AlgSE algorithm (see Fig. 5). On the other hand, Fig. 13(b) shows a more 
aggressive error pattern that leads the AlgSE algorithm to miss correct 
the D3 bit of the last data row. This miscorrection happens because 
crosschecking rows and columns point to the same bit error. 

AlgDE does not have SE information as input; thus, it must be used in 
conjunction with AlgSE, and the experimental results show that the 
AlgDE efficacy is superior when performed after AlgSE. The DEs 
correction technique does not correct redundancy bits, as they can be 
recalculated from the data. Consequently, whenever the technique can 
correct 100% of the data, it will achieve 100% effectiveness. 

Like AlgSE, AlgDE does not guarantee the correction of all DEs for 
any scenario. Additionally, this technique is subject to anomalous situ-
ations; e.g., DEs generated in the check bits can be wrongly calculated as 

D0 D1 D2 D3 Cr0 Cr1 Cr2 sCr0 sCr1 sCr2 EAr DEr
D0 E E 1 4 1
D1 E E 1 1 1
D2 E E 1 1 5 1
D3
Cc0 D0 D1 D2 D3 Cr0Cr1Cr2

D0 2 1 2 1
D1 1 2 2 1
D2 2 2 1 1 1
D3 1
Cc0 1 1

LPCCc1 1 1
Cc2 1 1

Cc1
Cc2
sCc0 1 1
sCc1 1 1
sCc2 1 1
EAc 5 3 6
DEc 1 1 1

Fig. 11. Scenario containing six bitflips that generate six DEs noted in the row 
(DEr) and column (DEc) control variables. 

D0 D1 D2 D3 Cr0 Cr1 Cr2 sCr0 sCr1 sCr2 EAr DEr
D0 E E 1 1 5 1
D1 E 1 4
D2 E 1 2
D3 E E 1 2 1
Cc0 E E E D0 D1 D2 D3 Cr0Cr1Cr2

D0 2 1 1 1
D1
D2
D3 2 1
Cc0 1 1

LPCCc1 1
Cc2 1

Cc1
Cc2 E
sCc0 1 1 1 1
sCc1 1 1
sCc2 1
EAc 6 4 4 7
DEc 1 1

Fig. 12. Scenario containing ten bitflips that generate two DEs annotated in the 
row control variables (DEr) and columns (DEc), in addition to 4 unique errors 
not reported to AlgDE. 

D0 D1 D2 D3 Cr0 Cr1 Cr2 sCc0 sCc1 sCc2 sP EAr
D0 E E E 1 0
D1
D2
D3
Cc0
Cc1
Cc2
sCr0
sCr1 1 1 1
sCr2 1 1 1
sP 1 1 1

EAc 3 3 3

D0 D1 D2 D3 Cr0 Cr1 Cr2 sCc0 sCc1 sCc2 sP EAr
D0 0 0 0 0 0
D1 0 0
D2 0 0
D3 E E E 1 1 1 1 7
Cc0 E
Cc1 E
Cc2 E
sCr0 1
sCr1 1
sCr2 1
sP 1

EAc 7

D0 address

Non-error flag

D3 address

D
3 address

(b)

(a)

Fig. 13. Two error scenarios whose AlgSE (a) can correct errors and (b) miss 
correct errors. Each bitflip is represented by E. 

D.C.C. Freitas et al.                                                                                                                                                                                                                            



Microelectronics Reliability 128 (2022) 114444

9

DEs in the data bits. However, these anomalies only exist when the 
number of errors increases a lot, more precisely with eight or more er-
rors. Fig. 14 exemplifies an anomaly case; two error scenarios generate 
the same syndrome values, preventing AlgDE from inferring the right 
error positions; thus, the AlgDE execution corrects the data area, inde-
pendent of the error scenario. 

8. Experimental results 

This section reports the experimental setup and results regarding the 
decoding techniques and algorithms described in Sections 4 to 7.  

A. Control-Data Flow of the Experiments 

The central aspect addressed in this work is the LPC correction ca-
pacity concerning different techniques and algorithmic approaches. 
Therefore, Fig. 15 displays the control-data flow followed by all exper-
iments, except for the implementation costs evaluation. The control 
flow, which contains a double nested loop, is described by double ar-
rows, while dashed arrows describe the data flow. 

The control-data flow starts by assigning 1 to the number of errors #e 
that each scenario will have, then executing the outermost loop 
controlled by the #e ≤ totErr comparison. For each outermost loop 
execution, the flow performs all combinations of scenarios with #e er-
rors, and totErr is an arbitrary number; in experiments that evaluate 
errors in the data and redundancy areas exhaustively, totErr is equal to 
16 and 32, respectively; however, for scenarios with errors placed 
throughout the codeword, only 10 or 11 errors were explored due to the 
high number of combinations. 

At each entry in the outermost loop, the errSE and errDE variables 
that control the number of errors found in the AlgSE and AlgDE exe-
cutions for a given #e are reset. The innermost loop starts with the Error 
pattern Generator, which represents the procedure that receives code-
word0, containing a set of data encoded in LPC, and #e, producing 
codeword1, which is equivalent to codeword0 with the injection of #e 
errors. 

codeword1 is input from AlgSE, which applies SE correction rules. If 
AlgSE corrects all errors, it receives a new pattern with the same number 
of #e errors. This procedure is done exhaustively in the entire evaluated 
area (containing #a bits). Depending on the experiment, #a can be 16, 
32, or 48, corresponding to the data area, redundancy, or the entire 
codeword, respectively. This exhaustive procedure makes the number of 

combinations evaluated for each #e equal to 
(
#a
#e

)
. For example, in an 

experiment that evaluates all possible scenarios of 8 errors in the data 

area, the number of combinations is equal to 
(

16
8

)

= 12,870. 

If AlgSE does not correct all the errors injected into the codeword1, 
then the variable errSE is incremented, and AlgDE receives the code-
word2, which is the codeword1 containing the corrections made by AlgSE, 
as input. Similarly, AlgDE applies the DE correction rules, producing a 
new data area that is next compared with the codeword0 data area. If the 
data is the same, then AlgDE was able to correct an error scenario that 
had not been entirely corrected by AlgSE. Otherwise, the variable errDE 
is incremented. 

The innermost loop continues executing until all #e error scenarios 
are generated. When the innermost loop ends, errSE and errDE will 
contain the total number of errors not corrected in the AlgSE and AlgDE 
stages, respectively, for all combinations of #e errors. Subsequently, the 
flow re-executes the procedures of the outermost loop, which increments 
#e, while #e ≤ totErr. Eq. (26) computes the total number of combina-
tions (#totComb) that the decoding flow performs; e.g., to evaluate error 
scenarios across the codeword (i.e., #a = 48) in the range #e = [1,10], 
the decoding algorithm is executed 8,682,997,470. 

#totComb =
∑totErr

#e=1

(#a
#e

)
(26)    

B. Evaluation of the error correction technique with row-column 
crosschecking 

Section 5 presents the DCO, DCOC, DRC, and DRCC techniques that 
allow correcting only data or data and redundancy, inferring or not 
errors by crosschecking rows and columns. Fig. 16 shows the correction 
capacity of each technique for scenarios from 1 to 10 errors, taking as a 
reference the correction values obtained with DRCC, which resulted in 
fewer error corrections for all scenarios. 

All techniques achieved a 100% error correction rate in scenarios 
with 1 or 2 bitflips; however, with 3 or more bitflips, the techniques 

D0 D1 D2 D3 Cr0 Cr1 Cr2 sCc0 sCc1 sCc2 EAr DErq
D0 0 0 0 0 0 0 0 0
D1 E E 0 1 1 0 1 1 3 1
D2 E E 0 1 1 0 1 1 3 1
D3 0 0 0 0 0 0 0 0
Cc0 0 0 0 0 DEr = 2
Cc1 0 1 1 0
Cc2 0 1 1 0
sCr0 0 0 0 0
sCr1 0 1 1 0
sCr2 0 1 1 0
EAc 0 3 3 0
DEcq 0 1 1 0 2DEc =

D0 D1 D2 D3 Cr0 Cr1 Cr2 sCc0 sCc1 sCc2 EAr DErq
D0 0 0 0 0 0 0 0 0
D1 0 E E 0 1 1 3 1
D2 0 E E 0 1 1 3 1
D3 0 0 0 0 0 0 0 0
Cc0 0 0 0 0 DEr = 2
Cc1 0 E E 0
Cc2 0 E E 0
sCr0 0 0 0 0
sCr1 0 1 1 0
sCr2 0 1 1 0
EAc 0 3 3 0
DEcq 0 1 1 0 2DEc =

Fig. 14. Two error scenarios that generate the same syndrome values. Conse-
quently, AlgDE produces a miscorrection if the errors are in the check bits since 
the four internal data bits will be flipped. 

totErr
(1 0, 1 1, 1 6, 32 )

Codeword1 + 
error pa�ern

4

Decoded word 
(16-bit)

#a
#e

n

y

Codeword2 + 
error pa�ern

n

Decoded word 
(16-bit)

n

y

Error pa�ern 
generator

AlgSE

Is equal
Input Data

Start

All error 
pa�erns

Is equal
Input Data

AlgDE

y

Stop

Codeword0

n

y

errSE++

errDE++

#e � 1

errSE � 0
errDE � 0

#e ≤ totErr#e++

#e – Number of errors
of each scenario

#a – Number of bits of
each evaluated area

#e, errSE, errDE

Fig. 15. Basic control-data flow applied in the experiments. The control flow is 
represented by double lines, while dashed lines represent the data flow. 

D.C.C. Freitas et al.                                                                                                                                                                                                                            



Microelectronics Reliability 128 (2022) 114444

10

exhibit different correction capabilities. Fig. 16(a) shows that DCO, 
DRC, and DCOC increase the error correction capacity for scenarios of 
up to 8 errors when compared to the DRCC reference. With 9 error 
scenarios, only DCOC still shows a growth trend, but the relative error 
correction capacity tends to reduce from this point on. 

DCO and DCOC provide to AlgSE almost the same efficacy up to 7 
error scenarios, with a small advantage for the DCO technique. How-
ever, Fig. 16(b) shows that when associating AlgDE with the decoder, 
DCO obtains even more significant results, which are only overcome 
from scenarios with 9 errors or more. DCO results in greater correction 
efficacy for AlgSE with up to 7 error scenarios, and this efficacy is 
enhanced with the application of AlgDE. However, aggregating AlgDE in 
the decoder produces an anomalous correction behavior. From 8 error 
scenarios, although DCOC exhibits better results than DCO for AlgSE, 
the same does not happen in the decoding result when AlgDE is added, 
suggesting that some corrections made during the AlgSE execution 
prevented some corrections performed by AlgDE. 

The experimental results suggest that LPC is more effective when 
correcting only data errors, without considering the redundancy errors, 
due to the matrix format allowing the data verification to occur both by 
columns and by rows. Additionally, the iterative method with the 
crosschecking technique, which corrects errors only when the equiva-
lent row/column also points out an error, is effective only when the 
number of errors grows a lot, as in this case, the technique minimizes the 
possibility of wrong corrections.  

C. Evaluation of the AlgSE iterative approach 

This section presents the results of AlgSE error correction capacity in 
terms of the correction heuristics and iterative degree. All the experi-
ments performed in this subsection use AlgSE with the DCO technique. 
As described in Section 6, this work explored several heuristics to 
determine the most efficacy error correction procedure. In this experi-
ment, we describe the results of four heuristics: BasicLoop - each itera-
tion first corrects rows then corrects columns (the procedure, starting 
with columns and then rows, produces the same results due to the 

symmetry of the code and the exhaustive evaluation); InvertLoop - in 
one iteration corrects rows after columns, in the subsequent iteration 
inverts the order, and so on; PriorityLoop - each iteration corrects only 
rows or columns, privileging those with the highest number of SEs. This 
method makes twice as many iterations so that the number of row/ 
column corrections is the same for all methods; FairPriorityLoop - each 
iteration corrects rows and then corrects columns or vice versa; the 
number of SEs defines the row/column or column/row order. 

Fig. 17(a) and (b) show the relative error correction capacity of each 
heuristic, considering only AlgSE and the joint effect of applying AlgDE, 
respectively. The experiment shows that the FairPriorityLoop heuristic 
is the most effective for all evaluated error scenarios. The BasicLoop 
heuristic, adopted by most of the works presented in Section 2, is less 
efficacious than FairPriorityLoop, but much higher than the other heu-
ristics. We adopted the FairPriorityLoop heuristic to execute all other 
experiments due to the results obtained in this experiment. 

Next, we evaluated the iterative effectiveness of error correction for 
the LPC. Table 4 presents the correction percentage for scenarios from 1 
to 10 errors, with AlgSE performing from one to four loops; the exper-
iment uses the DCO technique with the FairPriorityLoop heuristic. 

The results display that AlgSE obtains the same correction efficacy 
for up to three bitflips regardless of the number of loops. For scenarios 
with four and five bitflips, the second iteration level increases the 
correction efficacy significantly. With six and seven bitflips, a third 
iterative level increases the number of corrected errors, and a fourth 
iterative level is needed from scenarios with eight bitflips. However, the 
gains obtained become smaller in percentage as the number of errors in 
the scenarios grows. 

Additionally, as discussed in Section 6, all the iterative levels higher 
than four achieve the same error correction efficacy. This experiment 
concludes that AlgSE1 is almost as good as AlgSE3, with much less 
execution time.  

D. Evaluation of the AlgDE error correction efficacy 

Table 5 displays pairs of lines containing error correction values; the 

(a)

(b)

0%
1%
2%
3%
4%
5%
6%
7%
8%
9%

10%
11%
12%

1 2 3 4 5 6 7 8 9 10 11

noitcerroC
tne

mevorp
mi

Number of errors

AlgSEDCO
DCOC
DRC

0%
2%
4%
6%
8%

10%

12%
14%
16%
18%

1 2 3 4 5 6 7 8 9 10 11

tne
mevorp

mi
noi tcerroC

Number of errors

AlgSE + AlgDEDCO
DCOC
DRC

Fig. 16. Variation of the error correction capacity using the DCO, DCOC, DRC, 
and DRCC techniques for the LPC decoder using AlgSE and AlgDE. The values 
show the percentage difference for the worst case (DRCC). 

(a)

(b)

0%
2%
4%
6%
8%

10%
12%
14%
16%
18%
20%
22%
24%
26%
28%

1 2 3 4 5 6 7 8 9 10

noitcerroC
tne

me vo rp
mi

Number of errors

AlgSE3BasicLoop
InvertLoop
PriorityLoop
FairPriorityLoop

0%
2%
4%
6%
8%

10%
12%
14%
16%
18%
20%
22%

1 2 3 4 5 6 7 8 9 10

tne
mevorp

mi
noitcerroC

Number of errors

AlgSE3 + AlgDEBasicLoop
InvertLoop
PriorityLoop
FairPriorityLoop

Fig. 17. Comparison of four heuristics used to control AlgSE iterations. The 
values presented are normalized according to the least efficacy heuristic for 
each error scenario. 

D.C.C. Freitas et al.                                                                                                                                                                                                                            



Microelectronics Reliability 128 (2022) 114444

11

first line describes the error correction capacity obtained with AlgSE and 
the second one depicts the increase of this capacity when inserting 
AlgDE. This experiment uses AlgSE with 1 to 4 iterations, DCO tech-
nique, and FairPriorityLoop heuristic. AlgDE improves the correction 
capacity for all error scenarios, allowing LPC to achieve 100% correction 
for 3 error scenarios; besides, for 4 error scenarios, LPC decoding rea-
ches an efficacy between 97.8% and 99.3%. 

Fig. 18, obtained from Table 5, highlights the ability to correct errors 
with and without AlgDE. Fig. 18(a) shows, in values relative to AlgSE, 
that the maximum gain of AlgDE occurs with scenarios of 7 errors; e.g., 
AlgSE3 manages to achieve only 49.93% error correction, and when 
inserting AlgDE, error correction reaches 72.85%, i.e., a 22.92% in-
crease. Fig. 18(b) reveals that when inserting AlgDE, the percentage of 
absolute gain in error correction is increased up to scenarios with 9 

errors, and then gradually, the gain is reduced. Due to the high 
computational cost, we did not extend this assessment to scenarios with 
more errors; however, it is possible to note that for scenarios with 11 
errors, the LPC encoding results in values lower than 5%, not justifying 
explorations of more aggressive error scenarios. 

The results of this experiment emphasize that the effectiveness in 
correcting errors provided by AlgDE is not negligible. Additionally, it 
allows us to verify that the gains for AlgSE0, which has the least 
complexity, are higher than for the more complex algorithms (i.e., 
AlgSE1, AlgSE2, and AlgSE3), where there is practically no relative 
difference.  

E. Data and redundancy implementations in memory 

The previous subsection focuses on correcting the data and the parity 
regions together. This subsection assesses the effect of errors occurring 
in the data and redundancy regions separately; consequently, it is 
necessary to emphasize that the error correction rates presented in this 
subsection differ from those shown in the previous subsection. The 
importance of this analysis lies in the possibility of choosing Commercial 
Off The Shelf (COTS) or RADiation HARDening (RAD-HARD) memories 
in critical applications. On the one hand, COTS components in space 
applications provide state-of-the-art memory technologies that reduce 
the design and implementation costs compared to RAD-HARD memory 
costs. On the other hand, although a RAD-HARD memory is not entirely 
insensitive to radiation, it is much more reliable than a COTS memory 
[56–59]. 

We propose implementing LPC in a heterogeneous memory system - 
a 16-bit memory containing data and a 32-bit memory covering the 
redundancy bits. The data writing and reading are carried out simulta-
neously in these memories by an encoder/decoder circuit responsible for 
synchronizing the information. Therefore, we explored the efficiency of 
memory technology in data and redundancy regions. 

The experiments presented in this subsection use AlgSE with one 
iteration, DCO technique, and FairPriorityLoop heuristic. Fig. 19 dis-
plays the correction capacity for all combinations with up to 16 bitflips 
in the data area only, considering both the potential of only applying 
AlgSE and the joint use of AlgSE with AlgDE. The experiment shows that 
for scenarios of up to 3 errors, the correction capacity is 100%. This 
capacity remains above 90% with 4 and 5 errors; however, the correc-
tion efficacy declines dramatically - the error correction capacity is null 
from 9 errors on. 

Fig. 20 illustrates the correction capacity for all combinations with 
up to 32 bitflips, regarding only AlgSE since AlgDE is not applicable in 
the redundancy area. Although the errors are in the redundancy region, 

Table 4 
Error correction percentage considering the AlgSE iterative procedure and scenarios from 1 to 10 errors.  

Errors 1 2 3 4 5 6 7 8 9 10 

AlgSE0  100  100  98.52  92.31  79.94  62.46  43.07  25.97  13.6816  6.344343 
AlgSE1  100  100  98.52  93.83  84.15  68.81  49.69  30.73  16.0830  7.150572 
AlgSE2  100  100  98.52  93.83  84.15  68.91  49.93  30.97  16.1790  7.166544 
AlgSE3  100  100  98.52  93.83  84.15  68.91  49.93  30.98  16.1793  7.166537  

Table 5 
Error correction efficacy of AlgSE alone and AlgSE together with AlgDE, considering scenarios from 1 to 11 errors.  

Errors 1 2 3 4 5 6 7 8 9 10 11 

AlgSE0  100  100  98.52  92.31  79.94  62.46  43.07  25.97  13.68  6.34  2.62 
AlgSE0 + AlgDE  100  100  100  97.80  92.01  81.55  65.31  44.97  25.21  11.19  4.13 
AlgSE1  100  100  98.52  93.83  84.15  68.81  49.69  30.73  16.08  7.15  2.78 
AlgSE1 + AlgDE  100  100  100  99.30  96.22  88.02  72.61  51.07  28.71  12.36  4.29 
AlgSE2  100  100  98.52  93.83  84.15  68.91  49.93  30.97  16.18  7.17  2.78 
AlgSE2 + AlgDE  100  100  100  99.30  96.22  88.12  72.85  51.32  28.83  12.38  4.29 
AlgSE3  100  100  98.52  93.83  84.15  68.91  49.93  30.98  16.18  7.17  2.78 
AlgSE3 + AlgDE  100  100  100  99.30  96.22  88.12  72.85  51.32  28.83  12.38  4.29  

(a)

(b)

0
2
4
6
8

10
12
14
16
18
20
22
24

1 2 3 4 5 6 7 8 9 10 11

)
%(yticapac

n oi tcerrocf o
es aer cnI

Number of errors

AlgDE a�er AlgSE0
AlgDE a�er AlgSE1
AlgDE a�er AlgSE2
AlgDE a�er AlgSE3

0
5

10
15
20
25
30
35
40
45
50

1 2 3 4 5 6 7 8 9 10 11

)
%(yticapac

noitcerrocfo
esaercnI

Number of errors

AlgDE a�er AlgSE0
AlgDE a�er AlgSE1
AlgDE a�er AlgSE2
AlgDE a�er AlgSE3

Fig. 18. The increase in error correction capacity when inserting AlgDE - (a) 
shows the relative difference between AlgSE and AlgDE; (b) shows the differ-
ence in absolute value. 

D.C.C. Freitas et al.                                                                                                                                                                                                                            



Microelectronics Reliability 128 (2022) 114444

12

the corrections are applied to the data. Thus, we are evaluating errors in 
the redundancy area that generate false errors in the data area, implying 
wrong corrections that modify the data. 

The correction capacity is maintained above 90% up to 6 bitflips, 
decreasing smoothly until zero with 16 bitflips. From 16 to 31 bitflips, 
the correction capacity is less than 10%, with less than 3%, on average. 
Finally, when the entire redundancy area is in error (i.e., 32 upsets), 
AlgSE reaches 100% correction because when inverting all redundancy 
bits, there is no correction made in the data area. 

These experiments show that the data region degrades more quickly 
than the redundancy region. Thus, we propose that the physical 
implementation of the data area be made with a less-sensitive radiation 
memory, such as a RAD-HARD, and the redundancy area be imple-
mented with a COTS memory.  

F. LPC encoder and decoder syntheses 

Table 6 presents the synthesis results of the LPC encoder and AlgSE0, 
AlgSE1, and AlgDE algorithms used in LPC decoding. We implemented 
all AlgSEs with DRC and FairPriorityLoop. The results include area 
consumption, power dissipation, and delay, achieved with the Cadence 
RTL Compiler software for CMOS technology with the 65 nm COR-
E65GPSVT standard cell library under normal operating conditions. The 
entire hardware implementation was performed with combinational 
circuits described in Verilog. We only show a subset of the encoding and 
decoding algorithms, aiming to elucidate the order of magnitude of the 

synthesis costs. 
The LPC encoder has a very low implementation complexity that 

reflects values of magnitude lower than those obtained in decoding. The 
comparison between AlgSE0 and AlgSE1 shows that the iterative degree 
more than doubles the area and power values. AlgSE0 and AlgSE1 have 
critical paths of near delay; however, AlgSE1 requires one more clock 
cycle for the second algorithm iteration. 

Additionally, AlgDE has an implementation cost close to AlgSE0. 
Concerning area consumption and power dissipation, the implementa-
tion of AlgSE0 associated with AlgDE results in a lower cost than the 
implementation of AlgSE1 alone. Finally, the combined evaluation of 
the synthesis information together with the error correction values 
(Table 6) shows that AlgSE0 + AlgDE is more effective and efficient than 
AlgSE1.  

G. LPC compared to other Space Application ECCs 

This last section correlates the LPC correction algorithms with other 
ECC correction methods designed for space applications. Except for 
BCH, we used the error correction and synthesis costs provided by the 
related works; as illustrated by Fig. 21, this consideration limited the 
error correction rates for scenarios with 1 to 5 errors. 

We highlight that only LPC and PCoSA [19] were evaluated by 
exhaustive methods of inserting faults, taking all possible error scenarios 
into account. The other ECCs [15,21,23,24,60] considered specific error 
patterns (e.g., scenarios with only adjacent or burst errors), which 
drastically reduces the number of scenarios to be assessed. This fact 
privileges designing high-effective algorithms with low implementation 
costs, not allowing a fair comparison among ECCs. We chose the AlgSE0 
+ AlgDE combination to represent the LPC decoding algorithms, a 
highly effective combination that does not penalize the synthesis cost 
excessively. Fig. 21 reveals that although the algorithms used in PCoSA 
and LPC focus on correcting any error pattern, they reach the highest 
correction rates. Also, the union of AlgSE with AlgDE makes LPC have a 
correction capacity superior to PCoSA. On the one hand, BCH can cor-
rect all 3-error patterns (in burst format), whereas there are 3-error 
patterns where EG-LDPC cannot correct all bitflips. On the other hand, 
the correction capacity of EG-LDPC degrades very slowly with the in-
crease in the number of errors, but the BCH quickly reduces the 
correction capacity from three errors. 

Table 7 presents the synthesis costs of the six ECCs for the same 65 
nm CMOS technology. Additionally, the last column of Table 7 shows 
the redundancy rate (RR) for each code, given the number of 

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

noitcerrocrorrE

Number of errors

AlgSE AlgSE+AlgDE

Fig. 19. Error correction capacity of AlgSE alone and combined with AlgDE, for 
errors affecting only the data region. 

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

noitcerrocrorrE

Number of errors

Fig. 20. Error correction capacity of AlgSE with all combinations of errors in 
the redundancy area. 

Table 6 
Analysis of area consumption, power dissipation, and delay for the LPC encoder 
and decoder circuits.  

LPC circuit Area (μm2) Power (uW) Delay (ns) 

Encoder  340  17  0.14 

Decoder 
AlgSE0  2724  260  1.94 
AlgSE1  5890  730  2.00 
AlgDE  2218  290  1.64  

99 96

82

70

100 100 100

62

35

4 1

99
95

88
92

67

63

89

79
71

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

100

1 2 3 4 5

)%(noitcer ro Cror rE

Number of errors

AlgSE0 + AlgDE

PCoSA

eCLC

BCH

EG-LDPC

PHICC

eMRSC

Fig. 21. Analysis of the error correction capacity of seven 2D ECCs; the red 
double-bordered rectangle surrounds ECCs that achieve 100% correction with 
up to three errors. (For interpretation of the references to colour in this figure 
legend, the reader is referred to the web version of this article.) 

D.C.C. Freitas et al.                                                                                                                                                                                                                            



Microelectronics Reliability 128 (2022) 114444

13

redundancy bits compared to the total number of codeword bits. We use 
the work of Ma, Cui, and Lee [60] to calculate the BCH data, scaling the 
90 nm to 65 nm CMOS technology with the estimate provided by 
DeepScaleTool [61]. 

Table 7 shows that LPC surpasses PCoSA in almost all the items 
evaluated in this work, except for the delay caused by executing two 
algorithms in series. However, the low complexity of the other ECC al-
gorithms implies gains in all synthesis aspects compared to AlgSE0 +
AlgDE. 

9. Conclusions 

This work shows that LPC allows exploring techniques in several 
axes, attaining high error correction efficacy with low synthesis costs. 
We proposed implementing the LPC decoder with two consecutive al-
gorithms, which correct single errors (AlgSE) and double errors (AlgDE). 

We explored three research axes with AlgSE: (i) the number of iter-
ations of the algorithm, (ii) the use of a heuristic to choose the row/ 
column or column/row correction order, and (iii) the decision of the 
region and the way to correct errors. The results showed a slight gain 
from the second iteration, with no improvement observed with more 
than four iterations. The FairPriorityLoop heuristic, which always cor-
rects the row/column pair at each iteration, prioritizes the one with 
more SEs, showed greater effectiveness without additional imple-
mentation cost. The DCOC technique that checks for errors and corrects 
only the data has achieved the highest efficacy, in general, standing 
behind DCO, which does not check for errors, only when the number of 
errors is in the range 4 to 8. 

AlgDE is an innovative algorithm based on the inference of errors by 
crossing rows and columns; it allows increasing the efficiency of the LPC 
decoder significantly when used in conjunction with AlgSE. Finally, the 
comparative results show that when implemented with AlgSE0 + AlgDE, 
the LPC decoder is much more effective than the other ECCs evaluated 
here, although the synthesis costs penalize it. 

CRediT authorship contribution statement 

All persons who meet authorship criteria are listed as authors, and all 
authors certify that they have participated sufficiently in the work to 
take public responsibility for the content, including participation in the 
concept, design, analysis, writing, or revision of the manuscript. 
Furthermore, each author certifies that this material or similar material 
has not been and will not be submitted to or published in any other 
publication. 

Declaration of competing interest 

The authors whose names are listed immediately below certify that 
they have NO affiliations with or involvement in any organization or 
entity with any financial interest (such as honoraria; educational grants; 

participation in speakers' bureaus; membership, employment, consul-
tancies, stock ownership, or other equity interest; and expert testimony 
or patent-licensing arrangements), or non-financial interest (such as 
personal or professional relationships, affiliations, knowledge or beliefs) 
in the subject matter or materials discussed in this manuscript. 

References 

[1] O. Brand, Microsensor integration into systems-on-chip, Proc. IEEE 94 (6) (Jul. 
2006) 1160–1176. 

[2] J. Knight, Safety critical systems: challenges and directions, in: Proceedings of the 
International Conference on Software Engineering (ICSE), 2002, pp. 547–550. 

[3] S. Dhia, M. Ramdani, E. Sicard, Electromagnetic Compatibility of Integrated 
Circuits, Springer, 2006, 473p. 

[4] G. Kinoshita, C. Kleiner, E. Johnson, Radiation induced regeneration through the P- 
N junction isolation in monolithic I/C's, IEEE Trans. Nucl. Sci. 12 (5) (Oct. 1965) 
83–90. 

[5] C. Kleiner, G. Kinoshita, E. Johnson, Simulation and verification of transient 
nuclear radiation effects on semiconductor electronics, IEEE Trans. Nucl. Sci. 11 
(5) (Nov. 1964) 82–104. 

[6] C. Rosenberg, D. Gage, R. Caldwell, G. Hanson, Charge-control equivalent circuit 
for predicting transient radiation effects in transistors, IEEE Trans. Nucl. Sci. 10 (5) 
(Nov. 1963) 149–158. 

[7] T. Li, H. Liu, H. Yang, Design and characterization of SEU hardened circuits for 
SRAM-based FPGA, IEEE Trans. Very Large Scale Integr. Syst. 27 (6) (Jun. 2019) 
1276–1283. 

[8] W. Wei, K. Namba, Y. Kim, F. Lombardi, A novel scheme for tolerating single 
Event/Multiple bit upsets (SEU/MBU) in non-volatile memories, IEEE Trans. 
Comput. 65 (3) (Mar. 2016) 781–790. 

[9] I. Villalta, U. Bidarte, J. Cornejo, J. Lázaro, A. Astarloa, Estimating the SEU failure 
rate of designs implemented in FPGAs in presence of MCUs, Microelectron. Reliab. 
78 (Nov. 2017) 85–92. 

[10] A. Neale, M. Jonkman, M. Sachdev, Adjacent-MBU-tolerant SEC-DED-TAEC-yAED 
codes for embedded SRAMs, IEEE Trans. Circuits Syst. Express Briefs 62 (4) (Apr. 
2015) 387–391. 

[11] S. Chandrashekhar, H. Puchner, J. Mitani, S. Shinozaki, M. Sardi, D. Hoffman, 
Radiation induced soft errors in 16 nm floating gate SLC NAND flash memory, 
Microelectron. Reliab. 108 (May 2020) 1–8. 

[12] A. Cóbreces, A. Regadio, J. Tabero, P. Reviriego, A. Macian, J. Maestro, SEU and 
SEFI error detection and correction on a ddr3 memory system, Microelectron. 
Reliab. 91 (1) (Dec. 2018) 23–30. 

[13] M. Cannon, A. Keller, H. Rowberry, C. Thurlow, A. Celis, M. Wirthlin, Strategies for 
removing common mode failures from TMR designs deployed on SRAM FPGAs, 
IEEE Trans. Nucl. Sci. 66 (1) (Jan. 2019) 207–215. 

[14] X. She, N. Li, Reducing critical configuration bits via partial TMR for SEU 
mitigation in FPGAs, IEEE Trans. Nucl. Sci. 64 (10) (Oct. 2017) 2626–2632. 

[15] A. Erozan, E. Çavuş, An EG-LDPC based 2-dimensional error correcting code for 
mitigating MBUs of SRAM memories, in: Proceedings of the FPGAworld Conference 
(FPGAworld), 2015, pp. 21–26. 

[16] H. Farbeh, F. Mozafari, M. Zabihi, S. Miremadi, RAW-tag: replicating in altered 
cache ways for correcting multiple-bit errors in tag array, IEEE Trans. Dependable 
Secure Comput. 16 (4) (July-Aug. 2019) 651–664, https://doi.org/10.1109/ 
TDSC.2017.2706263. 

[17] A. Olazábal, J. Guerra, Multiple cell upsets inside aircrafts. New fault-tolerant 
architecture, IEEE Trans. Aerosp. Electron. Syst. 55 (1) (Feb. 2019) 332–342, 
https://doi.org/10.1109/TAES.2018.2852198. 

[18] J. Gracia-Morán, L. Saiz-Adalid, D. Gil-Tomás, P. Gil-Vicente, Improving error 
correction codes for multiple-cell upsets in space applications, IEEE Trans. Very 
Large Scale Integr. VLSI Syst. 26 (10) (Oct. 2018) 2132–2142. 

[19] D. Freitas, D. Mota, R. Goerl, C. Marcon, F. Vargas, J. Silveira, J. Mota, PCoSA: a 
product error correction code for use in memory devices targeting space 
applications, Integr. VLSI J. (May 2020) 1–10, on-line version. 

[20] F. Silva, W. Freitas, J. Silveira, O. Lima, F. Vargas, C. Marcon, An efficient, low-cost 
ECC approach for critical-application memories, in: Proceedings of the Symposium 
on Integrated Circuits and Systems Design (SBCCI), 2017, pp. 198–203. 

[21] F. Silva, W. Freitas, J. Silveira, C. Marcon, F. Vargas, Extended matrix region 
selection code: an ECC for adjacent multiple cell upset in memory arrays, 
Microelectron. Reliab. 106 (Mar. 2020) 1–9. 

[22] H. Castro, J. da Silveira, A. Coelho, F. Silva, P. Magalhães, O. Lima Jr., A correction 
code for multiple cells upsets in memory devices for space applications, in: 
Proceedings of the IEEE International New Circuits and Systems Conference 
(NEWCAS), 2016, pp. 1–4. 

[23] F. Silva, J. Silveira, J. Silveira, C. Marcon, F. Vargas, O. Lima Jr., An extensible 
code for correcting multiple cell upset in memory arrays, J. Electron. Test. 34 (Jul. 
2018) 417–433. 

[24] P. Magalhães, O. Alcântara, J. Silveira, PHICC: an error correction code for 
memory devices, in: Proceedings of the Symposium on Integrated Circuits and 
Systems Design (SBCCI), 2019, p. 1. 

[25] P. Elias, Error-free coding, in: Transactions of the IRE Professional Group on 
Information Theory vol. 4, Sep. 1954, pp. 29–37. 

[26] K. Alexey, Z. Victor, R. Eygene, A new iterative decoder for product codes, in: 
Proceedings of the International Workshop on Algebraic and Combinational 
Coding Theory (ACCT), 2014, pp. 211–214. 

Table 7 
Decoder implementation costs in hardware and redundancy rate of six 
2D ECCs. 

ECC 
Area consump�on Power dissipa�on Delay   

RR (%) (μm2) (%) (mW) (%) (ns) (%) 
AlgSE0+AlgDE 4,942 49.2 0.550 64.9 3.58 187.4 67 

BCH 3,302 32.9 NA NA 1.07 56.0 38.5 
eCLC 3,360 33.4 0.331 39.0 2.50 130.9 60 

eMRSC 1,709 17.0 0.374 44.1 1.54 80.6 50 
PCoSA 10,051 100.0 0.848 100.0 1.91 100 75 
PHICC 1,761 17.5 0.344 40.6 0.96 50.3 60 

NA – not available data; Cells marked in green and red have the best and 
worst results, respectively. 

D.C.C. Freitas et al.                                                                                                                                                                                                                            

http://refhub.elsevier.com/S0026-2714(21)00410-8/rf202112071047176177
http://refhub.elsevier.com/S0026-2714(21)00410-8/rf202112071047176177
http://refhub.elsevier.com/S0026-2714(21)00410-8/rf202112071034048679
http://refhub.elsevier.com/S0026-2714(21)00410-8/rf202112071034048679
http://refhub.elsevier.com/S0026-2714(21)00410-8/rf202112071034194262
http://refhub.elsevier.com/S0026-2714(21)00410-8/rf202112071034194262
http://refhub.elsevier.com/S0026-2714(21)00410-8/rf202112071034204574
http://refhub.elsevier.com/S0026-2714(21)00410-8/rf202112071034204574
http://refhub.elsevier.com/S0026-2714(21)00410-8/rf202112071034204574
http://refhub.elsevier.com/S0026-2714(21)00410-8/rf202112071034220455
http://refhub.elsevier.com/S0026-2714(21)00410-8/rf202112071034220455
http://refhub.elsevier.com/S0026-2714(21)00410-8/rf202112071034220455
http://refhub.elsevier.com/S0026-2714(21)00410-8/rf202112071034236147
http://refhub.elsevier.com/S0026-2714(21)00410-8/rf202112071034236147
http://refhub.elsevier.com/S0026-2714(21)00410-8/rf202112071034236147
http://refhub.elsevier.com/S0026-2714(21)00410-8/rf202112071035081262
http://refhub.elsevier.com/S0026-2714(21)00410-8/rf202112071035081262
http://refhub.elsevier.com/S0026-2714(21)00410-8/rf202112071035081262
http://refhub.elsevier.com/S0026-2714(21)00410-8/rf202112071035088602
http://refhub.elsevier.com/S0026-2714(21)00410-8/rf202112071035088602
http://refhub.elsevier.com/S0026-2714(21)00410-8/rf202112071035088602
http://refhub.elsevier.com/S0026-2714(21)00410-8/rf202112071035096728
http://refhub.elsevier.com/S0026-2714(21)00410-8/rf202112071035096728
http://refhub.elsevier.com/S0026-2714(21)00410-8/rf202112071035096728
http://refhub.elsevier.com/S0026-2714(21)00410-8/rf202112071052083594
http://refhub.elsevier.com/S0026-2714(21)00410-8/rf202112071052083594
http://refhub.elsevier.com/S0026-2714(21)00410-8/rf202112071052083594
http://refhub.elsevier.com/S0026-2714(21)00410-8/rf202112071035103926
http://refhub.elsevier.com/S0026-2714(21)00410-8/rf202112071035103926
http://refhub.elsevier.com/S0026-2714(21)00410-8/rf202112071035103926
http://refhub.elsevier.com/S0026-2714(21)00410-8/rf202112071035117832
http://refhub.elsevier.com/S0026-2714(21)00410-8/rf202112071035117832
http://refhub.elsevier.com/S0026-2714(21)00410-8/rf202112071035117832
http://refhub.elsevier.com/S0026-2714(21)00410-8/rf202112071035132949
http://refhub.elsevier.com/S0026-2714(21)00410-8/rf202112071035132949
http://refhub.elsevier.com/S0026-2714(21)00410-8/rf202112071035132949
http://refhub.elsevier.com/S0026-2714(21)00410-8/rf202112071052091563
http://refhub.elsevier.com/S0026-2714(21)00410-8/rf202112071052091563
http://refhub.elsevier.com/S0026-2714(21)00410-8/rf202112071035351903
http://refhub.elsevier.com/S0026-2714(21)00410-8/rf202112071035351903
http://refhub.elsevier.com/S0026-2714(21)00410-8/rf202112071035351903
https://doi.org/10.1109/TDSC.2017.2706263
https://doi.org/10.1109/TDSC.2017.2706263
https://doi.org/10.1109/TAES.2018.2852198
http://refhub.elsevier.com/S0026-2714(21)00410-8/rf202112071036131663
http://refhub.elsevier.com/S0026-2714(21)00410-8/rf202112071036131663
http://refhub.elsevier.com/S0026-2714(21)00410-8/rf202112071036131663
http://refhub.elsevier.com/S0026-2714(21)00410-8/rf202112071048177460
http://refhub.elsevier.com/S0026-2714(21)00410-8/rf202112071048177460
http://refhub.elsevier.com/S0026-2714(21)00410-8/rf202112071048177460
http://refhub.elsevier.com/S0026-2714(21)00410-8/rf202112071036384941
http://refhub.elsevier.com/S0026-2714(21)00410-8/rf202112071036384941
http://refhub.elsevier.com/S0026-2714(21)00410-8/rf202112071036384941
http://refhub.elsevier.com/S0026-2714(21)00410-8/rf202112071036399316
http://refhub.elsevier.com/S0026-2714(21)00410-8/rf202112071036399316
http://refhub.elsevier.com/S0026-2714(21)00410-8/rf202112071036399316
http://refhub.elsevier.com/S0026-2714(21)00410-8/rf202112071036572562
http://refhub.elsevier.com/S0026-2714(21)00410-8/rf202112071036572562
http://refhub.elsevier.com/S0026-2714(21)00410-8/rf202112071036572562
http://refhub.elsevier.com/S0026-2714(21)00410-8/rf202112071036572562
http://refhub.elsevier.com/S0026-2714(21)00410-8/rf202112071052100870
http://refhub.elsevier.com/S0026-2714(21)00410-8/rf202112071052100870
http://refhub.elsevier.com/S0026-2714(21)00410-8/rf202112071052100870
http://refhub.elsevier.com/S0026-2714(21)00410-8/rf202112071037150857
http://refhub.elsevier.com/S0026-2714(21)00410-8/rf202112071037150857
http://refhub.elsevier.com/S0026-2714(21)00410-8/rf202112071037150857
http://refhub.elsevier.com/S0026-2714(21)00410-8/rf202112071052449579
http://refhub.elsevier.com/S0026-2714(21)00410-8/rf202112071052449579
http://refhub.elsevier.com/S0026-2714(21)00410-8/rf202112071037332574
http://refhub.elsevier.com/S0026-2714(21)00410-8/rf202112071037332574
http://refhub.elsevier.com/S0026-2714(21)00410-8/rf202112071037332574


Microelectronics Reliability 128 (2022) 114444

14

[27] S. Changuel, R. Bidan, R. Pyndiah, Iterative decoding of block turbo codes over the 
binary erasure channel, in: Proceedings of the IEEE International Conference on 
Signal Processing and Communications (ICSPC), 2008, pp. 1539–1542. 

[28] Z. Li, M. Miao, Z. Wang, Parallel coding scheme with turbo product code for Mobile 
multimedia transmission in MIMO-FBMC system, IEEE Access 8 (Dec. 2019) 
3772–3780. 

[29] X. Zhou, R. Li, A parallel turbo product codes decoder based on graphics processing 
units, in: Proceedings of the International Conference on High Performance 
Computing and Communications (HPCC/SmartCity/DSS), 2019, pp. 337–344. 

[30] L. Lopacinski, J. Nolte, S. Buechner, M. Brzozowski, R. Kraemer, Improved turbo 
product coding dedicated for 100 Gbps wireless terahertz communication, in: 
Proceedings of the IEEE International Symposium on Personal, Indoor, and Mobile 
Radio Communications (PIMRC), 2016, pp. 1–6. 

[31] R. Swaminathan, A. Madhukumar, W. Guohua, Blind estimation of code 
parameters for product codes over Noisy Channel conditions, IEEE Trans. Aerosp. 
Electron. Syst. 56 (2) (Aug. 2019) 1460–1473. 

[32] C. Senger, Improved iterative decoding of product codes based on trusted symbols, 
in: Proceedings of the IEEE International Symposium on Information Theory (ISIT), 
2019, pp. 1342–1346. 

[33] J. Guo, L. Xiao, Z. Mao, Q. Zhao, Enhanced memory reliability against multiple cell 
upsets using decimal matrix code, IEEE Trans. Very Large Scale Integr. VLSI Syst. 
22 (1) (Jan. 2014) 127–135. 

[34] S. Khittiwitchayakul, W. Phakphisut, P. Supnithi, Weighted bit-flipping decoding 
for product LDPC codes, in: Proceedings of the International Conference on 
Electrical Engineering/Electronics, Computer, Telecommunications and 
Information Technology (ECTI-CON), 2016, pp. 132–134. 

[35] S. Jeong, J. Lee, Iterative LDPC–LDPC product code for bit patterned media, IEEE 
Trans. Magn. 53 (3) (Mar. 2017) 1–4. 

[36] S. Jeong, J. Lee, Iterative Channel detection with LDPC product code for bit- 
patterned media recording, IEEE Trans. Magn. 53 (11) (Apr. 2017) 1–4. 

[37] S. Arslan, J. Lee, J. Hodges, J. Peng, H. Le, T. Goker, MDS product code 
performance estimations under header CRC check failures and missing syncs, IEEE 
Trans. Device Mater. Reliab. 14 (3) (Sep. 2014). 

[38] A. Sheikh, A. Amat, G. Liva, Binary message passing decoding of product-like 
codes, IEEE Trans. Commun. 67 (12) (Dec. 2019) 8167–8178. 

[39] W. Li, J. Lin, Z. Wang, Improved soft-assisted iterative bounded distance decoding 
for product codes, in: Proceedings of the IEEE International Conference on 
Computer and Communication (ICCC), 2020, pp. 710–714. 

[40] M. Coskun, T. Jerkovits, G. Liva, Successive cancellation list decoding of product 
codes with reed-muller component codes, IEEE Commun. Lett. 23 (11) (Aug. 2019) 
1972–1976. 

[41] A. Sheikh, A. Amat, G. Liva, C. Hager, H. Pfister, On low-complexity decoding of 
product codes for high-throughput fiber-optic systems, in: Proceedings of the IEEE 
International Symposium on Turbo Codes & Iterative Information Processing 
(ISTC), 2019, pp. 1–5. 

[42] A. Sheikh, A. Amat, G. Liva, Binary message passing decoding of product codes 
based on generalized minimum distance decoding, in: Proceedings of the Annual 
Conference on Information Sciences and Systems (CISS), 2019, pp. 1–5. 

[43] S. Liu, L. Xiao, J. Guo, Z. Mao, Fault secure encoder and decoder designs for matrix 
codes, in: Proceedings of the International Conference on Computer-Aided Design 
and Computer Graphics (CAD/Graphics), 2016, pp. 181–185. 

[44] S. Li, J. Li, Y. Zhou, Z. Mao, Low redundancy matrix-based codes for adjacent error 
correction with parity sharing, in: Proceedings of the International Symposium on 
Quality Electronic Design (ISQED), 2017, pp. 76–80. 

[45] H. Tawfeek, A. Mahran, G. Abdel-Hamid, A reliability-based stopping criterion for 
turbo product codes, in: Proceedings of the International Computer Engineering 
Conference (ICENCO), 2019, pp. 141–145. 

[46] C. Condo, V. Bioglio, H. Hafermann, I. Land, Practical product code construction of 
polar codes, IEEE Trans. Signal Process. 68 (Mar. 2020) 2004–2014. 

[47] C. Yang, D. Muckatira, A. Kulkarni, C. Chakrabarti, Data storage time sensitive ECC 
schemes for MLC NAND flash memories, in: Proceedings of the IEEE International 
Conference on Acoustics, Speech and Signal Processing, 2013, pp. 2513–2517. 

[48] C. Argyrides, H. Zarandi, D. Pradhan, Matrix codes: multiple bit upsets tolerant 
method for SRAM memories, in: Proceedings of the IEEE International Symposium 
on Defect and Fault-Tolerance in VLSI Systems (DFT), 2007, pp. 340–348, https:// 
doi.org/10.1109/DFT.2007.29. 

[49] C. Argyrides, D. Pradhan, T. Kocak, Matrix codes for reliable and cost-efficient 
memory chips, IEEE Trans. Very Large Scale Integr. VLSI Syst. 19 (3) (Mar. 2011) 
420–428, https://doi.org/10.1109/TVLSI.2009.2036362. 

[50] R. Hamming, Error detecting and error correcting codes, Bell Syst. Tech. J. 29 (2) 
(Apr. 1950) 147–160. 

[51] F. Macwilliams, N. Sloane, in: The Theory of Error-Correcting Codes, 3rd ed. vol. 
16, North-Holland, 1977, pp. 568–570. 

[52] S. Lin, D.J. Costello, in: Error Control Coding: Fundamentals and Applications, 1st 
ed. vol. 1, Prentice-Hall, 1983, pp. 67–68. 

[53] T. Moon, in: Error Correcting Code – Mathematical Methods, Algorithms, 1st ed. 
vol. 1, Wiley, 2005, pp. 430–432. 

[54] R. Zaragoza, in: The Art of Error Correcting Coding, 2nd ed., Wiley, 2006, 
pp. 170–201. 

[55] R. Tocci, N. Widmer, G. Moss, in: Digital Systems – Principles, Applications, 10th 
ed., Pearson, 2007, pp. 41–46. 

[56] S. Esposito, C. Albanese, M. Alderighi, F. Casini, L. Giganti, M. Esposti, 
C. Monteleone, M. Violante, COTS-based high-performance computing for space 
applications, IEEE Trans. Nucl. Sci. 62 (6) (Dec. 2015) 2687–2694. 

[57] A. Agnesina, A. Sidana, J. Yamaguchi, C. Krutzik, J. Carson, J. Scharlotta, S. Lim, 
A novel 3D DRAM memory cube architecture for space applications, in: 
Proceedings of the ACM/ESDA/IEEE Design Automation Conference (DAC), 2018, 
pp. 1–6, on-line version. 

[58] D. Shim, A. Sidana, J. Yamaguchi, C. Krutzik, D. Nakamura, S. Lim, FLASHRAD: a 
reliable 3D rad hard flash memory cube utilizing COTS for space, in: Proceedings of 
the IEEE Aerospace Conference, 2019, pp. 1–8. 

[59] A. Agnesia, J. Yamaguchi, C. Krutzik, J. Carson, J. Scharlotta, S. Lim, Bringing 3D 
COTS DRAM memory cubes to space, in: Proceedings of the IEEE Aerospace 
Conference, 2019, pp. 1–11. 

[60] W. Ma, X. Cui, C.-L. Lee, Enhanced error correction against multiple-bit-upset 
based on BCH code for SRAM, in: Proceedings of the IEEE International Conference 
on ASIC, 2013, pp. 1–4. 

[61] S. Sarangi, B. Baas, DeepScaleTool: a tool for the accurate estimation of technology 
scaling in the deep-submicron era, in: Proceedings of the IEEE International 
Symposium on Circuits and Systems, 2021, pp. 1–5. 

D.C.C. Freitas et al.                                                                                                                                                                                                                            

http://refhub.elsevier.com/S0026-2714(21)00410-8/rf202112071039408871
http://refhub.elsevier.com/S0026-2714(21)00410-8/rf202112071039408871
http://refhub.elsevier.com/S0026-2714(21)00410-8/rf202112071039408871
http://refhub.elsevier.com/S0026-2714(21)00410-8/rf202112071039421544
http://refhub.elsevier.com/S0026-2714(21)00410-8/rf202112071039421544
http://refhub.elsevier.com/S0026-2714(21)00410-8/rf202112071039421544
http://refhub.elsevier.com/S0026-2714(21)00410-8/rf202112071039576128
http://refhub.elsevier.com/S0026-2714(21)00410-8/rf202112071039576128
http://refhub.elsevier.com/S0026-2714(21)00410-8/rf202112071039576128
http://refhub.elsevier.com/S0026-2714(21)00410-8/rf202112071041074020
http://refhub.elsevier.com/S0026-2714(21)00410-8/rf202112071041074020
http://refhub.elsevier.com/S0026-2714(21)00410-8/rf202112071041074020
http://refhub.elsevier.com/S0026-2714(21)00410-8/rf202112071041074020
http://refhub.elsevier.com/S0026-2714(21)00410-8/rf202112071041176834
http://refhub.elsevier.com/S0026-2714(21)00410-8/rf202112071041176834
http://refhub.elsevier.com/S0026-2714(21)00410-8/rf202112071041176834
http://refhub.elsevier.com/S0026-2714(21)00410-8/rf202112071041331029
http://refhub.elsevier.com/S0026-2714(21)00410-8/rf202112071041331029
http://refhub.elsevier.com/S0026-2714(21)00410-8/rf202112071041331029
http://refhub.elsevier.com/S0026-2714(21)00410-8/rf202112071042241166
http://refhub.elsevier.com/S0026-2714(21)00410-8/rf202112071042241166
http://refhub.elsevier.com/S0026-2714(21)00410-8/rf202112071042241166
http://refhub.elsevier.com/S0026-2714(21)00410-8/rf202112071042441911
http://refhub.elsevier.com/S0026-2714(21)00410-8/rf202112071042441911
http://refhub.elsevier.com/S0026-2714(21)00410-8/rf202112071042441911
http://refhub.elsevier.com/S0026-2714(21)00410-8/rf202112071042441911
http://refhub.elsevier.com/S0026-2714(21)00410-8/rf202112071042564252
http://refhub.elsevier.com/S0026-2714(21)00410-8/rf202112071042564252
http://refhub.elsevier.com/S0026-2714(21)00410-8/rf202112071043000895
http://refhub.elsevier.com/S0026-2714(21)00410-8/rf202112071043000895
http://refhub.elsevier.com/S0026-2714(21)00410-8/rf202112071043009483
http://refhub.elsevier.com/S0026-2714(21)00410-8/rf202112071043009483
http://refhub.elsevier.com/S0026-2714(21)00410-8/rf202112071043009483
http://refhub.elsevier.com/S0026-2714(21)00410-8/rf202112071043021311
http://refhub.elsevier.com/S0026-2714(21)00410-8/rf202112071043021311
http://refhub.elsevier.com/S0026-2714(21)00410-8/rf202112071043135810
http://refhub.elsevier.com/S0026-2714(21)00410-8/rf202112071043135810
http://refhub.elsevier.com/S0026-2714(21)00410-8/rf202112071043135810
http://refhub.elsevier.com/S0026-2714(21)00410-8/rf202112071043157994
http://refhub.elsevier.com/S0026-2714(21)00410-8/rf202112071043157994
http://refhub.elsevier.com/S0026-2714(21)00410-8/rf202112071043157994
http://refhub.elsevier.com/S0026-2714(21)00410-8/rf202112071043381319
http://refhub.elsevier.com/S0026-2714(21)00410-8/rf202112071043381319
http://refhub.elsevier.com/S0026-2714(21)00410-8/rf202112071043381319
http://refhub.elsevier.com/S0026-2714(21)00410-8/rf202112071043381319
http://refhub.elsevier.com/S0026-2714(21)00410-8/rf202112071043555599
http://refhub.elsevier.com/S0026-2714(21)00410-8/rf202112071043555599
http://refhub.elsevier.com/S0026-2714(21)00410-8/rf202112071043555599
http://refhub.elsevier.com/S0026-2714(21)00410-8/rf202112071044117038
http://refhub.elsevier.com/S0026-2714(21)00410-8/rf202112071044117038
http://refhub.elsevier.com/S0026-2714(21)00410-8/rf202112071044117038
http://refhub.elsevier.com/S0026-2714(21)00410-8/rf202112071044391764
http://refhub.elsevier.com/S0026-2714(21)00410-8/rf202112071044391764
http://refhub.elsevier.com/S0026-2714(21)00410-8/rf202112071044391764
http://refhub.elsevier.com/S0026-2714(21)00410-8/rf202112071044475188
http://refhub.elsevier.com/S0026-2714(21)00410-8/rf202112071044475188
http://refhub.elsevier.com/S0026-2714(21)00410-8/rf202112071044475188
http://refhub.elsevier.com/S0026-2714(21)00410-8/rf202112071053037071
http://refhub.elsevier.com/S0026-2714(21)00410-8/rf202112071053037071
http://refhub.elsevier.com/S0026-2714(21)00410-8/rf202112071044516682
http://refhub.elsevier.com/S0026-2714(21)00410-8/rf202112071044516682
http://refhub.elsevier.com/S0026-2714(21)00410-8/rf202112071044516682
https://doi.org/10.1109/DFT.2007.29
https://doi.org/10.1109/DFT.2007.29
https://doi.org/10.1109/TVLSI.2009.2036362
http://refhub.elsevier.com/S0026-2714(21)00410-8/rf202112071045115582
http://refhub.elsevier.com/S0026-2714(21)00410-8/rf202112071045115582
http://refhub.elsevier.com/S0026-2714(21)00410-8/rf202112071049031066
http://refhub.elsevier.com/S0026-2714(21)00410-8/rf202112071049031066
http://refhub.elsevier.com/S0026-2714(21)00410-8/rf202112071045424858
http://refhub.elsevier.com/S0026-2714(21)00410-8/rf202112071045424858
http://refhub.elsevier.com/S0026-2714(21)00410-8/rf202112071049221860
http://refhub.elsevier.com/S0026-2714(21)00410-8/rf202112071049221860
http://refhub.elsevier.com/S0026-2714(21)00410-8/rf202112071049545148
http://refhub.elsevier.com/S0026-2714(21)00410-8/rf202112071049545148
http://refhub.elsevier.com/S0026-2714(21)00410-8/rf202112071050260853
http://refhub.elsevier.com/S0026-2714(21)00410-8/rf202112071050260853
http://refhub.elsevier.com/S0026-2714(21)00410-8/rf202112071046066647
http://refhub.elsevier.com/S0026-2714(21)00410-8/rf202112071046066647
http://refhub.elsevier.com/S0026-2714(21)00410-8/rf202112071046066647
http://refhub.elsevier.com/S0026-2714(21)00410-8/rf202112071052075785
http://refhub.elsevier.com/S0026-2714(21)00410-8/rf202112071052075785
http://refhub.elsevier.com/S0026-2714(21)00410-8/rf202112071052075785
http://refhub.elsevier.com/S0026-2714(21)00410-8/rf202112071052075785
http://refhub.elsevier.com/S0026-2714(21)00410-8/rf202112071046446630
http://refhub.elsevier.com/S0026-2714(21)00410-8/rf202112071046446630
http://refhub.elsevier.com/S0026-2714(21)00410-8/rf202112071046446630
http://refhub.elsevier.com/S0026-2714(21)00410-8/rf202112071046453222
http://refhub.elsevier.com/S0026-2714(21)00410-8/rf202112071046453222
http://refhub.elsevier.com/S0026-2714(21)00410-8/rf202112071046453222
http://refhub.elsevier.com/S0026-2714(21)00410-8/rf202112071046466952
http://refhub.elsevier.com/S0026-2714(21)00410-8/rf202112071046466952
http://refhub.elsevier.com/S0026-2714(21)00410-8/rf202112071046466952
http://refhub.elsevier.com/S0026-2714(21)00410-8/rf202112071046491405
http://refhub.elsevier.com/S0026-2714(21)00410-8/rf202112071046491405
http://refhub.elsevier.com/S0026-2714(21)00410-8/rf202112071046491405

	New decoding techniques for modified product code used in critical applications
	1 Introduction
	2 Related work
	3 Theoretical foundations of Hamming code and line product code (LPC)
	4 Applied methodology
	5 Correction technique correlating row-column
	6 Single error correction algorithm - AlgSE
	7 Double error correction strategy
	8 Experimental results
	9 Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	References


