
INTEGRATION, the VLSI journal 84 (2022) 131–141

Available online 14 February 2022
0167-9260/© 2022 Elsevier B.V. All rights reserved.

OPCoSA: an Optimized Product Code for space applications

David Freitas a,*, Jarbas Silveira a, César Marcon b, Lirida Naviner c, João Mota d

a Engineering and Computer Systems Laboratory (LESC) - DETI, Federal University of Ceará, Fortaleza, Brazil
b Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
c Laboratoire Traitement et Communication de l’Information, Télécom Paris, Palaiseau, France
d Wireless Telecommunications Research Group (GTEL) - DETI, Federal University of Ceará, Fortaleza, Brazil

A R T I C L E I N F O

Keywords:
Error correction code
Fault tolerance
Radiation effect
Computer simulation

A B S T R A C T

The integrated circuit shrinkage increases the probability and the number of errors in memories due to the in
crease in the sensitivity to electromagnetic radiation. Critical application systems employ Error Correction Codes
(ECC) to mitigate memory faults. This work introduces the Optimized Product Code for Space Applications
(OPCoSA), an ECC that optimizes its original version called PCoSA, reducing 16-redundancy bits and keeping
high error correction capacity. We evaluated the optimized ECC through tests with 36 specific error patterns,
burst errors, and exhaustive analysis. Additionally, we compared the synthesis results in hardware, reliability,
and redundancy to four other ECCs dedicated to the space application. Tests have shown that OPCoSA corrects all
36 error patterns and 100% of cases for up to four burst errors; besides, it has correction rates of 100%, 100%,
95.4%, and 78.9% for exhaustive errors of dimension one to four, respectively.

1. Introduction

The continuous decrease of electronic devices allows increasing the
storage capacity of memory circuits significantly. On the other hand,
this decrease implies an increase in the number of errors caused by
electromagnetic radiation, mainly in space applications. These errors
occur due to the ionizing radiation from particles, such as protons,
neutrons, heavy ions, alpha particles, and high-energy electrons. This
radiation can change the contents of memory cells, causing faults that
can be spread throughout the computational system, producing severe
damage [1–4].

The radiation effects and consequent permanent or transient change
of cells have been studied for almost 60 years [5–7]. There are several
approaches to mitigate this problem in space applications, such as using
shielding, hardened cells or Triple Modular Redundancy (TMR),
changing process technology, or applying Error Correcting Codes (ECCs)
[3]; this paper focuses on this latter approach.

In recent years, ECCs have been widely used to correct errors in
critical system memories. This technique considers a codeword
composed of data and redundancy bits. The technique requires addi
tional circuitry to the computational system to encode and decode the

codewords allowing to detect and correct errors in memory cells [8–12].
The first ECCs were designed to correct or detect single or double

errors, known as Single Error Correction - Double Error Detection
(SECDED). The electronic device shrinking increased the number of
multiple errors in digital circuits [8]. For this reason, ECCs have evolved,
obtaining a higher correction and detection capacity; thus,
two-dimensional or product ECCs have emerged [1,4].

Morán et al. [1] explain that these complex ECCs are built for use in
critical applications, such as space systems. These ECCs have high
redundancy, raising area consumption, power dissipation, and critical
path delay.1

This work proposes the Optimized Product Code for Spatial Appli
cation (OPCoSA), a matrix format ECC that protects 16 data bits
employing 32 redundancy bits, i.e., 16 fewer redundancy bits than its
predecessor, PCoSA [3]. OPCoSA maintains part of the PCoSA encoding
structure, eliminating one of the check bit areas and associated equa
tions. The main originality of this work is the new decoding algorithm,
which reduces the synthesis cost by up to 60% in some cases, keeps
correction rates close to PCoSA (average reduction of 7.2% up to six
bitflips), and improves code reliability.

* Corresponding author.
E-mail address: davidciarlinifreitas@gmail.com (D. Freitas).

1 The term Matrix refers to the linear code block proposed by Argyrides, Zarandi and Pradhan [13]. To avoid confusion between the ECC proposed by [13] and the
matrix structure, all ECCs in this work are in italics.

Contents lists available at ScienceDirect

Integration

journal homepage: www.elsevier.com/locate/vlsi

https://doi.org/10.1016/j.vlsi.2022.02.005
Received 18 November 2020; Received in revised form 21 September 2021; Accepted 12 February 2022

mailto:davidciarlinifreitas@gmail.com
www.sciencedirect.com/science/journal/01679260
https://www.elsevier.com/locate/vlsi
https://doi.org/10.1016/j.vlsi.2022.02.005
https://doi.org/10.1016/j.vlsi.2022.02.005
https://doi.org/10.1016/j.vlsi.2022.02.005
http://crossmark.crossref.org/dialog/?doi=10.1016/j.vlsi.2022.02.005&domain=pdf

Integration 84 (2022) 131–141

132

2. State-of-the-Art

There are several studies to mitigate memory faults using two-
dimensional ECCs. The main current works come from the Matrix
[13–15]; in turn, Matrix is based on Elias [16], which introduced in 1954
the pioneering work containing a simple and effective way to build long
codes based on structures of smaller codes.

Castro et al. [17] describe the Column-Line Code (CLC) imple
mentation and evaluation to detect and correct multiple errors in
memories using extended Hamming and parity bits. The ECC is
described in a 5 × 8 matrix format, with 16-data bits and 24-redundancy
bits, forming the CLC (40,16). The authors show that CLC has more
advantages than Reed-Muller (RM) and Matrix for scenarios with more
than three upsets. Silva et al. [18] propose other ECC formats based on
CLC, concluding that the highest correction efficiency occurs with the
CLC (16,54) format in the extended form; however, this format has the
highest area consumption. In 2020, Silva et al. [18] propose CLC-A, an
ECC that introduces a syndrome analysis circuit to the system to check
whether a second check is needed to correct the data. The experimental
results show that CLC-A achieves a higher correction rate than CLC and
the correction values are close to the values of the extended CLC, having
a significant cost reduction concerning its extended version.

In [19–22], the authors implement approaches with the Horizontal
Vertical Diagonal (HVD) technique, also called the 3D technique for
applying horizontal, vertical, and diagonal codes in a matrix format.
Tambatkar et al. [19] use the HVD and Hamming techniques to increase
error correction capacity. The experimental results show that the
correction capacity is three bits of data plus three bits of redundancy.
The proposal is tested for 32, 64, and 128 data bits, resulting in a
reduction of the encoder and decoder delays and the power dissipated by
the encoder concerning the Multidirectional Parity Check (MPC) code.
Raha e Murty [20] propose the Horizontal-Vertical Parity and Diagonal
Hamming (HVPDH) method to detect up to eight errors, correct 100% of
cases up to two, and correct most combinations of three to five errors.
HVPDH is tested for 32-bit data words with 28-bit redundancy, and the
results are compared with other ECCs that are also based on the Matrix
code. Sai et al. [21] propose a technique for detecting and correcting
multiple errors using Hamming code in the diagonal direction. This
approach detects up to eight errors and corrects up to five errors; some
combinations of six to eight errors are also correctable. The proposal
attains a high correction rate with less area consumption and delay than
the 3D Parity Check Code. Neelima e Subhas [22] propose an ECC based
on HVD codes with format (data, redundancy) of sizes (64, 39) and (64,
67). The authors verified the maximum number of bits that can be
corrected in each proposal but do not carry out a study with error in
jection to find the error correction rate of the proposed codes.

In [2,23], the authors propose an ECC in two dimensions divided by
regions. Silva et al. [23] developed and validated the Matrix Region
Section Code (MRSC), an ECC with low implementation cost to detect
and correct multiple errors in memories. The code is structured in a 4 ×
8 matrix, with 16 data bits and 16 redundancy bits, achieving a
correction capacity similar to CLC and better than Matrix, with lower
implementation costs than both ECCs. The authors in [2] develop the
Extended Matrix Region Selection Code (eMRSC), an improved version
of MRSC that extends the original 16 data bits to 32 bits. The authors
propose an error correction scheme by region to reduce the number of
generated redundancy bits. eMRSC is compared with the Orthogonal
Latin Square (OLS), Decimal Matrix Code (DMC), and Matrix codes,
presenting several tradeoffs; e.g., up to three bitflips, OLS has the highest
error correction rates; however, with more errors, eMRSC achieves
better results, being a low cost of implementation ECC.

Afrin e Sadi [24] propose an ECC in a 4 × 16 matrix format, with 32
data bits and 32 redundancy bits, which corrects 100% of the scenarios
evaluated up to 8 bitflips. The tests are performed exhaustively only for
the data bits, and the results are compared with Matrix, HVD, and DMC
codes. Erozan e Çavus [25] propose a method of fault correction using a

two-dimensional structure that is based on Single Parity Check (SPC) for
coding the columns and Low-Density Parity Check (LDPC) for coding the
lines. The proposed code can provide up to 95% correction coverage for
up to 4 upsets, and the approach improves MTTF by 63% compared to
the Matrix code. Morán et al. [26] present two two-dimensional ECCs
designed to correct adjacent error patterns; both codes have the same
error coverage with different redundancy levels, i.e., 8 and 16 bits. The
correction approach is based on the Flexible Unequal Error Control
(FUEC) methodology, developed to satisfy a certain number of syn
dromes. FUEC was designed to correct errors of one bit, as well as 2 and 3
adjacent bits in the same row or column. It can also correct errors in a 2
× 2 two-dimensional format.

Li et al. [27] tested two ECC proposals in a matrix format for 16-, 32-
and 64-bit words. For 32-bit words, the proposals add 14 and 24
redundancy bits for data formats of 2 × 16 and 4 × 8, respectively. The
code used on each line allows for correcting up to three burst errors. The
authors use the interleaving technique in the proposed schemes. The
24-bit redundancy approach increases the correction capacity by up to
300% compared to the two 32-bit ECCs with 20 and 24 redundancy bits.
Priya e Vijay [28] detail and analyze the Improved Redundant Matrix
Code (IRMC), which adds 32 redundancy bits to protect 32 data bits. The
authors do not carry out correction tests with any fault injection method
and focus on implementing an FGPA.

The authors in [29,30] suggest improving the reliability of the sys
tem by adding an extra circuit to the circuits that deal with the ECC. Liu
et al. [29] propose implementing a system to improve the reliability of
encoders and decoders of Matrix codes. The scheme can detect all errors
derived from a single node in the encoder and decoder circuits. The
results show that the proposal has lower area and energy overloads,
using a simple technique. Athira e Yamuna [30] test the Matrix code
with an extra reliability system that reuses the encoder inside the
decoder. The experimental results show that the proposed system has a
higher error correction rate in relation to RM and Hamming ECCs and
lower than DMC, with less delay and power dissipation among all ECCs.

The papers presented tend to use two-dimensional codes to mitigate
multiple errors in memories used in critical applications. In 2020, the
PCoSA product code for space applications [3] was proposed, composed
of 16 data bits and 48 redundancy bits PCoSA (64,16), providing a high
capacity to correct multiple errors. Exhaustive tests show that PCoSA
corrects 100% of cases for up to three bitflips and has an 87% correction
rate for four errors. PCoSA was compared with other codes used in space
applications of one and two dimensions, such as PBD [37], CLC [17,18],
RM [31], and Matrix [13], obtaining the highest efficiency in error
correction. In [37], the authors present an error detection and correction
approach called Parity per Byte and Duplication to protect data stored in
memory. The technique uses parity at each byte and duplicates all
content to perform the correction. Thus, two bytes need 20 bits of
redundancy, forming the PBD (36,16). The traditional Reed-Muller code
[31] used in this work has the parameters r = 2 and m = 5; n = 2m and

k =
∑r

i=0

(
m
i

)

give the codeword and message sizes to be encoded,

respectively, forming RM(32,16). Finally, Matrix [13] is a product code
with 16 bits of data in a 4 × 4 matrix format that uses only Ham(7,4) in
rows and parity in columns. Therefore, it has 16 bits of redundancy and a
total of 32 bits, forming the Matrix (32,16).

3. PCoSA structure

PCoSA is a product code that combines two linear codes C1(n1, k1)

and C2(n2,k2), denoted by C1 × C2, as shown in Fig. 1. This code applies
two sets of check bits in a two-dimensional format. The data is written in
a k1 × k2 matrix. Each line k2 is coded using C1, forming n1 columns.
Each column n1 is coded using C2, forming the n1 × n2 matrix. The
product code linearity allows us to start coding C1 and then C2 and vice
versa [31–33]. As C1 has a minimum distance d1 and C2 has a minimum

D. Freitas et al.

Integration 84 (2022) 131–141

133

distance d2, so the product code has a minimum distance d1 × d2. As the
code distance increases, the greater the detection and correction ca
pacity about the one-dimensional ECCs [32].

The Minimum Distance (d) of a code is the smallest number of bit
changes required to change from any codeword to any other codeword;
it is a metric used to measure the code capacity in correcting and
detecting errors. Equations (1) and (2) calculate the maximum number
of errors in any codeword position that a Hamming-based code can correct
ec or detect ed [31], respectively.

ec=(d − 1)/2 (1)

ed= d − 1 (2)

Equations (1) and (2) are exclusives, i.e., ec or ed, but not ec and ed
simultaneously. The simultaneity relationship among ec, ed, and d is
given by Equation (3) (further details in [36]). It is important to point
out that the range of the value given by Equations (1) and (2) depends on
the decoding method, increasing or even decreasing this value.

ed= d − ec − 1 (3)

PCoSA code is similar to CLC [17], but it applies extended Hamming
to both rows and columns. Fig. 2 shows PCoSA with 16 data bits (D0 to
D15), 12-row check bits (C10 to C111), 7-row parity bits (P10 to P16),
21-column check bits (C20 to C220), and 8-column parity bits (P20 to
P27). This format has 48 redundancy bits and a minimum distance of 16;
since C1 and C2 are extended Hamming codes with d1 = d2 = 4. PCoSA
encoding/decoding equations are available in [3].

4. OPCoSA definition

Fig. 3 shows the OPCoSA organization consisting of 16 data bits (D0
to D15), 12-row check bits (C10 to C111), 4-row parity bits (P10 to P13),
12-column check bits (C20 to C211), and 4-column parity bits (P20 to
P23); it is the same organization as PCoSA [3], but without the check bits
of check bits region, reducing 16-redundancy bits (33% of reduction).
This modification removes OPCoSA from the product code class, being
considered a modified product code.

This reduction of a PCoSA check-bit region to form the OPCoSA and
the consequent alteration of the decoding algorithm is the focus of this
work. This change in format makes the minimum distance of a modified
product code, obtained by Equation (4), less than a conventional prod
uct code [31,33].

dC1C2 = dC1 + dC2 − 1 (4)

Equation (4) shows that OPCoSA has a minimum distance of 7
because it uses a minimum distance in both codes (rows and columns)
equal to 4. The organization of the OPCoSA matrix causes rows and
columns to cross in just a single bit, and changing this bit implies the
variation of three other bits in the line and three other bits in the col
umn, thus modifying 7 bits; i.e., the minimum distance of 7.

Fig. 4 describes the OPCoSA encoding and decoding processes, which
are detailed by applying Equations (5)–(25).

Using q as the bit position index and ⊕ an XOR operation, OPCoSA
coding employs Equations (5)–(7) to compute the row parity check bits,
Equation (8) to calculate the row parity bits, Equations (9)–(11) to
calculate the column parity check bits, and Equation (12) to compute the
column parity.

C1q =D4q
3
⊕D4q

3 +1 ⊕D4q
3 +3, ∀q ∈ {0, 3, 6, 9} (5)

C1q+1 =D4q
3
⊕D4q

3 +2 ⊕D4q
3 +3, ∀q ∈ {0, 3, 6, 9} (6)

C1q+2 =D4q
3 +1 ⊕D4q

3 +2 ⊕D4q
3 +3, ∀q ∈ {0, 3, 6, 9} (7)

P1q =D4q ⊕ D4q+1 ⊕ D4q+2 ⊕ D4q+3 ⊕ C13q ⊕ C13q+1 ⊕ C13q+2, ∀0 ≤ q ≤ 3
(8)

C2q =Dq ⊕ Dq+4 ⊕ Dq+12, ∀0 ≤ q ≤ 3 (9)

C2q+4 =Dq ⊕ Dq+8 ⊕ Dq+12, ∀0 ≤ q ≤ 3 (10)

C2q+8 =Dq+4 ⊕ Dq+8 ⊕ Dq+12, ∀0 ≤ q ≤ 3 (11)

P2q =Dq ⊕ Dq+4 ⊕ Dq+8 ⊕ Dq+12 ⊕ C2q ⊕ C2q+4 ⊕ C2q+8, ∀0 ≤ q ≤ 3
(12)

In OPCoSA decoding, Equations (13)–(15) and (17)–(19) calculate
the recalculated check bits rC1 (rows) and rC2 (columns), respectively;
also, Equations (16) and (20) recalculate the parity bits of the rows and
columns, respectively.

rC1q =D4q
3
⊕D4q

3 +1 ⊕D4q
3 +3, ∀q ∈ {0, 3, 6, 9} (13)

Fig. 1. Product code with k1 × k2 data bits and n1 × n2 total bits after encoding
a word with codes C1 and C2 (based on [16]).

Fig. 2. PCoSA structure with 16-data bits.

Fig. 3. OPCoSA structure with 16 data bits.

Fig. 4. OPCoSA encoding and decoding process, relating the equations that are
used in each of the steps.

D. Freitas et al.

Integration 84 (2022) 131–141

134

rC1q+1 =D4q
3
⊕D4q

3 +2 ⊕D4q
3 +3, ∀q ∈ {0, 3, 6, 9} (14)

rC1q+2 =D4q
3 +1 ⊕D4q

3 +2 ⊕D4q
3 +3, ∀q ∈ {0, 3, 6, 9} (15)

rP1q =D4q ⊕ D4q+1 ⊕ D4q+2 ⊕ D4q+3 ⊕ C13q ⊕ C13q+1 ⊕ C13q+2, ∀0 ≤ q

≤ 3
(16)

rC2q =Dq ⊕ Dq+4 ⊕ Dq+12, ∀0 ≤ q ≤ 3 (17)

rC2q+4 =Dq ⊕ Dq+8 ⊕ Dq+12, ∀0 ≤ q ≤ 3 (18)

rC2q+8 =Dq+4 ⊕ Dq+8 ⊕ Dq+12, ∀0 ≤ q ≤ 3 (19)

rP2q =Dq ⊕ Dq+4 ⊕ Dq+8 ⊕ Dq+12 ⊕ C2q ⊕ C2q+4 ⊕ C2q+8, ∀0 ≤ q ≤ 3
(20)

Equations (21)–(24) perform the next decoding step by calculating
sC1 and sC2, which are the check bits syndromes C1 and C2, respec
tively, and by calculating sP1 and sP2, which are the syndromes of the
parity bits of the rows and columns, respectively. These four syndromes
constitute the vector S = [sC1 sP1 sC2 sP2].

sC1=
∑3

q=0

(
C13q ⊕ rC13q

)
+
(
C13q+1 ⊕ rC13q+1

)
+
(
C13q+2 ⊕ rC13q+2

)
(21)

sC2=
∑3

q=0

(
C2q ⊕ rC2q

)
+
(
C2q+4 ⊕ rC2q+4

)
+
(
C2q+8 ⊕ rC2q+8

)
(22)

sP1=
∑3

q=0
P1q ⊕ rP1q (23)

sP2=
∑3

q=0
P2q ⊕ rP2q (24)

The decoding algorithm uses S = [sC1 sP1 sC2 sP2] in binary format
Sb = [sc1 sp1 sc2 sp2]. The way to perform this calculation is given by
Equation (25). For example, if S = [2 1 2 0], then Sb = [1 1 1 0].

sx=
{

0, if sX = 0
1, else (25)

The sequence of the decoding algorithm is based on the OPCoSA
correction method, presented in Section VI.

5. Experimental setup and methodology

In the experimental setup, the potential of OPCoSA was assessed
through three test cases and compared with PCoSA and other four ECCs
used in space applications. Fig. 5 describes the methodology used to
obtain and evaluate OPCoSA. Note that activities 1 and 2 comprise the
steps to design the OPCoSA decoding algorithm, while the other activ
ities contain the steps to collect the experimental results.

Activity 1 presents the mapping of 36 error patterns shown in Fig. 6;
these standards were proposed in [34] and used to design the OPCoSA
algorithm. These error patterns were obtained with a commercial tool
using strike simulation of neutron particles. The tool has as input the
radiation environment and memory and as output the MBUs patterns
and their respective probabilities [34]. As these error patterns have a 3
× 3 matrix format, their analysis was performed in two parts with the
mapping on the OPCoSA codeword: (i) first 4 rows to the 8th column and
(ii) last 4 rows from columns 1 to 4. Thus, each error pattern was placed

Fig. 5. Applied methodology containing the five main activities.

Fig. 6. Thirty-six error patterns used in the experiments, encompassing one
simple error, ten double errors, twenty triple errors, and five quadruple errors
(based on [34]).

Fig. 7. Surrounded by the red line is the region that error pattern can be
placed: (a) error pattern 1 can be placed in all positions, and (b) error pattern 2
can be placed in all positions except the rightest column.

D. Freitas et al.

Integration 84 (2022) 131–141

135

in all possibilities σi, with i being the index to represent each of the 36
error patterns.

Fig. 7 exemplifies the positioning of the error patterns 1 and 2 in the
areas described by (i) and (ii), respectively. Thus, the error pattern 1 can
be placed in the 48 positions, as shown in Fig. 7(a), obtaining σ1 = 48.
In turn, error pattern 2 can be positioned only in the 40 positions indi
cated by the two regions of Fig. 7(b), obtaining σ2 = 40. This decrease in
the number of positions occurs because, as error patter 2 in Fig. 6 has
two horizontally adjacent bitflips, and as we make the left bit as the
reference for the test, it cannot be positioned in the last column because
its adjacent bits would be outside the OPCoSA region. This mapping
serves to find the syndromes of Section VI and to design the OPCoSA
decoding algorithm.

Activity 2 describes the decoding algorithm design, which encom
passes the evaluation of all mappings of the 36 error patterns to capture
all syndromes in decimal and binary formats. In this activity, a table is
created with the list of all syndromes found with the respective error
type. Only binary syndromes that have errors in the data region are
analyzed; this analysis indicates the correction method used for each
syndrome found.

The three test cases are analyzed in Activity 3. While PCoSA analyzes
only the 36 error patterns and exhaustive tests, this work adds a third
test case that contemplates burst errors. A burst error is a multiple error
that covers l contiguous bits in a word; where at least the first and last
bits are wrong. The value l is known as the burst length. Note that
adjacent errors are a specific type of burst error in which all the wrong
bits are contiguous [1,26].

Activity 4 contemplates two ways of mapping errors in memory: (i)
the mappings of the 36 error patterns illustrated in Fig. 6 and (ii) the
mappings used for both burst and exhaustive errors; as Fig. 8 illustrates,
form (ii) speeds up testing by treating OPCoSA as a contiguous 48-bit
vector. The first eight bits of Fig. 8 are equivalent to the first line of
Fig. 3, the bit intervals 9 to 16, 17 to 24, and 25 to 32 of Fig. 8 are
equivalent, respectively, to lines 2, 3, and 4 Fig. 3; finally, the range
from bit 33 to bit 48 in Fig. 8 is equivalent to the four-bit lines 5 to 8 in
Fig. 3.

Activity 4 shows that for each test case, the error generation is

repeated m times. In the case of 36 error patterns, m =
∑36

i=1
σi. The

simulation is repeated mx =

(
n
x

)

times for each x bitflips in the

exhaustive test. In the case of b burst errors, m = (n − b + 1)2b− 2, m =

n − 1 and m = n, for b > 2, b = 2 and b = 1, respectively. For these
cases, n = 48, which is the OPCoSA codeword size.

Activity 5 presents the correction capacity, reliability, and imple
mentation costs of OPCoSA compared to PCoSA, PBD, CLC, RM, and
Matrix codes. The correction data obtained in this activity were
extracted from the works of [3,37].

6. OPCoSA correction method

The OPCoSA correction method employs the same idea implemented
in PCoSA. However, the algorithm has been completely changed with
the reduction from 64 to 48 bits.

The OPCoSA algorithm was designed to correct the 36-error pattern
illustrated in Fig. 6. Each error pattern was placed in all five regions of
Fig. 3 (data D, row check bits C1, row parity P1, column check bits C2,
and column parity P2); consequently, all cases were considered. For
example, error pattern 2 was placed in regions D, D ∪ C1, C1, C1 ∪ P1, C2
and P2.

Table 1 describes the positioning of all 36 error patterns in all re
gions, including all sixteen combinations of Sb. The correction algorithm
works only if at least one error occurs in region D; i.e., only if Sb =

[0111], [1010], [1011], [1101], [1110] or [1111]. Besides, Table 1 shows
the type, number, and placement of the error patterns.

After mapping each Sb, the decoding algorithm searches for the
syndrome-based error pattern, as shown in the following tables. This
procedure is done for the first five Sb patterns; for Sb = [1111], there is
one more step.

Sb = [0 1 1 1]

Pattern S Correction method

21 [0 1 3
3]

Apply Hamming to all columns and then Hamming to all
rows

33 [0 1 3
2]

Default: Apply Hamming to all columns and then Hamming to all rows

Sb = [1 0 1 0]

Pattern S Correction method

13, 20 [1 0 1
0]

Invert the intersecting bit between sC1 and sC2

36 [2 0 2
0]

The four bitflips are corrected by referencing the upper
left bit of the pattern, which is found using the upper sC1
and the leftmost sC2. The position of this reference bit
allows us to change the other three bitflips

[2 0 1
0]
[1 0 2
0]

Default: Apply Hamming to all rows

Sb = [1 0 1 1]

(continued on next page)

Fig. 8. OPCoSA representation in a 48-position vector format.

Table 1
Mapping of error patterns using Sb = [sc1sp1 sc2sp2].

Sb Error pattern

Type Number and
placement

0 0 0 0 No error –
0 0 0 1 4 outside region D
0 0 1 0 8 outside region D
0 0 1 1 60 outside region D
0 1 0 0 4 outside region D
0 1 0 1 Unreachable syndrome –
0 1 1 0

* 0 1 1 1 Patterns 21, 33 2 inside region D
1 0 0 0 8 outside region D
1 0 0 1 Unreachable syndrome –

* 1 0 1 0 Patterns 13, 20, 36 5 inside region D
* 1 0 1 1 Patterns 2, 5, 13, 15, 18, 20, 27, 31, 34 17 inside region D

1 outside region D
1 1 0 0 60 outside region D

* 1 1 0 1 Pattern 14 1 inside region D
* 1 1 1 0 Patterns 3, 4, 12, 13, 19, 20, 23, 24, 29, 35 17 inside region D

1 outside region D
* 1 1 1 1 Several patterns 94 in several regions

Lines marked with * are detailed in the next tables.

D. Freitas et al.

Integration 84 (2022) 131–141

136

(continued)

Pattern S Correction method

2, 5, 27, 31 [1 0 2
2]

Apply Hamming to all columns

2, 5 [1 0 1
1]

13, 15, 18,
20, 34

[1 0 2
1]

Invert the bit indicated by the double error above and by
the double error indicated by the column. After that,
apply Hamming to all columns

27, 31 [1 0 3
3]

Apply Hamming to all columns

34 [2 0 1
1]

34 [2 0 3
2]

Invert the bit indicated by the double error above and by
the double error indicated by the column. After that,
apply Hamming to all columns 34 [2 0 2

1]
34 [1 0 3

2]

Default: Apply Hamming to all columns

Sb = [1 1 0 1]

Pattern S Correction method

14 [3 3
0 1]

Apply Hamming to all rows

Default: Apply Hamming to all rows

Sb = [1 1 1 0]

Pattern S Correction method

3, 4, 29 [2 2 1
0]

Apply Hamming to all rows

3, 4 [1 1 1
0]

12, 13, 19,
20, 35

[2 1 1
0]

Invert the bit indicated by the double line error and the
leftmost one by the column and then applies Hamming to
all lines

23, 24, 29 [3 3 1
0]

Apply Hamming to all rows

35 [3 2 2
0]

Invert the bit indicated by the double line error and the
leftmost one by the column and then applies Hamming to
all lines 35 [3 2 1

0]
35 [2 1 2

0]
35 [1 1 2

0]
Apply Hamming to all rows

Default: Apply Hamming to all rows

Let r and c be the numbers of errors in the rows and columns,
respectively, Sb = [1111] occurs with error patterns in the format r× c.
In cases of miscorrection or in cases where the error is in regions such as
D ∪ C2, the error pattern can have diverse dimensions. The OPCoSA
decoding algorithm uses Equations (26)–(28) to compute the Error Size
(ES).

ES= r × c (26)

r =max(sC1, sP1) (27)

c=max(sC2, sP2) (28)

The table below presents all the ES possibilities, the corresponding
error pattern S, and the correction method.

Sb = [1 1 1 1]

ES Pattern S Correction method

1 × 1 1 1111 If the position of the row error is 1
and Column 7, apply Hamming to
all columns. Otherwise, apply
Hamming to all rows

14
21

1 × 2 35 1120 Apply Hamming to all rows
1121

(continued on next column)

(continued)

Sb = [1 1 1 1]

ES Pattern S Correction method

12, 16, 17, 19,
22, 23, 24, 29,
33
6, 7, 8, 9, 10,
11, 21

1122

1 × 3 32 1132 Apply Hamming to all rows
21, 25, 26, 28,
30

1133 Apply Hamming to all columns

2 × 1 15, 16, 17, 18,
27, 28, 30, 31

2111

6, 7, 8, 9, 10,
11, 14, 32, 33

2211

2 × 2 12, 13, 15, 16,
17, 18, 19, 20

2121 Invert the bit indicated by row
double errors and then apply
Hamming to all columns

27, 28, 30, 31 2122 Apply Hamming to all columns
22, 23, 24, 29,
32, 33

2221 Apply Hamming to all rows

6, 7, 8, 9, 10,
11, 25

2222 Apply Hamming to all columns

32 1221 Apply Hamming to all rows and
then to all columns

2 × 3 32, 33 1232 Invert the two bits indicated by
the two rows and the double error
column and then apply Hamming
to all columns

32, 33 2232

27, 28, 30, 31 2133 Apply Hamming to all columns
25, 26 2233

3 × 1 14, 22, 25, 26 3311 Apply Hamming to all rows
3 × 2 22, 23, 24, 29 3321

25, 26 3322
3 × 3 25, 26 3333
Default: Check r and c (Equations (27) and (28)). If r ≥ c, apply Hamming to all rows.

Otherwise, apply Hamming to all columns.

The default conditions enable to correct several patterns in addition
to those presented by the set of 36 error patterns. For example, the
default condition for error patterns with Sb = [1111] is “Check r and c
(Equations (27) and (28)). If r ≥ c, apply Hamming to all rows. Other
wise, apply Hamming to all columns”. The pattern that has four diagonal
errors (bits D0, D5, D10, and D15), for instance, is corrected because
Sb = [1111], S = [4444], and the default condition would do the
correction of all bits. Fig. 9 exemplifies another 4-bit error pattern that
OPCoSA can correct, which is not included in the 36 error patterns. The
syndromes of this error pattern are Sb = [1111] and Sb = [2232] (ES =

2× 3). Thus, the decoding algorithm corrects “Inverting the two bits
indicated by the two rows and the double error column and then apply
Hamming to all columns”. The correction process is done in two parts: (i)
first, D5 and D9 are corrected; then, (ii) the complete correction is
performed applying Hamming to all columns to correct D6 and D7 bits.

7. Exploring scalability and redundancy rate

Equation (29) computes the Redundancy Rate (rr) metric that in
dicates the ratio between the redundancy (r) and codeword (r) bits. The
higher the rr, the greater the weight of the redundancy bits. However,
the lower the rr, the lower the redundancy impact; consequently, the
lower the ECC cost.

rr =
r
n
× 100% ​ (29)

OPCoSA was designed to protect memories with words longer than 8
bits through code replication or code scaling. Replicating a smaller code
is a technique that keeps rr, while code scaling reduces rr. Fig. 10 shows
the decrease of rr as a function of the Hamming configuration. For
instance, using Ham(8,4), the rr in the product code is 75% (case of
PCoSA [3]), while a modified product code has rr = 66.6% (case of

D. Freitas et al.

Integration 84 (2022) 131–141

137

OPCoSA). For all Hamming code configurations analyzed, OPCoSA has
lower rr values than PCoSA, with the highest difference being 8.3% for
the first case.

The OPCoSA scaling is achieved using other Hamming formats that
preserve the same minimum Hamming distance (d) of four, making the
modified product code to have the same d = 7; consequently, preserving
the same correction and detection rates for all OPCoSA scaled versions.
For instance, when using Ham(16, 11) and Ham(32, 26) in place of Ham
(8, 4), increases the codeword length to the ones presented in Fig. 11 and
Fig. 12, respectively.

On the one hand, the purpose of the OPCoSA configurations pre
sented in Figs. 11 and 12 is to decrease rr, contributing to a code with
less redundancy and, consequently, lower costs. For instance, OPCoSA
(231, 121) and OPCoSA (988, 676) have rr equal to 47.6% and 31.5%,
respectively, which is a significant reduction of the cost in bits compared
to 66.7% of the basic OPCoSA (48, 16). On the other hand, since OPCoSA
scaling keeps the number of bits detected and corrected, because it keeps
the Hamming distance but increases the number of codeword bits, the
detection and correction rate of the memory protected by OPCoSA is
reduced.

Replication is performed using any OPCoSA code, such as the basic
OPCoSA (48, 16) or other scaled versions as shown above - OPCoSA
(231, 121) and OPCoSA (988, 676). Fig. 13 illustrates OPCoSA (192, 64)
for protecting a memory with 64-bit words; this code format was ach
ieved by replicating four OPCoSA (48, 16). The absence of one check-bit
area implies that OPCoSA is replicated by rotating two OPCoSA code
words. Thus, OPCoSA can be written in an 8 × 24 region instead of the 8
× 32 region proposed in PCoSA [3], saving memory area.

This replicating process makes OPCoSA (48, 16) and OPCoSA (192,
64) have rr equal to 66.7%, which is a high cost in bits. However, the
replication scaling keeps the number of bits detected and corrected, and
also the detection and correction rate of the memory protected by
OPCoSA.

8. Results and discussions

This section presents experimental results and discussions consid
ering code correction capacity, reliability, and cost of implementation.

A. Error Correction Capability

To assess the correction capability of the 36 error patterns [34],
OPCoSA was placed in a matrix format (Fig. 3), facilitating the mapping
of each MBU in a 3 × 3 matrix format. The results display that, like
PCoSA, OPCoSA obtained 100% of error correction for all 36 error
patterns.

The error correction capacity evaluation, considering burst and
exhaustive tests, is done with the vector-type structure presented in
Fig. 8. OPCoSA can correct 100% of cases until burst error with l = 4;
however, the ECC has 0% correction for l > 4.

The exhaustive tests were performed with sets of one to six bitflips.
Fig. 14 shows that only PCoSA and RM have 100% correction up to three
bitflips. OPCoSA achieves 100% error correction with two bitflips but
reduces it to 95.4% with 3 bitflips. CLC performs better than Matrix and

PDB in all range of errors, but these three ECCs show low correction
capacity compared to the others from 1 to 3 errors. From four bitflips to
six, RM presents a high error correction reduction, which is near to PBD
that reaches only 13%, 5%, and 2%. In this same last error range, PCoSA
and OPCoSA have rates much higher error correction capacity than the
other ECCs; OPCoSA reaches 79%, 53%, and 35% of error correction for
4, 5, and 6 bitflips, respectively.

Fig. 9. Error pattern example that is not part of the 36 patterns analyzed in
Fig. 5 but is fixed by the OPCoSA decoding algorithm.

Fig. 10. OPCoSA and PCoSA redundancy rates for seven Hamming configura
tions with a second-degree polynomial approximation.

Fig. 11. Configuration of OPCoSA (231, 121) using Ham(16, 11). The 121 data
bits are encoded in 231 bits; rr is 47.6%, with 110 bits of redundancy.

Fig. 12. OPCoSA (988, 676) employing Ham(32, 26) and encompassing 676
data bits encoded in 988 bits; rr is 33.5%, with 312 bits of redundancy.

Fig. 13. OPCoSA configuration for use in 64-bit memories. OPCoSA (192, 64)
has 64 data bits and 128 redundancy bits.

D. Freitas et al.

Integration 84 (2022) 131–141

138

It is worth noting that the OPCoSA decoding algorithm was designed
to correct 100% of the 36 error patterns. We define the δ metric to un
derstand the percentage of these patterns within the set of all possible
error scenarios. Additionally, δf displays the effectiveness of the
decoding algorithm to correct other scenarios with the same f errors.

Let pf = (pSf , pEf) be a tuple containing the start and end numbers of
the f error patterns exposed in Fig. 6, then p1 = (1, 1), p2 = (2, 11), p3 =

(12,31) and p4 = (32,36). Let σp the be the number of all positions that
pattern p can assume within the OPCoSA codeword, qf be the sum of all

σp with the same number of f errors, such that qf =
∑pEf

p=pSf

σp . Let mf be the

total number of combinations with e errors within the OPCoSA code

word; i.e., an exhaustive analysis, such that mf =

(
48
f

)

(note that 48 is

the number of bits of the OPCoSA codeword); thus, δf =
qf
mf
× 100% is the

error pattern representativeness within all possibilities with e errors. For

instance, q2 =
∑11

p=2
σp = 280, and m2 =

(
48
2

)

= 1128, thus, δ2 = 280
1128×

100% = 24.82%. Table 2 describes δf , qf and, mf for the range of 1–4
errors in Fig. 6.

On the one hand, the representativeness decrease with the increase
in the number of errors is evident and understandable since exhaustive
verification consider combinations of errors that leave the 9-cell enve
lope shown in Fig. 6; besides, this growth is proportional to the factorial
of the number of errors f . On the other hand, even with low represen
tativeness, the OPCoSA decoding algorithm achieves a high correction
rate, reaching 79% of error correction for representativeness of only
0.06% in the case of f = 4. The explanation for this high correction
efficacy comes from the OPCoSA matrix format, where every row and
column has associated a Hamming code that can correct one error and
detect two errors. This organization favors error patterns spaced in rows
and columns, achieved in the exhaustive exploration, making these er
rors attended by different Hamming codes. For example, a 4-bit error
pattern arranged on the same data row is perceived as four single errors
in four data columns. The most complex error patterns that OPCoSA
handles are the concentrated ones; therefore, an error pattern evaluation
on a 3 × 3 matrix achieves such a high correction rate.

B. Reliability

The reliability analysis is based on the work of [4,13]. Moreover, we
assume the following assumptions: (i) the Poisson distribution allows
representing the dispersion of transient errors over the memory lifetime
[35]; (ii) errors occur statistically independently; (iii) the employment
of the same range of errors for any code to evaluate the same time in
terval provides sound values for reliability comparison. While assump
tion (i) allows defining the equation that best represents the fault
reliability behavior, assumptions (ii) and (iii) allow using the values
presented in Fig. 14 as the error correction capacity of each code in the
reliability computation.

Let αECC,f be the capacity of an ECC to correct f random errors, and
βECC = [αECC,1, αECC,2, …, αECC, Γ] be the vector that comprises the ECC
correction rates from 1 to Γ errors, then βOPCoSA = [100%,100%, 95%,

79%, 53%,35%] and βPCoSA = [100%, 100%, 100%, 82%, 69%, 55%],
with Γ = 6; the vectors βOPCoSA and βPCoSA were extracted from the same
calculations that produced Fig. 14.

Let n be the number of codeword bits of a given ECC, f be and upset
event in the code, t be a step time of a day, and λ probability of a single
bit per t; then, the probability of having f errors in n bits during t days in
a Poisson distribution Ψ f (t) is given by Equation (30).

Ψf (t) =
(

n
f

)
(
1 − e− λt)f e− λ(n− f)t (30)

Equation (31) computes ΦECC(t) - the ECC reliability parcel con
cerning its capacity to correct errors distributed according to Poisson
distribution over t days.

ΦECC(t) =
∑Γ

f=1
αECC,f × Ψf (t) (31)

The probability of a n-bit codeword failure over t days is computed
by Equation (32).

P(t)= 1 − e− λnt (32)

Let M be the number of codewords in memory, such that events of
error in codewords are independent, then Equation (33) computes the
reliability of a memory protected by an ECC over t days RECC(t) as the
product of the reliability of all codewords.

RECC(t)= (1 − P(t) + ΦECC(t))M (33)

This work uses M = 1 (i.e., RECC(t) is computed regarding a single
codeword) to simplify the exhibition of the results. Extra information on
the equations can be found in [13]. Fig. 15 shows RPCoSA(t) and ROPCoSA(t)
encompassing three values of λ (1 × 10− 4, 5 × 10− 5, and 1 × 10− 5) and a
range of 14,000 days. The horizontal axis is time expressed in days,
while the vertical axis is the reliability of OPCoSA and PCoSA expressed
in %. The reliabilities considering the other ECCs were not included in
Fig. 15 because [3] already shown that PCoSA has a higher reliability
than PBD, CLC, Matrix, and RM throughout the same range of days and
considering the same values of λ.

Fig. 14. Correction capacity of PCoSA, OPCoSA, PBD, CLC, Matrix, and RM. The
simulation is done using all combinations from 1 to 6 bitflips.

Table 2
Representativeness of the 36 error patterns concerning the total error
combinations.

f qf mf δf Correction

1 48 48 100.00% 100.0%
2 280 1128 24.82% 100.0%
3 464 17,296 2.68% 95.4%
4 122 194,580 0.06% 79.0%

D. Freitas et al.

Integration 84 (2022) 131–141

139

The λ parameter indicates the error incidence rate in memory. For
example, λ = 10− 4 indicates the probability of one error in a single bit
every 10,000 days; since OPCoSA codeword has 48 bits, OPCoSA has the
probability of one bitflip every 208 days. As errors occurrence in RECC(t)
are computed cumulatively, Fig. 15 illustrates that in 3000 days, the
memory would have 14 bitflips, leading to reliability close to zero for
both ECCs.

Fig. 15 displays that OPCoSA is more reliable than PCoSA for all
periods and values of λ. For instance, with λ = 10− 5, OPCoSA reaches a
rate of 100%, 96%, and 74% for days 1, 4000, and 8000, respectively,
while for the same days, PCoSA reaches rates 100%, 92%, and 61%.

C. Redundancy and Synthesis Cost

ECCs were evaluated in terms of redundancy costs using two criteria:
(i) code redundancy rate in, computed by Equation (34), and (ii)
redundancy rate added in relation to the number of data bits, computed
by Equation (35).

r1=
r
n

(34)

r2=
r
k

(35)

Table 3 contains the results of r1 and r2, which shows that the lowest
redundancy rates are for the Matrix and RM codes; the highest rate is for
PCoSA, while OPCoSA is 11.9% above the average for r1 and 23% above
the average for r2.

Fig. 16 displays the sequence for obtaining the synthesis results.
Initially, we described the encoder (encoder.v) and decoder (decoder.v)
using Verilog in Register Transfer Level (RTL). To verify the encoder and
decoder behavior, we implemented a TesbBench that includes a test file
(test.v) and an error file (error.v). next, the waveforms of the circuits
were validated using Xilinx’s Integrated Development Environment
(IDE) software known as Vivado Design Suite. Finally, we synthesized
the Verilog codes to obtain the values of delay, area consumption, the
power dissipation for encoder and decoder. The syntheses were per
formed using the RTL Compiler software with the 65 nm CORE65GPSVT
standard cell library.

Fig. 17 displays the costs of the hardware synthesis of the evaluated
ECCs, considering area consumption, power dissipation, and delay of

encoders and decoders.
The ECC decoder costs are much higher than the encoder ones since

most calculations occur in the decoding process. The synthesis results for
both encoder and decoder show that PDB, followed by Matrix, is the
lowest cost ECC. On the one hand, considering only the encoder syn
thesis, OPCoSA appears in third place. On the other hand, considering
only the decoder, CLC is the third most efficient ECC. Finally, except for
the decoding delay, OPCoSA has lower synthesis costs than PCoSA,
showing the efficiency of the proposed approach.

9. Conclusions

This paper presents OPCoSA, a product ECC requiring 32-redundancy
bits to protect 16-data, which is based on PCoSA that requires more 16-
redundancy bits. OPCoSA offers high correction capacity and a conse
quent decrease in hardware costs in relation to OPCoSA. The experimental
results demonstrate that the correction rate up to four bitflips remains like
PCoSA and above the other four ECCs (CLC, PBD, Matrix, and RM).

OPCoSA was evaluated through correction ability, reliability,
redundancy, and hardware synthesis costs. OPCoSA reaches 100% of
error correction for 36 specific error patterns and obtained 100%
correction for burst errors of sizes one to four. The correction capacity
difference between OPCoSA and PCoSA is a maximum of 4.5% for
exhaustive error scenarios of up to four bitflips.

The great advantage of OPCoSA is that it offers the same function
ality as PCoSA, but with 16 bits less redundancy, this directly contributes
to the decreased area, power, and delay costs. As for reliability, three
tests were performed varying the number of bit faults per day; in all
cases, and for the entire period, OPCoSA has the highest reliability rates.

Authorship statement

All persons who meet authorship criteria are listed as authors, and all
authors certify that they have participated sufficiently in the work to
take public responsibility for the content, including participation in the
concept, design, analysis, writing, or revision of the manuscript.
Furthermore, each author certifies that this material or similar material
has not been and will not be submitted to or published in any other
publication.

Fig. 15. Reliabilities provided by PCoSA and OPCoSA. The reliability regards
three values of λ (probability of bit faults per day). The horizontal axis is the
time in days, and the vertical axis is the reliability in %.

Table 3
Redundancy rate results.

ECC r1(%) r2(%)

PCoSA(64,16) 75.0 300
OPCoSA(48,16) 66.6 200
PBD(36,16) 55.5 125
CLC(40,16) 60.0 150
Matrix(32,16) 50.0 100
RM(32,16) 50.0 100

Fig. 16. Encoder and decoder description, verification and synthesis flow.

D. Freitas et al.

Integration 84 (2022) 131–141

140

Declaration of competing interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

References

[1] J. Morán, L. Adalid, D. Tomás, P. Vicente, Improving error correction codes for
multiple-cell upsets in space applications, IEEE Trans. Very Large Scale Integr. Syst.
26 (10) (Oct. 2018) 2132–2142.

[2] F. Silva, W. Freitas, J. Silveira, C. Marcon, F. Vargas, Extended matrix region
selection code: an ECC for adjacent multiple cell upset in memory arrays,
Microelectron. Reliab. 106 (1) (Mar. 2020) 1–9.

[3] D. Freitas, D. Mota, R. Goerl, C. Marcon, F. Vargas, J. Silveira, J. Mota, PCoSA: a
product error correction code for use in memory devices targeting space
applications, Integrat. VLSI J. 74 (1) (Sep. 2020) 71–80.

[4] F. Silva, J. Silveira, J. Silveira, C. Marcon, F. Vargas, O. Lima Jr., An extensible
code for correcting multiple cell upset in memory arrays, J. Electron. Test. 34 (1)
(Jul. 2018) 417–433.

[5] G. Kinoshita, C. Kleiner, E. Johnson, Radiation induced regeneration through the P-
N junction isolation in monolithic I/C’s, IEEE Trans. Nucl. Sci. 12 (5) (Oct. 1965)
83–90.

[6] C. Kleiner, G. Kinoshita, E. Johnson, Simulation and verification of transient
nuclear radiation effects on semiconductor electronics, IEEE Trans. Nucl. Sci. 11
(5) (Nov. 1964) 82–104.

[7] C. Rosenberg, D. Gage, R. Caldwell, G. Hanson, Charge-control equivalent circuit
for predicting transient radiation effects in transistors, IEEE Trans. Nucl. Sci. 10 (5)
(Nov. 1963) 149–158.

[8] S. Liu, P. Reviriego, F. Lombardi, Codes for limited magnitude error correction in
multilevel cell memories, IEEE Trans. Circ. Syst. I 67 (5) (May. 2020) 1615–1626.

[9] H. Farbeh, F. Mozafari, M. Zabihi, S.G. Miremadi, RAW-tag: replicating in altered
cache ways for correcting multiple-bit errors in tag array, IEEE Trans. Dependable
Secure Comput. 16 (4) (Jul. 2019) 651–664.

[10] P. Reviriego, S. Liu, O. Rottenstreich, F. Lombardi, Two bit overlap: a class of
double error correction one step majority logic decodable codes, IEEE Trans.
Comput. 68 (5) (May. 2019) 798–803.

[11] L. Adalid, J. Morán, D. Tomás, J. Calvo, P. Vicente, Ultrafast codes for multiple
adajacent error correction and double error detection, IEEE Access 7 (1) (Oct.
2019) 151131–151143.

[12] J. Samanta, J. Bhaumik, S. Barman, Compact and power efficient SEC-DED coded
for computer memory, Microsyst. Technol. 1 (1) (Feb. 2019) 1–10.

[13] C. Argyrides, H. Zarandi, D. Pradhan, Matrix codes: multiple bit upsets tolerant
method for SRAM memories, in: Proceedings of the IEEE International Symposium
on Defect and Fault-Tolerance in VLSI System (DFT), 2007, pp. 340–348.

[14] C. Argyrides, P. Reviriego, D. Pradhan, J. Maestro, Matrix-based codes for adjacent
error correction, IEEE Trans. Nucl. Sci. 57 (4) (Aug. 2010) 2106–2111.

[15] C. Argyrides, D. Pradhan, T. Kocak, Matrix codes for reliable and cost efficient
memory chips, IEEE Trans. Very Large Scale Integr. Syst. 19 (3) (Mar. 2011)
420–428.

[16] P. Elias, Error-free coding, Trans. IRE Prof. Group Inf. Theory 4 (4) (Sep. 1954)
29–37.

[17] H. Castro, J. Silveira, A. Coelho, F. Silva, P. Magalhães, O. Lima, A correction code
for multiple cells upset in memory devices for space applications, in: Proceedings
of the IEEE International New Circuits and Systems Conference (NEWCAS), 2016,
pp. 1–4.

[18] F. Silva, A. Muniz, J. Silveira, C. Marcon, CLC-A: an adaptative implementation of
the column line code (CLC) ECC, in: Proceedings of the Symposium on Integrated
Circuits and Systems Design (SBCCI), Aug. 2020, pp. 1–6.

[19] S. Tambatkar, S. Menon, V. Sudarshan, M. Vinodhini, N. Murty, Error detection
and correction in semiconductor memories using 3D parity check code with
hamming code, in: Proceedings of the International Conference on Communication
and Signal Processing (ICCSP), 2017, pp. 974–978.

[20] P. Raha, N. Murty, Horizontal-vertical parity and diagonal hamming based soft
error detection and correction for memories, in: Proceedings of the International
Conference on Computer, Communication and Informatics (ICCCI), 2017, pp. 1–5.

[21] G. Sai, K. Avinash, L. Naidu, M. Rohith, M. Vinodhini, Diagonal hamming based
multi-bit error detection and correction technique for memories, in: Proceedings of
the International Conference on Communication and Signal Processing (ICCSP),
2020, pp. 746–750.

[22] K. Neelima, C. Subhas, Efficient adjacent 3D parity error detection and correction
codes for embedded memories, in: Proceedings of the International Conference on
Electronics, Computing and Communication Technologies (CONECCT), 2020,
pp. 1–5.

[23] F. Silva, W. Freitas, J. Silveira, O. Lima, F. Vargas, C. Marcon, An Efficient, low-cost
ECC approach for critical-application memories, in: Proceedings of the Symposium
on Integrated Circuits and Systems Design (SBCCI), 2017, pp. 198–203.

[24] R. Afrin, M. Sadi, An efficient approach to enhance memory reliability, in:
Proceedings of the International Conference on Advances in Electrical Engineering
(ICAEE), 2017, pp. 170–175.

[25] A. Erozan, E. Çavus, An EG-LDPC based 2-dimensional error correcting code for
mitigating MBUs of SRAM memories, in: Proceedings of the FPGA World
Conference, 2015, pp. 21–26.

[26] J. Morán, L. Adalid, J. Calvo, P. Gil, Correction of adjacent errors with low
redundant matrix error correction codes, in: Proceedings of the Latin-American
Symposium on Dependable Computing (LADC), 2018, pp. 107–114.

[27] J. Li, L. Xiao, J. Guo, X. Cao, Efficient implementation of multiple bit burst error
correction for memories, in: Proceedings of the International Conference on Solid-
State and Integrated Circuit Technology (ICSICT), 2018, pp. 1–3.

[28] M. Priya, M. Vijay, Error detection and correction for SRAM systems using
improved redundant matrix code, in: Proceedings of the International Conference
on Recent Advances in Energy-efficient Computing and Communication
(ICRAECC), 2019, pp. 1–8.

[29] S. Liu, L. Xiao, J. Guo, Z. Mao, Fault secure encoder and decoder design for matrix
codes, in: Proceedings of the International Conference on Computer-Aided Design
and Computer Graphics (CAD/Graphics), 2015, pp. 181–185.

[30] J. Athira, B. Yamuna, FPGA implementation of an area efficient matrix code with
encoder reuse method, in: Proceedings of the International Conference on
Communication and Signal Processing (ICCSP), 2018, pp. 254–257.

[31] F. Macwilliams, N. Sloane, The Theory of Error-Correcting Codes, third ed., vol. 16,
North-Holland, 1977, pp. 568–570.

[32] T. Moon, Error Correcting Code – Mathematical Methods, Algorithms, first ed., vol.
1, Wiley, 2005, pp. 430–432.

[33] R. Zaragoza, The Art of Error Correcting Coding, second ed., Wiley, West Sussex,
England, 2006, pp. 170–201.

Fig. 17. Hardware cost of the encoder and decoder of the six ECCs, using Ca
dence’s RTL Compiler synthesis tool for 65 nm CMOS technology.

D. Freitas et al.

http://refhub.elsevier.com/S0167-9260(22)00019-0/sref1
http://refhub.elsevier.com/S0167-9260(22)00019-0/sref1
http://refhub.elsevier.com/S0167-9260(22)00019-0/sref1
http://refhub.elsevier.com/S0167-9260(22)00019-0/sref2
http://refhub.elsevier.com/S0167-9260(22)00019-0/sref2
http://refhub.elsevier.com/S0167-9260(22)00019-0/sref2
http://refhub.elsevier.com/S0167-9260(22)00019-0/sref3
http://refhub.elsevier.com/S0167-9260(22)00019-0/sref3
http://refhub.elsevier.com/S0167-9260(22)00019-0/sref3
http://refhub.elsevier.com/S0167-9260(22)00019-0/sref4
http://refhub.elsevier.com/S0167-9260(22)00019-0/sref4
http://refhub.elsevier.com/S0167-9260(22)00019-0/sref4
http://refhub.elsevier.com/S0167-9260(22)00019-0/sref5
http://refhub.elsevier.com/S0167-9260(22)00019-0/sref5
http://refhub.elsevier.com/S0167-9260(22)00019-0/sref5
http://refhub.elsevier.com/S0167-9260(22)00019-0/sref6
http://refhub.elsevier.com/S0167-9260(22)00019-0/sref6
http://refhub.elsevier.com/S0167-9260(22)00019-0/sref6
http://refhub.elsevier.com/S0167-9260(22)00019-0/sref7
http://refhub.elsevier.com/S0167-9260(22)00019-0/sref7
http://refhub.elsevier.com/S0167-9260(22)00019-0/sref7
http://refhub.elsevier.com/S0167-9260(22)00019-0/sref8
http://refhub.elsevier.com/S0167-9260(22)00019-0/sref8
http://refhub.elsevier.com/S0167-9260(22)00019-0/sref9
http://refhub.elsevier.com/S0167-9260(22)00019-0/sref9
http://refhub.elsevier.com/S0167-9260(22)00019-0/sref9
http://refhub.elsevier.com/S0167-9260(22)00019-0/sref10
http://refhub.elsevier.com/S0167-9260(22)00019-0/sref10
http://refhub.elsevier.com/S0167-9260(22)00019-0/sref10
http://refhub.elsevier.com/S0167-9260(22)00019-0/sref11
http://refhub.elsevier.com/S0167-9260(22)00019-0/sref11
http://refhub.elsevier.com/S0167-9260(22)00019-0/sref11
http://refhub.elsevier.com/S0167-9260(22)00019-0/sref12
http://refhub.elsevier.com/S0167-9260(22)00019-0/sref12
http://refhub.elsevier.com/S0167-9260(22)00019-0/sref13
http://refhub.elsevier.com/S0167-9260(22)00019-0/sref13
http://refhub.elsevier.com/S0167-9260(22)00019-0/sref13
http://refhub.elsevier.com/S0167-9260(22)00019-0/sref14
http://refhub.elsevier.com/S0167-9260(22)00019-0/sref14
http://refhub.elsevier.com/S0167-9260(22)00019-0/sref15
http://refhub.elsevier.com/S0167-9260(22)00019-0/sref15
http://refhub.elsevier.com/S0167-9260(22)00019-0/sref15
http://refhub.elsevier.com/S0167-9260(22)00019-0/sref16
http://refhub.elsevier.com/S0167-9260(22)00019-0/sref16
http://refhub.elsevier.com/S0167-9260(22)00019-0/sref17
http://refhub.elsevier.com/S0167-9260(22)00019-0/sref17
http://refhub.elsevier.com/S0167-9260(22)00019-0/sref17
http://refhub.elsevier.com/S0167-9260(22)00019-0/sref17
http://refhub.elsevier.com/S0167-9260(22)00019-0/sref18
http://refhub.elsevier.com/S0167-9260(22)00019-0/sref18
http://refhub.elsevier.com/S0167-9260(22)00019-0/sref18
http://refhub.elsevier.com/S0167-9260(22)00019-0/sref19
http://refhub.elsevier.com/S0167-9260(22)00019-0/sref19
http://refhub.elsevier.com/S0167-9260(22)00019-0/sref19
http://refhub.elsevier.com/S0167-9260(22)00019-0/sref19
http://refhub.elsevier.com/S0167-9260(22)00019-0/sref20
http://refhub.elsevier.com/S0167-9260(22)00019-0/sref20
http://refhub.elsevier.com/S0167-9260(22)00019-0/sref20
http://refhub.elsevier.com/S0167-9260(22)00019-0/sref21
http://refhub.elsevier.com/S0167-9260(22)00019-0/sref21
http://refhub.elsevier.com/S0167-9260(22)00019-0/sref21
http://refhub.elsevier.com/S0167-9260(22)00019-0/sref21
http://refhub.elsevier.com/S0167-9260(22)00019-0/sref22
http://refhub.elsevier.com/S0167-9260(22)00019-0/sref22
http://refhub.elsevier.com/S0167-9260(22)00019-0/sref22
http://refhub.elsevier.com/S0167-9260(22)00019-0/sref22
http://refhub.elsevier.com/S0167-9260(22)00019-0/sref23
http://refhub.elsevier.com/S0167-9260(22)00019-0/sref23
http://refhub.elsevier.com/S0167-9260(22)00019-0/sref23
http://refhub.elsevier.com/S0167-9260(22)00019-0/sref24
http://refhub.elsevier.com/S0167-9260(22)00019-0/sref24
http://refhub.elsevier.com/S0167-9260(22)00019-0/sref24
http://refhub.elsevier.com/S0167-9260(22)00019-0/sref25
http://refhub.elsevier.com/S0167-9260(22)00019-0/sref25
http://refhub.elsevier.com/S0167-9260(22)00019-0/sref25
http://refhub.elsevier.com/S0167-9260(22)00019-0/sref26
http://refhub.elsevier.com/S0167-9260(22)00019-0/sref26
http://refhub.elsevier.com/S0167-9260(22)00019-0/sref26
http://refhub.elsevier.com/S0167-9260(22)00019-0/sref27
http://refhub.elsevier.com/S0167-9260(22)00019-0/sref27
http://refhub.elsevier.com/S0167-9260(22)00019-0/sref27
http://refhub.elsevier.com/S0167-9260(22)00019-0/sref28
http://refhub.elsevier.com/S0167-9260(22)00019-0/sref28
http://refhub.elsevier.com/S0167-9260(22)00019-0/sref28
http://refhub.elsevier.com/S0167-9260(22)00019-0/sref28
http://refhub.elsevier.com/S0167-9260(22)00019-0/sref29
http://refhub.elsevier.com/S0167-9260(22)00019-0/sref29
http://refhub.elsevier.com/S0167-9260(22)00019-0/sref29
http://refhub.elsevier.com/S0167-9260(22)00019-0/sref30
http://refhub.elsevier.com/S0167-9260(22)00019-0/sref30
http://refhub.elsevier.com/S0167-9260(22)00019-0/sref30
http://refhub.elsevier.com/S0167-9260(22)00019-0/sref31
http://refhub.elsevier.com/S0167-9260(22)00019-0/sref31
http://refhub.elsevier.com/S0167-9260(22)00019-0/sref32
http://refhub.elsevier.com/S0167-9260(22)00019-0/sref32
http://refhub.elsevier.com/S0167-9260(22)00019-0/sref33
http://refhub.elsevier.com/S0167-9260(22)00019-0/sref33

Integration 84 (2022) 131–141

141

[34] P. Rao, M. Ebrahimi, R. Seyyedi, M. Tahoori, Protecting SRAM-based FPGAs
against multiple bit upsets using erasure codes, in: Proceedings of the ACM/EDAC/
IEEE Design Automation Conference (DAC), 2014, pp. 1–6.

[35] G. Zebrev, M. Gorbunov, R. Useinov, V. Emeliyanov, A. Ozerov, V. Anashin,
A. Kozyukov, K. Zemtsov, Statistics and methodology of multiple cell upset
characterization under heavy ion irradiation, Nucl. Instrum. Methods Phys. Res.
775 (Mar. 2015) 41–45.

[36] S. Lin, D.J. Costello, Error Control Coding: Fundamentals and Applications, first
ed., vol. 1, Prentice-Hall, 1983, pp. 67–68.

[37] R. Goerl, P. Villa, L. Poehls, E. Bezerra, F. Vargas, An efficient EDAC approach for
handling multiple bit upsets in memory arrays, Microelectron. Reliab. 88–90 (Sep.
2018) 214–218.

D. Freitas et al.

http://refhub.elsevier.com/S0167-9260(22)00019-0/sref34
http://refhub.elsevier.com/S0167-9260(22)00019-0/sref34
http://refhub.elsevier.com/S0167-9260(22)00019-0/sref34
http://refhub.elsevier.com/S0167-9260(22)00019-0/sref35
http://refhub.elsevier.com/S0167-9260(22)00019-0/sref35
http://refhub.elsevier.com/S0167-9260(22)00019-0/sref35
http://refhub.elsevier.com/S0167-9260(22)00019-0/sref35
http://refhub.elsevier.com/S0167-9260(22)00019-0/sref36
http://refhub.elsevier.com/S0167-9260(22)00019-0/sref36
http://refhub.elsevier.com/S0167-9260(22)00019-0/sref37
http://refhub.elsevier.com/S0167-9260(22)00019-0/sref37
http://refhub.elsevier.com/S0167-9260(22)00019-0/sref37

	OPCoSA: an Optimized Product Code for space applications
	1 Introduction
	2 State-of-the-Art
	3 PCoSA structure
	4 OPCoSA definition
	5 Experimental setup and methodology
	6 OPCoSA correction method
	7 Exploring scalability and redundancy rate
	8 Results and discussions
	9 Conclusions
	Authorship statement
	Declaration of competing interest
	References

