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A B S T R A C T   

The integrated circuit shrinkage increases the probability and the number of errors in memories due to the in
crease in the sensitivity to electromagnetic radiation. Critical application systems employ Error Correction Codes 
(ECC) to mitigate memory faults. This work introduces the Optimized Product Code for Space Applications 
(OPCoSA), an ECC that optimizes its original version called PCoSA, reducing 16-redundancy bits and keeping 
high error correction capacity. We evaluated the optimized ECC through tests with 36 specific error patterns, 
burst errors, and exhaustive analysis. Additionally, we compared the synthesis results in hardware, reliability, 
and redundancy to four other ECCs dedicated to the space application. Tests have shown that OPCoSA corrects all 
36 error patterns and 100% of cases for up to four burst errors; besides, it has correction rates of 100%, 100%, 
95.4%, and 78.9% for exhaustive errors of dimension one to four, respectively.   

1. Introduction 

The continuous decrease of electronic devices allows increasing the 
storage capacity of memory circuits significantly. On the other hand, 
this decrease implies an increase in the number of errors caused by 
electromagnetic radiation, mainly in space applications. These errors 
occur due to the ionizing radiation from particles, such as protons, 
neutrons, heavy ions, alpha particles, and high-energy electrons. This 
radiation can change the contents of memory cells, causing faults that 
can be spread throughout the computational system, producing severe 
damage [1–4]. 

The radiation effects and consequent permanent or transient change 
of cells have been studied for almost 60 years [5–7]. There are several 
approaches to mitigate this problem in space applications, such as using 
shielding, hardened cells or Triple Modular Redundancy (TMR), 
changing process technology, or applying Error Correcting Codes (ECCs) 
[3]; this paper focuses on this latter approach. 

In recent years, ECCs have been widely used to correct errors in 
critical system memories. This technique considers a codeword 
composed of data and redundancy bits. The technique requires addi
tional circuitry to the computational system to encode and decode the 

codewords allowing to detect and correct errors in memory cells [8–12]. 
The first ECCs were designed to correct or detect single or double 

errors, known as Single Error Correction - Double Error Detection 
(SECDED). The electronic device shrinking increased the number of 
multiple errors in digital circuits [8]. For this reason, ECCs have evolved, 
obtaining a higher correction and detection capacity; thus, 
two-dimensional or product ECCs have emerged [1,4]. 

Morán et al. [1] explain that these complex ECCs are built for use in 
critical applications, such as space systems. These ECCs have high 
redundancy, raising area consumption, power dissipation, and critical 
path delay.1 

This work proposes the Optimized Product Code for Spatial Appli
cation (OPCoSA), a matrix format ECC that protects 16 data bits 
employing 32 redundancy bits, i.e., 16 fewer redundancy bits than its 
predecessor, PCoSA [3]. OPCoSA maintains part of the PCoSA encoding 
structure, eliminating one of the check bit areas and associated equa
tions. The main originality of this work is the new decoding algorithm, 
which reduces the synthesis cost by up to 60% in some cases, keeps 
correction rates close to PCoSA (average reduction of 7.2% up to six 
bitflips), and improves code reliability. 
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1 The term Matrix refers to the linear code block proposed by Argyrides, Zarandi and Pradhan [13]. To avoid confusion between the ECC proposed by [13] and the 
matrix structure, all ECCs in this work are in italics. 

Contents lists available at ScienceDirect 

Integration 

journal homepage: www.elsevier.com/locate/vlsi 

https://doi.org/10.1016/j.vlsi.2022.02.005 
Received 18 November 2020; Received in revised form 21 September 2021; Accepted 12 February 2022   

mailto:davidciarlinifreitas@gmail.com
www.sciencedirect.com/science/journal/01679260
https://www.elsevier.com/locate/vlsi
https://doi.org/10.1016/j.vlsi.2022.02.005
https://doi.org/10.1016/j.vlsi.2022.02.005
https://doi.org/10.1016/j.vlsi.2022.02.005
http://crossmark.crossref.org/dialog/?doi=10.1016/j.vlsi.2022.02.005&domain=pdf


Integration 84 (2022) 131–141

132

2. State-of-the-Art 

There are several studies to mitigate memory faults using two- 
dimensional ECCs. The main current works come from the Matrix 
[13–15]; in turn, Matrix is based on Elias [16], which introduced in 1954 
the pioneering work containing a simple and effective way to build long 
codes based on structures of smaller codes. 

Castro et al. [17] describe the Column-Line Code (CLC) imple
mentation and evaluation to detect and correct multiple errors in 
memories using extended Hamming and parity bits. The ECC is 
described in a 5 × 8 matrix format, with 16-data bits and 24-redundancy 
bits, forming the CLC (40,16). The authors show that CLC has more 
advantages than Reed-Muller (RM) and Matrix for scenarios with more 
than three upsets. Silva et al. [18] propose other ECC formats based on 
CLC, concluding that the highest correction efficiency occurs with the 
CLC (16,54) format in the extended form; however, this format has the 
highest area consumption. In 2020, Silva et al. [18] propose CLC-A, an 
ECC that introduces a syndrome analysis circuit to the system to check 
whether a second check is needed to correct the data. The experimental 
results show that CLC-A achieves a higher correction rate than CLC and 
the correction values are close to the values of the extended CLC, having 
a significant cost reduction concerning its extended version. 

In [19–22], the authors implement approaches with the Horizontal 
Vertical Diagonal (HVD) technique, also called the 3D technique for 
applying horizontal, vertical, and diagonal codes in a matrix format. 
Tambatkar et al. [19] use the HVD and Hamming techniques to increase 
error correction capacity. The experimental results show that the 
correction capacity is three bits of data plus three bits of redundancy. 
The proposal is tested for 32, 64, and 128 data bits, resulting in a 
reduction of the encoder and decoder delays and the power dissipated by 
the encoder concerning the Multidirectional Parity Check (MPC) code. 
Raha e Murty [20] propose the Horizontal-Vertical Parity and Diagonal 
Hamming (HVPDH) method to detect up to eight errors, correct 100% of 
cases up to two, and correct most combinations of three to five errors. 
HVPDH is tested for 32-bit data words with 28-bit redundancy, and the 
results are compared with other ECCs that are also based on the Matrix 
code. Sai et al. [21] propose a technique for detecting and correcting 
multiple errors using Hamming code in the diagonal direction. This 
approach detects up to eight errors and corrects up to five errors; some 
combinations of six to eight errors are also correctable. The proposal 
attains a high correction rate with less area consumption and delay than 
the 3D Parity Check Code. Neelima e Subhas [22] propose an ECC based 
on HVD codes with format (data, redundancy) of sizes (64, 39) and (64, 
67). The authors verified the maximum number of bits that can be 
corrected in each proposal but do not carry out a study with error in
jection to find the error correction rate of the proposed codes. 

In [2,23], the authors propose an ECC in two dimensions divided by 
regions. Silva et al. [23] developed and validated the Matrix Region 
Section Code (MRSC), an ECC with low implementation cost to detect 
and correct multiple errors in memories. The code is structured in a 4 ×
8 matrix, with 16 data bits and 16 redundancy bits, achieving a 
correction capacity similar to CLC and better than Matrix, with lower 
implementation costs than both ECCs. The authors in [2] develop the 
Extended Matrix Region Selection Code (eMRSC), an improved version 
of MRSC that extends the original 16 data bits to 32 bits. The authors 
propose an error correction scheme by region to reduce the number of 
generated redundancy bits. eMRSC is compared with the Orthogonal 
Latin Square (OLS), Decimal Matrix Code (DMC), and Matrix codes, 
presenting several tradeoffs; e.g., up to three bitflips, OLS has the highest 
error correction rates; however, with more errors, eMRSC achieves 
better results, being a low cost of implementation ECC. 

Afrin e Sadi [24] propose an ECC in a 4 × 16 matrix format, with 32 
data bits and 32 redundancy bits, which corrects 100% of the scenarios 
evaluated up to 8 bitflips. The tests are performed exhaustively only for 
the data bits, and the results are compared with Matrix, HVD, and DMC 
codes. Erozan e Çavus [25] propose a method of fault correction using a 

two-dimensional structure that is based on Single Parity Check (SPC) for 
coding the columns and Low-Density Parity Check (LDPC) for coding the 
lines. The proposed code can provide up to 95% correction coverage for 
up to 4 upsets, and the approach improves MTTF by 63% compared to 
the Matrix code. Morán et al. [26] present two two-dimensional ECCs 
designed to correct adjacent error patterns; both codes have the same 
error coverage with different redundancy levels, i.e., 8 and 16 bits. The 
correction approach is based on the Flexible Unequal Error Control 
(FUEC) methodology, developed to satisfy a certain number of syn
dromes. FUEC was designed to correct errors of one bit, as well as 2 and 3 
adjacent bits in the same row or column. It can also correct errors in a 2 
× 2 two-dimensional format. 

Li et al. [27] tested two ECC proposals in a matrix format for 16-, 32- 
and 64-bit words. For 32-bit words, the proposals add 14 and 24 
redundancy bits for data formats of 2 × 16 and 4 × 8, respectively. The 
code used on each line allows for correcting up to three burst errors. The 
authors use the interleaving technique in the proposed schemes. The 
24-bit redundancy approach increases the correction capacity by up to 
300% compared to the two 32-bit ECCs with 20 and 24 redundancy bits. 
Priya e Vijay [28] detail and analyze the Improved Redundant Matrix 
Code (IRMC), which adds 32 redundancy bits to protect 32 data bits. The 
authors do not carry out correction tests with any fault injection method 
and focus on implementing an FGPA. 

The authors in [29,30] suggest improving the reliability of the sys
tem by adding an extra circuit to the circuits that deal with the ECC. Liu 
et al. [29] propose implementing a system to improve the reliability of 
encoders and decoders of Matrix codes. The scheme can detect all errors 
derived from a single node in the encoder and decoder circuits. The 
results show that the proposal has lower area and energy overloads, 
using a simple technique. Athira e Yamuna [30] test the Matrix code 
with an extra reliability system that reuses the encoder inside the 
decoder. The experimental results show that the proposed system has a 
higher error correction rate in relation to RM and Hamming ECCs and 
lower than DMC, with less delay and power dissipation among all ECCs. 

The papers presented tend to use two-dimensional codes to mitigate 
multiple errors in memories used in critical applications. In 2020, the 
PCoSA product code for space applications [3] was proposed, composed 
of 16 data bits and 48 redundancy bits PCoSA (64,16), providing a high 
capacity to correct multiple errors. Exhaustive tests show that PCoSA 
corrects 100% of cases for up to three bitflips and has an 87% correction 
rate for four errors. PCoSA was compared with other codes used in space 
applications of one and two dimensions, such as PBD [37], CLC [17,18], 
RM [31], and Matrix [13], obtaining the highest efficiency in error 
correction. In [37], the authors present an error detection and correction 
approach called Parity per Byte and Duplication to protect data stored in 
memory. The technique uses parity at each byte and duplicates all 
content to perform the correction. Thus, two bytes need 20 bits of 
redundancy, forming the PBD (36,16). The traditional Reed-Muller code 
[31] used in this work has the parameters r = 2 and m = 5; n = 2m and 

k =
∑r

i=0

(
m
i

)

give the codeword and message sizes to be encoded, 

respectively, forming RM(32,16). Finally, Matrix [13] is a product code 
with 16 bits of data in a 4 × 4 matrix format that uses only Ham(7,4) in 
rows and parity in columns. Therefore, it has 16 bits of redundancy and a 
total of 32 bits, forming the Matrix (32,16). 

3. PCoSA structure 

PCoSA is a product code that combines two linear codes C1(n1, k1)

and C2(n2,k2), denoted by C1 × C2, as shown in Fig. 1. This code applies 
two sets of check bits in a two-dimensional format. The data is written in 
a k1 × k2 matrix. Each line k2 is coded using C1, forming n1 columns. 
Each column n1 is coded using C2, forming the n1 × n2 matrix. The 
product code linearity allows us to start coding C1 and then C2 and vice 
versa [31–33]. As C1 has a minimum distance d1 and C2 has a minimum 
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distance d2, so the product code has a minimum distance d1 × d2. As the 
code distance increases, the greater the detection and correction ca
pacity about the one-dimensional ECCs [32]. 

The Minimum Distance (d) of a code is the smallest number of bit 
changes required to change from any codeword to any other codeword; 
it is a metric used to measure the code capacity in correcting and 
detecting errors. Equations (1) and (2) calculate the maximum number 
of errors in any codeword position that a Hamming-based code can correct 
ec or detect ed [31], respectively. 

ec=(d − 1)/2 (1)  

ed= d − 1 (2) 

Equations (1) and (2) are exclusives, i.e., ec or ed, but not ec and ed 
simultaneously. The simultaneity relationship among ec, ed, and d is 
given by Equation (3) (further details in [36]). It is important to point 
out that the range of the value given by Equations (1) and (2) depends on 
the decoding method, increasing or even decreasing this value. 

ed= d − ec − 1 (3) 

PCoSA code is similar to CLC [17], but it applies extended Hamming 
to both rows and columns. Fig. 2 shows PCoSA with 16 data bits (D0 to 
D15), 12-row check bits (C10 to C111), 7-row parity bits (P10 to P16), 
21-column check bits (C20 to C220), and 8-column parity bits (P20 to 
P27). This format has 48 redundancy bits and a minimum distance of 16; 
since C1 and C2 are extended Hamming codes with d1 = d2 = 4. PCoSA 
encoding/decoding equations are available in [3]. 

4. OPCoSA definition 

Fig. 3 shows the OPCoSA organization consisting of 16 data bits (D0 
to D15), 12-row check bits (C10 to C111), 4-row parity bits (P10 to P13), 
12-column check bits (C20 to C211), and 4-column parity bits (P20 to 
P23); it is the same organization as PCoSA [3], but without the check bits 
of check bits region, reducing 16-redundancy bits (33% of reduction). 
This modification removes OPCoSA from the product code class, being 
considered a modified product code. 

This reduction of a PCoSA check-bit region to form the OPCoSA and 
the consequent alteration of the decoding algorithm is the focus of this 
work. This change in format makes the minimum distance of a modified 
product code, obtained by Equation (4), less than a conventional prod
uct code [31,33]. 

dC1C2 = dC1 + dC2 − 1 (4) 

Equation (4) shows that OPCoSA has a minimum distance of 7 
because it uses a minimum distance in both codes (rows and columns) 
equal to 4. The organization of the OPCoSA matrix causes rows and 
columns to cross in just a single bit, and changing this bit implies the 
variation of three other bits in the line and three other bits in the col
umn, thus modifying 7 bits; i.e., the minimum distance of 7. 

Fig. 4 describes the OPCoSA encoding and decoding processes, which 
are detailed by applying Equations (5)–(25). 

Using q as the bit position index and ⊕ an XOR operation, OPCoSA 
coding employs Equations (5)–(7) to compute the row parity check bits, 
Equation (8) to calculate the row parity bits, Equations (9)–(11) to 
calculate the column parity check bits, and Equation (12) to compute the 
column parity. 

C1q =D4q
3
⊕D4q

3 +1 ⊕D4q
3 +3, ∀q ∈ {0, 3, 6, 9} (5)  

C1q+1 =D4q
3
⊕D4q

3 +2 ⊕D4q
3 +3, ∀q ∈ {0, 3, 6, 9} (6)  

C1q+2 =D4q
3 +1 ⊕D4q

3 +2 ⊕D4q
3 +3, ∀q ∈ {0, 3, 6, 9} (7)  

P1q =D4q ⊕ D4q+1 ⊕ D4q+2 ⊕ D4q+3 ⊕ C13q ⊕ C13q+1 ⊕ C13q+2, ∀0 ≤ q ≤ 3
(8)  

C2q =Dq ⊕ Dq+4 ⊕ Dq+12, ∀0 ≤ q ≤ 3 (9)  

C2q+4 =Dq ⊕ Dq+8 ⊕ Dq+12, ∀0 ≤ q ≤ 3 (10)  

C2q+8 =Dq+4 ⊕ Dq+8 ⊕ Dq+12, ∀0 ≤ q ≤ 3 (11)  

P2q =Dq ⊕ Dq+4 ⊕ Dq+8 ⊕ Dq+12 ⊕ C2q ⊕ C2q+4 ⊕ C2q+8, ∀0 ≤ q ≤ 3
(12) 

In OPCoSA decoding, Equations (13)–(15) and (17)–(19) calculate 
the recalculated check bits rC1 (rows) and rC2 (columns), respectively; 
also, Equations (16) and (20) recalculate the parity bits of the rows and 
columns, respectively. 

rC1q =D4q
3
⊕D4q

3 +1 ⊕D4q
3 +3, ∀q ∈ {0, 3, 6, 9} (13) 

Fig. 1. Product code with k1 × k2 data bits and n1 × n2 total bits after encoding 
a word with codes C1 and C2 (based on [16]). 

Fig. 2. PCoSA structure with 16-data bits.  

Fig. 3. OPCoSA structure with 16 data bits.  

Fig. 4. OPCoSA encoding and decoding process, relating the equations that are 
used in each of the steps. 
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rC1q+1 =D4q
3
⊕D4q

3 +2 ⊕D4q
3 +3, ∀q ∈ {0, 3, 6, 9} (14)  

rC1q+2 =D4q
3 +1 ⊕D4q

3 +2 ⊕D4q
3 +3, ∀q ∈ {0, 3, 6, 9} (15)  

rP1q =D4q ⊕ D4q+1 ⊕ D4q+2 ⊕ D4q+3 ⊕ C13q ⊕ C13q+1 ⊕ C13q+2, ∀0 ≤ q

≤ 3
(16)  

rC2q =Dq ⊕ Dq+4 ⊕ Dq+12, ∀0 ≤ q ≤ 3 (17)  

rC2q+4 =Dq ⊕ Dq+8 ⊕ Dq+12, ∀0 ≤ q ≤ 3 (18)  

rC2q+8 =Dq+4 ⊕ Dq+8 ⊕ Dq+12, ∀0 ≤ q ≤ 3 (19)  

rP2q =Dq ⊕ Dq+4 ⊕ Dq+8 ⊕ Dq+12 ⊕ C2q ⊕ C2q+4 ⊕ C2q+8, ∀0 ≤ q ≤ 3
(20) 

Equations (21)–(24) perform the next decoding step by calculating 
sC1 and sC2, which are the check bits syndromes C1 and C2, respec
tively, and by calculating sP1 and sP2, which are the syndromes of the 
parity bits of the rows and columns, respectively. These four syndromes 
constitute the vector S = [sC1 sP1 sC2 sP2]. 

sC1=
∑3

q=0

(
C13q ⊕ rC13q

)
+
(
C13q+1 ⊕ rC13q+1

)
+
(
C13q+2 ⊕ rC13q+2

)
(21)  

sC2=
∑3

q=0

(
C2q ⊕ rC2q

)
+
(
C2q+4 ⊕ rC2q+4

)
+
(
C2q+8 ⊕ rC2q+8

)
(22)  

sP1=
∑3

q=0
P1q ⊕ rP1q (23)  

sP2=
∑3

q=0
P2q ⊕ rP2q (24) 

The decoding algorithm uses S = [sC1 sP1 sC2 sP2] in binary format 
Sb = [sc1 sp1 sc2 sp2]. The way to perform this calculation is given by 
Equation (25). For example, if S = [2 1 2 0], then Sb = [1 1 1 0]. 

sx=
{

0, if sX = 0
1, else (25) 

The sequence of the decoding algorithm is based on the OPCoSA 
correction method, presented in Section VI. 

5. Experimental setup and methodology 

In the experimental setup, the potential of OPCoSA was assessed 
through three test cases and compared with PCoSA and other four ECCs 
used in space applications. Fig. 5 describes the methodology used to 
obtain and evaluate OPCoSA. Note that activities 1 and 2 comprise the 
steps to design the OPCoSA decoding algorithm, while the other activ
ities contain the steps to collect the experimental results. 

Activity 1 presents the mapping of 36 error patterns shown in Fig. 6; 
these standards were proposed in [34] and used to design the OPCoSA 
algorithm. These error patterns were obtained with a commercial tool 
using strike simulation of neutron particles. The tool has as input the 
radiation environment and memory and as output the MBUs patterns 
and their respective probabilities [34]. As these error patterns have a 3 
× 3 matrix format, their analysis was performed in two parts with the 
mapping on the OPCoSA codeword: (i) first 4 rows to the 8th column and 
(ii) last 4 rows from columns 1 to 4. Thus, each error pattern was placed 

Fig. 5. Applied methodology containing the five main activities.  

Fig. 6. Thirty-six error patterns used in the experiments, encompassing one 
simple error, ten double errors, twenty triple errors, and five quadruple errors 
(based on [34]). 

Fig. 7. Surrounded by the red line is the region that error pattern can be 
placed: (a) error pattern 1 can be placed in all positions, and (b) error pattern 2 
can be placed in all positions except the rightest column. 
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in all possibilities σi, with i being the index to represent each of the 36 
error patterns. 

Fig. 7 exemplifies the positioning of the error patterns 1 and 2 in the 
areas described by (i) and (ii), respectively. Thus, the error pattern 1 can 
be placed in the 48 positions, as shown in Fig. 7(a), obtaining σ1 = 48. 
In turn, error pattern 2 can be positioned only in the 40 positions indi
cated by the two regions of Fig. 7(b), obtaining σ2 = 40. This decrease in 
the number of positions occurs because, as error patter 2 in Fig. 6 has 
two horizontally adjacent bitflips, and as we make the left bit as the 
reference for the test, it cannot be positioned in the last column because 
its adjacent bits would be outside the OPCoSA region. This mapping 
serves to find the syndromes of Section VI and to design the OPCoSA 
decoding algorithm. 

Activity 2 describes the decoding algorithm design, which encom
passes the evaluation of all mappings of the 36 error patterns to capture 
all syndromes in decimal and binary formats. In this activity, a table is 
created with the list of all syndromes found with the respective error 
type. Only binary syndromes that have errors in the data region are 
analyzed; this analysis indicates the correction method used for each 
syndrome found. 

The three test cases are analyzed in Activity 3. While PCoSA analyzes 
only the 36 error patterns and exhaustive tests, this work adds a third 
test case that contemplates burst errors. A burst error is a multiple error 
that covers l contiguous bits in a word; where at least the first and last 
bits are wrong. The value l is known as the burst length. Note that 
adjacent errors are a specific type of burst error in which all the wrong 
bits are contiguous [1,26]. 

Activity 4 contemplates two ways of mapping errors in memory: (i) 
the mappings of the 36 error patterns illustrated in Fig. 6 and (ii) the 
mappings used for both burst and exhaustive errors; as Fig. 8 illustrates, 
form (ii) speeds up testing by treating OPCoSA as a contiguous 48-bit 
vector. The first eight bits of Fig. 8 are equivalent to the first line of 
Fig. 3, the bit intervals 9 to 16, 17 to 24, and 25 to 32 of Fig. 8 are 
equivalent, respectively, to lines 2, 3, and 4 Fig. 3; finally, the range 
from bit 33 to bit 48 in Fig. 8 is equivalent to the four-bit lines 5 to 8 in 
Fig. 3. 

Activity 4 shows that for each test case, the error generation is 

repeated m times. In the case of 36 error patterns, m =
∑36

i=1
σi. The 

simulation is repeated mx =

(
n
x

)

times for each x bitflips in the 

exhaustive test. In the case of b burst errors, m = (n − b + 1)2b− 2, m =

n − 1 and m = n, for b > 2, b = 2 and b = 1, respectively. For these 
cases, n = 48, which is the OPCoSA codeword size. 

Activity 5 presents the correction capacity, reliability, and imple
mentation costs of OPCoSA compared to PCoSA, PBD, CLC, RM, and 
Matrix codes. The correction data obtained in this activity were 
extracted from the works of [3,37]. 

6. OPCoSA correction method 

The OPCoSA correction method employs the same idea implemented 
in PCoSA. However, the algorithm has been completely changed with 
the reduction from 64 to 48 bits. 

The OPCoSA algorithm was designed to correct the 36-error pattern 
illustrated in Fig. 6. Each error pattern was placed in all five regions of 
Fig. 3 (data D, row check bits C1, row parity P1, column check bits C2, 
and column parity P2); consequently, all cases were considered. For 
example, error pattern 2 was placed in regions D, D ∪ C1, C1, C1 ∪ P1, C2 
and P2. 

Table 1 describes the positioning of all 36 error patterns in all re
gions, including all sixteen combinations of Sb. The correction algorithm 
works only if at least one error occurs in region D; i.e., only if Sb =

[0111], [1010], [1011], [1101], [1110] or [1111]. Besides, Table 1 shows 
the type, number, and placement of the error patterns. 

After mapping each Sb, the decoding algorithm searches for the 
syndrome-based error pattern, as shown in the following tables. This 
procedure is done for the first five Sb patterns; for Sb = [1111], there is 
one more step.  

Sb = [0 1 1 1] 

Pattern S Correction method 

21 [0 1 3 
3] 

Apply Hamming to all columns and then Hamming to all 
rows 

33 [0 1 3 
2] 

Default: Apply Hamming to all columns and then Hamming to all rows 

Sb = [1 0 1 0] 

Pattern S Correction method 

13, 20 [1 0 1 
0] 

Invert the intersecting bit between sC1 and sC2 

36 [2 0 2 
0] 

The four bitflips are corrected by referencing the upper 
left bit of the pattern, which is found using the upper sC1 
and the leftmost sC2. The position of this reference bit 
allows us to change the other three bitflips 

[2 0 1 
0] 
[1 0 2 
0] 

Default: Apply Hamming to all rows 

Sb = [1 0 1 1] 

(continued on next page) 

Fig. 8. OPCoSA representation in a 48-position vector format.  

Table 1 
Mapping of error patterns using Sb = [sc1sp1 sc2sp2].  

Sb Error pattern 

Type Number and 
placement  

0 0 0 0 No error –  
0 0 0 1  4 outside region D  
0 0 1 0 8 outside region D  
0 0 1 1 60 outside region D  
0 1 0 0 4 outside region D  
0 1 0 1 Unreachable syndrome –  
0 1 1 0 

* 0 1 1 1 Patterns 21, 33 2 inside region D  
1 0 0 0  8 outside region D  
1 0 0 1 Unreachable syndrome – 

* 1 0 1 0 Patterns 13, 20, 36 5 inside region D 
* 1 0 1 1 Patterns 2, 5, 13, 15, 18, 20, 27, 31, 34 17 inside region D 

1 outside region D  
1 1 0 0  60 outside region D 

* 1 1 0 1 Pattern 14 1 inside region D 
* 1 1 1 0 Patterns 3, 4, 12, 13, 19, 20, 23, 24, 29, 35 17 inside region D 

1 outside region D 
* 1 1 1 1 Several patterns 94 in several regions 

Lines marked with * are detailed in the next tables. 
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(continued ) 

Pattern S Correction method 

2, 5, 27, 31 [1 0 2 
2] 

Apply Hamming to all columns 

2, 5 [1 0 1 
1] 

13, 15, 18, 
20, 34 

[1 0 2 
1] 

Invert the bit indicated by the double error above and by 
the double error indicated by the column. After that, 
apply Hamming to all columns 

27, 31 [1 0 3 
3] 

Apply Hamming to all columns 

34 [2 0 1 
1] 

34 [2 0 3 
2] 

Invert the bit indicated by the double error above and by 
the double error indicated by the column. After that, 
apply Hamming to all columns 34 [2 0 2 

1] 
34 [1 0 3 

2] 

Default: Apply Hamming to all columns 

Sb = [1 1 0 1] 

Pattern S Correction method 

14 [3 3 
0 1] 

Apply Hamming to all rows 

Default: Apply Hamming to all rows 

Sb = [1 1 1 0] 

Pattern S Correction method 

3, 4, 29 [2 2 1 
0] 

Apply Hamming to all rows 

3, 4 [1 1 1 
0] 

12, 13, 19, 
20, 35 

[2 1 1 
0] 

Invert the bit indicated by the double line error and the 
leftmost one by the column and then applies Hamming to 
all lines 

23, 24, 29 [3 3 1 
0] 

Apply Hamming to all rows 

35 [3 2 2 
0] 

Invert the bit indicated by the double line error and the 
leftmost one by the column and then applies Hamming to 
all lines 35 [3 2 1 

0] 
35 [2 1 2 

0] 
35 [1 1 2 

0] 
Apply Hamming to all rows 

Default: Apply Hamming to all rows  

Let r and c be the numbers of errors in the rows and columns, 
respectively, Sb = [1111] occurs with error patterns in the format r× c. 
In cases of miscorrection or in cases where the error is in regions such as 
D ∪ C2, the error pattern can have diverse dimensions. The OPCoSA 
decoding algorithm uses Equations (26)–(28) to compute the Error Size 
(ES). 

ES= r × c (26)  

r =max(sC1, sP1) (27)  

c=max(sC2, sP2) (28) 

The table below presents all the ES possibilities, the corresponding 
error pattern S, and the correction method.  

Sb = [1 1 1 1] 

ES Pattern S Correction method 

1 × 1 1 1111 If the position of the row error is 1 
and Column 7, apply Hamming to 
all columns. Otherwise, apply 
Hamming to all rows 

14 
21 

1 × 2 35 1120 Apply Hamming to all rows 
1121 

(continued on next column)  

(continued ) 

Sb = [1 1 1 1] 

ES Pattern S Correction method 

12, 16, 17, 19, 
22, 23, 24, 29, 
33 
6, 7, 8, 9, 10, 
11, 21 

1122 

1 × 3 32 1132 Apply Hamming to all rows 
21, 25, 26, 28, 
30 

1133 Apply Hamming to all columns 

2 × 1 15, 16, 17, 18, 
27, 28, 30, 31 

2111 

6, 7, 8, 9, 10, 
11, 14, 32, 33 

2211 

2 × 2 12, 13, 15, 16, 
17, 18, 19, 20 

2121 Invert the bit indicated by row 
double errors and then apply 
Hamming to all columns 

27, 28, 30, 31 2122 Apply Hamming to all columns 
22, 23, 24, 29, 
32, 33 

2221 Apply Hamming to all rows 

6, 7, 8, 9, 10, 
11, 25 

2222 Apply Hamming to all columns 

32 1221 Apply Hamming to all rows and 
then to all columns 

2 × 3 32, 33 1232 Invert the two bits indicated by 
the two rows and the double error 
column and then apply Hamming 
to all columns 

32, 33 2232 

27, 28, 30, 31 2133 Apply Hamming to all columns 
25, 26 2233 

3 × 1 14, 22, 25, 26 3311 Apply Hamming to all rows 
3 × 2 22, 23, 24, 29 3321 

25, 26 3322 
3 × 3 25, 26 3333 
Default: Check r and c (Equations (27) and (28)). If r ≥ c, apply Hamming to all rows. 

Otherwise, apply Hamming to all columns.  

The default conditions enable to correct several patterns in addition 
to those presented by the set of 36 error patterns. For example, the 
default condition for error patterns with Sb = [1111] is “Check r and c 
(Equations (27) and (28)). If r ≥ c, apply Hamming to all rows. Other
wise, apply Hamming to all columns”. The pattern that has four diagonal 
errors (bits D0, D5, D10, and D15), for instance, is corrected because 
Sb = [1111], S = [4444], and the default condition would do the 
correction of all bits. Fig. 9 exemplifies another 4-bit error pattern that 
OPCoSA can correct, which is not included in the 36 error patterns. The 
syndromes of this error pattern are Sb = [1111] and Sb = [2232] (ES =

2× 3). Thus, the decoding algorithm corrects “Inverting the two bits 
indicated by the two rows and the double error column and then apply 
Hamming to all columns”. The correction process is done in two parts: (i) 
first, D5 and D9 are corrected; then, (ii) the complete correction is 
performed applying Hamming to all columns to correct D6 and D7 bits. 

7. Exploring scalability and redundancy rate 

Equation (29) computes the Redundancy Rate (rr) metric that in
dicates the ratio between the redundancy (r) and codeword (r) bits. The 
higher the rr, the greater the weight of the redundancy bits. However, 
the lower the rr, the lower the redundancy impact; consequently, the 
lower the ECC cost. 

rr =
r
n
× 100% ​ (29) 

OPCoSA was designed to protect memories with words longer than 8 
bits through code replication or code scaling. Replicating a smaller code 
is a technique that keeps rr, while code scaling reduces rr. Fig. 10 shows 
the decrease of rr as a function of the Hamming configuration. For 
instance, using Ham(8,4), the rr in the product code is 75% (case of 
PCoSA [3]), while a modified product code has rr = 66.6% (case of 
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OPCoSA). For all Hamming code configurations analyzed, OPCoSA has 
lower rr values than PCoSA, with the highest difference being 8.3% for 
the first case. 

The OPCoSA scaling is achieved using other Hamming formats that 
preserve the same minimum Hamming distance (d) of four, making the 
modified product code to have the same d = 7; consequently, preserving 
the same correction and detection rates for all OPCoSA scaled versions. 
For instance, when using Ham(16, 11) and Ham(32, 26) in place of Ham 
(8, 4), increases the codeword length to the ones presented in Fig. 11 and 
Fig. 12, respectively. 

On the one hand, the purpose of the OPCoSA configurations pre
sented in Figs. 11 and 12 is to decrease rr, contributing to a code with 
less redundancy and, consequently, lower costs. For instance, OPCoSA 
(231, 121) and OPCoSA (988, 676) have rr equal to 47.6% and 31.5%, 
respectively, which is a significant reduction of the cost in bits compared 
to 66.7% of the basic OPCoSA (48, 16). On the other hand, since OPCoSA 
scaling keeps the number of bits detected and corrected, because it keeps 
the Hamming distance but increases the number of codeword bits, the 
detection and correction rate of the memory protected by OPCoSA is 
reduced. 

Replication is performed using any OPCoSA code, such as the basic 
OPCoSA (48, 16) or other scaled versions as shown above - OPCoSA 
(231, 121) and OPCoSA (988, 676). Fig. 13 illustrates OPCoSA (192, 64) 
for protecting a memory with 64-bit words; this code format was ach
ieved by replicating four OPCoSA (48, 16). The absence of one check-bit 
area implies that OPCoSA is replicated by rotating two OPCoSA code
words. Thus, OPCoSA can be written in an 8 × 24 region instead of the 8 
× 32 region proposed in PCoSA [3], saving memory area. 

This replicating process makes OPCoSA (48, 16) and OPCoSA (192, 
64) have rr equal to 66.7%, which is a high cost in bits. However, the 
replication scaling keeps the number of bits detected and corrected, and 
also the detection and correction rate of the memory protected by 
OPCoSA. 

8. Results and discussions 

This section presents experimental results and discussions consid
ering code correction capacity, reliability, and cost of implementation.  

A. Error Correction Capability 

To assess the correction capability of the 36 error patterns [34], 
OPCoSA was placed in a matrix format (Fig. 3), facilitating the mapping 
of each MBU in a 3 × 3 matrix format. The results display that, like 
PCoSA, OPCoSA obtained 100% of error correction for all 36 error 
patterns. 

The error correction capacity evaluation, considering burst and 
exhaustive tests, is done with the vector-type structure presented in 
Fig. 8. OPCoSA can correct 100% of cases until burst error with l = 4; 
however, the ECC has 0% correction for l > 4. 

The exhaustive tests were performed with sets of one to six bitflips. 
Fig. 14 shows that only PCoSA and RM have 100% correction up to three 
bitflips. OPCoSA achieves 100% error correction with two bitflips but 
reduces it to 95.4% with 3 bitflips. CLC performs better than Matrix and 

PDB in all range of errors, but these three ECCs show low correction 
capacity compared to the others from 1 to 3 errors. From four bitflips to 
six, RM presents a high error correction reduction, which is near to PBD 
that reaches only 13%, 5%, and 2%. In this same last error range, PCoSA 
and OPCoSA have rates much higher error correction capacity than the 
other ECCs; OPCoSA reaches 79%, 53%, and 35% of error correction for 
4, 5, and 6 bitflips, respectively. 

Fig. 9. Error pattern example that is not part of the 36 patterns analyzed in 
Fig. 5 but is fixed by the OPCoSA decoding algorithm. 

Fig. 10. OPCoSA and PCoSA redundancy rates for seven Hamming configura
tions with a second-degree polynomial approximation. 

Fig. 11. Configuration of OPCoSA (231, 121) using Ham(16, 11). The 121 data 
bits are encoded in 231 bits; rr is 47.6%, with 110 bits of redundancy. 

Fig. 12. OPCoSA (988, 676) employing Ham(32, 26) and encompassing 676 
data bits encoded in 988 bits; rr is 33.5%, with 312 bits of redundancy. 

Fig. 13. OPCoSA configuration for use in 64-bit memories. OPCoSA (192, 64) 
has 64 data bits and 128 redundancy bits. 
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It is worth noting that the OPCoSA decoding algorithm was designed 
to correct 100% of the 36 error patterns. We define the δ metric to un
derstand the percentage of these patterns within the set of all possible 
error scenarios. Additionally, δf displays the effectiveness of the 
decoding algorithm to correct other scenarios with the same f errors. 

Let pf = (pSf , pEf ) be a tuple containing the start and end numbers of 
the f error patterns exposed in Fig. 6, then p1 = (1, 1), p2 = (2, 11), p3 =

(12,31) and p4 = (32,36). Let σp the be the number of all positions that 
pattern p can assume within the OPCoSA codeword, qf be the sum of all 

σp with the same number of f errors, such that qf =
∑pEf

p=pSf

σp . Let mf be the 

total number of combinations with e errors within the OPCoSA code

word; i.e., an exhaustive analysis, such that mf =

(
48
f

)

(note that 48 is 

the number of bits of the OPCoSA codeword); thus, δf =
qf
mf
× 100% is the 

error pattern representativeness within all possibilities with e errors. For 

instance, q2 =
∑11

p=2
σp = 280, and m2 =

(
48
2

)

= 1128, thus, δ2 = 280
1128×

100% = 24.82%. Table 2 describes δf , qf and, mf for the range of 1–4 
errors in Fig. 6. 

On the one hand, the representativeness decrease with the increase 
in the number of errors is evident and understandable since exhaustive 
verification consider combinations of errors that leave the 9-cell enve
lope shown in Fig. 6; besides, this growth is proportional to the factorial 
of the number of errors f . On the other hand, even with low represen
tativeness, the OPCoSA decoding algorithm achieves a high correction 
rate, reaching 79% of error correction for representativeness of only 
0.06% in the case of f = 4. The explanation for this high correction 
efficacy comes from the OPCoSA matrix format, where every row and 
column has associated a Hamming code that can correct one error and 
detect two errors. This organization favors error patterns spaced in rows 
and columns, achieved in the exhaustive exploration, making these er
rors attended by different Hamming codes. For example, a 4-bit error 
pattern arranged on the same data row is perceived as four single errors 
in four data columns. The most complex error patterns that OPCoSA 
handles are the concentrated ones; therefore, an error pattern evaluation 
on a 3 × 3 matrix achieves such a high correction rate.  

B. Reliability 

The reliability analysis is based on the work of [4,13]. Moreover, we 
assume the following assumptions: (i) the Poisson distribution allows 
representing the dispersion of transient errors over the memory lifetime 
[35]; (ii) errors occur statistically independently; (iii) the employment 
of the same range of errors for any code to evaluate the same time in
terval provides sound values for reliability comparison. While assump
tion (i) allows defining the equation that best represents the fault 
reliability behavior, assumptions (ii) and (iii) allow using the values 
presented in Fig. 14 as the error correction capacity of each code in the 
reliability computation. 

Let αECC,f be the capacity of an ECC to correct f random errors, and 
βECC = [αECC,1, αECC,2, …, αECC, Γ ] be the vector that comprises the ECC 
correction rates from 1 to Γ errors, then βOPCoSA = [100%,100%, 95%,

79%, 53%,35%] and βPCoSA = [100%, 100%, 100%, 82%, 69%, 55%], 
with Γ = 6; the vectors βOPCoSA and βPCoSA were extracted from the same 
calculations that produced Fig. 14. 

Let n be the number of codeword bits of a given ECC, f be and upset 
event in the code, t be a step time of a day, and λ probability of a single 
bit per t; then, the probability of having f errors in n bits during t days in 
a Poisson distribution Ψ f (t) is given by Equation (30). 

Ψf (t) =
(

n
f

)
(
1 − e− λt)f e− λ(n− f )t (30) 

Equation (31) computes ΦECC(t) - the ECC reliability parcel con
cerning its capacity to correct errors distributed according to Poisson 
distribution over t days. 

ΦECC(t) =
∑Γ

f=1
αECC,f × Ψf (t) (31) 

The probability of a n-bit codeword failure over t days is computed 
by Equation (32). 

P(t)= 1 − e− λnt (32) 

Let M be the number of codewords in memory, such that events of 
error in codewords are independent, then Equation (33) computes the 
reliability of a memory protected by an ECC over t days RECC(t) as the 
product of the reliability of all codewords. 

RECC(t)= (1 − P(t) + ΦECC(t))M (33) 

This work uses M = 1 (i.e., RECC(t) is computed regarding a single 
codeword) to simplify the exhibition of the results. Extra information on 
the equations can be found in [13]. Fig. 15 shows RPCoSA(t) and ROPCoSA(t)
encompassing three values of λ (1 × 10− 4, 5 × 10− 5, and 1 × 10− 5) and a 
range of 14,000 days. The horizontal axis is time expressed in days, 
while the vertical axis is the reliability of OPCoSA and PCoSA expressed 
in %. The reliabilities considering the other ECCs were not included in 
Fig. 15 because [3] already shown that PCoSA has a higher reliability 
than PBD, CLC, Matrix, and RM throughout the same range of days and 
considering the same values of λ. 

Fig. 14. Correction capacity of PCoSA, OPCoSA, PBD, CLC, Matrix, and RM. The 
simulation is done using all combinations from 1 to 6 bitflips. 

Table 2 
Representativeness of the 36 error patterns concerning the total error 
combinations.  

f qf mf δf Correction 

1 48 48 100.00% 100.0% 
2 280 1128 24.82% 100.0% 
3 464 17,296 2.68% 95.4% 
4 122 194,580 0.06% 79.0%  
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The λ parameter indicates the error incidence rate in memory. For 
example, λ = 10− 4 indicates the probability of one error in a single bit 
every 10,000 days; since OPCoSA codeword has 48 bits, OPCoSA has the 
probability of one bitflip every 208 days. As errors occurrence in RECC(t)
are computed cumulatively, Fig. 15 illustrates that in 3000 days, the 
memory would have 14 bitflips, leading to reliability close to zero for 
both ECCs. 

Fig. 15 displays that OPCoSA is more reliable than PCoSA for all 
periods and values of λ. For instance, with λ = 10− 5, OPCoSA reaches a 
rate of 100%, 96%, and 74% for days 1, 4000, and 8000, respectively, 
while for the same days, PCoSA reaches rates 100%, 92%, and 61%.  

C. Redundancy and Synthesis Cost 

ECCs were evaluated in terms of redundancy costs using two criteria: 
(i) code redundancy rate in, computed by Equation (34), and (ii) 
redundancy rate added in relation to the number of data bits, computed 
by Equation (35). 

r1=
r
n

(34)  

r2=
r
k

(35) 

Table 3 contains the results of r1 and r2, which shows that the lowest 
redundancy rates are for the Matrix and RM codes; the highest rate is for 
PCoSA, while OPCoSA is 11.9% above the average for r1 and 23% above 
the average for r2. 

Fig. 16 displays the sequence for obtaining the synthesis results. 
Initially, we described the encoder (encoder.v) and decoder (decoder.v) 
using Verilog in Register Transfer Level (RTL). To verify the encoder and 
decoder behavior, we implemented a TesbBench that includes a test file 
(test.v) and an error file (error.v). next, the waveforms of the circuits 
were validated using Xilinx’s Integrated Development Environment 
(IDE) software known as Vivado Design Suite. Finally, we synthesized 
the Verilog codes to obtain the values of delay, area consumption, the 
power dissipation for encoder and decoder. The syntheses were per
formed using the RTL Compiler software with the 65 nm CORE65GPSVT 
standard cell library. 

Fig. 17 displays the costs of the hardware synthesis of the evaluated 
ECCs, considering area consumption, power dissipation, and delay of 

encoders and decoders. 
The ECC decoder costs are much higher than the encoder ones since 

most calculations occur in the decoding process. The synthesis results for 
both encoder and decoder show that PDB, followed by Matrix, is the 
lowest cost ECC. On the one hand, considering only the encoder syn
thesis, OPCoSA appears in third place. On the other hand, considering 
only the decoder, CLC is the third most efficient ECC. Finally, except for 
the decoding delay, OPCoSA has lower synthesis costs than PCoSA, 
showing the efficiency of the proposed approach. 

9. Conclusions 

This paper presents OPCoSA, a product ECC requiring 32-redundancy 
bits to protect 16-data, which is based on PCoSA that requires more 16- 
redundancy bits. OPCoSA offers high correction capacity and a conse
quent decrease in hardware costs in relation to OPCoSA. The experimental 
results demonstrate that the correction rate up to four bitflips remains like 
PCoSA and above the other four ECCs (CLC, PBD, Matrix, and RM). 

OPCoSA was evaluated through correction ability, reliability, 
redundancy, and hardware synthesis costs. OPCoSA reaches 100% of 
error correction for 36 specific error patterns and obtained 100% 
correction for burst errors of sizes one to four. The correction capacity 
difference between OPCoSA and PCoSA is a maximum of 4.5% for 
exhaustive error scenarios of up to four bitflips. 

The great advantage of OPCoSA is that it offers the same function
ality as PCoSA, but with 16 bits less redundancy, this directly contributes 
to the decreased area, power, and delay costs. As for reliability, three 
tests were performed varying the number of bit faults per day; in all 
cases, and for the entire period, OPCoSA has the highest reliability rates. 
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Fig. 15. Reliabilities provided by PCoSA and OPCoSA. The reliability regards 
three values of λ (probability of bit faults per day). The horizontal axis is the 
time in days, and the vertical axis is the reliability in %. 

Table 3 
Redundancy rate results.  

ECC r1(%) r2(%)

PCoSA(64,16) 75.0 300 
OPCoSA(48,16) 66.6 200 
PBD(36,16) 55.5 125 
CLC(40,16) 60.0 150 
Matrix(32,16) 50.0 100 
RM(32,16) 50.0 100  

Fig. 16. Encoder and decoder description, verification and synthesis flow.  

D. Freitas et al.                                                                                                                                                                                                                                  



Integration 84 (2022) 131–141

140

Declaration of competing interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

References 

[1] J. Morán, L. Adalid, D. Tomás, P. Vicente, Improving error correction codes for 
multiple-cell upsets in space applications, IEEE Trans. Very Large Scale Integr. Syst. 
26 (10) (Oct. 2018) 2132–2142. 

[2] F. Silva, W. Freitas, J. Silveira, C. Marcon, F. Vargas, Extended matrix region 
selection code: an ECC for adjacent multiple cell upset in memory arrays, 
Microelectron. Reliab. 106 (1) (Mar. 2020) 1–9. 

[3] D. Freitas, D. Mota, R. Goerl, C. Marcon, F. Vargas, J. Silveira, J. Mota, PCoSA: a 
product error correction code for use in memory devices targeting space 
applications, Integrat. VLSI J. 74 (1) (Sep. 2020) 71–80. 

[4] F. Silva, J. Silveira, J. Silveira, C. Marcon, F. Vargas, O. Lima Jr., An extensible 
code for correcting multiple cell upset in memory arrays, J. Electron. Test. 34 (1) 
(Jul. 2018) 417–433. 

[5] G. Kinoshita, C. Kleiner, E. Johnson, Radiation induced regeneration through the P- 
N junction isolation in monolithic I/C’s, IEEE Trans. Nucl. Sci. 12 (5) (Oct. 1965) 
83–90. 

[6] C. Kleiner, G. Kinoshita, E. Johnson, Simulation and verification of transient 
nuclear radiation effects on semiconductor electronics, IEEE Trans. Nucl. Sci. 11 
(5) (Nov. 1964) 82–104. 

[7] C. Rosenberg, D. Gage, R. Caldwell, G. Hanson, Charge-control equivalent circuit 
for predicting transient radiation effects in transistors, IEEE Trans. Nucl. Sci. 10 (5) 
(Nov. 1963) 149–158. 

[8] S. Liu, P. Reviriego, F. Lombardi, Codes for limited magnitude error correction in 
multilevel cell memories, IEEE Trans. Circ. Syst. I 67 (5) (May. 2020) 1615–1626. 

[9] H. Farbeh, F. Mozafari, M. Zabihi, S.G. Miremadi, RAW-tag: replicating in altered 
cache ways for correcting multiple-bit errors in tag array, IEEE Trans. Dependable 
Secure Comput. 16 (4) (Jul. 2019) 651–664. 

[10] P. Reviriego, S. Liu, O. Rottenstreich, F. Lombardi, Two bit overlap: a class of 
double error correction one step majority logic decodable codes, IEEE Trans. 
Comput. 68 (5) (May. 2019) 798–803. 

[11] L. Adalid, J. Morán, D. Tomás, J. Calvo, P. Vicente, Ultrafast codes for multiple 
adajacent error correction and double error detection, IEEE Access 7 (1) (Oct. 
2019) 151131–151143. 

[12] J. Samanta, J. Bhaumik, S. Barman, Compact and power efficient SEC-DED coded 
for computer memory, Microsyst. Technol. 1 (1) (Feb. 2019) 1–10. 

[13] C. Argyrides, H. Zarandi, D. Pradhan, Matrix codes: multiple bit upsets tolerant 
method for SRAM memories, in: Proceedings of the IEEE International Symposium 
on Defect and Fault-Tolerance in VLSI System (DFT), 2007, pp. 340–348. 

[14] C. Argyrides, P. Reviriego, D. Pradhan, J. Maestro, Matrix-based codes for adjacent 
error correction, IEEE Trans. Nucl. Sci. 57 (4) (Aug. 2010) 2106–2111. 

[15] C. Argyrides, D. Pradhan, T. Kocak, Matrix codes for reliable and cost efficient 
memory chips, IEEE Trans. Very Large Scale Integr. Syst. 19 (3) (Mar. 2011) 
420–428. 

[16] P. Elias, Error-free coding, Trans. IRE Prof. Group Inf. Theory 4 (4) (Sep. 1954) 
29–37. 

[17] H. Castro, J. Silveira, A. Coelho, F. Silva, P. Magalhães, O. Lima, A correction code 
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