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Abstract— This article presents a configurable fast block par-
titioning decision for Versatile Video Coding (VVC) intra-frame
prediction using Light Gradient Boosting Machine (LGBM).
VVC further improves the coding efficiency by introducing a
Quadtree with nested Multi-Type Tree (QTMT), enabling five
split types allowing square and rectangular Coding Unit (CU)
sizes. However, this improvement in the coding efficiency comes
at the cost of a high computational burden since several com-
binations of block sizes and prediction modes are evaluated
through the costly Rate-Distortion Optimization (RDO) process.
In this article, we propose a partitioning decision using LGBM
classifiers to avoid the exhaustive RDO process and skip the
evaluation of split types that are unlikely to be chosen as the
best one. For this purpose, five classifiers (one for each split type)
were offline trained with an efficient training process and using
effective features of texture, coding, and context information. The
proposed solution is highly configurable and can provide several
operation points with different tradeoffs between timesaving
and coding efficiency, according to the application requirements.
Considering five operation points, the configurable solution can
reduce the encoding time from 35.22% to 61.34%, with coding
efficiency losses from 0.46% to 2.43%. Compared to the state-
of-the-art, our solution is able to outperform the related works
in terms of combined rate-distortion and timesaving.

Index Terms— VVC, intra coding, timesaving, machine learn-
ing, light gradient boosting machine.

I. INTRODUCTION

THE massive traffic of digital video over the internet,
along with the increasingly widespread of emerging

video applications such as Ultra-High Definition (UHD),
High-Dynamic Range (HDR), Augmented Reality (AR), and
Virtual Reality (VR), has occasioned enormous pressure on the
available bandwidth of the telecommunication infrastructures.
This became even more noticeable in the COVID-19 pandemic
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scenario, where the multimedia content consumption over
the internet increased a lot, forcing streaming providers to
reduce the video quality to support the current demand [1].
Additionally, in a world dominated by battery-powered
embedded devices, which have limited processing and energy
resources, the high complexity of digital video encoding and
decoding is a crucial issue to be addressed to enable real-time
processing with low energy consumption.

Remarkable advances in video compression were achieved
with the standardization of H.264/MPEG-4 Advanced Video
Coding (AVC) [2] and High-Efficiency Video Coding
(HEVC) [3], making it possible to encode high-resolution
videos efficiently. However, AVC and HEVC do not pro-
vide satisfactory performance to reach the coding efficiency
required by the current video applications and industry require-
ments. Thus, creating the demand for new video coding
technologies with additional capabilities and pushing the inter-
national organizations to establish new video coding standards.

Versatile Video Coding (VVC) [4] is the most recent video
coding standardized by the ITU-T and ISO/IEC organizations.
This standard was developed by the Joint Video Experts Team
(JVET), which was founded in a collaboration between ITU-T
Video Coding Experts Group (VCEG) and ISO/IEC Moving
Picture Experts Group (MPEG). The primary objective of
VVC is to provide a compression efficiency significantly
higher than HEVC. At the same time, VVC includes design
features that make it highly versatile for various types of video
content and applications, such as HDR, screen content, 360◦
video, and resolution adaptivity.

VVC follows the general approach of block-based hybrid
video coding that splits each frame into smaller blocks and
processes each block applying intra- or inter-frame prediction.
The resulting residual blocks are processed by transform,
quantization, and entropy coding. Although the VVC coding
structure is similar to its predecessors, it includes several
novel techniques and enhancements that result in substantially
higher compression efficiency. These improvements include
larger block sizes, more flexible block partitioning through
Quadtree with nested Multi-type Tree (QTMT) [5], Affine
Motion Compensation (AMC) [6], Multiple Transform Selec-
tion (MTS) [7], Low-Frequency Non-Separable Transform
(LFNST) [8], new intra-frame prediction tools, among others.

One of the most outstanding improvements in comparison
to HEVC is the new block partitioning structure. In addition to
Quadtree (QT) adopted by HEVC, VVC allows more flexible
partition shapes with Binary Tree (BT) and Ternary Tree (TT),
enabling rectangular block sizes for mode selection, intra-
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and inter-frame prediction, and transform coding. However,
the coding efficiency improvement significantly impacts the
encoding complexity since more split types are evaluated in
the costly Rate-Distortion Optimization (RDO) process.

Another important improvement is related to the intra-frame
prediction. VVC included many new tools and improved the
HEVC tools intending to increase the encoding efficiency.
VVC introduces the dual-tree coding structure and supports 17
and 19 Coding Unit (CU) sizes (including square and rec-
tangular shapes) for luminance and chrominance components,
respectively. HEVC uses the single-tree structure and only
supports five squared CU sizes for both components. VVC
supports 65 angular modes instead of the 33 supported by
HEVC [9]. New tools, like Multiple Reference Line (MRL)
prediction [10], Wide-Angle Intra Prediction (WAIP) [11],
Matrix-based Intra Prediction (MIP) [12], and Intra Subpar-
tition (ISP) [13], allow VVC to reach higher efficiency in
intra-frame prediction, but with impressive additional com-
plexity. Considering the All-Intra (AI) configuration, where
only intra prediction is available, Bossen et al. [14] reported
that the VVC Test Model (VTM) [15] reached an encoding
efficiency 25% higher than the HEVC Test Model (HM) while
increasing the encoding complexity by more than 26 times.

The impressive increase in the required computational effort
boosted the development of novel solutions intending to reduce
the coding complexity while maintaining the coding efficiency.
In this scenario, machine learning is a promising approach to
reduce the computational effort of video coding applications,
minimizing the coding efficiency loss. Among the machine
learning techniques, the Light Gradient Boosting Machine
(LGBM) [16] is a powerful technique that has shown consid-
erable success in a wide range of applications [17]. Besides,
LGBM is based on Decision Tree (DT) classifiers that provide
high accuracy and hardware-friendly characteristics, which is
also relevant in a scenario dominated by video applications
running on battery-powered devices. LGBM is highly cus-
tomizable to the application needs, outperforming other tra-
ditional machine learning techniques, such as Support Vector
Machine (SVM), single DT, and Random Forest (RF), since
LGBM combines gradient descent and boosting techniques,
supporting a large set of adjustable hyperparameters [16].

During intra coding, the VTM execution time can be
reduced by 92% or 97% when removing the evaluation of
rectangular block sizes [18] or directly inferring the par-
titioning [19], respectively. These results demonstrate that
most of the intra coding complexity is related to the block
partitioning process, becoming a bottleneck for VVC real-time
application development. This fact boosted works focusing
on minimizing this complexity using different approaches.
These works include statistical-based heuristics [20]–[23] and
machine learning-based techniques [24]–[31] to predict the
best block size and avoid unnecessary block partition eval-
uations. Although VVC allows different coding tree structures
for luminance and chrominance components, all these works
focused on luminance since it represents more than 85% of
the encoding complexity [18]. Even though these solutions
obtained impressive results, there is still room to improve the
tradeoff between coding efficiency and encoding time savings.

Besides, since most of those solutions do not properly explore
the correlations and features from the encoding process, they
do not present stable results for different video contents and
resolutions.

This article presents a solution aiming to maximize the VVC
intra-frame prediction encoding time savings while minimiz-
ing the impact on the encoding efficiency, with three main
goals: (i) generate a configurable solution with multi-operation
points allowing an adaptive complexity reduction scheme;
(ii) generate a stable solution for different video characteristics
and resolutions; and (iii) reach better results than the related
works regarding the tradeoff between complexity reduction
and coding efficiency. The solution presented in this article
is focused on the luminance block partitioning decision based
on LGBM classifiers. Our solution considers the QTMT block
partitioning as a multiple binary classification problem, where
an LGBM classifier is trained offline for each split type, and
each classifier is responsible for deciding to perform the split
type or not, avoiding the evaluation of split types that are
unlikely to be chosen as the best one.

The main contributions of this work are:
• A novel and efficient VVC intra prediction complexity

reduction solution;
• A configurable multi-operation points complexity reduc-

tion scheme allowing the adaptation for different appli-
cation requirements;

• The use of LGBM to reduce the QTMT block partitioning
complexity sustaining the coding efficiency;

• The design of a robust framework to develop an efficient
complexity reduction solution;

• The use of novel features to build the machine learning
classifiers;

• The use of specialized set of features according to the
split type.

The community of circuits and systems for video technology
is highly active in the challenge of reduce VVC complex-
ity maintaining coding efficiency. Firstly, some important
articles were published presenting the VVC standard, such
as [32]–[36]. Then, new solutions were proposed intending to
mitigate the VVC complexity. Some works focused on efficient
hardware designs, such as [37]–[39], while others focused
on algorithm optimizations, such as [25], [40], and [41].
This article presents novel contributions to our community,
as presented above. This work explores a machine learning
solution to overcome the high computational effort required
by VVC. The presented results surpass the related works when
considering rate-distortion and timesaving.

All experiments developed in this work use the VTM
version 10.0 under AI encoder configuration specified by
the JVET experts. We performed these experiments into
a server with the Ubuntu 20.04 operating system, AMD
Opteron™ Processor 6376, and 128 GB DDR3 memory.

The remainder of this paper is organized as follows.
Section II details the VVC block partitioning structure.
Section III presents a brief overview of the LGBM classifier.
Section IV discusses the related works focusing on reduc-
ing the VVC encoder complexity. Section V describes the
methodology to develop the proposed solution and details
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Fig. 1. QTMT partitioning structure. (a) VVC split types and (b) illustration
of split results for an encoded video sequence.

the configurable fast CU decision for VVC intra coding.
Experimental results and comparisons with the state-of-the-art
solutions are presented in Section VI. Finally, Section VII
concludes this paper.

II. VVC BLOCK PARTITIONING STRUCTURE

VVC is based on the same block-based hybrid video coding
scheme employed in previous standards, such as AVC and
HEVC. This scheme splits each video sequence frame into
blocks and processes all blocks sequentially by intra- or
inter-frame prediction, transform, quantization, and entropy
coding.

The VVC standard splits each input frame into Coding Tree
Units (CTUs) covering square regions of at most 128 × 128
samples. These larger block sizes supported by VVC can
provide a higher compression rate, mainly for high video reso-
lutions. Moreover, each CTU is further recursively partitioned
into smaller blocks called Coding Units (CUs).

VVC adopts a coding-tree-based splitting process that,
in addition to the HEVC QT splitting, introduces the
Multi-Type Tree (MTT) partitioning structure, enabling rec-
tangular CU shapes through binary and ternary splits. This
new partitioning structure using quaternary splits followed by
binary and ternary divisions is called QTMT.

A CTU is first recursively partitioned with a QT structure.
Subsequently, each QT leaf can be further recursively parti-
tioned with an MTT structure using binary and ternary splits.
However, when an MTT split is performed, QT split is no
longer allowed. The CU sizes may vary from 4 × 4 samples
up to 128 × 128 (maximum CTU size), including square and
rectangular shapes. The CTU partitioning for luminance and
chrominance can be performed jointly, referred to as single-
tree, or independently, referred to as dual-tree. The single-tree
is employed for P- and B-slices, where both intra- and inter-
frame predictions can be applied, whereas the dual-tree is
used for I-slices, where only the intra-frame prediction can
be performed.

Fig. 1 illustrates the QTMT partitioning structure. Fig. 1(a)
shows the six split types available in the QTMT structure.
When a CU is defined as no split, the current CU is no further

divided, and the coding process is performed with the current
CU size; otherwise, a CU can be split with QT, BT, and TT
structures. QT splits a CU into four equal-sized square sub-
CUs. BT divides horizontally (BTH) or vertically (BTV) a
CU into two symmetric sub-CUs. TTH splits a CU into three
sub-CUs with the ratio of 1:2:1, and the division also can be
performed in horizontal (TTH) and vertical (TTV) directions.

A CU needs to be recursively traversed with all splitting
possibilities using the RDO process to select the optimal CU
partitioning structure, including no split, QT, BTH, BTV, TTH,
and TTV. The best partitioning structure is the one with the
smallest RD cost, calculated with (1), where D is the distortion
calculated between the original and predicted block, B is
the cost in bits of a particular mode, and λ is the Lagrange
multiplier.

RDcost = D + λ × B (1)

Fig. 1(b) displays the CU size distribution (luminance) for
the first frame of the BasketballPass video sequence encoded
with Quantization Parameter (QP) 37 using AI configuration.
The black, green, and orange lines of the highlighted region
denote the QT, BT, and TT divisions, respectively. Since the
maximum transform block size supported in VVC is 64 × 64,
the intra-frame prediction is carried out only for 64 × 64
or smaller blocks. Thus, VVC forces the first split of
all 128 × 128 CUs to be QT in AI configuration.

Fig. 1(b) depicts that the QTMT partitioning provides a very
flexible block structure, representing several block sizes and
shapes. The smooth regions are encoded with larger blocks and
square shapes, whereas more detailed regions are encoded with
smaller blocks and rectangular shapes. These block partition
types can be adapted to a wide variety of video characteristics,
raising the coding efficiency but also increasing the coding
complexity.

To evaluate the coding complexity and efficiency,
Fig. 2 presents the impact of limiting the QTMT depth levels
to 2 (QTMT 2), 3 (QTMT 3), and 4 (QTMT 4), considering
all classes of video sequences in the Common Test Conditions
(CTC) [42] and using AI configuration.

Fig. 2(a) depicts for all cases that the VTM execution time
is drastically reduced when the maximum QTMT depth is
limited. On average, the encoding time reduces about 93%,
84%, and 64% for maximum QTMT depths 2, 3, and 4,
respectively. Nevertheless, Fig. 2(b) shows that limiting the
QTMT depth also expressively increases the Bjontegaard Delta
Bitrate (BDBR) [43]. On average, BDBR increases by 25%,
11%, and 4% for maximum QTMT depths 2, 3, and 4,
respectively.

The impact on the coding efficiency has a clear correlation
with the encoded video sequence. The video sequences with
high resolution (classes A1, A2, and B) present the lowest
BDBR increase since, in most cases, they are encoded with
larger block sizes, which are achieved in the first QTMT levels.
In contrast, classes C, D, and E, which have videos with
low resolutions, show a high BDBR increase since, in most
cases, they are better encoded with smaller blocks, which are
obtained in the last QTMT levels. Besides, the block size
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Fig. 2. Impact of limiting the maximum QTMT depth for each class of
video resolution: (a) Encoding time reduction and (b) BDBR increase.

has a high correlation with video content and encoder context
attributes, such as QP value.

Therefore, reducing the number of splits evaluated in the
QTMT structure, correlating the video content, encoder con-
figurations, and other encoder attributes can avoid the high cost
of assessing the entire RDO process minimizing the impact
on the coding efficiency. We propose a QTMT partitioning
decision approach based on a machine learning technique for
expressive encoding time savings while maintaining coding
efficiency.

III. LGBM CLASSIFIERS

Ensemble models in machine learning combine the deci-
sions of multiple weak learners to improve the overall per-
formance of a system [17], providing higher accuracy results
than individual models. The two main types of ensemble
approaches are bagging that creates individual classifiers for
taking decisions based on the majority votes of all classifiers,
and boosting, which builds the classifiers iteratively, minimiz-
ing the error of the earlier trained classifiers [17].

LGBM is a gradient boosting framework developed
by Microsoft researchers using tree-based learning algo-
rithms [16]. Fig. 3 exemplifies the LGBM training approach
that builds a DT ensemble sequentially to minimize losses
and improve the model at each iteration step. Each iteration
determines a new DT model training concerning the error of
the entire ensemble learned so far. The learning rate controls
the gradient descent approach used to minimize the loss when
adding trees.

LGBM achieves a solid predictive model by combining N
tree models ( f1, f2, f3, . . . , fn) and the final result described

Fig. 3. LGBM training approach.

in (2) aggregates the results from each step.

f (x) =
N∑

n=1

fn(x) (2)

Unlike other tree-based learning algorithms, LGBM grows
tree leaf-wise (vertically) since it can reduce the prediction
loss more efficiently than algorithms that produce level-wise
trees (horizontally). Moreover, conventional implementations
of GBMs scan all the data instances to estimate the information
gain of all possible split points, which is very time-consuming
for the training process. LGBM uses Gradient-based One-Side
Sampling (GOSS) and Exclusive Feature Bundling (EFB) to
overcome this problem. GOSS and EFB are sampling methods
for data selection, discarding some well-trained instances
(small training error), and reducing the dimensionality of the
features while maintaining high accuracy [16].

In summary, LGBM has many advantages compared to
other machine-learning models, such as (i) ability to han-
dle large-scale data, (ii) support of parallel and Graphics
Processing Unit (GPU) learning, (iii) low memory usage, (iv)
fast training speed, (v) simple implementation with tree-based
algorithm (vi) high accuracy, and (vii) low inference time. The
last three characteristics are crucial for this work since it aims
at reducing the VVC encoding complexity without harming
the coding efficiency.

The LGBM techniques provide a highly flexible training
process to control the learning rate hyperparameters, dataset
sampling, and DT characteristics, generating a high-efficient
model when adequately optimized.

IV. RELATED WORKS

Different approaches are employed to reduce the complexity
of block size decisions in VVC encoders. This section presents
relevant works that employ statistical analysis to build fast
block size decision heuristics, followed by works that use
machine learning approaches and our motivations to employ
LGBM classifiers in the block partitioning decision.

Lei et al. [20] proposed a fast solution to decide in advance
the direction of BT and TT partitions. Their solution evaluates
a subset of directional intra-frame prediction modes for virtual
subpartitions of the current block to estimate the horizontal
and vertical splitting costs of the current block. Based on
the estimated costs, their solution can decide by skipping
horizontal or vertical partitions. Their approach, implemented
in VTM 3.0 and tested with AI configuration, saves 45.8% of
the encoding time with a 1.03% BDBR increase.

Cui et al. [21] proposed a complexity reduction scheme
based on the direction of the sample gradients to decide
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Fig. 4. Framework for training CU partitioning decision with LGBM models and evaluating the performance in the VTM encoder.

the best block partitioning structure. Their scheme performs
the decision on three partitioning possibilities, including split
or not, horizontal or vertical, and BT or TT. To perform
the decision, the gradients of current block subpartitions are
computed in four directions and compared with predefined
threshold values. Their scheme was implemented in VTM 5.0
and evaluated with AI configuration, reaching 50.01% of
encoding timesaving with an increase of 1.23% in the BDBR.

Fan et al. [22] presented a solution based on the current
block variance, subpartition variances, and Sobel Filter. The
current block variance is computed to check the homogeneity
of 32 × 32 blocks and early terminate the QTMT evaluation.
The variance of subpartitions is calculated to choose only
one split among QT, BT, and TT. The Sobel filter is used to
decide by skipping the BT/TT partitions and evaluated only the
QT partitioning. Their solution was implemented in VTM 7.0
and evaluated with AI configuration. The experimental results
reached a 49.27% encoding timesaving with a 1.63% BDBR
increase.

Li et al. [23] proposed a complexity reduction solution
to skip binary and ternary splitting based on residual block
variances of subpartitions, obtained through the absolute dif-
ference between original and predicted samples. The absolute
difference between variances of vertical and horizontal sub-
partitions is computed and compared with predefined threshold
values to early skip BT and TT evaluations. Their solution was
implemented in VTM 7.1 and tested with AI configuration,
saving 43.9% of the encoding time with a 1.50% BDBR
increase.

Fu et al. [24] developed a fast block partitioning algorithm
using a classifier based on the Bayesian decision rule. The
information derived from the current block and horizontal
binary splitting is used as input features for the classifier,
responsible for deciding when skipping the vertical split types.
Additionally, the horizontal ternary split is skipped if the
cost of the vertical binary split is lower than the cost of
the horizontal binary split. Their solution was implemented in
VTM 1.0 and simulated with AI configuration, obtaining 45%
of encoding time reduction and 1.02% of BDBR increase.

Yang et al. [25] proposed a complexity reduction scheme
composed of a fast block partitioning solution based on
DT classifiers and a fast intra mode decision to reduce the
number of angular intra-frame prediction modes evaluated.
They trained one DT classifier for each split type using the
texture information of the current and neighboring blocks.
Since the classifiers are responsible for deciding the best split
type before performing the prediction with the current block
size (i.e., not split type), they used only texture information
features of the current and neighboring blocks. The proposed
scheme was implemented in VTM 2.0 and evaluated according
to AI configuration. The fast block partitioning solution saves
52.59% of encoding time for a 1.56% of BDBR increase. The
fast intra mode decision reduces 25.51% of the encoding time
and increases 0.54% of the BDBR.

Chen et al. [26] developed a complexity reduction solution
using SVM classifiers to decide between horizontal and ver-
tical partitioning. Six classifiers are trained online using only
texture information of the current block during the first frame
encoding; the remaining frames are encoded, applying the
decisions of the trained classifiers. The proposed solution was
implemented in VTM 2.1 and tested with AI configuration,
providing 50.97% encoding timesaving with a BDBR increase
of 1.55%.

Amestoy et al. [27] proposed a fast block partitioning based
on RF classifiers. Three classifiers were trained to decide on
split or not, split with QT or BT/TT, and split horizontally or
vertically. This technique was implemented in VTM 5.0 and
evaluated with Random Access (RA) configuration, saving
30.1% of encoding time with a 0.61% BDBR increase.

Tissier et al. [28], Zhao et al. [29], and Li et al. [30]
proposed complexity reduction solutions based on the Con-
volutional Neural Network (CNN) to define the best block
partitioning. The solution proposed in [28] was implemented
and evaluated with VTM 6.1 using AI configuration. The
experimental results showed 42.2% encoding timesaving with
a 0.75% BD-rate increase. The solutions proposed in [29]
and [30] were evaluated in VTM 7.0, also using AI configu-
ration. The first solution reduces the encoding time by about
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39.39%, with a BD-rate increase of 0.86%; the second one
saves 44.65% of encoding time with a 1.32% BD-rate increase.

Considering the tradeoff between encoding timesaving and
coding efficiency, the results achieved by machine learning-
based solutions outperform statistical-based approaches.
Several of these techniques rely on machine learning-based
approaches and can enhance the VVC encoder performance.
While studying the methodology of machine learning-based
works, we noticed some aspects that could still be improved.
For instance, the extraction of relevant and effective features
for dealing with the split type decision; several of these
solutions cannot provide a good tradeoff between encoding
timesaving and encoding efficiency and generalize for different
video contents and resolutions because of the lack of relevant
features in the training process. Besides the use of more
efficient machine learning models, the works [25] and [26]
use DT and SVM, which in most cases are outperformed
by GBM [17]. Additionally, although CNN models provide
excellent accuracy results, they need a large dataset to achieve
the desired performance and supply a better generalization, and
the CNN hardware implementations are still a big challenge.

Therefore, our solution employs well-trained LGBM models
with features highly correlated with the split type decision to
reach a higher encoding timesaving with negligible impact on
the coding efficiency, providing a competitive tradeoff with
state-of-the-art solutions.

V. CONFIGURABLE FAST CODING UNIT PARTITION

DECISION BASED ON MACHINE LEARNING

Since RDO evaluates several CU partitions and prediction
modes to find the best encoding possibility, it is desirable to
skip some evaluations in the QTMT structure to reduce the
encoding time without compromising the coding efficiency.
This section presents the proposed configurable fast QTMT
partitioning decision based on LGBM classifiers to avoid
the evaluation of some split types in the RDO process.
Section V-A details the methodology employed to develop
the solution. Section V-B describes the feature analysis and
selection, Section V-C details the training and performance of
LGBM classifiers, and Section V-D presents the integration of
LGBM classifiers with the QTMT splitting process inside the
VTM reference software.

A. Methodology

We used data mining to discover strong correlations between
the coding context and its attributes for defining machine
learning models that determine when to perform a QTMT
split type, saving coding time with negligible reduction in
coding efficiency. Our solution divides the block partition
decision into five binary classification problems instead of
creating an LGBM classifier that directly solves the QTMT
structure multiclass problem. This approach allows the design
of specialized classifiers for each split type, saving expressive
encoding time while minimizing the coding efficiency loss. For
this purpose, we trained offline an LGBM classifier for each
split type, including QT, BTH, BTV, TTH, and TTV, and each
classifier decides to skip or not the corresponding split type.

TABLE I

VIDEO SEQUENCES USED FOR TRAINING

Fig. 4 presents the framework used to train and implement
the LGBM classifiers in the VTM encoder. A set of video
sequences were selected to extract the features and train the
classifiers. The VTM encoder was modified to collect several
statistical data with relevant information for the CU split
decision and generate the dataset of each split type. The
datasets are composed of relevant features from the encoded
video sequence, encoder attributes, and the split decision. The
preprocessing step was performed to balance the datasets and
select the most important features. The selected features are
used as input for training the classifiers; this step includes
hyperparameter optimization and the training of each classifier.
The final step consists of evaluating the coding efficiency and
encoding timesaving using a modified VTM encoder, which
incorporates the LGBM classifiers for deciding the QTMT
partitioning instead of the full RDO. In this step, different
video sequences from those used in the training phase are
evaluated.

Table I presents the eight video sequences used in the
training process with resolutions ranging from 416 × 240 up
to 3840 × 2160 pixels.

These video sequences encompass a wide range of video
characteristics (e.g., 8- to 10-bit depth and 24 to 60 frames
per second – fps) for rendering several examples of block
partitioning decisions in the training process.

The video sequences were encoded following the encoder
configurations specified in JVET CTC [42] for AI configura-
tion, using QP values 22, 27, 32, and 37. We extracted the
datasets based on 120 frames to reduce the training process
complexity; these datasets were balanced according to the
number of instances for each frame, block size, QP value,
and output class.

B. Feature Analysis and Selection

We collected a large amount of data from the video
sequences and internal encoding variables to find features that
could lead to effective decisions of CU split type. All these
features were extracted directly during the encoding, where
additional functions were implemented in the VTM encoder.
These features encompass four information categories: CU
samples, local samples, context, and coding information.

CU samples information considers features related to the
current CU samples. All these features are computed based
on luminance samples inside the whole CU, including width
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and height of the current CU, area, block ratio, variance (var),
horizontal (Gx) and vertical (Gy) gradients based on Sobel
operator, Gx divided by Gy (ratioGxGy), and the sum of Gx
and Gy divided by the block area (normGradient).

The information of local samples refers to features obtained
in smaller regions of the current CU, such as the absolute
difference of variances on four sub-quarters (diffVarQT), max-
imum variance on four sub-quarters (maxVarQT), the absolute
difference between variances of upper and lower regions of
the CU (diffVarHor), and the absolute difference between left
and right regions of the CU (diffVarVer).

Context information includes features of left, above, above-
left, and above-right neighboring CUs, such as average QT
(neighAvgQT) and MTT (neighAvgMTT) depth levels in neigh-
boring CUs and number of neighboring CUs with QT (neigh-
HigherQT) and MTT (neighHigherMTT) depth levels higher
than the current CU.

Since not split is evaluated first than QT, BT, and TT splits,
we can consider several coding attributes obtained with the
current CU size for deciding the split types. Coding infor-
mation comprises coding attributes related to the current CU
evaluated with not split type, such as QP, RD cost (currCost),
distortion (currDistortion), current QT (QTD), BT (BTD),
MTT (MTTD), and QTMT (QTMTD) depth levels, best
intra prediction mode (currIntraMode), MRL index (mrlIdx),
LFNST index (lfnstIdx), ISP mode (ispMode), and MTS flag
(mtsFlag). Besides, since the split types are performed in
order, the next split can take advantage of information obtained
in the split evaluated previously, then the coding information
also considers BTH RD cost (costBTH), BTV RD cost (cost-
BTV), costBTH divided by costBTV (ratioCostBTHBTV), and
TTH RD cost (costTTH). It is also important to mention that
the corresponding RD-cost is unavailable when a previous split
type evaluation is skipped, and the feature has the maximum
finite double-precision value.

Table II shows the 19, 28, 29, 28, and 29 features used in the
QT, BTH, BTV, TTH, and TTV classifiers, selected employing
the Feature Selector tool [47]. We discarded collinear and
low-importance features to reduce the dataset dimensionality
and the computational cost of the training process.

Note that a new set of features is explored in this solu-
tion when compared to the related works, such as currCost,
currDistortion, mtsFlag, lfnstIdx, ispMode, mrlIdx, costBTH,
costBTV, costTTH, ratioCostBTHBTV, diffVarQT, maxVarQT,
neighAvgMTT, and neighAvgQT. Besides, unlike the related
works that use the same set of features for different decisions,
in this solution, a different set of features is considered
according to the split type, allowing more accurate results.

Fig. 5 presents the feature importance of the top 10 features
for each classifier. The feature importance was measured using
the split metric, which calculates the number of times the
feature is used in the model. One can notice that features
related to RD cost (currCost and currDistortion) followed by
texture information have great importance for all classifiers.
Besides, RD cost of previous split types also provides valuable
information for the next split evaluations. Features indicating
a horizontal texture direction such as Gx and diffVarHor are
most important for horizontal splits (BTH (Fig. 5(b)) and

TABLE II

FEATURES USED FOR EACH CLASSIFIER

TTH (Fig. 5(d)). While features indicating a vertical texture
direction such as Gy and diffVarVer are most important for
vertical splits (BTV (Fig. 5(c)) and TTV (Fig. 5(e)).

Fig. 6 exemplifies the probability density of four selected
features for QT, BTH, and BTV classifiers. The attributes
currCost and currDistortion demonstrate a clear correlation
with the QT split, where low values of these attributes indicate
a high probability of not splitting with QT. Also, low values
of diffVarHor and diffVarVer indicate a high probability of not
splitting with BTH and BTV, respectively.

C. Classifiers Training and Performance

In the training process of classifiers, a crucial step to max-
imize the model performance is the hyperparameter optimiza-
tion. The LGBM brings several hyperparameters to provide
higher accuracy and deal with overfitting and underfitting that
need to be properly optimized. For this purpose, the hyper-
parameters of each classifier were optimized using the effi-
cient Optuna framework [48] and applying the Tree-structured
Parzen Estimator (TPE) [49] approach.
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Fig. 5. Feature importance ranking of top 10 features for (a) QT, (b) BTH,
(c) BTV, (d) TTH, and (e) TTV classifiers.

Fig. 6. Probability density functions for (a) and (b) QT, (c) BTH, and
(d) BTV classifiers regarding four analyzed attributes.

The main optimized hyperparameters and the best values
obtained for each classifier are presented in Table III. Learn-
ing_rate corresponds to how quickly the error is corrected
from each iteration (or tree) to the next. Feature_fraction
specifies the percentage of features used for each iteration.
Bagging_fraction refers to the data rate selected when bagging
is applied, whereas bagging_freq indicates the frequency k
for performing bagging. Num_leaves denotes the maximum
number of leaves in one tree, and Max_depth limits the maxi-
mum depth for each tree. Finally, Num_iterations specifies the
number of boosting iterations (or the number of trees).

TABLE III

OPTIMIZED HYPERPARAMETERS FOR EACH CLASSIFIER

TABLE IV

ACCURACY AND F1-SCORE RESULTS FOR EACH CLASSIFIER

Fig. 7. Encoding time reduction and coding efficiency of each classifier for
seven threshold values.

After the hyperparameter optimization process, the classi-
fiers were evaluated using the 10-fold cross-validation, con-
sidering accuracy and F1-score metrics. Table IV presents the
accuracy and F1-score results for each classifier, demonstrat-
ing that the classifiers obtain stable results for both metrics
and can provide high performance to predict the CU split
type.

The proposed solution follows the hierarchical process of
VTM, and it uses the LGBM classifiers to avoid the evaluation
of split types that have a low probability of being chosen
as optimal partitioning. Since our solution encompasses five
classifiers, each classifier indicates a probability value to
skip the evaluation of a determined split type. By default,
the decision threshold used by the LGBM model is 0.5, and
the confidence of prediction is given by how close to 0 or
1 is the decision function output. If the output is higher than
0.5, the classifier decides to skip the split type evaluation;
otherwise, the classifier decides to remain the split type
evaluation. However, the decision threshold can be configured
and different tradeoff results between encoding time reduction
and encoding efficiency can be achieved.

Fig. 7 displays the performance of each individual classifier
implemented in VTM, regarding encoding time reduction and
BDBR impact for the following threshold values: 0.3, 0.4, 0.5,
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Fig. 8. Flowchart of the proposed solution integrated with the QTMT splitting
process.

0.55, 0.6, 0.65, and 0.7. This evaluation allows the analysis of
the individual results of each classifier for different operation
points to validate their performance in terms of timesaving and
BDBR. Note that the lower the threshold value, the higher
the encoding time reduction and BDBR impact since more
splits are skipped. In contrast, the higher the threshold value,
the lower the encoding time reduction and BDBR impact since
more splits are evaluated. Therefore, threshold values 0.3 and
0.7 provide the highest and the lowest time savings for all
classifiers, respectively.

At this point, it is necessary to highlight that even this first
evaluation showed a low impact on the coding efficiency for
each classifier regarding different threshold values, the integra-
tion of all classifiers is not a trivial task, and some adaptations
were needed, as presented in the next section.

D. Classifiers Integration

Fig. 8 presents the flowchart of the proposed solution
composed of the five LGBM classifiers integrated with the
QTMT splitting process. The white and light gray colors
refer to native steps of the VTM encoding flow, and the
green, blue, and orange colors represent the new steps of
our solution introduced in the encoder, including feature
extraction, classifier evaluation, and split evaluation decision,
respectively.

After evaluating the intra-frame prediction with the not split
type, our solution extracts the features to feed the LGBM
classifiers. Subsequently, the VTM encoder verifies the split
type that could be evaluated and according to this split type,
an LGBM classifier is applied. Each LGBM classifier gives
a probability to skip the evaluation of the corresponding split

type. The probabilities obtained with the classifiers for QT,
BTH, BTV, TTH, and TTV are P(QT), P(BTH), P(BTV),
P(TTH), and P(TTV), respectively. These probabilities are
compared with decision thresholds to skip the evaluation
of split types with a low probability to be chosen as the
best one. Then, the evaluation of a determined split type is
skipped if the probability is higher than the decision threshold;
otherwise, the encoding flow remains without modifications.
The VTM split type evaluation is performed sequentially; thus,
the proposed solution also performs a sequential decision,
as shown in the flowchart. This approach takes advantage
of the information of previously evaluated split types with
specialized classifiers for each split type, intending to increase
the accuracy of the decisions.

The VTM split type evaluation is performed sequentially;
thus, the proposed solution also performs a sequential decision,
as shown in the flowchart. This approach takes advantage
of the information of previously evaluated split types with
specialized classifiers for each split type, intending to increase
the decisions accuracy.

In the proposed solution, we established two decision
thresholds to provide more flexibility: one threshold for QT,
called THQT, and another threshold for MTT (including hor-
izontal and vertical BT/TT partitions), called THMTT. From
our experimental analysis, we have noticed that using these
two threshold values provides more flexibility for the proposed
solution than using only one threshold value. In contrast,
employing different decision thresholds for horizontal and
vertical BT/TT partitions did not significantly modify the
reached results.

Additionally, we have noticed that when our solution
decides to skip all MTT splits in a given direction and the
best partitioning would be in that direction, significant coding
efficiency loss is caused. Therefore, the proposed solution
skips all splits in a given direction (e.g., BTH and TTH)
only if all splits have a high probability of being skipped
(empirically defined as 0.7); otherwise, the split type with the
lowest probability is evaluated. Considering these integration
decisions, the QTMT split process defined in Fig. 8 was
implemented inside the VTM in substitution of the original
VVC intra-frame prediction QTMT split process and the
evaluations are presented in the next section.

The use of the decision thresholds makes our solution highly
configurable, providing multi-operation points and allowing
the adaptation for different application requirements. In our
solution, the thresholds are defined before starting the encod-
ing of a video sequence according to the operation point
desired. The change of the operation point can be done at
multiple levels, according to the user’s need, including CTU
level, frame level, group of pictures (GOP) level or video
level. The experiments presented in the next section consider
the last option. Considering the flowchart presented in Fig. 8,
the change of operation point is done by changing the THQT
and THMTT values.

In our solution, different combinations of threshold values
can be defined to maximize the encoding timesaving or min-
imize the coding efficiency loss. On the one hand, increasing
the threshold values reduces the number of split types skipped,
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TABLE V

VALUES OF THQT AND THMTT FOR THE FIVE OPERATION POINTS

Fig. 9. QTMT split decision using the proposed solution for a 32 × 32 CU.

allowing the encoder to evaluate more split types, and resulting
in higher coding efficiency. On the other hand, decreasing the
threshold values increases the number of split types skipped,
resulting in a higher encoding time reduction.

In the next section, we present the evaluation of the pro-
posed method using a configuration level with five opera-
tion points. These operation points were defined through an
extensive experimental evaluation, showing good results to
support different application requirements. However, the high
flexibility of our solution enables even more combinations
of threshold values to find the best operation point accord-
ing to the application requirements. These five operation
points are presented in Table V, considering the THQT and
THMTT.

Fig. 9 exemplifies the proposed solution in the QTMT split
decision for a 32 × 32 CU, considering the C3 operation point.
Each classifier provides an output indicating the probability of
skipping the associated split type. In the example of Fig. 9,
as the classifiers of QT, BTV, and TTH decided by skipping the
evaluations, only BTH and TTV split types are evaluated for
the current CU since only these splits have a lower probability
than the decision threshold values.

VI. EXPERIMENTAL RESULTS AND COMPARISONS

WITH RELATED WORKS

This section presents the results of the configurable fast
block partitioning decision solution for VVC intra coding
using LGBM classifiers. We evaluated all experiments in
VTM 10.0 following the CTC specified by JVET for Standard
Dynamic Range (SDR) video sequences [42] in AI encoder
configuration, which allows only intra-frame prediction. CTC
includes six classes of video sequences (A1, A2, B, C, D,
and E) with resolutions ranging from 416 × 240 up to
3840 × 2160 pixels.

Fig. 10. ETS and BDBR increase for the five operation points of the proposed
configurable solution and comparison with the related works.

It is important to highlight that the training process did not
use JVET CTC video sequences; consequently, this evaluation
considered different video sequences from the ones used in
the training step, allowing a robust evaluation of the proposed
solution.

Table VI presents the Encoding Time Saving (ETS) and the
coding efficiency, measured in BDBR of our solution. These
experiments considered the five operation points presented in
the previous section and a configuration at the video level,
meaning that the operation point does not change during
the video sequence encoding. The results are presented for
each video sequence, but the average and standard devi-
ation are also presented to demonstrate the robustness of
our solution considering different video characteristics and
resolutions.

From Table VI, one can observe that, according to the THQT
and THMTT values, the ETS and BDBR can reach a large
range of average values: from an ETS of 35.22% with a BDBR
increase of 0.46% to an ETS of 61.34% with a BDBR increase
of 2.43%.

The results showed that the proposed method can be effi-
ciently applied to support a wide range of application require-
ments, with expressive ETS gains and with minor impacts
in the BDBR results. These experiments also showed that
our solution presented stable results for the evaluated video
sequences, presenting low standard deviation for BDBR and
ETS results, even considering different video characteristics
and resolutions. Besides, the reached results outperform the
state-of-the-art solutions in terms of combined rate-distortion
and timesaving.

Fig. 10 summarizes the comparisons with the related works.
This figure presents a relation between ETS and BDBR for
the related works and the five operation points previously
defined to our solution. Ten related works were compared
with our results, the works of Lei et al. [20], Fan et al. [22],
Li et al. [23], Fu et al. [24], Yang et al. [25], Chen et al. [26],
Tissier et al. [28], Zhao et al. [29], Li et al. [30], and Park
and Kang [31].
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TABLE VI

ENCODING TIMESAVING AND CODING EFFICIENCY RESULTS OF THE PROPOSED SOLUTION FOR FIVE OPERATION POINTS

TABLE VII

COMPARISONS WITH RELATED WORKS

The five operation points of our configurable solution
are identified in Fig. 10 as C1 to C5. This figure also
presents a dotted line showing an extrapolation of our
results if using other operation points with different threshold
values.

Fig. 10 clearly shows that our solution surpasses all related
works since the results of the proposed solution achieved a
better tradeoff between ETS and BDBR. This figure also clar-
ifies the high level of flexibility provided by our configurable
method compared to the related works since different relations
between ETS and BDBR can be explored according to the
application requirements.

Table VII presents a more detailed comparison with some
of these related works, where average BDBR and ETS results
for each video class are presented. For simplicity, considering
only two operation points of our configurable solution: C3
and C4. These operation points were selected because they
are the most comparable with the related works. The related
works [24]–[26], and [30] were used in this comparison since
they provide detailed results and used almost the same experi-
mental setup considered in our work, making this comparison
fairer.

When comparing our work with the solution of
Fu et al. [24], one can observe that our operation point C3
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Fig. 11. Example of CU size distribution obtained with the (a) baseline and
(b) proposed solution.

reached a highest ETS (48.80% against 45%) and a little bit
smaller BDBR (1.01% against 1.02%). Our work reached
similar standard deviation results for BDBR and ETS when
compared with [24].

Our operation point C4, when compared with the work
of Yang et al. [25], reached a better ETS (54.20% against
52.01%) with a lower BDBR (1.42% against 1.52%). Our work
also reached smaller standard deviation results for both ETS
and BDBR when compared with [25].

The work of Chen et al. [26] has similar results to those
presented in [25]. Again, our solution reached a better ETS
(54.20% against 51.23%) with a lower BDBR (1.42% against
1.62%). Once more, our work reached a better standard
deviation for both ETS and BDBR when compared with [26].

Finally, when comparing our operation point C3 with
Li et al. [30], our work reached a better ETS (48.80% against
46.13%) with a lower BDBR (1.01% against 1.32%). When
considering the standard deviation, our work reached a better
result in BDBR and a worst result in ETS when compared
with [30].

As a visual example of the impacts of our method,
Fig. 11 presents the CU size distribution obtained with VTM
without modifications (baseline) and the proposed solution
using the C3 operation point, considering the first frame of
the FourPeople video sequence encoded with AI configuration
and QP 32. We choose to analyze the CU size distribu-
tion of this video sequence since it presented the highest
BDBR impact among the evaluated video sequences using the

proposed method. Highlighted regions with a solid blue line
are examples of areas where the CUs achieved the same sizes
with the original method and with our method. The regions
with a dotted red line are examples of areas where the original
method and our method reached different CUs sizes. One can
notice that even the proposed solution significantly reducing
the number of evaluated CU split types, the final distribution
of CUs has a similar behavior compared to the baseline VTM
encoder, explaining why our solution can provide significant
ETS with low impacts on the coding efficiency.

VII. CONCLUSION

This paper presented a configurable and fast CU partitioning
decision using a Light Gradient Boosting Machine (LGBM)
to reduce the VVC intra coding time. We trained five LGBM
classifiers offline to avoid the evaluation of split types with
a high probability of being skipped. The use of effective
features extracted from the information of texture, coding,
and coding context jointly with a powerful machine learn-
ing model allowed the construction of a robust configurable
solution capable of efficiently dealing with different video
characteristics and resolutions, supporting different application
requirements.

The experimental results using five operation points demon-
strated that the proposed solution could save from 35.22%
to 61.34% of the encoding time at a cost from 0.46% to
2.43% in BDBR. The results also showed that the proposed
solution outperforms the related works in terms of the tradeoff
between encoding time reduction and coding efficiency. Our
method was also the one with the highest time savings
among all related works when running at the C5 configura-
tion (61% against 52% of the best work in the literature).
On the other hand, the proposed method when running at
the C1 configuration reached the best BDBR results among
the related works (0.5% against 1% of the best work in the
literature).

Besides, the high flexibility allowed by our configurable
method allows its use in a broad range of applications. The
five operation points evaluated in this work can be easily
increased and adapted to support other relations between time
savings and coding efficiency. Then, one can conclude that this
is a powerful solution for VVC encoders targeting real-time
applications for different encoding scenarios.
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