
Evaluating Micro-batch and Data Frequency for
Stream Processing Applications on Multi-cores

Adriano Marques Garcia∗, Dalvan Griebler∗†, Claudio Schepke‡, Luiz Gustavo L. Fernandes∗
∗ School of Technology, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil.

†Laboratory of Advanced Research on Cloud Computing (LARCC), Três de Maio Faculty (SETREM), Três de Maio, Brazil.
‡Federal University of Pampa (UNIPAMPA), Alegrete, Brazil.

Email: adriano.garcia@edu.pucrs.br, {dalvan.griebler, luiz.fernandes}@pucrs.br, claudioschepke@unipampa.edu.br

Abstract—In stream processing, data arrives constantly and is
often unpredictable. It can show large fluctuations in arrival
frequency, size, complexity, and other factors. These fluctua-
tions can strongly impact application latency and throughput,
which are critical factors in this domain. Therefore, there is
a significant amount of research on self-adaptive techniques
involving elasticity or micro-batching as a way to mitigate this
impact. However, there is a lack of benchmarks and tools for
helping researchers to investigate micro-batching and data stream
frequency implications. In this paper, we extend a benchmark-
ing framework to support dynamic micro-batching and data
stream frequency management. We used it to create custom
benchmarks and compare latency and throughput aspects from
two different parallel libraries. We validate our solution through
an extensive analysis of the impact of micro-batching and data
stream frequency on stream processing applications using Intel
TBB and FastFlow, which are two libraries that leverage stream
parallelism on multi-core architectures. Our results demonstrated
up to 33% throughput gain over latency using micro-batches.
Additionally, while TBB ensures lower latency, FastFlow ensures
higher throughput in the parallel applications for different data
stream frequency configurations.

I. INTRODUCTION

Most stream processing applications need to handle data that

arrives with varying intensity. This intensity can be defined

as data arrival frequency, data size (including batching), data

complexity, and other aspects [1], [2]. For example, in network

monitoring applications, the data stream frequency is higher at

peak times. Regarding data complexity, a person recognition

application might be more computationally intensive in more

crowded frames. In addition, batches based on time slots

may have varied sizes, which means micro-batching stream

applications must handle this minimizing performance losses.

In stream processing, ideally data should be processed as it

arrives, in near real-time. Therefore, unexpected spikes, bursty

phases, and other abrupt changes in the input streams can

cause undesirable effects that impact negatively on throughput,

latency, or even lead to a system failure and/or data loss [3].

Due to this intrinsic nature of stream processing, a significant

research and development effort is put into mitigating the

impact of these fluctuations in input streams and increasing

This work was financed in part by the Coordenação de Aperfeiçoamento de
Pessoal de Nivel Superior - Brasil (CAPES) - Finance Code 001, FAPERGS
05/2019-PQG project PARAS (No 19/2551-0001895-9), FAPERGS 10/2020-
ARD project SPAR4.0 (No 21/2551-0000725-7), Universal MCTIC/CNPq No

28/2018 project SPARCLOUD (No 437693/2018-0).

fault tolerance. The characteristics of these streams, such as data

frequency and micro-batch size, can be regulated for improving

or achieving optimal performance levels. Thus, scientists are

constantly developing solutions for applications in this domain,

both for the design of new applications and adaptivity [2], [4]–

[6]. The use of micro-batch can amortize undesirable effects.

However, the batch size significantly affects the performance

in stream processing applications [1].

Varying the data stream frequency is important for testing the

adaptability of stream processing systems. For example, scaling

out to see if a system can avoid backpressure or simulating

frequency variations to analyze if the system can sustain a target

throughput or latency. To the best of our knowledge, no one has

compared Threading Building Blocks [7] with FastFlow [8] in

stream processing applications with regards to throughput and

latency. Other works from literature assessed these tools mainly

using fixed data frequency and rarely investigate the impact of

micro-batching. Analyzing data frequency in stream processing

with multiple applications is a complex and challenging task.

However, we have not found support tools in the literature that

allow users to create custom stream processing benchmarks that

natively support latency and throughput analysis with dynamic

micro-batch sizing and data frequency. Related work is very

domain-specific and not easily parameterized.

In the past [9], [10], we proposed a framework for creating

benchmarks of stream processing applications that makes it

easier to assess multiple parallel programming interfaces (PPIs).

In those works, we evaluated the performance of different real-

world stream applications under multiple PPIs in terms of

latency, throughput, and resource utilization. In contrast, in

this paper, we added new features to the framework, such as

dynamic micro-batch size and data stream frequency, to enrich

the performance analysis of PPIs and other tools that aim at

leveraging parallelism. SPBench is free software and is publicly

available1.

This work aims to investigate how stream processing appli-

cations and PPIs behave under different data intensity, degrees

of parallelism, and workloads. We studied Intel TBB and

FastFlow libraries, as they support stream parallelism and few

analyses are available under these parameters. Therefore, we are

contributing for: a framework that simplifies the benchmarking

1https://github.com/GMAP/SPBench

10

2022 30th Euromicro International Conference on Parallel, Distributed and Network-based Processing (PDP)

DOI 10.1109/PDP55904.2022.00011

20
22

 3
0t

h
Eu

ro
m

ic
ro

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 P

ar
al

le
l,

D
is

tri
bu

te
d

an
d

N
et

w
or

k-
B

as
ed

 P
ro

ce
ss

in
g

(P
D

P)
 |

97
8-

1-
66

54
-6

95
8-

6/
22

/$
31

.0
0

©
20

22
 IE

EE
 |

D
O

I:
10

.1
10

9/
PD

P5
59

04
.2

02
2.

00
01

1

978-1-6654-6958-6/22/$31.00 ©2022 IEEE

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on April 10,2023 at 13:13:56 UTC from IEEE Xplore. Restrictions apply.

of micro-batch sizing and data stream frequency on stream

processing applications; and an analysis of the performance

impact on micro-batch sizing and data frequency, varying

applications and PPIs.

The structure of the remainder of this paper is as follows.

Section II gives a background and discusses related work. Our

framework is briefly introduced in Section III. Section IV

describes the methodology used in the experiments, and the

results are presented in Section V. Finally, in Section VI, we

draw our conclusions and future work.

II. BACKGROUND

A. Related Work

In previous work we have discussed in detail benchmarks

and frameworks related to SPBench [10]. Here, we discuss

related work that investigated micro-batching and data stream

frequency in stream processing.

Das et al. [1] propose a self-adaptive algorithm to reduce

the latency of distributed batched streaming systems through

dynamic batching resizing. They used Apache Spark and tested

the algorithm by varying the input data rate with waveform

and binary (sudden low-high frequency changes) strategies.

Zhang et al. [4] targeted the same problem with a different

approach, but they also tested their algorithm using a binary

strategy for data stream frequency. Stein et al. [2] also have the

same goal, but they target compression algorithms and graphics

processing units (GPUs). Here the authors tested the algorithm

with four workloads presenting different complexity patterns

across the dataset to vary the data intensity. Abdelhamid et

al. [5] introduce an algorithm for self-adaptive parallelism for

micro-batch stream processing and test it with several data

stream frequency strategies.

In [11] the authors propose a reconfiguration algorithm

for power-aware parallel applications. They implemented the

algorithm in the PARSEC [12] suite using FastFlow and tested

it changing the size of the items to simulate drops and rises

in data intensity. In [6] the authors evaluated scalability of

benchmarks implemented with Apache Flink and Apache Kafka

Streams by varying the data stream frequency. The strategy they

used to increase data frequency was to increase the number of

data sources rather than increase the rate of item generation.

RIoTBench [13] is a benchmark suite for IoT stream

processing. They evaluated Storm’s performance under real

workloads that naturally exhibit increasing, decreasing, wave,

and binary data stream frequency strategies. [14] evaluated the

performance of micro-batching distributed stream processing

systems (DSPSs) using two data intensity strategies. Wang et

al. [15] presented a Storm-based framework for auto-elasticity

and tested it using data size and complexity as a way to

tune the data intensity. In [16] is proposed a framework for

generating data to evaluate different engines for Linked Stream

Data (LSD). This framework allows different parameters to be

adjusted, such as data size, the number of sources, and data

stream frequency. Karimov et al. [17] propose a benchmarking

framework that generates data at a configurable rate and acts as

a distributed in-memory data generator for evaluating DSPSs.

NAMB [18] is a framework that automatically generates

micro-benchmarks to evaluate DSPSs. It includes a Kafka

synthetic workload generator that can be configured to generate

data streams at different frequencies. They evaluated the micro-

benchmarks using a binary strategy for data stream frequency.

Balkesen et al. [19] proposed a framework for adaptive

input admission and data management in distributed stream

processing. The authors used the distributed engine Borealis

and modeled synthetic and real GPS data to meet several

specific data stream frequency strategies to test the framework.

In [20], some strategies are presented for proactive elasticity and

energy awareness in data stream processing. This work target

multi-core architectures and use FastFlow [8] to perform the

experiments. In addition to the original workload, it implements

a strategy where the data intensity increases or decreases in

small random steps. Navarro et al. [21] evaluated pipeline

parallelism and compared PThreads and TBB using different

scheduling policies, optimizations, and parallel compositions.

Although many of these works evaluated different PPIs with

micro-batch or data stream frequency, most aim for distributed

engines [16]–[19]. Other works have evaluated PPIs that support

multi-core architectures, but either the focus was on stream

processing on GPUs [2] or they did not compare different

PPIs [11], [20]. Regarding performance evaluation, they are

commonly either latency-, or throughput-aware [1], [2], [4], [5],

[16]. Benchmarks that allow exploring micro-batching transfer

this responsibility to DSPSs (Spark usually) [1], [13], [17]. As

can be observed, none of these works analyze and compare

the impact of micro-batching and data stream frequency on

the performance of different PPI for stream processing on

multi-cores. To the best of our knowledge, there are no similar

approaches for benchmarking stream processing with micro-

batch and data frequency configuration.

B. Micro-batch stream processing

Micro-batch (or mini-batch) processing is a variant of

traditional batch processing. In micro-batching systems, data

is processed in small groups at a higher frequency. In stream

processing, micro-batching can be used as an optimization

technique that trades throughput for latency [3]. The size of

a micro-batch can be defined according to predefined criteria,

such as time intervals (e.g., each 2-second interval forms a

new micro-batch), data size (e.g., micro-batches with 5 MB of

data), number of items, and others [1]. In general, the optimal

size is the one that achieves the desired trade-off between

throughput and latency [2]. However, this is not a static value

since fluctuations in data stream frequency and processing cost

of each item are very common in stream processing.

Besides the disadvantage of increased latency, there are

many advantages for using micro-batches in stream processing.

Enabling batching support in an application implies in adding

loops. Therefore, the compiler may optimize these loops with

unrolling techniques using software pipelining. It also enables

vectorization. Besides, micro-batching may improve throughput

by amortizing operator-firing and communication costs. Such

amortizable costs can include deeply nested calls, warm-up

11

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on April 10,2023 at 13:13:56 UTC from IEEE Xplore. Restrictions apply.

costs (e.g., for the instruction cache), and scheduling costs,

possibly involving a context switch [3]. For stream processing

with GPUs, it requires batching input elements for efficient

resource utilization [2]. Micro-batching can ensure system

stability and lower latency for a wide range of auto-adaptive

algorithms workloads despite significant variations in data rates

and operating conditions [1]. Such algorithms can achieve

performance levels without demanding extra resources or

leading to data losses.

The primary control variable in micro-batching is the batch

size. It can be controlled either statically or dynamically [3].

StreamIt [22], for instance, has a static batching algorithm that

aims to trade the data-cache cost of requiring larger buffers

for the benefits of using instruction-cache when processing

micro-batches. However, systems with statically set micro-

batches may exhibit high latency under lower loads or may

not cope with sudden increases in data frequency or item

processing cost [1]. On the other hand, dynamic batching is

commonly used with self-adaptive methods for reacting to

load changes and maintaining system stability. There are many

works focused on developing algorithms that exploit dynamic

batching to improve performance or resource utilization [1],

[2], [4], [5], [23], [24]. These works require the researcher

to allocate extra time to implement benchmarking support,

diverting from the research scope. Therefore, we argue that

there is a demand for tools like our framework, which can be

very useful for researchers in this area.

C. Data Frequency

Data frequency can have different meanings in stream pro-

cessing. It can mean the frequency with which the application

receives items of the same type. It is also be used under several

synonyms in the literature, such as data (or arrival, or item, or

stream) rate or frequency, stream pressure, input frequency, and

so on. Here, we define data stream frequency as the number

of items generated by sources per unit of time. In practice, in

this work, we add a time delay for each item in the source.

Decreasing the time delay entails in increasing the frequency

and vice versa.

It is pretty standard for data not to arrive at constant speeds

throughout the execution of a stream processing application.

Fluctuations can occur due to workload characteristics, transient

network issues, garbage collection in JVM-based engines,

etc. [17]. Examples of loads that can present huge and

often predicted fluctuations are data from network monitoring,

traffic control, GPS, and others. This kind of fluctuation is

usually linked to the times people use these services the most

throughout the day and can be drawn as a waveform. However,

many works in the literature need to do tests with abrupt

fluctuations and shorter periods [5], [13], [17]–[19].

In some cases, data stream frequency (and also micro-

batching) merges with the concept of data intensity or data

complexity [25]. In these cases, the workload behavior is given

by the size or computational cost of the items. In [11], for

example, the authors use an image processing application and

cut by half the resolution of the input images at specific points.

Data frequency strategy Related work

Increasing [6], [13], [16]

Wave [1], [5], [13], [19]

Binary [1], [4], [5], [13], [14], [17]–[19]

TABLE I: Data stream frequency strategies found in R.W.

They used it to simulate a binary strategy. [2] used real and

custom workloads for data compression with stretches of higher

and lower processing costs. In this work, we do not artificially

modify the workloads in this way because they naturally exhibit

patterns of intensities compatible with the wave, binary, and

other strategies. Table I presents the data stream frequency (or

data intensity) strategies that have been used at least twice in

related work (Section II-A). It shows that increasing, wave,

and binary are the most commonly used strategies. Through

our framework, users can create custom benchmarks, run tests

with these strategies, and even create other custom strategies.

III. SPBENCH

SPBench was first introduced on [9], and the first release

was fully described and evaluated on [10]. It is open-source

and available under the GPLv3 license. The goal of SPBench is

to enable users to easily create custom benchmarks from real-

world stream processing applications and evaluate multiple

PPIs. It provides a C++ API that allows users to access

simplified versions of the applications in our suite. Based

on the sequential versions, users can implement parallelism,

create new benchmarks with different parallelism strategies, or

even explore new PPIs. Users can also configure and modify

parameters, such as build dependencies and metrics, through a

command-line interface (CLI). It is fully modular and parallel

code can be quickly replicated across all SPBench applications.

One of the aspects that most differentiates our framework

from related work is how users interact with it. Specific low-

level details of each application are abstracted and the API

presents the user with the core of each application in a few lines

of code. Such applications can originally be much longer than

a thousand lines. Users can access through the CLI a database

containing all applications/benchmarks previously added to our

suite (e.g., the ones we used in past and in this work) and their

new customized versions. Other secondary parameters can be

tuned via the CLI with simple commands. This allows users

to entirely focus on writing and tuning the parallelism rather

than spending time with the non-relevant low-level aspects of

each application. It is helpful for researchers to test their new

solutions and technologies for stream parallelism, and also for

learning/teaching purposes.

Figure 1 shows the representation of the SPBench framework.

The first released version allows users to select receiving data

from a disk or memory (we plan adding a network option

in the near future and multiple sources support). Users can

evaluate latency, throughput, and resource usage at different

granularities and depth levels. Users can also choose from

multiple workload classes for stressing different characteristics

12

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on April 10,2023 at 13:13:56 UTC from IEEE Xplore. Restrictions apply.

Fig. 1: SPBench framework (new contributions in yellow [10]).

in the application and PPI. In this work, we added the options of

dynamic micro-batch sizing and data stream frequency control.

These new features are already fully integrated and functional.

We marked our new contributions to the framework as light

yellow dashed blocks in the Figure 1.

IV. METHODOLOGY

In this section, we discuss the methodology that was used

for the experiments in the next sections. All experiments were

performed in a computer that has 32 GB of RAM and two

Intel Xeon E5-2620 v3 processors (total of 12 cores and

24 threads). The operating system was Ubuntu Server 18.04,

64 bits, kernel 4.15.0-88-generic, and GCC 7.5.0 using -O3
flag. Other libraries used were OpenCV 2.4.13.6, Intel TBB

2020 Update 2 (TBB INTERFACE VERSION 11102), and

FastFlow version 3. Implementations with FastFlow used queue

size 1. For TBB we defined ntokens = nthreads× 10 [21].

We built benchmarks using four applications supported by

our framework [10]: Bzip2, Lane Detection, Person Recog-

nition, and Ferret (from PARSEC) [12]. To monitor the

applications, we used the routines of the API itself, which

allows for performance monitoring with microsecond precision.

We choose a 250 ms monitoring interval to avoid interfering

with the results [20]. Furthermore, for each application, we

used the same load, and parallelism strategy described in [10].

Although uur framework allows for dynamic batch sizing,

we focused on evaluating micro-batching under multiple

parallelism degrees. Thus, we used static micro-batch sizes for

space reasons.

For data frequency we used four strategies with different

behaviors, which include the main strategies found in the

literature: increasing, decreasing, wave, and binary. The

frequency is controlled by inserting a time delay for each

item in the source operator. Our framework allows users to

control this delay with microsecond precision, and data can be

loaded directly from the main memory (in-memory execution)

to reach the maximum frequency. Although the minimum item

delay (i.e., maximum frequency) can be set to zero, the memory

access delay must be regarded.

In our data frequency strategies, we vary the time delay

between 0 and 300 milliseconds. In [9] and [10] it can be seen

that latency of 300 ms is a value that closely approximates what

was achieved in executions with 24 replicas in most test cases.

Therefore, we modeled our strategies based on these bounds.

We divided each workload into twenty steps. At each step,

the frequency increases or decreases, according to the chosen

strategy. Ferret with native load [12], for example, processes

225 items by step, against 22 items in Person Recognition.

In the increasing strategy, the item delay is decreased from

300 to 0 ms, which implies increasing the data frequency

from minimum to maximum through small 15 ms steps. In the

decreasing strategy, the opposite occurs. In wave each wave

has a four-step amplitude, which means a 75 ms item-delay

jump by step (up or down). In binary the frequency is changed

abruptly between minimum and maximum twenty times.

V. EXPERIMENTS

This section presents the experiments for micro-batching

and then for data stream frequency. Although the benchmark

applications support other parallelism patterns, and they are

available to users in our framework, we evaluate only the

Farm pattern for comparison and to simplify the analysis and

discussion. It consists of three-stage pipeline, where there is a

producer stage (source), n worker stages (here all intermediate

stages of the pipeline are collapsed into a single one and then

replicated for data parallelism), and a final consumer stage

(sink), which aggregates the final result [10].

A. Micro-batching Results

We run the experiments with micro-batches using multiple

degrees of parallelism, from 2 to 24 maximum parallel workers

in the farm. The actual number of threads created by each

PPI varies according to its design. However, we will focus the

discussion on the results with 12 and 24 replicas, which are

the number of physical cores and the total number of threads

for this system. Besides replicas, we also vary the micro-batch

size from 1 (no batch) up to 5 items per batch (lines in the

charts). We have experimented with a more extensive range,

but we believe that above 5 items it is already out of the

micro-batching concept, and the latency becomes significantly

higher in some cases.

The graphs with micro-batching results are in Figures 2-5.

Each figure contains the results for one of the applications. The

graphs show latency and throughput (items per second) for Intel

TBB and FastFlow. Figure 2 shows the experimental results for

the Lane Detection application. In this application, TBB with 12

replicas increased latency by 363% when using five-item micro-

batch (Figure 2a). On the other hand, throughput increased by

391%. The throughput gain was 7.7% higher than the latency

gain. With FastFlow (Figure 2b) this increase was 10.91%, an

even higher difference. These differences are more significant at

the 24th replica. TBB had a 33.79% increase in throughput over

latency, while FastFlow showed a 26.5% increase. Although

FastFlow with 12 replicas got a higher advantage of increasing

the micro-batch size, the latencies achieved are still more

than double the results of TBB. Regarding throughput, the

performance of both PPIs is similar.

Experimental results with Bzip2 also achieved a higher

throughput increase over latency. With 24 replicas this increase

13

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on April 10,2023 at 13:13:56 UTC from IEEE Xplore. Restrictions apply.

 0
 0.3
 0.6
 0.9
 1.2
 1.5

 0 4 8 12 16 20 24

La
te

nc
y

(s
ec

on
ds

)

Number of replicas.

 0

 200

 400

 600

 800

 0 4 8 12 16 20 24

Ite
ns

 p
er

 s
ec

on
d

Number of replicas.

B−1 B−2 B−3 B−4 B−5

(a) Threading Building Blocks

 0

 0.6

 1.2

 1.8

 2.4

 0 4 8 12 16 20 24La
te

nc
y

(s
ec

on
ds

)

Number of replicas.

 0

 200

 400

 600

 800

 0 4 8 12 16 20 24

Ite
ns

 p
er

 s
ec

on
d

Number of replicas.

(b) FastFlow

Fig. 2: Latency and throughput results for Lane Detection with

multiple parallelism degrees and micro-batch sizes.

 0

 0.8

 1.6

 2.4

 0 4 8 12 16 20 24

La
te

nc
y

(s
ec

on
ds

)

Number of replicas.

 0

 110

 220

 330

 0 4 8 12 16 20 24

Ite
ns

 p
er

 s
ec

on
d

Number of replicas.

B−1 B−2 B−3 B−4 B−5

(a) Threading Building Blocks

 0

 1.1

 2.2

 3.3

 4.4

 0 4 8 12 16 20 24La
te

nc
y

(s
ec

on
ds

)

Number of replicas.

 0

 110

 220

 330

 0 4 8 12 16 20 24

Ite
ns

 p
er

 s
ec

on
d

Number of replicas.

(b) FastFlow

Fig. 3: Latency and throughput results for Bzip2 with multiple

parallelism degrees and micro-batch sizes.

in TBB was 13.4% (Figure 3a). Here, FastFlow performed

better, showing a 21.4% throughput gain with 24 replicas

(Figure 3b). Similar to Lane Detection, Bzip2 achieved positive

results using micro-batching, considering throughput and

latency as inversely proportional metrics (which may not be

true for all scenarios).

The Person Recognition in Figure 4 showed different

behavior. In the scenario with 12 replicas, TBB had a 6.3%

higher latency increase over throughput, going opposite to

Lane Detection and Bzip2. FastFlow increased both latency and

throughput by 380%, a balanced result. With 24 replicas, the

throughput gain occurs again, but this time, FastFlow achieved

a 13.5% increase, while TBB showed no difference. Finally,

Figure 5 shows the results for the Ferret application. This

application did not show any difference above 1% between the

two PPIs when comparing the increase between latency and

throughput. In all the scenarios evaluated, these two metrics

increased by approximately 400% for a five-item micro-batch.

Many factors may explain the different behavior of micro-

batching in these applications, such as the characteristics of

the applications, PPIs, and the loads used. For example, Ferret

processes small items and does not need sorting in the last

 0

 2

 4

 6

 8

 0 4 8 12 16 20 24

La
te

nc
y

(s
ec

on
ds

)

Number of replicas.

 0

 20

 40

 60

 80

 0 4 8 12 16 20 24

Ite
ns

 p
er

 s
ec

on
d

Number of replicas.

B−1 B−2 B−3 B−4 B−5

(a) Threading Building Blocks

 0

 4

 8

 12

 16

 0 4 8 12 16 20 24La
te

nc
y

(s
ec

on
ds

)

Number of replicas.

 0

 20

 40

 60

 80

 0 4 8 12 16 20 24

Ite
ns

 p
er

 s
ec

on
d

Number of replicas.

(b) FastFlow

Fig. 4: Latency and throughput results for Person Recognition

with multiple parallelism degrees and micro-batch sizes.

 0
 0.2
 0.4
 0.6
 0.8

 1

 0 4 8 12 16 20 24

La
te

nc
y

(s
ec

on
ds

)
Number of replicas.

 0

 160

 320

 480

 640

 0 4 8 12 16 20 24

Ite
ns

 p
er

 s
ec

on
d

Number of replicas.

B−1 B−2 B−3 B−4 B−5

(a) Threading Building Blocks

 0

 0.5

 1

 1.5

 2

 0 4 8 12 16 20 24La
te

nc
y

(s
ec

on
ds

)

Number of replicas.

 0

 160

 320

 480

 640

 0 4 8 12 16 20 24

Ite
ns

 p
er

 s
ec

on
d

Number of replicas.

(b) FastFlow

Fig. 5: Latency and throughput results for Ferret with multiple

parallelism degrees and batch micro-sizes.

stage. So batching did not play a significant role here. Person

Recognition, on the other hand, requires the items to arrive in a

specific ordering. However, the increase in replicas causes more

item to clutter because more concurrent threads are writing

to the output queue. The time required to sort the items can

impact latency. However, Person Recognition has a naturally

high latency because items are more computationally intensive.

Therefore, the use of micro-batch does not alleviate the cost of

sorting items. On the other hand, FastFlow managed to achieve

throughput gains with 24 replicas.

Regarding Bzip2 and Lane Detection, both process items at

a higher speed than Person Recognition and bigger items than

Ferret. So there is room for performance improvement when

using a micro-batching strategy because this reduces the number

of items, implying less clutter and reduced communicating

costs. Considering the results achieved by both applications,

we believe that using micro-batching is a useful optimization.

The latency increases at a slower pace than the throughput

up to five-item batch. However, this positive balance may be

questionable in different applications. For example, in a realistic

scenario, it may not be interesting to increase the latency of a

lane detection application, as this data is may be required by

14

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on April 10,2023 at 13:13:56 UTC from IEEE Xplore. Restrictions apply.

 0

 700

 1400

Decreasing Increasing

 0

 700

 1400

Wave

 0

 700

 1400

0 100 200 300 400 500 600

La
te

nc
y

(m
s)

Execution time (seconds)

Binary

(a) Threading Building Blocks

 0

 700

 1400

Decreasing Increasing

 0

 700

 1400

Wave

 0

 700

 1400

0 100 200 300 400 500 600

La
te

nc
y

(m
s)

Execution time (seconds)

Binary

(b) FastFlow

Fig. 6: Parallel Ferret under different data stream frequency

strategies.

 0

 250

 500

 214 215 216 217 218

La
te

nc
y

(m
s)

Execution time (seconds)

Binary

Fig. 7: Snapshot of a frequency switching cycle from Ferret

using the binary pattern.

fast decision-making systems such as a self-driving car. Data

compression applications, on the other hand, usually do not

have this requirement. Also, although load imbalance can still

occur, it may be negligible when using the Farm pattern [21].

B. Data Frequency Results

This section presents the data stream frequency experiments.

We use four strategies widely used in related work: decreasing,

increasing, wave, and binary. We discuss these strategies in

Sections II-C and IV. Figures 6, and 8-10 present the results

for each application, with TBB on top and FastFlow on the

bottom. Here, instead of considering the average latency, as was

done in the micro-batching experiments, we perform latency

monitoring throughout the execution (using 24 replicas). The

X-axis on graphs has the execution time for each application.

The slower data access speed on the hard disk is a limiter

to achieving higher frequencies. Therefore, the runs in the

following experiments were done in-memory, as described

in Section IV. This makes it possible to achieve high data

frequencies, with a delay of a few microseconds between items

in the source. Although we have executed these experiments

with multiple degrees of parallelism, we present the results

 200

 1000

 1800

Decreasing
Increasing

 200

 1000

 1800

Wave

 200

 1000

 1800

0 25 50 75 100 125

La
te

nc
y

(m
s)

Execution time (seconds)

Binary

(a) Threading Building Blocks

 200

 1000

 1800

Decreasing
Increasing

 200

 1000

 1800

Wave

 200

 1000

 1800

0 25 50 75 100 125

La
te

nc
y

(m
s)

Execution time (seconds)

Binary

(b) FastFlow

Fig. 8: Parallel Bzip2 under different data stream frequency

strategies.

with 24 replicas, which is the number of cores available on the

processor and best shows the impact of varying the frequency.

Compared to the other three applications, Ferret can achieve

the lowest latencies [10]. Therefore, this application is bounded

by input source [21] and was expected to handle the increase in

stream frequency with the least impact on latency. Considering

the increasing and decreasing strategies on top of Figures 6a

and 6b, we can observe that the behavior of TBB and FastFlow

was similar. Both PPIs showed an increase in latency spikes

in the higher frequency periods. Although both strategies act

inversely, the increase in execution time for the increasing
strategy can be explained by the workload characteristic. This

application has no overhead caused by item sorting. However,

the load incurs in lower latency at the beginning and a

higher latency at the end [10]. So this natural latency of the

workload matches the decreasing strategy. On the other hand,

with increasing the high-latency items negate Ferret’s natural

advantage in processing data at a high frequency.

Using the wave strategy, TBB and FastFlow also showed

similar behavior. The exception occurs at maximum frequency

points (e.g., at 210 seconds), while TBB generates a small

latency spike down to almost zero, FastFlow presents a high

spike. In the other applications, both TBB and FastFlow show

a latency spike with the wave strategy. However, the FastFlow

spikes reach higher latencies (notice that the latency is scaled

differently between the PPIs in Figures 9 and 10). Regarding

the binary strategy, FastFlow was able to achieve low latency

peaks when the item delay tends to zero (high frequency), as

was TBB. As we defined the high and low-frequency periods

based on the number of items, it is difficult to observe this

15

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on April 10,2023 at 13:13:56 UTC from IEEE Xplore. Restrictions apply.

 800

 1500

 2200

Decreasing
Increasing

 800

 1250

 1700

Wave

 1000

 1700

 2400

0 10 20 30 40 50 60 70 80

La
te

nc
y

(m
s)

Execution time (seconds)

Binary

(a) Threading Building Blocks

 800

 2800

 4800

Decreasing
Increasing

 800

 2800

 4800

Wave

 800

 1900

 3000

0 10 20 30 40 50 60 70 80

La
te

nc
y

(m
s)

Execution time (seconds)

Binary

(b) FastFlow

Fig. 9: Parallel Person Recognition under different data stream

frequency strategies.

low-high cycle here because the computing time of each item

is very short in Ferret. To illustrate how this low-high cycle

occurs, in Figure 7 we show a snapshot of one such spike

for this application. This stretch where the latency tends to

zero represents a high-frequency period and lasts less than two

seconds. Ferret processed 225 items in this short interval, the

same amount processed in the low-frequency period that lasts

over 50 seconds.

Regarding Bzip2 (Figure 8), the average latency with 24

replicas in this workload is higher: above 1000 ms with

FastFlow as was seen in Figure 3. Therefore, it is expected that

this application will not gain much performance by increasing

data stream frequency. On the contrary, sudden increases, as

with the wave and binary strategy, cause an increase in latency

because these parallel implementations could not consume

data that fast. The graphs confirm this, by showing large

latency spikes (higher with FastFlow) in high-frequency phases.

Concerning the execution time overhead with the increasing
strategy, we hypothesize that it might be caused by item clutter

or load unbalance.

The Person Recognition results in Figure 9 show a different

pattern from the previous ones. In the wave and binary
strategies, it can be seen that approximately halfway through

the execution there is an overall reduction in latency. In the

decreasing strategy, this reduction in latency occurs at the very

beginning of the execution, while with increasing this occurs

at 55 seconds. This behavior is explained by the characteristic

of the workload. In the second half of the input video, there

are no more recognizable persons. Therefore the computational

effort is lower in this part. As the computation time per item

28
211
214

Decreasing Increasing

27

29

211

Wave

29

211

213

0 50 100 150 200 250 300 350

La
te

nc
y

(m
s)

Execution time (seconds)

Binary

(a) Threading Building Blocks

28
211
214

Decreasing Increasing

27
28
29
210

Wave

29
210
211
212

0 50 100 150 200 250 300 350

La
te

nc
y

(m
s)

Execution time (seconds)

Binary

(b) FastFlow

Fig. 10: Parallel Lane Detection under different data stream

frequency strategies.

is longer here, the spikes in latency with wave and binary last

longer and are more pronounced. If we compare the different

y-scales between TBB and FastFlow, it can be seen that the

increase in frequency had more impact on FastFlow also for

this application.

For the last, Figure 10 shows the performance of the Lane

Detection application. Similar to Person Recognition, this

application processes video frames. The computation cost of

each frame also fluctuates a lot. There are times in the input

video where there is no lane to be detected, and at other times

there are intersections or the car changes lanes, resulting in

multiple lanes detected per frame. Although the average latency

of the sequential application is lower in the latter part of the

video, it has the highest latency spikes, as studied in [10]. This

high spike coincides precisely with the parts where the latency

jump occurs in the graphs in Figure 10. This spike is also

observed in the increasing strategy, but not in decreasing, which

shows that this problem is indeed linked to the high-frequency

of the stream. Added to this is the issue of item ordering and

possibly load unbalancing. This application processes items

much faster than Person Recognition so that these factors may

be more impactful. Comparing TBB to FastFlow (Figures 10a

and 10b), TBB was able to keep latency lower in most high

frequency moments, such as in wave and the first half of binary.

FastFlow showed high latency spikes in all these high-frequency

stretches. On the other hand, TBB was more impacted at the

end of the computation than FastFlow. Nevertheless, since the

workload naturally fluctuates throughout the execution, it is

not possible to draw precise conclusions for these cases.

FastFlow showed in almost all test cases higher latency peaks

16

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on April 10,2023 at 13:13:56 UTC from IEEE Xplore. Restrictions apply.

under high-frequency data and a higher resistance to reach

low latencies, as can be seen in the high-frequency periods

in Figures 10b and 6b. The inter-stage communication cost

and scheduling items of FastFlow possibly impact this aspect

a lot, as these factors did alleviate in TBB due to its work

stealing policy. Nevertheless, even with higher latency, FastFlow

achieved reduced execution time in most cases, indicating a

higher throughput than TBB in these experiments. Therefore,

we argue that even choosing the right PPI plays an essential role

in finding the best trade-off between latency and throughput,

or other metrics, in stream processing.

VI. CONCLUSIONS AND FUTURE WORK

With the help of the extended framework in this paper,

we analyzed the impact of micro-batch and data intensity on

stream processing applications with different PPIs. We were

also able to create several workloads with some strategies that

could change dynamically at execution time. We tested micro-

batching configurations under different levels of parallelism,

which revealed throughput gains over latency up 33% with TBB

and 26.5% with FastFlow. Regarding data stream frequency,

we simulated the most widely used strategies in the literature.

It was possible to observe how this impacts the performance

of each PPI and how each one trades latency for throughput

in each test case. Each workload’s different data streaming

characteristics also allowed us to understand better how each

PPI performs in these scenarios.

For reasons of space, increased complexity, or scope,

our work did not address some aspects in the experiments.

For example, the definition of the item-delay for the data

stream frequency experiments did not use the sustainable

throughput [17] of each application as a baseline. Moreover,

we did not explore dynamic micro-batching or micro-batching

under different data frequencies, although these are features

supported by our framework. Nor did we explore different

parallelism strategies. It would also be interesting to have a

mechanism for stressing item clutter. We aim to address such

aspects in future work.

REFERENCES

[1] T. Das, Y. Zhong, I. Stoica, and S. Shenker, “Adaptive stream processing
using dynamic batch sizing,” in Proceedings of the ACM Symposium on
Cloud Computing, ser. SOCC ’14. New York, NY, USA: Association
for Computing Machinery, 2014, p. 1–13.

[2] C. M. Stein, D. A. Rockenbach, D. Griebler, M. Torquati, G. Mencagli,
M. Danelutto, and L. G. Fernandes, “Latency-aware adaptive micro-
batching techniques for streamed data compression on graphics processing
units,” Concurrency and Computation: Practice and Experience, p. e5786,
May 2020.

[3] M. Hirzel, R. Soulé, S. Schneider, B. Gedik, and R. Grimm, “A catalog
of stream processing optimizations,” ACM Comput. Surv., vol. 46, no. 4,
Mar. 2014.

[4] Q. Zhang, Y. Song, R. R. Routray, and W. Shi, “Adaptive block and
batch sizing for batched stream processing system,” in International
Conference on Autonomic Computing (ICAC). IEEE, Jul. 2016.

[5] A. S. Abdelhamid, A. R. Mahmood, A. Daghistani, and W. G. Aref,
“Prompt: Dynamic data-partitioning for distributed micro-batch stream
processing systems,” in Proceedings of the 2020 ACM SIGMOD
International Conference on Management of Data, ser. SIGMOD ’20.
New York, NY, USA: ACM, 2020, p. 2455–2469.

[6] S. Henning and W. Hasselbring, “Theodolite: Scalability benchmarking
of distributed stream processing engines in microservice architectures,”
Big Data Research, vol. 25, p. 100209, 2021.

[7] M. Voss, R. Asenjo, and J. Reinders, Pro TBB: C++ parallel program-
ming with threading building blocks. Apress, 2019.

[8] M. Aldinucci, M. Danelutto, P. Kilpatrick, and M. Torquati, Fastflow:
High-Level and Efficient Streaming on Multicore. John Wiley & Sons,
Ltd, 2017, ch. 13, pp. 261–280.

[9] A. M. Garcia, D. Griebler, C. Schepke, and L. G. Fernandes, “Introducing
a Stream Processing Framework for Assessing Parallel Programming
Interfaces,” in 29th Euromicro International Conference on Parallel, Dis-
tributed and Network-Based Processing (PDP), ser. PDP’21. Valladolid,
Spain: IEEE, March 2021.

[10] ——, “SPBench: a framework for creating benchmarks of stream
processing applications,” Computing, vol. 104, no. 1, Jan. 2022.

[11] D. De Sensi, M. Torquati, and M. Danelutto, “A reconfiguration algorithm
for power-aware parallel applications,” ACM Trans. Archit. Code Optim.,
vol. 13, no. 4, Dec. 2016.

[12] C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The parsec benchmark suite:
Characterization and architectural implications,” in Proceedings of the
17th international conference on Parallel architectures and compilation
techniques, 2008, pp. 72–81.

[13] A. Shukla, S. Chaturvedi, and Y. Simmhan, “Riotbench: An iot benchmark
for distributed stream processing systems,” Concurrency and Computa-
tion: Practice and Experience, vol. 29, no. 21, p. e4257, 2017.

[14] G. van Dongen and D. Van den Poel, “Evaluation of stream processing
frameworks,” IEEE Transactions on Parallel and Distributed Systems,
vol. 31, no. 8, pp. 1845–1858, 2020.

[15] L. Wang, T. Z. J. Fu, R. T. B. Ma, M. Winslett, and Z. Zhang, “Elasticutor:
Rapid elasticity for realtime stateful stream processing,” in Proceedings of
the 2019 International Conference on Management of Data, ser. SIGMOD
’19. Association for Computing Machinery, 2019, p. 573–588.

[16] D. Le-Phuoc, M. Dao-Tran, M.-D. Pham, P. Boncz, T. Eiter, and M. Fink,
“Linked stream data processing engines: Facts and figures,” in The
Semantic Web – ISWC 2012. Springer, 2012, pp. 300–312.

[17] J. Karimov, T. Rabl, A. Katsifodimos, R. Samarev, H. Heiskanen, and
V. Markl, “Benchmarking distributed stream data processing systems,” in
2018 IEEE 34th International Conference on Data Engineering (ICDE),
2018, pp. 1507–1518.

[18] A. Pagliari, F. Huet, and G. Urvoy-Keller, “Namb: A quick and
flexible stream processing application prototype generator,” in 2020
20th IEEE/ACM International Symposium on Cluster, Cloud and Internet
Computing (CCGRID), 2020, pp. 61–70.

[19] C. Balkesen, N. Tatbul, and M. T. Özsu, “Adaptive input admission and
management for parallel stream processing,” in Proceedings of the 7th
ACM International Conference on Distributed Event-Based Systems, ser.
DEBS ’13. Association for Computing Machinery, 2013, p. 15–26.

[20] T. De Matteis and G. Mencagli, “Keep calm and react with foresight:
Strategies for low-latency and energy-efficient elastic data stream
processing,” SIGPLAN Not., vol. 51, no. 8, Feb. 2016.

[21] A. Navarro, R. Asenjo, S. Tabik, and C. Cascaval, “Analytical modeling of
pipeline parallelism,” in 2009 18th International Conference on Parallel
Architectures and Compilation Techniques, 2009, pp. 281–290.

[22] W. Thies and S. Amarasinghe, “An empirical characterization of stream
programs and its implications for language and compiler design,” in 2010
19th International Conference on Parallel Architectures and Compilation
Techniques (PACT), 2010, pp. 365–376.

[23] M. Welsh, D. Culler, and E. Brewer, “Seda: An architecture for well-
conditioned, scalable internet services,” in Proceedings of the Eighteenth
ACM Symposium on Operating Systems Principles, ser. SOSP ’01. New
York, NY, USA: ACM, 2001, p. 230–243.

[24] D. Carney, U. Çetintemel, A. Rasin, S. Zdonik, M. Cherniack, and
M. Stonebraker, “Operator scheduling in a data stream manager,” in
Proceedings 2003 VLDB Conference, J.-C. Freytag, P. Lockemann,
S. Abiteboul, M. Carey, P. Selinger, and A. Heuer, Eds. San Francisco:
Morgan Kaufmann, 2003, pp. 838–849.

[25] S. Henning and W. Hasselbring, “How to measure scalability of
distributed stream processing engines?” in Companion of the ACM/SPEC
International Conference on Performance Engineering, ser. ICPE ’21.
New York, NY, USA: ACM, 2021, p. 85–88.

17

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on April 10,2023 at 13:13:56 UTC from IEEE Xplore. Restrictions apply.

