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Abstract—Data Stream Processing is a pervasive computing
paradigm with a wide spectrum of applications. Traditional
streaming systems exploit the processing capabilities provided
by homogeneous Clusters and Clouds. Due to the transition to
streaming systems suitable for IoT/Edge environments, there has
been the urgent need of new streaming frameworks and tools
tailored for embedded platforms, often available as System-on-
Chips composed of a small multicore CPU and an integrated on-
chip GPU. Exploiting this hybrid hardware requires special care
in the runtime system design. In this paper, we discuss the support
provided by the WindFlow library, showing its design principles
and its effectiveness on the NVIDIA Jetson Nano board.

Index Terms—Data Stream Processing, GPU Programming,
CUDA, Multicores, System-on-Chips

I. INTRODUCTION

Data Stream Processing (DSP) is a computing paradigm en-

abling the real-time processing of huge amount of information

available as continuous data streams. An increasing number

of scenarios can be modeled through the DSP paradigm,

where streams are continuously transformed in order to extract

insights, hidden knowledge and statistics reported to the end

users. The continuous nature of data streams demands effi-

cient systems for stream processing [1], which shall provide

satisfactory performance levels to the end users.

Streaming systems have evolved from first-generation ones,

supporting relational-algebra streaming tasks, to more general-

purpose tools targeting scale-out architectures like Clusters

and Clouds. With the advent of Edge computing platforms,

parts of streaming workloads have moves closer to data

producers, by avoiding the cost of transferring data to and

back from the Cloud. However, supporting Edge/IoT resources

requires special care because they are equipped with low-

power architectures often based on System-on-Chips (SoCs).

The goal of this paper is to extend the C++17 WINDFLOW

streaming library [2] to support embedded architectures com-

posed of CPU+GPU SoCs. We target the family of boards

(Tegra) shipped by NVIDIA. The scientific contributions of

this paper are the following:
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and by the Universal MCTIC/CNPq No 28/2018 project SPARCLOUD (No

437693/2018-0).

• we show a new run-time system based on efficient CUDA

kernels supporting the processing of both stateless and

stateful streaming transformations (operators);

• some optimizations are presented and discussed in rela-

tion to the features of the considered SoCs (use of pinned

and unified memory, and prefetching directives);

• an experimental evaluation of WINDFLOW with different

configurations, as well as a comparison with Apache

Flink, a popular scale-out DSP system.

The paper organization is the following. §II introduces

the background concepts. §III shows the preliminaries on

the WINDFLOW library and its structured run-time system.

§IV shows the paper contribution with the GPU support. §V

presents the experimental evaluation, while §VI summarizes

the related works. Finally, §VII draws the conclusions.

II. BACKGROUND

DSP applications are Directed Acyclic Graphs (DAGs) of

operators performing intermediate data transformation stages.

Operators receive streams of records called tuples, and apply a

processing function on each input by emitting results to other

operators. They can be classified in two broad categories:

1) stateless operators apply a pure function on each tuple to

produce the corresponding output result. The computed

output solely depends on the given input;

2) stateful operators apply a logic that uses the current

input and, in addition, an internal state to compute the

corresponding result. The state is used to keep an history

of what has been received so far by the operator.

Operators can be internally replicated to process different

inputs in parallel. This parallelization can easily be exploited

by stateless operators, where each input can be processed

independently from the others. For stateful operators, the

replication must respect the computation semantics. The most

common pattern is the one of having a partitioned state [3].

Each input tuple has a special key attribute (a user-defined data

type), and the processing on each tuple reads and modifies only

the corresponding state partition associated with that key.

The parallelization of this computational pattern requires a

keyby distribution of the input tuples to the replicas of the

destination operator, in such a way that all the tuples having
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the same key attribute are delivered to the same replica which

keeps the corresponding state partition.

III. WINDFLOW LIBRARY

In this section, we recall the basic features of the WindFlow

API and its runtime system (shortly, runtime).

A. API

The first step to create an application is to define a streaming

environment as an instance of the PipeGraph class (see

Fig. 1). The user can specify some configuration parameters

related to the execution mode (e.g., with ordered timestamps

or non-deterministic), and the timestamp creation policy.

PipeGraph app(“myApp”, Execution_Mode_t::DEFAULT,
                       Time_Policy_t::INGRESS_TIME);

Fig. 1: PipeGraph with timestamps assigned by Sources (i.e.,

ingress time) and non-deterministic mode (i.e., default).

Operators are created by leveraging builder classes hav-

ing a fluent interface. The builders are instantiated with the

processing logic of the operator (e.g., through a user-defined

function, lambda, or a functor). Fig. 2 shows the creation of

a Filter operator using a Boolean predicate to decide which

tuples (of type tuple_t) to drop. The Filter is created with

three internal replicas to improve throughput. In the example,

the Filter is stateful: each replica maintains a private hash

table mapping keys onto state objects, which are used to keep

statistics of the received tuples with the same key. To enable

this behavior, the operator is configured to process inputs in a

keyby manner, using a key extractor (a lambda in the example)

to extract the key attribute of type key_t from the tuple.

struct Filter_Functor { bool operator()(tuple_t &t){…}};

Filter_Functor myfunctor;
Filter filter = Filter_Builder(myfunctor)

.withParallelism(3)

.withName(“MyFilter”)

.withKeyBy([](const tuple_t &t) -> key_t { return t.key; })

.build();

Fig. 2: Filter with keyby processing and three internal replicas.

Once created, the operators are connected in the right order

as in Fig. 3. In the example, we have a three-staged logical

pipeline with a Source, the Filter, and a Sink operator.

app.add_source(source).add(filter).add_sink(sink);
app.run();

Fig. 3: Interconnection of operators.

B. Structured Runtime

The runtime is built using a composition of building
blocks [2] (shortly, blocks), which can be nested and composed

to create the application structure. Sequential blocks are:

1) wrapper node, or simply node, is a block encapsulating

a user-defined function applied to each received tuple in

order to produce the corresponding output result;

2) combiner is a block built on top of two nodes or

combiners. Given two nodes N1 and N2 with processing

functions F1 and F2, a combiner block executes the

composition of the two functions F2(F1(x)) on each

input x. By combining combiners with combiners, we

can fuse an arbitrarily long chain of transformations.

Parallel blocks express communications between nodes and

combiners, or between parallel blocks themselves. They are:

1) pipeline: given a set of sequential blocks connected

in series, the pipeline expresses temporal parallelism,

where the blocks work in parallel on different inputs;

2) all-to-all (A2A): it is composed by two sets of sequential

or parallel blocks, the left-hand set (LS) and the right-

hand set (RS). Each block in the LS is connected to all

the blocks in the RS.

The application in §III-A is implemented by composition of

the blocks in Fig. 4. Nodes performing the operator processing

functions are combined with nodes performing run-time sup-

port activities: emitters (E) perform the distribution of tuples to

the replicas of the next operator, while collectors (C) perform

the multiplexing of tuples received from the different replicas

of the preceding operator. The presence of stateful operators

(the Filter in the example) requires the use of a A2A block

to connect all the replicas of the Source with the ones of the

Filter. The whole structure is a tree of nested blocks.

SNKSRC E

SRC E

C Filter

SNKC Filter

= node = combiner = pipeline = A2A

.

.

.

.

.

.

SNKSRC E

SRC E

C Filter

SNKC Filter

.

.

.

.

.

.

Fig. 4: Structure of the example using building blocks.

WINDFLOW is based on the FASTFLOW building

blocks [4]. The characteristics of this implementation are:

• each node is executed by a dedicated thread, except nodes

incorporated into the same combiner block, which are

executed by the same thread sequentially;

• communication channels are implemented by single-

producer single-consumer lock-free queues of memory

pointers to heap-allocated data structures.

IV. ADDING GPU SUPPORT TO WINDFLOW

The new set of GPU-based operators added to the library

exchange tuples in batches. The batch size is set with the

withOutputBatchSize() method of the builder. The

builder constructor takes as input argument the user-defined

functional logic, which is provided through a __device__
lambda or a operator() method of a functor object. We

support two GPU-based operators working in a stateless or

stateful mode: Filter_GPU able to drop inputs based on a

Boolean predicate; Map_GPU able to execute a user-defined

function producing one output per input.
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A. Stateless Operators

In the stateless version, each tuple can be processed in

parallel with respect to the others. The source code of the

CUDA kernel is shown in Fig. 5 for the Map GPU operator.

Each CUDA thread of the kernel works on a specific input

of the batch by calling the user-defined functional logic of the

operator. In case of the Map_GPU, the logic modifies the input

in place. For the Filter_GPU operator (whose code is not

shown for brevity), the logic returns a Boolean flag.

template<typename tuple_t, typename map_func_t>
__global__ void stateless_kernel(batch_item_t<tuple_t> *data_gpu,
                                 size_t len,
                                 int num_active_thread_per_warp,
                                 map_func_t func_gpu) {
    int id = threadIdx.x + blockIdx.x * blockDim.x;
    int num_threads = gridDim.x * blockDim.x;
    int threads_per_group = warpSize / num_active_thread_per_warp;
    int num_workgroups = num_threads / threads_per_group;
    int id_group = id / threads_per_group;
    if (id % threads_per_group == 0) {
        for (size_t i= id_group; i<len; i+= num_workgroups)
            func_gpu(data_gpu[i].tuple);
    }
}

Fig. 5: CUDA kernel for the Map GPU stateless operator.

Since the user-defined logic (func_gpu) can be general,

threads belonging to the same warp can follow different

conditional paths. To partially mitigate this issue, the kernel

is configured to use only warp-level parallelism if the batch

size is smaller than the maximum number of resident warps

on the device. This is achieved by activating one thread per

warp in that case, while the others remain idle. When the

size of the batch is bigger, we activate more threads per warp

reaching the full utilization of all the resident CUDA threads

in case of large batches. For the Filter GPU operator, the

kernel executes in parallel the func_gpu logic by obtaining

an array of flags, and then the host thread of the replica calls

a thrust::copy_if() to compact the batch.

B. Stateful Operators

Stateful operators keep an internal state partitioned by key.

A batch is composed of several inputs that may belong to

different keys. In our approach, the state partition associated

with a key attribute is an object fully resident in the GPU-

accessible memory. The user-defined logic takes an input tuple

and the state object of its key, and modifies the tuple by access-

ing the corresponding state partition (Filter_GPU returns a

Boolean flag instead). Each batch structure is extended with

the following support arrays:

• start_idxs is a GPU array of integers of size equal

to the number of distinct keys present in the batch. The

element start_idxs[i] contains the position in the

batch of the first tuple having the i-th key;

• map_idxs is a GPU array of integers of size equal to

the batch size. The element map_idxs[i] contains the

position in the batch of the next tuple having the same

key of the i-th element (or −1 if it does not exist).

Fig. 6 shows an example of the support arrays in case of a

batch of eight tuples with three keys A, B, C.

A B A A B C A C
0 1 2 3 4 5 6 7

batch

0start_idxs 1 5
0 1 2

2 4 3 6 -1 7 -1 -1
0 1 2 3 4 5 6 7

map_idxs

Keys = {A,   B,  C}

Fig. 6: Support arrays with a batch of 8 tuples and 3 keys.

The kernel is described in Fig. 7. Each key is assigned to a

CUDA thread in charge of computing the user-defined function

over all the tuples of the batch having that key.

template<typename tuple_t, typename state_t, typename map_func_t>
__global__ void stateful_kernel(batch_item_t<tuple_t> * data_gpu,
                                int *map_idxs,
                                int *start_idxs,
                                state_t **states_ptr,
                                int num_keys,
                                int num_active_thread_per_warp,
                                map_func_t func_gpu)
{
    int id = threadIdx.x + blockIdx.x * blockDim.x;
    int num_threads = gridDim.x * blockDim.x;
    int threads_per_worker = warpSize / num_active_thread_per_warp;
    int num_workgroups = num_threads / threads_per_group;
    int id_group = id / threads_per_group;
    if (id % threads_per_group == 0) {
        for (int id_key=id_group; id_key<num_keys; id_key+= num_workgroups) {
            size_t idx = start_idxs[id_key];
            while (idx != -1) {
                func_gpu(data_gpu[idx].tuple, *(states_ptr[id_key]));
                idx = map_idxs[idx];
            }
        }
    }
}

Fig. 7: CUDA kernel for the Map GPU stateful operator.

The kernel uses an additional array states_ptr, which

contains at position i a pointer to the state object corresponding

to the i-th key of the batch. While state objects are used by the

CUDA threads in the kernel, their creation is done by the host

threads running the replicas of the GPU-based operator on the

CPU. Each host thread, once a batch is received, iterates across

all the distinct keys of the batch, and allocates the state objects

each time a key is seen for the first time. In order to create

the state of a key once, we use the Intel TBB concurrent hash

table to map key attributes onto pointers in GPU-accessible

memory to the corresponding state objects.
The preparation of the states_ptr array, and the access

to the hash table is done is parallel by the replicas on different

batches. To avoid more CUDA threads (e.g., of simultaneously

launched kernels) work on the same state partition in parallel,

at most one replica of the same operator can execute the

stateful kernel at the same time through the use of a lock.

The preparation of the two support arrays map_idxs and

start_idxs is done by a specific emitter node functionality.

C. Advanced Implementation Choices
Further important aspects have been addressed in addition

to the implementation choices already described before.
1) Use of CUDA streams: to avoid synchronization, we use

CUDA streams to execute kernels in parallel on the device and

to synchronize only when required in order to produce correct

results. Each batch is associated with its own CUDA stream,

which is used by all the host threads that work on that batch.
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2) Recycling GPU memory buffers: allocating GPU-

accessible buffers is a costly operation. We use a recycling
mechanism of batches, where each batch incorporates a pointer

to a multi-producer single-consumer lock-free queue. Opera-

tor replicas, where batches are consumed, do not deallocate

batches in general, but push pointers to batches into the

corresponding queue. Emitters in charge of creating batches do

not allocate them each time, but try to pop a pointer from their

recycling queue in order to reuse already allocated buffers.

3) Implementation variants: due to the specific features of

Tegra SoC devices, several variants have been designed:

• Explicit transfers: this variant adopts separated buffers

for storing GPU-accessible data, and copies from CPU to

GPU buffers are done explicitly and possibly overlapped;

• Unified memory: this variant adopts unified buffers by

the host and the GPU. On Tegra devices, the physical

memory is shared by the CPU and GPU, and the use

of unified memory avoids useless copies. Furthermore, it

makes the caches (both on CPU and GPU) coherent;

• Pinned memory: we use pinned memory allocated with

cudaMallocHost(), because these buffers are shared

by the CPU and the GPU. However, pinned memory

is not cached on the CPU side (in SoCs with compute

capability lower than 7.2 like the Jetson Nano).

The version with unified memory can be extended with the

use of explicit prefetching directives, which are implemented

by the cudaStreamAttachMemAsync() calls.

V. EXPERIMENTS

We provide an evaluation of the performance achieved by

WINDFLOW with the new GPU support presented in this

paper. The reference hardware is the NVIDIA Jetson Nano

board. It is a SoC composed of a quad-core ARM Cortex-

A57 MPCore processor working at maximum frequency of

1.4GHz, and a Maxwell GPU with 128 CUDA cores. The

board is equipped with 4GB of RAM and 32GB of storage.

We use two applications provided in the DSPBench bench-

marks [5]. The first, SpikeDetection (SD), finds out spikes in a

stream of sensor readings. The second, FraudDetection (FD),

applies a Markov model to discover credit card frauds. The two

DAGs are pipelines of four and three operators. For SD, we

have a Source, a stateful Map (Moving Average), a stateless

Filter (Spike Detector) and a Sink. For FD, the pipeline has

three operators: a Source, a stateful Filter (Predictor) and a

Sink. All the experiments have been compiled with clang
version v10.0 (with the -O3 flag) and CUDA v10.2.

1) Performance on the ARM CPU: the first evaluation has

been done using CPU-based operators only. In order to use

the four CPU cores at best, all the operators are configured

to use two replicas, and we chain consecutive operators not

connected by a keyby distribution to reduce the amount of

threads. So doing, each application is run by 4 host threads,

each pinned on a CPU core. Fig. 8 reports the results which

are the average of tens repetitions (error bars are not shown

for brevity, since they are small).

1e+06

2e+06

3e+06

4e+06

5e+06

1 16 32 64
Batch size (no. tuples)

Th
ro

ug
hp

ut
 (t

up
le

s/
se

c)

SpikeDetection (CPU only)

3e+05

4e+05

5e+05

6e+05

7e+05

1 16 32 64
Batch size (no. tuples)

Th
ro

ug
hp

ut
 (t

up
le

s/
se

c)

FraudDetection (CPU only)

Fig. 8: Throughput of SpikeDetection (left) and FraudDetec-

tion (right) using WindFlow with CPU-only operators.

In the experiments, we vary the size of the batches. Since

we are not using the GPU, batches of few tens of inputs are

sufficient to amortize the run-time system overheads. For SD,

we measure 2.7M inputs consumed per second with batches of

16 tuples each. Greater batches do not improve this value. For

FD, the peak throughput is of 580K inputs per second with

slightly smaller batches of eight tuples each. We can observe

that SD is a finer-grained application than FD, since its peak

throughput is about five times higher.
2) Performance with CPU-GPU: we repeat the experiments

with our GPU support, where all the operators (except Sources

and Sinks) use the GPU. The size of the batches is much

bigger, up to thousands of tuples per batch. Fig. 9 shows the

results, which raise the following comments:

• the version with pinned memory is the one having the

lowest runtime overheads, since no copies and no co-

herency activities by the CUDA runtime are required.

However, on Tegra devices pinned memory is not cached

by the GPU, and on Jetson Nano it is not cached by the

CPU too. This hardware limitation poses serious perfor-

mance issues on FD, since the predictor computation has

a large working set which cannot be stored in cache.

• the version with explicit transfers performs reasonably

well, outperforming the others for FD. Although this

version copies batches from CPU to GPU explicitly,

copies are overlapped and their cost is well masked;

• unified memory, although its potential in avoiding useless

copies, requires additional coherency and cache mainte-

nance operations that are costly. The use of prefetching

directives only alleviates this problem.

The gain with respect of using only the CPU is of 3.17x for

SD and 2.12x for FD.
3) Impact of recycling GPU buffers: we repeated the

tests without the recycling support described in §IV-C2. The

throughput drops of 20% and 17% for SD and FD respectively.
4) Comparison with standard tools: we conclude with a

comparison against Apache Flink (v1.9.0) compiled with

Java v11.0 and using only the ARM CPU, since GPUs are

not natively supported by Flink. Fig. 10 shows the results in

the best configuration found with the peak throughput. As we

can observe, WINDFLOW outperforms Flink with a 11x higher

throughput with SD (6x with FD).

VI. RELATED WORKS

Making the DSP paradigm and its frameworks suitable for

IoT and Edge is a hot research topic. Some works focus on the
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Fig. 9: Throughput of SpikeDetection (left) and FraudDetection (right) using WindFlow with CPU+GPU processing.

0

2500000

5000000

7500000

Flink WindFlow WindFlow+GPU

Th
ro

ug
hp

ut
 (t

up
le

s/
se

c)

SpikeDetection

0

400000

800000

1200000

Flink WindFlow WindFlow+GPU

Th
ro

ug
hp

ut
 (t

up
le

s/
se

c)

FraudDetection

Fig. 10: Comparison against Apache Flink.

scalability of run-time systems on single multicores [6]. They

trade off scalability with latency by dynamically scheduling

the processing of input batches on a pool of threads. However,

these systems do not support accelerators, which are a valuable

component for SoC-based IoT/Edge resources.

EdgeWise [7] is a recent work enhancing Apache Storm

for edge resources. They propose a model where operators

are logical executors dynamically scheduled onto a fixed-size

pool of threads according to application-dependent scheduling

policies. On GPUs, the pioneering work is Saber [8], which

provides streaming support on GPU for relational algebra

operators. While interesting, this system does not support

user-defined stateful operators like the ones described in this

paper. Gasser [9] focuses on GPU-based streaming operators

working with sliding windows, so for a very special class of

operators only. FineStream [10] extends the work done with

Saber (so for relational-algebra queries only) on integrated

GPUs. Although with some points in common with our work,

the source code of FineStream is not publicly available.

VII. CONCLUSIONS

This paper presented the extension of the WINDFLOW

library for NVIDIA SoCs. The implementation choices in

the run-time system design showed a clear benefit in us-

ing the on-chip GPU. Furthermore, the comparison between

the proposed implementation variants produced interesting

insights for future extensions of this work, in order to use

dynamically the best implementation variant based on the

workload characteristics of the application and batch size.
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