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ABSTRACT
GPUs are massively parallel processors that allow solving problems

that are not viable to traditional processors like CPUs. However,

implementing applications for GPUs is challenging to programmers

as it requires parallel programming to efficiently exploit the GPU

resources. In this sense, parallel programming abstractions, notably

domain-specific languages, are fundamental for improving pro-

grammability. SPar is a high-level Domain-Specific Language (DSL)

that allows expressing stream and data parallelism in the serial code

through annotations using C++ attributes. This work elaborates on

a methodology and tool for GPU code generation by introducing

new attributes to SPar language and transformation rules to SPar

compiler. These new contributions, besides the gains in simplicity

and code reduction compared to CUDA and OpenCL, enabled SPar

achieve 331% of higher throughput when exploring combined CPU

and GPU parallelism, and 665% when using batching.
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1 INTRODUCTION
Stream processing systems have been increasing in popularity over

the last few years. They are especially relevant for dealing with
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the large amount of data being produced by live sources such as

IoT devices, social media, and financial markets. However, in order

to achieve efficient computation, programmers need to carefully

accommodate the streaming application according to the under-

lying computing resources. This task usually requires parallelism

strategies and other low-level optimizations, which are challenging

for most application programmers. Usually when programmers

try to implement efficient code, they end up mixing the applica-

tion business logic with the parallelism strategy. Consequently,

the code quickly becomes complex, and ordinary activities such as

implementing, debugging, and maintaining code become cumber-

some and error-prone tasks. Furthermore, modern applications can

benefit from the composition of different parallelism strategies to

improve performance. For example, stream processing applications

usually expose data parallelism within some streaming stage.

In this sense, new methodologies promote parallel programming

abstractions to ease the task of writing parallel code. Commonly,

we organize parallel programming abstractions into three layers or

levels: 1) a set of fundamental and low-level mechanisms that allow

accessing hardware features such as triggering or synchronizing

threads (e.g., CUDA); 2) a set of parallel patterns that hide many

lower-level complexities via templates that work as ready-to-use

parallelism strategies (e.g., Intel TBB); and 3) domain-specific lan-

guages that employ high-level abstractions via code annotations

that are used to generate automatic parallel code (e.g., SPar).

The state-of-the-art parallel programming abstractions targeting

general purpose CPUs are mostly from the second-level. The pro-

grammer is equipped with composable, parametric, and reusable

abstractions that can be inter-connected to help modeling complex

data streams. Apart from that, GPUs are powerful architectures

that are equipped with thousands of cores targeting problems that

are complex to be solved on CPUs. When the programmer needs to

deal with specialized computing systems like GPUs, the available

solutions he can use are essentially from the first-level of paral-

lelism abstractions. Therefore, programmers need to reason about a

new lower-level language and design a new strategy for combining

multi-core and many-core parallelism.

When we inspect the available frameworks for GPU program-

ming in the literature, the standard tools are CUDA and OpenCL.
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Also, there are some alternatives in the industry and scientific

community. Frameworks like HIP [2] offer wrappers over CUDA

and OpenCL, which facilitates developing portable code between

GPUs of different vendors. Some frameworks like FastFlow, Kokkos,

SkePU, and Thrust additionally offer parallel patterns via structured

parallel programming to approach GPUs. Other frameworks such as

OpenACC, OpenMP, and hiCUDA provide code annotations do ab-

stract some complexities, but they still require hardware knowledge

and specific optimizations. Despite the differences between GPU

supported frameworks, all of them share a common characteristic:

they require significant programming efforts and knowledge about

parallelism and hardware aspects. In fact, very few frameworks

tried to provide abstractions for stream parallelism targeting CPUs

and GPUs simultaneously.

Considering the literature limitations, in this paper, we leverage

SPar’s high-level language and extend it to support parallel code

for CPUs combined with GPUs on stream processing applications.

SPar is a Domain Specific Language (DSL) embedded in C++ that

offers third-level abstractions to express stream parallelism via code

annotations. However, SPar was only generating code for multi-

core architectures. In this work we define and implement new

transformation rules in SPar’s compiler to make it able to generate

automatic parallel code for CPUs combined to GPUs via source-

to-source code transformations. Our main scientific contributions

are: (1) a high-level language extension to support GPUs; (2) a code

generation methodology for the compiler that translates high-level

annotations to parallel code; and (3) an evaluation of our proposed

methodology using three applications from different domains.

The remainder of this paper is organized as follows. Section 2

gives a bird’s eye view of SPar, highlights our motivations, and

introduces our new language for GPUs along with the compiler

methodology for source-to-source parallel code generation. Sec-

tion 3 presents the results of our experiments. Section 4 introduces

our related work and Section 5 the conclusion and future work.

2 HIGH-LEVEL STREAM AND DATA
PARALLELISM

In this section, we introduce a programming model for expressing

stream and data parallelism in stream processing applications target-

ing multi-cores and GPUs. The outline of this section is the follow-

ing: Section 2.1 introduces the SPar programmingmodel. Section 2.2

describes our motivation for extending SPar to offload streaming

data-intensive computation routines into GPUs. Section 2.3 intro-

duces the new high-level language that enables stream and data

parallelism annotations in C++ code. Then, in Section 2.4 we lever-

age the new language and implement a new compiler methodology

that automatically generates heterogeneous parallel code using

source-to-source code transformations.

2.1 SPar Programming Model
SPar (acronym for Stream Parallelism) is a programming model

for expressing stream parallelism in C++ codes. SPar was first in-

troduced in 2016 [8, 10] and is being built upon since. Currently,

different research works are being conducted in SPar’s ecosystem,

mainly they target different architectures (i.e. CPUs, Clusters, and

Sink

[[spar��ToStream]] 
while(1){
  item = read();
  [[spar��Stage,
  spar��Input(item),
  spar��Output(item),
  spar��Replicate(4)]]
  { compute(item); }
  [[spar��Stage,
  spar��Input(item)]]
  { write(item); }
}

Data item

Application code

SPar code

Communication
queue

compute()

read()

write()

compute()

Source

Figure 1: SPar annotations and the data flow generation.

low-resource hardware devices) and extend support to further par-

allelism paradigms (i.e. data parallelism and data flow).

SPar aims at providing higher levels of abstraction to hide the

difficulties inherited of computer architectures and systems and

the challenge of writing parallel code. SPar design principles are

towards productivity and portability. It provides a clear separation

of concerns between the application business logic and parallelism

details. Therefore, programmers that employ SPar can focus on

the application, while SPar’s compiler is in charge of providing

parallelism-specific optimizations.

SPar equips programmers with a domain-specific language (DSL)

that can be used for annotating data stream regions in sequential

C++ code. Afterwards, the SPar compiler analyses these information

and automatically generates parallel code. The code generation is

accomplished using source-to-source transformations performed

directly in the standard C++ AST (abstract syntax tree). Since the

SPar compiler represents the full semantics of the C++ standard

in an internal AST, it gives SPar the support required to perform

complex and powerful code transformations.

The SPar language was initially conceptualized via five domain-

specific attributes: (1) ToStream denotes the scope of a data stream

in the code (can be a loop constantly receiving data); (2) Stage
denotes the scope of a sequential stage/block (can be a computation

step applied to each item of the data flow); (3 and 4) Input and

Output, as the name suggests, are the inputs and outputs of a data

stream region or a processing stage; (5) Replicate is a special

attribute that informs a processing stage could be replicated.

The programmer may use the aforementioned attributes in order

to express information about the data stream in a sequential C++

code. Note that the programmer uses a high-level language and

does not deal with low-level code. For instance, Figure 1 shows a

traditional stream processing application annotated with SPar. The

application constantly reads data from a source, applies a computa-

tion step and writes results into a sink. The ToStream indicates the

annotated region of code represents a data flow. In this region, each

item read from a source is processed by two Stages. The first Stage
consumes a data item, applies a computational routine over the data

and sends it forward. Also, the Replicate attribute indicates the
stage is replicated using the specified number. The second Stage
consumes the previous data item and writes them into a sink.

A high-level representation of the parallelism mechanisms gen-

erated by SPar is represented in cyan on the right-hand side of
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Figure 1. After analyzing the information provided by the pro-

grammer, SPar’s compiler converges into a suitable parallel data

stream by employing the Farm pattern. Once the parallel pattern

was selected, SPar can generate the parallel code targeting differ-

ent runtimes. The original SPar version [9] generates parallel code

using the FastFlow library. Recent works [14, 15] extended SPar to

support parallel code generation targeting Intel Threading building

blocks and OpenMP.

2.2 Motivation for language extension
In the last few years, the rise of massively parallel hardware and the

performance differences of the multi-core and many-core architec-

tures led developers to move computationally intensive (parallel)

parts of programs to accelerators (such as GPUs). However, pro-

gramming for many-core hardware poses additional challenges

concerning parallel programming for multi-core machines, due to

the differences in the architectural design and separate memory

spaces. It is a challenge to synchronize computation and data be-

tween different computing systems. Usually, programmers require

to design and implement exclusive low-level parallelism strategies

particular to each application and computing system architecture.

Modern High-Performance Computing (HPC) servers are com-

posed of a combination of multi-core CPUs and many-core GPUs.

In order to take advantage and efficiently exploit the underlying

parallel resources, applications programmers rely on available APIs

(Application Programming Interface) or parallel programming mod-

els. While many tools for GPU programming does not offer efficient

abstractions for stream parallelism [6, 31], other tools are not able

to efficiently exploit the computing resources since they do not

consider the data parallelism exposed by the stream processing

applications [16, 32]. Even tools that support stream and data par-

allelism require significant code refactoring in order to exploit the

heterogeneous hardware [1].

Ideally, the tools developed by system programmers should pro-

vide efficient abstractions that does not require stream process-

ing application programmers to learn hardware details in order

to exploit the parallelism available in the computer architecture.

However, the lack of high-level abstractions to explore these ar-

chitectures was limiting SPar’s usage among application program-

mers. Although possible, exploiting GPU parallelism using SPar

annotations required much effort and deep knowledge about the

underlying architecture [29]. The current SPar attributes are closely

related to the stream parallelism domain. Also, they do not express

any semantics of the data parallelism properties. It was necessary

an extension to SPar language to express data parallelism along

with stream parallelism.

Therefore, we posed ourselves the challenge to design efficient

and high-level parallel programming abstractions for expressing

parallelism on stream processing applications targeting heteroge-

neous parallel computer architectures, without substantial changes

to the original syntax and semantics. We propose a simple and ex-

pressive unified programmingmodel for expressing stream and data

parallelism using C++ attributes. We introduce the new language

and compiler strategies in the following sections.

2.3 Data parallelism attributes in SPar
In order to safely generate parallel code, the compiler must be

sure that the operation being applied to the data elements can be

executed in parallel, i.e. it is a pure function: “whose output depends
only on its input and does not modify any other system state” [21].

Functional programming semantics defines a pure function as “a

function that, given the same input, will always return the same

output and does not have any observable side effect” [19]. Since

there is no standard way of automatically detecting this property

in a given C++ code block [3, 7, 26], the application programmer

must provide this information. In the following we present the SPar

language extension we propose to support data parallelism:

2.3.1 Pure. None of the current SPar attributes (presented in Sec-

tion 2.1) carries information about the pureness of the code. Thus,
we created a novel attribute called Pure to identify operations that

can be safely executed in parallel [28]. The Pure attribute indicates

that the annotated code block is a pure function. This attribute may

be used along with the Stage attribute list to mark the entire Stage
as pure, or as an identifier attribute inside code regions annotated

with Stage to mark specific portions of the Stage region as pure

operations. The input and output data of the pure region are de-

fined by the Input and Output attributes. In SPar, a Stage or code

block is considered a pure function when it satisfies the following

statements to guarantee correct use and correct code generation:

(1) The Pure region cannot have any side effects (i.e., mutation

on non-local variables).

(2) Pure loop iterations cannot have execution order depen-

dency (i.e., depending on the values modified by previous

iterations).

(3) The Pure region cannot access any global variable that are

not listed in the Input attribute.

From the programmer perspective, the Pure is another attribute

that increases the language expressiveness. It enables programmers

to identify and annotate data parallelism inside the Stage. On the

other hand, the compiler transformation rule identifies that this

region/function can be computed in parallel over multiple data.

It is up to the compiler scan the available hardware and decide

to which parallel architecture (GPU or multi-core) generate the

stream parallelism with data parallelism code. Figure 2 presents

a high-level representation of the transformations performed by

SPar’s compiler in the presence of the Pure attribute. Besides gen-

erating the code for the stream management, as it was illustrated

in Figure 1, SPar generates the code for host-device data transfer

and communication (represented as offload() in Figure 2) and

invokes the pure function (compute()) in the accelerator.

Figure 3 presents examples of more complex annotation schemas.

Figure 3(a) shows a Pure region calling compute_A() inside a

Stage that is not replicated and then a replicated Stage calling

compute_B(). The activity graph shows that SPar generates the

GPU code and then sends the outputted data items to the n repli-
cated workers. Figure 3(b) shows a Pure attribute being used inside
a replicated Stage. In this case, SPar leverages the thread-safety

capabilities of the underlying runtime library to manage multiple

workers invoking kernels on the GPU simultaneously.
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Sink

[[spar��ToStream]] 
while(1){
  item = read();
  [[spar��Stage,
  spar��Input(item),
  spar��Output(item)]]
  {
    [[spar��Pure,
    spar��Input(item),
    spar��Output(item)]]
    { compute(item); } 
  }
  [[spar��Stage,
  spar��Input(item)]]
  { write(item); }
}

Data item

Application code

SPar code

Communication
queue

read()

write()

Source

compute()

GPUCPU

offload()

Device

Figure 2: Example of SPar annotations for GPU offloading.

2.3.2 Impure. As explained before, the Pure attribute enables pro-

grammers to express stateless data parallelism. However, pure re-

gions can perform stateful or "impure" operations that hinders the

ability to exploit parallelism in this region. For instance, a single

line of code with side effects, by definition, would classify the entire

block of code as being not pure. For enabling SPar to leverage the en-

tire properties of a Pure block of code, users would require to man-

ually deal and synchronize the impure operations while "purifying"

them. Alternatively, we equipped programmers with the Impure
attribute to identify impure regions inside pure blocks. Therefore,

programmers can use the Impure to annotate the code region they

want to "purify". Then, SPar’s compiler will try to automatically

implement the required synchronization mechanisms to allow par-

allelism. For example, when targeting multi-cores an impure region

of code is purified using locks or other optimizations such as the re-

duce parallel pattern [20]. In this work, we already implemented an

optimization that identify Reduce patterns and automatically gen-

erate the required synchronization between parallel GPU threads

and kernels. Other abstractions for the Impure attribute that can
be investigated in the future are speculative synchronization mech-

anisms, different parallel patterns, and GPU atomic operations.

2.3.3 Data Management. When designing our high-level language,

we also identified that in order to automatically manage data copies

between host and device memories, the SPar compiler must know

the length of any data to be copied. This also applies to other

computing architectures supported by SPar such as distributed

memory. Therefore, in our language we propose a modified syntax

to express vector and array sizes in the SPar Input and Output
attributes. We expect the programmer to annotate the size of a

contiguous allocated memory space via Input(data[size]) or

output(data[size]). The data can be statically or dynamically

allocated, and can be of any data type, however, the declaration of

custom types must be accessible by the compiler.

2.3.4 Batch. A previous work [29] has evaluated different parallel

programming models when combining stream and data parallelism.

One of their conclusions is that fine-grained stream processing

may not generate enough workload to properly exploit massively

parallel architectures such as GPUs. Thus, some stream processing

applications may not provide the expected performance scalability

when using GPUs. For these cases, we are providing the possibil-

ity to express stream batches in SPar through the new auxiliary

attribute for the Stage, named Batch, which activates the batching

optimization for this specific Stage [13]. The programmer can spec-

ify as argument the size of the batch with literal or integer variable.

In principle, this is the amount of stream items to be computed at

once by the annotated stage, which must be a Pure stage. In short,

Batch allows programmers to define the stream item granularity.

Figure 4 represents the transformations performed by SPar’s com-

piler when the attributes Pure and Batch are used together with a

Stage attribute. SPar generates the code to accumulate N (which is

4 in Figure 4) data items and processes them together in the GPU.

Data source and sink are omitted in the Figure for simplicity.

2.4 Parallel Code Generation
The SPar programming model is based on the C++ attributes pre-

sented in Section 2.1, which we extended by adding the attributes

presented in Section 2.3. Figure 5 presents an overview of SPar’s

methodology for parallel code generation. The attributes defined in

the SPar language are combined in annotation schemas, following

the definitions to ensure correct usage. The rules define parallel

patterns that are generated based on each annotation schema and

are implemented in the compiler.

The compiler implementation follows a three-step approach:

(1) the compiler scans the code and parses the C++ syntax, vali-

dating the combination of attributes in annotation schemas. Af-

ter parsing the code the compiler generates an Abstract Syntax

Tree (AST), which is then analyzed to extract information from

the annotated source code. The analysis of the AST identifies the

attributes being used, optimization opportunities, and extract any

information needed for the next steps; (2) the compiler matches

the transformation rules defined in the language to the annotated

code, deciding which parallel pattern will be generated according

to the annotation schema. This is performed in a per-annotation

schema basis, i.e., the transformation rules implemented in the

compiler are checked individually against each annotation schema

in the code, which allows programmers to apply many annotation

schemas in a single source file. By checking all transformation

rules for each annotation schema, the compiler also allows for both

data and stream parallelism to be exploited in a single annotation

schema; and (3) the compiler then applies the transformation rules

and transforms the AST code by inserting calls to lower-level run-

time libraries that implement the parallel patterns. The transformed

AST is then converted into C++ code and compiled into a binary

executable.

The original rules to generate the Pipeline and Farm parallel

patterns were presented in [9]. An example of the Farm pattern

generated from an annotation schema is presented in Figure 1.

With the novel attributes for data parallelism, we extended the

existing rules to generate the data-parallel patterns Map, Reduce,

and MapReduce. The full set of attributes now allow transforma-

tion rules targeting stream and data parallelism to be combined.

Figures 2 and 3 present examples of combined stream and data

parallelism being generated by the SPar compiler targeting an het-

erogeneous architecture. We implemented the data parallel patterns

for both CUDA and OpenCL via C++ template library in order to
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[[spar��ToStream]] 
while(1){
  item = read();
  [[spar��Stage,
  spar��Input(item),
  spar��Output(item)]]
  {
    [[spar��Pure,
    spar��Input(item),
    spar��Output(item)]]
    { compute_A(item); } 
  }
  [[spar��Stage,
  spar��Input(item),
  spar��Output(item),
  spar��Replicate(n)]]
  { compute_B(item); }
  [[spar��Stage,
  spar��Input(item)]]
  { write(item); }
}

Data item
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read()

write()
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compute_A()
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offload()

Device

compute_B() compute_B()

(a) Pure region before Replicated Stage.

Sink

[[spar��ToStream]] 
while(1){
  item = read();
  [[spar��Stage,
  spar��Input(item),
  spar��Output(item),
  spar��Replicate(n)]]
  {
    [[spar��Pure,
    spar��Input(item),
    spar��Output(item)]]
    { compute(item); } 
  }
  [[spar��Stage,
  spar��Input(item)]]
  { write(item); }
}

Data item

Application code

SPar code

Communication
queue

read()

write()

Source

compute()

GPU

CPU
offload()

Device

compute()

GPU

CPU
offload()

(b) Pure region inside Replicated Stage.

Figure 3: Example of SPar annotations for GPU offloading in complex graphs.

line of code with side effects, by definition, would classify the entire

block of code as being not pure. For enabling SPar to leverage the en-

tire properties of a Pure block of code, users would require to man-

ually deal and synchronize the impure operations while "purifying"

them. Alternatively, we equipped programmers with the Impure
attribute to identify impure regions inside pure blocks. Therefore,

programmers can use the Impure to annotate the code region they

want to "purify". Then, SPar’s compiler will try to automatically

implement the required synchronization mechanisms to allow par-

allelism. For example, when targeting multi-cores an impure region

of code is purified using locks or other optimizations such as the re-

duce parallel pattern [20]. In this work, we already implemented an

optimization that identify Reduce patterns and automatically gen-

erate the required synchronization between parallel GPU threads

and kernels. Other abstractions for the Impure attribute that can
be investigated in the future are speculative synchronization mech-

anisms, different parallel patterns, and GPU atomic operations.

2.3.3 Data Management. When designing our high-level language,

we also identified that in order to automatically manage data copies

between host and device memories, the SPar compiler must know

the length of any data to be copied. This also applies to other

computing architectures supported by SPar such as distributed

memory. Therefore, in our language we propose a modified syntax

to express vector and array sizes in the SPar Input and Output
attributes. We expect the programmer to annotate the size of a

contiguous allocated memory space via Input(data[size]) or

output(data[size]). The data can be statically or dynamically

allocated, and can be of any data type, however, the declaration of

custom types must be accessible by the compiler.

2.3.4 Batch. A previous work [29] has evaluated different parallel

programming models when combining stream and data parallelism.

One of their conclusions is that fine-grained stream processing

may not generate enough workload to properly exploit massively

parallel architectures such as GPUs. Thus, some stream processing

applications may not provide the expected performance scalability
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[[spar��ToStream]] 
while(1){
  item = read();
  [[spar��Stage,
  spar��Input(item),
  spar��Output(item),
  spar��Pure, 
  spar��Batch(4)]]
  { compute(item); }
  [[spar��Stage,
  spar��Input(item)]]
  { write(item); }
}
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GPUCPU
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Figure 4: Representation of SPar’s batching implementation.

when using GPUs. For these cases, we are providing the possibil-

ity to express stream batches in SPar through the new auxiliary

attribute for the Stage, named Batch, which activates the batching

optimization for this specific Stage [13]. The programmer can spec-

ify as argument the size of the batch with literal or integer variable.

In principle, this is the amount of stream items to be computed at

once by the annotated stage, which must be a Pure stage. In short,

Batch allows programmers to define the stream item granularity.

Figure 4 represents the transformations performed by SPar’s com-

piler when the attributes Pure and Batch are used together with a

Stage attribute. SPar generates the code to accumulate N (which is

4 in Figure 4) data items and processes them together in the GPU.

Data source and sink are omitted in the Figure for simplicity.

2.4 Parallel Code Generation
The SPar programming model is based on the C++ attributes pre-

sented in Section 2.1, which we extended by adding the attributes

presented in Section 2.3. Figure 5 presents an overview of SPar’s

methodology for parallel code generation. The attributes defined in

the SPar language are combined in annotation schemas, following

the definitions to ensure correct usage. The rules define parallel

Figure 3: Example of SPar annotations for GPU offloading in complex graphs.
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avoid vendor lock-in (enabling different GPU vendors). This library

is an intermediate code representation of low-level template-based

parallelism implementations when generating GPU parallel code.

2.4.1 Automatic and Semi-automatic Optimizations. When com-

bining stream and data parallelism, the compiler inserts the code

for preparing and compiling the GPU kernel before the streaming

region so that these initialization steps are performed only once for

the entire processing of the stream. Some of the objects of CUDA

and OpenCL runtimes cannot be shared among the host threads

used to exploit stream parallelism. During the code generation, the

compiler handles them appropriately when generating the GPU

parallel code.

If the Batch attribute is present in a Stage annotation, the com-

piler adds a vector of stream items in the stage structure to store

all the incoming stream items. When the vector reaches the size

defined as argument of the Batch attribute or if the stream comes to

an end, the entire batch of items is processed at once in a single GPU

kernel invocation. This process increases the latency but improves

throughput in cases where stream items do not expose enough

computation to be worth offloading to the GPU. The application

developer should consider this trade-off between throughput and

latency to decide whether to use the Batch attribute and the batch

size that best suits their needs. We present details of this trade-off

in Section 3.3.

3 EXPERIMENTS
3.1 Methodology and Environment
The experiments were conducted on a machine equipped with a

processor Intel i9-7900X@ 3.3 GHz (10 cores and 20 threads), 48 GB

of RAM (3×16 GBDDR4@2400MT/s), and a GPUNVIDIA Titan Xp

(3840 CUDA cores) with compute capability 6.1 and 12 GB GDDR5X

@ 2400 MHz of memory. The operating system was Ubuntu 20.04

LTS (kernel 5.4.0-86-generic). The NVIDIA driver installed was the

450.102.04. The software utilized was CUDA Toolkit v11.0, OpenCL

1.2, and GCC 9.3 with -O3 compiler flag.
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Figure 6: Results of Lane Detection (LD) throughput.

3.2.1 LD benchmark. Figure 6 shows the results of the LD bench-

mark. As can be seen, the GPU versions were up to 22% better than

the best result of the CPU parallel version in Figure 6(a), and 47%

in Figure 6(b). The difference of performance when varying the

Workloads for the GPU occurs because the Workload 1 is a low

resolution video. Processing small frames is not computationally

intensive for GPUs, imposing a GPU under-utilization. The frames

in the Workload 2 are larger, which improves the GPU performance.

Using larger workloads on GPUs improves the performance mainly

because it prevents the GPU cores from becoming idle, additionally

it triggers schedule mechanisms for the GPUs that lower the latency

of instructions and memory accesses. In the CPU parallel version

we observe a more noticeable performance improvement when

varying the number of workers, the same does not repeat in the

GPU versions. Since the most intensive computational routines are

performed by the GPU, CPU cores compute only a small amount of

work and become idle. Finally, the performance of the CUDA and

OpenCL code generated was similar.

3.2.2 MB benchmark. The results of MB benchmark are illustrated

in Figure 7. The GPU versions achieved up to 81% better throughput

than the best result of the CPU parallel version in Figure 7(a), and

135% in Figure 7(b). However, this performance improvement is

only observed when SPar generates CUDA code, it occurs due to

CUDA low-level mechanisms that are more optimized than OpenCL

for NVIDIA GPUs. Different from LD, we observe a more noticeable

performance difference when varying the amount of workers in the

GPU versions. It occurs because the GPU usage is lower, and the

CPU is responsible for computing more routines. This explains the

better scaling when adding more parallel workers. However, the

performance starts to decrease when using 6 workers or more as

upon increasing the amount of workers also increases the overhead

of communication in the application.

3.2.3 RT benchmark. Figure 8 shows the results of RT benchmark.

The GPU versions were up to 286% better than the best result of

the CPU parallel version in Figure 8(a), and 331% in Figure 8(b). Dif-

ferent from LD and MB, no performance improvement is observed

when varying the amount of workers beyond 2. The GPU performs

most of the computations and the application imposes a very little

Workers

1 2 3 4 5 6 7 8 9 10

Sequential

SPar

SPar(OpenCL)

SPar(CUDA)

lo
g(

Lin
es

/s
)

0

10

100

Mandelbrot with 3,000x3,000 fractal and 100k iterations

(a) Workload 1 (3000𝑥3000 matrix).

Workers

1 2 3 4 5 6 7 8 9 10

Sequential

SPar

SPar(OpenCL)

SPar(CUDA)

lo
g(

Lin
es

/s
)

0

10

100

Mandelbrot with 5,000x5,000 fractal and 100k iterations

(b) Workload 2 (5000𝑥5000 matrix).

Figure 7: Results of Mandelbrot Streaming (MB) throughput.

Workers

1 2 3 4 5 6 7 8 9 10

Sequential

SPar

SPar(OpenCL)

SPar(CUDA)

lo
g(

FP
S)

0

10

100

Ray tracing with 1,200 frames of 1280x720 and 16 spheres

(a) Workload 1 (1280𝑥720 resolution).

Workers

1 2 3 4 5 6 7 8 9 10

Sequential

SPar

SPar(OpenCL)

SPar(CUDA)

lo
g(

FP
S)

0

10

100

Ray tracing with 1,200 frames of 1920x1080 and 16 spheres

(b) Workload 2 (1920𝑥1080 resolution).

Figure 8: Results of Raytracer (RT) throughput.

usage of the CPU, consequently, increasing the amount of workers

does not provide major improvements.

3.3 Batching Evaluation
In this section we evaluate the impact of the batching feature we

added to SPar. We chose to discuss only the MB SPar CUDA version

for the sake of space, but our tests suggest that the same conclusions

hold true to the OpenCL version and to the other Workloads as well.

We measure the latency by adding a timestamp to each stream item

in the first stage and checking the time it spent in the streaming

until arriving in the last stage.We enabled an on-demand scheduling

that only sends items when workers are ready to immediately start

computing. This avoids measuring the time that the item spend

waiting in the queue.

Usually, increasing the batch size also increases the latency since

the items have to wait until the stages receive enough items to

compute the batch. However, many stream processing applications

have strict requirements over latency, defined as service level objec-

tives (SLO) thresholds [11]. Therefore, it is desirable tomaximize the

throughput while keeping the latency within acceptable levels [30].

Figure 9 presents the impact of different numbers of workers and

batch sizes in the MB SPar CUDA version. The X axis indicates the

number of workers on each stage, the Y axis indicates the batch

size, and the Z axis presents the amount of throughput (9(a)) or the

Figure 6: Results of Lane Detection (LD) throughput.

Each version of the benchmarks is named as follows: Serial ver-

sion as serial. SPar parallel code for CPU as SPar. SPar parallel
code for GPU combined with CPU as SPar (CUDA) (CUDA code

generation) and SPar (OpenCL) (OpenCL code generation). The

metrics were collected from ten executions of each test, a negligible

standard deviation was observed in all tests.

3.2 Overall Performance Evaluation
In this section we present the throughput performance for three

stream processing applications: Lane Detection (LD) [34], Mandel-

brot Streaming (MB) [33], and Raytracer (RT) [17]. In the graphs,

the X axis indicates the number of replicas of each stage, the Y

axis lists the versions of the benchmarks, and Z axis presents the

amount of throughput achieved, which are measured in Frames

Per Second (FPS) in LD and RT, and Lines per second (Lines/s) in

the MB. We tested the applications using two different workloads,

where workload 1 has inputs with medium size and workload 2 has

larger input sizes.

3.2.1 LD benchmark. Figure 6 shows the results of the LD bench-

mark. As can be seen, the GPU versions were up to 22% better than

the best result of the CPU parallel version in Figure 6(a), and 47%

in Figure 6(b). The difference of performance when varying the

Workloads for the GPU occurs because the Workload 1 is a low

resolution video. Processing small frames is not computationally

intensive for GPUs, imposing a GPU under-utilization. The frames

in the Workload 2 are larger, which improves the GPU performance.

Using larger workloads on GPUs improves the performance mainly

because it prevents the GPU cores from becoming idle, additionally

it triggers schedule mechanisms for the GPUs that lower the latency

of instructions and memory accesses. In the CPU parallel version

we observe a more noticeable performance improvement when

varying the number of workers, the same does not repeat in the

GPU versions. Since the most intensive computational routines are

performed by the GPU, CPU cores compute only a small amount of

work and become idle. Finally, the performance of the CUDA and

OpenCL code generated was similar.

3.2.2 MB benchmark. The results of MB benchmark are illustrated

in Figure 7. The GPU versions achieved up to 81% better throughput

than the best result of the CPU parallel version in Figure 7(a), and
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3.2.1 LD benchmark. Figure 6 shows the results of the LD bench-

mark. As can be seen, the GPU versions were up to 22% better than

the best result of the CPU parallel version in Figure 6(a), and 47%

in Figure 6(b). The difference of performance when varying the

Workloads for the GPU occurs because the Workload 1 is a low

resolution video. Processing small frames is not computationally

intensive for GPUs, imposing a GPU under-utilization. The frames

in the Workload 2 are larger, which improves the GPU performance.

Using larger workloads on GPUs improves the performance mainly

because it prevents the GPU cores from becoming idle, additionally

it triggers schedule mechanisms for the GPUs that lower the latency

of instructions and memory accesses. In the CPU parallel version

we observe a more noticeable performance improvement when

varying the number of workers, the same does not repeat in the

GPU versions. Since the most intensive computational routines are

performed by the GPU, CPU cores compute only a small amount of

work and become idle. Finally, the performance of the CUDA and

OpenCL code generated was similar.

3.2.2 MB benchmark. The results of MB benchmark are illustrated

in Figure 7. The GPU versions achieved up to 81% better throughput

than the best result of the CPU parallel version in Figure 7(a), and

135% in Figure 7(b). However, this performance improvement is

only observed when SPar generates CUDA code, it occurs due to

CUDA low-level mechanisms that are more optimized than OpenCL

for NVIDIA GPUs. Different from LD, we observe a more noticeable

performance difference when varying the amount of workers in the

GPU versions. It occurs because the GPU usage is lower, and the

CPU is responsible for computing more routines. This explains the

better scaling when adding more parallel workers. However, the

performance starts to decrease when using 6 workers or more as

upon increasing the amount of workers also increases the overhead

of communication in the application.

3.2.3 RT benchmark. Figure 8 shows the results of RT benchmark.

The GPU versions were up to 286% better than the best result of

the CPU parallel version in Figure 8(a), and 331% in Figure 8(b). Dif-

ferent from LD and MB, no performance improvement is observed

when varying the amount of workers beyond 2. The GPU performs

most of the computations and the application imposes a very little
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usage of the CPU, consequently, increasing the amount of workers

does not provide major improvements.

3.3 Batching Evaluation
In this section we evaluate the impact of the batching feature we

added to SPar. We chose to discuss only the MB SPar CUDA version

for the sake of space, but our tests suggest that the same conclusions

hold true to the OpenCL version and to the other Workloads as well.

We measure the latency by adding a timestamp to each stream item

in the first stage and checking the time it spent in the streaming

until arriving in the last stage.We enabled an on-demand scheduling

that only sends items when workers are ready to immediately start

computing. This avoids measuring the time that the item spend

waiting in the queue.

Usually, increasing the batch size also increases the latency since

the items have to wait until the stages receive enough items to

compute the batch. However, many stream processing applications

have strict requirements over latency, defined as service level objec-

tives (SLO) thresholds [11]. Therefore, it is desirable tomaximize the

throughput while keeping the latency within acceptable levels [30].

Figure 9 presents the impact of different numbers of workers and

batch sizes in the MB SPar CUDA version. The X axis indicates the

number of workers on each stage, the Y axis indicates the batch

size, and the Z axis presents the amount of throughput (9(a)) or the

Figure 7: Results ofMandelbrot Streaming (MB) throughput.
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Figure 6: Results of Lane Detection (LD) throughput.

3.2.1 LD benchmark. Figure 6 shows the results of the LD bench-

mark. As can be seen, the GPU versions were up to 22% better than

the best result of the CPU parallel version in Figure 6(a), and 47%

in Figure 6(b). The difference of performance when varying the

Workloads for the GPU occurs because the Workload 1 is a low

resolution video. Processing small frames is not computationally

intensive for GPUs, imposing a GPU under-utilization. The frames

in the Workload 2 are larger, which improves the GPU performance.

Using larger workloads on GPUs improves the performance mainly

because it prevents the GPU cores from becoming idle, additionally

it triggers schedule mechanisms for the GPUs that lower the latency

of instructions and memory accesses. In the CPU parallel version

we observe a more noticeable performance improvement when

varying the number of workers, the same does not repeat in the

GPU versions. Since the most intensive computational routines are

performed by the GPU, CPU cores compute only a small amount of

work and become idle. Finally, the performance of the CUDA and

OpenCL code generated was similar.

3.2.2 MB benchmark. The results of MB benchmark are illustrated

in Figure 7. The GPU versions achieved up to 81% better throughput

than the best result of the CPU parallel version in Figure 7(a), and

135% in Figure 7(b). However, this performance improvement is

only observed when SPar generates CUDA code, it occurs due to

CUDA low-level mechanisms that are more optimized than OpenCL

for NVIDIA GPUs. Different from LD, we observe a more noticeable

performance difference when varying the amount of workers in the

GPU versions. It occurs because the GPU usage is lower, and the

CPU is responsible for computing more routines. This explains the

better scaling when adding more parallel workers. However, the

performance starts to decrease when using 6 workers or more as

upon increasing the amount of workers also increases the overhead

of communication in the application.

3.2.3 RT benchmark. Figure 8 shows the results of RT benchmark.

The GPU versions were up to 286% better than the best result of

the CPU parallel version in Figure 8(a), and 331% in Figure 8(b). Dif-

ferent from LD and MB, no performance improvement is observed

when varying the amount of workers beyond 2. The GPU performs

most of the computations and the application imposes a very little
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usage of the CPU, consequently, increasing the amount of workers

does not provide major improvements.

3.3 Batching Evaluation
In this section we evaluate the impact of the batching feature we

added to SPar. We chose to discuss only the MB SPar CUDA version

for the sake of space, but our tests suggest that the same conclusions

hold true to the OpenCL version and to the other Workloads as well.

We measure the latency by adding a timestamp to each stream item

in the first stage and checking the time it spent in the streaming

until arriving in the last stage.We enabled an on-demand scheduling

that only sends items when workers are ready to immediately start

computing. This avoids measuring the time that the item spend

waiting in the queue.

Usually, increasing the batch size also increases the latency since

the items have to wait until the stages receive enough items to

compute the batch. However, many stream processing applications

have strict requirements over latency, defined as service level objec-

tives (SLO) thresholds [11]. Therefore, it is desirable tomaximize the

throughput while keeping the latency within acceptable levels [30].

Figure 9 presents the impact of different numbers of workers and

batch sizes in the MB SPar CUDA version. The X axis indicates the

number of workers on each stage, the Y axis indicates the batch

size, and the Z axis presents the amount of throughput (9(a)) or the

Figure 8: Results of Raytracer (RT) throughput.

135% in Figure 7(b). However, this performance improvement is

only observed when SPar generates CUDA code, it occurs due to

CUDA low-level mechanisms that are more optimized than OpenCL

for NVIDIA GPUs. Different from LD, we observe a more noticeable

performance difference when varying the amount of workers in the

GPU versions. It occurs because the GPU usage is lower, and the

CPU is responsible for computing more routines. This explains the

better scaling when adding more parallel workers. However, the

performance starts to decrease when using 6 workers or more as

upon increasing the amount of workers also increases the overhead

of communication in the application.

3.2.3 RT benchmark. Figure 8 shows the results of RT benchmark.

The GPU versions were up to 286% better than the best result of

the CPU parallel version in Figure 8(a), and 331% in Figure 8(b). Dif-

ferent from LD and MB, no performance improvement is observed

when varying the amount of workers beyond 2. The GPU performs

most of the computations and the application imposes a very little

usage of the CPU, consequently, increasing the amount of workers

does not provide major improvements.

3.3 Batching Evaluation
In this section we evaluate the impact of the batching feature we

added to SPar. We chose to discuss only the MB SPar CUDA version

for the sake of space, but our tests suggest that the same conclusions

hold true to the OpenCL version and to the other Workloads as well.
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Figure 9: SPar (CUDA) batching in Mandelbrot Streaming.

maximum latency measured for any stream item (9(b)). We tested

the application without batching (which is presented in Figure 9 as

batch size of 1) and using batch sizes of 2 to 10, and also 20 and 30.

Unexpectedly, we found that a batch size of 2 actually reduces

the latency in our experimental scenario. The reason is that the

bottleneck is the GPU communication. Thus, the workers of the

replicated stage must wait for the GPU response and the first stage

waits for it to deliver the next item. This item is spending time

waiting in the worker’s queue. A batch size of 2 reduces the latency

because the items are generated by the first stage faster than the

replicated stages can process, so the worker of the replicated stage

does not have to wait to receive the next item to compute the batch.

In this case, the waiting time of the first item of each batch in the

worker’s batch vector is lower than the waiting time of the item

in the worker’s queue. This trend continues up to a batch size of

10 for 1 worker and up to a batch size of 5 for 2 workers, on which

higher batch sizes start to increase the latency times. Therefore, the

lowest maximum latency is 218 ms (0.22 s in Figure 9(b)), using 2

workers and a batch size of 2.

Besides reducing the latency, using a batch size of 2 offers an

86% of increase in the throughput: 97.9 lines/s using 2 workers

and a batch size of 2 with respect to 52.5 lines/s using the same 2

workers but without batching. For this workload, the configuration

of 5 workers with a batch size of 2 is also particularly interesting:

it presents a throughput of 224 lines/s (84% more than the same

configuration without batching, 122 lines/s) and the highest latency

is only 220 ms (0.22 s in Figure 9(b)). While the MB GPU versions

without batching (Figure 7(a)) were up to 80% better than the best

result of the CPU parallel version, the GPU version with batching

presented up to 665% of throughput improvement (436 lines/s using

9 workers and a batch size of 30 with respect to 57 lines/s of the

CPU parallel version). When using batching, a single GPU kernel

computes several elements at once, which impacts two main fac-

tors that improve the throughput: (1) it decreases the amount of

GPU kernel launches and consequently the required communica-

tion between the CPU and GPU; and (2) it increases the workload

size by merging several stream elements into a single GPU kernel

invocation, improving the GPU usage. Increasing the number of

workers or the batch size impacts the latency more significantly

because the items are waiting longer in the worker’s batch vector.

Table 1: Source Lines of Code (SLOC) comparison.

App Seq. FF+CUDA FF+OpenCL SPar
MB 48 169 (+252%) 292 (+508%) 56 (+17%)

RT 455 595 (+31%) 789 (+73%) 463 (+2%)

LD 300 504 (+68%) 657 (+119%) 312 (+4%)

The best batch size depends on the workload characteristics, but

also in the latency and throughput requirements of the application.

3.4 Programmability Considerations
In this Section we briefly discuss the programability aspects regard-

ing SPar’s programming model compared to manual implementa-

tions targeting CPU+GPU. We discuss programming characteristics

of the versions and analyze the physical Source Lines of Code

(SLOC) added to the sequential version. Table 1 summarizes the

results. Although SLOC alone cannot be used to decide which in-

terface is better, it can give a general idea of extra code lines that

programmers need to design.

Table 1 shows that MB is the smallest sequential application

in terms of lines of code. To enable CPU+GPU parallelism, the

handwritten versions require almost 2.5𝑥 and 5𝑥 more lines of

code for CUDA and OpenCL, respectively. SPar only required 8

extra lines of annotations, roughly 17%. Both CUDA and OpenCL

present a verbose API, where programmers need to implement the

mechanisms for data management, thread synchronization, and

workload balancing. Instead, SPar equips programmers with a high-

level and intuitive language. Programmers can use SPar’s attributes

to provide information about the data flow, while the compiler is

in charge of data management, and other computational aspects

like synchronization and schedulers. For RT and LD we observe

similar behavior, where OpenCL requires the biggest amount of

code lines, followed by CUDA. Again, SPar only requires 2% and

4% more lines of code compared to the sequential counterpart.

These results composed with the previous performance analy-

sis from Section 3.2 indicates that our programming abstractions

are efficient and suitable for stream processing applications. The

high-level language we designed shows the lowest amount of code

lines while the parallel code generated by our compiler achieves

important throughput values.

3.5 Code generation overhead
In this section we discuss the overhead of the code generation

by presenting the performance difference in the total execution

time between the code generated by SPar and handwritten code

using the same underlying libraries. In the MB benchmark, the code

generated by SPar presented lower execution times when compared

to the handwritten code: up to 8.5% and 10.8% lower execution times

in CUDA for the two workloads, respectively, and up to 18% and

21.2% lower execution times in OpenCL for the two workloads,

respectively. In the RT benchmark the code generated by SPar

presented slightly higher execution times than the handwritten

code: up to 2.4% in the Workload 1 and up to 2.5% in the Workload

2. In the LD benchmark the code generated by SPar presented up to

20% higher execution timeswhen compared to the handwritten code

Figure 9: SPar (CUDA) batching in Mandelbrot Streaming.

We measure the latency by adding a timestamp to each stream item

in the first stage and checking the time it spent in the streaming

until arriving in the last stage.We enabled an on-demand scheduling

that only sends items when workers are ready to immediately start

computing. This avoids measuring the time that the item spend

waiting in the queue.

Usually, increasing the batch size also increases the latency since

the items have to wait until the stages receive enough items to

compute the batch. However, many stream processing applications

have strict requirements over latency, defined as service level objec-

tives (SLO) thresholds [11]. Therefore, it is desirable tomaximize the

throughput while keeping the latency within acceptable levels [30].

Figure 9 presents the impact of different numbers of workers and

batch sizes in the MB SPar CUDA version. The X axis indicates the

number of workers on each stage, the Y axis indicates the batch

size, and the Z axis presents the amount of throughput (9(a)) or the

maximum latency measured for any stream item (9(b)). We tested

the application without batching (which is presented in Figure 9 as

batch size of 1) and using batch sizes of 2 to 10, and also 20 and 30.

Unexpectedly, we found that a batch size of 2 actually reduces

the latency in our experimental scenario. The reason is that the

bottleneck is the GPU communication. Thus, the workers of the

replicated stage must wait for the GPU response and the first stage

waits for it to deliver the next item. This item is spending time

waiting in the worker’s queue. A batch size of 2 reduces the latency

because the items are generated by the first stage faster than the

replicated stages can process, so the worker of the replicated stage

does not have to wait to receive the next item to compute the batch.

In this case, the waiting time of the first item of each batch in the

worker’s batch vector is lower than the waiting time of the item

in the worker’s queue. This trend continues up to a batch size of

10 for 1 worker and up to a batch size of 5 for 2 workers, on which

higher batch sizes start to increase the latency times. Therefore, the

lowest maximum latency is 218 ms (0.22 s in Figure 9(b)), using 2

workers and a batch size of 2.

Besides reducing the latency, using a batch size of 2 offers an

86% of increase in the throughput: 97.9 lines/s using 2 workers

and a batch size of 2 with respect to 52.5 lines/s using the same 2

workers but without batching. For this workload, the configuration

of 5 workers with a batch size of 2 is also particularly interesting:

it presents a throughput of 224 lines/s (84% more than the same

Table 1: Source Lines of Code (SLOC) comparison.

App Seq. FF+CUDA FF+OpenCL SPar
MB 48 169 (+252%) 292 (+508%) 56 (+17%)

RT 455 595 (+31%) 789 (+73%) 463 (+2%)

LD 300 504 (+68%) 657 (+119%) 312 (+4%)

configuration without batching, 122 lines/s) and the highest latency

is only 220 ms (0.22 s in Figure 9(b)). While the MB GPU versions

without batching (Figure 7(a)) were up to 80% better than the best

result of the CPU parallel version, the GPU version with batching

presented up to 665% of throughput improvement (436 lines/s using

9 workers and a batch size of 30 with respect to 57 lines/s of the

CPU parallel version). When using batching, a single GPU kernel

computes several elements at once, which impacts two main fac-

tors that improve the throughput: (1) it decreases the amount of

GPU kernel launches and consequently the required communica-

tion between the CPU and GPU; and (2) it increases the workload

size by merging several stream elements into a single GPU kernel

invocation, improving the GPU usage. Increasing the number of

workers or the batch size impacts the latency more significantly

because the items are waiting longer in the worker’s batch vector.

The best batch size depends on the workload characteristics, but

also in the latency and throughput requirements of the application.

3.4 Programmability Considerations
In this Section we briefly discuss the programability aspects regard-

ing SPar’s programming model compared to manual implementa-

tions targeting CPU+GPU. We discuss programming characteristics

of the versions and analyze the physical Source Lines of Code

(SLOC) added to the sequential version. Table 1 summarizes the

results. Although SLOC alone cannot be used to decide which in-

terface is better, it can give a general idea of extra code lines that

programmers need to design.

Table 1 shows that MB is the smallest sequential application

in terms of lines of code. To enable CPU+GPU parallelism, the

handwritten versions require almost 2.5x and 5x more lines of

code for CUDA and OpenCL, respectively. SPar only required 8

extra lines of annotations, roughly 17%. Both CUDA and OpenCL

present a verbose API, where programmers need to implement the

mechanisms for data management, thread synchronization, and

workload balancing. Instead, SPar equips programmers with a high-

level and intuitive language. Programmers can use SPar’s attributes

to provide information about the data flow, while the compiler is

in charge of data management, and other computational aspects

like synchronization and schedulers. For RT and LD we observe

similar behavior, where OpenCL requires the biggest amount of

code lines, followed by CUDA. Again, SPar only requires 2% and

4% more lines of code compared to the sequential counterpart.

These results composed with the previous performance analy-

sis from Section 3.2 indicates that our programming abstractions

are efficient and suitable for stream processing applications. The

high-level language we designed shows the lowest amount of code

lines while the parallel code generated by our compiler achieves

important throughput values.
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Table 2: Comparison with related work.

Work API GPU
Runtime

Supported
Architectures

Parallelism
Exploitation

OpenMP [25] pragma
Compiler-

dependent

GPUs and

multi-cores

Low-level

parallelism

OpenACC [23] pragma
Compiler-

dependent

GPUs

Low-level

parallelism

hiCUDA [12] pragma CUDA GPUs

Low-level

parallelism

XMP-ACC [18] pragma CUDA Distributed

Low-level

parallelism

XACC [22] pragma OpenACC

GPUs and

distributed

Low-level

parallelism

AHP [26] pragma CUDA

GPUs and

multi-cores

Low-level

parallelism

REPARA [5]

C++11

attributes

- -

High-level

parallelism

SPar [9] C++11
attributes

Internal
library

GPUs,
multi-cores,
and distributed

High-level
parallelism

3.5 Code generation overhead
In this section we discuss the overhead of the code generation

by presenting the performance difference in the total execution

time between the code generated by SPar and handwritten code

using the same underlying libraries. In the MB benchmark, the code

generated by SPar presented lower execution times when compared

to the handwritten code: up to 8.5% and 10.8% lower execution times

in CUDA for the two workloads, respectively, and up to 18% and

21.2% lower execution times in OpenCL for the two workloads,

respectively. In the RT benchmark the code generated by SPar

presented slightly higher execution times than the handwritten

code: up to 2.4% in the Workload 1 and up to 2.5% in the Workload

2. In the LD benchmark the code generated by SPar presented up to

20% higher execution timeswhen compared to the handwritten code

in Workload 1 and up to 18% higher execution times in Workload 2.

Further details are discussed in Section 5.7 of [27].

4 RELATEDWORK
In this section we present our related work. We selected those

studies that provide parallel programming abstractions targeting

many-core GPUs. Table 2 summarizes the related work.

Most of available abstractions rely on pragma-based compiler

directives to express parallelism in sequential code. The OpenMP

language specification first provided heterogeneous parallelism ca-

pabilities in its version 4.0 and improved their support for offloading

in version 4.5 [24]. However, programmers must implement their

codes using low-level parallelism such as spawning threads, bar-

rier calls, communication queues, etc. The GPU runtime supported

by OpenMP is compiler-dependent, meaning it is limited by GPU

architectures that are effectively supported by the target compiler.

OpenACC [23] is another annotation-based tool developed by

the industry. The OpenACC language provides some abstractions

but it is mostly composed of lower-level concepts such as worker,
vector, and gang. The programmer needs to consider hardware

configurations and design low-level parallelism strategies in order

to efficiently exploit the underlying GPU performance. Moreover,

the support for hybrid parallelism is compiler-dependent. For ex-

ample, the PGI 15.10 compiler for OpenACC supports multi-core

parallelism but you cannot combine it with GPU parallelism.

There are also pragma-based tools developed by the academia

focused in GPU parallelism (hiCUDA) [12] or distributed GPU par-

allelism (XMP-ACC and XACC) [18, 22]. However, these languages

require application programmers to manually deal with memory

management and data copies between the host and device memory

spaces. Also, some of the aforementioned tools are tied to NVIDIA

boards due to their CUDA runtime and none of them provide stream

parallelism abstractions. When using low-level parallelism strate-

gies, the parallel code is mixed with the application business logic

code. Consequently, debugging and maintaining these applications

becomes intricate. Opposite, the SPar programming model targets

a clear separation between parallelism and application code.

The Automatic Heterogeneous Pipelining (AHP) framework [26]

focuses on identifying the pipeline stages, mapping them into pro-

cessing units (PUs) of heterogeneous systems, and scheduling their

execution. Although the AHP language resembles SPar, we focus

on providing efficient and high-level abstractions decoupled from

the underlying hardware. Instead, AHP expects the programmer to

provide hand-written optimized code for the available PUs.

REPARA was an European project that ran between 2013 and

2016. They promote using C++11 attributes to express stream and

data parallelism by annotating parallel patterns in sequential source

code [4]. It included annotations for three parallel patterns: Pipeline,

Farm, and Map. They also proposed a target attribute to indicate

heterogeneous computer architectures such as GPU and FPGA,

but the support for heterogeneous parallelism was left as future

work [4]. Contrary to SPar, the REPARA project never assembled a

language interpreter and source-to-source compiler to implement

the proposed transformation rules, being a theoretical work.

Among the tools for programming stream processing applica-

tions, SPar stands out by its abstraction of the underlying hardware

architecture from the programmer’s perspective. Our work is the

first on providing high-level C++11 annotations as an API that does

not require significant code refactoring in sequential programs

while enabling multi-core CPU and many-core GPU parallelism

exploitation for stream processing applications.

5 CONCLUSION
This paper presented an extension to SPar that allows parallel code

generation for CPUs combined with GPUs on stream processing

applications. It provides support for exploiting combined stream

and data parallelism using C++ attributes in the serial code. Our

experiments revealed that employing SPar to generate heteroge-

neous parallel code targeting CPU and GPU can vastly improve

the throughput performance compared to parallel code targeting

CPU-only. The heterogeneous GPU code generated by SPar was up

to 47% better than the best parallel CPU version in the benchmark

LD, 135% in MB (665% when using batching), and 331% in RT. Those

results demonstrate that it provides high-level abstractions that

hide architecture details from programmers while keeping rele-

vant performance results, even when considering a heterogeneous

architecture composed of processors and accelerators like GPUs.

With this research, several opportunities for future work are

open. We plan to investigate techniques for supporting multiple

GPUs and other accelerators like FPGAs in SPar. Another possibility

is exploiting hybrid parallelism with SPar, where the CPU and the
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GPU can simultaneously apply data parallelism on stream elements.

Also, we could provide runtime optimizations and algorithms to

decide if the CPU or the GPU should process a stream element to

improve the application’s overall performance. This optimization

is relevant as not every computation is suitable for GPUs.

ACKNOWLEDGMENTS
We would like to acknowledge the support of LAD-PUCRS, GMAP

research group and PUCRS university. This research is partially

funded by Coordenação de Aperfeiçoamento de Pessoal de Nível Su-

perior - Brasil (CAPES) - Finance Code 001, and FAPERGS 10/2020-

ARD project SPar4.0 (N
o
21/2551-0000725-7).

REFERENCES
[1] Marco Aldinucci, Guilherme Peretti Pezzi, Maurizio Drocco, Concetto Spamp-

inato, and Massimo Torquati. 2015. Parallel visual data restoration on multi-

GPGPUs using stencil-reduce pattern. The International Journal of High Perfor-
mance Computing Applications 29, 4 (Feb. 2015), 461–472. https://doi.org/10.1177/
1094342014567907

[2] AMD. 2022. AMD Documentation. Online. https://docs.amd.com/

[3] Christopher Brown, Vladimir Janjic, Adam D. Barwell, J. Daniel Garcia, and

Kenneth MacKenzie. 2020. Refactoring GrPPI: Generic Refactoring for Generic

Parallelism in C++. International Journal of Parallel Programming 48, 4 (Aug.

2020), 603–625. https://doi.org/10.1007/s10766-020-00667-x

[4] Marco Danelutto, Tiziano De Matteis, Gabriele Mencagli, and Massimo Torquati.

2018. Data stream processing via code annotations. The Journal of Supercomputing
74 (Nov. 2018), 5659–5673. https://doi.org/10.1007/s11227-016-1793-9

[5] M. Danelutto, J. D. Garcia, L. M. Sanchez, R. Sotomayor, and M. Torquati. 2016.

Introducing Parallelism by Using REPARA C++11 Attributes. In Proceedings of
the Euromicro Conference on Parallel, Distributed and Network-Based Processing
(PDP’16). IEEE, Heraklion, Greece, 354–358. https://doi.org/10.1109/PDP.2016.115

[6] August Ernstsson, Lu Li, and Christoph Kessler. 2018. SkePU 2: Flexible and Type-

Safe Skeleton Programming for Heterogeneous Parallel Systems. International
Journal of Parallel Programming 46, 1 (Feb. 2018), 62–80. https://doi.org/10.1007/

s10766-017-0490-5

[7] Milind Girkar and Constantine D. Polychronopoulos. 1992. Automatic Extraction

of Functional Parallelism from Ordinary Programs. IEEE Transactions on Parallel
and Distributed Systems 3, 2 (March 1992), 166–178. https://doi.org/10.1109/71.

127258

[8] Dalvan Griebler. 2016. Domain-Specific Language & Support Tool for High-Level
Stream Parallelism. Ph.D. Dissertation. Computer Science Department - Univer-

sity of Pisa, Pisa, Italy. https://gmap.pucrs.br/dalvan/papers/2016/thesis_dalvan_

UNIPI_2016.pdf

[9] Dalvan Griebler, Marco Danelutto, Massimo Torquati, and Luiz Gustavo Fer-

nandes. 2017. SPar: A DSL for High-Level and Productive Stream Parallelism.

Parallel Processing Letters 27, 01 (March 2017), 1740005. https://doi.org/10.1142/

S0129626417400059

[10] Dalvan Griebler and Luiz Gustavo Fernandes. 2017. Towards Distributed Parallel

Programming Support for the SPar DSL. In Parallel Computing is Everywhere,
Proceedings of the International Conference on Parallel Computing (ParCo’17). IOS
Press, Bologna, Italy, 563–572. https://doi.org/10.3233/978-1-61499-843-3-563

[11] Dalvan Griebler, Adriano Vogel, Daniele De Sensi, Marco Danelutto, and Luiz Gus-

tavo Fernandes. 2019. Simplifying and implementing service level objectives

for stream parallelism. Journal of Supercomputing 76 (June 2019), 4603–4628.

https://doi.org/10.1007/s11227-019-02914-6

[12] Tianyi David Han and Tarek S. Abdelrahman. 2011. hiCUDA: High-Level GPGPU
Programming. IEEE Transactions on Parallel and Distributed Systems 22, 1 (Jan.
2011), 78–90. https://doi.org/10.1109/TPDS.2010.62

[13] Martin Hirzel, Robert Soulé, Scott Schneider, Buğra Gedik, and Robert Otto

Grimm. 2014. A catalog of stream processing optimizations. Comput. Surveys 46,
4 (March 2014), 46:1–46:34. https://doi.org/10.1145/2528412

[14] Renato B. Hoffmann, Dalvan Griebler, Marco Danelutto, and Luiz G. Fernandes.

2020. Stream Parallelism Annotations for Multi-Core Frameworks. In XXIV
Brazilian Symposium on Programming Languages (SBLP) (SBLP’20). ACM, Natal,

Brazil, 48–55. https://doi.org/10.1145/3427081.3427088

[15] Renato B. Hoffmann, Júnior Löff, Dalvan Griebler, and Luiz G. Fernandes. 2022.

OpenMP as Runtime for Providing High-Level Stream Parallelism onMulti-Cores.

Journal of Supercomputing 78, 6 (apr 2022), 7655–7676. https://doi.org/10.1007/

s11227-021-04182-9

[16] Amir H. Hormati, Mehrzad Samadi, Mark Woh, Trevor Mudge, and Scott Mahlke.

2011. Sponge: Portable Stream Programming on Graphics Engines. In Proceedings

of the 16th International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS ’11). ACM, Newport Beach, California,

USA, 381–392. https://doi.org/10.1145/1950365.1950409

[17] Ryota Kimura, Masafumi Seigo, Russell A. Chipman, and Seiichiro Kitagawa.

2019. Optical simulation for illumination using GPGPU ray tracing. In Physics and
Simulation of Optoelectronic Devices XXVII, Bernd Witzigmann, Marek Osiński,

and Yasuhiko Arakawa (Eds.), Vol. 10912. International Society for Optics and

Photonics, SPIE, San Francisco, 171 – 179. https://doi.org/10.1117/12.2506129

[18] Jinpil Lee, Minh Tuan Tran, Tetsuya Odajima, Taisuke Boku, and Mitsuhisa

Sato. 2012. An Extension of XcalableMP PGAS Language for Multi-node GPU

Clusters. In Euro-Par 2011: Parallel Processing Workshops. Vol. 7155. Springer,
Berlin, Heidelberg, 429–439. https://doi.org/10.1007/978-3-642-29737-3_48

[19] Brian Lonsdorf and Matthias Benkort. 2020. Professor Frisby’s Mostly Adequate

Guide to Functional Programming. GitBook. https://mostly-adequate.gitbooks.

io/mostly-adequate-guide/

[20] Júnior Löff, Renato Barreto Hoffmann, Dalvan Griebler, and Luiz G. Fernandes.

2021. High-Level Stream and Data Parallelism in C++ for Multi-Cores. In XXV
Brazilian Symposium on Programming Languages (SBLP) (SBLP’21). ACM, Joinville,

Brazil.

[21] Michael McCool, Arch D. Robison, and James Reinders. 2012. Structured Parallel
Programming: Patterns for Efficient Computation (1 ed.). Morgan Kaufmann, 225

Wyman Street, Waltham, MA 02451, USA.

[22] Masahiro Nakao, Hitoshi Murai, Takenori Shimosaka, Akihiro Tabuchi, Toshihiro

Hanawa, Yuetsu Kodama, Taisuke Boku, and Mitsuhisa Sato. 2014. XcalableACC:

Extension of XcalableMP PGAS Language Using OpenACC for Accelerator Clus-

ters. In Proceedings of the 1st Workshop on Accelerator Programming using Direc-
tives. IEEE, New Orleans, 27–36. https://doi.org/10.1109/WACCPD.2014.6

[23] OpenACC-Standard.org 2015. OpenACC Programming and Best Practices Guide.
OpenACC-Standard.org. https://www.openacc.org/sites/default/files/inline-

files/OpenACC_Programming_Guide_0.pdf

[24] OpenMP Architecture Review Board 2015. OpenMP Application Programming
Interface. OpenMP Architecture Review Board. https://www.openmp.org/wp-

content/uploads/openmp-4.5.pdf Version 4.5.

[25] OpenMP Architecture Review Board 2018. OpenMP Application Programming
Interface. OpenMP Architecture Review Board. https://www.openmp.org/wp-

content/uploads/OpenMP-API-Specification-5.0.pdf Version 5.0.

[26] Jacques A. Pienaar, Srimat Chakradhar, and Anand Raghunathan. 2012. Au-

tomatic Generation of Software Pipelines for Heterogeneous Parallel Systems.

In Proceedings of the International Conference on High Performance Computing,
Networking, Storage and Analysis (SC ’12). IEEE, Salt Lake City, United States of

America, 1–12. https://doi.org/10.1109/SC.2012.22

[27] Dinei André Rockenbach. 2020. High-Level Programming Abstractions for Stream
Parallelism on GPUs. Master’s Thesis. School of Technology - PPGCC - PUCRS,

Porto Alegre, Brazil.

[28] Dinei A. Rockenbach, Dalvan Griebler, Marco Danelutto, and Luiz Gustavo Fer-

nandes. 2019. High-Level Stream Parallelism Abstractions with SPar Targeting

GPUs. In Parallel Computing is Everywhere, Proceedings of the International Con-
ference on Parallel Computing (ParCo) (ParCo’19, Vol. 36). IOS Press, Prague, Czech
Republic, 543–552. https://doi.org/10.3233/APC200083

[29] Dinei A. Rockenbach, Charles Michael Stein, Dalvan Griebler, Gabriele Mencagli,

Massimo Torquati, Marco Danelutto, and Luiz Gustavo Fernandes. 2019. Stream

Processing on Multi-cores with GPUs: Parallel Programming Models’ Chal-

lenges. In International Parallel and Distributed Processing Symposium Work-
shops (IPDPSW) (IPDPSW’19). IEEE, Rio de Janeiro, Brazil, 834–841. https:

//doi.org/10.1109/IPDPSW.2019.00137

[30] Charles M. Stein, Dinei A. Rockenbach, Dalvan Griebler, Massimo Torquati,

Gabriele Mencagli, Marco Danelutto, and Luiz G. Fernandes. 2020. Latency-

aware adaptive micro-batching techniques for streamed data compression on

graphics processing units. Concurrency and Computation: Practice and Experience
na, na (May 2020), e5786. https://doi.org/10.1002/cpe.5786

[31] Michel Steuwer, Philipp Kegel, and Sergei Gorlatch. 2011. SkelCL - A portable

skeleton library for high-level GPU programming. In Proceedings of the IEEE
International Symposium on Parallel and Distributed Processing Workshops and
Phd Forum. IEEE, Anchorage, AK, USA, 1176–1182. https://doi.org/10.1109/

IPDPS.2011.269

[32] Abhishek Udupa, R. Govindarajan, and Matthew J. Thazhuthaveetil. 2009. Soft-

ware pipelined execution of stream programs on GPUs. In Proceedings of the 7th
International Symposium on Code Generation and Optimization (CGO ’09). IEEE,
Seattle, WA, USA, 200–209. https://doi.org/10.1109/CGO.2009.20

[33] Dakuan Yu, Wurui Ta, and Youhe Zhou. 2021. Fractal diffusion patterns of

periodic points in the Mandelbrot set. Chaos, Solitons and Fractals 153 (2021),
111599. https://doi.org/10.1016/j.chaos.2021.111599

[34] GuoQiang Yu and Dong Qiu. 2021. Research on Lane Detection Method of

Intelligent Vehicle in Multi-road Condition. In 2021 China Automation Congress
(CAC). IEEE, Beijing, 2779–2783. https://doi.org/10.1109/CAC53003.2021.9728269

49

https://doi.org/10.1177/1094342014567907
https://doi.org/10.1177/1094342014567907
https://docs.amd.com/
https://doi.org/10.1007/s10766-020-00667-x
https://doi.org/10.1007/s11227-016-1793-9
https://doi.org/10.1109/PDP.2016.115
https://doi.org/10.1007/s10766-017-0490-5
https://doi.org/10.1007/s10766-017-0490-5
https://doi.org/10.1109/71.127258
https://doi.org/10.1109/71.127258
https://gmap.pucrs.br/dalvan/papers/2016/thesis_dalvan_UNIPI_2016.pdf
https://gmap.pucrs.br/dalvan/papers/2016/thesis_dalvan_UNIPI_2016.pdf
https://doi.org/10.1142/S0129626417400059
https://doi.org/10.1142/S0129626417400059
https://doi.org/10.3233/978-1-61499-843-3-563
https://doi.org/10.1007/s11227-019-02914-6
https://doi.org/10.1109/TPDS.2010.62
https://doi.org/10.1145/2528412
https://doi.org/10.1145/3427081.3427088
https://doi.org/10.1007/s11227-021-04182-9
https://doi.org/10.1007/s11227-021-04182-9
https://doi.org/10.1145/1950365.1950409
https://doi.org/10.1117/12.2506129
https://doi.org/10.1007/978-3-642-29737-3_48
https://mostly-adequate.gitbooks.io/mostly-adequate-guide/
https://mostly-adequate.gitbooks.io/mostly-adequate-guide/
https://doi.org/10.1109/WACCPD.2014.6
https://www.openacc.org/sites/default/files/inline-files/OpenACC_Programming_Guide_0.pdf
https://www.openacc.org/sites/default/files/inline-files/OpenACC_Programming_Guide_0.pdf
https://www.openmp.org/wp-content/uploads/openmp-4.5.pdf
https://www.openmp.org/wp-content/uploads/openmp-4.5.pdf
https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5.0.pdf
https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5.0.pdf
https://doi.org/10.1109/SC.2012.22
https://doi.org/10.3233/APC200083
https://doi.org/10.1109/IPDPSW.2019.00137
https://doi.org/10.1109/IPDPSW.2019.00137
https://doi.org/10.1002/cpe.5786
https://doi.org/10.1109/IPDPS.2011.269
https://doi.org/10.1109/IPDPS.2011.269
https://doi.org/10.1109/CGO.2009.20
https://doi.org/10.1016/j.chaos.2021.111599
https://doi.org/10.1109/CAC53003.2021.9728269

	Abstract
	1 Introduction
	2 High-Level Stream and Data Parallelism
	2.1 SPar Programming Model
	2.2 Motivation for language extension
	2.3 Data parallelism attributes in SPar
	2.4 Parallel Code Generation

	3 Experiments
	3.1 Methodology and Environment
	3.2 Overall Performance Evaluation
	3.3 Batching Evaluation
	3.4 Programmability Considerations
	3.5 Code generation overhead

	4 Related Work
	5 Conclusion
	Acknowledgments
	References

