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Abstract—Over the years, several Parallel Programming Mod-
els (PPMs) have supported the abstraction of programming
complexity for parallel computer systems. However, few studies
aim to evaluate the productivity reached by such abstractions
since this is a complex task that involves human beings. There
are several studies to develop predictive methods to estimate
the effort required to develop software applications. In order to
evaluate the reliability of such metrics, it is necessary to assess
the accuracy in different programming paradigms. In this work,
we used the data of an experiment conducted with beginners
in parallel programming to determine the effort required for
implementing stream parallelism using FastFlow, SPar, and TBB.
Our results show that some traditional software effort estimation
models, such as COCOMO II, fall short. In contrast, Planning
Poker could contribute toward a parallel-aware effort model.

Index Terms—Accuracy; Development effort; Parallel comput-
ing; Programmer productivity; Software metrics.

I. INTRODUCTION

The inability of the silicon industry to increase the perfor-
mance of single-processor CPUs using traditional techniques
has driven the emergence of multi-core architectures, which
integrate multiple processing cores into a single chip. Multi-
core is currently one of the most popular parallel architectures,
from smartphones and personal computers to servers. This
architecture has been widely used to increase the perfor-
mance of sequential codes by executing them in parallel
on multiple cores [1]. However, this is not an easy task as
the developer must deal with low-level architectural details
as well as address parallelism-specific aspects, such as load
balancing, synchronization etc. Over the years, several Parallel
Programming Models (PPMs) have been created, providing
abstractions to relieve programmers from dealing with lower-
level implementations and architecture-specific optimizations.

In the parallel programming domain, most studies aim
to evaluate the performance of the PPMs, considering only
technical factors such as execution time and speedup. Pro-
grammer productivity is another critical factor when evaluating
PPMs. From productivity (or efficiency), effectiveness, and
user satisfaction, it is possible to determine the usability of the
PPMs [2]. It is known that developing more productive PPMs
and refining existing ones from usability evaluation is possible.
However, this is a complex task since measuring productivity
involves human beings. Experiments with test persons must
be well planned and controlled [3], and it is difficult to find
participants experienced in parallel programming. Therefore,
many parallel programming researchers instead use established
code metrics to facilitate productivity evaluation.

To evaluate and compare PPMs concerning productivity,
some researchers use code metrics based on code size (Source
Lines of Code (SLOC) [4]–[8], Number of Characters (NOC)
[9], and Tokens of Code (TOC) [4], [10], [11]), complexity
evaluation (Cyclomatic Complexy Number (CCN) [5], [6],
[10], [11] and Information Flow Complexity (IFC) [12]), and
development effort (Halstead [4]–[6], [10] and Constructive
Cost Model (COCOMO) [7], [13]–[15]). However, these met-
rics target the evaluation of general-purpose software without
considering a specific domain. In this context, in our previous
work [16], we aimed to evaluate the feasibility of these metrics
when evaluating stream parallelism in multi-core systems
using different PPMs: FastFlow, Pthreads, SPar, and TBB.

Our previous results [16] showed that while code metrics
based on code size and complexity can be helpful for evalu-
ating PPMs, it is impossible to predict the effort required to
develop a parallel application based on these factors alone.
Other factors influence the parallel development cycle, such
as the development environment, and developer experience.
Thus, Halstead and COCOMO II showed more promise for
evaluating PPMs, although they also have limitations. In this
study, we make initial efforts to overcome some of these
limitations. We propose an approach to evaluate parallel ap-
plications using Halstead and a refined version of COCOMO
II reuse model. There are other predictive metrics that, to
our knowledge, have not yet been used to evaluate parallel
applications: Function Points (FP), Planning Poker, Putnam,
SEER for Software (SEER-SEM), and Use Case Points (UCP).
Therefore, the goal of this study is to evaluate the accuracy of
such metrics compared to the actual effort required to develop
parallel stream applications using FastFlow, SPar, and TBB.

The scientific contributions provided in this study are: (i)
Accuracy analysis of programming effort models in high-level
parallel programs for stream processing on multi-core systems;
(ii) An extension of the Halstead’s measures (Parallel Halstead
- PHalstead); (iii) An extension of the COCOMO II reuse
model (Parallel COCOMO II Reuse Model - PCRM).

II. DEVELOPMENT TIME ESTIMATION TECHNIQUES

Over the years, several quantitative metrics have been pro-
posed to estimate software effort, quality, and reliability [15]
based on code size, parametric methods etc. Putnam’s model
is one of the first to estimate the development effort [17].
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This model is simple and easily calibrated because it estimates
the development time (in years) based on the SLOC and
the productivity parameter (PP). PP can be derived from the
SLOC, development effort and time of previous projects.

Halstead proposed a series of measures based on TOC, clas-
sified as operators or operands [18]. Programming languages
have several operators such as the keywords, arithmetic (e.g.,
+, −, ∗, /, % ), logical (e.g., !, &&, ||) etc. On the other
hand, operands are constants, variables, identifier etc. From
counting the number of operators and operands, and the total
occurrence of operators and operands, it is possible to measure
the code length, vocabulary, volume, programming difficulty,
development effort, and development time (in seconds).

COCOMO II is an updated version of a model to estimate
the cost and effort required to develop software using source
code size in thousand of SLOC (KSLOC), a set of cost drivers,
and scale factors for calibrating it [19]. There are two types
of cost drivers according to the development phase: the early
design model (incept and elaboration) and the post-architecture
model (elaboration and construction). Each of them, as well
as the scale factors, are evaluated (from extra low to extra
high) and used to calculate the effort and time (in months)
required to develop a software from scratch. However, variants
of the model aim to model the development effort from an
existing software (reuse), and for improvements or corrections
to an already developed software (maintenance). For this
purpose, the KSLOC is measured again. The maintenance size
is calculated from the number of lines added to the original
code (ASLOC), the number of lines modified in the original
code (MSLOC), and the adjusted maintenance factor. On the
other hand, the reuse size is based on the ASLOC together with
the automatically translated and adaptive modifier factors.

FP [20] is a method independent of the technology and
programming language used because it is based on the analysis
of the software functional requirements. It is based on five
function types: internal logic file, external interface file, exter-
nal output, external inquiry, and external input. To considers
the internal technical complexity of these functions, the FP
also evaluates 14 general systems characteristics (from zero to
five). From this adjusted, it is possible to estimate the effort
and time (in months) needed to develop the application.

UCP [21] is a model inspired by FP, but focusing on the
analysis of software use cases. First, the model measures the
number of actors (users or systems with which the application
communicates) and use cases, and their complexities (simple,
average or complex) to calculate the unadjusted UCP. Then,
the impact (from zero to five) of a series of technical and en-
vironmental factors is evaluated in order to obtain the adjusted
UCP. Finally, it is possible to measure the development effort,
and consequently estimate the development time (hours).

SEER-SEM [22] is a commercial tool to estimate, and
analyze the effort, cost, staffing, schedule, and risk of a soft-
ware project. It has a database about industry-wide standards
for application type, platform, reuse/modification intent, and
development method. The code size can be used to improve
the estimation as well as other factors such as developers’

capabilities, environment, integration level, and volatility.
Planning poker [23] is a method that relies on experts’ opin-

ions to guess the development effort. To do so, a moderator
prepares a deck of cards with a valid sequence of numbers
written on each card (e.g., Fibonacci). Each number must
have a meaning, such as the hours required to develop an
application. Then, each expert receives a deck of cards, and
selects a card representing their estimation opinion. If the
experts disagree with the estimate, they can repeat the process
until the results converge, or average to avoid too many rounds.

III. EXTENDING THE DEVELOPMENT EFFORT METRICS
FOR PARALLEL PROGRAMMING

In our previous study [16], we identified some limitations
when using the Commented Code Detector (CCD)1 tool to
obtain Halstead measures in parallel stream processing ap-
plications developed in C++. CCD does not consider any of
the PPMs’ keywords as operators (e.g., spar, ff_node,
and tbb), because its focus is not on evaluating parallel
applications. In addition, CCD was also discontinued in 2014.

There are other more recent tools for getting Halstead
measurements on code written in C++, such as Testwell
CMT++ and IBM Rational Test RealTime. However, like the
CCD tool, these other tools were not developed to evaluate
parallel code. To overcome these limitations, we developed the
PHalstead2 tool, a Python script to obtain Halstead’s measures
in C++ applications parallelized with FastFlow, SPar, or TBB.
PHalstead considers each of the keywords of C++, libraries
and PPMs used to develop the video processing applications.

In our previous study [16], we identified COCOMO II as
a good metric for evaluating parallel applications. However,
some of its parameters are not usually applied in the develop-
ment cycle of such applications. Some efforts have been made
by Wienke et al. [15] to extend it to parallel domain. However,
this model is challenging to apply in practice because it uses
linear regression and the dataset used was not available.

In this study, we also make an initial effort to refine the
COCOMO II model, focusing on the reuse model because
it was designed to evaluate development effort from existing
applications, such as parallel applications. This modification
was called PCRM. To do so, we removed some cost and scale
factors that are not relevant in parallel application development
when calculating3 the development effort and time estimated
by this model. The reuse model applies only the cost drivers
of the post-architecture model, so the cost drivers identified
were: required reusability, analyst capability, and personnel
continuity. The scale factors identified were: architecture/risk
resolution, team cohesion, and process maturity level.

IV. METHODOLOGY

In this study, we evaluated the accuracy of development
effort estimation models applied to the parallel programming

1Available in: https://github.com/dborowiec/commentedCodeDetector.
2Available at: https://github.com/GMAP/phalstead.
3See [19] to see more specific information about the equations used by

COCOMO II to estimate development effort and development time.
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domain. To do so, we used the data of an experiment con-
ducted with beginners in parallel programming to collect the
time required to implement stream parallelism using FastFlow,
SPar, and TBB on multi-core systems. The participants were
15 graduate students of the Pontifical Catholic University of
Rio Grande do Sul (PUCRS) in Brazil. They were divided
into 3 groups just to vary the order of the PPMs used: SPar,
TBB and, FastFlow (first group); TBB, SPar and, FastFlow
(second group); and SPar, FastFlow, and TBB (third group).
They were given the task of parallelizing a C++ OpenCV video
processing application [24], whose objective is to extract the
green channel. The activity was considered completed if the
parallelization achieved a speedup greater than or equal to 3
and produced the correct result. To do so, they used multi-core
workstations, FastFlow 2.1.34, TBB 4.4.6, and SPar5.

We used the following tools to measure the code metrics:
PHalstead to get Halstead, SLOCCount6 to get COCOMO II
variations, Function Point Calculator7 to get FP, Use Case
Point Calculator8 to get UCP, SEER-SEM9 trial version, and
a spreadsheet for the other metrics. The Planning Poker
estimates were obtained by averaging the guesses of three
stream processing experts. We used questionnaires to collect
the time spent by each of the participants to parallelize
the applications. In addition, we used the Mean Magnitude
Relative Error (MMRE) and the Percentage Relative Error
Deviation (PRED) [25] to assess the accuracy.

V. RESULTS

Table I shows the average results of the 15 participants for
SLOC and the actual development time for FastFlow, SPar, and
TBB. From these results, we can assume that SPar requires less
effort to develop parallel stream processing applications than
the other PPMs. However, since the averages alone cannot
determine which PPM offers the best productivity, further
analysis of the results with a hypothesis test is required. This
study aims to evaluate the accuracy of the effort estimation
methods, so productivity analysis is outside this study’s scope.

Table I also shows the average development times estimated
by each of the models used in this study, which have been
converted into development hours. To compare these results
with the actual development time we used the MMRE and
PRED metrics (Table II). Our results show that the Planning
Poker got the best result than the other estimation metrics from
the MMRE and PRED values analysis. However, the estimated
value is considered acceptable only for TBB. According to
Port and Korte [25], MMRE less than or equal to 0.25, and
PRED greater than or equal to 0.75 are values considered an
acceptable accuracy level for models and effort estimation.

4Available at: http://calvados.di.unipi.it/
5Available at: https://gmap.pucrs.br/spar-wiki/
6Available at: https://dwheeler.com/sloccount/.
7Available at: https://w3.cs.jmu.edu/bernstdh/web/common/webapps/oop/

fpcalculator/FunctionPointCalculator.html
8Available at: http://groups.umd.umich.edu/cis/tinytools/cis375/f17/

team9-use-case-pts/Use Case Point Calculator/
9Available at: https://galorath.com/seer-for-software/.

TABLE I
RESULTS FOR THE NUMBER OF SLOC, ASLOC, AND MSLOC, AS WELL

AS, THE ACTUAL AND ESTIMATED DEVELOPMENT TIMES (IN HOURS).

Code Metric Sequential FastFlow SPar TBB
SLOC 75 108.27 79.87 117.53
ASLOC - 33.40 4.87 42.67
MSLOC - 20.67 1.67 20.00
Actual development time - 1.72 1.01 2.17
COCOMO II (post-archit.) 264.34 570.44 525.75 582.90
COCOMO II (early design and
post-archit.) 198.24 550.12 507.74 562.11
COCOMO II maint. model - 506.81 287.41 526.80
COCOMO II reuse model - 428.50 253.15 454.30
PCRM - 447.32 267.69 473.57
FP - 127.54 101.62 137.32
PHalstead - 10.73 7.16 10.83
Planning poker - 0.50 0.50 2.00
Putnam’s model - 2.51 2.00 2.68
SEER-SEM 31.00 58.07 42.60 63.33
UCP - 162.06 129.72 175.14

Putnam’s model showed the second-best result. The time
estimated by Putnam’s model is close to the real time, although
the estimated values did not meet the criteria of the accuracy
metrics (MMRE ≥ 1.19 and PRED ≤ 0.07). This model can
be useful for evaluating parallel applications, but there is a
limitation. It uses the PP obtained through the development
effort of previously developed applications. However, there is
currently no database composed of such applications.

PHalstead’s development effort was the third-best result,
although it does not meet the accuracy criteria (MMRE ≥ 7.22
and PRED = 0). It considers only the TOC in its evaluation,
without taking into account any of the factors that impact the
development effort of parallel applications. So, this metric can
be useful for measuring code size, as well as the SLOC.

FP and UCP showed similar results because these models
were designed to evaluate user interaction systems in which
there is an interface where users enter, delete, and query data.
Neither considers any aspect of the programming language
used, so they are unsuitable for evaluating PPMs.

The traditional COCOMO II (post-architecture alone, and
early design and post-architecture together) showed the worst
results. In our previous work [16], we have seen that tradi-
tional COCOMO II estimates the effort required to develop
an application from scratch, so these results were already
expected (MMRE ≥ 427.99 and PRED = 0). To address this
limitation, we used the COCOMO II maintenance and reuse
models because the parallel applications were implemented
from a sequential application rather than from scratch.

TABLE II
ACCURACY RESULTS FOR THE DEVELOPMENT TIMES ESTIMATED BY EACH
OF THE CODE METRICS EVALUATED USING MMRE AND PRED METRICS.

FastFlow SPar TBBAccuracy MMRE PRED MMRE PRED MMRE PRED
COCOMO II (post-archit.) 533.68 0.00 600.63 0.00 442.27 0.00
COCOMO II (early design and
post-archit.) 511.71 0.00 577.85 0.00 427.99 0.00
COCOMO II maint. model 472.12 0.00 330.96 0.00 398.90 0.00
COCOMO II reuse model 398.97 0.00 291.19 0.00 344.74 0.00
PCRM 416.46 0.00 307.65 0.00 358.94 0.00
FP 133.02 0.00 115.25 0.00 102.61 0.00
PHalstead 9.03 0.00 7.22 0.00 7.33 0.00
Planning poker 0.71 0.00 0.50 0.00 0.08 1
Putnam’s model 1.48 0.20 1.29 0.07 1.19 0.27
SEER-SEM 53.38 0.00 47.79 0.00 46.97 0.00
UCP 169.29 0.00 147.40 0.00 116.07 0.00
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The COCOMO II reuse model showed better results com-
pared to the maintenance model. There is still a big difference
between the development time estimated by the reuse model
and the actual development time. Then we proposed the PCRM
approach, removing the cost drivers and scale factors not
applied to parallel application development. However, this
increased development time because adapting existing models
to the parallel programming domain is a complex task. It is
not possible to just remove some of their parameters.

SEER-SEM also considers several factors that impact the
software development cycle in its evaluation. SEER-SEM also
uses a database of already developed software to calibrate
its parameters. There are video processing applications in its
database, but not parallel applications. This may be one of the
reasons why the model also fails to estimate a development
time close to the real one (MMRE ≥ 42.60 and PRED = 0).

VI. THREATS TO VALIDITY

This study has some threats to validity. The learning effect
is a threat to internal validity, because of the order in which the
PPMs are used by the participants. Therefore, the time spent
by the participants developing applications using FastFlow
may have been affected since two groups already knew the
target problem before using it. In addition, there is no control
group, since the three groups used all three PPMs (construct
validity). The study design is a threat to construct validity
because SPar is an annotation-based PPM, unlike FastFlow
and TBB. The application size is another threat to construct
validity, although is a standard application in real-world stream
processing. In addition, the sample size of 15 participants and
the participants’ experience level are threats to the conclusion
validity. Therefore, the results can not be generalized.

VII. CONCLUSION AND FUTURE WORK

PHalstead has proven to be a useful metric for evaluating
parallel code, although it does not get the best results. In future
work, we aim to extend PHalstead to consider other PPMs,
such as SkePU, and Pthreads. The Planning Poker showed the
best results because it relies on the experts’ opinions to guess
the development effort. Despite the promising results, it is not
easy to find professionals to apply this method in practice.

Putnam’s model has proven to be a suitable method for esti-
mating development effort for parallel applications. Although
the SEER-SEM method did not show the best result, it also
uses a similar technique to calibrate its parameters. There
are several public domain datasets available in the software
engineering area to evaluate the effort estimation models.
However, in the parallel programming domain, no such data
set is available, making it difficult to use and evaluate these
techniques. As future work, we aim to compose a dataset
regarding the development effort of parallel applications. So, it
will be possible to evaluate the accuracy of predictive models.

Despite our efforts, the PCRM was not suitable for paral-
lelization using high-level PPMs, since the estimated effort
is much higher than the actual effort. Moreover, it is not
easy to refine its parallel application development scenario

parameters. Therefore, creating a parallelism-sensitive model
to evaluate applications in this domain is necessary since its
development involves factors that are not addressed by the
models considered in this study.
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