
20
21

 2
9t

h
Eu

ro
m

ic
ro

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 P

ar
al

le
l,

D
ist

rib
ut

ed
 a

nd
 N

et
w

or
k-

B
as

ed
 P

ro
ce

ss
in

g
(P

D
P)

 |
97

8-
1-

66
54

-1
45

5-
5/

20
/$

31
.0

0
©

20
21

 I
EE

E
| D

O
I:

10
.1

10
9/

PD
P5

22
78

.2
02

1.
00

02
1

2021 29th Euromicro International Conference on Parallel, Distributed and Network-Based Processing (PDP)

Introducing a Stream Processing Framework for
Assessing Parallel Programming Interfaces

Adriano Marques Garcia *, Dalvan Griebler*^, Luiz G. L. Fernandes*, Claudio Schepke*
* School of Technology, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil.

^Laboratory of Advanced Research on Cloud Computing (LARCC), Três de Maio Faculty (SETREM), Três de Maio, Brazil.
ÍFederal University of Pampa (UNIPAMPA), Alegrete, Brazil.

Email: {adriano.garcia, dalvan.griebler}@edu.pucrs.br, luiz.femandes@pucrs.br, claudioschepke@unipampa.edu.br

Abstract—Stream Processing applications are spread across
different sectors of industry and people’s daily lives. The in-
creasing data we produce, such as audio, video, image, and text
are demanding quickly and efficiently computation. It can be
done through Stream Parallelism, which is still a challenging task
and most reserved for experts. We introduce a Stream Processing
framework for assessing Parallel Programming Interfaces (PPIs).
Our framework targets multi-core architectures and C++ stream
processing applications, providing an API that abstracts the
details of the stream operators of these applications. Therefore,
users can easily identify all the basic operators and implement
parallelism through different PPIs. In this paper, we present the
proposed framework, implement three applications using its API,
and show how it works, by using it to parallelize and evaluate
the applications with the PPIs Intel TBB, FastFlow, and SPar.
The performance results were consistent with the literature.

I. I n t r o d u c t i o n

The demand for real-time processing has grown and tra-
ditional batch-oriented data processing is known not to be
sufficient to keep up with this demand [1], This way, orga-
nizations are increasingly adopting Stream Processing (SP)
systems, which can process data in nearly real-time. In SP,
data is continuously processed as new data becomes available
for analysis, applying a series of small computations as stages
in a pipeline, doing this processing incrementally [1]. SP is
present in many sectors, such as: surveillance systems, signal
processing, fraud detection, stock market, data compression,
image/audio/video processing, etc. [2], [3].

SP applications require parallelism exploitation to accelerate
the computation and process large volumes of data in a timely
manner. This parallelism can be applied through different
Parallel Programming Interfaces (PPIs). However, as the SP
domain is growing, so is the development of new PPIs. In ad-
dition, there are many studies focused on evaluating PPIs [4],
[5], [6], [7] or developing techniques to improve different
aspects of them, such as self-adaptive parallelism [8], add new
features [9], and support for new parallel abstractions [10], [6]
and architectures [11], [3], [7].

At the moment, we lack SP benchmarks for developers
and researchers to test and evaluate PPIs, techniques, and
parallelism strategies. Even with the few existing solutions,
evaluating these new technologies with different SP applica-
tions is a time-consuming task that shifts the programmer’s
focus away from the technology itself. In this paper, we

introduce a Stream Processing framework for assessing PPIs.
The goal is to provide a set of SP applications for the
C++ community plus a framework that makes it easy for
programmers to implement parallelism and evaluate PPIs and
technologies. The main contributions of this work are: 1)
A high-level framework API for SP applications; 2) A shell
to manage the applications, add new parallel implementations,
and collect performance metrics, such as latency, throughput,
CPU and memory usage; 3) We evaluate our work with three
PPIs: Intel TBB [12], FastFlow [13], and SPar [14],

II. R e l a t e d W o r k

As related work we consider benchmarks suites for Stream
Processing, suites that includes some Stream Processing ap-
plications, and other benchmark approaches for SP. We found
no similar research idea to ours. NAMB (Not only A Micro-
Benchmark) is a platform for a generation of prototype
applications based on their high-level description [15]. It
can generate a set of synthetic/micro-benchmarks as well as
prototypes of Java applications for Apache Flink, Storm, and
Heron platforms. The framework also allows users to change
data input rates, degree of parallelism, load balancing, etc.
RIoTBench [16] is a suite that regroups a large set of IoT
micro-benchmarks to cover different patterns and common
IoT tasks. Similarly, StreamBench [17] consists of 7 micro-
benchmarks with 4 different synthetic work-load suites gener-
ated from real-time Web logs and network traffic to evaluate
Distributed Stream Processing Systems (DSPSs). There is
another suite called StreamBench [18] that also specific targets
DSPS. It uses three micro-benchmarks and measures latency
and throughput.

SparkBench [19] is a framework-specific suite for Apache
Spark that evaluates CPU, memory, disk, and network IO,
intending to identify the best configurations to improve Spark’s
performance. Bordin [2] proposed a benchmark suite to pro-
vide a common reference for DSPS evaluation. It includes
14 benchmarks from several domains using Storm and Spark.
The author identified the most frequently used metrics in SP:
latency, throughput, scalability, tuple loss, and resource usage.
Within the suite, there is an API framework that allows users
to run, collect metrics, and validate the resulting output.

Streamlt [20] is a compiler and programming language
focused on SP applications. It comes within a benchmark

978-1-6654-1455-5/21/$31.00 ©2021 IEEE
DOI 10.1109/PDP52278.2021.00021

84

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on April 10,2023 at 14:04:13 UTC from IEEE Xplore. Restrictions apply.

suite, but it only supports the Streamlt language and ar-
chitecture. Moreover, it is limited to the dataflow and data
stream domains. PARSEC [21] is a suite that includes three
representative real-world stream applications (dedup, ferret,
and x264), among others, implemented in POSIX Threads.

Most of the related work focus only on data stream appli-
cations [15], [16], [17], [18], [19], [2]. These are applications
that intersect the domains of Big Data and IoT, which are
developed using frameworks for DSPS platforms. Almost all
of them are implemented in the Java language. The remaining
related work do not focus on SP [20], [21]. They include some
traditional SP applications but their benchmarks have several
limitations in terms of language, parallelism exploitation,
execution metrics, and parametric options. In our work, we
focus on applications for more generic stream processing
targeting the C++ community. However, we also intend to
include C++ data stream applications using emerging libraries
such as WindFlow [4] in the near future. Our work also
includes most of the metrics identified as important by
some of the related work [19], [2],

III. F r a m e w o r k P r o p o s a l

The main feature of our framework (Figure 1) is a set
of Stream Processing applications implemented in the form
of an API. To build our API, we disassemble all operators
from the original application and put them individually into a
new source code. This way, the application calls the operators

by including a header file. Therefore, the cornerstone of the
framework is composed of APIs representing each application
and a set of sequential applications that instantiates them.
As we parallelize these applications with different PPIs, the
parallel implementations are also integrated into the set. In
addition to the sequential applications and given parallel
implementations, the framework provides tools to add new
PPIs or freely modify the existing parallel code examples. We
expect that through the API and the framework, users can
easily implement one of the sequential applications with a new
PPI or simply modify and customize the available examples of
parallel implementations given within the framework. All of
this is done through the command-line shell, where users can
edit, configure, compile, execute, add execution metrics, select
the workload, and from where it will be read (disk, memory,
or network), among several other features.

Figure 1 describe the big picture of our framework. Paral-
lelize applications from the Stream Processing domain often
requires a great learning curve to the programmers unfamiliar
with this paradigm. Programmer have to identify different
operators in the source code, which is not a simple task.
Each operator region may be from a few lines of code up to
thousands. Using our framework API, users only have to insert
a function call for given stream operator. Figure 1 shows in a
code snippet (in the left) how an application is implemented
using the API. Between lines 5-7 are the n operators calls

Parallel implementations with
different PPIs available as examples

New parallel implementations
added by the user

Default sequential applications
of the framework

1 int mainfint arge, char *argv[]){
2 init_bench(argc, argv);
3 whilefl) {
4 Item item;
5 if(loperator_1(item)) break;
6 operator_2(item);
7 operator_n(item);}
9 >

Command-Line Shell

\ New ~ f— 9^Configure^— 9^ Compile^— 9^ Execute^

$ bench new -name my_parallel_implementation -bench <some of the suite benchmarks> -ppi <some PPI>
$ bench configure my_parallel_implementation
$ bench compile my_parallel_implementation
$ bench exec my_parallel_implementation -input <input file> -source <disk, memory, or network» -latency -throughput.

Fig. 1: Proposed framework for assessing PPIs.

85

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on April 10,2023 at 14:04:13 UTC from IEEE Xplore. Restrictions apply.

(in the original application this may be hundreds of lines).
The API also inserts execution metrics and manages the data
source. This data source can be the disk, the memory (in-
memory execution), or the network. For the last one, we
plan to develop an independent system that generates data for
the applications simulating a real system, with data arriving
through the network with dynamic input rates.

In addition to the operators, the API also provides abstrac-
tion for the data that is communicated among them. Usually,
these applications have smaller items that can change their data
structure in different operators. Identifying all the variables
that run through the operators as well as their dependencies,
is a complex and time-consuming task. For this reason, our
API encapsulates this data in a way that each operator uses
the same data structure. In the API this generic class is called
“Item” and this structure is the only thing that is communicated
among all the operators of an application. This Item is created
in line 4 of the code snippet in Figure 1. It is passed as
a parameter to the operators. All programmers have to do
to parallelize one of these applications is to structure the
parallelism of a given PPI around these operators, considering
the loop (lines 3-7). Thus, the API abstracts all main aspects
regarding the application, where programmers can exclusively
focus on parallelism aspects.

The central part of Figure 1 shows how the applications
set is organized within the framework. Besides the default
applications and the parallel examples, users can also use the
command-line shell to re-code, or add new versions of the
parallel implementations, or add implementations with other
PPIs. At the bottom of the Figure 1, there is an example of
how the shell can be used to add a new implementation. The
“new” command creates a copy of the sequential application
for users to edit. The “configure” opens a JSON configuration
file to insert the PPI dependencies. Then “compile” and
“exec” compile and execute the new program (to execute
the default applications these two commands are enough). In
the “exec” command, users can select the workload, the data
source, the execution metrics, among other options. Among the
metrics, users can select execution time, latency, throughput
(itens/second), and CPU and memory usage for the whole
application or individual operators. These metrics were chosen
because they were considered the most relevant for SP by
related work [19], [2],

IV. M e t h o d o l o g y

In this section we discuss the methodology that was used
for the experiments in the next sections. All experiments
were performed in a computer that has 32 GB of RAM
and two Intel(R) Xeon(R) CPU E5-2620 v3 2.40GHz (total
of 12 physical cores and 24 threads with Hyper-Threading)
processors. The operating system was Ubuntu Server 18.04,
64 bits, kernel 4.15.0-88-generic, and GCC 7.5.0 using -03
flag. Other libraries used were OpenCV version 2.4.13.6, TBB
2017 (INTERFACEJVERSION 9107), and FastFlow (revision
2.2.0-45).

To monitor the applications, we used the routines of the
API itself. These routines allow us to monitor runtime with
microsecond precision and get CPU/memory usage informa-
tion obtained from the / p r o c / [p id] / s t a t pseudo-file.
Although each new item can be monitored, we choose to
monitor every 250 ms to avoid interfering with the results. For
parallel executions, we used from 1 to 24 replicas. 0 replicas
indicates the result of sequential applications (do not confuse
replicas with threads, as the amount of threads varies at each
PPI). Each result represents the average of 10 executions, with
standard deviation properly included in the graphs with error-
bars. For the Bzip2 application, we used an ISO Image of
702 MB as an input file. For Lane Detection and Person
Recognition, we used 640 x 360 resolution MPEG-4 videos
with 1858 and 450 frames, respectively. The validation of the
results was done through the md5sum tool, comparing our
solution with the ones given by the original applications.

V. P e r f o r m a n c e C h a r a c t e r i z a t i o n

The applications set of the framework is initially composed
of three real-world applications: Bzip2, Lane Detection, and
Person Recognition. We chose these applications because they
have been explored and used as benchmarks in prior work [5],
[6]. We plan to include more applications in the future.

Bzip2 (Compress)

Fig. 2: Characterization results for the sequential applications.

Bzip2 [22] is a free and open-source data compression
application. This application can be divided into a three-stage

86

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on April 10,2023 at 14:04:13 UTC from IEEE Xplore. Restrictions apply.

pipeline (read, compress/decompress, write). In this work, we
present the results only for the compression operation, for
the sake of space. Lane Detection application is the task of
detecting lanes of a road from a camera device. It captures
each frame of a input video file and applies three computer
vision algorithms. It can be divided into a nine-stage pipeline.
Through these stages, the detected lanes are marked with
straight lines in a new frame. This new frame with the marked
lanes is then overlaid on the original, and the resulting frame
is written to the output file.

The Person Recognition application matches human faces
from a video frame against a database of faces. For each frame
it applies a detection algorithm to detect all the faces in it.
Then, it uses a set of face images and compares each of the
detected faces in the frame with the faces on that set. The
recognized faces are marked with a circle, and then the frames
are written to the output file. Therefore, this application can
be divided into a four-stage pipeline.

To show the behavior of these applications and how they
differ from each other, in Figure 2 we present the char-
acterization results. We monitor CPU and memory usage,
Analyzing CPU usage, we can see that all three applications
use 100% CPU almost all the time. It shows great potential to
achieve performance through parallelism. Regarding memory,
they present distinct behavior, Bzip2 is the application that
uses less, and Person Recognition presents a lower curve until
reaching its maximum level.

VI. F r a m e w o r k U s e C a s e

To evaluate our proposal, we parallelized the applications
using Intel TBB, FastFlow, and SPar, and evaluate their per-
formance in terms of latency and throughput. The parallelism
strategy was based on prior works [5], [6], where there the
Farm-like pattern is implemented using PPIs.

The experiments were conducted as described in Section IV.
We chose in-memory executions as it is a new feature and
previous studies have performed similar experiments with the
default mode (reading directly from disk) [5], [6]. The three
chosen PPIs are widely used for stream processing in C++.
TBB offers few customization options and it is by default
very well optimized for these specific scenarios that we will
test. On the other hand, FastFlow provides more optimization
options and it is up to the programmers to understand the
characteristics of each application and workload in order to
extract the maximum performance. In contrast, SPar provide
a small set of annotation to express stream parallelism. Its
compiler generates parallel code, calling FastFlow’s pattern
routines. For FastFLow and SPar, we used an on-demand +
blocking [13] queue configuration, as recommended by [6], We
also tested both with the custom FastFlow’s thread mapping
(physical cores first) and without it (no mapping).

For all cases, the scalability is reduced above 12 replicas.
From this point, the processor needs to start allocating threads
in both physical and virtual cores. This is an expected behavior
of these applications that have high CPU usage. Regarding
latency, lower is better. The difference between TBB and

FastFlow/SPar can be explained by the characteristic of the
communication queues. TBB has a work stealing scheduler.
This means that a thread can take over any operator along the
pipeline. In FastFlow the threads always run the same operator,
Therefore, the one that runs the read _ o p () operator is done
faster. This adds an extra delay when calculating from the
moment a item is read to the moment it is finally processed
by the last stage, increasing the latency.

Figure 3 (higher is better) has plotted the throughput. All
PPIs and test cases presented good scalability. The higher la-
tency of FastFlow/SPar did not negatively impact the through-
put and these PPIs showed even better performance than
TBB in Lane Defection with 12 replicas, for instance. The
exception occurs in Bzip2 and Person Recognition above
12 replicas, where FastFlow/SPar using the default mapping
showed a slight drop in throughput. The throughput obtained
by FastFlow and SPar was equivalent to the TBB, which
is by default highly optimized for this type of application.
The applications were easily parallelized using the framework
and we were able to achieve results similar to those in the
literature [9]. This first version of the framework allowed fast
development and easy reconfiguration of parallel applications
for stream processing.

VII. C o n c l u s i o n

In this paper, we introduced a Stream Processing framework
for assessing Parallel Programming Interfaces (PPIs). The goal
was to create a way to facilitate the implementation of stream
parallelism on the Stream Processing domain. We showed
the main features of the proposed framework by using it to
evaluate TBB, FastFlow, and SPar. The results were similar
to the literature and the API worked perfectly with the three
evaluated PPIs. This way, our work has reached its initial
goal. In the next steps, we will include more applications to
the framework and parallelize them with more PPIs, add new
workload classes, add the possibility to change the receiving
data input rate and also add the feature that allows reading
data from the network.

A c k n o w l e d g m e n t

This study was financed in part by the Coordenação
de Aperfeiçoamento de Pessoal de Nivel Superior -
Brasil (CAPES) - Finance Code 001, FAPERGS 05/2019-
PQG project Pa r A S (N° 19/2551-0001895-9), and Univer-
sal MCTIC/CNPq N° 28/2018 project SPa r C l o u d (N o .
437693/2018-0).

R e f e r e n c e s

[1] H. C. Andrade, B. Gedik, and D. S. Turaga, Fundamentals o f stream
processing: application design, systems, and analytics. Cambridge
University Press, 2014.

[2] M. V. Bordin, D. Griebler, G. Mencagli, C. F. R. Geyer, and L. G. Fer-
nandes, “DSPBench: a Suite of Benchmark Applications for Distributed
Data Stream Processing Systems,” IEEE Access, vol. na, no. na, p. na,
December 2020.

[3] C. M. Stein, D. A. Rockenbach, D. Griebler, M. Torquati, G. Mencagli,
M. Danelutto, and L. G. Fernandes, “Latency-aware adaptive micro-
batching techniques for streamed data compression on graphics pro-
cessing units,” Concurrency and Computation: Practice and Experience,
vol. na, no. na, p. e5786, May 2020.

87

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on April 10,2023 at 14:04:13 UTC from IEEE Xplore. Restrictions apply.

SPar - a — FastFlow — e— TBB —0—
SPar (no mapping) — a — FastFlow (no mapping) — x—

Bzip2 (compress) Lane Detection Person Recognition

Number of replicas.

Fig. 3: Performance results using three PPIs and up to 24 replicas.

[4] G. Mencagli, M. Torquati, D. Griebler, M. Danelutto, and L. G. L. Fer-
nandes, “Raising the Parallel Abstraction Level for Streaming Analytics
Applications,” IEEE Access, vol. 7, pp. 131944 - 131 961, 2019.

[5] D. Griebler, R. B. Hoffmann, M. Danelutto, and L. G. Fernandes, “High-
Level and Productive Stream Parallelism for Dedup, Ferret, and Bzip2 ”
International Journal o f Parallel Programming, vol. 47, no. 1, pp. 253-
271, February 2018.

[6] ------ , “Higher-Level Parallelism Abstractions for Video Applications
with SPar,” in Parallel Computing is Everywhere, Proceedings o f the In-
ternational Conference on Parallel Computing, ser. ParCo’ 17. Bologna,
Italy: IOS Press, September 2017, pp. 698-707.

[7] D. A. Rockenbach, C. M. Stein, D. Griebler, G. Mencagli, M. Torquati,
M. Danelutto, and L. G. Fernandes, “Stream Processing on Multi-cores
with GPUs: Parallel Programming Models’ Challenges,” in International
Parallel and Distributed Processing Symposium Workshops (IPDPSW),
ser. IPDPSW’ 19. Rio de Janeiro, Brazil: IEEE, May 2019, pp. 834—841.

[8] A. Vogel, D. Griebler, M. Danelutto, and L. G. Fernandes, “Minimizing
Self-Adaptation Overhead in Parallel Stream Processing for Multi-
Cores,” in Euro-Par 2019: Parallel Processing Workshops, ser. Lecture
Notes in Computer Science, vol. 11997. Gottingen, Germany: Springer,
August 2019, p. 12.

[9] D. Griebler, R. B. Hoffmann, M. Danelutto, and L. G. Fernandes,
“Stream Parallelism with Ordered Data Constraints on Multi-Core
Systems,” Journal o f Supercomputing, vol. 75, no. 8, pp. 4042-4061,
July 2018.

[10] R. B. Hoffmann, D. Griebler, M. Danelutto, and L. G. Fernan-
des, “Stream Parallelism Annotations for Multi-Core Frameworks,” in
XXIV Brazilian Symposium on Programming Languages (SBLP), ser.
SBLP’20. Natal, Brazil: ACM, October 2020, pp. 48-55.

[11] D. A. Rockenbach, D. Griebler, M. Danelutto, and L. G. Fernan-
des, “High-Level Stream Parallelism Abstractions with SPar Targeting
GPUs,” in Parallel Computing is Everywhere, Proceedings o f the In-
ternational Conference on Parallel Computing (ParCo), ser. ParCo’19,
vol. 36. Prague, Czech Republic: IOS Press, 2019, pp. 543-552.

[12] M. Voss, R. Asenjo, and J. Reinders, Pro TBB: C+ + parallel program-
ming with threading building blocks. Apress, 2019.

[13] M. Aldinucci, M. Danelutto, P. Kilpatrick, and M. Torquati, “Fastflow:
high-level and efficient streaming on multi-core,” Programming multi-
core and many-core computing systems, parallel and distributed com-
puting, 2017.

[14] D. Griebler, M. Danelutto, M. Torquati, and L. G. Fernandes, “SPar:
A DSL for High-Level and Productive Stream Parallelism,” Parallel
Processing Letters, vol. 27, no. 01, p. 1740005, March 2017.

[15] A. Pagliari, F. Huet, and G. Urvoy-Keller, “Namb: A quick and flex-
ible stream processing application prototype generator,” in 2020 20th
IEEE/ACM International Symposium on Cluster, Cloud and Internet
Computing (CCGRID), 2020, pp. 61-70.

[16] A. Shukla, S. Chaturvedi, and Y. Simmhan, “Riotbench: An iot bench-
mark for distributed stream processing systems,” Concurrency and
Computation: Practice and Experience, vol. 29, no. 21, p. e4257, 2017.

[17] R. Lu, G. Wu, B. Xie, and J. Hu, “Stream bench: Towards benchmarking
modem distributed stream computing frameworks,” in 7th International
Conference on Utility and Cloud Computing, 2014, pp. 69-78.

[18] Y. Wang, “Stream processing systems benchmark: Streambench,”
Master’s thesis, Aalto University, 2016. [Online]. Available:
http://um.fl/URN:NBN:fi:aalto-201606172599

[19] D. Agrawal, A. Butt, K. Doshi, J.-L. Larriba-Pey, M. Li, F. R. Reiss,
F. Raab, B. Schiefer, T. Suzumura, and Y. Xia, “Sparkbench - a spark
performance testing suite,” in Performance Evaluation and Benchmark-
ing: Traditional to Big Data to Internet o f Things, R. Nambiar and
M. Poess, Eds. Cham: Springer International, 2016, pp. 26-44.

[20] W. Thies and S. Amarasinghe, “An empirical characterization of stream
programs and its implications for language and compiler design,”
in 2010 19th International Conference on Parallel Architectures and
Compilation Techniques (PACT), 2010, pp. 365-376.

[21] C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The parsec benchmark suite:
Characterization and architectural implications,” in Proceedings of the
17th international conference on Parallel architectures and compilation
techniques, 2008, pp. 72-81.

[22] Seward, Julian, “A Program and Library for Data Compression,” 2017.
[Online]. Available: http://www.bzip.org/! .0.5/bzip2-manual-1.0.5.html

88

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on April 10,2023 at 14:04:13 UTC from IEEE Xplore. Restrictions apply.

