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A B S T R A C T

Edge devices are usually limited in resources. They often send data to the cloud, where
techniques such as filtering, aggregation, classification, pattern detection, and prediction are
performed. This process results in critical issues such as data loss, high response time, and
overhead. On the other hand, processing data in the edge is not a simple task due to devices’
heterogeneity, resource limitations, a variety of programming languages and standards. In
this context, this work proposes STEAM, a framework for developing data stream processing
applications in the edge targeting hardware-limited devices. As the main contribution, STEAM
enables the development of applications for different platforms, with standardized functions and
class structures that use consolidated IoT data formats and communication protocols. Moreover,
the experiments revealed the viability of stream processing in the edge resulting in the reduction
of response time without compromising the quality of results.

. Introduction

In recent decades, technological advances in computing – related to device miniaturization and increased computing power as
ell as connectivity and software solutions – have resulted in the spread of ‘‘smart’’ devices for a variety of purposes. These advances
ave enabled the development of the ‘‘Internet of Things’’, or simply ‘‘IoT’’, a landscape where ‘‘smart’’ devices are equipped with
variety of sensors that can read the environment in which they operate, have microcontrollers or microprocessors to perform

alculations, logic, and algorithms to communicate autonomously with each other or with cloud-hosted systems. Typical passive
ppliances such as dishwashers, air conditioners, coffee makers, televisions and even vehicles today have data collection, processing
nd network communication capabilities. We also have wearable devices, which monitor, process and transmit various vital signals
uch as heart rate, body temperature, blood pressure and step count. Therefore, technological evolution resulted in a huge increase
n data collection, processing, and transmission.

To perform the processing of data streams in real-time, David Luckham developed the concept of ‘‘Complex Event Processing’’,
r simply CEP [1]. He proposed using a set of techniques such as rule-based systems, pattern detection, event correlation and time
indow over streams of raw data or simple events to build a system capable of inferring an emerging pattern over a set of diverse
ata sources in real-time. This makes it possible not only to identify a complex event in real-time, but also to anticipate an event or
ven identify that an event should have happened, but did not happen. The first implementation of CEP middleware was Rapide,
project developed in Stanford University. After Rapide, several initiatives were launched, as Apache Flink, Drools, Esper and
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Siddhi. Although CEP is consolidating as a standard technology for real-time data processing in IoT environment, it is centralized
and requires significant computational resources such as CPU, memory, network, database, etc [2].

Due to limited computational resources, IoT devices usually rely on cloud-hosted stream processing centralized platforms to
erform complex analytical processing like filtering, aggregation, classification, pattern detection, and prediction. This remote
ata processing results in critical issues such as connection loss, high response time, and overhead in the centralized computing
ystem [2]. But performing data processing on the network edge is not a simple task. IoT devices are heterogeneous in hardware
rchitecture and limited in processor, memory and communication capabilities. The development of custom-made embedded
oftware, the variety of technologies and programming languages besides lacking standards is not a simple problem to solve.

Analyzing the literature, we found several initiatives to bring data analytics in real-time to the network edge, discussed in detail
n Section 3. The most recent works had as main objectives the reduction of both network traffic [3,4] and network latency [5–7]
nd as secondary objectives the reduction of memory consumption [8], reduction of energy usage [4], data classification [5,9] and
ecovery of incomplete data series [10]. The most used techniques were pattern recognition [3,4,7], outlier detection [4–7], and
rediction [5–7]. A common characteristic of all works is that they are handcrafted solutions, implemented from scratch, not using
standard development framework or API (Application Programming Interface).

Our motivation for developing the current work is the lacking of standardization in IoT application development, the hetero-
eneity of IoT hardware and data formats, the variety of communication protocols between edge and cloud applications, and the
omplexity in implementing analytic functions in the fog. Aiming to standardize and simplify the development of IoT applications,
e are proposing STEAM, an architecture to bring data processing functions from cloud to the network edge, reducing response

ime, and allowing decision-making locally. In addition, the outcome of data analytics is merged with original data using a technique
nown as stream enrichment. Thus, client applications, middlewares, and stream processors hosted in the cloud or local network
an consume data streams enriched with valuable data.

The contributions of the article are threefold:

• An IoT model that enables us to connect different communication protocols, enrich data, abstract devices and implement data
acquisition.

• A programming framework that simplifies the development of IoT data stream enrichment and analytics in the edge.
• An experimental evaluation that demonstrates the feasibility of the IoT model and programming framework under a real-world

scenario.

The rest of the paper is structured as follows. Section 2 presents the background of concepts and technologies that are the basis of
ur work. Section 3 is a summary of research and work related to stream processing in the edge. Our proposed model is discussed in
ection 4, followed by the detailing of the evaluation methodology in Section 5. The results are presented and discussed in Section 6
nd Section 7 concludes the article.

. Background

This section presents an overview of basic concepts and technologies involved on the development of the STEAM model and
ramework.

.1. Fog and mist computing

In fog computing, computation is performed by gateway devices at the network edge, reducing bandwidth requirements, latency,
nd the need for communicating data to the servers [11]. However, in a strict definition of fog computing, the devices at the edge
re not involved in computation but only in data acquisition, while the interpretation occurs in the gateway. Thus, network delay
nd inefficient bandwidth utilization are still present. On the other hand, mist computing pushes processing even further to the
etwork edge, residing directly within the network fabric, bringing the fog computing layer closer to the smart end-devices such
s sensors and actuators [12]. This approach decreases latency and increases the autonomy of the subsystems since the calculation
nd performance are performed locally and depend mainly on the device’s perception of the situation.

.2. Real-time systems

The term ‘‘real-time’’ means the requirement for IT systems to process data as they arrive rather than storing the data and
etrieving it at some point in the future. The time interval for computation and response is typically in order of milli, micro, or
ven nanoseconds [13]. Input data usually arrives from various data sources, in different formats and protocols. Outputs often
nvolve generating notifications to humans about significant occurrences in the environment or invoking functions of the system’s
omponents to perform some tasks. Real-time systems must meet the following requirements: low latency, high availability and
orizontal scalability [14].
2
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Table 1
Related work and their main features.

Reference Year Proposal Objective Technique

Traffic reduction Latency reduction Prediction Pattern recognition Outlier detection

Khairnar et al. [5] 2020 Middleware � � �
Galanopoulos et al. [3] 2020 Algorithm � � �
Ali et al. [6] 2019 Framework � � �
Babazadeh [4] 2019 Architecture � � �
Symeonides et al. [7] 2019 Framework � � � �
Bharath Das et al. [17] 2018 Framework � � �
Harth et al. [18] 2018 Architecture � �
Lujic et al. [10] 2018 Algorithm � � �
Oyekanlu et al. [19] 2018 Algorithm �
Alam et al. [20] 2017 Framework � � � �
Harth and Anagnostopoulos [21] 2017 Architecture � � � � �
Portelli and Anagnostopoulos [22] 2017 Algorithm � �
Tsai et al. [23] 2017 Middleware � � �
Bhargava et al. [8] 2016 Algorithm � �
Kartakis et al. [24] 2016 Algorithm � � � �

2.3. Stream processing

Many real-time applications work over a continuous data flow, which is received, processed and dispatched indefinitely. This type
f interaction is called a stream and it implies the transfer of a sequence of related information, like raw data or simple events [13].
he main difference between them is that while data streams work with raw data, event streams work with previously processed and
ategorized events [15]. Raw data are independent and have no specific meaning, but events include an identifier, event attributes,
nd the moment of occurrence.

.4. Complex event processing

Some applications need to extract more valuable insights from data performing complex computations over multiple streams,
oming from the same or different sources by combining or correlating events. These relationships can be of any type, including
ausal relationships, data relationships, or temporal dependencies. Simple events can be consolidated into complex events through
everal transformations such as threshold-based filtering, joining, sequencing, and well-known aggregation functions [16]. This kind
f event processing is often referred to as CEP [1].

. Related work

With the objective to get an overview of IoT data processing at the network edge, we made a bibliographic research selecting
rticles from relevant conferences and journals. The research was conducted in April 2020, searching for works published since
he year 2016, aiming to identify articles containing the keywords ‘‘Event Processing’’ and ‘‘Edge’’, which are the domains of most
nterest. It was also necessary for the articles to present at least one of the terms ‘‘analytics’’, ‘‘prediction’’, ‘‘pattern’’ or ‘‘outlier’’,
hich are the most specific subjects. The outcome is listed in Table 1. In the sequence, we present a discussion of the main related
orks.

A middleware for monitoring industrial processes using IoT analytics was proposed by [5]. The work consisted of reading
emperature, vibration, and humidity as well as training an ANN (Artificial Neural Network) for prediction of machinery malfunction.

dynamic and distributed algorithm was developed by [3] with the objective of improving the execution of data analytics at IoT
evices, with more robust instances running at cloudlets. They used KNN (K-Nearest Neighbors) and CNN (Convolutional Neural
etwork) techniques for image recognition and classification.

A framework for historical data analysis combined with real-time data analytics and forecasting was proposed in [6]. The authors
sed Multiple Linear Regression, Support Vector Regression, Decision Tree Regression and Random Forest Regression. In [7] the
uthors proposed a declarative query model aiming to abstract the complexity of defining data analytics rules. They proposed a
rammar and a framework tailored for edge computing to achieve latency, robustness and even privacy requirements.

A distributed architecture was proposed in [4] to detect infrastructure anomalies, using an adaptation of Lempel–Ziv–Oberhumer
LZO) data compression library, Kalman filter and thresholds. Authors made experiments using a Wireless Sensor Network (WSN).
n [17] authors built a framework for efficient distribution of stream processing tasks among multiple edge devices, based on the
roximity of sensors (data sources) and computational capacity of devices. They used Seagull, an extension of Cowbird framework.

In order to reduce network traffic, [18,21] proposed a lightweight distributed architecture executing on the edge, resulting
n predictive intelligence. They used Exponentially Weighted Moving Average (EWMA), Multivariate Linear Regression (MLR) and
econstruction Vectors (RV) techniques. With the same objective of reducing network traffic, the work presented in [9] implemented
lgorithms to calculate kurtosis, asymmetry, mean square root and crest factors, analyzing mechanical vibration data in industrial
3

achines. Only abnormal situations were reported to a cloud-based system.
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In [10] authors proposed a set of algorithms for recovering incomplete time-series data sets at the network edge. They used
RIMA (Auto-regressive Integrated Moving Average), EWMA, and TBATS (Trigonometric Exponential Smoothing State Space model
ith Box–Cox transformation, ARMA errors, Trend and Seasonal Components), reducing prediction errors and execution time. An
xperimental study was conducted in [20] to evaluate the performance of 21 Frequent Pattern Mining (FPM) algorithms over
ata streams. The author used far-edge computing and observed memory consumption and execution time for comparing purpose.
dentifying water leaking was the objective of [24], combining a lightweight algorithm executed on the edge to detect anomalies
ased on data compression rates and geolocation using graph theory. Authors also used Moving Average (MA), Kalman filter and
hresholds. Experiments resulted in a highly precise physical location of water leaking and reduction in data communication.

The work developed in [22] aimed to obtain a highly accurate prediction using regression over data streams. The authors used
he techniques of Linear Regression (LR) and Adaptive Vector Quantization (AVQ). Only metadata of the models was transmitted
rom edge to cloud. In [8] authors proposed compressing data in a Wireless Sensor Network (WSN) besides using L-SIP (Linear
panish Inquisition Protocol) to offer real-time feedbacks allowing accurate data reconstruction. They converted raw data in state
ectors, storing only instances that could not be predicted.

Analyzing the related works, we found several efforts to bring stream analytics from the cloud to the network edge, resulting in a
eduction of latency and network traffic. However, the initiatives were tailored to specific situations, lacking a common architecture
r standardization. The edge devices most used in the experiments were notebooks, smartphones or single-board computers, such
s Raspberry Pi, and only one experiment used Arduino LoRa. We identified a set of common data analysis techniques to process
attern recognition, outlier detection, and prediction, highlighting the desired features of an IoT application. We also perceived
tendency of decreasing the importance of cloud processing for real-time applications. The remote systems are associated with

upervisory and management tasks, such as processing high-level business rules, event detection and reporting, logging, and data
isualization.

. STEAM model

In this section, we present STEAM, a model and framework designed to enable real-time data analytics and data streams
nrichment at the network edge. STEAM is an acronym for Stream Enrichment and Analysis in the Mist. The design guidelines are

presented in Section 4.1, the architecture is detailed in Section 4.2, while data processing is explored in Section 4.3.

4.1. Design guidelines

The IoT environment is well-known for its limited computational resources and heterogeneity in data formats, protocols, and
hardware architectures. On the other hand, cloud-hosted applications rely on standard protocols for capturing data besides applying
consolidated analytic functions. Therefore, these characteristics guided us in defining the STEAM model and framework, providing
flexibility and simplicity in developing an IoT application. To deal with limited computational resources and heterogeneity of
hardware architectures, we propose a device abstraction layer, allowing a standard and lightweight access to IoT devices. To manage
the variety of data formats and protocols, we designed a data acquisition layer, allowing us to work with the most varied data formats
and acquisition protocols from the sensor network. For data processing, we built an extensible function library that provides several
consolidated techniques such as pattern recognition, clustering, prediction, among others. And finally, a protocol connector interfaces
with cloud services throughout consolidated protocols, such as HTTP, MQTT, and CoAP, but not limited to them.

4.2. Architecture

Fig. 1 represents a high-level overview of our architecture. On the left side (a), we can see the standard architecture usually
adopted in IoT applications. On the right side (b), we can see the STEAM architecture for comparison purposes and have a better
understanding of our contribution.

A typical IoT application begins with data production, represented as generic raw data sources transmitted over sensor networks.
Data can be produced by both sensors and simple applications, embedded in dedicated hardware. After collected, raw data are
processed by a gateway at the network edge, which usually only encapsulates the data frames in a standard protocol and transmits
to client applications using Intranet or Internet. Since we propose to bring data analytics techniques to the network edge applying
the mist computing concept, we highlight the Analysis and Enrichment processes executed on far-edge devices. Lastly, the client
applications are responsible for data consumption and business rules processing and can be hosted either on LAN or cloud.

Fig. 2 depicts a detailed view of STEAM model. It consists of a four-layered framework for the development of applications
targeting resource-limited devices located at the network edge. The input layer is Device Abstraction and Data Collection, responsible
for capturing data from sensors and far-edge devices, standardizing and forwarding data streams to the processing step. The
processing step is composed of 2 layers. The first one is Analysis, that provides a set of data analysis techniques, such as filtering,
transformation, pattern recognition, outlier detection, prediction, etc. The second processing layer is Enrichment, intended to merge
the outcome of the previously mentioned Analysis layer along with the original data streams. The output layer is the Protocol
Connector, responsible for providing output data streams in a standard format and different communication protocols, so that client
4

applications can have access to data in a standard and transparent manner. The following describes each layer in detail.
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Fig. 1. Overview of Standard IoT Architecture (a) compared to STEAM Architecture (b). In (a), raw data is captured from sensors and sent to applications
hrough far-edge devices, that acts only as a proxy between production and consumption layers. However, in (b), far-edge devices are more than a proxy, they
re responsible for processing and analyzing data in real-time, sending enriched data streams to middlewares or final applications.

.3. Data processing

There are several steps between reading raw data from a sensor until the detection of a complex event. Next, we thor-
ughly present how STEAM is designed for processing data captured from sensors to providing enriched streams to cloud-hosted
pplications.

i. Device Abstraction and Data Acquisition: Since data sources can contain different formats and use different communication
protocols, the Device Abstraction and Data Communication layer aims to provide transparent interfacing with sensors and
devices. For this, it uses either open or proprietary protocols, such as RS-232, TCP, UDP, HTTP, among others to capture data
in various formats, such as ASCII, JSON, XML and even binary. Once data is received, it is parsed, extracted and organized
in a standard format, then, it is sent to the Analysis layer. Standard format consists of a JSON containing the attributes ‘‘id’’,
‘‘value’’, ‘‘unit’’ and ‘‘timestamp’’. In Fig. 3, we have an example of a raw data frame in ASCII format transmitted via RS-232
serial communication representing a temperature measurement of 23.6 Celsius degrees, converted to a standard JSON format.

ii. Analysis: The Analysis layer consists of a set of modules that perform the most varied operations on the received data in
order to extract relevant information. Initially, we propose 6 modules that can be executed independently or combined in
sequence:

• Preprocessing: This module if responsible for eliminating null or invalid values, discard values out of a predefined
range, normalize or convert values from one measurement unit to another, etc;

• Aggregation: In this step, we apply aggregation functions to a data set, such as min, max, sum, count, etc. We are using
either temporal and batch sliding windows over the data set to select a subset of values;

• Statistics: This module calculates statistics over a data set, like average, median, standard deviation, variance, skewness,
and kurtosis. We also can select a subset of values to be processed, using temporal or batch sliding windows;
5
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Fig. 2. Detailed STEAM model. The input occurs in Device Abstraction and Data Acquisition Layer, which standardizes and sends raw data to the Processing layer.
he Analysis step consists of several modules that can be executed independently or in sequence, resulting in one or more calculated values. These values are
ent to the Enrichment layer and merged with original raw data. The output consists of the Protocol Connector layer, which transmits the data using consolidated
oT protocols.

Fig. 3. Data received in ASCII format and converted to JSON.

• Pattern: This module applies trend and seasonality analysis to identify behavior patterns, such as stability, upward or
downward trend and their respective rates, trend changing, etc. We make this applying a smoothing technique, such as
MA or EWMA and auto-correlation analysis;

• Clustering: This module consists of partitioning data sets into groups based on similarity or distance so that data in the
same cluster are similar regarding an arbitrary attribute. First, we need to define an appropriate distance/similarity
metric, and then, use a clustering technique, such as k-means, hierarchical clustering, density-based clustering or
subspace clustering over an attribute.

• Prediction: After identifying the past behavior pattern, this module predicts a future value at one or several steps ahead
of the current time, along with a reliability factor. Here we use techniques such as ARIMA, TBATS, Kalman filter and
ANN.

iii. Enrichment: The Enrichment layer consists of adding the result of the analysis step into the original data packet before it is
transmitted to the applications. Since in the related work no data standardization initiative was identified, we are proposing
a list of identifiers with suggestive names and their respective data types. The names used for the output attributes can
be viewed in Table 2. Besides attribute names and data types, we are proposing a JSON structure for data formatting and
standardization, and the schema is depicted in Fig. 4.

iv. Protocol Connector: The output layer is the Protocol Connector. Because it is responsible for sending to client applications
the data provided by the Enrichment layer, we are using consolidated IoT protocols to provide maximum inter-connectivity
between the Sensor Network and LAN/Cloud layers. According to studies conducted by [25,26], the most commonly used
protocols in IoT environment are AMQP, CoAP, DDS, MQTT, RESTFUL Services, WAMP and XMPP.
6
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Table 2
Standardization of nomenclatures used by the enrichment module.

Attribute Required Type Description

id Yes Int/text Data packet or data source id
value Yes Any Data value
unit No Text Measurement unit
timestamp No Datetime Instant of data acquisition
min No Number Min value
max No Number Max value
sum No Number Sum of values
count No Number Count of values
average No Number Arithmetic average
ewaverage No Number Exponentially weighted average
median No Number Median
variance No Number Variance
stdeviation No Number Standard deviation
slope No Number Trending slope
outlier No Boolean Value out of standard
filtered No Boolean Value out of thresholds

Fig. 4. JSON schema for data formatting and standardization.

5. Evaluation methodology

In order to prove the viability of the STEAM model, we developed a framework that provides all functionalities previously
discussed in Section 4. The design of the framework prototype is presented in Section 5.1. The infrastructure for testing the
framework is shown in Section 5.2, and the evaluation metrics are presented in Section 5.3. With the framework, we developed
one application targeting limited computational resources devices, described in Section 5.4. Finally, the test scenario is detailed in
Section 5.5.

5.1. Framework prototype

Fig. 5 depicts the STEAM framework class diagram. The main class is Device, which is the base class for creating an application.
It is a virtual class, an interface that defines a set of attributes and methods that must be implemented by sub-classes. The Device’s
sub-classes represent the Device Abstraction and Data Acquisition layer. They are intended to implement the communication methods
between the data sources and the STEAM application. As a proof-of-concept, we implemented Analog and Serial (RS-232) classes.
The Device class also uses a Parser class, responsible for parsing and transforming the incoming raw data collected from sensors
in a standard output format. The virtual class Function represents the Analysis layer in STEAM model, and defines the interface for
analytic functions, such as filtering, prediction, outlier detection, and more, which must be implemented as sub-classes of Function.
7
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Fig. 5. STEAM Framework class diagram.

A Device object can reference one or more Function objects, that are stored in a list structure and are executed as a flow, from the
irst to the last function, to achieve the desired data processing.

The Enrich class represents the Enrichment layer, and is responsible for merging the outcome of Functions execution flow with
he original data. One or more attributes with the results are included in the data packet, which is converted to a standard format
nd sent to the last processing step. The output of STEAM framework consists in sending the data packet previously processed
sing a standard IoT protocol. The Protocol Connector layer is implemented by Endpoint class, which defines the interface for data
ommunication protocols with client applications running on the local network or cloud. For this prototype, Endpoint sub-classes
mplement consolidated IoT protocols, such as MQTT, CoAP, AMQP and HTTP RESTful.

.2. Infrastructure

The environment set up for the experiment of assessing STEAM application presents the following architecture, depicted in
ig. 6. We have one sensor that constantly sends its measured value via RS-232 serial communication to the STEAM application
mbedded on an IoT device, that consists of one Raspberry Pi 2 running Raspbian OS. The Device Abstraction and Data Acquisition
ayer of the STEAM application continuously receives raw data packets sent from the sensor through RS-232 serial communication
nd encapsulates the data in the previously mentioned standard format. After, the raw data stream is sent to Analysis layer and the
utcome is merged with the original data stream in the Enrichment layer. Finally, the Protocol Connector layer of STEAM application
ends the enriched stream to a CEP Engine hosted on Azure. A wireless access point is responsible for linking the IoT device network
o the cloud.

The CEP Engine is WSO2 Streaming Integrator running Siddhi and was installed in a VM hosted in Azure running Ubuntu 18.04.
he CEP Engine receives data as an HTTP stream in JSON format coming from STEAM application, parses and processes the data,
nd sends the result back to IoT device asynchronously.

.3. Evaluation metrics

For the quality assessment of STEAM, we are using three metrics: Accuracy, Time Consumption and Data Packet Size. Accuracy is
easured comparing the values computed on the edge by STEAM application against the values returned by CEP Engine computed

n cloud. Since one of the objectives of this work is to bring data analytics from cloud to edge, the outcomes of both processing
hould be the same. To measure accuracy according to Fig. 6, we uniquely identify (UID) each data packet processed on the edge
EP) and send them (Snd) to the CEP Engine for cloud processing (CP). Once CP is complete, we send back an asynchronous response
Res) packet to the edge identified with the same UID. Then, we match the EP and CP packages by UID and compare the results.
8

his way, the accuracy metric consists of counting mismatching values comparing the EP and CP packages during the entire test.
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Fig. 6. Infrastructure for evaluating a STEAM application and comparing with a hybrid edge/cloud application.

Regarding Time Consumption, we expect a significant decrease comparing an exclusive edge processing (EP) application versus
a cloud processing (CP) dependent application. Although a STEAM application demands more processing on the edge (EP), and
consequently spends more time locally processing than a hybrid edge/cloud application, we eliminate data transmission (Snd +
Res), resulting in a shorter time interval for obtaining the same final result, besides the complete elimination on timeouts and
packages loss. This way, the Time Consumption metric for a STEAM application accounts only EP time, depicted in Eq. (1), while in
a hybrid edge/cloud application it is computed by the sum of EP, Snd, CP and Res times, as defined in Eq. (2).

𝐸𝑑𝑔𝑒 = 𝐸𝑃 (1)

𝐻𝑦𝑏𝑟𝑖𝑑 = 𝐸𝑃 + 𝑆𝑛𝑑 + 𝐶𝑃 + 𝑅𝑒𝑠 (2)

At last, the Data Packet Size metric registers the amount of data generated by the Enrichment process and compares it against a
raw data packet. The increase of data packet size directly impacts network traffic and can be a problem according to the protocol
used between the edge and the cloud. Therefore, we are analyzing not only the total increase in data size but how many bytes each
enriched data on average injects into the packet.

5.4. Application

The STEAM application was developed by following a sequence of object instantiating and message exchanging depicted in Fig. 7.
When the application starts, it calls the config() method of the Device object. The configuration varies depending on the type of
communication. For example, to work with analog signals we specify the port where the sensor is attached, sampling frequency and
the ADC max supported voltage. For serial RS-232, we specify the port, speed, parity, data bits, and stop bits parameters. Following,
we define the Parser object that will be used for interpreting and standardizing raw data by calling the setParser() method. Next,
the Endpoint object is defined by calling the setEndpoint() method. The Endpoint object will later send data to the client application
using standard IoT protocols such as MQTT, CoAP or AMQP. The addFunction() method adds one or more Function objects to the
application. Each Function object is responsible for applying a distinct analytical function to the input data, generating a result that
will be included later in the data packet by an Enrich object.

When we execute the run() method, the application passes the execution control to the Device object, which is responsible for
executing the application in an infinite loop. This loop starts with the execution of the readData() method, which waits for data to
arrive from communication with the sensor network. As soon as a data packet is received by the device, it calls the setData() method
of the Parser object, and then receives the data in a standard format by calling the parse() function. Standardized data is passed to
one or more Function objects using the setData() method. The calculate() function is fired for each Function object, which processes
the data and returns the processed result. The results of the analytic functions are sent to the Enrich object via the setData() method,
and returned by the enrich() function. At this point, the enriched data packet is sent to the Endpoint() object via the setData() method,
and is finally sent to the client application via the send() method. This finishes the processing cycle of a data packet and the loop
returns to the initial instruction, awaiting the arrival of a new data packet to repeat the entire processing sequence again.

5.5. Scenario

To assess the STEAM framework, we created one application for monitoring the temperature inside a clean-room of a microchip
manufacturer. We are using a temperature sensor that constantly sends its value via RS-232 serial communication to the STEAM
application running in a Raspberry Pi 2 with Raspbian OS, at a transmission rate of 20 measurements per second. The data stream
9
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Fig. 7. Sequence diagram of a STEAM application.

Fig. 8. Application configured in WSO2 Streaming Integrator hosted in a VM in Azure. First, we define the input stream that receives data through an HTTP
ost, then a query executes the aggregation functions and finally, the data is sent back to the edge.

lso is sent to CEP Engine in the cloud, which is running the application depicted in Fig. 8, makes the same calculation over the

ame sliding window and asynchronously sends the results back to the edge.
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Fig. 9. STEAM application in detail, starting from data acquisition, analysis, enrichment, and sending to a CEP Engine cloud-hosted. In a Standard Application
a), all data analysis is performed in the Cloud, while in a STEAM Application (b), the computation is performed in the Edge, making the Cloud an optional
lement.

We performed 30 tests, each sending 530 measures to the applications through a data stream. The applications calculate the
ount, sum, minimum, maximum, average, standard deviation and outlier indicator over a sliding window of 20 values. We are not
rocessing the first 19 data packets since, at the beginning of the test, the sliding window still does not have 20 events. From the
0th event to the end, each new received data fires a new window, then, we perform the calculation. This way, we are processing
ata 510 times per test, 20 times per second, each test lasting approximately 25.5 s.

. Results and discussion

To have a better understanding of the entire data flow and transformation, we monitored each step of data processing in the
TEAM application, depicted in Fig. 9, detailed in (a) Standard Application, acting as a proxy between the sensor and the CEP Engine,

and (b) STEAM Application, performing analysis and enrichment in the network edge.
In this diagram, the Device Abstraction and Data Acquisition layer captures raw data from the sensor and converts it to a standard

ormat, in both scenarios. While in (a) we readily send formatted data to the cloud via Protocol Connector, where the data stream
s transmitted synchronously to the CEP Engine in the cloud using the HTTP protocol, in (b) we perform several processing steps.
he Analysis layer computes statistics and aggregation over the data stream, then, we send the outcome to the Enrichment layer,

which merges the processed data with original data, and finally sends it to the Protocol Connector. For both scenarios, when the CEP
Engine ends the computation, it sends back a notification to the STEAM application using an asynchronous HTTP request.

In both scenarios, (a) and (b), the CEP Engine hosted in the cloud is responsible for data analytics and computation, then sending
the result back to the edge. However, in (b), the STEAM application makes the same computation and obtain the same result, making
the CEP Engine an optional element.

According to Section 5.3, the defined metrics to evaluate the STEAM framework were accuracy, time consumption and data packet
size. Regarding accuracy, we compared the result of calculations made in the edge against the values returned by the cloud, event
by event, and we found no mismatches. Thus, we achieved an accuracy of 100% in calculations. However, we have identified some
packet loss. From 30 tests with 530 events each summarizing 15 900 data frames, only 8 did not return to STEAM application.
Analyzing the logs in detail, we identified that all data have arrived in the CEP engine and were correctly processed, but somehow,
11
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Fig. 10. Average packet size in bytes. Edge (Standard) packets include only basic data while Edge (STEAM) and Cloud include enriched data.

Fig. 11. Response time of one single test that represents the common behavior of all performed tests. The 𝑦-axis is in logarithmic scale.

they got lost on the way back to the edge. It is worth investigating the reasons for this problem in a future work, but they are
outside of the current research scope.

Considering data packet size in JSON format, we identified the increase of bytes amount after the enrichment process, illustrated
in Fig. 10. A single raw data packet with the attributes id, value, unit and timestamp add up to 74 bytes. The STEAM enrichment
process in the edge for six attributes min, max, sum, count, average, and stdeviation injected nearly 99 bytes into the packet, resulting
in 173 bytes per packet on average. Finally, these six attributes computed in the cloud resulted in a 184 bytes packet, increasing
the original raw data packet in 110 bytes. The average packets size increasing due to the enrichment process is significant, reaching
133.8% for the STEAM application in the edge and 148.6% for the CEP application in the cloud. Even though the increase in the
size of the data packets has been significant, sending the data to the cloud has become an optional task, since the values are now
calculated by the STEAM application in the edge.

Regarding time consumption, Fig. 11 depicts one single test that exemplifies the common behavior of all 30 accomplished tests.
The red line at the top of the chart is the processing time in scenario (a) for every data, computed by Eq. (2). The green line at the
bottom of the chart represents only the time consumed in the edge by a standard application, according to Eq. (1). The blue line
at the center of the chart is the processing time spent by STEAM application in scenario (b), running on the edge, using the same
Eq. (1). The 𝑦-axis represents the response time in milliseconds, expressed on a logarithmic scale due to the large difference in the
magnitudes involved in both edge and cloud response times. The 𝑥-axis is the test running time, expressed in seconds.

The values presented in Table 3 are the minimum, maximum, average, median and standard deviation of times involved in the
experiments. The Hybrid column represents the whole scenario depicted in Fig. 9(a), computing 𝐸𝑃 +𝑆𝑛𝑑 +𝐶𝑃 +𝑅𝑒𝑠 times, while
he column Standard is considering only 𝐸𝑃 time over the same scenario. The STEAM column also shows the 𝐸𝑃 time, however,
ver Fig. 9(b) scenario. The average response time in all tests involving all requests made to the cloud was 185 ms with a standard
eviation of 45.3323. The minimum response time was 171 ms and the maximum was 747 ms. Among all requests made to the CEP
ngine, 95% lasted from 171 ms to 223 ms, while 85% spent between 171 ms and 180 ms. Analyzing the time used in the internal
rocessing of the STEAM application running on a Raspberry Pi 2, we obtained an average of 910 μs per processed data frame,
ith a standard deviation of 275.5413. The faster processing time was 236 μs, and the slowest was 2449 μs. For 95% of packets
rocessed, it took between 425 μs to 1361 μs, while 70% of processing happened from 670 μs to 1200 μs. Uniquely comparing the
verage response time, the STEAM application was 230.3 times faster than a hybrid edge-cloud application, with the same accuracy
12
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Table 3
Processing and response times from the experiments.

Metric/Scenario Hybrid edge + cloud Standard edge STEAM edge

Minimum 171 ms 11 μs 236 μs
Maximum 747 ms 99 μs 2449 μs
Average 185 ms 18.88 μs 910 μs
Median 176 ms 18 μs 854 μs
Standard deviation 45.3323 6.1562 275.54138

Table 4
Qualitative comparison between literature and STEAM.

Characteristic Literature STEAM

Application Specific General
Development Hard coded Class API
Analytics Hard coded Function library
Data acquisition Specific Device abstraction
Data export Specific Protocol connector

We also compared the STEAM application against the literature presented in Section 3. We could not make quantitative analysis
ince related work did not provide details about the experiments as well as the source of data sets. Therefore, we made a qualitative
omparison presented in Table 4. The applications developed in the related works are aimed at specific purposes and require
ard-coded development not only for the software structure but data input, output, analytics, and logic. However, the STEAM
pplications are for general purposes, built over a standard class API, and helped by an analytics function library. Furthermore, in
TEAM applications, data acquisition and export are managed respectively by the Device Abstraction and Protocol Connector layers,
roviding abstraction and extensibility seamlessly.

. Conclusion

Although IoT technologies has been researched and improved for the last two decades, the lacking of standardization in
pplication development is still a current problem. In this work we proposed STEAM, an architecture to bring data processing
unctions from cloud to the network edge, reducing response time and allowing decision-making locally. Besides this, we proposed
he enrichment of data streams with locally computed values, using a standard format and nomenclatures, offering valuable data
o middlewares, CEP Engines or custom-made applications hosted in the cloud.

To prove the viability of STEAM, we implemented a framework and developed one application for capturing data from a
emperature sensor, computing values and transmitting both a raw and a enriched data stream to a CEP Engine hosted in Azure. As
result, we obtained a drastic reduction in response time, elimination of timeouts and packets loss without giving up the precision
f the outcomes. In this restricted context, a STEAM application brought data analytics from the cloud to the network edge, making
he need of a CEP Engine unnecessary, allowing energy savings, reduction of computational structure and, consequently, of financial
esources.

Until now, we focused our efforts on validating concepts and implementing features related to infrastructure. In future work,
e intend to develop more analytic modules, such as prediction and pattern recognition. We also plan to implement the STEAM

ramework in C++ language, targeting devices with limited computing resources, like ATMega and ESP micro-controllers.
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