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Abstract
NAS Parallel Benchmarks (NPB) is a standard benchmark suite used in the
evaluation of parallel hardware and software. Several research efforts from
academia have made these benchmarks available with different parallel pro-
gramming models beyond the original versions with OpenMP and MPI. This
work joins these research efforts by providing a new CUDA implementation
for NPB. Our contribution covers different aspects beyond the implementation.
First, we define design principles based on the best programming practices for
GPUs and apply them to each benchmark using CUDA. Second, we provide ease
of use parametrization support for configuring the number of threads per block
in our version. Third, we conduct a broad study on the impact of the number
of threads per block in the benchmarks. Fourth, we propose and evaluate five
strategies for helping to find a better number of threads per block configuration.
The results have revealed relevant performance improvement solely by chang-
ing the number of threads per block, showing performance improvements from
8% up to 717% among the benchmarks. Fifth, we conduct a comparative analysis
with the literature, evaluating performance, memory consumption, code refac-
toring required, and parallelism implementations. The performance results have
shown up to 267% improvements over the best benchmarks versions available.
We also observe the best and worst design choices, concerning code size and the
performance trade-off. Lastly, we highlight the challenges of implementing par-
allel CFD applications for GPUs and how the computations impact the GPU’s
behavior.

K E Y W O R D S

graphics processing units, high-performance computing, NPB, parallel applications, parallel
programming, performance analysis

1 INTRODUCTION

Graphics processing units (GPUs) were originally designed to supply the growing demands of the gaming industry. These
specialized boards offer efficient computation and high throughput in floating point operations per second (FLOPs) by
means of massive parallelism. The processing power offered by this execution model sparked interest in many areas, such

Abbreviations: CFD, computational fluid dynamics; CG, conjugate gradient; FLOPs, floating point operations per second; GPUs, graphics processing
units.
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as artificial intelligence, data science, physics simulation, computational fluid dynamics, and robotics. These new appli-
cations largely increased the popularity of the GPUs, up to the point that nowadays they are included into almost every
modern computational system, including notebooks, smartphones, embedded systems, and supercomputers. However,
efficiently using the massive parallelism available in the GPUs is a challenging task because it requires the developer to
use a different programming paradigm and usually involves architecture- and application-specific optimizations.

Benchmarks are used to overcome hardware and application differences in order to study and promote program-
ming techniques and strategies that can be used to exploit the available hardware. One of the most used benchmarks
suites to evaluate parallel software and hardware is the NAS Parallel Benchmarks (NPB).1 It was developed by the NASA
Advanced Supercomputing Division. The NPB suite consists of five kernels and three pseudo-applications that mimic
features such as data movement and intensive numeric computations present in the domain of computational fluid
dynamics (CFD). The benchmarks are similar to real applications, supporting with scientific reports, different workloads,
and tests for correctness. NPB was originally developed in Fortran and consisted of two versions: a serial version1 for
reference and an OpenMP version2 targeting multi-core architectures. Later, NASA introduced newer versions targeting
different architectures: a version for clusters with MPI named NPB-MPI,3 a version for hybrid programming named NPB
Multi-zone (NPB-MZ),4 and a version targeting grid computing named as NAS Grid Benchmarks (NGB).5 The popular-
ity of NPB led researchers to port it to other languages, such as C++,6 including different parallel APIs such as FastFlow
and TBB.6

Given the pervasiveness of GPUs and the importance of the NPB suite in the area of high performance computing
and parallel programming, it is of much interest to investigate this set of benchmarks for GPUs. Although it was orig-
inally focused on CPU architectures, the NPB suite was already implemented for GPU architectures using OpenACC,7
OpenCL,8,9 and more recently CUDA.9,10 CUDA is the standard way to exploit the parallelism of GPUs from NVIDIA,
which is currently the single biggest manufacturer of GPUs. In addition to re-implementing the five NPB kernels, our
goal is to provide new CUDA versions for the three NPB’s pseudo-applications as well as provide a set of parallel design
principles for GPUs. These design principles were based on our expertise of years with GPU programming in the research
laboratory and on a careful analysis of the GPU literature, which includes books and scientific papers. These can be viewed
as a new guideline for GPU developers. Moreover, we conduct a deeper performance analysis, including a comparative
study with other implementations. Since we provided support for configuring more parameters in NPB, it allows us to
investigate different configurations with CUDA, revealing new insights.

Given this context, our research is motivated by the following questions: (1) How much the GPU performance is
impacted by design principles and optimizations? (2) What are the challenges when implementing parallel CFD applica-
tions for GPUs with CUDA? (3) How much does the different numbers of threads per block impacts the performance of
NPB programs in CUDA? and (4) Which is the best number of threads per block for a specific hardware architecture and
benchmark?

We provide the following scientific contributions:

• A new parallel version for NPB kernels and pseudo-applications with CUDA. In addition to re-implementing
the five kernels of our previous work10 using new design principles and parallelism strategies, we also provide
the three NPB pseudo-applications. With respect to the other approaches, our CUDA version reached performance
improvements up to 267% over the best benchmarks versions available.

• A set of design principles to guide GPU developers for efficient parallelism exploitation. This is a guideline
for developers to efficiently exploit parallelism on GPUs. We evaluated these design principles in NPB and compared
with other studies.

• A parametrization support for configuring the number of threads per block in our CUDA version of
NPB. NPB users can increase the performance analysis space by configuring the number of threads per block
without changing the source code to test how the benchmark performs in different GPU architectures and
benchmarks.

• A discussion and comparison among our and other NPB parallel versions for GPUs. We highlighted the dif-
ferences of parallel programming approaches, techniques, and strategies as well as the number of source lines of code
(SLOC) required.

• An evaluation of the performance impacts for different configurations of the number of threads per block.
These experiments provide new insights and a deeper understanding about the NPB programs with CUDA running
on GPUs.
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• A set of strategies for helping to choose a better number of threads per block for a specific hardware. Finding
the best configuration is not a trivial task. We provide experiments evaluating the advantages and disadvantages of five
different strategies, and discuss their performance.

• A performance comparison with other NPB GPU implementations. A set of experiments was conducted com-
paring our version of NPB in CUDA with the available implementations of NPB for GPUs made by other works in the
academia.

The article is organized as follows. Section 2 describes our implementation of the NPB programs for GPUs. Section 3
presents the experiments, their methodology, and the obtained results. Section 4describes the related work. Finally, we
present our conclusions in Section 5.

2 NPB PROGRAMS

NPB is a consolidated set of benchmarks consisting of five kernels and three pseudo-applications. All eight benchmarks
mimic computations present in the domain of CFD. While the kernels reproduce cores of five different numerical meth-
ods present in CFD applications, the pseudo-applications reproduce full data movement and computations, being larger
and more complex. The original NPB version was written in Fortran language targeting CPU architectures. Later, other
versions for clusters,3 hybrid programming,4 and grid computing5 were released. The NPB suite provides a set of work-
loads called classes, which are ordered by the size, S, W, A, B, C, D, E, and F. The classes S and W are used for simple tests
while the other classes are used for experiments. The full description of the workloads can be found at the NPB website.11

NPB also provides tests of correctness integrated into the benchmarks that are specially useful when applying parallelism
to ensure correctness.

Figure 1 presents a flowchart of the NPB programs. Each benchmark is composed of functions (presented as rounded
rectangles with solid lines) and routines (dotted rectangles). The most expensive function of each benchmark in terms of
time spent to compute is presented with dashed blue borders while the functions with green background are the functions
that we offloaded to the GPU in our CUDA implementation. From left to right, the first five benchmarks are the kernels
(CG, EP, FT, IS, and MG), and the last three benchmarks are the pseudo-applications (BT, LU, and SP). Each benchmark
starts with an initialization step and finishes with a verification procedure that ensures the correctness of the result.
Between the initialization and the verification steps, the benchmark performs the main calculations by calling the most
expensive functions, usually inside an iterative process. EP benchmark is different since the most expensive function is
not inside an iteration. In addition, EP and IS are the only benchmarks where the main computations are inside a single

F I G U R E 1 NPB programs’ flowchart
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function. The measurement of the total execution time starts right after the initialization and ends when the verification
function is called.

Overall, the NPB suite requires a large effort to efficiently port computations to GPUs.12 There are lots of routines with
complex execution flows. The programs present different characteristics that are challenging to port to GPUs, such as
tasks with irregular computation, computations on multi-dimensional arrays composed by up to five dimensions (which
require different data access patterns to improve the GPU performance), data dependencies (which require strategies to
eliminate the dependencies or at least to reduce the performance hit), large chunks of data that does not fit in the GPU
memory. These challenges often require a complete refactoring of the source code in order to achieve good performance
numbers, for which the programmer must possess a deep knowledge about the specific application algorithms and about
GPU programming.

Our CUDA version was implemented using a C++ conversion from the NPB 3.4,6 which follows strictly the original
Fortran version. We checked to ensure that our CUDA version passed in all the NPB correctness tests. Our source codes
are available in the following GitHub repository: https://github.com/GMAP/NPB-GPU. In the next sections we describe
the design principles adopted in our CUDA version of the NPB (Section 2.1), describe the main loop transformations used
when refactoring the NPB programs (Section 2.2), present the main aspects of the kernels (Section 2.3), discuss in details
the pseudo-applications (Section 2.4), compare implementations of the literature (Section 2.5), and briefly describe the
parameters for configuring the number of threads per block in the benchmarks (Section 2.6).

2.1 Design principles

Parallel programming for GPUs is not a trivial task and it is even more difficult to efficiently exploit the GPU par-
allel resources. During the last years working on GPU parallel programming, we have faced different problems and
issues, where only a small portion of them were actually reported by other research papers. We have several lessons
learned that could help other GPU developers to achieve better performance in their GPU applications. Therefore, we are
proposing GPU design principles that serve as a guideline for helping developers achieve better application performance
on GPUs.

Our design principles were built based on our expertise and experience on GPU parallel programming and on a care-
ful analysis of the GPU literature. The analysis of the literature included books, documentations, and scientific papers
(including our previous work10). From the books and documentations, we collected mainly the concepts of GPU archi-
tectures, their programmability, and instructions on how to port legacy code in GPUs to best fit the architecture of those
accelerators. Not all of these recommendations actually worked in practice. For instance, CUDA’s design guide recom-
mends using a small amount of threads per block when a function offloaded to the GPU has several barriers,13 however,
our experiments show that a small number of threads per block increases the overhead of synchronizations, imposing a
larger overhead. In contrast, a larger number of threads per block, decreases the amount of synchronizations and improve
the performance, as we observed in our experiments (Section 3.1). With respect to scientific papers, we analyzed the find-
ings of other authors at porting legacy code and investigating GPU programming techniques and their performance. The
papers often present more empiric approaches than books, which helped us to analyze scenarios and observe the effects
of different kinds of computations when ported to GPUs. Unfortunately, findings such as the author’s choices and imple-
mentation techniques to deal with each scenario presented some inconsistencies and drive developers to bad choices in
terms of performance.

Our design principles organize the concepts, techniques, and best practices applied for GPU programming and pro-
vide a concise guideline. Our inspiration comes from the design patterns from Software Engineering.14,15 We expect that
developers applying it in different algorithms and GPU architectures, will drive their parallel code implementations to
results as the ones presented in NPB. Take into account that when approaching an application to implement GPU par-
allelism, the programmer must analyze the algorithms to decide how to apply our principles, as the GPU performance
depends on several variables. The design principles are briefly described as follows:

1. Avoid offloading complex functions to the GPU. Given that the GPU’s simpler processing cores benefits from
massive parallelism with few complex instructions, it is important to keep the offloaded functions as simple as possible
to extract the best performance from the GPU execution model. Therefore, the programmer should avoid offloading
complex instruction flows with many loops, branches, synchronizations, jumps over different blocks of memory, or
excessive use of registers.
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(A) Uncoalesced access pattern. (B) Coalesced access pattern.

F I G U R E 2 Illustrating memory coalescing patterns. (A) Uncoalesced access pattern, (B) coalesced access pattern

2. Avoid branch divergences. GPU threads are grouped in warps that execute a single common instruction at each
clock cycle. Thus, when a branch divergence occurs, only a single path is executed and the diverging threads (following
other paths) are kept inactive waiting for their path to be executed.

3. Avoid global memory accesses. The GPU global memory is off the chip and has high access latency. To extract the
best of GPU performance it is important to reduce input and output (I/O) times by using other memory levels that
offer lower latencies such as local memory, shared memory, and constant memory. The local memory is off chip, but
its accesses are automatically coalesced by the GPU to improve the bandwidth. Shared memory is on the chip and
offers lower latency access. Constant memory is a read only memory also inside the chip.

4. Avoid memory transfers. Transferring data between the host (CPU) and the device (GPU) memories are very expen-
sive tasks in terms of time. When performing computations in the GPU, even if some specific routine during the
computation runs faster on the CPU, it is preferable to run them on the GPU because it would be more expensive to
copy data from the GPU to the host, perform the computation, and copy the resulting data back to the GPU afterwards.

5. Avoid synchronizations. Synchronizations (also known as barriers) impose performance degradation. Even in the
cases when they are inevitable, they should be delayed as long as possible.

6. Support memory coalescing. Coalesced accesses happens when the GPU threads access contiguous positions in the
memory. The GPU detects the coalesced pattern, and the memory operation is executed in a single clock cycle, loading
the whole block of memory accessed by the threads. Figure 2 illustrates an example of memory coalescing. Figure 2A
illustrates an array of sixteen positions of memory being accessed by four threads (T.0, T.1, T.2, and T.3), however
every thread must issue a separate load instruction, since they are accessing different blocks of memory. In contrast,
Figure 2B illustrates the same four threads accessing contiguous positions of memory. Thus the load instruction is
executed by a single thread and loads the whole block of memory requested by all threads in a single clock cycle.

7. Explore as much parallelism as possible. GPUs are massively parallel accelerators, thus it is essential to expose
as much parallelism as possible. Moreover, massive parallelism helps hiding thread latency. This optimization kicks
in when a GPU thread requests an operation that take several clock cycles to be completed (e.g., branch instructions
or memory accesses). The thread must wait until the operation is finished, then another thread is selected by the
scheduler to be executed. This mechanism helps avoiding idle time in the GPU cores, exploiting the hardware resources
more efficiently because the cores are performing computations even when some threads need to perform long-latency
operations.16,17

2.2 Loop transformations

CPUs have some optimizations that do not exist in GPUs (e.g., branch prediction). Moreover, the compilers optimize the
loops applying different transformations such as vectorization (attempt to run loop iterations concurrently) and tiling
(iterates over blocks of data to fit the cache), reducing overheads and increasing the performance of CPU cores.16,18 GPUs
have none or limited versions of such optimizations, thus loops are expensive operations for GPU threads. When program-
ming for GPUs, manually applying techniques for loop transformations is crucial to increase the overall performance.
Moreover, refactoring of loops is usually necessary to expose massive parallelism suitable to GPU offloading, which also
simplifies the execution flow.16,18 We briefly describe the main loop transformations used in the refactoring of the NPB
Programs as follows:

1. Collapsing. Loop collapsing occurs when the iteration space of nested loops is combined into a single loop. It is useful
to map computations to GPU threads and also simplifies the execution flow by reducing the amount of loops.

2. Fission. Loop fission occurs when a loop is divided into multiple loops. For instance, if a large and complex com-
putation can be separated into two or more simplified functions to be offloaded to GPU, it can improve the overall
performance of the GPU threads.
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3. Fusion. Loop fusion is the opposite of fission, it occurs when the computations of different loops are grouped together
into a single loop. When porting an algorithm to GPUs, fusion is useful because it reduces the amount of loops that a
thread must perform. However, one must be careful about the added complexity of merging multiple code blocks into
a single loop.

4. Unrolling. Loop unrolling occurs when the loop is replaced by many copies of the body of the loop itself, essentially
removing the iterations from the code. It is useful for GPU code because this eliminates the burden of performing tests
and branches as well as operations that are not optimized in GPUs. However, only loops with a fixed small number of
iterations are candidates for loop unrolling.

2.3 Kernels

In this section we briefly describe the main aspects of our CUDA implementation for the five NPB kernels. Also, analysis
of the execution time of each function offloaded to the GPU using the workload class C is presented. For the number
of threads per block we used the GPU warp size in order to collect the execution time of each function. We executed
those experiments on a machine equipped with a processor Intel Xeon E5-2620, and a GPU NVIDIA Titan X. Since we
re-implemented all benchmark kernels from our previous work,10 we summarize the main differences as follows. First,
we used dynamic shared memory instead of static shared memory in GPU. Second, we implemented different memory
access patterns to boost the GPU performance based on the application’s characteristics. Third, we introduced the use of
atomic operations for combining results from different GPU threads.

2.3.1 Conjugate gradient (CG)

Conjugate gradient (CG) is a benchmark characterized by irregular computations that perform the multiplication of
unstructured matrices.1,2 There is a set of tasks composed by unbalanced computations that access different blocks of
memory in the most expensive function of the benchmark (q = A.p presented in Figure 1). Those unbalanced com-
putations were isolated assigning each task (a range of a global array) to a block of threads. Then, the computations
of a single task were distributed between the threads of a single block of threads. We also modified the data access
patterns of the tasks to allow memory coalescing. Consequently, we were able to apply all design principles to this
benchmark due to its characteristics of low data dependency and the possibility of changing the memory access pat-
tern. Loop transformations were not needed because efficient parallelism is reached just by mapping tasks to blocks
of threads.

We also followed this same parallelism strategy in the function ||r|| = ||x - A.z||. The other functions are essen-
tially composed by non-nested loops, where we simply assigned a GPU thread to each iteration. The most expensive
function of CG in terms of time (q = A.p) takes 90.13% of the total execution time with the workload class C. In addi-
tion to being an intensive function, it is called several times. The second most expensive function is ||r|| = ||x - A.z||
which represents 3.61% of the total execution time. It is executed only a few times, although it is also intensive due to
the irregular computations. The other parallelized functions are not intensive and represent only a fraction of the total
execution time.

2.3.2 Embarrassingly parallel (EP)

Embarrassingly parallel (EP) generates a set of n pseudo random numbers and computes Gaussian deviates for each one
of them.1,2 In our CUDA version, the n pseudo random numbers were splitted in subsets and each subset is assigned to
a block of threads. Inside each block of threads, each thread computes a single pseudo random number. Each pseudo
random number requires a very large array to complete the computations, resulting in a high memory consumption that
limits the number of threads created in order to fit the GPU memory capacity. Then, we refactored the algorithm in such
a way that a small array is allocated and it is reused until the computation is finished. We were able to apply each one
of the design principles since EP has low data dependency and enables to change the memory access pattern. No loop
transformations were required, except for the reuse of arrays that are necessary to decrease the requirements of memory
consumption. Since a single function is offloaded to the GPU, it consumes 100% of the execution time.
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2.3.3 Fourier transform (FT)

Fourier Transform (FT) calculates a fast FT in 3D matrices of complex numbers.1,2 The main computation of this bench-
mark is composed by the functions ftx, fty, and ftz, which are computing the FT in the x, y, and z dimensions. The
serial algorithm is equal in all of them and contains a complex instruction flow with data dependencies and six nested
loops. The algorithm performs three consecutive steps on chunks of data: (1) it reads a chunk of data; (2) computes the
chunk; and (3) writes the chunk in the output. Then the steps are repeated to the other chunks. Since complex instruction
flows do not perform well on GPUs, in our CUDA version we rewrote the algorithm by applying two loop transformation
techniques. Using the loop fission technique, we divided the algorithm into three stages (e.g., we split ftxinto ftx1,
ftx2, and ftx3), and with the loop collapsing technique we removed the nested loops from each stage. Then, each stage
was offloaded to the GPU to compute over the whole data instead of small chunks. Lastly, we coalesced the accesses in
the computations of the function ftx, while fty and ftz were already coalesced. This strategy allows a higher degree
of parallelism upon eliminating data dependencies, besides simplifying the original complex instruction flow.

The other functions are composed of nested loops, where we applied the loop collapsing technique and assigned a
GPU thread to each iteration. In the routine setup, the functions indexmap, conditions, and init are offloaded
concurrently to the GPU because there are no data dependencies between them. In this benchmark we were able to apply
all of the design principles. Although FT has several data dependencies, they can be eliminated through refactoring,
allowing a high degree of parallelism. Coalescing the accesses in this benchmark is more complex than in CG and EP
because FT compute 3D arrays, while CG and EP operate over linear arrays. This requires more effort for calculating
contiguous accesses for the GPU threads in the routines. Loop transformations that we implemented are loop collapsing
to increase the degree of parallelism and loop fission to decrease the amount of loops and branches.

The most expensive functions of FT are the second stage from ftx, fty, and ftz, representing 25% of the execution
time each. Functions for loading or writing data are less expensive and spend less than 5% of the execution time each,
which includes evolve, and the first and the third stages from ftx, fty, and ftz.

2.3.4 Integer sort (IS)

Integer sort (IS) sorts integer numbers.1,2 The rank function is composed by a sequence of non-nested loops, where we
applied the parallelism assigning a GPU thread to each iteration from each loop. A synchronization between the CPU
and the GPU is required after the execution of each loop offloaded to the GPU. We applied all of the design principles
because it does not have data dependencies and offers the possibility to change the memory access pattern. However, the
benchmark is not computationally intensive and requires several synchronizations, resulting in low GPU usage. No loop
transformations were required as it is just a matter of assigning a GPU thread to a single iteration of the non-nested loops.
Since the IS benchmark is composed of a single function, it represents 100% of the execution time.

2.3.5 Multi-grid (MG)

Multi-grid (MG) is described by NASA reports as a simplified multi-grid benchmark.1,2 The MG main routine, mg3p,
executes the interp, psinv, resid, rprj3, and zero3 functions. The computations of psinv and resid are double
nested loops that perform a sequence of non-nested loops. These are the two most expensive functions and represent
25.33% and 50.41% of the total execution time, respectively. In our approach, we applied the loop collapsing technique
in the double nested loops, and assigned a GPU thread to each iteration, and then each thread performs a sequence
of non-nested loops. The computations of interp and rprj3 also have double nested loops that perform a sequence
of loops and represent 9.02% and 10.94% of the total execution time, respectively. However, these loops have the same
iteration space and no dependencies between the data. We then applied a loop fusion, grouping the computations into
a single non-nested loop. With this refactoring, the execution flow is transformed into a triple nested loop. We applied
collapsing in the triple nested loop and assigned a GPU thread to each iteration, offloading to the GPU computations
without loops and no branch divergences.

The functions zero3 and comm3 (comm3 is a routine that is executed at the end of other functions, such as resid,
rprj3, psinv, and interp) only update values from arrays. We applied the parallelism in these two functions by
assigning a GPU thread to each array index. The function norm2u3 combines results where we implemented a binary
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tree parallel reduce to perform the computations on the GPU.16 Finally, we applied memory coalescing in all the functions
offloaded to the GPU. We were able to apply all of the design principles in this benchmark due to the low data dependency
and possibility that data access can be grouped in the memory. Applying the memory coalescing required a large effort
similar to the FT benchmark, because MG also computes 3D arrays. Implementing the design principles required the use
of loop transformations, mainly loop collapsing for increasing the degree of parallelism and loop fusion for decreasing
the amount of loops and branches.

2.4 Pseudo-applications

In the next subsections we describe our CUDA implementation for the NPB pseudo-applications. We also present an
analysis of the execution time for each function offloaded to the GPU, using the workload class C and the GPU warp size
as the number of threads per block.

2.4.1 Block tri-diagonal solver (BT)

This benchmark is a block tri-diagonal solver for Navier–Stokes equations.1,2 The most expensive function from BT is
xsolve that is a 3D solver. The algorithm from the xsolve function has double nested loops that perform three stages
of computations: (1) initializes the data; (2) performs a sequence of non-nested loops that do not have data dependencies;
and (3) performs a sequence of loops that have data dependencies.

In our CUDA version, we splitted the algorithm inside the xsolve function into three stages applying the loop fission
technique. The first stage initializes the data, in which there are double nested loops. We applied loop collapsing in the
double nested loop and assigned a GPU thread to each iteration compute independently. This stage represents 0.04% of the
total execution time. The second stage has double nested loops performing a sequence of loops that have no dependencies
between the data. This feature allowed us to apply the loop fusion technique in this sequence of loops, grouping the
computations into a single loop. At this step of refactoring, the second stage was transformed into a triple nested loop.
After, we applied loop collapsing and assigned a GPU thread to each iteration of the final loop to compute independently.
This stage represents 8.33% of the total execution time. The third stage has double nested loops performing a sequence of
loops that have dependencies between the data being processed. Those dependencies are a constraint for applying the loop
fusion technique in the same way it was done in the second stage. Then, we only applied collapsing in the double nested
loops and assigned a GPU thread to each iteration, where each GPU thread performs the sequence of the non-nested
loops with data dependencies. This stage represents 29.06% of the total execution time.

The functions ysolve and zsolve are composed by the same algorithm of xsolve. Therefore, we applied the same
parallelism strategy adopted in the xsolve function. The third stage of ysolve and zsolve represents 27.68% and
15.42% of the total execution time, respectively, while the second stages represent a little more than 5% each. Therefore,
over 90% of the execution time is distributed among these three routines (xsolve, ysolve, and zsolve). The function
rhs has a large amount of code composed by a double nested loop that performs a sequence of loops. In our approach, we
applied the loop fission technique and splitted the computations into nine small stages, where each stage is composed by a
triple nested loop. Then, we applied loop collapsing in each triple nested loop and assigned a GPU thread to each iteration.
The function add has a nested loop where we also applied loop collapsing and assigned a GPU thread to each iteration
compute independently. Moreover, we applied memory coalescing pattern in all functions that were offloaded to the GPU.

This benchmark has data dependencies and a complex instruction flow, however, we were able to apply all of the
design principles after refactoring the application for eliminating data dependencies and reducing the amount of long
latency operations. Applying memory coalescing pattern in BT was much more complex than in the kernel benchmarks,
because this benchmark performs computations over 5D arrays. The amount of refactoring was also larger than in the ker-
nel benchmarks while BT widely required all of the main loop transformations (collapsing, fission, fusion, and unrolling).
Loop unrolling is specially useful in the pseudo-applications as almost all functions in the pseudo-applications have loops
with a small fixed number of iterations.

2.4.2 Lower-upper Gauss–Seidel solver (LU)

Lower-Upper Gauss-Seidel (LU) is a solver for a seven-block-diagonal system.1,2 The most computational expensive func-
tion from LU is blts, which contains wave-front data dependencies2 and represents 32.44% of the total execution time.
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F I G U R E 3 LU’s blts algorithm

The algorithm is composed by n iterations, where each iteration computes the points of a diagonal from the matrix and
each iteration depends on the results from the previous iteration. The points of a diagonal can be computed in parallel,
however, two diagonals can not compute concurrently, because computing the points of a diagonal requires the values
from the points of the previous diagonal. Figure 3 illustrates how the computations from blts are performed in a matrix
of 8 × 8. The direction of the computations is from left to right, totaling 15 diagonals (d) of points to be computed. The
diagonals from 0 (d = 0) to 5 (d = 5) are already computed and the algorithm is computing the points from the diagonal
6, while diagonals 7 to 14 wait to be computed.

The algorithm from blts is composed by two nested loops, where the outermost loop must be executed sequentially
(it iterates over the diagonals of a matrix) and the innermost loop can be executed in parallel (it iterates over the points of a
diagonal). As previously discussed, a synchronization must be performed before the execution of the innermost loop due
to the data dependencies. In our CUDA approach, we offloaded to GPU a routine for each diagonal of the matrix, where
each GPU thread is assigned to a single point of the diagonal. This way, the GPU threads does not perform expensive
operations such as branches or synchronizations. We performed a synchronization between the CPU and the GPU after
offloading a routine to the GPU. Since the algorithm always processes a diagonal of a matrix, we were not able to modify
the memory access patterns.

The function buts has the same algorithm of blts, so we applied the same parallelism strategy. It represents 30.63%
of the total execution time. The function ssor is composed by nested loops and updates the values of the arrays used
in the benchmark. We applied the parallelism by collapsing the loops and assigning a GPU thread to each iteration,
where each thread is mapped to a position of the array. Also, we divide the function in two routines (ssor1 and ssor2),
and each one of them updates different arrays. The rhs function is composed by a double nested loop that performs
a sequence of non-nested loops. In our approach, we applied the loop fission technique and broke the routine in four
stages. Then, we applied the loop fusion technique in each stage of computation to reduce the amount of loops. After
these transformations, we applied the loop collapsing technique and assigned a GPU thread to each iteration. These four
stages of the rhs function account for 31.52% of the total execution time.

This benchmark has complex data dependencies and barriers, but we were able to apply almost all of our design
principles. Unfortunately, it was not possible to implement memory coalescing access pattern because this benchmark
computes the diagonals of matrices. Similar to BT, the LU benchmark also required all loop transformations (collapsing,
fission, fusion, and unrolling) in order to efficiently offload computations for GPU.

2.4.3 Scalar penta-diagonal solver (SP)

Scalar penta-diagonal (SP) is a block penta-diagonal solver.1,2 The most computationally intensive function is xsolve,
which represents 35.99% of the total execution time. This algorithm contains a loop, where each iteration performs a
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62 ARAUJO et al.

sequence of double nested loops. In our approach we refactored the algorithm so that we have two nested loops that
perform a sequence of loops. Then, we collapsed the two outer nested loops and assigned a GPU thread to each iteration of
this new collapsed loop, where each thread performs a sequence of loops. The functions ysolve (14.72% of the execution
time) andzsolve (16.52% of the execution time) follows the same algorithm and we applied the same parallelism strategy
for them. The functions txinvr and add are composed by nested loops, where we applied loop collapsing and assigned
a GPU thread to each iteration. In the rhs function from SP, there is a double nested loop that performs a sequence
of loops. In our approach, we applied a loop fission to split the computations in two stages, which represent 3.25% and
20.69% of the total execution time, respectively. The first stage has a triple nested loop, where we applied a loop collapsing
and assigned a GPU thread to each iteration. The second stage still has a double nested loop that performs a sequence
of loops, so we applied the loop fusion technique to combine the sequence of loops in a single loop. The result of this
refactoring is a triple nested loop, where we applied the loop collapsing transformation and assigned a GPU thread to
each iteration. Finally, we also applied coalesced access patterns to all functions offloaded to the GPU. The second stage
of the rhs function does not perform branch instructions, however the grouping of different routines (through the loop
fusion) requires it to access different blocks of memory, which hinders memory coalescing access pattern.

The SP benchmark has a complex instruction flow for GPU threads with lots of loops and branches, but we were able
to apply all of our design principles after refactoring the routines. Applying coalesced access patterns is as difficult as in
BT because SP also computes 5D arrays. SP also widely required all of the main loop transformations (collapsing, fission,
fusion, and unrolling) for efficient porting the routines to the GPU.

2.5 Comparison with other parallel implementations available in the literature

Different ways of describing the GPU parallelism implementations are presented in the literature. For comparison purpose
and since they were used for different GPU programming models, we adopt the definition of Do et al.9 We do not agree
with the term “optimiztions” used by the authors because they are not actually all implementations that optimize the
performance achieved by the GPU. Therefore, we enumerated and referred to them as the 15 GPU implementations that
are shortly described below:

1. Transform loops (simple or nested) into a function to be offloaded to the GPU.
2. Use loop fission (as described in Section 2.2).
3. Transform a block of code into a loop (this is the opposite of the loop unrolling technique described in Section 2.2).
4. Implement parallel reduce using a binary tree reduction.16

5. Use a variation of a parallel binary tree, where intermediate results of the array are not discarded.16 Also known as
parallel prefix sum.

6. Insert synchronization points to preserve the correctness inside a loop with dependencies.
7. Use local or shared memory, instead of global memory (this is related to our third design principle presented in

Section 2.1).
8. Refactor an algorithm to allow the use of shared memory.
9. Use loop fusion (as described in Section 2.2).

10. Use memory coalescing (this is related to our sixth design principle presented in Section 2.1).
11. Transform the memory layout to improve memory access times.
12. Use synchronization between the threads of a block instead of synchronizations between the CPU and the GPU (this

is only applicable when the computation can be performed by a single block of threads).
13. Use data tiling on global memory to fit the GPU memory capacity.16

14. Overlap data copies and computation, that is, offload computations to the GPU and transfer data from the host
memory to the GPU memory at the same time.16

15. Offload more computation to the GPU, instead of transforming data in the CPU and performing data transfer between
the host memory and the GPU memory (this is related to our fourth design principle presented in Section 2.1).

Table 1 relates these 15 GPU implementations with different works.7-9 Take into account that we carefully inspected
all benchmark source codes to provide these data, which was double checked by our team to avoid mistakes. The first
and second columns of the table presents the references of the compared works and the respective benchmarks. The
subsequent 15 columns represent each of the implementation and shows which works have applied them. For instance,
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ARAUJO et al. 63

T A B L E 1 GPU implementations applied to the NPB programs

Work Bench. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

7 CG ✓ ✓ ✓

8 CG ✓ ✓ ✓ ✓

9 CG ✓ ✓ ✓ ✓ ✓ ✓

Our work CG ✓ ✓ ✓ ✓ ✓

7 EP ✓ ✓ ✓

8 EP ✓ ✓ ✓

9 EP ✓ ✓ ✓

Our work EP ✓ ✓ ✓

7 FT ✓ ✓ ✓ ✓

8 FT ✓ ✓ ✓

9 FT ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Our work FT ✓ ✓ ✓ ✓ ✓ ✓

7 IS Unavailable

8 IS ✓ ✓ ✓

9 IS ✓ ✓ ✓ ✓ ✓

Our work IS ✓ ✓ ✓ ✓

7 MG ✓ ✓ ✓

8 MG ✓ ✓ ✓ ✓ ✓

9 MG ✓ ✓ ✓ ✓ ✓ ✓ ✓

Our work MG ✓ ✓ ✓ ✓ ✓ ✓

7 BT ✓ ✓ ✓ ✓

8 BT ✓ ✓

9 BT ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Our work BT ✓ ✓ ✓ ✓ ✓ ✓ ✓

7 LU ✓ ✓ ✓ ✓

8 LU ✓ ✓ ✓

9 LU ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Our work LU ✓ ✓ ✓ ✓ ✓ ✓

7 SP ✓ ✓ ✓ ✓

8 SP ✓ ✓

9 SP ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Our work SP ✓ ✓ ✓ ✓ ✓ ✓

implementation 1 was applied by all of the works and for each of the eight NPB programs. In contrast, the implementation
12 was implemented only by Do et al.9 in LU.

The oldest work by Seo et al.8 mostly applied the considered basic GPU implementations (1, 4, and 7) while other
implementations such as 10 were applied only inside the kernels. In contrast, Xu et al.7 used partially the basic imple-
mentations 1 and 7, because they use local memory instead of shared memory. However, the authors implemented the
10th for pseudo-applications and the 15th for all the benchmarks. These two additional implementations make this work7

more efficient than the previous one8 in BT and SP (see more details in Section 3.4). The source code of IS benchmark
was not made available, therefore, we were not able to check what implementations were applied to this program.
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64 ARAUJO et al.

Do et al.9 is the most recent and uses the largest set of implementations. It was expected since they have proposed
them. However, the authors followed distinct goals compared to ours. The main goal of our approach is the application
of design principles targeting mainly a high degree of parallelism and transforming the instruction flows as simple as
possible for GPU threads. The NPB implementation from Do et al.9 did 8 and 12 implementations where the refactoring
increases the complexity of the instruction flow for the GPU threads and reduces the degree of parallelism (a function
implementing the implementation 12 must be executed by a single block of threads). Besides that, when data tiling (the
implementation 13) is applied on the GPU global memory it reduces the performance to levels that are worse than the
serial code executing on CPUs (this is also observed in the results reported by Do et al.9).

The GPU implementation 14 that overlaps data computing and data communication was implemented combined
with the implementation 13. Consequently, it harms the GPU performance as it transfers chunks of data between CPU
and GPU. In the NPB programs, computing the whole data in GPU presents a better performance than computing chunks
that must be transferred between the host and the GPU memories, because it increases the burden of communication.
Moreover, this implementation requires the GPU threads to perform a more complex instruction flow to compute the
chunks of data. The GPU implementation 11 requires the creation of routines to transform the data layout, which implies
in additional computations for the GPU. As an example, a routine can be offloaded to the GPU to rotate the dimensions of a
3D array (which also requires a synchronization) so that the same access pattern is used to compute different dimensions.
This also can be used to organize the data to allow memory coalescing access pattern. However, it is possible to compute
different memory access patterns operating directly in the array or the array can be already created with an organization
that allows memory coalescing access pattern.16-18 The implementation 11 improves the code productivity because it
requires less effort from the programmer to compute different access patterns, however, it increases the work performed
by the GPU with additional routines and synchronization barriers to update the data.

Therefore, based on our design principles, we did not apply the implementations 8, 11, 12, 13, and 14 for our
CUDA versions. Another main difference is that we implemented 15 in all benchmarks, avoiding memory transfer
between the CPU and the GPU. The impact of our design principles in the performance will be further discussed in
Section 3.4.

We also measured the number of SLOC from each work using David A. Wheeler’s “SLOCCount.”19 This metric serves
as a rough measure of the effort required to refactor each implementation. Figure 4 compares the SLOC numbers of each
implementation of NPB discussed in this section. The groups of columns in x-axis lists the eight benchmarks in NPB,
while the y-axis presents the number of SLOC. The C++ Serial and OpenMP versions were provided by Löff et al.,6 and
are named as Löff-Serial-2021 and Löff-OMP-2021. The OpenACC version was provided by Xu et al.,7 and is
named as Xu-ACC-2015. The OpenCL versions provided by Seo et al.8 and Do et al.9 are named as Seo-OCL-2011 and
Do-OCL-2019, respectively. The CUDA version provided by Do et al.9 is named as Do-CUDA-2019. Finally, our CUDA
version is named as Our-CUDA-2021.
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ARAUJO et al. 65

Observe that the Löff-Serial-2021 and Löff-OMP-2021 versions have a similar amount of SLOC, which
is explained because the OpenMP programming model uses loop-based directives. Although the OpenACC program-
ming model is also directive-based, the Xu-ACC-2015 version presents similar or even bigger numbers of SLOC
than our CUDA version (Our-CUDA-2021) in most benchmarks. This shows that even with a directive-based API,
a parallel implementation for GPUs still requires non-trivial code refactoring. Moreover, Xu-ACC-2015 implements
an optimization to reduce branch divergences that significantly increases the number of SLOC. The optimization
consists in offloading to the GPU different versions of a single function, where each version contains a specific
path of the original code branches. This reduces the number of branches for the GPU threads and increases the
number of SLOC.

The OpenCL programming model is known to be more verbose than CUDA.16 Thus the OpenCL versions
(Seo-OCL-2011 and Do-OCL-2019) are expected to present more SLOC than other versions. Additionally, the
Seo-OCL-2011 implementation uses different configurations of thread hierarchy for the GPU and each parallel imple-
mentation of the NPB functions for GPU has a version optimized for CPUs. The versions from Do et al.9 (Do-OCL-2019
and Do-CUDA-2019) implement the same parallelism strategy. These versions are very verbose, presenting the largest
number of SLOC for many of the benchmarks. They contain the most complex set of implementations, which turn the
code very complex for implementing other parallelism features or strategies. Overall, our CUDA version is less verbose
and it uses routines that are less complex than Do-OCL-2019 and Do-CUDA-2019. We did so to ease implementing
new features and test different parallelism strategies.

2.6 Parametrization support for configuring number of threads per block

GPU threads are organized hierarchically. A function offloaded to a GPU is executed by a grid that is composed by blocks.
A block is composed by threads and the number of threads per each block modifies the grain of parallelism. In this section,
we discusses the steps to make the threads per block configurable for each GPU function in NPB as well as the ease of use
via parameters. User specifies the number of GPU threads in a simple text file named gpu.config with our standard
configuration file syntax, which has the name of one parameter and its value in each line of the file.

The user can define the number of threads per block for each function of each benchmark with the known
names (Figure 1) following this syntax: <benchmark-name> underscore “THREADS_PER_BLOCK_ON” underscore
<function-name>. Where <benchmark-name> is the benchmark’s two-letter acronym as defined by NPB and
<function-name> is the name of the function that is being offloaded to the GPU. Each parameter name is fol-
lowed by the equal character (=) and an integer value, which is the number of threads per block. For example, the line
IS_THREADS_PER_BLOCK_ON_RANK=256 defines the number of threads per block for the function rank of the IS
benchmark as 256. By default, if there is no specification or an invalid number, the program uses the GPU’s warp size
information as the number of threads per block. To support the dynamic number of threads per block, we implemented
dynamic shared memory allocation instead of the default NPB that allocate statically the memory for the arrays. If there
is not enough shared memory for executing the program with the specified number of threads per block, the configured
number of threads is divided by two until it fits the GPU shared memory capacity. The same is done if there are other
limitations of resources in the GPU. For instance, if a GPU multiprocessor does not have enough registers to handle at
least a block of threads, a memory corruption occurs and it leads to incorrect results in GPU.

3 EXPERIMENTS

The experiments were conducted in a computer with a processor Intel Xeon E5-2620 (6 cores/12 threads), 16 GB of RAM,
and a GPU NVIDIA Titan X Pascal (3584 CUDA Cores) with 12 GB of VRAM. The operating system was Ubuntu 16.04
LTS. The software used was CUDA 10, GCC 9, OpenCL 1.1, OpenACC 2.5, and OpenMP 4.5. We used the compiler flag
-O3 to enable automatic compiler optimizations. The implementations provided by the literature7-9 required the use of
the flag -mcmodel=large and the command ulimit -s unlimited due to the stack memory overflow problems.
Additionally, we deactivated the data tiling on global memory (implementation 13 presented in the Section 2.5) in the
implementations provided by Do et al.9 because it significantly reduces the GPU performance, as discussed in Section 2.5.
We used the workload classes B and C. Although NPB has bigger workloads such as classes D, E, and F, our GPU (NVIDIA
Titan X) does not have enough memory to execute them. Each test was executed ten times and averaged, obtaining a
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66 ARAUJO et al.

negligible standard deviation (SD) that are plotted with error-bars. GPU speedups were computed with respect to the
execution time of the sequential code in CPU.

3.1 Impact of the number of threads per block

In this section, we select the most computational expensive function regarding the execution time of each NPB program
to discuss the impact of changing the number of threads per block. These functions were already identified in Sections 2.3
and 2.4. We ran experiments varying the number of threads per block and collected the execution time of each function
individually.

Figure 5 presents the results for each NPB program with different numbers of threads per block. Each plotted graph
contains two lines, representing the results for classes B (in blue color with vertical ticks) and C (in green color with ×
ticks). The x-axis shows different configurations of the number of threads per block, starting from the GPU warp size (32)
up to the maximum number of threads per block supported by the GPU (1024). The y-axis presents the execution time in
seconds of that specific function for each configuration.

CG’s most expensive function (q = A.p in Figure 5A) was the most impacted varying the number of threads per
block among all the benchmarks. It is best case (using 64 threads per block) is 8.76 times faster than the worst case (1024
threads per block) with class B and 6.84 times faster with class C. This function generates workloads of random sizes
where a large number of them are relatively small. Thus, many threads do nothing wasting GPU cycles when a large
number of threads per block is used.

BT’s most expensive function (xsolve3 in Figure 5F) was the second most impacted. The best case (256 threads per
block for class B and 512 threads per block for class C) is 2.55 times faster than the worst case (32 threads per block) with
class B, and 2.94 times faster with class C. This function performs a large number of synchronizations inside each block
of threads, so using smaller number of threads per block requires more blocks of threads to be created to conclude the
computation. Consequently more synchronizations are executed. In contrast, when using a larger number of threads per
block, there are fewer blocks of threads and fewer synchronizations are being executed.

The ep function from EP benchmark (Figure 5B) was less impacted by changing the number of threads of each block.
The best case (128 threads per block for class B and 32 threads per block for class C) was 1.6 times faster than the worst
case for class B (using 512 threads block) and 1.2 times faster with class C (using 1024 threads per block). GPU’s Stream
Multiprocessors are responsible to execute blocks of threads and they have a limited number of registers. When there is
not enough registers, fewer blocks of threads are executed in parallel. Since the ep function consumes a large number of
registers, when using a large number of threads per block, fewer blocks of threads are executed in parallel.

The resid function from MG (Figure 5E) shows a tendency to improve the performance with a larger number of
threads per block. The best case (256 threads per block for class B, and 1024 for class C) is 1.02 times faster than the
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F I G U R E 5 Performance of the most expensive function of each benchmark offloaded to GPU with different number of threads per
block. (A) q = A.p function from CG, (B) ep function from EP, (C) ftx2 function from FT, (D) rank function from IS, (E) resid function
from MG, (F) xsolve3 function from BT, (G) blts function from LU, (H) xsolve function from SP
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ARAUJO et al. 67

worst case with class B (using 64 threads per block) and 1.25 times faster with class C (using 32 threads per block). This
function performs synchronizations between the threads of each block, having an effect similar to BT’s xsolve3. Yet MG
has fewer synchronizations and therefore, is less impacted by the number of threads per block configurations. Similarly,
IS’s rank function (Figure 5D) performs synchronizations between the threads of a block and also depends on atomic
operations. For this function, the best case (512 threads per block for classes B and C) is 1.2 times faster than the worst
case (32 threads per block for classes B and C) with class B and 1.11 with class C.

Different from the functions previously discussed in this Section, the fftx2 function from FT (Figure 5C) does not
have limitations such as synchronizations (like BT, MG, IS), atomic operations (like IS), small tasks (like CG), or excessive
use of registers (like EP). On the other hand, this function has a complex instruction flow composed by loops, nested
loops, and conditional statements, causing branch divergences where some threads will do nothing at all. Using a smaller
number of threads per block reduces the number of threads in divergent paths, and threads from other blocks can be
scheduled to increase GPU occupation. The best case (32 threads per block for classes B and C) is 1.14 times than the
worst case (64 threads per block for both classes) with class B and 1.04 with class C.

The blts function from the LU benchmark (Figure 5G) has a simple execution flow, where each thread computes
a sequence of instructions without loops, branches, or other complex operations such as synchronizations or atomic
operations. The xsolve function from SP benchmark (Figure 5H) is similar to blts. It also has a simple instruction
flow, besides the GPU threads still need to perform a few non-nested loops. In both cases, the number of threads per block
configuration does not affect the performance.

These experiments highlighted how the number of threads per block configuration can impact on the performance
for a function offloaded to the GPU. It also motivates deeper investigations for evaluating the impact on other benchmark
functions that are offloaded to the GPU. This is the total impact on performance when varying the number of threads
for every function offloaded to the GPU. In Section 3.2, we present different strategies to define and test the number of
threads per block combining different functions of the NPB benchmarks.

3.2 Strategies for choosing the number of threads per block

Our experiments presented in Section 3.1 showed that the number of threads per block may affect the performance of
a function offloaded to the GPU. Therefore, it is important to propose and evaluate different strategies for helping to
choose a better number of threads per block configuration. The available literature does not agree on the optimal strategy
for choosing the number of threads per block.20,21 The most common strategies involve using the maximum number of
threads per block supported by the GPU22 or a fixed number of threads per block chosen by the programmer.21,23 While
using fixed numbers like the warp size or the maximum number of threads supported by the GPU are useful to identify
bottlenecks in a GPU kernel, these numbers may not be the best possible configuration for the thread block size. Another
possibility is to evaluate different numbers of threads per block and check the impact of this parameter in the program
performance in order to identify a better configuration.20 Therefore, we classified this configuration space in five strategies
that were tested for the GPU functions discussed in Section 3.1. We named and described the strategies as follows:

1. Warp. The number of threads per block of each benchmark function offloaded to the GPU will be the GPU warp size.
2. Max. The number of threads per block of each benchmark function offloaded to the GPU will be the maximum number

of threads per block supported by the GPU device.
3. Manual. The number of threads per block will be manually chosen by the expert GPU programmer using their

experience and “intuition.”
4. Profiling. First, a screening is performed in which the same number of threads per block will be assigned to all

function of each benchmark so that the number of threads per block will vary from Warp until Max. Then, the lowest
execution time for each benchmark function that was offloaded to the GPU is captured to set the number of threads
per block. This strategy’s final configuration will have distinct number of threads per block among the functions, the
best configuration based on the screening, for a given benchmark.

5. Exhausting. Similarly to theProfiling strategy, there is a screening phase varying the number of threads per block.
Differently, it test all possible combinations of the number of threads per block for each of the benchmark functions
that are offloaded to the GPU instead of assigning the same number to all benchmark functions. Also, the execution
time of the whole benchmark is taken into account instead of looking for each benchmark function individually. We
capture the configuration that presented the lowest execution time. This screening could take years to finish if all
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68 ARAUJO et al.

offloaded functions would be considered. Therefore, we selected only the functions that spend at least 10% of the total
execution time of the benchmarks. The numbers of threads per block for the other less significant functions were
configured based on the Profiling strategy.

While some strategies agree in some numbers of specific functions, there were no consensus in most of the tests. For
example, for the rank function of the IS benchmark using class B, Warp used 32 threads per block, Max used 1024, Man-
ual used 256 (this was extracted from10), Profiling used 512, and Exhausting used 128. Our GPU version of NPB
contains 94 functions that are offloaded to the GPU, therefore, for the sake of space we do not present all configurations
for the benchmarks. Also, even reducing the number of functions evaluated in the Exhausting strategy by using the
10% execution time threshold, we still had to test 6156 different configurations of threads per block. The complete set of
experiments including the five strategies resulted in 6300 combinations and took a few weeks to finish. This kind of exper-
iments are only possible due to our ease of use of the parametrization support for configuring the number of threads per
block provided now in our NPB version. It does not require the user to change the source code or recompile it for testing
different numbers of threads per block.

3.3 Performance of the strategies for threads per block configuration

To evaluate the performance of the five strategies, we performed a set of experiments by executing 10× each benchmark
with the configuration found by each strategy. Figure 6 shows the average execution time of both classes B (Figure 6A)
and C (Figure 6B) across the whole NPB suite. The benchmarks are identified in the x-axis and the y-axis presents the
execution time in seconds (lower is better) with the SD as error-bars. Each column represent a different strategy in the
graph.

CG’s most expensive function is heavily affected by the number of threads per block and performs better with small
amounts of threads, as discussed in Section 3.1, thus the other strategies easily outperform the Max strategy. Profiling
was the best strategy that is 8.16 (class B) and 6.46 (class C) times faster than the worst strategy (Max). The reason for this
difference in performance is mostly due to the size of the tasks that are generated in the most intensive computations of
the benchmark, mainly by the GPU functions q = A.p and ||r|| = ||x - A.z|| (together they represent 93% of the
total execution time).

In the EP benchmark, the best result for class B was achieved by three different strategies: Manual, Profiling,
and Exhausting, which are all 1.6 faster than the worst strategy (Max). For class C, the Profiling and Exhausting
strategies presented the best performance, being 1.16 times faster the execution time than the worst strategy (Max). How-
ever, in this workload (class C) the Manual strategy is not among the best ones and its performance is closer to the Max
strategy. Since EP consumes a large amount of registers to compute the pseudo random numbers and each GPU multi-
processor has a limited number of registers available, it has to execute fewer blocks of threads concurrently. In such case,
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F I G U R E 6 Total execution time using different strategies to define the number of threads per block. (A) Using the workload class B,
(B) using the workload class C
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ARAUJO et al. 69

the best configuration found by the strategies Profiling and Exhausting was to create blocks with a lower number
of threads. The best number of threads per block vary according to the workload size, so these strategies chose a different
number of threads per block for each workload class.

In the FT benchmark the Profiling and Exhausting strategies presented the best results, which represent a
performance improvement of 7% for both classes B and C in relation to the worst strategy (Max). The main computations
of FT are in the functions that compute the FT in axis x, y, and z (they represent 90% of the execution time). Given that
the performance of FT’s most expensive function is not very dependent of the number of threads per block, as discussed
in Section 3.1, the performance of this benchmark is very similar among all strategies.

For the IS benchmark in both classes B and C the Max, Manual, and Profiling strategies presented the
best performance, with is 1.22 (class B) and 1.10 (class C) times faster than the worst case (Warp). Exhausting
presented a performance slightly lower than the best cases. The main computation of the benchmark has a few syn-
chronizations per blocks of threads. Using a small number of threads per block, more blocks are created and more
synchronizations are executed. This is the reason why Warp presented the worst performance. The MG benchmark
presents very similar behavior and for the same reasons that is intra-block synchronizations. In this case, the Man-
ual and Profiling strategies presented the best performance, showing 1.10 (class B) and 1.15 (class C) times
faster execution times than the worst case (Warp). It is important to recall that Profiling measures the execution
time of each function individually, while Exhausting defines the number of threads per block based on the total
execution time.

BT is among the most significantly impacted benchmarks, with a large performance difference when using different
strategies. Profiling was the best strategy and it is 1.92 (class B) and 2.07 (class C) times faster than the worst case
(Warp). The main computation of the benchmark is the solver (functionsxsolve,ysolve, andzsolve) that represents
75% of the total execution time. The solver has a large and variable amount of synchronizations. Using 1024 threads
per block, 10 times fewer synchronizations are executed than using 32 threads per block. That is why a very different
performance can be observed varying the number of threads, so Warp is the worst strategy. In addition, BT is another
case where Exhausting is less efficient than Profiling.

Both LU and SP benchmarks are not significantly impacted with different numbers of threads per block, thus showing
less than 5% of performance improvements across all strategies and workloads. However, the best strategy for all cases is
Profiling and the worst is Max.

Table 2 presents a summary of results, highlighting the performance improvement of Profiling over the other
strategies. We used Profiling as a baseline since it presented the best performance in all benchmarks. The first
column lists the benchmark and the workload class. The second column lists which strategy presented the worst perfor-
mance. The third column lists which strategies presented a performance equivalent to Profiling. The fourth column
lists the performance improvement (reduction in execution time) of Profiling over the worst case (second column).
The fifth columns lists the performance improvement (reduction in execution time) of Profiling over the Manual
strategy.

Compared to Profiling, Exhausting is slower in most cases. Profiling evaluates each function offloaded
to the GPU individually, while Exhausting measures only the impact of these functions in the total execution
time. In other words, the evaluation from Exhausting is interfered by any procedure beyond the time of the
GPU computing. In the NPB programs, as in most of the real-world applications, the CPU performs loops, con-
ditionals, and interacts with the GPU by performing synchronizations and offloading routines. Therefore, we have
seen that Exhausting has a worse accuracy at predicting a better number of threads per block for each GPU
function.

We also observed that static strategies such as Warp, Max, and Manual can compromise the GPU performance. Warp
and Max are opposites and can perform very differently on routines with complex instruction flows. The problem with a
static strategy is defining a single configuration of threads per block only once, while the best number of threads per block
can vary according to the workload size and the specific characteristics of the GPU function. As an example, we discuss
the case of EP with the Manual strategy. When using the class B, Manual has a performance as good as Profiling.
However, when using the class C, Manual is 14% slower than Profiling. The differences are due to the fact that
Profiling chose a set of configurations for the class B and another set for the class C. The largest improvement of
Profiling over the worst case was 717% (CG with class B) and the best improvement over Manual was 108% (BT with
class C), which are significant improvements. Our results highlight the importance of taking into account the number of
threads per block when evaluating the performance of functions offloaded to GPUs, and how they can provide insights
about the software and hardware characteristics.
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70 ARAUJO et al.

T A B L E 2 Summary of Profiling compared to other strategies

Bench. class Worst strategy Same as Profiling Improve over worst Improve over Manual

CG.B Max - 717% 3%

CG.C Max - 546% 3%

EP.B Max Manual, Exhausting 60% 0%

EP.C Max Exhausting 17% 14%

FT.B Max - 8% 6%

FT.C Max Exhausting 8% 4%

IS.B Warp Max, Manual 22% 0%

IS.C Warp Max, Manual 11% 0%

MG.B Warp Manual, Exhausting 11% 0%

MG.C Warp Manual 16% 0%

BT.B Warp - 92% 91%

BT.C Manual - 108% 108%

LU.B Max - 4% 1%

LU.C Max - 2% 1%

SP.B Max Manual, Exhausting 2% 0%

SP.C Max Manual 1% 0%

Note: Bold Values are highlighting the better performance.

3.4 Performance comparison with implementations available in the literature

In this section, we evaluate the performance of our NPB implementation with CUDA compared to the other approaches
that are available in the literature. For the number of threads per block setup, we used the configurations generated
by the strategy Profiling, according to the findings discussed in Section 3.3. Each NPB version evaluated is named
as the following: Serial version6 as Löff-Serial-2021. OpenMP version6 as Löff-OMP-2021 (this version uses
the number of logical cores of the processor as the number of threads, that is 12 in our setup). OpenACC version7 as
Xu-ACC-2015 (the IS benchmark was not made available by the authors, so it is not used in the experiments). OpenCL
version by Seo et al.8 as Seo-OCL-2011. OpenCL version by Do et al.9 as Do-OCL-2019. CUDA version by Do et al.9
as Do-CUDA-2019. Our CUDA version as Our-CUDA-2021.

In the experiments, we deactivated the optimization of data tiling on global memory (optimization 13 presented in
Section 2.5) for the versions Do-OCL-2019 and Do-CUDA-2019, because it severely degrades the GPU performance
(these two versions implement the same parallelism strategy). Figure 7 presents the speedup over the serial code on the
CPU for the workloads B (Figure 7A) and C (Figure 7B). Figure 8 presents the GPU memory consumption in MB for the
workloads B (Figure 8A) and C (Figure 8A). The x-axis of each figure represent the different benchmarks and the y-axis
present the execution time, speedup, and memory consumption, respectively. Table 3 presents the execution time and
SDs. The first column lists the NPB versions according to our aforementioned naming convention, the second column
specifies the metric (execution time or SD), and the third column onward present the results for each combination of
benchmark and workload.

3.4.1 Execution time and speedup

In CG, our implementation achieved speedups of 65.44 (class B) and 72.73 (class C) times with respect to the sequential
version on CPU. Xu-ACC-2015 presented the lowest speedups because it does not isolate irregular computations. This
version is slower than serial code with class B and only 10% faster with class C. Our approach is 15% (class B) and 6%
(class C) faster than Seo-OCL-2011, because we offload concurrent routines to the GPU when functions that compute
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F I G U R E 7 Speedup of the NPB versions executing on a NVIDIA Titan X GPU over serial code in the CPU. (A) Using the workload
class B, (B) using the workload class C
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F I G U R E 8 GPU memory consumption of the NPB versions executing on a NVIDIA Titan X GPU. (A) Using the workload class B, (B)
using the workload class C

different arrays have no dependencies among them (a different function is offloaded to the GPU for each array). This
approach increases the GPU usage and also simplifies the execution flow. Our approach is 1% (classes B and C) slower
thanDo-OCL-2019 and 2% (class B) and 3% (class C) faster thanDo-CUDA-2019.Do-OCL-2019 andDo-CUDA-2019
merged the CG functions obtain p.q and obtain z and r into a single routine offloaded to GPU and offloading
fewer routines to GPU improved the total execution time of the Do-OCL-2019 version due to the OpenCL runtime.

Our EP implementation was able to achieve 200.99 (class B) and 197.71 (class C) speedup. Our version is up to 330%
(class B) and 312% (class C) faster than Xu-ACC-2015, 41% (class B) and 24% (class C) faster than Seo-OCL-2011,
3% and 12% faster than Do-OCL-2019 as well as 2% and 1% faster than Do-CUDA-2019. Xu-ACC-2015 implements
a strategy of coarse grain parallelism similar to CPUs, where a subset of the pseudo random numbers is assigned to a
GPU thread to be computed. This low degree of parallelism does not maintain a high GPU usage, which is required to
achieve good performance results using the GPUs. The other GPU versions exploited finer grain parallelism by assign-
ing each pseudo random number to a GPU thread. However, Seo-OCL-2011 uses a large block of memory to perform
the computations that results in memory access conflicts and cache-misses. Moreover, the excessive use of registers pre-
vent GPU multiprocessors to launch more blocks of threads in parallel. Do-OCL-2019 and Do-CUDA-2019 perform a
parallel reduce that increases the complexity of the execution flow and requires additional loops, synchronizations, and
branches. In contrast, our version exploits fine grain parallelism, uses small blocks of memory, and atomic operations.
Atomic operations are expensive, but in EP they help in maintaining the execution flow simpler and thus worth the cost.

 1097024x, 2023, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/spe.3056 by C

A
PE

S, W
iley O

nline L
ibrary on [10/04/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



72 ARAUJO et al.

T A B L E 3 Execution time and standard deviation (in seconds)
Bench.
class Metric

Löff-Serial-
2021 Löff-OMP-2021 Xu-ACC-2015 Seo-OCL-2011 Do-OCL-2019 Do-CUDA-2019 Our-CUDA-2021

CG.B Time 90.89 18.49 108.42 1.60 1.37 1.43 1.39
StDev 0.27 0.15 0.06 0.00 0.01 0.01 0.00

CG.C Time 254.93 50.33 232.34 3.73 3.44 3.55 3.51
StDev 1.12 0.20 0.13 0.01 0.01 0.01 0.01

EP.B Time 104.51 12.46 2.24 0.74 0.54 0.53 0.52
StDev 0.04 0.06 0.00 0.01 0.00 0.00 0.00

EP.C Time 418.16 49.78 8.72 2.63 2.39 2.15 2.12
StDev 0.48 0.22 0.00 0.02 0.08 0.10 0.12

FT.B Time 53.81 13.49 6.71 6.21 0.92 1.02 2.34
StDev 0.42 1.10 0.01 0.00 0.00 0.02 0.00

FT.C Time 258.62 62.91 27.35 24.91 3.86 4.10 10.15
StDev 10.72 2.64 0.01 0.03 0.05 0.03 0.00

IS.B Time 1.59 0.53 - 0.18 0.18 0.18 0.18
StDev 0.00 0.02 - 0.00 0.00 0.00 0.00

IS.C Time 6.38 1.85 - 1.29 1.29 1.29 1.29
StDev 0.03 0.08 - 0.00 0.00 0.00 0.00

MG.B Time 4.37 6.26 1.32 0.34 0.20 0.21 0.19
StDev 0.02 0.13 0.02 0.00 0.00 0.01 0.00

MG.C Time 38.27 26.95 7.51 1.73 1.54 1.55 1.60
StDev 0.17 0.15 0.02 0.00 0.00 0.00 0.00

BT.B Time 192.24 67.79 48.67 67.13 8.30 8.34 5.39
StDev 0.45 0.79 0.02 0.02 0.02 0.03 0.01

BT.C Time 791.19 257.54 192.67 282.59 30.93 31.28 22.18
StDev 3.12 1.07 0.06 0.02 0.21 0.01 0.10

LU.B Time 138.67 199.78 39.18 5.16 4.88 7.32 6.25
StDev 0.23 9.79 0.08 0.00 0.02 0.01 0.01

LU.C Time 636.45 402.81 168.93 27.47 23.05 25.18 29.79
StDev 1.68 9.68 0.16 0.00 0.18 0.01 0.02

SP.B Time 131.41 75.83 14.98 20.92 8.58 8.95 3.96
StDev 0.21 0.35 0.31 0.00 0.00 0.00 0.00

SP.C Time 518.47 372.63 53.11 105.01 45.72 46.28 15.06
StDev 0.48 2.42 0.01 0.01 0.02 0.01 0.01

Note: Bold Values are highlighting the better performance.

We reached up to 22.93 (class B) and 25.48 (class C) times of speedup in FT benchmark. This is 186% and 169% faster
thanXu-ACC-2015 and 165% and 145% faster thanSeo-OCL-2011 in classes B and C, respectively.Xu-ACC-2015 and
Seo-OCL-2011 applied a coarse grain parallelism in the main FT functions (ftx, fty, and ftz) because they have sev-
eral dependencies. In our approach, we refactored the Fourier computations in smaller functions with simpler instruction
flows, where data dependencies are eliminated and it is possible to explore finer grain parallelism for increasing the GPU
usage. Additionally, memory coalescing access improved the memory bandwidth. Those are the main reason for the per-
formance difference. However, our version is 61% (class B) and 62% (class C) slower than Do-OCL-2019, and 56% (class
B) and 60% (class C) slower than Do-CUDA-2019. Do-OCL-2019 and Do-CUDA-2019 applied a large and complex
refactoring in the FT main computations for strictly using the GPU shared memory (implementation 8 in the Section 2.5).
Since FT is a memory bound application, the algorithm presented an improved performance using shared memory and
lowered significantly the memory latency. In the technique of tiling data with shared memory,16 the algorithm is refac-
tored in a set of successive steps. Each step loads and copy a portion of global data into the shared memory, computes the
chunk using the shared memory, and writes it back to the global memory. This technique increases the complexity of the
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ARAUJO et al. 73

instruction flow of the GPU threads. However, in the case of FT, where the data is frequently recomputed, reducing the
latency of memory with shared memory reached up better results than using a higher degree of parallelism combined
with a simpler execution flow.

IS benchmark results are equivalent for all GPU implementation approaches. TheXu-ACC-2015version for IS has no
source code available and thus we could not test it. IS has a low degree of parallelism and requires several synchronizations
between the CPU and the GPU, having a low GPU usage. The speedup of our version is 8.84 (class B) and 4.94 (class C)
times. The other approaches present very similar performance numbers since IS is a limited benchmark for GPUs.

The speedups of our MG version are 23.01 (class B) and 23.96 (class C) times. These performance results were possible
because we implemented interp and rprj3 functions with a simple instruction flow without branch divergences. In
thepsinv andresid functions, the instruction flow is more complex, however, we implemented the memory coalescing
access pattern to reduce the memory access latency faced by the GPU threads. Xu-ACC-2015 also eliminated the branch
divergences of the functions interp and rprj3, but the computations are distributed in several routines offloaded
to the GPU. In MG, it results an overhead with lots of routines being offloaded to GPU (each one of them requires a
synchronization with the CPU). Additionally, the memory accesses are not coalesced in the functions psinv and resid.
Our version is also faster than Seo-OCL-2011: 78% faster with class B and 8% faster with class C. The strategies are
similar, but the access patterns are different, which reflects in the performance. Our parallelism strategy is also similar to
Do-OCL-2019 and Do-CUDA-2019, consequently, these versions presented a similar performance.

Our CUDA version for BT benchmark achieved 35.69 (class B) and 35.66 (class C) times of speedup. BT is a complex
pseudo-application with several dependencies and require refactoring to expose a degree of parallelism suitable to GPUs.
Seo-OCL-2011 keeps the original structure of the benchmark and applies coarse grained parallelism, consequently,
this version presented the lowest speedups, 2.86 (class B) and 2.8 (class C) times with respect to the sequential version.
Xu-ACC-2015 applied optimizations such as memory coalescing access pattern, being able to achieve higher speedups
of 3.95 (class B) and 4.11 (class C) times. Do-OCL-2019 and Do-CUDA-2019 refactored the main algorithm (functions
xsolve, ysolve, and zsolve) to expose the parallelism and presented interesting results for executing on GPUs, with
speedups from 23.05 to 25.29 times. Our approach is up to 54% (class B) and 55% (class C) faster than Do-OCL-2019 and
Do-CUDA-2019. We exploit finer grain parallelism in all GPU functions of this benchmark (which is only possible due
our refactoring) and our implementation has a simpler instruction flow than Do-OCL-2019 and Do-CUDA-2019.

LU benchmark uses a data access pattern that does not allow memory coalescing access, because it requires computing
the diagonal of matrices. In our approach, the main functions offloaded to the GPU (blts and buts) have a simple
instruction flow, where each GPU thread computes a single element of a diagonal. However, the routine must be offloaded
to the GPU several times to compute the whole matrix. This resulted on a overhead, decreasing the overall performance of
the benchmark. Our approach was able to reach up to 22.20 and 21.37 times of speedup for classes B and C, respectively.

On the other hand, Do-OCL-2019 and Do-CUDA-2019 uses a parallelism strategy to offload to GPU a routine that
is executed a single time and compute all the diagonals of the matrix. The routine is executed by a single block of threads,
resulting in a low degree of parallelism and the GPU threads perform a complex instruction flow with loops, branches,
and synchronizations. Our version is slower than Do-OCL-2019, 22% with class B and 23% class C. When compared
to Do-CUDA-2019, our version is 17% faster with class B and 15% slower with class C. This is because the overhead
of offloading several routines to the GPU was worse than the overhead of offloading a single routine with a complex
instruction flow and performing several synchronizations between the threads of the block.Seo-OCL-2011has a similar
strategy to ours concerningblts andbuts, but it has more optimized routines for therhsfunction, with fewer branches.
Xu-ACC-2015 presented the lowest speedups due to the use of coarse grained parallelism.

The speedups of our SP version are 33.19 and 34.42 times for classes B and C, respectively. SP is a complex benchmark
that needs refactoring to expose massive parallelism. In our version we rewrote the main computations to allow a higher
degree of parallelism (we increased the total amount of threads from nz to nz ∗ ny with our refactoring) and simplify the
instruction flow (we reduced the total amount of branches from O(ny ∗ nx) to O(nx)). We also applied different memory
access patterns that were also crucial for the performance improvement, because SP computes arrays with up to five
dimensions and significantly benefit from memory coalescing access. Our CUDA version is 428% (class B) and 597%
faster (class B) than Seo-OCL-2011 that exploits coarse grained parallelism as well as 278% (class B) and 253% faster
(class B) than Xu-ACC-2015 that implemented memory coalescing access, but used a limited degree of parallelism.
Do-OCL-2019 and Do-CUDA-2019 also refactored the SP benchmark, but our CUDA version has a higher degree
of parallelism and a simpler instruction flow. The performance of our version after refactoring the main computations
from SP is similar to Do-OCL-2019 and Do-CUDA-2019. Nonetheless, the speedup was significantly improved after
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74 ARAUJO et al.

modifying the memory access patterns. Our version is 117% (class B) and 204% (class C) faster than Do-OCL-2019 as
well as 126% (class B) and 207% (class C) faster than Do-CUDA-2019.

3.4.2 Memory consumption

Evaluating memory consumption can provide other insights when approaching a benchmark for GPUs. For example,
without refactoring the EP benchmark for data recomputing it is not possible to apply massive parallelism, because the
original algorithm requires large amounts of memory for each GPU thread, forcing the creation of a small number of
threads. Observing the memory footprint of an algorithm also helps to predict if a given GPU has enough memory to
perform a specific workload.

Overall, our CUDA implementation presented an amount of GPU memory consumption similar to the best case from
other approaches, as presented in Figure 8. The only exception is for FT, where Seo-OCL-2011, Do-OCL-2019, and
Do-CUDA-2019 allocate just a small amount of memory and reuse it until the computation is finished. Another inter-
esting case happens in the IS benchmark, where Do-OCL-2019 performs some routines using the CPU, lowering the
requirements for memory usage from the GPU. Xu-ACC-2015 presented some of the highest requirements of memory
overall. In EP, the memory consumption is higher than other approaches because the algorithm was not rewritten to
consume fewer memory resources, so this version uses a lower amount of GPU threads to fit the problem in the GPU
memory. However, as previously discussed, this negatively affects the performance. In FT, this version allocates the 3D
arrays always using the size of the largest dimension. In workloads such as class C, where the arrays have dimensions of
different size, not all amount of memory that was allocated is used.

3.4.3 Additional performance experiments on NVIDIA V100 Volta and NVIDIA T4 Turing

This section shows the performance achieved of NPB for different GPUs. Due to space constraints, we are just presenting
a summary of the experiments since they behave similar to the results on Titan X Pascal discussed previously in this
article. Figure 9 presents the speedup over the serial code on the CPU for the workloads B (Figure 9A) and C (Figure 9B),
when executing the experiments on a machine equipped with a processor E5-2698 v3 (16 cores/32 threads) with 16 GB
of RAM, and a GPU NVIDIA V100 Volta (5120 CUDA Cores) with 32 GB of VRAM. Figure 10 presents the speedup over
the serial code on the CPU for the workloads B (Figure 10A) and C (Figure 10B), when executing the experiments on a
machine equipped with a processor E5-2698 v3 (16 cores/32 threads) with 16 GB of RAM, and a GPU NVIDIA T4 Turing
(2560 CUDA Cores) with 32 GB of VRAM.

Overall, we observed that the difference of performance among the GPU implementations is similar when they are
tested on other GPUs. However, we observed an improvement when executing our version of EP on these newer GPU
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F I G U R E 9 Speedup of the NPB versions executing on a NVIDIA V100 GPU over serial code in the CPU. (A) Using the workload class
B, (B) using the workload class C
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F I G U R E 10 Speedup of the NPB versions executing on a NVIDIA T4 GPU over serial code in the CPU. (A) Using the workload class B,
(B) using the workload class C

architectures. Our EP version is only 2% faster than Do-CUDA-2019when executing on the Titan X (Figure 7), nonethe-
less, our version of EP is up to 37% (Class C) and 73% (Class B) faster than Do-CUDA-2019 when executing on the
V100 (Figure 9) and T4 (Figure 10). This kind of improvement occurs due to automatic optimizations provided by newer
NVIDIA GPUs. In this case, we used atomic operations in contrast to the other approaches that implemented reduc-
tion algorithms. Another difference noted occurs in the IS benchmark when executing on the T4 GPU (Figure 10). In
this benchmark, the OpenMP version is faster than the GPU versions. This occurs because the IS benchmark has lim-
itations for GPU parallelism. The T4 is less powerful than the other GPUs, and the processor used in this test has 16
physical cores, contrasting with 6 cores of the processor used in the test with the Titan X GPU. Finally, the CG version
from Xu-2015-ACC presented best speedups when using the GPUs V100 and T4. The reason is because we ran those
experiments with OpenACC using the PGI 19 instead of GCC-9. PGI was able to generate a more efficient code for GPUs.
Unfortunately, the cluster we used had no compatible GCC version for running the OpenACC codes.

3.4.4 Final remarks

The NPB programs provided interesting cases of study, because each benchmark has a set of features that impacted on the
GPU performance in different ways. Table 4 presents a summary of the results and highlights the speedup of our approach
over the results of other works (the summary considers the results on the GPUs Titan X, V100, and T4). The first column
lists the benchmark and workload class. The second and third column lists the versions that presented the worst and best
performances, respectively. The fourth to seventh columns lists the performance differences of our approach compared
to Xu-ACC-2015,7 Seo-OCL-2011,8 Do-OCL-2019,9 and Do-CUDA-2019.9

EP offers the best opportunity for the massive parallelism of the GPUs, given that the whole computation can be
performed offloading a single routine to the GPU, without having data dependencies or synchronizations. However, the
algorithm requires refactoring to fit the larger workloads in the GPU memory capacity. Unlike EP, CG and other bench-
marks require offloading and synchronizing several routines to the GPU, with more complex computations. CG presents
a case for unbalanced computations that access different blocks of memory. However, isolating the irregular computation
allows one of the best speedups from the benchmarks. FT and MG manipulate 3D data and require different memory
access patterns to improve its performance. While FT often recomputes data, MG has irregular computations and the
routines must be offloaded several times to the GPUs. These features need different refactoring to favor the hardware char-
acteristics of GPU, including breaking large routines into multiple smaller routines to simplify the instruction flow for
the GPU threads and merging multiple small routines into a single routine to avoid excessive synchronizations between
CPU and GPU. The pseudo-applications BT and SP work with 5D arrays and require considerable refactoring to expose
massive parallelism that fits the GPU programming model. When refactored, these programs are able to achieve similar
speedups to the kernels such as FT and MG. The pseudo-application LU exposes complex data dependencies and high-
lights the overhead of synchronizations for GPU. In contrast to the benchmarks, IS is the most difficult case to obtain
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76 ARAUJO et al.

T A B L E 4 Summary of our approach compared to the other works available in the literature (the results on the Titan X, V100, and
T4 GPUs are considered)

Bench.
class

Worst
version Best version

Improve
over Xu-ACC-2015

Improve
over Seo-OCL-2011

Improve
over Do-OCL-2019

Improve
over Do-CUDA-2019

CG.B Xu-ACC-2015 Do-OCL-2019 7706% 20% 15% 4%

CG.C Xu-ACC-2015 Do-OCL-2019 6529% 9% 4% 1%

EP.B Xu-ACC-2015 Do-CUDA-2019 1194% 79% 73% 66%

EP.C Xu-ACC-2015 Do-CUDA-2019 1919% 37% 37% 37%

FT.B Xu-ACC-2015 Do-OCL-2019 186% 165% −61% −56%

FT.C Xu-ACC-2015 Do-OCL-2019 169% 145% −62% −60%

IS.B Equal Equal - 0% 0% 0%

IS.C Equal Equal - 0% 0% 0%

MG.B Xu-ACC-2015 Do-OCL-2019 593% 151% 6% 28%

MG.C Xu-ACC-2015 Do-OCL-2019 370% 29% 3% 3%

BT.B Seo-OCL-2011 Do-OCL-2019 804% 1491% 64% 55%

BT.C Seo-OCL-2011 Do-OCL-2019 769% 1734% 54% 47%

LU.B Xu-ACC-2015 Do-OCL-2019 673% −13% −5% 26%

LU.C Xu-ACC-2015 Do-OCL-2019 483% −8% −23% −15%

SP.B Seo-OCL-2011 Do-OCL-2019 316% 580% 267% 282%

SP.C Seo-OCL-2011 Do-OCL-2019 285% 821% 204% 207%

Note: Bold Values are highlighting the better performance.

high speedups, because it has the smallest potential of parallelism exploitation from the NPB programs influenced by its
data dependencies.

As the benchmarks have different characteristics, we followed different strategies to apply our design principles pre-
sented in Section 2.1 regarding FT and MG as an example. In FT, the algorithms have a complex instruction flow and
imply a performance penalty to GPU threads, with excessive amounts of branches. In this case, it is worthy to apply
refactoring in the algorithm and split it into a few CUDA kernels, where the excessive amount of branches per thread is
significantly reduced. In contrast, the opposite occurs in MG since it has a few routines with simple instruction flow and
no data dependency. In this case, it is worthy merging the computation into a single CUDA kernel and reducing the num-
ber of times that we need to launch CUDA kernels, which are also expensive operations. In FT we amortize the number
of branches, and in MG we amortize the number of kernel launches.

Porting the NPB programs to GPU requires a large effort and a deep knowledge about the algorithms. Some of the
main challenges include: eliminating data dependencies, rewriting the algorithms in order to expose the parallelism,
elaborating fine grained parallelism strategies, breaking large problems into smaller and simpler tasks, and providing
different access patterns for several routines of a single program to allow memory coalescing access pattern. Those chal-
lenges led us to implement different versions of the benchmarks, applying different programming techniques and using
different CUDA features. Despite the effort put in the benchmarks, some programming techniques or CUDA features
such as CUDA streams and CUDA Dynamic Parallelism did not show any improvement in the routines that we tested,
and imposed additional overheads in the benchmarks. Nonetheless, we observed relevant performance improvements
compared to the parallel version of the programs using OpenMP. For instance, when running the experiments on the
Titan X GPU (Figure 7), our CUDA version was up to 1333% faster than OpenMP in CG, 2296% in EP, 519% in FT, 194%
in IS, 3194% in MG, 1157% in BT, 3096% in LU, and 2374% in SP. These results show that is worth porting the benchmarks
to GPUs, even though there is a large programming effort involved. Additionally, some NPB programs have limitations
when running on CPUs. For example, in the MG benchmark the OpenMP version does not present speedup over the
serial code. The reason is because MG has irregular computations, so the CPU can not benefit from cache memory, while
the GPU can hide the memory latency through massive parallelism. The previous work of our research group discusses
in details the performance and limitations of the parallel version for the NPB programs with OpenMP.6
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ARAUJO et al. 77

We also provided a comprehensive discussion over interesting cases of study when applying our design principles
(presented in Section 2.1) in the NPB programs with CUDA. When compared to the other works where principles such as
exploiting a high degree of parallelism, simplifying the instruction flow, and applying memory coalescing access pattern
were not used. This is why in several cases we observed a relevant performance difference. The only exceptions are in
the benchmarks FT and LU. In FT that often recomputes data, it is worth to increase the complexity of the instruction
flow to reduce the memory latency. In LU it is worth to provide lower degrees of parallelism and increase the complexity
of the instruction flow to amortize the overhead of offloading several routines to the GPU. As show in the Table 4, our
improvements over the best CUDA version of literature (Do-CUDA-2019) were up to 4% in CG, 66% in EP, 28% in MG,
55% in BT, 26% in LU, and 282% in SP.

4 RELATED WORK

As related work we selected papers that manually implemented the NPB standard version, excluding papers focused on
other versions (e.g., NPB-MZ or NPB-MPI) or related to automatic code generation.

Gong et al.21 implemented the EP with CUDA and compared the performance to OpenMP. The authors discussed
several aspects about the implementation strategy. The complete NPB was implemented with OpenCL by Seo et al.8 The
OpenCL version was written targeting CPUs and GPUs. A comparative study with CUDA, MATLAB, OpenACC, and
OpenCL was done by Malik et al.24 The authors evaluated manual effort, conceptual programming effort, memory require-
ments, and performance. A study was carried out implementing the benchmark SP with CUDA and OpenACC by Jin
et al.25 The authors introduced several versions of the implementation where different GPU optimizations were explored.
An OpenACC version of the NPB is provided by Xu et al.7 The authors discussed programmability, performance portabil-
ity, steps to approach an application to apply parallelism, and listed several GPU optimization strategies. An improvement
of the work by Seo et al.8 was done in Reference 9. The authors presented a set of 15 optimizations for GPUs and applied
them to the original OpenCL code. In our previous work,10 we described the design principles and strategies we followed
to implement the five kernels of the NPB with CUDA. We also compared the performance and memory consumption to
other works.

Table 5 presents an overview of the related works. The first column shows the reference and the publication year. The
second column lists the NPB programs implemented. The third column lists which Application Programming Interface
(API) were used to implement the GPU parallel versions. The fourth column identifies if the source code is available to
download. The fifth column specifies the programming language used in the implementation. The sixth column identifies
if the number of threads per block is configurable through parameters. Finally, the seventh column lists the CPU and
GPU that composes the evaluation environment that was used in the experiments.

The works7,8 provided the first complete GPU implementation of the NPB programs and their source code are used
as a starting point for many other works. The works7,8,21,24,25 are relatively old (for the GPU research pace) and presented
several limitations related to the GPU architectures that were available at that time, such as: (a) the low amount of inboard
memory that makes prohibitive the evaluation of workloads of relevant size to analyze the performance; (b) the low
amount of cores, that makes difficult evaluating the suitability of parallel strategies. These characteristics limited the
GPUs to small performance improvements, with the program sometimes running even slower than the code running on
the CPU.7,8

The works9,10 are the most recent approaches of the literature and presented the most effective programming tech-
niques and the highest speedups. We extend10 by providing a CUDA version for the pseudo-applications from NPB, a new
version of the NPB kernels implemented by applying a novel set of design principles, and we further discuss its implica-
tions. In addition, we make a broader study with emphasis on strategies for choosing different numbers of threads per
block and their impact on performance. The works21,24 were the only ones to explore the performance of the NPB pro-
grams related to the number of threads per block. The performance of the EP benchmark is observed when varying the
number of threads per block in the work by Gong et al.21 However, besides evaluating a single benchmark, the authors
only ran experiments with 64, 128, and 256 threads per block. A strategy for choosing the number of threads per block is
described by Malik et al.24 However, the strategy was not efficient in some cases, where CUDA performance was worse
than MATLAB that automatically chooses the number of threads per block for builtin functions that are offloaded to
GPUs. The main problem of their strategy is that it assigns the same number of threads per block to all functions that are
offloaded to the GPU, while we observe that the functions have different characteristics, thus each one of them perform
better with a different number of threads per block. The worst case was in the CG kernel, where the author performed the
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T A B L E 5 Overview of the related works

Year Benchmarks GPU API Source avail. Lang. Thread Param. Hardware

201021 EP CUDA No C No (1) Intel Q6600, NVIDIA
GT200

20118 BT, CG, EP, FT, LU,
IS, MG, SP

OpenCL Yes C No (1) 2 × Intel X5660, NVIDIA
GTX 480

201224 CG, EP, FT, MG CUDA, OpenCL,
OpenACC, MATLAB

No C No (1) Intel X5560, NVIDIA
C2050

201225 SP OpenACC No Fortran No (1) Intel X5670, NVIDIA
M2090,

(2) AMD Opteron 2354,
NVIDIA GTX 480

20157 BT, CG, EP, FT, IS,
LU, MG, SP

OpenACC Yes C No (1) Intel Xeon (unspecified
version), NVIDIA Kepler
K20

20199 BT, CG, EP, FT, IS,
LU, MG, SP

CUDA, OpenCL Yes C No (1) Intel Xeon Gold 6130,
NVIDIA V100,

(2) Intel Xeon Gold 6130,
AMD Radeon VII

202010 CG, EP, FT, IS, MG CUDA Yes C++ No (1) Intel Xeon E5-2620,
NVIDIA Titan X Pascal

Our work
2021

BT, CG, EP, FT, IS,
LU, MG, SP

CUDA Yes C++ Yes (1) Intel Xeon E5-2620,
NVIDIA Titan X Pascal,

(2) Intel Xeon E5-2698 v3,
NVIDIA V100 Volta,

(3) Intel Xeon E5-2698 v3,
NVIDIA T4 Turing

benchmark using 256 threads per block and the main computations of this benchmark suffer an overhead when executing
with a large number of threads per block.

5 CONCLUSION

In this article we presented a new CUDA implementation of the NPB kernels and pseudo-applications applying a specific
set of best programming practices for GPUs, which was referred during the paper as being design principles. We presented
a study for evaluating how the number of threads per block can impact the GPU performance, where the results showed
that the computations offloaded to GPU can be highly impacted when choosing different strategies to pick up the number
of threads per block. We also compared our CUDA version to the parallel versions available in the literature, analyzing
performance, memory consumption, programming effort, and design choices. The comparative study with the literature
highlighted how different design choices can affect the GPU behavior in the NPB benchmarks. We obtained a significant
amount of speedup improvement compared to the different approaches. In addition to that, our investigations and analysis
contributed to the discussion about the challenges of porting CFD applications to GPUs, and how the computations from
this domain can impact the performance of GPUs.

This study can be extended in several ways, thus we suggest some investigations that can be followed in the future.
Design principles for GPUs can be further investigated, reasoning about exceptional cases where specific optimizations
are more suitable to boost the GPU performance. Studies may suggest a newer set of optimizations to be applied in the
CUDA version of NPB, such as the possibility of executing workloads larger than the memory capacity of GPU without
compromising the application performance. Our design principles can be applied in NPB using other GPU frameworks
such as Thrust from NVIDIA or OpenCL. Further studies may exploit multi-GPU parallelism since our work was limited
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ARAUJO et al. 79

by a single GPU board. Different GPU parameters can also be investigated and implemented in the NPB, such as the
amount of shared memory or different memory access patterns.
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