
Computer Standards & Interfaces 84 (2023) 103691

A
0

Contents lists available at ScienceDirect

Computer Standards & Interfaces

journal homepage: www.elsevier.com/locate/csi

A parallel programming assessment for stream processing applications on
multi-core systems
Gabriella Andrade a,∗,1, Dalvan Griebler a,b,∗∗,1, Rodrigo Santos c, Luiz Gustavo Fernandes a

a Parallel Applications Modeling Group (GMAP), School of Technology, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
b Laboratory of Advanced Research on Cloud Computing (LARCC), Três de Maio Faculty (Setrem), Três de Maio, Brazil
c Department of Applied Informatics, Federal University of the State of Rio de Janeiro (UNIRIO), Rio de Janeiro, Brazil

A R T I C L E I N F O

Keywords:
Parallel software
Parallel computing systems
Programming productivity
Programming effort
Stream parallelism
Programming usability

A B S T R A C T

Multi-core systems are any computing device nowadays and stream processing applications are becoming
recurrent workloads, demanding parallelism to achieve the desired quality of service. As soon as data, tasks,
or requests arrive, they must be computed, analyzed, or processed. Since building such applications is not a
trivial task, the software industry must adopt parallel APIs (Application Programming Interfaces) that simplify
the exploitation of parallelism in hardware for accelerating time-to-market. In the last years, research efforts
in academia and industry provided a set of parallel APIs, increasing productivity to software developers.
However, a few studies are seeking to prove the usability of these interfaces. In this work, we aim to
present a parallel programming assessment regarding the usability of parallel API for expressing parallelism
on the stream processing application domain and multi-core systems. To this end, we conducted an empirical
study with beginners in parallel application development. The study covered three parallel APIs, reporting
several quantitative and qualitative indicators involving developers. Our contribution also comprises a parallel
programming assessment methodology, which can be replicated in future assessments. This study revealed
important insights such as recurrent compile-time and programming logic errors performed by beginners
in parallel programming, as well as the programming effort, challenges, and learning curve. Moreover, we
collected the participants’ opinions about their experience in this study to understand deeply the results
achieved.
1. Introduction

In the last decade, computers were primarily parallel architectures
due to the limitations faced by the silicon industry in the design of
the central processing unit (CPU) and the requirements to increase
performance [1,2]. As such, multi-core CPUs emerged, coupling several
cores in a single chip. Computers that have this kind of CPU, con-
taining one or more cores, are called multi-core systems. To enable
the parallelism exploitation of such architecture, the programmer must
develop the software using parallel programming techniques, libraries,
frameworks, mechanisms, and paradigms. In addition, the programmer
has to know the computer architecture characteristics, which vary
among vendors and platform types [3,4]. Therefore, this is not a simple
task for application programmers, who usually focus on developing the
business logic code. It is also a challenging task for system programmers

∗ Corresponding author.
∗∗ Corresponding author at: Parallel Applications Modeling Group (GMAP), School of Technology, Pontifical Catholic University of Rio Grande do Sul (PUCRS),

Porto Alegre, Brazil.
E-mail addresses: gabriella.andrade@edu.pucrs.br (G. Andrade), dalvan.griebler@pucrs.br (D. Griebler), rps@uniriotec.br (R. Santos),

luiz.fernandes@pucrs.br (L.G. Fernandes).
1 Authors that majority and equivalently contributed.

who are experts in parallel programming because they need to handle
all these details.

New parallel APIs (Application Programming Interfaces) have been
created on top of the POSIX Threads (Pthreads) to leverage paral-
lel programming abstractions and release programmers from dealing
with lower-level implementation and architecture-specific optimiza-
tions. There are APIs based on structured and non-structured ap-
proaches for parallel programming. Structured parallel programming
is a higher-level approach where the concept leverage parallel patterns
that can be a receipt/guide to writing efficient parallel software.
Moreover, it can be provided as ready-to-use templates (high order
functions) that already implement lower-level parallelism, such as the
threads’ communication and synchronization, independently of the
vailable online 14 September 2022
920-5489/© 2022 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.csi.2022.103691
Received 31 January 2022; Received in revised form 7 August 2022; Accepted 4 Se
ptember 2022

http://www.elsevier.com/locate/csi
http://www.elsevier.com/locate/csi
mailto:gabriella.andrade@edu.pucrs.br
mailto:dalvan.griebler@pucrs.br
mailto:rps@uniriotec.br
mailto:luiz.fernandes@pucrs.br
https://doi.org/10.1016/j.csi.2022.103691
https://doi.org/10.1016/j.csi.2022.103691
http://crossmark.crossref.org/dialog/?doi=10.1016/j.csi.2022.103691&domain=pdf

Computer Standards & Interfaces 84 (2023) 103691G. Andrade et al.
target architecture. Conceptually, all parallel patterns can be arbitrarily
nested to build new pattern compositions [5,6].

The parallel patterns can be classified mainly in data (e.g., Map,
Reduce, and Stencil) and stream (e.g., Pipeline, Farm, and others)
parallelism. As stream processing applications comprise collecting, pro-
cessing, and analyzing high volume, heterogeneous, and continuous
data streams in real-time [7], parallelism exploitation can be imple-
mented mainly using the Pipeline and Farm patterns. Additionally,
some stream processing applications present characteristics from which
parallel data patterns could be applied or combined to increase the
degree of parallelism [8].

Stream processing applications executing on multi-core systems
(easily available on personal computers, cell phones, and servers) are
recurrent in our day-to-day life [9]. Examples are video and audio
processing, and data compression and analytics. This fact does not
necessarily mean they are parallel software. A developer counts on a
variety of languages and libraries for parallel programming based on
different programming approaches to do this. Choosing one of them is a
hard decision since there are few studies focused on evaluating parallel
APIs.

Few existing studies were conducted to extract only specific met-
rics such as the development time, parallelization performance, and
efficiency of a parallel application without considering the human de-
velopment effort and particular challenges faced by programmers [10–
14]. Moreover, most of these studies did not follow a well-controlled
experimental methodology and did not provide deeper discussions [15–
19]. Finally, parallel programming evaluation for stream processing
applications on multi-core systems has not been studied yet (Section 3).
The lack of information about usability makes it difficult for developers
to make the appropriate decision and help with hints to improve the
parallel API abstractions [20,21].

In this context, this work aims to assess parallel programming
usability based on software engineering methodologies [22] for a quan-
titative and qualitative experiment. The scope of this study comprises
three parallel APIs based on structured parallel programming from
academia and industry for expressing parallelism in stream processing
applications targeting multi-core systems. Unlike studies that perform
experiments with experienced developers on parallel programming [20,
23], participants of the present study were intentionally beginner devel-
opers to consider the learning impact and other qualitative information.
Therefore, we aim to understand beginners’ challenges.

The scientific contributions provided in this work are (1) a literature
review about parallel API assessments; (2) a parallel programming
assessment methodology to guide other researchers based on the lit-
erature review; (3) an analysis of three parallel APIs for expressing
stream parallelism on multi-core systems; (4) mapping of quantita-
tive and qualitative usability indicators regarding parallel program-
ming in stream processing applications; (5) a qualitative analysis of
participants’ perceptions when they implement parallel programs.

This article is organized as follows. Section 2 presents the back-
ground, Section 3 presents the literature review, and Section 4 describes
the applied methodology. Next, Section 5 presents the experiment plan,
including goals and hypothesis, and also details how the study was
conducted. In Sections 6 and 7, results are presented. Section 8 provides
insights regarding the usability of parallel programming models for
stream processing. Finally, Section 9 concludes this work.

2. Background

This section provides the background: Sections 2.1 and 2.2 contextu-
alize both parallel stream processing and APIs for parallel programming
2

on multi-cores, and Section 3 provides the related work.
Fig. 1. Parallel activity graph of the Pipeline pattern.

2.1. Parallel stream processing

Data generated from networking services, cameras, sensors, and
other data sources producing streaming data can be consumed or
processed by stream processing applications. They usually continually
collect and process the streamed data in the form of a sequence of
computing operations (filter, transform, or analyze) over data streams,
which can later be stored in a permanent file system [7,24]. Parallel
computing is necessary to reach the quality of service requirements,
such as real-time response or high throughput [25]. Stream process-
ing applications can be found in several domains, such as the stock
market, natural systems, transportation, manufacturing, health and life
sciences, law enforcement, defense, cybersecurity, and many others.
These applications can process structured or unstructured data. Most
stream processing applications consume structured data (e.g., rela-
tional database style records) that share a typical structure or scheme.
However, commercial stream processing applications usually process
unstructured data like images, audio, and video, mainly executing
compression, filtering, and reproduction tasks [7,24].

Parallel stream processing applications execute as stream graphs
composed of operators or stages, and FIFO (First In, First Out) com-
munication queues [26,27]. The stream input is an infinite sequence of
items (or data) stream, and the queues contain a finite number of items
waiting to be consumed by each stage [28]. Each operator can process
the same or a different item than the previous operator. Therefore, the
number of operators usually limits the parallelism of stream process-
ing. However, parallelism can be increased by replicating operators
to process multiple items simultaneously. The replication of Stateful
operators will require extra mechanisms to guarantee data consistency.

As can be noticed, developing parallel stream processing applica-
tions is not an easy activity. The structured parallel programming ap-
proach alleviates these complexities for different application domains.
It supports developers with parallel patterns, which are parallelism
strategies to write efficient, structured, and maintainable programs [6].
These patterns can be in the form of design patterns [5] or higher-
order functions that are algorithmic skeleton libraries or high-level
programming constructions equipped with well-defined functional and
extra-functional semantics [26].

Figs. 1 and 2 graphically represent the two parallel patterns com-
monly used when implementing parallel stream processing: Pipeline
and Farm. The pipeline pattern exploits parallelism in the form of a
traditional manufacturing assembly line. It has well-defined tasks to
be performed on data to produce modified data, which are sent to
the next stage/workstation [6,24,26,29]. The Pipeline pattern applies
a sequence of operations simultaneously to different data elements, so
it is possible to compute each operation in a different data element at
each point and at a given time. The parallel activity graph in Fig. 1
is a Pipeline with three independent stages (kernels or filters) that
communicate explicitly through data channels, where the output of a
stage feeds the input of the next stage, finite or infinitely.

The Farm pattern is also called split-join [24]. This pattern is similar
to the Pipeline pattern and can be implemented with two or three
Pipeline stages in sequence. The first stage performs as the stream item
emitter or scheduler. The second stage performs as stage replicas called
workers. Optionally, the last stage acts as a stream item collector [8,
26]. The parallel activity graph in Fig. 2 is a Farm pattern with its three
components (Emitter, Worker, and Collector).

Computer Standards & Interfaces 84 (2023) 103691G. Andrade et al.

2

T
i
p
s
b
S
a
I
g
o
p

I
p
w
b
f
A
l
(
(
a
l
t
e

2

t
c
s
c
p

Fig. 2. Parallel activity graph of the Farm pattern.

.2. APIs for stream parallelism on multi-cores

There are many parallel APIs designed for multi-core architectures.
he most famous is Open Multi-Processing (OpenMP) [30], although

t is only suitable for data parallelism exploitation and requires the
rogrammer to implement extra synchronization mechanisms in the
tream parallelism exploitation. For stream parallelism exploitation
ased on the structured programming approach, one remarkable API is
treamIt [24]. It is an external domain-specific language (new language
nd compiler), and its research activities ended in 2013. Maintained by
ntel, Threading Building Blocks (TBB) [29,31] is an open-source and
eneral-purpose C++ template-based parallel API from the industry. It
ffers a Pipeline pattern constructor that can also perform as the Farm
attern.

FastFlow [26] is a representative API from the scientific community.
t has a similar C++ template-based API to TBB. However, their runtime
arallelism systems are implemented differently. While the TBB API
orks on top of an unchangeable work-stealing task scheduler and
uilding blocks, the FastFlow API works on top of customizable lock-
ree FIFO queues, building blocks, parallel patterns, and task scheduler.

more recent research initiative that promises to leverage higher-
evel and productive stream parallelism on multi-core systems is SPar
Stream Parallelism) [32,33]. It is an internal domain-specific language
embedded in the C++ language) in the form of C++ annotation to
void sequential code rewriting. The parallel APIs presented in the fol-
owing sections were chosen for our usability evaluation study because
hey are C++ APIs, have still working activities, and are suitable to
xpress stream parallelism.

.2.1. FastFlow and TBB
This section describes how to use FastFlow and TBB, explaining

heir main routines. The code snippets in the figures summarize the
ode required to develop parallel software. The first step to expressing
tream parallelism in stream processing applications is to find the most
omputing-intensive code regions and, when possible, divide them into
arallel stages to process items in sequence.

In TBB, some stages can operate in parallel, and others cannot
(serial). The concept of the stage in TBB is known by the name
filter. Fig. 3 shows how to create the first stage using TBB. Although
TBB supports modeling stages using the lambda function interface, we
concentrate on the default interface, in which stages are modeled as
classes extending the tbb::filter class, where one of the following
filter types should be specified as an argument to indicate the stage
behavior (line 3): tbb::filter::serial_out_of_order is used
to process the items one at a time without preserving the process-
ing order; tbb::filter::serial_in_order is used to process
the items one at a time in the same order. The processing order is
implicitly defined by the first filter and respected by the other ones;
tbb::filter::parallel is used to process multiple items in par-
allel and in no particular order [34]. Moreover, each stage class needs
to implement the virtual operator method (lines 4–11) in which a
task or stream item is processed. Every time this method returns a void
pointer (line 8), it is implicitly sends the stream item to the next stage.
When NULL is returned (line 10), it indicates the end of the stream to
3

stop the stream processing [31,34].
Fig. 3. First stage using FastFlow and TBB.

Fig. 4. Middle and last stage using FastFlow and TBB.

Fig. 3 also shows how to create the first stage using FastFlow. In
FastFlow, although a stage can be modeled using the lambda function
interface, we focus on the default interface where a stage is modeled
as a class or struct (unlike TBB), extending the ff_node class (line 1).
Inside the stage, the virtual svc method has to be implemented (lines
3–10). The first stage may produce tasks (stream items) inside the svc
method and send the produced stream items to the next stage using the
ff_send_out method (line 7). If there are no more stream items, it
is possible to return EOS (line 9) to propagate the end of the stream
processing to the subsequent stages [26].

Fig. 4 shows how to create the middle and last stage using FastFlow
and TBB. Disassociating the specific syntax and semantics, the principle
for modeling the middle and last stage is similar to both APIs. The
middle stage only computes the stream items and sends them to the
next stage using the return operation (line 5 in FastFlow and line 6 in
TBB). The programmer can create as many as necessary middle stages.
For the last stage, the programmer has to manage the stream item data,
deallocate the memory for the input item (line 11 in FastFlow and
line 13 in TBB), and return a specific value to skip sending items to
subsequent stages (line 12 in FastFlow and line 14 in TBB). In TBB,
the programmer defines the stage behavior when writing the class and
passing as an argument the filter, while in FastFlow, this is done when
instantiating the parallel pattern.

Therefore, to build the parallel activity graph as a Farm pattern
in TBB, the programmer specifies the parallel filter in the middle
stage and uses the same Pipeline object to instantiate a traditional
Pipeline pattern, as shown in Fig. 5. In TBB, the programmer can also
specify how many concurrent threads are created in line 1. The run
method is used to indicate the beginning of the Pipeline execution,
receiving as an argument the number of concurrent tokens (it can also
be understood as the number of items in the shared queue). Moreover,
the class object tbb::pipeline is first declared (line 2) to build a
parallel activity graph. Next, the objects of the three stages are declared
and added to the Pipeline object using add_filter (lines 3–6) in the
correct sequence. Lastly, by calling the run method in the pipeline
object, the parallel computing will start and keep executing until a stop
condition, which is a NULL pointer [34].

In FastFlow (Fig. 5), there is a specific object class to build the
parallel activity graph for the Farm pattern. The three entities of
the pattern (Emitter, Worker, and Collector) receive the class objects

declared as an argument. For the Worker entity, we must create a vector

Computer Standards & Interfaces 84 (2023) 103691G. Andrade et al.

i

a
S

i
T
p
I
c
d
n
R

c
f
r
p
p
d
f
o

3

t

3

d
p
W
a
s
i
s

T
A
(
(
(
A

Fig. 5. Parallel activity graph modeled according to the Farm pattern while
nstantiating stages using FastFlow and TBB.

Fig. 6. Parallel activity graph modeled according to the Pipeline pattern and combined
with Farm while instantiating stages using FastFlow.

that has many replicas as parallel workers are intended (nthreads)
(lines 1–3). After, the stage object classes are declared (line 4). Next,
the ff::ff_Farm template class is used to build the parallel activity
graph, where the Worker entity is passed as an argument (a vector of
workers) (line 5). The Emitter and Collector entities are added using the
respective routine (lines 6–7). Then, the parallel computing will start
and wait until finished at the call of the run_wait_end routine.

Unlike TBB, FastFlow allows us to create other parallel patterns,
combining Farm and Pipeline object classes, and reusing the same stage
classes. As in the left-hand side of Fig. 6, we can start creating a
simple Pipeline pattern using the ff::ff_Pipe, where the arguments
are stage object classes. A new parallel pattern can be created by
transforming one or more stages into a Farm. The example on the right-
hand side of Fig. 6 shows how this can be done. The middle stage
becomes the Worker entity, and the last stage becomes the Collector
entity of a Farm. Then, we build the Pipeline with two stages, where the
first is the serial while the second is a Farm. Other patterns and activity
graphs could be created using FastFlow, which does not necessarily
optimize the parallelism exploitation. It will depend on several aspects
regarding the environment and application.

2.2.2. SPar
Following a domain-specific approach, SPar offers a small set of an-

notations to express stream parallelism, which is parsed by its own com-
piler to generate parallel code automatically [32]. These annotations
are standard C++11 attributes with specific semantics. A C++11 an-
notation is declared using double brackets ([[attr-list]]) where
there are one or more attributes. In SPar, the first attribute in the list is
called an identifier (ID), and the rest are auxiliary (AUX). All attributes
re part of the stream parallelism namespace (named as spar). The
Par ID attributes are ToStream and Stage, while AUX attributes

are Input, Output, and Replicate.
ToStream indicates that a given C++ program region is going to

be stream parallelism. The annotated region can be a loop or a code
block. Stage denotes a phase within ToStream, where operations
are computed over the stream items. At least one stage must be within
a ToStream region. In addition, SPar supports any number of stages
inside a ToStream region. Input is used to indicate the variables that
will be consumed by ID attributes, and Output is used to indicate
the variables that will be produced by ID attributes. When using
these attributes, at least one argument must be present. Replicate is
used to replicate a Stage. This attribute allows programmers to scale
the performance on stateless stages. This attribute receives a constant
4

value delimiting the number of workers for the stage as an argument.
Fig. 7. Example of the use of Pipelines using SPar.

Moreover, this attribute can also be left empty to use the environment
variable SPAR_NUM_WORKERS.

Fig. 7 presents a pseudocode example to indicate the SPar’s ease of
use. In line 1, note that ToStream annotation was inserted in front
of a loop, indicating the beginning of the stream parallelism region.
Since stream items are not consumed from and produced outside the
region, auxiliary attributes are unnecessary. The codes left between
ToStream and the first Stage annotation (line 5) are always an
mplicit serial stage that produces stream items to the following stages.
he first Stage annotation will actually be the second Stage of the
arallel activity graph, where if there is another Stage in sequence,
nput and Output are required. Since this Stage is a stateless
omputation, we can add the Replicate attribute to increase the
egree of parallelism. By the way, the last stage is stateful and does
ot produce anything outside. Therefore, Output is not needed, and
eplicate does not apply.

Additionally, SPar offers compiler flags if programmers want to
hange the runtime system behavior, which may improve the per-
ormance of the application. By default, items are distributed in a
ound-robin way, without preserving the input order in the output. To
reserve this ordering, the user can use -spar_ordered when com-
iling the program. It is important for video applications to avoid pro-
ucing the wrong output video. There is also the -spar_ondemand
lag to switch the item distribution for on-demand scheduling. Other
ptions can be found in the online documentation.2

. Literature review

This section presents the process used for the literature review and
he studies returned.

.1. Search process

Our literature review aimed to search for papers that have con-
ucted empirical studies with students and developers of parallel ap-
lications to evaluate the usability and productivity of parallel APIs.
e aimed to select journal and conference papers written in English

nd published from 2005 to 2022. To do so, we executed the following
earch string on the Scopus3 database, which was selected because
t indexes from other databases [35]. In addition, we considered the
earch string in the title, abstract, and keywords of the studies.

ITLE-ABS-KEY ((assess* OR evaluate* OR examin*)
ND (develop* OR programm* OR cod*) AND
usability OR productivity OR effort) AND
experiment OR empirical OR study) AND
(parallel AND (programming OR computing)) OR hpc)
ND (languages OR systems OR interfaces))

2 Available at: https://gmap.pucrs.br/spar-wiki.
3 Available at: https://www.scopus.com.

https://gmap.pucrs.br/spar-wiki
https://www.scopus.com

Computer Standards & Interfaces 84 (2023) 103691G. Andrade et al.

r

The search on the Scopus database returned 247 studies. We ex-
ported in BibTeX format to the Zotero tool4 to help us in the review
process. Using Zotero, the first filtering of the studies from read-
ing the title, abstract, and keywords returned 26 studies. From the
full-text reading, we selected 11 studies for which we applied the
snowballing method. We used forward snowballing to analyze citations
to the selected papers to identify additional papers to complement our
literature review [36]. From this last filtering, we selected 29 final
studies. Although we defined exclusion criteria studies prior to 2005,
we considered a study from 1996 because it is one of the most cited in
the literature.

3.2. Discussion

The popularization of parallel architecture in our daily computing
systems leveraged parallel programming, which is well-known to be a
complex task and most reserved for specialists. Consequently, research
and industry have promoted and developed multiple parallel APIs to
ease this task. Unfortunately, only a few studies aimed to evaluate the
usability of such APIs. Most studies focused on evaluating their APIs re-
garding the performance, where only runtime, speedup, and efficiency
of the parallel software are analyzed [10–14,37]. These factors could
also explain why we have so many serial programs running in our
parallel architectures. It is still a task for experts and it seems that
only a few works really care about usability. One way to develop more
parallel code developed is to make parallel programming easier for the
application developers, who are not experts or specialists in system
programming. Conducting empirical studies to evaluate usability, such
as the one performed in this paper, is a time-consuming task that
requiring considerable effort to conduct all the procedures correctly,
from planning to analysis. However, this is a way to continuously
improve the parallelism abstraction and create better/simpler parallel
APIs.

In 1996, Szafron et al. [21] conducted a controlled experiment
with graduate students in a parallel/distributed computing class to
compare the Enterprise PPS interface with a PVM-like (NMP) library
of message-passing routines. The main goal in [38] was to evaluate
the programming effort by comparing the PRAM-like model (XMTC)
and the Message Passage Interface (MPI). In [39], the main goal was to
evaluate the effort of beginners in parallel programming to develop par-
allel applications in MPI and OpenMP. Zelkowitz et al. [40] proposed
a productivity estimation model based on speedup and Lines of Code
(LOC). In order to evaluate this model, Zelkowitz et al. [40] performed
an experiment to evaluate the effort to develop MPI programs.

In [41] the main goal was to evaluate the effort of graduate students
to develop an actual program for multi-core computers using OpenMP
and Pthreads. Coblenz et al. [42] compared Cilk Plus and OpenMP
to evaluate the design trade-offs in the usability and security of these
approaches. In [43], Pthreads and OpenMP were compared to OpenMP
_XN programming model. OpenMP _XN is an extension of OpenMP with
Atomic Sections of code executed atomically and mutually exclusive
from other conflicting atomic operations.

In [44], a study was performed to evaluate the effort spent by
novices to develop MPI programs. Patel et al. [45] aimed to compare
the performance and productivity of MPI and UPC programs. In [46],
another experiment was performed to compare the productivity of
C+MPI, UPC, and the x10 language of the IBM PERCS project. In [46],
the productivity was evaluated through an experiment with under-
graduate students with little or no parallel programming experience.
In [47], the authors presented a methodology for evaluating UPC
programmability against MPI through classroom studies with a group

4 Zotero is a software used to manage bibliographic data and related
esearch materials. Available at: https://www.zotero.org/.
5

of novice programmers. Speyer et al. [48] evaluated the productiv-
ity and usability of Charm++, UPC, SCOOP, MATLAB+Star-P, and
SHMEM through an experiment with computer science and engineering
students.

In [49], the authors proposed a method for measuring the com-
plexity of programming-related tasks in HPC (High-Performance Com-
puting). The Complexity Metrics (CM) method was proposed to help
determine the productivity of new parallel APIs developed by IBM. Da-
nis et al. [49] conducted a series of real-world observations, interviews,
and surveys with HPC experts to identify ecologically valid tasks for
modeling with the CM method. Danis et al. [49] conducted experiments
in a development environment using the instrumentation of worksta-
tions to automatically capture the programmers’ behavior and to gather
empirical data about productivity at a relatively fine grain. Given an
activity that the programmer must perform, productivity was defined
as the performance to complete that activity.

In [50], an empirical study was conducted with novice and expert
Java programmers to identify multithreaded bugs in Java Threads
code examples. The results were obtained through self-evaluation ques-
tionnaires, where feedback from the participants was also collected.
In [51], the authors compare Java Threads and SCOOP to compre-
hending and debugging existing programs and writing correct new
programs. The participants were undergraduate students in the soft-
ware architecture course. In [52], an experiment was conducted with
13 Master’s students who are, on average, in their fourth year of
Computer Science studies to compare the development of parallel
applications for multi-core systems using Scala and Java Threads.

Rossbach et al. [53] performed a study with 237 undergraduate
students of an Operating System course. The main goal of this study
was to verify and compare the different techniques used in transactional
memory programming with Java Threads: using coarse- and fine-grain
locks, monitors, and transactions. In [54], a study was performed to
compare teams of programmers developing a parallel program from
scratch using Pthreads and Intel Software Transactional Memory (STM)
compiler. Similar to the previous study, the experiment performed by
Castor [55] also aimed to evaluate the use of locks and transactional
memory. Castor [55] evaluated the effort spent by novices to develop
a simple program with mutual exclusion and synchronization require-
ments using Halskell’s transaction memory and lock-based concurrency
control mechanisms.

Nanz et al. [20] compared Chapel, Cilk, Go, and TBB in a study
based on a sequential and parallel implementation of six benchmarks
created by notable programmers with more than six years of experi-
ence, while Nanz et al. [23] performed an experiment that explores the
claimed gap between expert and novice parallel programmers. In [23]
the fraction of the original development time spent on implementing
the corrections suggested by experts was also measured. Moreover,
in [20] the Wilcoxon signed-rank test (two-sided variant) was used to
evaluate the results.

In [56], a pilot study was conducted to assess the usability of MPI
when implementing design patterns in contrast to alternative imple-
mentations of the parallel program. In [57], the authors aimed to eval-
uate the performance and usability of the primary/secondary pattern of
the DSL-POPP (Domain-Specific Language for Pattern-Oriented Parallel
Programming) in comparison to the Pthreads library. In [58], a new
pattern-based process model called Patty was introduced. Patty was
compared with Intel Parallel Studio in an experiment with experienced
developers to evaluate its effectiveness and productivity.

Li et al. [59] conducted an empirical investigation to compare the
productivity of the OpenACC and CUDA GPU programming interfaces
when used by undergraduate students in a classroom environment. In
2018, the previous study was complemented by evaluating the perfor-
mance and code size [61]. Another more recent study was conducted to
compare the scheduling productivity of CUDA with Thrust library [63].
Miller et al. [62] conducted a study to quantify the impact of HPC

training by measuring learners’ productivity in heterogeneous systems.

https://www.zotero.org/

Computer Standards & Interfaces 84 (2023) 103691G. Andrade et al.
Table 1
Empirical studies to evaluate the usability of parallel APIs.

Work API Participants Metrics Findings Environment Program

[21]-
1996

Enterprise
PPS and
PVM-like

Graduate
students

Login hours, LOC, number of
edits, compiles, and execution
time

Enterprise PPS is easier than PVM Cluster of
Workstations

Transitive
closure

[39]-
2005

MPI and
OpenMP

Graduate
students

Speedup, dev. time, LOC and cost
per LOC

MPI presented higher effort when
compared to OpenMP

Cluster of PCs Game of life
and grid of
resistors

[43]-
2005

OpenMP,
OpenMP _XN
and Pthreads

Undergraduate
and graduate
students

Dev. time OpenMP _XN reduced
development time compared to
Pthreads

Multi-core Benchmark
applications

[40]-
2005

MPI Graduate
students

Exec. time, speedup, LOC, and
dev. time

It is difficult to relate productivity
model to real parallel applications

Distributed Game of life
and Buffon
needle

[46]-
2006

MPI, UPC and
IBM PERCS
x10

Undergraduate
students

Executing time, cleaning time,
parallelization time, debugging
time, authoring time, and
accessing doc. time

x10 has an edge over MPI and
UPC

Distributed Smith–
Waterman
algorithm

[44]-
2007

MPI+C Undergraduate
students

Exec. time, dev. time, number of
base, non-blocking, and collective
functions

Performance can be affected by
the type of function used, so it is
not simple to relate it to effort

Cluster Game of life

[38]-
2008

PRAM-like
and MPI

Graduate
students

Characterization of groups,
program correctness and dev.
time

XMTC programs had fewer bugs
and their development time was
46% less than MPI

Linux cluster
and class
server

Sparse matrix
and dense
vector
multiplication

[49]-
2008

IBM parallel
APIs

Novices and
experts
developers

The number of steps, context
changes, and the number of data
items operated

CM is promising, but it does not
include development time, which
is a key productivity measure

Workstation Not informed

[45]-
2008

MPI and UPC Graduate
students

Exec. time, speedup, and LOC Both APIs offer performance, but
UPC requires less code

Multi-core
and Linux
cluster

Power method
algorithm

[48]-
2008

UPC, SHMEM,
SCOOP, Star-P
and Charm++

Undergraduate
students

Speedup, dev. time, correctness,
and LOC

Charm++ and Star-P seem more
productive for applications with
modest learning curves

Linux cluster Straightfor-
ward estimate
and N-body
problems

[47]-
2009

UPC and MPI Undergraduate
students

Speedup, LOC, dev. time UPC allowed an easier and faster
parallelization than MPI

Cluster Minimum
distance
problem

[41]-
2009

Pthreads and
OpenMP

Graduate
students

LOC, lines with parallel
constructs, dev. time, exec. time
and speedup

Students preferred Pthreads
because it required less code
refactoring than OpenMP

Multi-core Bzip2

[53]-
2010

Java Threads Undergraduate
students

Design time, dev. time, debugging
time, errors, and CCN

Over 70% of students made
errors with locks, while less than
10% using transactions

Multi-core Sync-gallery

[50]-
2010

Java threads Students and
professionals

Number of multithreaded bugs The cooperability facilitates the
search for concurrent bugs

Not informed ArchivalList,
IntList and
StringBuffer

[55]-
2011

Haskell Undergraduate
students

Logic and Compilation errors,
hanging and non-hanging errors,
dev. time, and LOC

No significant difference in
concurrency errors, LOC and
development time

Not informed Program with
synchroniza-
tion and
mutex

[52]-
2012

Scala and
Java Threads

Master’s
students

Dev. time, LOC, NOC, functional
styles (%), imperative style (%),
errors, exec. time, and speedup

Scala code is the most compact,
yet Java offers less programming
and debugging effort

Multi-core Dining
philosophers,
DRC project
and Mergesort

[20]-
2013

Chapel, Cilk,
Go, and TBB

Experts in the
API tested

LOC, dev. time, execution time,
and speedup

TBB and Cilk have the shortest
execution time and speedup, but
TBB offers faster development

Multi-core Six micro-
benchmark
programs

[23]-
2013

Chapel, Cilk,
Go and TBB

Experts and
non-expert
developers

LOC, dev. time, exec. time,
correction time, and speedup

For all languages, an expert can
only moderately improve
programs written by novices

Multi-core A suite of six
benchmark
programs

[51]-
2013

Java Threads
and SCOOP

Graduate
students

Time to complete the test,
Levenshtein distance, error types,
LOC, number of classes, attributes
and functions

The results are in favor of
SCOOP, although participants
have experience in Java Threads

Multi-core Not informed

[56]-
2013

MPI Undergraduate
students

LOC, CCN, dev. time, number of
compilations, and exec. time

Design patterns can impact the
productivity and performance

Linux cluster Game of Life

(continued on next page)
6

Computer Standards & Interfaces 84 (2023) 103691G. Andrade et al.
Table 1 (continued).
Work API Participants Metrics Findings Environment Program

[54]-
2014

Pthreads and
Intel STM

Graduate
students

LOC, reading time, design time,
dev. time, testing time, debugging
time, parallel constructs, and
critical sections

Intel STM offers better debugging,
but is harder to tune performance
and implement queries

Multi-core Parallel
desktop
search engine

[57]-
2014

DSL-POPP
and Pthreads

Graduate
students

Dev. time, LOC, and COCOMO II DSL-POPP requires less
programming effort than Pthreads

Multi-core Matrix
multiplication

[42]-
2015

Cilk Plus and
OpenMP

Master’s
students

Number of correct programs, dev.
time, and speedup

More thread-safe reductions have
been developed in Cilk Plus

Multi-core Program that
finds
anagrams

[58]-
2015

Patty and
Parallel
Studio

Experienced
developers

Clarity, complexity, perceivability,
learnability, correctness, dev. time

Patty achieved better results
because it is pattern-based

Multi-core RayTracing
benchmark

[59]-
2016

OpeanACC
and CUDA

Undergraduate
students

Dev. time, exec. time,
independence time

OpenACC requires less pro-
gramming effort than CUDA

GPU Heat transfer
and message
encryption

[60]-
2017

Spark, Flink
and Hadoop
MapReduce

Master’s
students

Dev. time Spark and Flink are preferred
platforms over Hadoop
MapReduce

Cluster Three use
cases from
immunology
and genomics

[61]-
2018

OpeanACC
and CUDA

Undergraduate
students

Speedup, speedup dispersion,
LOC, effort per LOC

OpenACC effort is not
significantly less than CUDA

GPU Heat transfer
and message
encryption

[62]-
2019

MPI, OpenMP
and OpenACC

Hackathons
participants

Completed milestones, pre- and
post-knowledge, function
requirement, external library
interaction, number of logical
statements, efficiency, scaling,
data set size, parallel fraction

The proposed productivity metrics
can be applied to improve the
training of HPC application
programmers

Multi-core
and GPU

Dot product

[63]-
2020

CUDA and
Thrust

Graduate
students

Dev. tim, number of compiler
errors, number of successful
results

Thrust abstractions have
decreased productivity

GPU Six programs

Our FastFlow,
SPar and TBB

Graduate
students

Time to answer the form,
accessing the material,
understand the code, and read
the procedure. Also, the dev.
time, debugging time, number
of executions, and error types

SPar provide better usability
than FastFlow and TBB.

Multi-core Video
processing
with OpenCV
e
s
e
n
g
t
S
a
m

t
a
f
w
c
s
t
w
m
t
p
t

Miller et al. [62] compared applications developed by beginners stu-
dents using MPI, OpenMP, OpenACC, and OpenMP+OpenACC to assess
productivity. To evaluate training effectiveness, the authors proposed a
new methodology with two key components: progress productivity and
training productivity.

In [60], the usability of the cloud APIs Apache Hadoop MapReduce,
Apache Spark, and Apache Flink was evaluated through a study with
Master’s students from various backgrounds, including IT and data
science. This experiment was conducted as part of a cloud computing
course [60].

Unlike the previous works (see Table 1), we assess the effort of be-
ginners in parallel programming to develop stream parallel applications
in FastFlow, SPar, and TBB. Since the effort to develop an application
includes several activities, we evaluated the time spent by the partic-
ipants when performing each of them separately: the time to answer
the form, time accessing the material provided, time to understand the
application code, time to read the procedure description, development
time, and debugging time. In addition, we considered the number of
executions and types of errors. Finally, we performed a textual analysis
from the developers’ perspective to deeply discuss the experimental
results obtained.

4. Research method

From usability assessments, it is possible to obtain improvement
indicators for designing new parallel APIs and refining the existing
ones. It is possible to create better and simpler-to-use parallel APIs
and manage their quality [64]. ISO 9241-11 [65] generically describes
7

n

usability evaluation as ‘‘the extent to which specified users can use a
system, product, or service to achieve specified goals with effectiveness,
efficiency, and satisfaction in a specified context of use’’. ISO/IEC TR 9126-
4 [66] also uses the term productivity to refer to efficiency. Translating
to parallel programming, we describe the usability evaluation as the
xtent to which developers can use a parallel API or tool to make
ource code execute computations in parallel with effectiveness,
fficiency, and satisfaction in a specified context of use. Effective-
ess is ‘‘the accuracy and completeness with which users achieve specified
oals’’. Efficiency or productivity evaluates the ‘‘resources used in relation
o the results achieved’’, including human effort, costs, and materials.
atisfaction is defined as the ‘‘extent to which the user’s physical, cognitive
nd emotional responses that result from using a system, product, or service
eet the user’s needs and expectations’’ [65].

From the literature review, we observe that most authors claim
o perform usability assessments of parallel APIs without considering
ll the recommended practices (e.g., develop an experiment plan, per-
orm a hypotheses test, and evaluate the validity) [20,41,42,46,62],
hile other works consider it [21,39,52,53,57]. Other works only

onsider productivity when taking experiments with people to evaluate
pecifically the effort when using parallel APIs [46,52,67]. Among
hese papers, only a few works considered programmers’ satisfaction
hen evaluating usability [51–53]. These factors lead us to create a
ethodology for assessing the usability of parallel APIs. It also helps

o propagate the concept without misrepresenting it. Moreover, we
resent a methodology to guide other researchers in this analysis and
o conduct our experiment in the following sections.

To ensure that the experiment is performed correctly, a process is
eeded to provide steps to support the activity execution. A process

Computer Standards & Interfaces 84 (2023) 103691G. Andrade et al.
Fig. 8. Research method flowchart.

can be used as a checklist and guideline on what to do and how to
do it [22]. Fig. 8 presents the methodology proposed to evaluate the
usability of parallel APIs. The first step is called planning. In this phase,
the problem to be solved and the experiment plan must be defined.
The target problem can be defined through a gap found in a literature
review. Also, the goals, context, hypothesis, procedure, study activity,
and instruments must be defined.

Initially, the study goals are formulated from the problem to be
solved and should reflect the purpose of the experiment. After this,
the context of the experiment is defined, which can be characterized
according to four dimensions: offline versus online, student versus pro-
fessional, classroom versus real problems, and general versus specific
problems [22]. Next, the hypotheses are formulated. The definition of
the experiment is formalized into two hypotheses: The null hypothesis
(𝐻0) and the alternative hypothesis (𝐻1). 𝐻0 states that there is no sig-
nificant difference between the observations, and this difference is by
coincidence. 𝐻1 is the hypothesis in favor of which 𝐻0 is rejected [22].

After formulating the hypotheses, the study activity and the proce-
dure are defined. The procedure presents all the rules and steps to be
followed by the participants when performing the study activity. For
example, whether participants will be able to access the Internet during
the activity or whether there will be materials available for access,
how much time they will be given to complete the activity, and other
considerations to ensure there is no bias.

In the planning phase, the experimenters also choose and develop
the instruments for the study, which can be objects, guidelines, or
measuring instruments [22]. The experience objects can be, for ex-
ample, specification documents or code. Guidelines are used to guide
participants and may include, for example, procedure description and
checklists. Measuring instruments are used for data collection, which
can be done through forms, interviews, and instrumentation of the
machines used by the participants, such as scripts to record the par-
ticipants’ screens and capture log files [22]. Also, before conducting
the experiment, a pilot study is performed to test the experiment plan.

After the planning phase, the experiment is conducted, and the
results achieved are analyzed. Effectiveness, efficiency, and users’ sat-
8

isfaction must be evaluated to determine the usability of a parallel API.
Effectiveness should assess the accuracy and completeness with which
participants achieve the goals specified in the study [65]. Descriptive
statistics used to organize and summarize a data set [68] can be
applied to evaluate effectiveness. For example, using the percentage,
it is possible to express the proportion of participants who achieved
the study goal concerning the total number of participants.

Efficiency or productivity can be evaluated through the effort spent
to develop an application [65]. Descriptive statistics or hypothesis test-
ing can be applied to evaluate the development effort results. Although
descriptive statistics help to organize and summarize the evaluated
data set, just the average time spent by the participants to develop a
parallel application may not be enough to determine which parallel
APIs provide the best productivity. Then, through a hypothesis test,
it is possible to determine if there is a significant difference between
the average times needed to develop the applications with each of the
parallel APIs evaluated. If a hypothesis test is necessary, a normality
test should first be performed to verify whether the sample has a normal
distribution. A parametric test is applied if the sample has a normal
distribution. Otherwise, the non-parametric test is applied [69,70].

Participants’ satisfaction can be evaluated both qualitatively and
quantitatively using forms [71]. For qualitative data, a textual analysis
can be performed using a subset of the procedures for coding from
Grounded Theory (GT), which is a specific methodology developed with
the objective of building theory from data [72,73] popularly used in
software engineering [74]. However, this study did not fully explore the
GT methodology since we were not interested in generating theories.
We aimed to use it to evaluate the qualitative perception of the partic-
ipants over the activity [73]. Therefore, our methodology approached
only a textual analysis based on the open and axial coding steps of GT
methodology. Open coding is an interpretive process by which data is
analytically divided. At this step, responses are analyzed accurately,
and relevant events, actions, or interactions are compared to identify
similarities and differences. They receive conceptual labels, and those
conceptually similar are grouped to form categories and subcategories.
In axial coding, the categories are related to their subcategories [72].

After analyzing the effectiveness, development effort, and partici-
pants’ satisfaction, the conclusions over the results are presented. In
addition, the study’s limitations and threats to validity are discussed,
and lessons learned are presented.

5. Experiment plan and execution

This section presents the study’s variables, goals, hypothesis, and
context. Next, the activity given to the participants and the procedure
followed in this study is presented. In addition, the instruments used
during the study are presented.

5.1. Independent variables

The parallel APIs evaluated in this study are independent variables.
In this study, we evaluated the usability of three parallel APIs for stream
processing on multi-core systems: FastFlow, SPar, and TBB. Each of
them has specific characteristics that influence the development of the
applications.

The experience of the programmer is one of the important indepen-
dent variables [39]. In our study, the participants were intentionally
beginners developers in the parallel programming domain to consider
the impact of learning and help us understand the challenges faced by
beginners.

The study environment is also an independent variable. Our study is
conducted in a university and not in an industrial environment. There-
fore, the study is not affected by factors in the industry environment.
Even so, a deadline of one day was set for the participants to complete

the activity.

Computer Standards & Interfaces 84 (2023) 103691G. Andrade et al.

5

b
t

5

t
C
c
c
h
p

d
n
t
e
s

5.2. Dependent variables

To evaluate the usability of parallel APIs, we assess the learnability,
the effort required to parallelize a stream processing application, user
errors, and satisfaction. The participants’ learnability was assessed by
the time accessing the material provided and the time to answer the
form in seconds. The effort required to develop the parallel application
includes the following activities: reading the procedure description, un-
derstanding the sequential application code, coding (or development),
debugging, and testing. The time in seconds was considered to evaluate
the first five activities. However, the time testing the application was
not considered because the participants left the application running and
continued to perform other activities. Therefore, the number of execu-
tions was measured. In addition, the errors made by the participants
and the difficulties faced during the activity were measured.

5.3. Goals

The main goal of this study is to compare the usability of SPar, TBB,
and FastFlow parallel APIs for implementing stream parallelism in C++
applications for multi-core systems. The specific goals are as follows:

• Measure the learnability;
• Measure the time spent to exploit parallelism;
• Report the implementation errors;
• Report the users’ satisfaction.

.4. Hypotheses

We consider the following seven hypotheses in our experiment
ased on the goals. The first two refer to learnability and the others
o the development effort.

• 𝐻0−𝑎𝑛𝑠𝑤𝑒𝑟: The time to answer the form is the same for FastFlow,
SPar, and TBB;

• 𝐻0−𝑠𝑡𝑢𝑑𝑦: The time to access and study the material provided is
the same for FastFlow, SPar, and TBB;

• 𝐻0−𝑢𝑛𝑑𝑒𝑟: The time to understand the application code is the same
for FastFlow, SPar, and TBB;

• 𝐻0−𝑟𝑒𝑎𝑑 : The time to read the procedure description is the same
for FastFlow, SPar, and TBB;

• 𝐻0−𝑑𝑒𝑣: The development time is the same for FastFlow, SPar, and
TBB;

• 𝐻0−𝑑𝑒𝑏𝑢𝑔: The debugging time is the same for FastFlow, SPar, and
TBB;

• 𝐻0−𝑒𝑥𝑒𝑐 : The number of execution is the same for FastFlow, SPar,
and TBB.

.5. Context of study

The participants in this study were 15 graduate students from
he graduate program in computer science (PPGCC) of the Pontifical
atholic University of Rio Grande do Sul (PUCRS), in Porto Alegre
ity South of Brazil. This study was part of the parallel programming
ourse at PUCRS. Moreover, this study is conducted with participants
aving experience in the industry but beginners students in parallel
rogramming.

The environment of this experiment is offline because it was con-
ucted in an academic environment under controlled conditions and
ot in the industry. This study is specific because it focuses on assessing
he usability of parallel APIs for stream processing in an academic
nvironment. This study addresses a real problem common in the
9

tream processing area: a video OpenCV processing application [22].
Fig. 9. Activity of study.
Source: Adapted from
[75].

5.6. Activity of study

The activity given to the participants was to implement stream
parallelism in an OpenCV video processing application, which aims to
extract the green channel from a video. Fig. 9 presents a piece of this
application. The video processing application receives an input video
and reads each video frame (line 6). A frame is processed through a
series of operations to extract only the green channel (lines 9–18). Next,
the frame with the green channel is written to the output video (line
19). This process is repeated until all frames have been processed (line
7) [75].

5.7. Study instruments

This section presents the instruments used in this study. A folder
with materials about each evaluated parallel API was provided for the
participants to access during the activity. This folder had a manual,
which included an introduction to the parallel API, how to compile
and run an application, essential features for implementing stream
applications, and an example of use in C++. The folder also had a
parallel code to be tested. In addition, a document describing the
procedure was provided, which served as a guide for the participants
during the execution of the activity.

The measuring instruments used in this study were questionnaires
and a script to record the screens of the participants’ machines. A
first questionnaire was applied to collect background information on
the participants (Table 2). The characterization questionnaire was used
to evaluate the participants’ experience with parallel programming,
video processing, and others. The participants reported their level of
experience among:

• 0: None (I have never participated in such activities);
• 1: I studied it in the classroom or in a book (I have only theoret-

ical knowledge);
• 2: I have practiced it in classroom projects (I have theoretical

knowledge applied only in the university);
• 3: I used it in personal projects (I have theoretical knowledge and

individual practical experiences);
• 4: I used it in some projects in industry or research (I have
theoretical knowledge and little practical experience);

Computer Standards & Interfaces 84 (2023) 103691G. Andrade et al.

o
t
e
d
d
q
w
a

5

t
c
s
w
o
o
c

Table 2
Characterization questionnaire.

ID Question

Q1. Which is your academic background? (Technical Course/High School, Bachelor’s degree, Master’s degree, or Ph.D. degree)
Q2. Which is the name of your course?
Q3. Which is your level of experience with command line and text editor on the Linux operating system? (From 0 to 5)
Q4. Which is your level of experience with the C++ programming language? (From 0 to 5)
Q5. Which is your level of experience with parallel APIs (e.g., Pthreads, Cilk, TBB, FastFlow, MPI etc.)? (From 0 to 5)
Q6. If you have any experience in Q5, please inform the parallel APIs for multi-core systems you have used and the features

explored in your previous experiences:
Q7. Which is your level of experience with developing stream processing applications (reading, writing, and processing files,

network, video, audio etc.)? (From 0 to 5)
Q8. If you have any experience in Q7, please specify which one you worked on:
Table 3
Procedure questionnaire.

ID Question

Q1. Which time did you start your activity?
Q2. Which time did you finish your activity?
Q3. Does the parallel program produce the correct result (the same as the sequential program)? (Yes/No)
Q4. Which is the execution time of the sequential program (in seconds)?
Q5. Which is the parallelism degree that reached the shortest execution time in the parallelized version? (From 0 to 8)
Q6. Which is the execution time of the parallel program (in seconds) ?
Q7. Was the manual helpful in performing the activity? (Yes/No)
Q8. Was the activity successfully completed? (Yes/No)
Q9. Which were your main difficulties in implementing parallelism in this activity?
Table 4
Evaluation questionnaire.

ID Question

Q1. With which parallel APIs did you perform your first activity?
Q2. With which parallel APIs did you run your second activity with?
Q3. If you had problems understanding the video application, what were they (please provide details)?
Q4. Did you become uncomfortable with the screen-capture during the activity? Yes/No)
Q5. Do you consider yourself able to perform activities with this parallel API after completing this activity? (From 0 to 5)
Q6. Do you consider yourself capable of performing activities with TBB after completing this activity? (From 0 to 5)
Q7. Do you consider yourself capable of performing activities with FastFlow after completing this activity? (From 0 to 5)
Q8. Which is your level of experience with the C++ programming language after completing this activity? (From 0 to 5)
Q9. Which is your level of experience with developing stream applications (reading, writing, and processing files, network,

video, audio etc.) after completing this activity? (From 0 to 5)
Q10. Which parallel API did you find the hardest?
Q11. Justify your choice for question Q10 (please provide details):
Q12. Which parallel API did you find the easiest?
Q13. Justify your choice for question Q12 (please provide details):
Q14. If you need to parallelize an application similar to the application used in the activities, which interface would you

choose?
Q15. Justify your choice for question Q14 (please provide details):
3
1

• 5: I have used it in many projects in industry or research (I have
theoretical knowledge and many real practical experiences).

One of the criteria to complete the activity was adequately filling
ut the Procedure questionnaire (Table 3), which was used to compare
he parallel application with the sequential version. In addition, the
xperiment was monitored on the video to verify each participant’s
evelopment process, such as the time spent reading the manual,
eveloping and debugging. In the end, participants answered a final
uestionnaire (Table 4) reporting their main difficulties and facilities
hen performing the proposed activity, their experience level after this,
nd their satisfaction with the parallel APIs.

.8. Procedure

This section presents the procedure of this study. Before a par-
icipant began performing the activity, a member of the experiment
ommittee ran the screen-capture script to record the participants’
creens during the activity. The participants could only access the folder
ith the provided material. It was forbidden to consult any material
n the Internet for any purpose. Using the cell phone for consultation
r distraction during the experiment was prohibited. The participants
ould only ask technical questions about the experiment. In addition,
10

T

a deadline of one day was set for the participants to complete each
activity.

In this study, we aimed to assess the usability of parallel APIs
to express parallelism in the stream processing application domain
rather than evaluate optimizations to achieve more efficient paral-
lelism. Therefore, we defined some criteria for the activity to be con-
sidered complete: The participants could only complete the activity if
the parallel application achieved a speedup greater than or equal to
3; if the parallel application produced the same result as the sequential
version; and if the form was correctly filled out. Additionally, a member
of the experimentation committee should verify that the activity has
indeed been completed. If the activity has been completed, the member
of the experiment committee stops the screen-capture script, collects
everything inside the experiment folder, and deletes all records from
the computer used.

5.9. Experimental setup

The study participants used multi-core workstations with an
Intel® CoreTM i7-4790 processor with eight cores (four physical),
.6 GHz, and 15.6 GB of RAM. The operating system was Linux Mint
7.3 and G++ compiler version 5. The OpenCV version used was 3.1.0.

he parallel APIs used were FastFlow 2.1.3, TBB 4.4.6, and SPar 1.

Computer Standards & Interfaces 84 (2023) 103691G. Andrade et al.

5

e
a
t
p
p
p
p
w

5

m
o
d
s
v
F
g
a
u

5

F
t
t
g
C
C
t
g

w
w
w
s
u

Fig. 10. Participants’ background.
i
p

.10. Pilot

A pilot is a test of the experiment plan before performing the
xecution itself. Generally, in a pilot, the methods and procedures
re similar to the target study to produce data that help to evaluate
he procedures [76]. In this work, a pilot was conducted with a few
articipants to guide the future study. These participants were not
resent in the final experiment. It was essential to adjust environmental
roblems and fix software issues. With this, we were sure that the
rocedure would work and that the participants would feel comfortable
hen performing the activity.

.11. Experiment execution

This section presents how the experiment was performed. Experi-
ents to evaluate usability may follow different approaches depending

n the factors being evaluated. In this experiment, the participants were
ivided into three groups (each group with five students), varying the
equence of using the parallel APIs to parallelize the same OpenCV
ideo processing application. The first group used SPar, TBB, and
astFlow; the second group used TBB, SPar, and FastFlow; and the third
roup used SPar, FastFlow, and TBB. After the experiment, the forms
nd screen-capture videos were analyzed to obtain data that can be
sed to evaluate the usability of the parallel APIs.

.11.1. Participants’ profile
This section presents the profile of the participants in this study.

ig. 10 details the participants’ profiles, bringing participants’ responses
o the characterization questionnaire (see Table 2). Fig. 10(a) shows
hat all participants have graduated in one of the following under-
raduate courses (Q2): Control and Automation Engineering (CAE),
omputer Engineering (CE), Computer Network Technologist (CNT),
omputer Science (CS), Electrical Engineering (EE), Information Sys-
ems (IS), System Analysis and Development (SAD), Teleinformatics En-
ineering (TE), and Telecommunications Systems Technologist (TST).

Fig. 10 also presents the participants’ experience levels from 0 to 5
ith command line and text editor in the Linux operating system (Q3),
ith the C++ programming language (Q4), with parallel APIs (Q5), and
ith the development of stream processing applications (Q7). Fig. 10(c)

hows that all participants are familiar with the Linux operating system,
sing it in the classroom (2 participants), in personal projects (1
11
participant), and some (1 participant) or many (1 participant) projects
in industry or research.

Fig. 10(d) shows that only 3 participants have no experience de-
veloping C++ applications, and 3 have only theoretical knowledge.
The other participants have already developed some applications using
C++ in classroom activities (3 participants), in personal projects (1
participant), and industry or research (5 participants).

Fig. 10(e) shows that most participants have already used parallel
APIs, either to parallelize applications in the classroom (8 participants),
on personal projects (1 participant), or in industry or research (4
participants). However, these participants are not experts in parallel
programming because they have had a short time in contact with the
parallel APIs. In addition, only 2 participants have never used parallel
APIs, having only theoretical knowledge about them. Fig. 10(b) shows
that most participants have used parallel APIs for multi-core (OpenMP,
Pthreads, and Cilk) and distributed (MPI) systems. Only 2 participants
have already developed GPU applications using CUDA. Moreover, only
1 participant has no experience with any parallel APIs.

Fig. 10(f) shows that most participants (10 participants) have no
experience developing stream processing applications or only theoret-
ical knowledge (3 participants). Although 2 participants had practical
experience in developing stream processing applications, they are not
considered experienced developers in this domain. The main reason
is the little contact these participants have with this subject because
they usually focus on developing the business logic code and not on
developing these types of applications. Therefore, the participants in
this group are considered beginners in the stream processing domain
and satisfy the target sample of this experiment.

The answers to Q3, Q4, Q5, and Q7 were used to divide the groups
of this experiment. An analysis of variance (ANOVA) was performed to
verify if the division of the groups is close to equal. Two hypotheses
were considered: the null hypothesis (𝐻0) stating that there are no dif-
ferences between the experimental condition means, and the alternative
hypothesis (𝐻1) stating that some means of the experimental condition
are different. Given the conventional significance level (𝛼) of 0.05, the
ANOVA was applied for each question [38,77]. Table 5 shows that all
𝑃 -values are greater than 𝛼, so all 𝐻0 can be accepted. Therefore, there
s no significant difference among the three groups, and the division of
articipants was done in a balanced way.

Computer Standards & Interfaces 84 (2023) 103691G. Andrade et al.
Fig. 11. Execution time and performance achieved by each participant using FastFlow, SPar, and TBB.
Table 5
ANOVA results.

Questions Q3 Q4 Q5 Q7

𝐹 -value 0.86 0.46 0.38 0.27
𝑃 -value 0.45 0.64 0.69 0.76

5.11.2. Effectiveness
This section presents the effectiveness evaluation, which refers

to the accuracy and completeness in which the participants achieve
the specified objectives [65]. In this study, the participants’ objective
was to parallelize a video processing application using the parallel
APIs FastFlow, SPar, and TBB. Furthermore, this goal would only be
achieved if the participant met the three criteria presented in Sec-
tion 5.8: performance, program correctness, and the correct completion
of the Procedure questionnaire (Table 3).

The speedup was calculated to evaluate performance by dividing the
sequential execution time (Q4) by the parallel execution time (Q6) [5].
Fig. 11(a) shows that all participants could reduce the execution time
of the parallel applications. In addition, Fig. 11(b) shows that all appli-
cations developed by the participants achieved the minimum required
performance (speedup ≥ 3) using the three parallel APIs. Each partici-
pant used a certain number of threads shown on each bar’s label in the
graph. However, this speedup is not necessary the optimal performance.
To achieve more performance would require the participants to have
more knowledge about the architecture, which is beyond the scope of
this study. Therefore, we did not ask for the maximum speedup but only
the minimum speedup as an indicator of parallelization success and the
conclusion of the activity.

In order to evaluate the correctness of a program, it is necessary
to verify if its execution against a known input generates the expected
output [38]. All participants were able to parallelize the application in
order to produce the expected output using the three parallel APIs. In
addition, the Procedure questionnaire was adequately filled out by all
participants. Therefore, FastFlow, SPar, and TBB showed effectiveness
in this study. Thanks to our pilot experiment.

6. Development effort analysis

This section presents the evaluation of the effort required to de-
velop a video processing application using FastFlow, SPar, and TBB.
Development effort is usually evaluated considering the time required
to develop an application. In Q1 and Q2 of the Procedure questionnaire
(Table 3), a participant must inform the start and end time of the
activity, which can be used to calculate the total development time.
However, the effort to develop an application includes several activi-
ties, such as planning, coding, and debugging. Therefore, in this study,
12
we analyzed the time taken for each of the activities performed by the
participants during the development of the video processing application
rather than evaluating the total development time.

Eight factors were collected from the screen-captured videos to
assess the development effort: time to answer the form, time accessing
the material available, time to understand the application code, time
to read the procedure description, development time, debugging time,
number of executions, and error types. To analyze the first seven met-
rics, we performed a paired hypothesis test. To analyze the error types,
we used descriptive statistics. In addition, the programming errors
analyzed were divided between compile-time errors and programming
logic errors.

6.1. Hypothesis test

The development effort is a factor that must be evaluated to de-
termine the usability of a parallel API [65]. To assess this factor, we
considered the time taken by participants to complete the following
activities in seconds: time to answer the form, time accessing the
material provided, time to understand the application code, time to
read the procedure description, development time, and debugging time.
The time for testing and running the application was not measured, as
the participants would leave the application running and continue to
perform other activities, e.g., accessing the material provided. Instead
of these metrics, the number of executions of the application was
measured. This metric represents how many times a participant has
tested the parallel application until they can reduce the execution time
by up to three times the execution time of the sequential version.

Fig. 12 shows the box plots for each of the metrics evaluated.
Based on the box plots, it can be seen that the lowest medians for
the time to answer the form, time to access the provided material,
development time, debugging time, and the number of executions
were obtained when participants used SPar. On the other hand, when
they use FastFlow, the lowest medians were obtained for the time
spent understanding the application code and reading the procedure
description. Since the value of the medians alone cannot determine
which parallel API offers the best usability, it is necessary to perform
a hypothesis test.

To verify whether the data collected has a normal distribution
or not, we first performed the Shapiro–Wilk test at the conventional
significance level (𝛼) of 0.05 [70]. This test was chosen because it is one
of the most powerful tests for all distribution types and is independent
of sample sizes [78]. Two hypotheses were considered: 𝐻0 stating
that the samples show a normal distribution, and 𝐻1 stating that the
samples do not have a normal distribution. Table 6 shows the results
of the Shapiro–Wilk normality test. The 𝑃 -values greater than 0.05 are

Computer Standards & Interfaces 84 (2023) 103691G. Andrade et al.
Fig. 12. Box Plot for the times collected in the experiment.
Table 6
Shapiro–Wilk and Hypothesis Test.

Metrics Shapiro–Wilk Hypothesis Test

SPar FastFlow TBB SPar x FastFlow SPar x TBB FastFlow x TBB

𝑝-value 𝑝-value 𝑝-value 𝑝-value 𝑝-value 𝑝-value

Time to answer the form (s) 0.5166 0.0033 0.0286 0.0353 0.1914 0.6788
Time accessing the material provided (s) 0.4828 0.0085 0.0811 0.0026 0.0147 1.0000
Time to understand the application code (s) 0.3586 0.0001 4.06E−07 0.0170 0.2524 0.2524
Time to read the procedure description (s) 0.0010 0.0002 0.0001 0.0618 0.1959 0.8753
Development time (s) 0.0003 0.0004 4.82E−05 0.0006 0.0067 0.6788
Debugging Time (s) 0.5247 0.0333 0.2026 0.0730 0.0012 0.1688
Number of Executions 0.0003 0.1289 0.0068 0.7257 0.2778 0.1015
presented in bold in Table 6. 𝐻0 can be accepted for these cases because
the samples have a normal distribution. For all other cases, the 𝑃 -values
are less than 𝛼, so 𝐻0 can be rejected because these samples do not have
a normal distribution.

Considering the hypotheses presented in Section 5.4, we performed
a paired hypothesis test for two samples [79]: SPar versus FastFlow,
SPar versus TBB, and FastFlow versus TBB. The hypothesis test between
SPar and TBB was performed using the parametric Student’s 𝑡-test for
the time to consult material and debugging time because the samples
have a normal distribution for such metrics. For all other cases, the
non-parametric Wilcoxon test was performed. The 𝑡-test evaluates the
hypotheses considering the populations’ mean, while the Wilcoxon test
considers the medians [70,79].

Table 6 also shows the results of the Wilcoxon and 𝑡-test considering
a conventional 𝛼 of 0.05. For the metric time to answer the form, the
𝑃 -value is greater than 𝛼 for SPar versus TBB, and FastFlow versus
TBB (in bold). So, there is no significant difference with respect to
the time spent by the participants to answer the form in the activities
using SPar and FastFlow compared to the TBB activity. Between SPar
and FastFlow, the 𝑃 -value is smaller than 𝛼, so there is a significant
difference between these results. The time spent by participants to
answer the questionnaire during the FastFlow activity may have been
longer due to the volume of information reported by the participants.
13
For the time accessing the material provided, the 𝑃 -value is 1
(greater than 𝛼) for FastFlow versus TBB. Therefore, there is no differ-
ence between the time spent by the participants studying the FastFlow
and TBB APIs. On the other hand, the 𝑃 -value is less than 𝛼 for
SPar versus FastFlow and TBB, confirming the results in Fig. 12(b).
Therefore, 𝐻0−𝑠𝑡𝑢𝑑𝑦 can be rejected because the effort in accessing the
material for learning FastFlow, TBB, and SPar were not equal. It was
lower for SPar.

As can be seen in Table 6, the 𝑃 -value is greater than 𝛼 for SPar
versus TBB, and FastFlow versus TBB (in bold). Therefore, there is no
significant difference in the time spent by the participants to under-
stand the sequential application in the activity using TBB compared
to SPar and FastFlow. However, when comparing SPar with FastFlow,
the 𝑃 -value is lower than the 𝛼 value, confirming there is a significant
difference between the time spent by participants to understand the
sequential application code in each of the activities. These results
highlight that the effort to understand the sequential application was
the lowest in the activity using FastFlow because two groups finished
the activity using it.

As seen in Table 6, the 𝑃 -value is greater than 𝛼 for the time to
read the procedure description in all cases. Therefore, 𝐻0−𝑟𝑒𝑎𝑑 cannot
be accepted, although the time spent by the participants reading the
procedure description is different for each of the parallel APIs used
(Fig. 12(d)). These results show that the effort to understand the study

Computer Standards & Interfaces 84 (2023) 103691G. Andrade et al.

f
a
c
i
n
t
a

6

t

Table 7
The most frequently occurring compile-time errors in the activity using SPar.

ID 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Type Description No.
Group 2 1 3 3 3 2 1 3 2 2 3 1 2 1 1

7 9 9 10 8 6 12 3 4 4 7 34 2 26 15 Variable was not
declared

A variable was called inside
ToStream/Stage but is not in
the required Input/Output

156

– – 43 – – – – – – – – 39 33 – – A compilation
directive is missing

The OpenCV compile directive is
missing from the command line

115

12 – – – – – – 6 – – 6 24 – – 12 Invalid character A character was copied from the
PDF file

60

– 1 – – 1 6 3 – 2 – 2 2 – – 2 Expected] There is no closing bracket (]) at
the end of annotation or a syntax
error has been made

19

– 2 – – 3 – 2 – 4 – 4 2 – – – Expected } A closing curly bracket (}) is
missing at the end of annotation

17

– – 1 – – – 7 – – – 2 1 1 – 2 Annotation with
syntax error

There is a syntax error in the
annotation, e.g., a letter or a
parenthesis is missing

14

– – 1 – – – 7 – – – 2 – 1 – 2 Expected { An opening curly bracket ({) is
missing after an annotation

13

– – – – – – 10 – – – – 1 – – – Variable was not
received

The required variables are not in
the Input to the compute
OpenCV functions

11

– – – – – – – – 1 – 2 4 3 – 1 Unrecognized
command line option

4.86cmA compile flag is in the
wrong place or its syntax is wrong

11

– – – – – – 2 – – – – 2 3 – 2 Semantic error in
ToStream

At least one Stage attribute must
be declared inside ToStream

9

procedure is greater for the activity using SPar because two groups
started the activity using it. However, it was possible to demonstrate
through a hypothesis test that there is no significant difference between
the efforts spent by the participants to understand the procedure in each
of the activities.

For the development time, the 𝑃 -value is less than 𝛼 for SPar versus
FastFlow, and SPar versus TBB. Therefore, 𝐻0−𝑑𝑒𝑣 should be rejected
because there is a significant difference in the time required to develop
an application with SPar regarding FastFlow and TBB. The 𝑃 -value
is greater than 𝛼 for FastFlow versus TBB, so there is no significant
difference between the time spent by the participants to develop the
applications using both APIs. These results highlight that the effort to
parallelize the application was lower using SPar than FastFlow and
TBB.

For debugging time, the 𝑃 -value is greater than 𝛼 for SPar versus
FastFlow, and FastFlow versus TBB (in bold). Therefore, there is no
significant difference between the medians. Although the debugging
time for the applications developed with SPar is the shortest (see
Fig. 12(f)), from the hypothesis test, it is possible to show that there
is a significant difference only between the debugging times of SPar
and TBB (𝑃 -value = 0.0012 < 0.05). There is no significant difference
between the debugging times of SPar and FastFlow. Then these results
highlight that the effort to correct programming errors is lower for SPar
and FastFlow.

In all comparisons, Table 6 shows that the 𝑃 -value is greater than 𝛼
or the number of executions. Although the participants have executed
smaller number of times the application parallelized with SPar con-

erning the other parallel APIs (Fig. 12(g)), from the hypothesis test,
t was possible to show that there is no significant difference in the
umber of times the applications were executed. These results highlight
hat the effort to test the applications parallelized with FastFlow, SPar,
nd TBB was equal.

.2. Compile-time errors

This section shows the results of compile-time errors collected from
he screen-captured videos.
14
6.2.1. Common compile-time errors in SPar
Table 7 shows the most common compile-time errors made by the

participants in the activity using SPar. A compile-time error occurred
when participants tried to call a variable within the scope of an ID
attribute (ToStream or Stage), but this variable was not declared
within its scope or as a global variable (156 times). Some partici-
pants did not inform the correct variables to the Input and Output,
resulting in a compilation error (11 times).

When the participant did not use the OpenCV flag (-cflags
opencv‘) and library (-libs opencv‘) on the command line to
compile the code, a linker error occurred (115 times). Since the linker
errors do not allow the execution of the code as well as the compile-
time errors, they were included in Table 7. Some participants also used
the SPar compile flag (-spar_blocking) in the wrong place on the
command line, or there was a syntax error in it, resulting in a compile-
time error (11 times). In addition, invalid characters were also found
in the code, resulting in compile-time errors 60 times.

In SPar, the annotated region must be between curly brackets
({…}), and the annotations must be declared using double brackets
([[attr-list]]) [32]. Compile-time errors occurred when some
participants did not use a curly bracket at the beginning of the anno-
tated region (13 times) or at the end of the annotated region (17 times).
Compile-time errors also occurred when some participants did not put
a closing bracket (]) at the end of annotation, or put it in an incorrect
place (19 times), or there was a syntax error in the SPar annotation (14
times). Some participants annotated the code using only the ToStream
annotation, which also resulted in an error. SPar semantic requires that
at least one Stage is within an annotated region (ToStream).

6.2.2. Common compile-time errors in FastFlow
Table 8 shows the most common compile-time errors made by par-

ticipants in the activity using FastFlow. A compile-time error occurred
when the participants called a local variable (usually declared in the
main function of the program) within a stage (160 times). As with the
SPar, some participants copied the example code from the manual (in
PDF format), resulting in compile-time errors (46 times). A participant

Computer Standards & Interfaces 84 (2023) 103691G. Andrade et al.

t
t
a
O
i

o
#
n
t
s
o
c

6

p
m

Table 8
The most frequently occurring compile-time errors in the activity using FastFlow.

ID 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Type Description No.
Group 2 1 3 3 3 2 1 3 2 2 3 1 2 1 1

2 8 51 43 9 2 4 12 5 2 6 2 2 2 10 Variable was not
declared

A variable was called inside a
stage, but it was not declared in
this scope

160

1 – 14 28 10 – 2 – – 2 – 9 – – 1 No matching function
for call

The function received an argument
of the wrong type

67

– – 2 44 6 – 3 – – 7 – – – – – Invalid initialization
of the variable

A variable was declared using a
pointer but was initialized without
using a pointer

62

– – 6 17 4 – – 1 – – – 6 – – 12 Parameter incorrectly
passed to stage

Variables were passed as
parameters to the svc method

46

– – – 36 – – – 3 – 7 – – – – – Invalid character A character was copied from the
PDF file

46

5 – 1 – 8 – 1 5 – 15 – 2 – 1 6 Cannot convert types
in return

A variable of a different type than
the return type of the svc method
was returned

44

– – – 22 9 – – 3 – 1 – – – – 3 Cannot declare an
object of abstract
type

The svc method was declared of
one type and its parameter of
another type

38

– 2 4 1 3 – 7 – 3 4 – 2 2 – 4 Expected template
name before < token

FastFlow header or namespace is
missing, or there is a syntax error
in ff_node

32

– – 6 6 – – 2 6 2 – 4 1 – – – Template argument 1
or 2 is invalid

The ff_node_t was declared of
type std::Mat, but the Mat type
belongs to cv namespace

27

– – 2 8 5 – – 1 3 3 – – – – – Expected ; There is no semicolon after a
member declaration, struct
definition, or variable name

22
W
(
c
s
S
v

forgot the semicolon at the end of a variable, class, or struct
declaration (22 times).

In FastFlow, each stage has an svc method, which has a pointer as
a parameter. We observe that some participants tried to pass variables
as parameters to the svc method, resulting in compile-time errors (46
imes). Some participants tried to return a variable of a different type
han the svc method returns (44 times). Some participants passed
n argument of the wrong type to a function or method (67 times).
ther participants declared a variable using a pointer, but they called

t without using the pointer (62 times).
Moreover, other participants forgot to include the header files

f the FastFlow libraries (#include <ff/pipeline.hpp> and
include <ff/farm.hpp>), or they did not include the using
amespace ff; directive, resulting in a compile-time error (32

imes). When the participant declared the ff_node_t of type
td::Mat (ff_node_t<std::Mat>), a compile-time error
ccurred (27 times) because the Mat type belongs to the
v namespace and not the std namespace.

.2.3. Common compile-time errors in TBB
Table 9 shows the most frequently compile-time errors made by

articipants in the activity using TBB. In TBB, each stage can be
odeled as classes extending the tbb::filter. The most common

error made by the participants was calling a variable declared in the
main function within a stage (243 times). In TBB, each stage class needs
to implement the virtual operator method, which has a pointer as
a parameter. A compile-time error occurred when some participants
declared the operator method of a given data type and its parameter
of another type, e.g., void *operator(Mat* item) (44 times). An
error also occurred when a variable was declared using a pointer, but
it was called in the code without a pointer (33 times).

Other participants passed an argument of the wrong type to a
function or method (89 times). In addition, a linker error occurred
when a participant did not use the OpenCV flag (-cflags opencv‘),
OpenCV and TBB libraries (-libs opencv‘ -ltbb) on the command
line when compiling the code (73 times).
15
In the middle and last stages of TBB, the static_cast operation
must be used to convert the void pointer to the Mat data type, and the
new command must be used to allocate memory for the void pointer.

e observed that some participants did not use the static_cast
54 times) command, or they did not use static_cast or new
ommands correctly (68 times), or there was a syntax error in the
tatic_cast command (41 times), resulting in compile-time errors.
ome participants did not use the static_cast command to con-
ert the void pointer to the <vector>Mat data type before calling
spl[0].type, resulting in another compile-time error (45 times).
Finally, some participants tried to return a different variable type from
the return type of the operator method.

6.3. Programming logic errors

Types of programming errors are divided between runtime errors
and compile-time errors [80]. The compile-time errors collected from
the screen-captured videos were discussed in the previous section (Sec-
tion 6.2). On the other hand, the runtime errors occur while a program
is running and, in most cases, are caused by programming logic errors.
This section shows the results of programming logic errors, which
occur because of some flaw in the program logic and causes incorrect,
unexpected, or unintended output [80].

6.3.1. Common logic errors in SPar
Table 10 shows the programming logic errors made by participants

in the activity using SPar. It also presents some programming logic
errors in C++ language. The most recurrent error made by participants
was to pass the global variables inputVideo and outputVideo as
parameters of the Input and/or Output attributes of ToStream or
a Stage (20 times). Thus, the output video could not be generated.

The stream processing logic foresees the creation of at least three
stages for the video processing application in this study: a first stage for
reading an input video frame, a middle stage for extracting the green
channel from the video, and a last stage for writing the frame to the
output video. If less than three stages are created, the read and write

Computer Standards & Interfaces 84 (2023) 103691G. Andrade et al.
Table 9
The most frequently occurring compile-time errors in the activity using TBB.

ID 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Type Description No.
Group 2 1 3 3 3 2 1 3 2 2 3 1 2 1 1

53 10 1 2 3 2 2 4 20 61 9 7 56 4 9 Variable was not
declared

A variable was called inside a
stage, but it was not declared in
this scope

243

3 6 1 – – – 1 – 4 8 – 32 15 4 15 No matching function
for call

The function received an argument
of the wrong data type

89

– – – – – – – – – – – – 42 31 – A compilation
directive is missing

The OpenCV and TBB compile
directive are missing

73

4 13 – – – – – – 2 20 – 17 3 – 9 Invalid conversion
from types

There is an assignment between
variables of different data types or
a conversion error

68

6 2 3 4 – 8 – – 5 9 1 2 3 16 9 Cannot convert types
in return

A variable of a different type than
the return type of the operator
method was returned

68

– 11 33 – – – – – 1 – – 7 – 2 – void* is not a
pointer to object type

The static_cast method was
not applied before calling the
operator parameter

54

– 8 – – – – – – – – – 25 – – 12 Error calling the
variable spl

A pointer is missing or there is a
syntax error in static_cast
when converting spl

45

– 1 12 3 – – – – – 3 – 19 – 6 – Cannot declare an
object of abstract
type

The operator method was declared
of one type and its parameter of
another type

44

– 2 – – – – – – 3 2 1 15 – 13 5 Data type conversion
error

There is a syntax error when
converting the variable using
static_cast

41

2 3 3 – – 1 2 3 7 – – – 6 3 3 Invalid initialization
of the variable

A variable was declared using a
pointer but was initialized without
using a pointer

33
Table 10
The most frequently occurring programming logic errors in the activity using SPar.

ID 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Type Description No.
Group 2 1 3 3 3 2 1 3 2 2 3 1 2 1 1

– 5 – 2 2 – 2 – 1 3 – 5 – – – Global variable in
Input/Output

Global variables in the
Input/Output prevent the
generation of the output video

20

– 1 – – – – 5 – – – – 5 3 – 5 Less than three stages Reading, extracting and writing
operations are performed in one or
two stages

19

– 4 – – – – – – – – – 6 – – 5 Replicate attribute
at the wrong stage

Replicate attribute is used in
the frame reading stage or the
frame writing stage

15

– 3 – – – – – – 1 1 2 2 – 3 1 Variable in Output
and not in Input

A variable was placed in the
Output of the Stage/ToStream
instead of the Input

13

9 – – – – – – – – – 1 – – – – Wrong variable in
Input

A variable must be consumed in a
Stage, but another variable was
placed in Stage Input

10

– – 1 5 – – – – – – – – – – – SPar flag on
execution command
line

The Spar -spar_ordered flag
was used in the command line for
the execution

6

– – – – – – – – – – – 1 – 3 – The incorrect region
was parallelized

A region of the code that does not
perform stream processing has
been parallelized

4

4 – – – – – – – – – – – – – – Wrong variable in
Output

A variable must be produced for
the next Stage but it is not in the
current Stage Output

4

operations must be performed together with the processing operation.
Therefore, the Replicate attribute cannot be used, and no parallel
processing can be applied. The participants implemented less than three
stages 19 times. Some participants also tried to create more than three
stages. Although it was not a programming logic error, it did affect
the performance of the application. Moreover, when the Replicate
16
attribute was used in the reading and writing stages (first and last
stages), the application execution was suddenly interrupted.

We observed that some participants produced logic errors because
they could not understand the producer/consumer relation and data
dependency with the Input and Output attributes. For example, they
provided wrong/unused variables as arguments for these attributes.

Computer Standards & Interfaces 84 (2023) 103691G. Andrade et al.
Table 11
The most frequently occurring programming logic errors in the activity using FastFlow.

ID 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Type Description No.
Group 2 1 3 3 3 2 1 3 2 2 3 1 2 1 1

3 1 12 13 3 – 4 3 3 3 6 5 3 – 11 ff_node_t declared
with the wrong type

The ff_node_t was not declared
of type Mat

70

3 – – – 1 1 – – – 5 – 8 – 1 – return *variable
or return
&variable

The pointer or the address of a
local variable has been returned

19

– – – 15 - – – – – – – 3 – – – Parameters of Stage
in svc method

Variables were passed as
parameters of a stage inside the
svc virtual method

18

3 – 3 – – – – – – – – 6 – – 3 One of the stages is
missing

In the main function, one of the
stages was not called within the
template class

15

– 2 2 3 – 2 2 1 1 – – – 1 – – ff_Pipe/Farm
declared with the
wrong type

The ff_node_t class was
declared of Mat type but the
ff_Pipe/Farm template class
was not

14

3 – 4 3 – – – – – 2 – – – – – The return
command is missing

The first stage returns EOS, the
middle returns the stream item,
and the last returns GO_ON

12

– – 2 1 2 – 2 1 – 2 – – – 1 – Wrong return A variable must be received by the
next stage but it is not returned by
the current stage

11

– – – 4 1 – – – – 3 1 – – 1 – The delete
command is missing

In FastFlow, the last stage must
contain the delete item
command before returning GO_ON

10

1 – 1 – – – – – – – – 2 – – 1 Pipeline was not run The method
run_and_wait_end() was not
called to execute the Pipeline in
the main function

5

Another logic error committed by participants was to parallelize the
incorrect region of the application code. Finally, there was a command-
line logic error because they were specified -spar_ordered in the
correct order.

6.3.2. Common logic errors in FastFlow
Table 11 shows the most frequently programming logic errors made

by participants during the activity using FastFlow. A programming logic
error occurred when the participants declared the ff_node_t class
with a data type other than Mat* type (70 times). In addition, some
participants tried to provide a variable within a stage as a parameter
to the svc method (18 times) and not to the stage() constructor
method.

Some participants had difficulty using the return command at the
end of each FastFlow stage, producing logic errors. Some participants
forgot to return EOS in the first stage, the variable produced by the
middle stage for the last stage, or GO_ON in the last stage (12 times).
Some participants did not return the expected variable (11 times),
returned a pointer to a variable (return *variable) or the address
of a local variable (return &variable) (19 times). Also, some
participants forgot to use the delete command in the last stage (10
times) to deallocate memory before call return GO_ON.

In FastFlow, each stage that will be executed must be specified
in the ff_Pipe<> or ff_Farm<> methods. Some participants did
not include one of the stages in Pipeline or Farm, producing a logic
error (15 times). Other participants declared in the main function a
Pipeline or Farm pattern of a different data type from the ff_node_t
class data type (14 times). Finally, some participants also produced
logic errors when they did not execute the Pipeline or Farm using the
run_and_wait_end() method in the main function (5 times).

6.3.3. Common logic errors in TBB
Table 12 shows the programming logic errors most frequently made

by participants in the activity using TBB. A logic error occurred when
the participants parallelized code regions that should remain sequential
17
in the main function (97 times). As mentioned above, the stream
processing logic provides for the creation of at least three stages for the
video processing application in this study, and only the intermediate
stage can be processed in parallel. When the parallel filter was used in
the first and last stages (reading and writing), the application execution
was suddenly interrupted (19 times). On the other hand, when less
than three stages were created, the reading or writing operations were
performed together with the processing operation, producing the error
when participants used the parallel filter (16 times). Some participants
also created more than three stages, affecting the performance of the
application.

In TBB, the parameters of a filter class had to be provided within the
stage() construct method (e.g., stage1(int channel)
:c(channel)). Some participants incorrectly provided a variable as a
parameter to a stage incorrectly (97 times) or a variable as a parameter
to the operator method (31 times). We also observed logic errors due
to incorrect use of the return command by participants (29 times),
resulting in the suddenly interrupted execution of the application. In
addition, there were errors related to the delete command usage.
Some participants did not use the delete command for deallocating
memory in the last stage (7 times) or used it in the wrong stage (5
times).

After creating the classes for each stage, the objects of the stages
had to be declared and added to the Pipeline (in order) through the
add_filter command. Some participants did not add one of the
stages to the Pipeline (12 times), resulting in the application execution
being interrupted. At last, segmentation faults occurred when several
instances of the same stage were added to the Pipeline. Moreover, if a
stage was not instantiated in the main function, it could not be added

to the Pipeline using the add_filter command (see Fig. 5) (6 times).

Computer Standards & Interfaces 84 (2023) 103691G. Andrade et al.
Table 12
The most frequently occurring programming logic errors in the activity using TBB.

ID 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Type Description No.
Group 2 1 3 3 3 2 1 3 2 2 3 1 2 1 1

45 – – – – – – – 5 37 – – 10 – – Incorrect
computations inside
the stage

Computations that should continue
in the main function were placed
within the stages

97

4 – – – – 2 1 – – 18 – 22 – – – The stage is receiving
parameters
incorrectly

No attribution of the declared
variables as parameters of a stage
was performed

47

4 – – – – – 1 – – 14 – 12 – – – Parameters of stage
in operator
method

The variables were passed as
parameters of the operator
instead of the stage constructor

31

8 1 – – 1 – 1 – 3 8 – – – 6 1 The return
command is missing

First and middle stages return the
stream item, and first and last
stages return NULL

29

4 – 1 – – – – – 1 9 – 1 3 – – Parallel at the wrong
stage

Parallel filter is used in the frame
reading stage or the frame writing
stage

19

– – – – – – – 2 2 3 – – 5 2 2 Less than three stages Reading, extracting and writing
operations are performed in one or
two stages

16

2 1 – – – – – – 3 1 4 – – 1 – One of the stages is
missing

In the main function the
add_filter method was not
used to add a stages to the Pipeline

12

– – – – 1 – – – 1 2 – – – 3 – The delete command
is missing

In TBB, the last stage must contain
the delete item command
before returning NULL

7

– 1 – – – – – – 1 – 4 – – – – A stage was not
instantiated

One of the classes of filters (stage)
was not instantiated in the main
function

6

– – – – – – 1 – – – 2 – – 2 – The delete
command at the
wrong stage

In the TBB, only the last stage
should contain the delete item
command

5

Fig. 13. Participants’ opinion regarding the parallel APIs used.
7. Satisfaction analysis

After evaluating the development effort, the satisfaction of the
participants was surveyed. For this purpose, quantitative and qual-
itative data collected through the Procedure (Table 3) and Evalua-
tion (Table 4) questionnaires were analyzed. These questionnaires are
self-assessing, so they reflect the participants’ opinions.

7.1. Quantitative analysis

This section presents the quantitative results of participant satisfac-
tion. In Q7 of the Procedure questionnaire, the participants reported
whether the manual was useful to perform the activity or not. All par-
ticipants agreed that the SPar and TBB manuals were useful. However,
two participants diverged from the others, saying that the FastFlow
manual was not useful. Moreover, all participants agreed that the
activity was completed successfully (Q8).

In Q5, Q6, and Q7 of the Evaluation questionnaire, participants
were required to inform their ability to perform activities with SPar,
TBB, and FastFlow on a scale from 0 to 5. To compare these responses,
18
the average of the 15 participants was taken. The average of SPar equals
to 2. On the other hand, the averages of TBB and FastFlow are equal to
1.8. From the average analysis, the participants considered themselves
more capable of developing applications using SPar.

In Q8 and Q9, the participants were required to inform their expe-
rience developing C++ applications and stream applications on a scale
from 0 to 5. Before conducting the experiment, participants answered
the same questions on the characterization questionnaire. In order to
compare these responses, the average of the 15 participants was taken.
The average of participants’ experience in developing C++ applications
before the experiment is equal to 2.13 and after the experiment is equal
to 2.53. The average of participants’ experience in developing stream
processing applications before the experiment is equal to 0.66 and after
the experiment is equal to 2.33. This analysis is just an overall idea and
comparison. The ideal approach to evaluate the participants’ knowl-
edge is through a proficiency test before and after the experiment [51].
This would demand much more effort and time, therefore, we opted for
not following the ideal approach as it is not the central point of this
work. Despite that, these results were expected and reflect positively
on our experiments.

Computer Standards & Interfaces 84 (2023) 103691G. Andrade et al.
Fig. 14. Difficulties in the activity.
In Q10 of the Evaluation questionnaire, participants are asked
which parallel API they had more difficulty performing the activity.
Fig. 13(a) shows a graph with the parallel APIs chosen by the partic-
ipants. None of the participants considered that it was more difficult
to program with SPar. From the 15 participants, 10 considered it was
harder to program with TBB, and 5 considered it was harder to program
with FastFlow. On the other hand, in Q12, participants are asked which
parallel API they considered easiest to perform the activity. Fig. 13(b)
shows that 11 participants found it easiest to program with SPar. In
addition, only 2 participants thought it was easier to program using
FastFlow or TBB.

In Q14, participants should inform which parallel API they would
choose if they needed to parallelize an application in the future.
Fig. 13(c) shows that most participants would have chosen SPar (13
participants). FastFlow and TBB were chosen by only 1 participant
each.

7.2. Qualitative analysis

The qualitative analysis was conducted using the open and axial
coding of Grounded Theory (GT) (Section 4). In the open coding,
participants’ answers were analyzed in detail to create codes related
to specific passages of those responses. Next, the axial coding was
performed, where categories were identified and related to their subcat-
egories, creating relationships. Graphical representations were created
using ATLAS.ti tool.5 The relationships between codes and categories
are represented by a red line, and the relationships between the codes
are represented by black lines with a label describing the type of
relationship.

In the Procedure questionnaire (Table 3), participants should re-
port their main difficulties in implementing parallelism with FastFlow,
SPar, and TBB for Q9. Fig. 14 shows a graphic representation for the
participants’ difficulties. Regarding to FastFlow (Fig. 14(a)), the partic-
ipants reported difficulties in using the OpenCV functions, modified
the code, division of the stages, compiled the code, found pro-
gramming errors, among others. Due to the participants’ difficulties
in understanding FastFlow skeletons and the difference between
Farm and Ordered Farm, there were difficulties in using Ordered
Farm. Consequently, there was difficulty in generating the output
video correctly.

The main difficulty reported by the participants was understanding
the communication among the stages. The quotes below highlight

5 ATLAS.ti is a software used for qualitative data analysis and mixed
methods research in academic, market, and user experience research. Available
at: https://atlasti.com/.
19
that this difficulty can be caused by the difficulty in selecting the type
of pointer for communication among the stages:

‘‘In general, the biggest difficulty was managing C++ pointers. I
was confused about how to turn variables into pointers and how
to pass them on to the other stages (e.g., from Emitter to Worker).’’
[Participant 10]

‘‘I had a small problem understanding how to correctly define the
types of data that are transmitted among the stages.’’ [Participant
11]

This may be related to the participants’ difficulties in using the
C++ programming language. Participants reported difficulties in using
namespaces, C ++ data structures, and C++ pointers. These difficul-
ties occurred due to the participants’ lack of practice and experience
with the C++ language. Due to the lack of C++ documentation,
participants also reported difficulties in using C++ pointers. In ad-
dition, the main problem reported by the participants was the lack of
practice/experience with the C++ language, which together with
a little experience with stream processing, is also related to the
participants’ difficulty in understanding the sequential code.

In the activity using SPar, participants did not report specific diffi-
culties with C++, but only with the parallel API. Fig. 14(b) shows that
the participants had difficulties in finding the programming errors
in the application because they could not distinguish the code errors
from the warnings. Participants had difficulty understanding the se-
quential code and defining the number of stages required, resulting
in a failure to increase the speedup. In addition, participants reported
difficulties in compiling the code and identifying the middle stage.

The main difficulty was to correctly fill in the attributes of In-
put and Output, which is caused by the participants’ difficulty in
understanding SPar logic. In this regard, the main error of the par-
ticipants was in using a global variable in the Input and Output
attributes. Due to this error, participants had problems with the scope
of variables, where they could not define which variables should
be global and local. This type of error occurred due to the lack of
more detailed explanations in the manual provided. They could not
understand the meaning of the term variable consumed. The quotes
below exemplify this aspect:

‘‘I forgot that a global variable cannot be used within the pro-
cess of parallelism, because all workers see and write on them.’’
[Participant 4]

‘‘Due to the global variables that are not in spar::Input(), it
was not clear when reading the manual.’’ [Participant 5]

https://atlasti.com/

Computer Standards & Interfaces 84 (2023) 103691G. Andrade et al.
Fig. 15. Difficulties to understand the video application.

In the activity using TBB, participants also report specific difficulties
with C++, as in the activity with FastFlow. Fig. 14(c) shows that
the participants reported difficulties using specific commands (new
Mat(res) and static_cast), data structures, classes, object-
oriented programming, and pointers. The main difficulties reported
by the participants in relation to C++ were the use of pointers (8
quotes) and static_cast command (5 quotes), which are caused
by the lack of practice with the C++ programming language.

Regarding TBB, participants reported difficulties in understanding
the logic of the TBB, understanding how filters work, passing
parameters in the constructor method of a stage, identifying the
parallel region of the program, and defining the scope of the vari-
ables. Due to the lack of illustrations and more detailed explana-
tions in the manual, the participants have difficulty understanding
the meaning of tokens and the difference between the number of
tokens and the number of threads. The main difficulty reported by
the participants was understanding how the communication among
the stages worked. The quote below indicates that this difficulty is
related to the difficulty to find the programming errors:

‘‘My biggest problem with TBB was not noticing that it was neces-
sary to create a new copy of the data before they could be sent to the
next stage. Therefore, as can be seen in the video, it took me 10 to
20 min to try to find the error. As soon as I discovered that it was
necessary to use the new Mat(res) to send the data to another
stage, the program was almost complete.’’ [Participant 6]

In Q3, the participants should report their main difficulties in
understanding the video application. Fig. 15 shows that the participants
reported difficulties in identifying the most costly computational
functions; in identifying the parallelizable region of the program;
and in performing the division of the stages, determining which stages
would be the first, the second and the third ones. Due to the difficulty
in understanding the purpose of the video application, there were
difficulties in verifying if the video output was correct. Due to the
lack of code documentation, there were difficulties in understanding
each part of the code. In addition, the main difficulty reported by
the participants was understanding the functions for extracting
the green channel from the video. The quote below indicates that
this difficulty may be related to a lack of knowledge of the C++
programming language:

‘‘Although I do not know much about C++, consequently I do not
know what color channel extraction function in the video is doing.
It was easy to understand the context and what each part of the
algorithm was doing.’’ [Participant 10]
20
In Q10, the participants must inform which parallel API is the most
difficult to perform the activity. Participants found it more difficult
to program using TBB (10 participants) and FastFlow (5 participants)
(see Fig. 13(a)). In turn, in Q11, participants must justify their choice.
Fig. 16(a) shows a graphical representation of the reasons presented
by the participants. Participants reported some difficulties with TBB,
such as difficulties in using the C++ static_cast command,
difficulties in defining the number of tokens and threads, and
difficulties with C++ object-oriented programming. Due to the
difficulties in identifying the program’s parallelizable region and
difficulties in understanding the logic of TBB, a long period was
spent to complete the activity with TBB. In addition, since in TBB
was the first parallel API used by some of the participants, a
long period was spent to complete the activity. This indicates that
starting with TBB, is much more complicated.

The main difficulty reported by the participants was to understand
the communication among the stages. The quotes below highlight
that it may be related to the difficulty in using C++ pointers and using
the new command:

‘‘I took time to understand how to correctly pass the values through
pointers among the TBB stages.’’ [Participant 1]

‘‘My biggest difficulty was to notice the details in the definition
of the variables shared among the stages. For example, it was
necessary to instantiate the shared variable with new in the first
stage. In the following stages, the static_cast was used. I was
having problems because I was not doing Mat res = new Mat in
the first stage.’’ [Participant 2]

Fig. 16(b) shows the reasons for FastFlow being the most difficult
parallel API. Participants reported difficulties in implementing the
Farm pattern; declaring global variables correctly; understanding
communication among the stages; and dividing operations among
the stages. Due to the lack of practice with C++ programming, there
were difficulties in using C++ pointers. In addition, due to the difficulty
in using C++ pointers and the lack of more code examples, FastFlow
was more difficult than TBB.

Regarding the Q12, participants informed which parallel API is the
easiest to perform the activity. Most participants pointed out SPar (see
Fig. 13(b)). In turn, in Q13, participants must justify their choice and
Fig. 17(a) shows the reasons presented by participants. In SPar, there
is no need for major code changes, which is one of the main reasons
reported by participants. The quote below indicates that there is no
need for major code changes due to SPar annotations:

‘‘With SPar, there were no major changes in the code, only new
annotations for the parts that can be parallelized.’’ [Participant 6]

Moreover, in SPar, there is no need to create a class or structure for
each stage, due to its simple syntax. The quote below reinforces that
SPar code is easier to understand and program:

‘‘Its syntax is extremely simple, it does not require the use of
structure or classes as in FastFlow and TBB, making the code easier
to understand and apply parallelism.’’ [Participant 4]

Only 2 participants think it is easiest to program with TBB.
Fig. 17(b) shows that TBB enabled faster implementation for the
participants, the manual is enough to understand how TBB works,
and it was simpler to use. In addition, participants had no difficulty
in using it because of its similarity to FastFlow.

Only 2 participants think it is easier to program with FastFlow.
Fig. 17(c) shows that the activity using FastFlow was the easiest,
and there were few difficulties due to the similarity of the video
processing application to the code example. One participant had
already presented work in class about FastFlow, so this participant

Computer Standards & Interfaces 84 (2023) 103691G. Andrade et al.
Fig. 16. More difficult parallel API to use.
Fig. 17. Easiest parallel API to develop stream processing applications.
Fig. 18. Parallel API chosen by the participants.
already had some theoretical knowledge about it. In addition, as
FastFlow was the last parallel API used by the participant, they
already knew the video application.

In Q14, participants should inform which parallel API they would
choose to parallelize a stream processing application in the future.
Most participants chose SPar (see Fig. 13(c)). In Q15, participants must
justify their choice. Fig. 18(a) shows the reasons presented by the par-
ticipants. The participants would choose SPar because it allows them to
implement parallelism faster. In SPar, the programmer only inserts
21
annotations in the code to enable parallelism. Due to its annotation-
based model, SPar is easier to use than FastFlow and TBB, no need
to create a class or structure for each stage, and no need for
major code changes. In addition, since there is no need to create a
class/structure, the language is more intuitive. The following quotes
indicate this:

‘‘Undoubtedly, the ease and agility that SPar provided at the time
of coding and parallelization of the application would make it the
one chosen to parallel a world-real application.’’ [Participant 10]

Computer Standards & Interfaces 84 (2023) 103691G. Andrade et al.
‘‘I find the SPar interface more intuitive, without the need to previ-
ously define the parallel stages as classes or structures. With SPar, it
is possible to define the region and the parallel stages in the program
body (similar to OpenMP), which is very good.’’ [Participant 14]

Only 1 participant chose TBB to parallelize stream processing appli-
cations. Fig. 18(b) shows that this participant pointed out that TBB is a
simple language and there was no difficulty in using it. According to
the participant, as TBB is a tool from Intel, it offers some advantages.
The quote below indicates the advantages reported by the participant:

‘‘Being from Intel, it is reliable and has good support. An important
factor is that there should be more users, tutorials, and examples on
the Internet.’’ [Participant 7]

Only 1 participant chose FastFlow to parallelize stream processing
applications (Fig. 18(c)). This participant reported that FastFlow is as
easy to learn as SPar. However, due to its versatility, and maturity,
he thinks that it is a safer choice.

8. Discussion and threats to validity

The results show that SPar, FastFlow, and TBB offer effectiveness in
solving the activity given to the participants because all applications
produced the output video correctly with a minimum speedup of 3.
However, SPar is the easiest language to use for parallel stream pro-
cessing because it presented a lower learning curve in relation to the
other parallel APIs, and provided more productivity to the developers.
With a short time of access to the material provided, the participants
were already able to parallelize the application using this language. In
addition, the learning curve for SPar is shorter, since the simplicity of
this parallel API results in less time accessing the material provided.

When using SPar, the participants did not have to make major
modifications to the code in order to provide parallelism. With FastFlow
and TBB, it was necessary to create structures (class and struct)
for each stage, resulting in errors related to the C++ programming
language. In addition, the need for the return command on a stage
implemented through C++ structures is related to one of the main pro-
gramming logic errors made by the participants using FF and TBB. From
the satisfaction analysis, we observed that the use of C++ structures
and pointers is one of the main difficulties reported by the participants
when performing the activity using FastFlow and TBB. In addition,
participants found it easier to use SPar (11 participants) and would
choose it if they needed to solve a real problem in future activities
(13 participants) since it is not necessary to use pointers and create
structures to implement parallelism with this parallel API.

From the participants’ point of view, SPar is easier to use parallel
API, because of its annotation-based programming model. This feature
allowed the participants to be able to develop parallel stream pro-
cessing applications with less effort. Therefore, the evaluation of the
participants’ satisfaction confirmed the results concerning the devel-
opment effort and productivity. The participant’s opinion is still little
considered by the literature since few studies have evaluated it [51–
53]. However, this analysis is essential since it can help to complement
the evaluation of the results.

From the results, we conclude that SPar offers the best usability
in developing stream processing applications for multi-core systems. It
was shown that SPar provides the best indicators of productivity and
users’ satisfaction and consequently better usability. This is the first
study aiming to evaluate the usability of structured programming-based
parallel APIs in the stream processing domain. In addition, through this
study, it was possible to test and validate the proposed methodology in
order to facilitate the evaluation of the usability of parallel APIs.

This study showed promising results. However, some threats to
validity remain. In this experiment, the sequence of the parallel APIs
may impact the results, since no group started the activity with Fast-
22

Flow, and it was the last parallel API used by two groups. Therefore,
participants may have learned faster how to solve the problem with
FastFlow, which is a threat to internal validity. To reduce this risk, two
groups could have started their activities with, in principle, the simpler
parallel API (SPar). Thus, the participant has the chance to understand
the problem by performing a simpler activity first [39].

The way in which the study is conducted is another threat to inter-
nal validity, which is directly influenced by how the study instruments
have been formulated. For example, if there is a poorly formulated
question on a questionnaire, the study could be adversely affected.
To face this threat, a pilot study was previously conducted to test the
instruments used in this study and capture any confusing/error factors.
Another threat to internal validity is related to instrumentation [81].
Data are collected using self-assessment questionnaires completed by
the participants. Then a participant may enter incorrect data into the
questionnaire, such as the activity start and end time. To face this
threat, in addition to the questionnaires, the machine screens used by
the participants during the study were automatically recorded using a
monitoring script and later checked.

As a threat to external validity, it is not possible to represent
all the situations of stream processing in multi-core environments.
As such, other experiments on different tasks should be performed
towards the generalization. However, a strength of our experiment is
that we explored beginner programmers and applied quantitative and
qualitative analysis to understand the results as precisely as possible in
a non-explored scenario, to the best of our knowledge.

The design of the experiment may be considered a threat to con-
struct validity. SPar programming model is different from the TBB
and FastFlow programming models. It is difficult to justify that this
difference does not favor one parallel API over the others. Although
TBB and FastFlow have similar programming models, each one presents
its own characteristics. However, all of them are based on structured
parallel programming and have support for stream parallelism. Recur-
rent parallelism patterns are easily identified/captured by developers,
such as Farm, and Pipeline patterns.

Finally, a threat to conclusion validity is the sample size that may
not be so representative from the statistical perspective. To reduce this
threat, our analysis included all data collected from the participants.
Unfortunately, this is a recurrent difficulty for empirical studies with
developers, especially for approaches that require specific profiles, as
in our case. Thus, our study presents a limitation on the size of the
samples, which are considered indications (and not evidence). This
does not discredit our research and the conclusions, where several
lessons-learn were taken from qualitative and quantitative results.

9. Conclusion

In this article, we conducted a literature review for assessing parallel
APIs and a usability evaluation of three parallel APIs (FastFlow, SPar,
and TBB) for expressing parallelism in stream processing applications
that execute on multi-core environments. The study was conducted
with beginners in parallel programming to understand their main chal-
lenges when developing parallel applications for multi-core machines.
We assigned the activity of parallelizing an OpenCV video application.
Moreover, based on the literature review, we presented a methodology
to serve as a guide for researchers to assess parallel programming and
follow it in other application domains and parallel APIs.

Our results may also help in teaching parallel programming because
the participants were beginners in this domain, and we identified the
main challenges they faced in the study. We also presented the specific
difficulties with each parallel API. The main difficulties reported by the
participants referred to communication among the stages and the chal-
lenges of the correct division of tasks in order to achieve performance.
We also observed difficulties with the C++ language, especially with
pointers and object-oriented programming.

Concerning the data extraction, recording the screens of the ma-

chines used by the participants during the study allowed us to observe

Computer Standards & Interfaces 84 (2023) 103691G. Andrade et al.

y
D
i
R
L

D

p
w
1

A

m
0
F
7
(
2

R

in detail their behavior while performing the proposed activities. How-
ever, using a human observer has some challenges because it is time-
consuming and requires double-checking. One approach that could
reduce this effort is automatically generating logs from the experiment
execution. However, none of the tools available met our requirements.

Evaluating the parallel programming as we performed in this study
was a time-consuming task due to the planning and execution of the
experiment. Moreover, the detailed analysis of the data provided in this
study took several months. Some studies in the parallel programming
domain use classical coding metrics to evaluate programming usability
and productivity [16–18,33,82–88], such as LOC, McCabe’s CCN [89],
Halstead’s measures [90], and COCOMO II [91]. These classical metrics
can rapidly provide some programming indicators based on code size,
complexity assessment, and development effort estimation. However,
they are designed to evaluate general-purpose software and do not
consider factors that impact the parallel programming effort, such
as the programming model (structured and non-structured), recurring
programming errors, user satisfaction, and human difficulties [92]. In
future work, we intend to conduct further investigation of such metrics
applied to the parallel programming domain.

Parallel programming assessment presents several challenges to be
addressed in the future. We observe a gap in the usability analysis
of parallel APIs targeting GPUs such as CUDA, OpenACC, and oth-
ers. Moreover, there is a gap in evaluating emerging parallel APIs
for HPC clusters, such as HPX and Apache APIs for big data pro-
cessing (e.g., Spark and Flink). Since few studies explore such archi-
tectures [59–63], there is also room for creating methodologies to
assist parallel programming usability experimentation, such as the one
proposed in this study.

CRediT authorship contribution statement

Gabriella Andrade: Conceptualization, Methodology, Formal anal-
sis, Writing – original draft, Visualization, Data curation, Software.
alvan Griebler: Conceptualization, Methodology, Investigation, Writ-

ng – review & editing, Data curation, Software, Funding acquisition,
esources. Rodrigo Santos: Methodology, Writing – review & editing.
uiz Gustavo Fernandes: Supervision, Funding acquisition.

eclaration of competing interest

No author associated with this paper has disclosed any potential or
ertinent conflicts which may be perceived to have impending conflict
ith this work. For full disclosure statements refer to https://doi.org/
0.1016/j.csi.2022.103691.

cknowledgments

This research is partially funded by Coordenação de Aperfeiçoa-
ento de Pessoal de Nível Superior – Brasil (CAPES) – Finance Code
01, FAPERGS 05/2019-PQG project ParAS (No 19/2551-0001895-9),
APERGS, Brazil 10/2020-ARD project SPar4.0 (No 21/2551-0000725-
), Universal MCTIC/CNPq, Brazil No 28/2018 project SParCloud
No 437693/2018-0), and UNIRIO, Brazil and FAPERJ, Brazil (Grant:
11.583/2019).

eferences

[1] G.E. Moore, Cramming more components onto integrated circuits, Proc. IEEE 38
(8) (1965).

[2] P.S. Pacheco, Introduction to Parallel Programming, Morgan Kaufmann,
Burlington, MA, USA, 2011.

[3] K. Gregory, A. Miller, C++ AMP, O’Reilly Media, Sebastopol, CA, USA, 2012.
[4] D.B. Kirk, W. mei W. Hwu, Programming Massively Parallel Processors: A

Hands-on Approach, Morgan Kaufmann, Cambridge, MA, USA, 2016.
[5] T.G. Mattson, B. Sanders, B. Massingill, Patterns for Parallel Programming, in:
23

Software Patterns Series, Pearson Education, Boston, USA, 2004.
[6] M. McCool, J. Reinders, A. Robison, Structured Parallel Programming: Patterns
for Efficient Computation, Morgan Kaufmann Publishers, Waltham, USA, 2012.

[7] H.C. Andrade, B. Gedik, D.S. Turaga, Fundamentals of Stream Processing: Appli-
cation Design, Systems, and Analytics, Cambridge University Press, Cambridge,
United Kingdom, 2014.

[8] D. Griebler, Domain-Specific Language & Support Tool for High-Level Stream
Parallelism (Ph.D. thesis), Faculdade de Informática - PPGCC - PUCRS, Porto
Alegre, Brazil, 2016.

[9] D. Corral-Plaza, I. Medina-Bulo, G. Ortiz, J. Boubeta-Puig, A stream processing
architecture for heterogeneous data sources in the internet of things, Comput.
Stand. Interfaces 70 (2020) 103426.

[10] A. Atashpendar, B. Dorronsoro, G. Danoy, P. Bouvry, A scalable parallel cooper-
ative coevolutionary PSO algorithm for multi-objective optimization, J. Parallel
Distrib. Comput. 112 (2018) 111–125.

[11] J. Lȯff, D. Griebler, G. Mencagli, G. Araujo, M. Torquati, M. Danelutto, L.G. Fer-
nandes, The NAS parallel benchmarks for evaluating C++ parallel programming
frameworks on shared-memory architectures, Future Gener. Comput. Syst. 125
(2021) 743–757.

[12] L. Riha, R. Smid, Acceleration of acoustic emission signal processing algorithms
using CUDA standard, Comput. Stand. Interfaces 33 (4) (2011) 389–400.

[13] V. Soni, A. Hadjadj, O. Roussel, G. Moebs, Parallel multi-core and multi-processor
methods on point-value multiresolution algorithms for hyperbolic conservation
laws, J. Parallel Distrib. Comput. 123 (2019) 192–203.

[14] I.M. Spiliotis, M.P. Bekakos, Y.S. Boutalis, Parallel implementation of the image
block representation using OpenMP, J. Parallel Distrib. Comput. 137 (2020)
134–147.

[15] F. Cantonnet, Y. Yao, M. Zahran, T. El-Ghazawi, Productivity analysis of the UPC
language, in: 18th International Parallel and Distributed Processing Symposium,
IPDPS’04, IEEE, Santa Fe, New Mexico, USA, 2004, pp. 254–260.

[16] S. Nanz, C.A. Furia, A comparative study of programming languages in rosetta
code, in: 37th IEEE International Conference on Software Engineering, Vol. 1,
ICSE, IEEE, Florence, Italy, 2015, pp. 778–788.

[17] V. Narayanan, R. Kavitha, R. Srikanth, Performance evaluation of Brahmagupta-
Bhaskara equation based algorithm using OpenMP, in: Proceedings of Data
Analytics and Management, Springer, 2022, pp. 21–28.

[18] B. Peccerillo, S. Bartolini, Flexible task-DAG management in PHAST library:
Data-parallel tasks and orchestration support for heterogeneous systems, Concurr.
Comput.: Pract. Exper. 34 (2) (2022) e5842.

[19] S. Wienke, J. Miller, M. Schulz, M.S. Müller, Development effort estimation
in HPC, in: SC’16: Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis, IEEE, 2016, pp.
107–118.

[20] S. Nanz, S. West, K.S. Da Silveira, B. Meyer, Benchmarking usability and per-
formance of multicore languages, in: 2013 ACM/IEEE International Symposium
on Empirical Software Engineering and Measurement, ESEM, IEEE, 2013, pp.
183–192.

[21] D. Szafron, J. Schaeffer, An experiment to measure the usability of parallel
programming systems, Concurrency, Pract. Exp. 8 (2) (1996) 147–166.

[22] C. Wohlin, P. Runeson, M. Höst, M.C. Ohlsson, B. Regnell, A. Wesslén, Ex-
perimentation in Software Engineering, Springer Science & Business Media,
Heindelberg, Germany, 2012.

[23] S. Nanz, S. West, K.S. Da Silveira, Examining the expert gap in parallel
programming, in: European Conference on Parallel Processing, Springer, Aache,
Germany, 2013, pp. 434–445.

[24] W. Thies, S. Amarasinghe, An empirical characterization of stream programs and
its implications for language and compiler design, in: 2010 19th International
Conference on Parallel Architectures and Compilation Techniques, PACT, IEEE,
2010, pp. 365–376.

[25] D. Griebler, A. Vogel, D.D. Sensi, M. Danelutto, L.G. Fernandes, Simplifying and
implementing service level objectives for stream parallelism, J. Supercomput. 76
(2019) 4603–4628.

[26] M. Aldinucci, M. Danelutto, P. Kilpatrick, M. Torquati, Fastflow: high-level and
efficient streaming on multi-core, in: Programming Multi-Core and Many-Core
Computing Systems, Parallel and Distributed Computing, Wiley-Blackwell, 2017,
pp. 261–280.

[27] M. Hirzel, R. Soulé, S. Schneider, B. Gedik, R. Grimm, A catalog of stream
processing optimizations, ACM Comput. Surv. 46 (4) (2014) 1–34.

[28] S. Schneider, M. Hirzel, B. Gedik, K.-L. Wu, Safe data parallelism for general
streaming, IEEE Trans. Comput. 64 (2) (2013) 504–517.

[29] J. Reinders, Intel Threading Building Blocks: Outfitting C++ for Multi-Core
Processor Parallelism, O’Reilly Media, Inc. Sebastopol, USA, 2007.

[30] T.G. Mattson, Y. He, A.E. Koniges, The OpenMP Common Core: Making OpenMP
Simple Again, in: Scientific and Engineering Computation, MIT Press, Cambridge,
MA, USA, 2019.

[31] M. Voss, R. Asenjo, J. Reinders, Pro TBB: C++ Parallel Programming with
Threading Building Blocks, A Press, New york, USA, 2019.

[32] D. Griebler, M. Danelutto, M. Torquati, L.G. Fernandes, SPar: A DSL for high-
level and productive stream parallelism, Parallel Process. Lett. 27 (01) (2017)
1740005.

https://doi.org/10.1016/j.csi.2022.103691
https://doi.org/10.1016/j.csi.2022.103691
https://doi.org/10.1016/j.csi.2022.103691
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb1
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb1
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb1
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb2
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb2
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb2
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb3
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb4
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb4
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb4
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb5
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb5
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb5
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb6
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb6
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb6
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb7
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb7
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb7
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb7
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb7
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb8
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb8
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb8
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb8
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb8
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb9
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb9
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb9
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb9
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb9
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb10
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb10
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb10
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb10
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb10
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb11
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb11
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb11
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb11
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb11
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb11
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb11
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb12
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb12
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb12
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb13
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb13
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb13
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb13
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb13
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb14
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb14
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb14
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb14
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb14
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb15
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb15
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb15
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb15
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb15
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb16
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb16
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb16
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb16
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb16
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb17
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb17
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb17
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb17
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb17
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb18
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb18
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb18
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb18
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb18
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb19
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb19
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb19
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb19
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb19
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb19
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb19
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb20
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb20
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb20
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb20
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb20
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb20
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb20
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb21
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb21
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb21
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb22
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb22
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb22
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb22
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb22
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb23
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb23
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb23
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb23
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb23
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb24
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb24
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb24
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb24
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb24
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb24
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb24
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb25
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb25
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb25
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb25
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb25
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb26
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb26
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb26
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb26
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb26
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb26
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb26
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb27
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb27
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb27
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb28
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb28
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb28
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb29
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb29
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb29
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb30
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb30
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb30
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb30
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb30
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb31
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb31
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb31
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb32
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb32
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb32
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb32
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb32

Computer Standards & Interfaces 84 (2023) 103691G. Andrade et al.
[33] D. Griebler, R.B. Hoffmann, M. Danelutto, L.G. Fernandes, High-level and
productive stream parallelism for dedup, ferret, and Bzip2, Int. J. Parallel
Program. 47 (1) (2018) 253–271.

[34] Intel, Intel threading building blocks documentation, 2020, URL https://www.
threadingbuildingblocks.org/docs/help/index.html.

[35] J.L. Barros-Justo, F.B. Benitti, S. Tiwari, The impact of use cases in real-world
software development projects: A systematic mapping study, Comput. Stand.
Interfaces 66 (2019) 103362.

[36] C. Wohlin, Guidelines for snowballing in systematic literature studies and a
replication in software engineering, in: Proceedings of the 18th International
Conference on Evaluation and Assessment in Software Engineering, 2014, pp.
1–10.

[37] H. Park, P. Kim, H. Kim, K.-W. Park, Y. Lee, Efficient machine learning over
encrypted data with non-interactive communication, Comput. Stand. Interfaces
58 (2018) 87–108.

[38] L. Hochstein, V.R. Basili, U. Vishkin, J. Gilbert, A pilot study to compare
programming effort for two parallel programming models, J. Syst. Softw. 81
(11) (2008) 1920–1930.

[39] L. Hochstein, J. Carver, F. Shull, S. Asgari, V. Basili, J.K. Hollingsworth,
M.V. Zelkowitz, Parallel programmer productivity: A case study of novice
parallel programmers, in: Proceedings of the 2005 ACM/IEEE Conference on
Supercomputing, IEEE, Seatle, USA, 2005, p. 35.

[40] M. Zelkowitz, V. Basili, S. Asgari, L. Hochstein, J. Hollingsworth, T. Nakamura,
Measuring productivity on high performance computers, in: Software Metrics,
IEEE International Symposium on, Citeseer, 2005, p. 6.

[41] V. Pankratius, A. Jannesari, W.F. Tichy, Parallelizing bzip2: A case study in
multicore software engineering, IEEE Softw. 26 (6) (2009) 70–77.

[42] M. Coblenz, R. Seacord, B. Myers, J. Sunshine, J. Aldrich, A course-based
usability analysis of cilk plus and OpenMP, in: 2015 IEEE Symposium on Visual
Languages and Human-Centric Computing, VL/HCC, IEEE, 2015, pp. 245–249.

[43] J.B. Manzano, Y. Zhang, G.R. Gao, P3i: The delaware programmability, pro-
ductivity and proficiency inquiry, in: Proceedings of the Second International
Workshop on Software Engineering for High Performance Computing System
Applications, 2005, pp. 32–36.

[44] R. Alameh, N. Zazworka, J.K. Hollingsworth, Performance measurement of
novice HPC programmers code, in: Third International Workshop on Software
Engineering for High Performance Computing Applications, SE-HPC’07, IEEE,
2007, p. 3.

[45] I. Patel, J.R. Gilbert, An empirical study of the performance and productivity of
two parallel programming models, in: 2008 IEEE International Symposium on
Parallel and Distributed Processing, IEEE, 2008, pp. 1–7.

[46] K. Ebcioǧlu, V. Sarkar, T. El-Ghazawi, J. Urbanic, An experiment in measuring
the productivity of three parallel programming languages, in: Proceedings of
the Third Workshop on Productivity and Performance in High-End Computing,
Austin, USA, 2006, pp. 30–36.

[47] C. Teijeiro, G.L. Taboada, J. Tourino, B.B. Fraguela, R. Doallo, D.A. Mallón, A.
Gómez, J.C. Mourino, B. Wibecan, Evaluation of UPC programmability using
classroom studies, in: Proceedings of the Third Conference on Partitioned Global
Address Space Programing Models, 2009, pp. 1–7.

[48] G. Speyer, N. Freed, R. Akis, D. Stanzione, E. Mack, Paradigms for parallel
computation, in: 2008 DoD HPCMP Users Group Conference, IEEE, 2008, pp.
486–494.

[49] C. Danis, J. Thomas, J. Richards, J. Brezin, C. Swart, C. Halverson, R. Bellamy,
P. Malkin, Towards applying complexity metrics to measure programmer produc-
tivity in high performance computing, in: Proceedings of the 2008 International
Conference on Software Engineering, ICSE, in: First International Workshop
on Software Engineering for Computational Science and Engineering, ACM,
Gothenburg, Sweden, 2008, pp. 1–8.

[50] C. Sadowski, J. Yi, User evaluation of correctness conditions: A case study of
cooperability, in: Evaluation and Usability of Programming Languages and Tools,
PLATEAU ’10, Association for Computing Machinery, New York, USA, 2010, pp.
1–6.

[51] S. Nanz, F. Torshizi, M. Pedroni, B. Meyer, Design of an empirical study
for comparing the usability of concurrent programming languages, Inf. Softw.
Technol. 55 (7) (2013) 1304–1315.

[52] V. Pankratius, F. Schmidt, G. Garreton, Combining functional and imperative
programming for multicore software: An empirical study evaluating scala and
java, in: 2012 34th International Conference on Software Engineering, ICSE,
IEEE, Zurich, Switzerland, 2012, pp. 123–133.

[53] C.J. Rossbach, O.S. Hofmann, E. Witchel, Is transactional programming actually
easier? ACM Sigplan Not. 45 (5) (2010) 47–56.

[54] V. Pankratius, A.-R. Adl-Tabatabai, Software engineering with transactional
memory versus locks in practice, Theory Comput. Syst. 55 (3) (2014) 555–590.

[55] F. Castor, J.P. Oliveira, A.L. Santos, Software transactional memory vs. Locking
in a functional language: A controlled experiment, in: Proceedings of the
Compilation of the Co-Located Workshops on DSM’11, TMC’11, AGERE! 2011,
AOOPES’11, NEAT’11, & VMIL’11, in: SPLASH ’11 Workshops, Association for
Computing Machinery, New York, NY, USA, 2011, pp. 117–122.
24
[56] A. Nanthaamornphong, A pilot study: design patterns in parallel program
development, in: Proceedings of the 1st International Workshop on Software
Engineering for High Performance Computing in Computational Science and
Engineering, 2013, pp. 17–20.

[57] D. Griebler, D. Adornes, L.G. Fernandes, Performance and usability evaluation
of a pattern-oriented parallel programming interface for multi-core architectures,
in: The 26th International Conference on Software Engineering & Knowledge
Engineering, Knowledge Systems Institute Graduate School, Vancouver, Canada,
2014, pp. 25–30.

[58] K. Molitorisz, T. Müller, W.F. Tichy, Patty: A pattern-based parallelization tool
for the multicore age, in: Proceedings of the Sixth International Workshop on
Programming Models and Applications for Multicores and Manycores, 2015, pp.
153–163.

[59] X. Li, P.-C. Shih, J. Overbey, C. Seals, A. Lim, Comparing programmer produc-
tivity in OpenACC and CUDA: An empirical investigation, Int. J. Comput. Sci.
Eng. Appl. (IJCSEA) 6 (5) (2016) 1–15.

[60] B. Akil, Y. Zhou, U. Röhm, On the usability of hadoop MapReduce, apache spark
& apache flink for data science, in: 2017 IEEE International Conference on Big
Data, Big Data, IEEE, 2017, pp. 303–310.

[61] X. Li, P.-C. Shih, X. Li, C. Seals, A case study of novice programmers on parallel
programming models, J. Comput. 13 (5) (2018) 490–502.

[62] J. Miller, M. Arenaz, Measuring the impact of HPC training, in: 2019 IEEE/ACM
Workshop on Education for High-Performance Computing, EduHPC, IEEE, 2019,
pp. 58–67.

[63] P. Daleiden, A. Stefik, P.M. Uesbeck, GPU programming productivity in different
abstraction paradigms: a randomized controlled trial comparing CUDA and
thrust, ACM Trans. Comput. Educ. (TOCE) 20 (4) (2020) 1–27.

[64] F. Domínguez-Mayo, M. Escalona, M. Mejías, M. Ross, G. Staples, A quality
management based on the quality model life cycle, Comput. Stand. Interfaces
34 (4) (2012) 396–412.

[65] ISO 9241-11:2018, Ergonomics of Human-System Interaction – Part 11: Usability:
Definitions and Concepts, International Organization for Standardization, Geneva,
Switzerland, 2018, URL https://www.iso.org/standard/63500.html.

[66] ISO/IEC TR 9126-4:2004, Software Engineering – Product Quality – Part 4:
Quality in Use Metrics, International Organization for Standardization, Geneva,
Switzerland, 2004, URL https://www.iso.org/standard/39752.html.

[67] J. Miller, S. Wienke, M. Schlottke-Lakemper, M. Meinke, M.S. Müller, Applica-
bility of the software cost model COCOMO II to HPC projects, Int. J. Comput.
Sci. Eng. 17 (3) (2018) 283–296.

[68] Z.C. Holcomb, Fundamentals of Descriptive Statistics, Routledge, New York, USA,
2016.

[69] Y. Chan, Biostatistics 102: quantitative data–parametric & non-parametric tests,
Singapore Med. J. 44 (8) (2003) 391–396.

[70] D.J. Sheskin, Handbook of Parametric and Nonparametric Statistical Procedures,
third ed., Chapman and Hall/CRC, New York, USA, 2004.

[71] C.M. Barnum, Usability Testing Essentials: Ready, Set... Test!, Morgan Kaufmann,
Burlington, USA, 2010, p. 408.

[72] J.M. Corbin, A. Strauss, Grounded theory research: Procedures, canons, and
evaluative criteria, Qual. Sociol. 13 (1) (1990) 3–21.

[73] B.B.N. de França, H. Jeronimo, G.H. Travassos, Characterizing DevOps by hearing
multiple voices, in: Proceedings of the 30th Brazilian Symposium on Software
Engineering, SBES ’16, Association for Computing Machinery, New York, NY,
USA, 2016, pp. 53–62.

[74] P. Sharma, A.L. Sangal, Building a hierarchical structure model of enablers that
affect the software process improvement in software SMEs—A mixed method
approach, Comput. Stand. Interfaces 66 (2019) 103350.

[75] OpenCV, Creating a video with openCV, 2019, URL https://docs.opencv.org/2.
4/doc/tutorials/highgui/video-write/video-write.html.

[76] L.M. Connelly, Pilot studies, Medsurg Nurs. 17 (6) (2008) 411–412.
[77] A. Rutherford, ANOVA and ANCOVA: A GLM Approach, second ed., John Wiley

& Sons, Hoboken, USA, 2011.
[78] N.M. Razali, Y.B. Wah, et al., Power comparisons of shapiro-wilk, kolmogorov-

smirnov, lilliefors and anderson-darling tests, J. Stat. Model. Anal. 2 (1) (2011)
21–33.

[79] M. Rubert, K. Farias, On the effects of continuous delivery on code quality: A
case study in industry, Comput. Stand. Interfaces 81 (2022) 103588.

[80] G.J. Bronson, A First Book of C++, fourth ed., Cengage Learning, Boston, USA,
2011.

[81] E.-M. Ihantola, L.-A. Kihn, Threats to validity and reliability in mixed methods
accounting research, Qual. Res. Account. Manage. 8 (1) (2011) 39–58.

[82] D. Adornes, D. Griebler, C. Ledur, L.G. Fernandes, A unified MapReduce domain-
specific language for distributed and shared memory architectures, in: The 27th
International Conference on Software Engineering & Knowledge Engineering,
Knowledge Systems Institute Graduate School, Pittsburgh, USA, 2015, p. 6.

[83] D. Adornes, D. Griebler, C. Ledur, L.G. Fernandes, Coding productivity in
MapReduce applications for distributed and shared memory architectures, Int.
J. Softw. Eng. Knowl. Eng. 25 (10) (2015) 1739–1741.

[84] J.Á. Cid-Fuentes, P. Alvarez, R. Amela, K. Ishii, R.K. Morizawa, R.M. Badia,
Efficient development of high performance data analytics in python, Future
Gener. Comput. Syst. 111 (2020) 570–581.

http://refhub.elsevier.com/S0920-5489(22)00058-7/sb33
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb33
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb33
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb33
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb33
https://www.threadingbuildingblocks.org/docs/help/index.html
https://www.threadingbuildingblocks.org/docs/help/index.html
https://www.threadingbuildingblocks.org/docs/help/index.html
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb35
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb35
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb35
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb35
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb35
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb36
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb36
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb36
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb36
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb36
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb36
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb36
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb37
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb37
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb37
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb37
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb37
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb38
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb38
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb38
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb38
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb38
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb39
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb39
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb39
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb39
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb39
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb39
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb39
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb40
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb40
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb40
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb40
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb40
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb41
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb41
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb41
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb42
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb42
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb42
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb42
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb42
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb43
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb43
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb43
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb43
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb43
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb43
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb43
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb44
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb44
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb44
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb44
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb44
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb44
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb44
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb45
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb45
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb45
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb45
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb45
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb46
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb46
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb46
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb46
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb46
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb46
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb46
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb47
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb47
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb47
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb47
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb47
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb47
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb47
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb48
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb48
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb48
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb48
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb48
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb49
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb49
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb49
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb49
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb49
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb49
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb49
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb49
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb49
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb49
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb49
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb50
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb50
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb50
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb50
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb50
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb50
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb50
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb51
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb51
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb51
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb51
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb51
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb52
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb52
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb52
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb52
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb52
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb52
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb52
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb53
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb53
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb53
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb54
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb54
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb54
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb55
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb55
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb55
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb55
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb55
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb55
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb55
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb55
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb55
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb56
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb56
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb56
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb56
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb56
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb56
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb56
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb57
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb57
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb57
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb57
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb57
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb57
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb57
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb57
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb57
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb58
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb58
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb58
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb58
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb58
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb58
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb58
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb59
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb59
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb59
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb59
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb59
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb60
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb60
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb60
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb60
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb60
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb61
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb61
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb61
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb62
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb62
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb62
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb62
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb62
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb63
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb63
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb63
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb63
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb63
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb64
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb64
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb64
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb64
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb64
https://www.iso.org/standard/63500.html
https://www.iso.org/standard/39752.html
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb67
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb67
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb67
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb67
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb67
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb68
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb68
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb68
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb69
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb69
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb69
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb70
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb70
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb70
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb71
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb71
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb71
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb72
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb72
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb72
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb73
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb73
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb73
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb73
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb73
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb73
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb73
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb74
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb74
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb74
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb74
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb74
https://docs.opencv.org/2.4/doc/tutorials/highgui/video-write/video-write.html
https://docs.opencv.org/2.4/doc/tutorials/highgui/video-write/video-write.html
https://docs.opencv.org/2.4/doc/tutorials/highgui/video-write/video-write.html
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb76
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb77
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb77
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb77
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb78
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb78
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb78
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb78
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb78
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb79
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb79
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb79
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb80
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb80
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb80
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb81
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb81
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb81
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb82
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb82
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb82
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb82
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb82
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb82
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb82
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb83
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb83
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb83
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb83
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb83
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb84
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb84
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb84
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb84
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb84

Computer Standards & Interfaces 84 (2023) 103691G. Andrade et al.
[85] J. Fernàndez-Fabeiro, A. Gonzalez-Escribano, D.R. Llanos, Simplifying the multi-
GPU programming of a hyperspectral image registration algorithm, in: 2019
International Conference on High Performance Computing & Simulation, IEEE,
Dublin, Ireland, 2019, pp. 11–18.

[86] M.A. Martínez, B.B. Fraguela, J.C. Cabaleiro, A highly optimized skeleton for
unbalanced and deep divide-and-conquer algorithms on multi-core clusters, J.
Supercomput. (2022) 1–21.

[87] S. Okur, D. Dig, How do developers use parallel libraries? in: 20th International
Symposium on the Foundations of Software Engineering, SIGSOFT, ACM, New
York, USA, 2012, p. 54.

[88] G. Rodriguez-Canal, Y. Torres, F.J. Andújar, A. Gonzalez-Escribano, Effi-
cient heterogeneous programming with FPGAs using the controller model, J.
Supercomput. 77 (12) (2021) 13995–14010.

[89] T.J. McCabe, A complexity measure, IEEE Trans. Softw. Eng. SE-2 (4) (1976)
308–320.

[90] M.H. Halstead, Elements of Software Science, Vol. 7, North-Holland, New York,
NY, USA, 1977.

[91] B.W. Boehm, C. Abts, A.W. Brown, S. Chulani, B.K. Clark, E. Horowitz, R.
Madachy, D.J. Reifer, B. Steece, Software Cost Estimation with COCOMO II,
Prentice Hall PTR, 2000.

[92] G. Andrade, D. Griebler, R. Santos, M. Danelutto, L.G. Fernandes, Assessing
coding metrics for parallel programming of stream processing programs on multi-
cores, in: 47th Euromicro Conference on Software Engineering and Advanced
Applications, SEAA, IEEE, 2021, pp. 291–295.

Gabriella Andrade is a Ph.D. student of the graduate
program in computer science (PPGCC) at the Pontifical
Catholic University of Rio Grande do Sul (PUCRS), where
she is a member of the Parallel Applications Modeling Group
(GMAP). She received her master’s degree in Electrical Engi-
neering from the Federal University of Pampa (UNIPAMPA),
where she also received her bachelor’s degree in Computer
Science. Her main research interests include parallel com-
puting, methodologies, and metrics for evaluating parallel
application development.
25
Dalvan Griebler is an associate professor of the graduate
program in computer science (PPGCC) at the Pontifical
Catholic University of Rio Grande do Sul (PUCRS), where
he is research coordinator at the Parallel Applications Mod-
eling Group (GMAP). Also, he is an associate professor
at Sociedade Educacional Três de Maio (Setrem) where
he leads the Laboratory of Advanced Research on Cloud
Computing (LARCC). He received the Ph.D. in computer
science from both PUCRS and University of Pisa in 2016.
His main research interests are: parallel and distributed
computing, methodologies, languages and libraries for high-
level parallel programming; benchmarks; big data; and
cloud computing.

Rodrigo Santos received the Ph.D. degree in computer
science from the Alberto Luiz Coimbra Institute for Graduate
Studies and Research in Engineering, Federal University of
Rio de Janeiro (UFRJ). He is currently an Associate Pro-
fessor with the Department of Applied Informatics, Federal
University of the State of Rio de Janeiro (UNIRIO), where
he leads the Complex Systems Engineering Lab (LabESC).
His research interests include complex systems engineering
(specially software ecosystems and systems-of-systems) and
computer science education and training.

Gustavo Fernandes is an associate professor of the graduate
program in computer science (PPGCC) at the Pontifical
Catholic University of Rio Grande do Sul (PUCRS), Porto
Alegre (Brazil). His primary research interests are Parallel
and Distributed Computing, High Performance Applications
Modeling, Green Computing and Parallel Programming In-
terfaces. Dr. Fernandes received his Ph.D. in Computer
Science from the Institut National Polytechnique de Greno-
ble (France) in 2002. He currently leads the Parallel
Applications Modeling Group (GMAP) at PUCRS.

http://refhub.elsevier.com/S0920-5489(22)00058-7/sb85
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb85
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb85
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb85
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb85
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb85
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb85
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb86
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb86
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb86
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb86
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb86
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb87
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb87
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb87
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb87
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb87
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb88
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb88
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb88
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb88
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb88
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb89
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb89
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb89
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb90
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb90
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb90
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb91
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb91
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb91
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb91
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb91
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb92
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb92
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb92
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb92
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb92
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb92
http://refhub.elsevier.com/S0920-5489(22)00058-7/sb92

	A parallel programming assessment for stream processing applications on multi-core systems
	Introduction
	Background
	Parallel stream processing
	APIs for stream parallelism on multi-cores
	FastFlow and TBB
	SPar

	Literature review
	Search process
	Discussion

	Research method
	Experiment plan and execution
	Independent variables
	Dependent variables
	Goals
	Hypotheses
	Context of study
	Activity of study
	Study instruments
	Procedure
	Experimental setup
	Pilot
	Experiment execution
	Participants' profile
	Effectiveness

	Development effort analysis
	Hypothesis test
	Compile-time errors
	Common compile-time errors in SPar
	Common compile-time errors in FastFlow
	Common compile-time errors in TBB

	Programming logic errors
	Common logic errors in SPar
	Common logic errors in FastFlow
	Common logic errors in TBB

	Satisfaction analysis
	Quantitative analysis
	Qualitative analysis

	Discussion and threats to validity
	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	References

