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Abstract
Neuromyelitis optica spectrum disorder (NMOSD) is a rare
autoimmune inflammatory disease of the central nervous
system. Most of the cases are positive for autoantibodies
targeting the water channel aquaporin-4 (AQP4-IgG). Activated
B and T cells, innate immunity cells, pro-inflammatory cytokines,
and activated complement contribute to the formation of the
NMOSD lesions. Optic neuritis, longitudinally extensive myelitis,
and area postrema syndrome are core clinical manifestations.
NMOSD diagnosis is based on clinical manifestations, magnetic
resonance imaging findings, and AQP4-IgG positivity. Cell-
based assays are the preferred method for the detection of
AQP4-IgG. Acute relapses are treated with IV methylpredniso-
lone or plasma exchange. Recent advances on the NMOSD
immunobiology led to approved treatments such as eculizumab,
satralizumab, and inebilizumab.
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Introduction
Neuromyelitis optica spectrum disorder (NMOSD), also
known as Devic’s syndrome, is a rare inflammatory syn-
drome mediated by immune-humoral responses directed
www.sciencedirect.com
against central nervous system (CNS) [1]. Most of the
cases are positive for immunoglobulin G autoantibodies
against aquaporin-4 (AQP4-IgG). Aquaporin-4 (AQP4) is
the most abundant water channel protein in the CNS,
expressed in the endefeet processes of astrocytes [2].

More recently, another serum autoantibody called anti-
myelin oligodendrocyte glycoprotein-antibody (MOG-
IgG) has been detected in a fraction of AQP4-IgG-nega-
tive NMOSD, but they belong to a distinct disorder
known as MOG-IgG-associated disease (MOGAD) [3].

AQP4-IgG-positive NMOSD is an autoimmune astro-
cytopathy, although secondary damage to oligodendro-
cytes and neurons loss [4]. A relapsing disease course
affecting optic nerve, spinal cord, area postrema of the
dorsal medulla, brainstem, diencephalon, or cerebrum

could lead to severe disability when untreated [5]. Optic
neuritis (ON) and myelitis are the most common initial
acute attacks. Complete recovery is possible with early
treatment, but with subsequent attacks, the recovery
rates are lower [6]. In this review, we will provide an
overview of the recent advances on AQP4-IgG NMOSD
diagnosis, treatment, and related immunobiological
mechanisms involved in the disease pathogenesis.
Epidemiology
The global prevalence of NMOSD varies from 1/100,000
among white people to 10/100,000 in black people.
There is a high female-to-male ratio (up to 9:1), and
mean disease onset is around 40 years. The positivity of

AQP4-IgG is higher in adults than children diagnosed
with NMOSD [7].

Several studies have found a significant association be-
tween human leukocyte antigen alleles and NMOSD.
Although data are limited, infections in early life have
been suggested as a protective factor. Despite studies
trying to correlate risk factors such as dietary factors, low
vitamin D levels, infections and vaccine exposure, has
not been established its causality to NMOSD and
further investigation is needed [8].
Immunopathogenesis
AQP4 is a bidirectional, osmosis-driven water channel
highly expressed in the perivascular and peripheral
Current Opinion in Neurobiology 2022, 76:102618

Delta:1_given name
Delta:1_surname
Delta:1_given name
mailto:douglas.sato@pucrs.br
mailto:douglas.sato@pucrs.br
https://twitter.com/DaissyMora
https://twitter.com/DaissyMora
https://www.sciencedirect.com/journal/current-opinion-in-neurobiology/special-issue/10FXL49HR1B
https://doi.org/10.1016/j.conb.2022.102618
http://crossmark.crossref.org/dialog/?doi=10.1016/j.conb.2022.102618&domain=pdf
www.sciencedirect.com/science/journal/09594388
www.sciencedirect.com/science/journal/09594388


Abbreviations
NMOSD Neuromyelitis optica spectrum disorders
CNS Central Nervous System
AQP4-IgG Aquaporin-4 antibody
MOG-IgG Myelin oligodendrocyte

glycoprotein-antibody
HLA Human leukocyte antigen

IL-6 Interleucin 6
IL-17A Interleucin 17A
GFAP glial fibrillary acidic protein
ON Optic Neuritis
MRI Magnetic Resonance Imaging
LETM Longitudinally extensive transverse myelitis

NMO Neuromyelitis optica
TM transverse myelitis
PRES Posterior Reversible

Encephalopathy Syndrome
CSF cerebrospinal fluid
RNFL retinal nerve fiber layer
GCIPL ganglion cell/inner plexiform layer
IVMP Intravenous methylprednisolone
RTX Rituximab

CBA cell-based assay
IVMP Intravenous methylprednisolone
PLEX plasma exchange
BTK Bruton’s tyrosine kinase

2 Crosstalk between neural and immune systems
astrocytic endfeet localized in areas such as the optic
nerves, spinal cord, diencephalon, and area postrema
[9]. It is estimated that around 80% of the patients
fulfilling the current diagnostic criteria for NMOSD are
positive for serum AQP4-IgG [10].

The biological mechanisms underlying the development
of AQP4-IgG are not completely understood. However,
dysfunctional T helper cells and B cells from patients
with NMOSD can recognize AQP4, indicating loss of
self-antigen tolerance. Autoreactive B cells from pa-
tients with NMOSD can produce AQP4-IgG after IL-6
stimulation in association with CD4þ T cells [11].
Activated B and T cells can produce pro-inflammatory
cytokines, cross the cerebral vascular endothelium, and
impair bloodebrain barrier, leading to the entrance of
AQP4-IgG and other immune cells, such as macrophages

and granulocytes, into the CNS [6,10,12].

The binding of AQP4-IgG to AQP4 promotes immune-
mediated astrocyte damage as demonstrated in Figure 1.
This inflammatory process contributes to the formation
of typical NMOSD lesions, characterized by astrocytic
injury with a loss of AQP4 and glial fibrillary acidic
protein (GFAP) immunoreactivity, immune cell infil-
tration, immunoglobulin G, and activated complement
deposition around blood vessels. The astrocyte injury
and the complement activation create an inflammatory

microenvironment triggering a series of subsequent
events inducing secondary damage of oligodendrocytes,
axonal dysfunction, and neuronal death [12e14].

Additional studies have shown the involvement of the
glutamatergic system in the secondary damage in
NMOSD. In astrocytes, AQP4 forms complexes with
other membrane proteins, such as glutamate trans-
porters. An imbalance in water transport due to the
production of AQP4-IgG may increase extracellular
glutamate concentrations providing an excitotoxic
environment for neurons [12].
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A recent study has shown the calcium increase does
not precede axonal degeneration. It seems the axonal
damage during NMOSD has a different mechanism
when compared to inflammatory demyelinating dis-
eases. This study found damage mainly in thin axons,
independently of whether these axons were myelin-

ated, suggesting that myelin damage is not the
determining factor for axonal degeneration in
NMOSD [15].

However, this immunobiological mechanism does not
explain the remaining 20% of cases that are AQP4-IgG
negative. Therefore, the discovery of new biomarkers
not yet identified or the disease mechanisms involved in
seronegative NMOSD is necessary for an accurate
diagnosis despite clinical phenotype [5]. In a large
cohort, 13e40% of the patients withAQP4-IgG negative

showed positivity for serum MOG-IgG [16]. Also, in a
subset of patients with AQP4-IgG seropositive
NMOSD, a recent study described circulating IgG an-
tibodies in their serum that are cytoprotective against
complement-induced injury to AQP4 expressing cells,
adding complexity to the immunopathogenesis of the
disease [17].
Clinical features and radiological findings
According to the affected regions of the CNS, there are
six core clinical characteristics in NMOSD: ON, acute
myelitis, area postrema syndrome, acute brainstem
syndrome, symptomatic narcolepsy or acute dience-
phalic clinical syndrome, or symptomatic cerebral syn-
drome [5]. In most of the cases, the disease starts with
an ON or a transverse myelitis. If untreated, most of
the patients with AQP4-IgG seropositive NMOSD will

have a relapse, with a median interval of 9 months since
the first attack but it may occur after several years.
Symptoms could completely resolve after acute attacks,
but incomplete recovery is reported in 66% of ON and
>80% of transverse myelitis attacks [6].
www.sciencedirect.com
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Typical ON in NMOSD is characterized by low visual
acuity and color desaturation that can rapidly progress to
blindness, associated with pain on eye movement.
During ON-NMOSD attacks, we can observe increased
signal within the optic nerve with fat-suppressed T2-
weighted orbital magnetic resonance imaging (MRI)
sequences, typically associated with T1-weighted se-
quences showing gadolinium enhancement. Bilateral

optic nerve involvement, posterior nerve predominance
(especially with extension into the optic chiasm), or
extensive lesions of the optic nerve (more than half of its
length) are all suggestive of NMOSD(5).

Longitudinally extensive transverse myelitis with a
complete spinal cord syndrome, especially with
paroxysmal tonic spasms is characteristic of NMOSD.
Longitudinally extensive transverse myelitis symp-
toms include sensory and/or motor deficits ranging
from mild symptoms to anesthesia and tetraplegia,

neuropathic pain, bladder and/or bowel dysfunction.
Figure 1

Immunobiology of NMOSD with aquaporin-4 antibodies and treatment targets
the acquired immune system results in the production of AQP4-IgG. The pro
penetration of AQP4-IgG into the CNS. The AQP4-IgG promotes astrocyte da
indicate treatments used in NMOSD. Aquaporin-4 (AQP4); Aquaporin-4 antib
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Typical spinal MRI reveal increased signal on sagittal
T2-weighted extending over 3 or more vertebral seg-
ments in the sagittal view with central cord predom-
inance (more than 70% of the lesion residing within
the central gray matter), associated with gadolinium
enhancement. In the chronic phase, these lesions may
evolve to longitudinally extensive spinal cord atro-
phy [5].

Area postrema syndrome is characterized by persistent
(>72h) hiccups or nausea and vomiting. On brain MRI,
there is an increased signal on T2-weighted sequences
involving the dorsal surface of the medulla oblongata at
the caudal end of the fourth ventricle, either small and
localized, often bilateral or contiguous with an upper
cervical spinal cord lesion, as seen in Figure 2 [5].
Recently, the ‘inverted V’ sign in axial T2-weighed
images of the medulla oblongata was described as
characteristic of the syndrome and could help in the

early diagnosis [18].
. NMOSD, neuromyelitis optica spectrum disorder. Abnormal activation of
-inflammatory environment causes blood–brain barrier disruption and
mage and secondary oligodendrocyte and neuronal loss. Yellow boxes
ody (AQP4-IgG); interleukin-6 (IL-6).
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Figure 2

Radiological findings in NMOSD. NMOSD, neuromyelitis optica spectrum
disorder. A 53-year female with area postrema syndrome and upper
myelitis who was positive for aquaporin-4 antibodies. A - Short tau
inversion recovery (STIR) showing a lesion in the medulla extending to the
upper cervical spinal cord. B - T1 showing contrast enhancement in the
acute lesion.

4 Crosstalk between neural and immune systems
Less frequent core clinical manifestations are acute
brainstem syndrome, symptomatic narcolepsy, or acute
diencephalic clinical syndrome and symptomatic cere-
bral syndrome with NMOSD-typical brain lesions.
Manifestations could include encephalopathy, psychi-
atric symptoms, headache, narcolepsy, hemiparesis, and
ataxia; diencephalitis could lead to hypothyroidism,
galactorrhea, inappropriate antidiuretic hormone secre-

tion autonomic symptoms, obesity, and behavioral
changes. NMOSD-typical brain MRI lesion patterns
include lesions in periependymal surfaces of the fourth
ventricle in the brainstem/cerebellum; lesions involving
the hypothalamus, thalamus, or periependymal surfaces
of the third ventricle; large, confluent, unilateral, or
bilateral subcortical or deep white matter lesions; long
(1/2 of the length of the corpus callosum or greater),
diffuse, heterogeneous, or edematous corpus callosum
lesions; long corticospinal tract lesions, unilateral or
bilateral, contiguously involving internal capsule and

cerebral peduncle and extensive periependymal brain
lesions, often with gadolinium enhancement [5].

Rare clinical manifestations include hydrocephalus,
lumbo-sacral myeloradiculitis, symptomatic hyper-
CKemia, corticosteroid-responsive myalgia, hyposmia
and hearing loss, and posterior reversible encephalopa-
thy syndrome [19,20]. Also, NMOSD is associated with
organ- and non-organ-specific autoimmunity. The most
common coexisting autoimmune conditions in NMOSD
are autoimmune hypothyroidism, systemic lupus ery-

thematosus, and Sjogren’s syndrome [19].
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Diagnosis
In 2015, the International Panel for NMOSD proposed a

diagnostic criteria for patients with AQP4-IgG positive
and those with unknown or negative AQP4-IgG status.
These criteria consider clinical presentation and MRI
findings in addition to AQP4-IgG serology. This diag-
nostic criteria is accompanied by a comprehensive list of
‘red flags’ which, if present, should prompt additional
investigation for differential diagnoses and AQP4-IgG
re-testing if previously negative [5]. Depending on the
world region, we need to rule out local endemic in-
fections and nutritional diseases in the differential
diagnosis [21].

In patients, without detectable AQP4-IgG, despite the
use of the best available assays or unavailable tests, the
diagnosis remains a challenge. In a small group of these
patients, serum antibodies to myelin oligodendrocyte
glycoprotein (MOG-IgG) have been reported [22].
However, these patients with MOG-IgG are currently
known as a distinct disorder known as MOG-IgG-
associated disorder with different immunobiological
pathogenesis of AQP4-IgG NMOSD.
AQP4-IgG assays
Nowadays, the positive serological status for AQP4 is
considered the diagnostic biomarker of NMOSD. The
cell-based assay (CBA) is considered the best technol-
ogy for the analysis of AQP4-IgG due to its greater

sensitivity and specificity, especially those using live
transfected cells. In terms of detection analysis, both
direct microscope immunofluorescence and flow
cytometry assays have been shown to be sensitive and
specific techniques. In the NMOSD, serum analysis is
more sensitive than CSF for detecting AQP4-IgG and
serum titer does not correlate with disease severity or
clinical outcomes [5,21]. Alternative methodologies
have been investigated to cover the lack of CBA avail-
ability in some world regions. A recent study evaluated a
new nanosensor technology for the analyses of AQP4-

IgG detection using silver nanoparticles AgNPs. The
results have shown higher sensitivity than commercial
CBA; however, more studies are still required to confirm
this new methodology [23].
Cerebrospinal fluid analysis
Cerebrospinal fluid (CSF) analysis is useful but not
required to diagnose NMOSD. AQP4-IgG may be
detected in CSF, but exclusive positivity of AQP4-IgG
in the CSF is rare. CSF white cell count of >50 cells/
mL with granulocytes and eosinophils is common during
acute attacks [24]. Many pro-inflammatory cytokines
(e.g. IL-6, IL-17A, G-CSF) are elevated during
NMOSD attacks, and the cytokine profile is distinct
from multiple sclerosis [23]. CSF exclusive oligoclonal
IgG bands are mainly negative in NMOSD, but its
positivity do not exclude the diagnosis [24].
www.sciencedirect.com
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Other biomarkers
GFAP, a major constituent of the astrocyte cytoskeleton,

has been studied as a biomarker of astrocyte injury in
AQP4-NMOSD when measured in body fluids, such as
CSF and serum. There is an increase in serum and CSF
GFAP during clinical attacks, but subclinical astrocyte
damage is not evidenced during remission periods.
Additionally, the CSF GFAP levels in seronegative
NMOSD are low or undetectable, evidencing distinct
pathophysiology in these patients [25].

Interleukin-6 (IL-6) in the CSF and serum of AQP4-
NMOSD can promote the survival of plasmablasts able

to produce AQP4-IgG. Moreover, IL-6 participates in
many other biological processes such as Tcell activation
and proliferation, endothelial expression of adhesion
molecules, among other pleiotropic functions. However,
elevated IL-6 levels are not clearly seen in the sero-
negative NMOSD [26, 27].
Treatment
Acute relapses
There is no curative treatment for NMOSD. The goals
are to improve symptoms associated with acute attacks
and prevent further relapses. Early treatment for acute
attacks is highly recommended, although there are no
randomized controlled trials on acute treatments. In
clinical practice, NMOSD attacks are initially treated
with 1 g of intravenous methylprednisolone (IVMP) for
Table 1

Long-term attack prevention treatments for NMOSD

Drugs with phase II/III Trials in NMOSD

Name Mechanism of Action
Eculizumab Inhibits the terminal comple

protein C5 and prevents i
into C5a, which is pro-inf
and C5b, which coordina
formation of membrane c
attack complex.

Satralizumab Binds to membrane-bound
IL-6 receptors, preventing
binding and inhibiting the
signaling pathways involv
inflammation.

Inebilizumab Binds to the B-cell surface
CD19 targeting B cells an
plasmablasts

Rituximab Binds to the B-cell surface
CD20 surface expressed
lymphocytes.

Off-label treatments
Azathioprine, mycophenolate mofetil, tocilizumab,

intravenous immunoglobulin, mitoxantrone, methotrexate and cycloph

www.sciencedirect.com
3 to 5 consecutive days. After IVMP treatment, it is
common to use a slow tapering course of oral steroids
[21]. Early treatment reduces the risk of poor visual
recovery [28] and minimize axonal loss in NMOSD
associated ON [29].

Patients with severe NMOSD relapses and those who do
not respond to treatment with IVMPmay benefit from 5

to 7 sessions of plasma exchange (PLEX) (approxi-
mately 1.5 plasma volumes every other day). The clin-
ical benefit of PLEX diminishes after day 20, whether or
not IVMP has been administered; therefore, starting
PLEX early is recommended [21]. Some centers have
implemented early PLEX in NMOSD, as time from
relapse onset to start PLEX is a strong predictor of
complete remission [30].
Long-term treatments
Long-term attack prevention treatment is recommended
for all patients with AQP4-IgG positive and negative and
with relapsing disease. Therapies tested in Phase III and
phase II/III multicenter, randomized, double-blind, pla-
cebo-controlled trials in NMOSD include eculizumab,
satralizumab, inebilizumab, and rituximab plus oral
prednisolone, as summarized in Table 1.

Eculizumab is a humanized monoclonal antibody. The
PREVENT (Prevention of Relapses in Neuromyelitis
Optica) study was a phase 3, randomized, double-blind,
Dose
ment
ts cleavage
lammatory,
tes the
ytolytic

900 mg intravenously
weekly for the first 4
doses starting on day 1,
followed by 1200 mg
every 2 weeks starting at
week 4.

and soluble
IL-6 from
IL-6
ed in

120 mg subcutaneously at
weeks 0, 2, and 4 and
every 4 weeks thereafter.

antigen
d CD19+

300 mg administered
intravenously on days 1
and 15 every 6 months

antigen
on B-

375 mg/m2 intravenously
every week for 4 weeks,
then 6-month interval
dosing (alternatively, 2
doses of 1,000 mg with 2
weeks interval)

osphamide.
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placebo-controlled, time-to-event trial that evaluated
the efficacy and safety of eculizumab in patients with
AQP4-IgG NMOSD. Adjudicated relapses occurred in 3
of 96 patients (3%) in the eculizumab group and 20 of 47
(43%) in the placebo group (hazard ratio, 0.06; 95%
confidence interval [CI], 0.02 to 0.20; P < 0.001). The
adjudicated annualized relapse rate was 0.02 in the
eculizumab group and 0.35 in the placebo group (rate

ratio, 0.04; 95% CI, 0.01 to 0.15; P < 0.001). Most
common adverse effects include upper respiratory
infection, nasopharyngitis, headache, diarrhea, back
pain, nausea, and diarrhea [31].

Satralizumab is a subcutaneously administered, human-
ized monoclonal antibody targeting IL-6 receptor. Its
bioengineering technology allows to dissociate from the
IL-6 receptors at an acidic pH within endosomes and
satralizumab is returned to circulation, prolonging the
drug half-life. Two phase III trials evaluated the efficacy

and safety of satralizumab as add-on (SAkuraSky) [32]
or monotherapy (SAkuraStar) [33] in NMOSD. Both
studies demonstrated reduction in relapses risk and
activity of disease in patients with AQP4-IgG positive
NMOSD. However, benefit in seronegative patients was
less pronounced than in the seropositive NMOSD.

Inebilizumab is an anti-CD19 humanized, affinity-
optimized, afucosylated IgG1 kappa monoclonal anti-
body. It depletes B cells in a slightly higher range than
anti-CD20 antibodies, including circulating CD19þ
plasmablasts. N-Momentum was a multicenter, double-
blind, randomized placebo-controlled phase II/III study
that reported a significant reduction in relapse risk, 21
(12%) of 174 participants receiving inebilizumab had an
attack versus 22 (39%) of 56 participants receiving pla-
cebo (hazard ratio 0$272 [95% CI 0$150e0$496];
p < 0$0001) [34].

Rituximab is a monoclonal chimeric antibody against
CD20, a surface antigen that is mainly expressed on B-
lymphocytes. RIN-1 is a multicenter, randomized,
double-blind, placebo-controlled clinical trial that

compared rituximab plus oral prednisolone versus pla-
cebo plus oral prednisolone. The primary outcome (time
to first relapse) met with no relapse in the rituximab arm
and 7 relapses in the control arm (group difference
36.8%, 95% CI 12.3e65.5; logrank p = 0.0058) after 72
weeks [35]. Also, a systematic review and meta-analysis
including 46 retrospective studies provides evidence
that rituximab reduces the frequency of NMOSD re-
lapses and neurological disability [36].

As future treatment perspectives, studies with Orelab-
rutinib, a Bruton’s tyrosine kinase inhibitor; MIL-62, a
fucosylated recombinant anti-CD20 antibody, and RC18,
a recombinant human B lymphocyte stimulator receptor,
are registered in clinicaltrials.gov.
Current Opinion in Neurobiology 2022, 76:102618
Conclusions
Since the discovery of AQP4-IgG, the understanding of

NMOSD immunobiology evolved to the clinical use of
monoclonal antibodies against B cells, cytokine re-
ceptors and activated complement. However, there is a
lack of information about the disease triggers and the
immunopathogenesis in seronegative patients requires
further investigation. In the future, new therapies may
be developed based on other immunological targets to
prevent the NMOSD attacks with fewer adverse effects
and reduce the risk of permanent disability.
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