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A B S T R A C T   

Multiple sclerosis (MS) is a chronic inflammatory demyelinating disease of the central nervous system (CNS). The 
remyelination process requires the activation, migration and differentiation of oligodendrocyte progenitor cells 
(OPC) in demyelinated areas. The metabolic dysfunction in chronic demyelinating lesions impairs the activation 
of OPCs, the myelin debris clearance by microglia decreases with age, along with diminished secretion of factors 
promoting OPC differentiation. Conventional magnetic resonance imaging (MRI) sequences have limited ability 
to differentiate unmyelinated and remyelinated lesions. Advanced MRI sequences based on magnetization 
transfer ratio (MTR), myelin water fraction (MWF) and diffusion tensor imaging (DTI) have been used to evaluate 
remyelination in clinical trials. More recently, the q-space myelin map (qMM) has been used on experimental and 
exploratory clinical studies. The improvement of myelin-specific MRI sequences with high reliability and stan-
dardization among centers will allow a more accurate evaluation of new therapies to improve remyelination. 
These new remyelination promoting treatments alone or in combination with current options may reduce the risk 
of long-term disability in MS.   

1. Introduction 

Multiple sclerosis (MS) is a chronic inflammatory demyelinating 
disease that affects mainly young adults and might cause long-term 
disability. In recent decades, great progress has been achieved in 
developing drugs that reduce clinical relapses and control disease ac-
tivity. However, it was not until recently that central nervous system 
(CNS) regeneration became a therapeutic target, and the first treatment 
for primary progressive MS was approved (Montalban et al., 2016) with 
just moderate effect mainly in active disease cases. 

Clinical attacks of the relapsing-remitting MS (RRMS) are caused by 
waves of central nervous system inflammation (e.g., infiltration of 
lymphocytes, proinflammatory cytokines) that ultimately generate 
myelin loss (demyelination). Myelin is responsible for both the con-
duction of action potentials in saltatory manner and providing neuronal 
nutrition to axons, via oligodendroglia (Lee et al., 2012; Fünfschilling 
et al., 2012) contributing to mitochondrial functioning. Therefore, its 
impairment causes neurological deficits and long-term metabolic 

dysfunction that may lead to neurodegeneration. 
The process of recovery of the myelin sheath is called remyelination. 

There are evidence suggesting successful remyelination is associated 
with the prevention of neurodegeneration in both animal models and 
human studies with Positron Emission Tomography (PET) (Franklin and 
Ffrench-Constant, 2008; Lubetzki et al., 2020), through guaranteeing 
neuronal metabolic functioning. The capacity of remyelination varies 
between patients with MS, and it might explain at least partially the 
heterogeneity in recovering from attacks in different patients. However, 
it remains challenging to evaluate remyelination with noninvasive 
techniques, making difficult to determine the clinical impact of its 
impairment. 

This review summarizes the neuroimaging and neurophysiologic 
techniques developed for evaluate myelin regeneration in vivo as well as 
published randomized clinical trials with agents that target enhancing 
remyelination in MS patients. 
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1.1. How remyelination works in the CNS? 

Remyelination depends on a complex interaction between molecular 
and cellular mechanisms.  It encompasses the recruitment and matura-
tion of oligodendrocyte progenitor cells (OPCs) in demyelinated areas 
(Baaklini et al., 2019; Franklin and Ffrench-Constant, 2017) along with 
mature oligodendrocytes capable of ensheath demyelinated axons 
(Duncan et al., 2018) after surviving inflammatory insult. Important 
knowledge regarding remyelination dynamics is derived from animal 
models. Toxic-induced demyelinating models use myelinotoxic agents to 
generate in-vivo demyelinated areas in the CNS with either cuprizone 
dieting (diffuse demyelination) or local injections with ethidium bro-
mide (EtBr) or lysolecithin (focal demyelination). The cuprizone model 
can induce microglial response and be administered in different time 
courses, enabling the assessment of chronic x acute myelin responses. 
These models are suited for understanding lesions with OPC presence, 
since they all preserve OPCs. Another typical animal model is the 
Experimental autoimmune encephalomyelitis (EAE), which is based on 
the induction of immune response by introduction of myelin agents, 
simulating lymphocyte-mediated responses. EAE models resample 
human immunopathology with CD4+ and CD8+ responses, inflamma-
tion, and perivascular cell death in acute manner. However, although 
ongoing remyelination can be visualized, the prominent inflammation 
hinders proper evaluation of treatment response as improvement can be 
either due to remyelination or inflammation reduction (Sutiwisesak 
et al., 2021). Moreover, EAE develop lesions in different anatomical 
regions, impairing following-up myelin changes in a specific lesion 
(Plemel et al., 2017). Chronic viral infection can also be used to induce 
demyelinating animal model, this is mainly done with Theiler׳s murine 
encephalomyelitis virus (TMEV). The virus inoculation on the CNS ac-
tivates myelin-reactive lymphocytes and microglia, generating demye-
linated lesions, inflammation, oligodendrocyte death and axonal loss 
(Gerhauser et al., 2018). In this chronic damage model limited remye-
lination can be observed along with OPCs death, resampling MS lesions 
with OPCs depletion and remyelination failure. (Sutiwisesak et al., 
2021) 

OPCs are present diffusively in the brain of human and other adult 
mammals. After demyelination, OPCs enter a reactive state enhancing 
the transcription of relevant molecular factors (Baaklini et al., 2019). 
OPCs are then attracted to lesion site (Lubetzki et al., 2020; Boyd et al., 
2013), differentiated into mature oligodendrocytes and eventually starts 
the remyelination process. Moreover, new evidence suggest that mature 
oligodendrocytes also impact remyelination. Studies with electron mi-
croscopy involving rhesus monkey and cat demyelination models found 
mature oligodendrocytes that survived demyelinating insult were still 
able to attach to viable internodes (Lubetzki et al., 2020; Duncan et al., 
2018) and a postmortem study with MS patients found that mainly old 
mature oligodendrocytes were present in shadow plaques (remyelinated 
lesions) suggesting that those partial myelin recovery were carried out 
by mature cells (Yeung et al., 2019). More detailed description of the 
molecular basis involving remyelination can be found in other reviews 
(Lubetzki et al., 2020; Baaklini et al., 2019; Franklin and Ffrench--
Constant, 2017). 

1.2. Why do remyelination mechanisms fail in MS? 

The process of remyelination starts immediately after injury (Kuhl-
mann et al., 2008) and continues throughout the subacute phase, 
extending up to 7 months in MS patients (Brown et al., 2014). The 
extension and frequency of remyelinated lesions vary from patient to 
patient and even between lesions from the same individual (Patrikios 
et al., 2006; Goldschmidt et al., 2009). Older age and longer disease 
duration correlate with a lower remyelination capacity in animal models 
and human studies (Lubetzki et al., 2020; Al-Temaimi et al., 2017), 
suggesting that both disease duration and aging exerts complementary 
negative effects. Some of the possible explanations are that the neuronal 

metabolic dysfunction in chronic lesions impairs repair because of 
undermined neuronal electrical activity, OPCs depletion and lesion 
extension (hindering mature oligodendrocytes to connect to viable 
existing nodes) (Duncan et al., 2018; Mitew et al., 2018). Aging, on the 
other hand, is associated with diminished OPC response to factors that 
induce differentiation and inadequate myelin debris clearance by 
microglia (Gruchot et al., 2019) impairing repair as myelin debris also 
inhibit OPCs differentiation (Kotter et al., 2006). Furthermore, histo-
pathological studies suggest anatomy also impacts remyelination effec-
tiveness, as periventricular and infratentorial lesions presented less 
effective remyelination than subcortical lesions. This may be due to 
regional factors such as OPC availability or reflect higher neuronal 
activation in gray matter dense areas which contributes to oligoden-
drocyte preservation (Goldschmidt et al., 2009; Cunniffe and Coles, 
2021). 

2. Assessing remyelination in vivo with magnetic resonance 
imaging (MRI) 

2.1. Conventional MRI 

The most frequently used MR sequences to access demyelinating 
lesions in MS are T2-weighted (T2WI) and T1-weighted (T1WI) images. 
T2WI is highly sensitive in identifying new lesions and evaluating total 
lesion volume ((Franklin and Ffrench-Constant, 2017)). However, T2 
hyperintense lesions might represent a wide spectrum of histopatho-
logical changes. Both demyelinated and partially remyelinated lesions 
are hyperintense in T2WI (). This could partially explain the weak cor-
relations between T2 lesion loads and disability (Barkhof, 1999). 

T1WI is thought to offer more specific markers of tissue damage. T1 
hypointense lesions are considered areas with less remyelination, more 
axonal loss and degeneration (Barkhof et al., 2003; Bagnato et al., 2003). 
Nevertheless, T1 relaxation intervals can also be increased in edema, 
which means that areas of acute inflammation and demyelination might 
also present as hypointense foci (Thaler et al., 2017). However, lesions 
with a persistent low signal in T1WI, after the resolution of the acute 
inflammation, are more likely to become permanent and are denomi-
nated “black holes”. Longitudinal normalization in the T1-weighted 
signal is a more direct indication of remyelination (Bagnato et al., 
2003). Moreover, T1-weighted signal and T1 relaxation times correlate 
with the degree of demyelination, remyelination and tissue damage 
(Thaler et al., 2017). 

More recently, the T1W/T2W ratio is being used as a quantitative 
method for assessing tissue myelin content. Myelination is directly 
correlated to increase T1W signal and inversely correlated with T2W 
signal (Hagiwara et al., 2018). The T1W/T2W ratio is a reliable marker 
of myelin content, when compared with non-conventional MRI modal-
ities such as myelin water fraction (MWF) and magnetization transfer 
ratio (MTR) (Arshad et al., 2017; Ganzetti et al., 2014). Moreover, 
T1W/T2W ratio has been correlated with cortical pathology, neuro-
cognitive performance and disability in MS patients (Righart et al., 
2017; Granberg et al., 2017). 

Therefore, T1W/TW2 ratio has increased sensitivity for myelin when 
compared to conventional MRI and some of the advanced MRI tech-
niques. Noteworthy, there is no need for prolonged acquisition time, 
even though postprocessing procedures are needed (Table 1). 

2.2. Magnetization transfer ratio (MTR) 

Advanced MRI techniques are based on diverse physical-chemical 
phenomena such as magnetic susceptibility, magnetization trans-
ference and diffusion of molecules that allow to determine the different 
properties of tissues (Table 1). 

Magnetization transfer contrast (MTC) is used to observe the contrast 
of tissues where protons are present in different states: as free water, 
bound to macromolecules and in cell membrane hydration layers 
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between macromolecules and free water The MTC is obtained by 
applying an off-resonance magnetic pulse, saturating the bounded pro-
tons. To restore physical equilibrium, the free-water protons start to 
transfer magnetization to the saturated protons. Thus, the amount of 
magnetization transferred is directly proportional to the number of 
macromolecules (i.e. proteins, myelin, cell membranes, etc.) in tissues. It 
is possible to obtain a quantitative measure from magnetization transfer 
phenomena by comparing the MR signals in images with and without 
the off-resonance pulse through an index called magnetization transfer 
ratio (MTR) (Grossman et al., 1994; Wolff and Balaban, 1989). 

Lower MTR is associated with reduced proportion of bound water 
protons and has shown correlation with the degree of myelin and axonal 
loss in MS patients (Inglese et al., 2003; Mottershead et al., 2003). Two 
histopathological studies involving a total of 56 MS patients found that 
demyelinated lesions have lower MTR values, while remyelinated le-
sions have significantly higher MTR values (Barkhof et al., 2003; 
Schmierer et al., 2004). These properties make MTR a promising method 
to quantify demyelination and remyelination in lesions and in 
normal-appearing tissues. 

Another study showed ongoing changes in demyelination/remyeli-
nation rates in MS lesions evaluated by MTR up to three years after 
lesion appearance. Only subtle changes were observed in T1WI and 
T2WI (Chen et al., 2008). 

Additionally, MS-related tissue damage seems to be heterogeneous 
within different brain tissues and progress at different rates across 
subjects. Global and regional changes in MTR are possible predictors 
accumulation of physical and cognitive dysfunction (Traboulsee et al., 
2003; Khaleeli et al., 2008; Deloire et al., 2011), and might help to 
indicate response to disease modifying treatments (Inglese et al., 2003). 

MTR does not require long acquisition times and, to date, is probably 
the most applied technique for this purpose, allowing lesion analysis, 
whole-brain measures and voxel-based analysis (Audoin et al., 2004). 
However, MTR presents some intrinsic limitations. First, it reflects 
myelin indirectly through restricted proton pool motion, so it is 
uncapable of differentiating healthy myelin from myelin debris (Hick-
man et al., 2004).Also, it is influenced by edema and inflammation. A 
study with cuprizone-induced mice evaluated myelin biomarkers with 
electronic microscopy (EM) and found that MTR had relatively poor 
myelin specificity (Jelescu et al., 2016) compared to diffusional kurtosis 
imaging (DKI). 

Together, these limitations may explain why some studies did not 

Table 1 
MRI sequences used for myelin assessment.  

Modality Advantages Disadvantages Remyelination 
endpoint in 
clinical trials 

T2WI Available in all 
scanners 

Qualitative measure Cadavid et al. 
(2019) 

Conventional Post-processing not 
needed 

Low myelin 
specificity 

Green et al., 
(2017)  

Sensitive to 
demyelination  

Schwartzbach 
et al. (2017)  

Low acquisition 
time  

Cree et al. (2020) 

T1WI Available in all 
scanners 

Qualitative measure Cadavid et al. 
(2019) 

Conventional Post-processing not 
needed 

Low sensitivity to 
myelin changes 

Green et al., 
(2017)  

Specific to myelin/ 
axonal damage  

Schwartzbach 
et al. (2017)  

Low acquisition 
time  

Cree et al. (2020)     

T1W/T2W Available in most 
scanners 

Sensitive to 
inflammation and 
myelin debris 

–  

Specific and 
sensitive to myelin 
damage 

Post-processing 
needed   

Low acquisition 
time    
Quantitative 
measure   

MTR Available in most 
scanners 

Sensitive to 
inflammation and 
myelin debris 

Cadavid et al. 
(2019)  

Specific and 
sensitive to myelin 
changes 

Post-processing 
needed 

Green et al., 
(2017)  

Low-intermediate 
acquisition time  

Schwartzbach 
et al. (2017)  

Quantitative 
measure   

DTI Available in most 
scanners 

Sensitive to structural 
heterogeneities 

Cadavid et al. 
(2019) 

(RD and FA) Specific and 
sensitive to myelin 
changes 

Model-based diffusion Green et al., 
(2017)  

Low-intermediate 
acquisition time 

Post-processing 
needed (can be 
performed directly in 
scanner workstation 
depending on 
commercial software)   

Quantitative 
measure   

MWF Programmable in 
modern scanners 

Long acquisition time Green et al., 
(2017)  

Specific and 
sensitive to myelin 
changes 

Post-processing 
needed   

Quantitative 
measure 

Not standardized  

DKI Programmable in 
modern scanners 
(multi-shell 
diffusion needed) 

Post-processing 
needed 

–  

Specific and 
sensitive to myelin 
changes    
Quantitative 
measure    
Intermediate 
acquisition time   

QSI Programmable in 
modern scanners 
(multi-shell 
diffusion needed) 

Long acquisition time –  

Table 1 (continued ) 

Modality Advantages Disadvantages Remyelination 
endpoint in 
clinical trials  

Very specific and 
sensitive to myelin 
changes 

Post-processing 
needed   

Quantitative 
measure 

Not standardized    

Little experience in 
patients  

qMM Programmable in 
modern scanners 
(multi-shell 
diffusion needed) 

Post-processing 
needed 

–  

Specific and 
sensitive to myelin 
changes 

Not standardized   

Quantitative 
measure 

Little experience in 
patients   

Intermediate 
acquisition time   

DKI=Diffusion Kurtosis Imaging, DTI=Diffusion Tensor Imaging, FA=Fractional 
Anisotropy, MTR=Magnetization Transfer Ratio, MWF=Myelin Water Fraction, 
qMM=q-Space Myelin Map, QSI=q-Space Imaging, RD=Radial Diffusivity, 
T1WI=T1-weighted imaging, T2WI=T2-weighted imaging. 
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found correlation of MTR with clinical recovery and remyelination in 
histological analysis (Hickman et al., 2004; Mccreary et al., 2010) 
especially in acute lesions. Additionally, magnetic transference is 
influenced by the presence of iron in tissues, by other cellular mem-
branes and by intrinsic heterogeneity of tissues. Furthermore, magnetic 
field strength, different acquisition techniques and properties of 
different scanners significantly affect the MTR measurement. These 
limitations difficult a broader use of MTR as a parameter of MS treat-
ment response, especially in multicentric studies (Wattjes et al., 2015). 

2.3. Myelin water imaging 

Myelin water imaging is based on the behavior and size of water 
molecules in different tissues (e.g., gray matter, white matter, myelin) 
and measures T2 relaxation curves whose amplitudes are proportional to 
the content of water in each environment. The myelin water fraction 
(MWF) is the ratio of an area in T2 distribution due to myelin to the area 
of entire T2 distribution (Laule et al., 2006). 

The capacity of MWF in accurately identifying myelin in MS patients 
have been investigated through MRI and histopathological analysis. 
Laule et al. (2006)evaluated 25 MS patients brains and correlated the 
MWF with the presence of myelin identified by Luxol Fast Blue (LFB) 
staining [R2 = 0.67 (0.45–0.92)]. Moreover, more recent study with a 
7-Tesla MRI in 10 brain samples of MS patients showed an even higher 
correlation between MWF and LFB staining [R2 = 0.78 (0.56–0.95)] 
(Laule et al., 2008) indicating higher accuracy of MWF in higher field 
scanners. 

In vivohuman studies with MWF confirmed that MS lesions have 
decreased MWF values and also observed increasing MWF over time 
suggesting remyelination (Vargas et al., 2015). Moreover, there is evi-
dence that normal appearing white matter (NAWM) abnormalities may 
also be assessed by MWF (Faizy et al., 2016), indicating myelin changes 
that might precede the occurrence of lesions identified by conventional 
MRI. Until now, myelin water imaging has been used as a secondary 
endpoint in one phase II clinical trial (Green et al., 2017) to evaluate 
both MS lesions and NAWM. An important limitation for applying MWF 
in clinical settings is its time for acquisition and processing. A study that 
evaluated different MWF protocols suggested that a whole-brain 
sequence with 5 mm slice thickness can be acquired within 25–30 min 
(Alonso-Ortiz et al., 2015). Another possible limitation is the difficulty 
in distinguishing healthy myelin from myelin debris through MWF 
analysis (Nakahara, 2019). Currently, no standardized procedure or 
commercial software are available. 

2.4. Diffusion techniques 

Diffusion-weighted imaging (DWI) is a widely used MRI technique 
that providing information about diffusion of water molecules. The 
motion of water molecules depends on orientation and nature of bio-
logical barriers such as myelin sheaths and axons. Some examples of 
diffusion modalities can be visualized in Fig. 1. 

2.4.1. Diffusion tensor imaging (DTI) 
DTI provides in vivo information about the diffusion of water mole-

cules, assuming microstructural tissue differences. The most frequently 
evaluated DTI parameters are fractional anisotropy (FA), mean diffu-
sivity (MD), axial diffusivity (AD) and radial diffusivity (RD). 

In experimental studies with animal models, FA was correlated with 
myelin and axonal integrity in healthy tissue (Yano et al., 2018).Yet, RD 
correlated better with the temporal changes of myelin structure in the 
demyelination-remyelination process (Jelescu et al., 2016; Yano et al., 
2018). Likewise, a longitudinal study with 20 MS patients who were 
receiving Natalizumab found that FA gradually increased after occur-
rence of new gadolinium enhancing lesions indicating remyelination 
(Fox et al., 2011). 

DTI metrics (particularly RD and FA) may be useful for evaluating 

myelin repair in MS brain lesions. Additionally, DTI requires feasible 
acquisition time and it is available in most commercial scanners 
(requiring manual quality control and postprocessing procedures 
though). 

DTI is limited since it implies that water diffusion has Gaussian 
distribution. Water diffusion is affected not only by myelin but also by 
cell membranes, axonal sheaths (Fujiyoshi et al., 2016) and it is influ-
enced by anatomical complexities such as crossing fibers. Other 
advanced MRI techniques such as diffusional kurtosis imaging (DKI) or 
q-Space imaging (QSI) (Jelescu et al., 2016; Fujiyoshi et al., 2016) are 
model-free (non-Gaussian) diffusion reconstruction methods (HORI 
et al., 2012) that might provide observations more specific to myelin. 

2.4.2. Q-Space imaging (QSI) 
One of the main limitations of conventional DWI methods is the 

assumption that diffusion of water molecules has normal distribution. In 
this context, QSI was developed. 

QSI is an advanced MRI technique in which multiple high b-(q-) 
value DWI are acquired to generate a probability density function (PDF) 
of water diffusion after a Fourier transformation of the signal intensity. 
QSI has demonstrated to accurately describe CNS microstructure in 
animal models of myelin deficiency (Biton et al., 2006) and develop-
ment (Assaf et al., 2000). 

In MS patients, QSI was more specific than MTR and more sensitive 
than DTI to differentiate white matter from gray matter, NAWM and MS 
lesions (Farrell et al., 2008; Hori et al., 2014). However, despite being 
probably the most accurate method to evaluate the presence of myelin, it 
is time-consuming preventing its use in clinical practice (Hori et al., 
2012), acquisition times varies depending on the q-values sampling and 
slice number and can range from 25 to 50 min in brain sequences (Lätt 
et al., 2008; Van et al., 2010). There are only few published studies using 
this technique in humans, and no standardized software is available yet. 

2.4.3. Diffusional kurtosis imaging (DKI) 
Kurtosis is a statistical measure of how much the tails of a distribu-

tion extend farther than what would be expected in normal distribution. 
Jensen et al. (2005) described the quantification of MRI signaling using 
kurtosis-based metrics with lower b-values (2000 to 3500 s/mm2) than 
what is traditionally used in QSI (~10,000 s/mm2. DKI avoids the 
calculation of the full displacement of the PDF using only the excess 
diffusional kurtosis. This allows a shorter acquisition time. 

DKI provides mean diffusion kurtosis, axial kurtosis and radial kur-
tosis. As expected, mean diffusion kurtosis provides a more accurate 

Fig. 1. Conventional and Advanced MRI sequences for MS lesions. (A) T2WI 
(B) T1WI (C) FLAIR (D) DTI-FA (E) qMM (F) DTI-RD. Images acquired from a 
RRMS patient showing lesions in different evolution stages. Filled arrows =
demyelinating lesions with hypointense T1WI signal. Empty arrows indicate 
demyelinating lesions with partial remyelination signal. 
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measure of tissue structure than FA and apparent diffusion coefficient 
(ADC) from DTI and conventional MRI (Jensen et al., 2005). 

One study of cuprizone-induced corpus callosum demyelination and 
DKI revealed that several DKI metrics correlated with histological bio-
markers for myelin. DKI had better performance than DTI metrics in 
regions where higher tissue heterogeneity was expected (Falangola 
et al., 2014). Another cuprizone-induced demyelination study compared 
DKI with MTR and DTI. DKI-derived metrics were the most specific for 
the demyelination-remyelination process, and MTR did not estimate 
myelin content properly (Jelescu et al., 2016). This was reinforced by 
other studies in which DKI but not DTI were able to identify spontaneous 
gray matter remyelination (Guglielmetti et al., 2016). 

In clinical settings, DKI was used to detect microstructural changes 
using tract-based spatial statistics in RRMS patients compared to healthy 
controls. DKI metrics were sensitive to detect white matter abnormal-
ities in regions with homogenous and heterogeneous fiber arrangements 
(Li et al., 2018). Another longitudinal study with 40 MS patients 
revealed that corticospinal tract radial kurtosis was the best predictor of 
the Expanded Disability Status Scale (EDSS) at 12 months. Indicating an 
association between DKI metrics and clinical disease progression. 

Furthermore, DKI is feasible in clinical practice. However, to date, 
there are still few human studies that evaluate remyelination using DKI 
and no standardization is available yet. 

2.4.4. Q-space myelin map (qMM) 
Recently, a new MRI modality was validated in a translational study 

(Fujiyoshi et al., 2016) denominated q-space myelin map (qMM). This 
technique combines the advantages of QSI and DKI. Table 1 A full-scale 
QSI of reduced steps but preserving the resolution (9 steps with b-value 
up to 10,000) is performed allowing a reduced acquisition time 
(approximately 10 min with a 3T scanner). The kurtosis is calculated 
from the QSI-generated PDF. 

In animal histological analysis qMM correlated better with the 
presence of myelin in LFB staining and electron microscopy than DTI 
and T2WI (Fujiyoshi et al., 2016). 

An exploratory study conducted (Tanikawa et al., 2017) with MS 
patients receiving fingolimod associated treatment response with 
remyelination identified by qMM. Another observational study with MS 
patients under Natalizumab treatment suggested remyelination in qMM 
is correlated with EDSS improvement over time (Kufukihara et al., 
2018). These studies demonstrated promising results for further clinical 
trials (Kira, 2017). Currently, there is no standardized automated pro-
cedure to analyze these images. 

2.5. Spinal cord assessment 

As in the optic nerve, spinal cord lesions tend to present with 
debilitating neurologic deficits such as motor and autonomic dysfunc-
tions. Therefore, remyelination in spinal cord lesions would potentially 
implicate significant functional recovery for patients. 

However, anatomical and technical issues made the visualization of 
the spinal cord with the currently available imaging methods chal-
lenging. Spinal cord small physical dimensions, CSF flow, respiratory 
movements and magnetic field inhomogeneity are some of the 
limitations. 

The main instrument for assessing disease progression within the 
spinal cord is spinal atrophy, which has been used vastly and correlates 
with clinical disability (Kearney et al., 2015; Casserly et al., 2018; 
Eshaghi et al., 2018). However, volumetric studies are very limited for 
inferring mechanisms of repair and microstructure. Therefore, atrophy 
may be a later finding indicating advanced disease (Kearney et al., 
2015). 

Advanced MRI techniques have been applied to evaluate the myelin 
content of the spinal cord. A postmortem study of 4 MS patients showed 
that spinal cord MTR correlated with the presence of myelin in histo-
logical analysis (Mottershead et al., 2003). Another study (Casserly 

et al., 2018) showed good correlation between spinal cord LFB staining 
and MWF. MWF was able to distinguish NAWM from gray matter and 
MS lesions (Laule et al., 2016). DTI also correlated with myelin in the 
spinal cord in another histological study involving 9 MS patients and 5 
controls. RD distinguished various degrees of demyelination (Klawiter 
et al., 2011) and healthy myelin. 

In vivo studies with MTR showed that magnetic transference  is 
reduced in the spinal cord of MS patients and correlates with disability 
(Hickman et al., 2004; Mallik et al., 2014; Zackowski et al., 2009). 
Spinal cord FA, RD and MD also demonstrated association with disease 
progression in MS patients (Naismith et al., 2013; Agosta et al., 2007). 
Likewise, DKI was able to distinguish gray and white matter from lesions 
and was associated with clinical disability measured by EDSS (Raz et al., 
2013). At last, a case report using qMM showed remyelination of a newly 
developed spinal cord lesion after treatment (Fujiyoshi et al., 2016). 

2.6. Remyelinating therapies in randomized controlled trials 

New molecules are being developed to stimulate the intrinsic 
mechanisms of remyelination. Most of them induce transcriptional fac-
tors that promote remyelination or inhibit the inhibitory pathways 
((Franklin and Ffrench-Constant, 2017)). Here, we provide a summary 
of the results of randomized trials already published and ongoing 
promising trials. Summarized data can be found in Table 2. 

3. Anti-LINGO (Opicinumab) 

Leucine rich repeat and immunoglobulin containing 1 (LINGO-1) is a 
glycoprotein selectively expressed in the CNS (oligodendrocytes and 
neurons) that inhibits OPC differentiation and myelin formation. 
Experimental studies have shown that LINGO-1 antagonists facilitate 
remyelination both in vitro and in animal models (Mi et al., 2009). 

Opicinumab is a human monoclonal antibody that targets the 
LINGO-1 protein enhancing remyelination and OPC differentiation. The 
phase I clinical trial (Tran et al., 2014) was designed as two separate 
blind-placebo-controlled studies. One of them with 72 healthy volun-
teers and the other with 47 RRMS or secondary progressive MS patients 
(SPMS). In both studies, the participants were randomized to receive 
intravenous or subcutaneous opicinumab or placebo. No serious adverse 
effects (AEs) were reported in the treatment group. MS patients in the 
opicinumab group had fewer new T2 lesions. 

Two phase II clinical trials evaluated efficacy of opicinumab when 
compared to placebo. The RENEW study (NCT01721161) (Cadavid 
et al., 2017) selected patients with acute optic neuritis and in the 
SYNERGY study (NCT01864148) (Cadavid et al., 2019) evaluated RRMS 
and SPMS patients treated concurrently with intramuscular 
interferon-beta 1a. The primary endpoint of the RENEW study was the 
recovery of nerve conduction latency measured with full-field visual 
evoked potential (FF-VEP) at 24 weeks compared with the unaffected 
eye at baseline. Intention to treat (ITT) analysis showed that patients 
enrolled in the Opicinumab group had shortened latency compared to 
the control group. However, significance was only achieved in the per 
protocol analysis population within 32 weeks. There were no differences 
between groups in MRI measures (T2 lesion volume, gadolinium 
enhancing (Gd+) lesions and new Gd+ lesions) (Cadavid et al., 2017). In 
the SYNERGY study, the primary endpoint was confirmed improvement 
of neurophysical and/or cognitive function and/or disability over 72 
weeks of treatment in 330 RRMS and 88 SPMS patients. Ninety-three 
patients received placebo, and the remaining patients were random-
ized to receive opicinumab in increasing doses: 3 mg/kg (45 patients), 
10 mg/kg (95 patients), 30 mg/kg (94 patients) and 100 mg/kg (92 
patients). 

The primary endpoint was met only in the 30 mg/kg group. Never-
theless, the subgroup analysis showed significant improvement in pa-
tients younger than 40 years assigned to receive 10 and 30 mg/kg  and 
those with disease duration of less than 8 years in 3 and 10 mg/kg doses 
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(Ruggieri et al., 2017; McCroskery et al., 2017; Petrillo et al., 2018). MRI 
exploratory analysis showed no significant difference in lesions evalu-
ated by MTR, DTI-RD and DTI-FA in the ITT population across treatment 
groups. Patients randomized to receive 10 mg/kg who had baseline 
whole brain DTI-RD showed better response to treatment than placebo. 
Moreover, post hoc analysis showed improvement in clinical outcomes 
when stratified patients by pretreatment lesion characteristics in DTI-RD 
and MTR and shorter disease duration. Additionally, the responder 
subpopulation showed favorable changes in the mean lesion RD and 
MTR after treatment (Evans et al., 2017). These exploratory MRI results 
displayed the potential of MTR and DTI as MRI biomarkers for pre-
dicting treatment response. Finally, the AFFINITY (NCT03222973) was 
a phase II randomized double-blind placebo-controlled trial that 
enrolled 263 MS patients. The primary outcome was the improvement of 
disability after 72-weeks. In October 2020, it was announced that AF-
FINITY did not met neither its primary outcome nor secondary outcomes 
and opicinumab development program was discontinued. 

4. Clemastine fumarate 

In 2014, Mei et al. (2014) developed a new model for the in vitro 
evaluation of myelination. They employed micropillars, which are 
freestanding nanofibers around which membrane wrapping can be 
visualized. The micropillars were cocultured with oligodendrocytes and 
exposed to a cluster of antimuscarinic compounds to investigate their 
ability to improve myelination. They found that Clemastine fumarate 
promoted OPC differentiation and wrapping in an in vitro model and in 
an in vivo adult mouse model after oral administration of the compound 
(Mei et al., 2014). 

A double-blind, randomized, placebo-controlled, crossover trial 
(ReBUILD study) (Green et al., 2017) was conducted to evaluate the 
efficacy and safety of Clemastine in RRMS patients with confirmed 
demyelinating injury in the visual pathway (VEP P100 latency in at least 
one eye of 118 ms). The primary outcome was shortening of P100 la-
tency on FF-VEP. Nonconventional MRI were evaluated as secondary 
endpoints (Whole Brain-MTR, White Matter-MTR, White Matter-FA and 
MWF). Twenty-five patients were randomized per group. Active treat-
ment consisted of 10.72 mg/day of oral Clemastine fumarate. Significant 
shortening of VEP latency was sustained in the group that initiated the 
study on clemastine and was also achieved in the delayed-treatment 
group. None of the secondary MRI endpoints were met or showed ten-
dency to significance (Green et al., 2017). Currently, clemastine is being 

tested in an ongoing phase 2 randomized, double-blind, placebo-con-
trolled trial (ReCOVER) that targets to evaluate 90 MS patients pre-
senting acute optic neuritis, with the primary outcome of difference in 
P100 latency and secondary MRI outcomes including change in brain 
MWF and MTR between from baseline and 9 months (NCT02521311). 

5. High-dose biotin (MD1003) 

Biotin is a water-soluble vitamin, generally present in human diet, 
which acts as a coenzyme in important metabolic processes related to 
fatty acids synthesis. A pilot study involving 23 patients with progressive 
MS showed high-dose biotin intake was associated with favorable out-
comes in visual acuity progression. 

The first clinical trial with high-dose biotin (Tourbah et al., 2016) 
included 154 patients with primary progressive MS or SPMS randomized 
to receive 100 mg/day of oral biotin or placebo for 12 months. The 
primary endpoint was the proportion of patients with improvement of 
MS-related disability (evaluated through EDSS and Timed 25-foot walk 
test - T25FW) at 9 months and, confirmed in 12 months. Secondary 
endpoints included conventional and nonconventional MRI in a sub-
group of 74 patients. The primary endpoint was achieved for 12.6% of 
patients in the treatment group and in none of the placebo group. MRI 
analysis did not show statistically significant results and, the safety 
profile was similar to  the placebo (Tourbah et al., 2016). 

The phase 3 randomized, double-blind, placebo-controlled trial 
(SPI2) allocated 642 MS patients to placebo or MD1003 and failed to 
achieve its primary outcome which was improvement in disability at 
month 12 (overall participants with improvement 12% in MD1003 
group vs. 9% in placebo; p = .31). MRI volumetric measures were 
analyzed as an exploratory outcome but there was no significant effect 
found in whole-brain volume change, thalamic volume and cortical gray 
matter volume (Cree et al., 2020). 

6. H3 receptor antagonist (GSK239512) 

An experimental study with different compounds to identify possible 
new targets to enhance remyelination found that histamine receptor 3 
(H3) negatively regulates OPC differentiation via cyclic adenosin 
monophosphate (cAMP) and cAMP-response binding protein (CREB) 
signaling. The authors administered an H3 receptor antagonist in a 
cuprizone/rapamycin mouse model of demyelination and observed 
improvement in remyelination (Chen et al., 2017). 

Table 2 
Randomized clinical trials with remyelinating agents and imaging endpoints.  

Therapy Trial name/code Primary Endpoint MRI Endpoints Primary Endpoint results Secondary MRI 
Endpoint results  

(Phase)  (secondary)   
Anti-LINGO1 RENEW (Phase 2) FF-VEP latency 

improvement 
Conventional MRI 41% improvement in the PP 

population (p=.011) 
Not met 

Anti-LINGO1 SYNERGY (Phase 2) Clinical improvement DTI-RD, DTI-FA, MTR, Volumetric Positive for 30 mg/kg dose 
group (See text.) 

Exploratory (See 
text.) 

Anti-LINGO1 AFFINITY (Phase 2) Clinical improvement – Not met. (Announcement) Not met 
Clemastine 

Fumarate 
ReBUILD (Phase 2) VEP P100 latency 

reduction 
DTI-FA, MTR, MWF − 1.7 ms/eye; (p=•0048) Not met 

High dose Biotin 
(MD1003) 

MD1003CT2013–02MS-SPI 
(Phase 3) 

Clinical improvement Conventional MRI 12.6% vs 0%; p=.005 Not met 

High dose Biotin 
(MD1003) 

MD1003CT2013–01MS-ON 
(Phase 3) 

VA improvement – − 0.061 vs − 0.036 logMAR; 
p=.6 

– 

High dose Biotin 
(MD1003) 

MD1003CT2013–02MS-SPI2 
(Phase 3) 

Clinical improvement Conventional MRI, Volumetric 12% (MD1003 group) vs. 9% 
(placebo); p=.31 

Not met 

H3 antagonist 
(GSK239512) 

116,477 (Phase 2) Newly developed lesions 
mean MTR changes 

Conventional MRI, Volumetric Positive for lesion-MTR 
changes (See text.) 

Not met 

RXR-γ agonists 
(bexarotene) 

CCMR One (Phase 2) Patient-level lesion mean 
MTR changes 

Conventional MRI, Volumetric, 
Proportion of lesions with MTR 
increase 

bexarotene–placebo difference 
0.16 pu; p=•55 

Not met 

DTI-RD=Diffusion Tensor Imaging (Radial Diffusivity), DTI-FA=Diffusion Tensor Imaging (Fractional Anisotropy), FF-VEP=Full-field visual evoked potentials, 
MRI=Magnetic Resonance Imaging, MTR=Magnetization Transfer Ratio, MWF=Myelin Water Fraction, PP=Per protocol, VA=Visual Acuity, pu = percentage unit. . 
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A phase II randomized, placebo-controlled clinical trial with H3 re-
ceptor antagonist included 131 MS patients receiving first-line immu-
nomodulatory therapy. They were assigned to receive placebo or oral 
doses titrated according to tolerance of the H3 antagonist for 48 weeks. 
Primary endpoints were mean changes in MTR in newly developed le-
sions. Secondary endpoints included conventional MRI and brain vol-
ume measurements, EDSS, cognitive testing (CogState) and MS Quality 
of Life questionnaire (MSQoL-54). Treatment with H3 receptor antago-
nist was positively associated with remyelination evaluated by MTR. 
The overall incidence of AEs was similar between both groups. Although 
during the titration phase, patients receiving the H3 antagonist pre-
sented more adverse events. There were no differences in brain volume 
measures, EDSS or CogState between groups (Schwartzbach et al., 
2017). 

7. Retinoid acid X receptor [RXR] gamma agonists (bexarotene) 

Bexarotene promoted oligodendrocyte progenitor cell differentiation 
and remyelination following experimental models of demyelination. A 
phase II double-blind, placebo-controlled study enrolled 52 MS patients 
taking dimethyl-fumarate within a 6 months period. The primary effi-
cacy outcome was the mean patient-level lesional change in MTR from 
baseline values. Other exploratory outcomes included VEP F100 latency 
change and conventional MRI analysis. The ITT analysis show no sig-
nificant difference in lesion MTR mean change. Nevertheless, F100 
changes trended to a positive biological effect bexarotene-placebo all 
eyes difference − 2.85 ms, CI − 5.75 to 0.05; p = .054. Yet, there were 
important safety and tolerability concerns. All patients in bexarotene 
group developed hypothyroidism, 92% presented with an increase in the 
triglyceride levels, 50% with rash, and 38% with neutropenia. Betar-
oxene group had 19% of patients discontinued due to adverse events 
compared to 8% in the placebo group. These safety concerns limit the 
use of betaroxene as a potential treatment (Brown et al., 2021). 

8. Ongoing clinical trials 

At this moment, there are promising ongoing trials for agents that 
target remyelination promotion. 

Nanocrystaline Gold (CNM-Au8) promoted remyelination in-vitro 
and experimental cuprizone mouse model (Robinson et al., 2020), 
requiring clinical trials in patients. 

The VISIONARY-MS (NCT03536559) trial is an ongoing phase 2, 
placebo-controlled, randomized trial that aims to evaluate efficacy and 
safety of CNM-Au8 effect in 150 MS patients with chronic optic neu-
ropathy. Primary outcome is the mean change in the best-corrected low 
contrast letter acuity after 24 weeks. The secondary MRI outcomes 
include MWF, MTR and DTI measurements. 

The REPAIR-MS trial (NCT03993171) is evaluating treatment with 
CNM-Au8 in an open-label study that targets to enroll 30 MS patients. 
The primary outcome is 12 weeks changes in metabolic measured with 
31P-Magnetic resonance spectroscopy. 

The TOTEM RRMS trial aim to evaluate the effect of testosterone in 
MS patients. Testosterone administration has been shown to promote 
remyelination in cuprizone model (Hussain et al., 2013). This ongoing 
trial is phase 2 double-blind placebo-controlled trial will enroll 40 MS 
patients. Half of the patients will receive testosterone undecanoate 1000 
mg/4 ml at baseline, week 6 and then every 12 weeks until 54 weeks. 
The primary outcome is change in binary criteria of MRI changes 
defined as thalamic atrophy lower than 0.5% and modification in lesion 
DTI metric lower than 0.5% per year from baseline to week 66. Other 
imaging secondary outcomes are conventional MRI, MTR and advanced 
diffusion model-free imaging. 

9. Conclusions 

MS has a wide therapeutic arsenal with confirmed efficacy in 

controlling CNS inflammation. However, the currently available disease 
modifying treatments have shown limited effects in improving remye-
lination and functional recovery after demyelinating attacks. In the last 
years, some experimental models suggested new treatments to promote 
remyelination, but clinical efficacy is still lacking. 

To investigate the efficacy of those medications, we need a reliable 
non-invasive technique that allows in vivo evaluation of myelin. 
Advanced MRI sequences have emerged as promising tools. For 
example, DTI and MTR parameters have been used in remyelination 
clinical trials and they were able to predict individual responses to 
therapy. In optic neuritis studies, FF-VEP latency is a useful tool to 
evaluate objectively the evolution of demyelination and remyelination 
dynamically provided the functional and structural integrity of the 
retina (which can be assessed with optical coherence tomography) 
which contrast with myelitis patients presenting with spinal cord le-
sions, which are still challenging to evaluate in-vivo with precision. 

One possible explanation for the failure of remyelination therapies in 
clinical trials is the inability of DTI and MTR in considering the in vivo 
barriers to the diffusion of water molecules. Future clinical trials may 
benefit from combining MRI methods according to elements such as 
patients characteristics (spinal cord lesions, optic neuritis, MS clinical 
phenotype), number of centers involved (availability to standardize 
parameters and post-processing methods), and acquisition times. 
Finally, qMM, DKI and MWF showed higher specificity compared to 
previous methods in experimental and exploratory clinical studies, 
turning into promising MRI modalities for future trials. 
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