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Abstract
Aim: The use of landscape resistance maps to model connectivity has become an in-
dispensable tool for species conservation. However, different methods can be used to 
estimate landscape resistance, but there is no consensus on which is the most reliable 
one. Therefore, comparing the performance of those methods in predicting resistance 
can be quite useful to understand their limitations and conservation implications. Our 
goal was to evaluate the accuracy of two commonly used approaches, habitat suitabil-
ity modelling and landscape genetics, in estimating landscape resistance to genetic 
connectivity of two species of Neotropical cats (Leopardus guttulus and L. geoffroyi) 
across their ranges.
Location: South America.
Taxon: Felidae— L. guttulus and L. geoffroyi.
Methods: For both species, we optimized a landscape genetics resistance surface 
using a restricted multivariate optimization approach and transformed a habitat suit-
ability map into a resistance layer. We compared landscape resistance models created 
by these two approaches based on the models' Akaike information criterion scores 
and evaluated the similarities and differences in their predictions by calculating the 
correlation between the resistance layers and generating difference maps.
Results: The genetic approach greatly outperformed the habitat suitability approach 
in explaining movement driving gene flow for both species. For the studied species, 
habitat preference and genetic connectivity are influenced by different landscape 
features. Habitat alteration imposes great resistance for genetic connectivity, and the 
presence of natural vegetation remnants within altered environments is essential for 
their conservation.
Main conclusions: For the studied species, the transformation of habitat suitability 
models into resistance surfaces is a poor proxy for permeability to dispersal, and the 
use of genetic data is more reliable in modelling connectivity for species conservation. 
Habitat suitability and landscape resistance are not equivalent or even proportional 
for these species.
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1  |  INTRODUC TION

The long- term survival of many species depends on the protection of 
natural areas that support viable populations, and also on the main-
tenance of ecological corridors that provide connectivity among 
local subpopulations (Cushman et al., 2013; Haddad et al., 2015). 
Population size and connectivity are both essential elements for 
providing sufficient gene flow to prevent loss of genetic diversity. 
Without gene flow, populations become isolated and more suscep-
tible to inbreeding and genetic drift, which can increase population 
extinction probability (Frankham et al., 2010). Therefore, techniques 
that predict population dynamics and connectivity are critical tools 
for both ecological research and conservation applications.

Connectivity modelling studies are usually based on landscape 
resistance maps, which represent the cost of movement experienced 
by an organism when going from one point in the landscape to an-
other (Cushman et al., 2013; Zeller et al., 2012). Despite its common 
usage, there is no consensus on which methods are most reliable in 
assigning resistance values to a landscape (Spear et al., 2010; Zeller 
et al., 2012). The incorrect identification of landscape resistance 
can mask the true influence of landscape features on species move-
ment, leading to ineffective conservation actions (e.g. Cushman 
et al., 2014). In this context, comparing different approaches to de-
rive the most accurate landscape resistance surface is important yet 
rarely performed (Peterman et al., 2019). As gene flow represents 
not only dispersal movement patterns but also whether there is suc-
cessful dispersal that has resulted in reproduction over time (Zeller 
et al., 2018), it can be a good measure of landscape connectivity to 
be used to compare the performance of these approaches.

One of the most common methods to estimate landscape resis-
tance uses habitat suitability to derive resistance values, typically 
based on some form of inverse relationship. Since detection data 
are often the only empirical data available for many species and can 
be used for developing habitat suitability models, this approach has 
been broadly used to develop resistance surfaces (e.g. Macdonald 
et al., 2018; Mateo- Sánchez et al., 2014; Wan et al., 2019). This ap-
proach is based on the notion that animals select dispersal move-
ment paths based on the same features that they use to select 
habitat. If this assumption is correct, habitat suitability would be the 
inverse of landscape resistance (i.e. areas with high habitat suitabil-
ity would have low resistance to dispersal movement and gene flow; 
Beier et al., 2008; Chetkiewicz et al., 2006). However, some studies 
have shown that habitat suitability is often not a good proxy for re-
sistance to movement driving gene flow. For example, for American 
martens, brown bears and Bengal tigers, it was demonstrated that 
factors that determine occurrence are different from those that 
affect gene flow (Mateo- Sánchez et al., 2015a; Reddy et al., 2017; 
Wasserman et al., 2010, 2012). Zeller et al. (2018), however, com-
pared habitat- based approaches for estimating landscape resistance 
with landscape genetics and movement models based on GPS telem-
etry data for pumas and found that all three approaches selected the 
same variables and produced similar resistance surfaces, but differ-
ent predictions of landscape connectivity.

This inconsistency of results between habitat- based and 
genetics- based resistance surfaces is less surprising when one con-
siders that they represent different processes and are not necessarily 
influenced by the same landscape features (Wasserman et al., 2012). 
Habitat suitability reflects a combination of conditions that allow/
induce individuals to settle, establish their home ranges and repro-
duce. Resistance to movement, which can be measured by gene flow 
and GPS telemetry data, reflects how the landscape affects disper-
sal. Dispersing individuals are usually juveniles, which may tolerate 
sub- optimal conditions while looking for territories, and therefore 
may select different features relative to residents (Elliot et al., 2014; 
Gastón et al., 2016; Wasserman et al., 2012).

Although habitat suitability may not be the best surrogate for 
landscape resistance, given the large availability of presence data 
for many species, and the fact that they may be the only empirical 
data available for rare taxa, in many cases, using habitat suitability 
as a proxy for landscape resistance likely will remain the best avail-
able approach. Furthermore, for some species, habitat preference of 
dispersing individuals might be similar to the habitat preference of 
residents (Newby, 2011; Zeller et al., 2018). For these species, using 
habitat suitability as a proxy for landscape resistance to movement 
is likely to produce satisfactory results. However, for most species, 
it is unknown whether they select similar habitat features for dis-
persal and home range residency. When such information is lack-
ing and more sophisticated data such as movement or genetics data 
are available, comparing the performance of the habitat suitability 
method with other approaches in estimating landscape resistance 
is prudent to help us better identify the advantages and limitations 
of the different approaches (Mateo- Sánchez et al., 2015a, 2015b; 
Zeller et al., 2018).

The functional form employed to transform habitat suitability 
maps into resistance surfaces might also affect predictions (Beier 
et al., 2008). Recent studies have demonstrated that a negative expo-
nential transformation of habitat suitability may be the most appro-
priate one (Keeley et al., 2016, 2017; Mateo- Sánchez et al., 2015a, 
2015b; Trainor et al., 2013; Zeller et al., 2018). Limitations in occur-
rence related to habitat suitability are usually more stringent than 
limits to dispersal movement, because dispersers are often willing 
to take more risks in their movement and habitat selection than resi-
dents (Elliot et al., 2014). For this reason, the exponential transforma-
tion of habitat suitability is thought to better reflect the resistance 
to dispersal movement, since it assumes that areas of moderate to 
high habitat quality have low resistance to dispersal movement, and 
only the areas of the lowest habitat quality have very high resistance 
(e.g. Mateo- Sánchez et al., 2015a; Wan et al., 2019).

Landscape genetics is another commonly used approach to 
estimate landscape resistance (Balkenhol et al., 2016; Cushman 
et al., 2006). Landscape genetic approaches are becoming in-
creasingly popular due to technological advancements and cost 
reduction in genetic techniques (Balkenhol et al., 2016; Zeller 
et al., 2012), along with its superiority, demonstrated in some 
systems, relative to expert opinions (Shirk et al., 2010) or habitat 
suitability (Mateo- Sánchez et al., 2015a; Wasserman et al., 2010). 
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2208  |    SARTOR et al.

In landscape genetic analyses, genetic data are used to compute 
the genetic distance (GD) between individuals, which is then 
correlated with measures of cost distance (CD) from different 
resistance models (Balkenhol et al., 2016). Genetic data provide 
robust information about gene flow between locations, which 
makes landscape genetics a powerful tool to parameterize land-
scape resistance values, especially when applied in a multivariate 
optimization framework (Cushman et al., 2006; Mateo- Sánchez 
et al., 2015a; Shirk et al., 2010; Wasserman et al., 2010; Zeller 
et al., 2018).

In this study, we compared landscape resistance predictions 
produced from a habitat suitability approach and a landscape 
genetics optimization approach for two congeneric species of 
Neotropical cats, Leopardus guttulus and L. geoffroyi. Little is 
known about the relationship between habitat selection and resis-
tance to movement for South American carnivores. To our knowl-
edge, no study has empirically tested such relationships for any 
Neotropical carnivore. For small Neotropical felids, information 
about their ecological requirements is scarce, which poses chal-
lenges for effective conservation planning. The two species we 
studied have largely allopatric distributions and different ecolog-
ical requirements: L. guttulus is considered a closed- forest habi-
tat specialist (Cruz et al., 2019; de Oliveira et al., 2016), while L. 
geoffroyi is considered a habitat generalist (Cuyckens et al., 2016; 
Pereira et al., 2015). Given the large ecological differences be-
tween the species, comparing the performance of habitat proxy 
and landscape genetic methods for predicting resistance for both 
species would be particularly informative.

We addressed four hypotheses: (1) In model comparison, 
genetic- based resistance surfaces will outperform the habitat- 
based surfaces in explaining movement driving gene flow for both 
species; (2) the exponential conversion of habitat suitability into 
resistance surfaces will improve the performance of the habitat- 
based model and will reflect relatively less restrictive dispersal 
than the linear conversion, since only very low quality areas will 
present high resistance to movement; (3) predicted landscape 
connectivity based on the habitat suitability model will be more 
restrictive than connectivity predicted based on genetic data, as 
resident individuals are usually less tolerant to low quality habitat 
than dispersing individuals; (4) L. guttulus will be more affected by 
habitat conversion than L. geoffroyi, since L. guttulus is considered 
a forest specialist while L. geoffroyi is considered a more generalist 
species.

2  |  MATERIAL S AND METHODS

2.1  |  Study species and study area

The southern tigrina, L. guttulus, has been recently recognized as 
an independent species (Trigo, Schneider, et al., 2013). Its cur-
rent distribution is documented in southern- southeastern Brazil, 
Argentina and Paraguay, but the full extent of its occurrence and 

its ecological requirements are not completely clear. Its distribu-
tion seems to be coextensive with the Atlantic Forest, although 
some individuals have been recorded in the Cerrado biome, a sa-
vanna habitat (de Oliveira et al., 2016; Nascimento & Feijó, 2017; 
Trigo, Schneider, et al., 2013). However, the Cerrado biome is 
highly heterogeneous, ranging from closed woodlands to grass-
lands (Ratter et al., 1997), and it is largely unknown how the spe-
cies utilizes the different features in this biome. Its occurrence 
seems to be mainly determined by abiotic features (precipitation, 
temperature, elevation and solar radiation) related to the pres-
ence of the Atlantic Forest, making it a forested habitat specialist 
(Sartor et al., 2021). Some studies have suggested that the south-
ern tigrina can inhabit disturbed areas, but its occurrence is lim-
ited by the presence of tree cover (Cruz et al., 2019; de Oliveira 
et al., 2010; Sartor et al., 2021).

Geoffroy's cat, L. geoffroyi, in contrast, is the most abundant wild 
felid in South America and has a broad distribution, occurring from 
the Andes of southern Bolivia to the southernmost parts of Argentina 
and Chile (Cuyckens et al., 2016; de Oliveira & Cassaro, 2005). 
Within this distribution, L. geoffroyi occupies several habitat types, 
such as dry forests, savannas, shrublands and grasslands (Cuyckens 
et al., 2016; Pereira et al., 2015), but most of its range is composed 
of arid or semi- arid habitat with low tree cover (Pereira et al., 2006). 
It is traditionally considered an open- habitat species (Sunquist & 
Sunquist, 2002). However, some studies have demonstrated that in 
human- dominated landscapes, it selects closed vegetation within 
open habitats (Caruso et al., 2016; Manfredi et al., 2012; Tirelli 
et al., 2019). It also seems to be tolerant to some degree of habitat 
alteration (Pereira et al., 2011, 2012; Sartor et al., 2021) and may 
sometimes benefit from it, expanding its occurrence and taking ad-
vantage of the higher prey density found in the border of agricultural 
areas (Caruso et al., 2016; Cuyckens et al., 2016).

The study area comprised the entire range of both species, cov-
ering an area of approximately 9,000,000 km2 (Figure 1). There is a 
restricted zone of overlap, contact and hybridization between the 
two species along the southern edge of Brazil; however, their known 
ranges are mostly non- overlapping (Sartor et al., 2021; Trigo, Tirelli, 
et al., 2013; Trigo et al., 2014).

2.2  |  Sample collection

In this study, we used genetic information from 13 microsatellite loci 
of 135 individuals of L. guttulus and 140 of L. geoffroyi generated pre-
viously (Sartor et al., 2020, 2021). These samples were distributed 
across almost the entire range of both species. As L. geoffroyi and L. 
guttulus hybridize at the edge of their distributions (Trigo, Schneider, 
et al., 2013; Trigo et al., 2014), to prevent any potential bias that the 
ecological preferences of hybrids might cause (Culumber et al., 2012; 
Sartor et al., 2021; Walsh et al., 2016), individuals identified as possi-
ble hybrids by Sartor et al. (2021) were not included in the analyses. 
In addition, samples with more than 20% of missing data were also 
excluded.
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    |  2209SARTOR et al.

2.3  |  Genetic distance

We calculated pairwise GDs among individuals using a principal 
components analysis (PCA; Shirk et al., 2010, 2017). This method is 
more sensitive to detect genetic dissimilarities because alleles that 
capture the greatest proportions of genetic variation within a popu-
lation have a more significant contribution to the GDs than common 
alleles (Castillo et al., 2014; Shirk et al., 2010, 2017). We constructed 
a matrix in which the columns represented the alleles at each locus 
and the rows represented the sampled individuals. Each cell was 
given a value of 0, 1 or 2, based on the number of occurrences of that 
allele in each individual. We used the Euclidean distance function in 
the ‘Ecodist’ package in R (Goslee & Urban, 2007) to generate a GD 
matrix based on the distances between individuals along the first 64 
axes of the PCA, which was shown by Shirk et al. (2018) to provide 
optimal capture of genetic signal. For alleles with missing data, we 
assigned the modal value for each allele among all individuals.

2.4  |  Landscape variables

To optimize the genetic- based resistance surface, we used the same 
set of variables used by Sartor et al. (2021), including temperature, 
precipitation, solar radiation, elevation, tree canopy cover, land 
cover, river width, cropland areas and livestock per km2. For the 
genetic- based analysis, we also included roads (Meijer et al., 2018) 
and human footprint (Venter et al., 2016, 2018; see Table S1, for 
more details on landscape variables). These two variables were not 
used by Sartor et al. (2021), because a large number of location 
points were from road- killed animals located close to urban areas, 
and the high correlation of the presence data with these variables 
could lead to the erroneous prediction of high habitat suitability near 
urban areas and roads. However, since this is unlikely to affect land-
scape genetic analysis, as it is based on cumulative differentiation 
across space rather than conditions at a sampled location (Cushman 
& Landguth, 2010), they were added to the present study.

2.5  |  Genetics- based resistance surface

For the genetic approach for estimating landscape resistance, we 
used a restricted multivariate optimization method to evaluate 
which landscape variables drive genetic connectivity in these two 
felids (Castillo et al., 2014; Shirk et al., 2010). This optimization is 
based on the idea that the relationship between a landscape variable 
and gene flow might change with its thematic resolution (functional 
shape and maximum resistance) and the value of other landscape 
variables. Individual- based landscape genetics modelling to predict 
resistance to dispersal movement is based on associating GD (de-
scribed above) with alternative cost- distance hypotheses, reflect-
ing different ways in which the landscape can influence gene flow 
(Cushman et al., 2006). To compute CDs for each alternative hy-
pothesis (landscape variables), we used the ‘sGD’ package (Shirk & 
Cushman, 2011) in R to generate a pairwise CD matrix between the 
sampling points.

To optimize the relationship between landscape variables and 
resistance to dispersal movement in these Neotropical cats, we 
evaluated the relationship between GD and each of the CD matrices 
with linear mixed effects models. This statistical test has higher ac-
curacy than other regression methods in predicting the influence of 
the landscape on gene flow (Shirk et al., 2018). We used the MLPE.
lmm() function from the package ‘ResistanceGA’ (Peterman, 2018) 
in R to fit maximum- likelihood population effects (MLPE; Clarke 
et al., 2002) models relating GD to CD for each candidate model. We 
compared the models generated based on the lowest Akaike infor-
mation criterion (AIC) score, using the parameter REML = FALSE in 
the MLPE.lmm() function, which results in a valid AIC score fit with 
maximum likelihood (Shirk et al., 2018).

The optimization analysis was conducted in several steps. First, for 
the land cover variable, each land cover class was given a value of resis-
tance from 1 (lowest resistance) to 10 (highest resistance) in increments 
of 1. We optimized resistance values by changing the value of one class 

F I G U R E  1  Study area and genetic sample points for Leopardus 
guttulus and L. geoffroyi in South America. Area delimited by a 
continuous red line is the geographic distribution of L. guttulus, 
while the area delimited by a blue dotted line is the geographic 
distribution of L. geoffroyi according to de Oliveira et al. (2016) and 
Pereira et al. (2015), respectively. Map projection: South America 
equidistant conic.
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2210  |    SARTOR et al.

while holding the others constant until the AIC was minimized. After 
having optimized the values for land cover, we added roads and riv-
ers to the layer and optimized them with the same method. The resis-
tance value of roads varied between 1 and 100 and rivers between 1 
and 10,000 because these features usually have a greater impact on 
species movement. Finally, we tested different power functions (0.5, 
0.75, 1, 1.5, 1.75, 2, 2.5) to produce a range of functional shapes, and 
optimized the maximum relative resistance (RMax; Shirk et al., 2010) 
by stepping Rmax from 50 to 300 in steps of 10. For the optimization 
of the gradient variables, we rescaled them linearly to values between 
1 and 10, and the same process was applied (Vergara et al., 2016). We 
calculated Pearson's correlation coefficient between each pair of CD 
matrices to check for multicollinearity. When two CD matrices were 
correlated (i.e. r > 0.8; Figure S2), we kept the variable with the lowest 
AIC value. Cushman et al. (2014) showed that individual- based land-
scape genetics model selection has high ability to correctly identify the 
driving factor when the correlation among hypotheses is 0.8 or lower, 
which was subsequently confirmed by Shirk et al. (2018). Cushman 
and Landguth (2010) demonstrated that finer resolutions increase the 
power of landscape genetics analysis. Therefore, for the genetic- based 
analysis, all layers were projected at 1 km2 resolution.

In addition, we tested the influence of geographic distance on ge-
netic differentiation (isolation by distance hypothesis). We calculated a 
geographic distance matrix, based on the Euclidean distance between 
the localities of all individuals, using the package ‘Ecodist’ in R.

2.6  |  Habitat- based resistance surface

To estimate landscape resistance based on the habitat approach, 
we used habitat suitability models developed by Sartor et al. (2021). 
Briefly, Sartor et al. (2021) used presence records and pseudo- absence 
data to generate habitat suitability models for both species, for their 
entire ranges, with the Random Forest algorithm. In addition to the ge-
netic samples described above, presence records from museum collec-
tions, databases and literature were used in the analysis (Figure S1). As 
presence records were unbalanced, the data were subsampled in order 
to maintain a similar density of points across the range of each species. 
Only noncorrelated variables were used in the analysis. An 8 km2 reso-
lution was used, as it encompasses the average home range of both 
species (de Oliveira et al., 2016; Pereira et al., 2015) and it has been 
shown that carnivores usually select habitat on broad spatial scales (e.g. 
Hearn et al., 2018; Mateo- Sánchez et al., 2014; Vergara et al., 2016). 
This resolution was different than the one used for the genetic- based 
approach because, although this may influence the results, we believe 
that the comparison will be fairer and more instructive if the models 
of each method were generated with the most suitable methodology 
available. Models were selected based on the lowest total out- of- bag 
error and lowest maximum within- class error.

We converted the predicted probability maps generated by Sartor 
et al. (2021) into resistance surfaces using an exponential decay func-
tion as in Wan et al. (2019) and a linear function. We rescaled the val-
ues, so the areas with highest habitat suitability prediction had the 

lowest resistance, with the Rmax proportional to the Rmax optimized 
for the genetic data for each species. We calculated CD matrices for 
the linear and exponential decay function for both species.

2.7  |  Model comparisons

For each species, we initially compared the habitat- based models with 
the geographic distance and all genetic- based models based on their 
AIC scores using MLPE. Then, to evaluate how effective habitat suit-
ability models are in predicting landscape effects on movement driv-
ing gene flow, similar to Mateo- Sánchez et al. (2015a), we compared 
the best resistance surface created by the genetic approach with the 
best resistance surface created by the habitat approach. To do this, 
we calculated the correlation between the best habitat- based land-
scape resistance and the landscape resistance from the optimized 
genetics- based model. We compared the direction and nature of the 
relationship with landscape variables between the genetics- based and 
habitat- based models to identify differences in how landscape fea-
tures affect the probability of occurrence and resistance to dispersal 
movement in each species. We also created difference maps for this 
comparison by subtracting the habitat- based resistance surface from 
the genetics- based resistance surface. To compare the landscape con-
nectivity restrictiveness of the resistance layers generated by the ap-
proaches, we determined two arbitrary resistance values thresholds 
of 10 and 50 and compared the total amount of area of the resistance 
layers with resistance value below the thresholds.

The influence of landscape features on dispersal and genetic dif-
ferentiation cannot be detected until they become limiting to move-
ment (Cushman et al., 2011, 2013). Thus, as both species inhabit 
altered environments, we decided to test if their dispersal move-
ments were influenced by similar limiting factors, despite present-
ing different habitat preferences (Sartor et al., 2021). To do that, we 
compared the optimized genetics- based landscape resistance mod-
els for the two species. Specifically, we calculated landscape resis-
tance across the full study area (including the range of both species) 
for each species' model and then calculated a pixelwise correlation 
between the surfaces. We generated difference maps by subtracting 
the resistance map of one species from the resistance map of the 
other species in both areas. We also compared the habitat suitability 
maps generated by Sartor et al. (2021) in the same way to further 
analyse how habitat preference and dispersal might be affected by 
different landscape features in each species.

3  |  RESULTS

3.1  |  Genetic- based optimized resistance models

For the genetic- based approach, the land cover variables had the strong-
est correlation with GD for both species (Figure 2). For L. guttulus, we 
tested 112 models. The optimized thematic resolution was exponen-
tial = 2 and Rmax = 120. For L. geoffroyi, we tested 174 models. The 
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optimized thematic resolution was exponential = 2 and Rmax = 260. 
For both species, forest was the class with the lowest resistance (re-
sistance = 1), and they presented similar resistance values for cropland, 
primary and secondary roads. Nevertheless, for the remaining landscape 
classes, L. geoffroyi presented lower resistance values when compared 
to L. guttulus, with the exception of flooded areas and rivers (Table 1).

3.2  |  Habitat- based optimized resistance models

For the habitat- based approach, the linear transformation had a sig-
nificantly better performance than the exponential transformation 
for both species (Figure S3a– d). For L. guttulus, the linear transforma-
tion had a ΔAIC = 26.77, and the exponential transformation had a 
ΔAIC = 75.71 (Table S2). For L. geoffroyi, the ΔAIC values of these mod-
els were ΔAIC = 138.28 and ΔAIC = 204.89, respectively (Tables S3).

3.3  |  Model comparisons

Across all the models that we generated, genetic- based models had 
the best performance and the habitat- based models consistently 
exhibited the worst performance in predicting observed genetic 
differences between individuals of both species. The isolation by 
distance model (IBD) also did not perform well, being the eighth 
worst model (ΔAIC = 47.52) for L. guttulus and the fifth worst model 
(ΔAIC = 102.27) for L. geoffroyi (Figure 3; Tables S2 and S3).

The resistance surfaces generated by the genetic- based approach 
were very different from those obtained by transforming habitat suit-
ability (Figure S3). For both species, the comparison between the two 
methods resulted in a very low correlation (r = 0.04; p < 0.01 for L. 

geoffroyi; r = −0.029; p < 0.01 for L. guttulus; Figure 4). The two ap-
proaches also selected different variables. The genetic approach 
selected land cover variables, while the habitat suitability models gen-
erated by Sartor et al. (2021) selected mainly climatic variables and el-
evation. Cropland was the only variable selected by both approaches, 
for both species, and showed the opposite direction of influence for L. 
guttulus. According to the genetic approach, cropland areas have high 
resistance to L. guttulus movement. However, the habitat suitability 
approach suggested a positive correlation between the cropland areas 
and this species occurrence (Sartor et al., 2021).

F I G U R E  2  Genetics- based optimized 
landscape resistance model for Leopardus 
geoffroyi and L. guttulus generated with 
a restricted multivariate optimization 
approach. The resistance values in the 
legends correspond to the optimized 
landscape resistance values (see Table 1). 
For a better resolution of the map, the 
reader should refer to the online version. 
Location: South America. Map projection: 
South America equidistant conic.
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TA B L E  1  Optimized landscape resistance values for Leopardus 
guttulus and L. geoffroyi for the different landscape classes 
considered in the genetics- based resistance surfaces analyses

Landscape class L. geoffroyi
L. 
guttulus

Forest 1 1

Shrubland 11.41 29.85

Grasslands 63.47 120

Sparse vegetation 11.41 120

Bare areas 32.24 120

Flooded areas 129.85 29.85

Cropland with natural remnants 11.41 58.70

Cropland 129.85 120

Primary roads 64.77 71.92

Secondary roads 25.73 11.82

Small rivers 194.92 11.82

Medium rivers 260 120

Large rivers 13,014.77 12,020
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Regarding the restrictiveness of the predicted resistance layers, 
for both species the habitat- based models generated with the linear 
transformation had the most restrictive patterns of predicted land-
scape connectivity, regardless of the threshold considered, while the 
less restrictive models varied between species. For L. guttulus, for 
both thresholds, the habitat- based model generated with the expo-
nential transformation presented the less restrictive layer, and for L. 
geoffroyi, it was the genetic- based model (Table S4).

The genetic- based resistance model comparisons between the two 
species demonstrated a high and positive correlation value for both 
areas (r = 0.98; p > 0.01; Figure S4a,b). The same variables were se-
lected in the optimized model for both species, and they had consistent 
relative influence, with L. geoffroyi exhibiting lower values for almost all 
variables than L. guttulus (Table 1). The comparison of habitat suitability 
maps between the two species demonstrated a low negative correla-
tion. The projection of the L. guttulus model onto the L. geoffroyi range 
resulted in a correlation of r = −0.3982 (p < 0.01; Figure S4c), while the 
projection of L. geoffroyi onto the L. guttulus range yielded a correlation 
of r = −0.289 (p < 0.01; Figure S4d). In addition, the models generated 
by Sartor et al. (2021) selected mainly the same variables for both spe-
cies, with the opposite direction of influence between them.

4  |  DISCUSSION

4.1  |  Habitat- based versus genetics- based 
resistance surfaces

The optimized genetic resistance models greatly outperformed the 
resistance models created from the habitat suitability approach 
in predicting resistance to movement for both studied species, as 

measured by the association with observed genetic differentiation 
among individuals. Our results confirm and strengthen the conclu-
sion that habitat suitability does not accurately reflect how the land-
scape influences genetic connectivity (Mateo- Sánchez et al., 2015a; 
Reddy et al., 2017; Wasserman et al., 2010; Zeller et al., 2018). In 
contrast to the results of Zeller et al. (2018), who found relatively 
high utility in habitat quality as a surrogate for landscape resistance, 
in our study, the habitat suitability approach produced poorly vali-
dated models that were considerably different in resistance and the 
variables selected in comparison with the genetics- based models. 
For example, the only variable selected by both models, cropland, 
presented a high negative correlation with genetic resistance for 
both species, but a positive correlation with habitat suitability for L. 
guttulus. The correlation between the resistance surfaces produced 
by the two approaches for both species was virtually null, which em-
phasizes how different their surfaces were.

The low negative correlation observed in the comparison of 
the habitat suitability models between the two species demon-
strates how different their ecological niches are (Sartor et al., 2021). 
However, the high positive correlation observed in the comparison 
of the optimized landscape genetic resistance model suggests that 
they select similar landscape features when dispersing. These re-
sults indicate that gene flow and habitat selection are related to dif-
ferent landscape aspects, as also seen by Wasserman et al. (2010), 
Cushman and Lewis (2010), Elliot et al. (2014) and Mateo- Sánchez 
et al. (2015a). This is extremely important as it shows how the 
method chosen for analysis affects the conclusions regarding what 
landscape features influence connectivity and in what way they af-
fect it.

Contrary to our expectation, the negative exponential conver-
sion of habitat suitability into resistance surface did not improve 
the performance of the habitat- based resistance surface, although 
it presented a less restrictive dispersal than the linear conversion, 
as we predicted. In our model comparisons, the habitat- based re-
sistance models were ranked as the worst models for both species 
even using this transformation, and a linear transformation, although 
much weaker than the genetics- based models, outperformed the 
exponential transformation based on the ΔAIC value. This result 
is the opposite to what has been previously reported (e.g. Keeley 
et al., 2017; Mateo- Sánchez et al., 2015a; Trainor et al., 2013; Zeller 
et al., 2018), demonstrating that the performance of the functional 
form employed to transform habitat suitability maps into resistance 
surfaces may differ between species.

Also, contrary to our expectation, for L. guttulus, not all resis-
tance surfaces created by the habitat suitability models were more 
restrictive than the ones created by the genetics- based models. It is 
possible that the extensive habitat alteration in this region has over-
come the species tolerance to move through less suitable habitats, 
as most of its habitat has been transformed into agricultural areas or 
urban spaces. This would reflect the increasing emergence of limit-
ing factors that hamper movement as habitat is lost and becomes 
more fragmented (e.g. Cushman et al., 2013; Short Bull et al., 2011; 
Vergara et al., 2017).

F I G U R E  3  Boxplot comparing model groups based on their 
corrected AIC (AICc) values. Model group 1 represents the 20 best 
optimized genetic- based models, model group 2 represents the 
extra environmental and anthropogenic variables considered during 
models' optimization individually without the optimized model, 
model group 3 represents the IBD and habitat- based models for 
Leopardus geoffroyi and L. guttulus. Model group 4, for L. guttulus, 
represents the best optimized genetic- based model with the 
additional extra parameters. The AICc values of these models can 
be seen in tables S2 and S3.
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It is important to highlight that, in our study, the genetic ap-
proach selected land cover variables that measure habitat fragmen-
tation and alteration, while the habitat suitability models from Sartor 
et al. (2021) selected mainly climatic variables that do not carry this 
information, and this difference in variables may explain this result. 
The inverse of these results was seen by Wasserman et al. (2012), 
in which habitat selection of American marten was highly affected 
by landscape heterogeneity and fragmentation of forest cover, 
while gene flow, as measured by landscape genetics, was primar-
ily affected by climate (elevation as a surrogate). Such observation 
demonstrates how each species' biology may affect its response to 
habitat features for suitability and/or dispersal in unique ways, high-
lighting the need to explore these relationships in multiple systems.

4.2  |  Landscape resistance to felid movement 
based on the genetic- based approach

Despite occurring in very different environments, our analysis 
showed that gene flow of both species was constrained by similar 
limiting factors. As we expected, the L. guttulus model suggested 
low resistance values for forested areas, while the L. geoffroyi model 
showed a more plastic and general response to landscape features, 
with different landscape classes (shrubland, sparse vegetation and 
cropland with natural remnants) presenting relatively low resistance 
values. Interestingly, forest was the class optimized with the low-
est resistance for both species. Although some studies have dem-
onstrated that L. geoffroyi selects forested habitats in areas with 
human disturbance (Caruso et al., 2016; Manfredi et al., 2012; Tirelli 
et al., 2019), this result was still unexpected, since it is considered an 
open- habitat species. In addition, forested areas are mainly found 

in the northern part of L. geoffroyi's distribution, covering a small 
portion of the species' range. It is possible that our sampling effort, 
more concentrated in this area, is not fully sampling the resistance 
values in the central and southern parts of its distribution, which 
in turn could reduce the resistance value of forests. Another pos-
sibility is that the species is influenced by different features in dif-
ferent portions of its distribution (e.g. Vergara et al., 2017) and our 
results better reflect the resistance to dispersal movement within 
the northern area. Therefore, more studies in this area are neces-
sary to fully understand how forest cover affects the movement of 
this species.

The resistance value for the river classes differed considerably 
between the two species. While rivers less than 200 m- wide do 
not seem to impose large dispersal barriers for L. guttulus move-
ment, they seem to be substantial natural barriers to L. geoffroyi. 
We also found a similar relationship between species regarding 
resistance to flooded areas, with L. geoffroyi showing higher resis-
tance values. These high resistance values optimized for L. geof-
froyi were surprising since its occurrence is considered common in 
flooded areas such as the Esteros del Iberá or the Delta of Paraná 
(Pereira JA personal observation). However, recent studies sug-
gest the existence of genetic structure within L. geoffroyi's range 
(Bou et al., 2021; Gómez- Fernández et al., 2020), coinciding with 
the region of the Uruguay, Paraná and Paraguay rivers. These riv-
ers are recognized as important barriers to the dispersal of other 
small Neotropical felids (da Silva Santos et al., 2018; Johnson 
et al., 1999), and it is possible that they also affect the dispersal of 
L. geoffroyi, as indicated by our analysis.

Consistent with other studies (de Oliveira et al., 2016; Sartor 
et al., 2021; Trigo, Tirelli, et al., 2013), our results demonstrated 
that L. guttulus is a greater habitat specialist and therefore is likely 

F I G U R E  4  Landscape resistance 
comparison between the genetic 
approach and the habitat approach in 
the range of Leopardus guttulus and L. 
geoffroyi. Difference maps were generated 
by the subtraction of the habitat- based 
resistance surface from the genetics- 
based resistance surface. Hotter colours 
indicate areas with high genetics- based 
resistance values and low habitat- based 
resistance values, while cooler colours 
indicate the opposite relationship. 
Intermediate colours indicate areas where 
resistance values of both approaches are 
similar. Location: South America. Map 
projection: South America equidistant 
conic.
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to be more susceptible to habitat conversion than L. geoffroyi. 
Our resistance optimization for L. geoffroyi showed that agricul-
tural areas do not impose high resistance to movement, as long 
as these areas maintain some percentage of natural vegetation, 
highlighting the ecological plasticity of the species. However, we 
demonstrate that intensive agriculture, which does not have a nat-
ural vegetation component, imposes high resistance to movement 
for this species.

Leopardus guttulus seems to be highly dependent on forested en-
vironments for both habitat and dispersal movement, and the con-
version of its natural habitat into agricultural lands imposes great 
resistance to dispersal and loss of habitat for residency. The resis-
tance value optimized for cropland was very high, and it seems that 
even with the maintenance of natural vegetation within agricultural 
lands, this species will avoid crossing these areas. Nonetheless, for 
both species, the resistance values for cropland without natural veg-
etation are much higher than the values for cropland that retains 
some percentage of natural vegetation. This result demonstrates the 
importance of maintaining natural vegetation remnants within dis-
turbed areas. These areas with natural vegetation probably favour 
dispersal between patches in highly disturbed landscapes and may 
even sustain small populations, depending on the size of the natural 
fragments.

The presence of roads was predicted to impose substantial resis-
tance for dispersal movement of both species, but with higher values 
for L. guttulus. This was the case for the class of primary roads, but 
not for the class of secondary roads. The values, however, were not 
greatly different between species, and it seems that they affect the 
dispersal of both species in a similar way. For both species, our results 
suggest that large roads act as major barriers to movement driving 
gene flow, which is similar to results found in a number of other spe-
cies, such as black (Short Bull et al., 2011) and brown (Mateo- Sánchez 
et al., 2015a) bears, African lions (Elliot et al., 2014) and pumas (Zeller 
et al., 2018). The great importance of roads in the landscape genetics 
models suggests that removing roads and human footprint from the 
habitat suitability models may have impacted the performance of the 
models. However, as said above, the high correlation of these vari-
ables with our presence data would probably bias the results. This 
situation demonstrates another benefit of landscape genetics analy-
sis, because, as it uses the cumulative differentiation across space, it 
is less likely to be biased by uneven sampling.

5  |  CONCLUSIONS AND IMPLIC ATIONS

Earth is facing a biodiversity crisis in which anthropogenic landscape 
change synergizing with rapid climatic warming is driving a mass ex-
tinction episode. To effectively design conservation actions in the face 
of rapid habitat loss and fragmentation, it is critical to understand 
how landscape features affect both patterns of occurrence and con-
nectivity (Cushman, 2006). In this context, the lack of knowledge on 
Neotropical cats' ecological requirements prevents the design and im-
plementation of adequate management and conservation measures. 

In this study, we identified the landscape features that drive gene flow 
in two species of Neotropical cats across their entire ranges. To our 
knowledge, this is the first landscape genetic study ever conducted 
across the full range of different species using comparable methods. It 
is also one of the few studies that used the same methodology to com-
pare the patterns that drive habitat preference and gene flow in two 
congeneric species. We demonstrated that for both species, habitat 
preference and gene flow are driven by different landscape features, 
and that, for these species, resistance surfaces created based on ge-
netic data are more suitable for connectivity analysis, and habitat suit-
ability models are a poor proxy for landscape resistance to dispersal 
movement.

These results have important implications for connectivity mod-
elling. Habitat- based models may produce very different connectivity 
maps than landscape genetic optimization, which may lead to incorrect 
management decisions. Therefore, when possible, landscape genetics 
analysis should be prioritized over habitat suitability models. However, 
genetic data are not always available, and sometimes, the conversion 
of habitat suitability models into resistance surfaces is the only op-
tion and should be used. In these cases, however, it is important to 
make assumptions carefully. Given the complexity of this problem, 
and the distinct patterns observed in different species, it is important 
that more studies comparing the performance of methods to estimate 
landscape resistance be urgently performed, and we thus recommend 
increased research focusing on this topic.
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