Received: 8 February 2022 | Revised: 7 June 2022

'.) Check for updates

Accepted: 20 June 2022

DOI: 10.1111/jbi. 14498

RESEARCH ARTICLE

WILEY

Landscape genetics outperforms habitat suitability in
predicting landscape resistance for congeneric cat species

Caroline Chario Sartor®?

| Ho YiWan®

| Javier A. Pereira* | Eduardo Eizirik?®® |

Tatiane Campos Trigo>® | Thales Renato O. de Freitas'”” | Samuel Alan Cushman®

1Programa de Pés-Graduacio em Ecologia,
Universidade Federal do Rio Grande do
Sul, Porto Alegre, Brazil

2Escola de Ciéncias da Sadde e da Vida,
Laboratério de Biologia Gendmica e
Molecular, Pontificia Universidade
Catoélica do Rio Grande do Sul (PUCRS),
Porto Alegre, Brazil

3Department of Wildlife, California State
Polytechnic University Humboldt, Arcata,
California, USA

4Grupo de Genética y Ecologia en
Conservacion y Biodiversidad, Divisién
Mastozoologia, Museo Argentino de
Ciencias Naturales "Bernardino Rivadavia",
CONICET, Buenos Aires, Argentina

SInstituto Pré-Carnivoros, Atibaia Sdo
Paulo, Brazil

Setor de Mastozoologia, Museu de
Ciéncias Naturais do Rio Grande do
Sul, Secretaria de Meio Ambiente e
Infraestrutura, Porto Alegre, Brazil

’Departamento de Genética, Universidade
Federal do Rio Grande do Sul, Porto
Alegre, Brazil

8USDA Forest Service, Rocky Mountain
Research Station, Flagstaff, Arizona, USA

Correspondence

Caroline Charao Sartor, Escola de Ciéncias
da Saude e da Vida, Laboratério de
Biologia Gendmica e Molecular, Pontificia
Universidade Catdlica do Rio Grande do
Sul (PUCRS), Room 603, Building 81, 6681
Ipiranga Ave, Porto Alegre, Brazil.

Email: caroline.c.sartor@gmail.com

Funding information

Conselho Nacional de Desenvolvimento
Cientifico e Tecnolégico, Grant/

Award Number: 454551/2014-2 and
424361/2016-7; Coordenacéo de
Aperfeicoamento de Pessoal de Nivel
Superior, Grant/Award Number: 001;
Fundacdo de Amparo a Pesquisa do
Estado do Rio Grande do Sul

Handling Editor: Thais Guedes

Abstract

Aim: The use of landscape resistance maps to model connectivity has become an in-
dispensable tool for species conservation. However, different methods can be used to
estimate landscape resistance, but there is no consensus on which is the most reliable
one. Therefore, comparing the performance of those methods in predicting resistance
can be quite useful to understand their limitations and conservation implications. Our
goal was to evaluate the accuracy of two commonly used approaches, habitat suitabil-
ity modelling and landscape genetics, in estimating landscape resistance to genetic
connectivity of two species of Neotropical cats (Leopardus guttulus and L. geoffroyi)
across their ranges.

Location: South America.

Taxon: Felidae—L. guttulus and L. geoffroyi.

Methods: For both species, we optimized a landscape genetics resistance surface
using a restricted multivariate optimization approach and transformed a habitat suit-
ability map into a resistance layer. We compared landscape resistance models created
by these two approaches based on the models' Akaike information criterion scores
and evaluated the similarities and differences in their predictions by calculating the
correlation between the resistance layers and generating difference maps.

Results: The genetic approach greatly outperformed the habitat suitability approach
in explaining movement driving gene flow for both species. For the studied species,

habitat preference and genetic connectivity are influenced by different landscape

features. Habitat alteration imposes great resistance for genetic connectivity, and the

presence of natural vegetation remnants within altered environments is essential for

their conservation.

Main conclusions: For the studied species, the transformation of habitat suitability
models into resistance surfaces is a poor proxy for permeability to dispersal, and the
use of genetic data is more reliable in modelling connectivity for species conservation.

Habitat suitability and landscape resistance are not equivalent or even proportional

for these species.
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1 | INTRODUCTION

The long-term survival of many species depends on the protection of
natural areas that support viable populations, and also on the main-
tenance of ecological corridors that provide connectivity among
local subpopulations (Cushman et al., 2013; Haddad et al., 2015).
Population size and connectivity are both essential elements for
providing sufficient gene flow to prevent loss of genetic diversity.
Without gene flow, populations become isolated and more suscep-
tible to inbreeding and genetic drift, which can increase population
extinction probability (Frankham et al., 2010). Therefore, techniques
that predict population dynamics and connectivity are critical tools
for both ecological research and conservation applications.

Connectivity modelling studies are usually based on landscape
resistance maps, which represent the cost of movement experienced
by an organism when going from one point in the landscape to an-
other (Cushman et al., 2013; Zeller et al., 2012). Despite its common
usage, there is no consensus on which methods are most reliable in
assigning resistance values to a landscape (Spear et al., 2010; Zeller
et al., 2012). The incorrect identification of landscape resistance
can mask the true influence of landscape features on species move-
ment, leading to ineffective conservation actions (e.g. Cushman
et al., 2014). In this context, comparing different approaches to de-
rive the most accurate landscape resistance surface is important yet
rarely performed (Peterman et al., 2019). As gene flow represents
not only dispersal movement patterns but also whether there is suc-
cessful dispersal that has resulted in reproduction over time (Zeller
et al., 2018), it can be a good measure of landscape connectivity to
be used to compare the performance of these approaches.

One of the most common methods to estimate landscape resis-
tance uses habitat suitability to derive resistance values, typically
based on some form of inverse relationship. Since detection data
are often the only empirical data available for many species and can
be used for developing habitat suitability models, this approach has
been broadly used to develop resistance surfaces (e.g. Macdonald
et al., 2018; Mateo-Sanchez et al., 2014; Wan et al., 2019). This ap-
proach is based on the notion that animals select dispersal move-
ment paths based on the same features that they use to select
habitat. If this assumption is correct, habitat suitability would be the
inverse of landscape resistance (i.e. areas with high habitat suitabil-
ity would have low resistance to dispersal movement and gene flow;
Beier et al., 2008; Chetkiewicz et al., 2006). However, some studies
have shown that habitat suitability is often not a good proxy for re-
sistance to movement driving gene flow. For example, for American
martens, brown bears and Bengal tigers, it was demonstrated that
factors that determine occurrence are different from those that
affect gene flow (Mateo-Sanchez et al., 2015a; Reddy et al., 2017;
Wasserman et al., 2010, 2012). Zeller et al. (2018), however, com-
pared habitat-based approaches for estimating landscape resistance
with landscape genetics and movement models based on GPS telem-
etry data for pumas and found that all three approaches selected the
same variables and produced similar resistance surfaces, but differ-
ent predictions of landscape connectivity.
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This inconsistency of results between habitat-based and
genetics-based resistance surfaces is less surprising when one con-
siders that they represent different processes and are not necessarily
influenced by the same landscape features (Wasserman et al., 2012).
Habitat suitability reflects a combination of conditions that allow/
induce individuals to settle, establish their home ranges and repro-
duce. Resistance to movement, which can be measured by gene flow
and GPS telemetry data, reflects how the landscape affects disper-
sal. Dispersing individuals are usually juveniles, which may tolerate
sub-optimal conditions while looking for territories, and therefore
may select different features relative to residents (Elliot et al., 2014;
Gastén et al., 2016; Wasserman et al., 2012).

Although habitat suitability may not be the best surrogate for
landscape resistance, given the large availability of presence data
for many species, and the fact that they may be the only empirical
data available for rare taxa, in many cases, using habitat suitability
as a proxy for landscape resistance likely will remain the best avail-
able approach. Furthermore, for some species, habitat preference of
dispersing individuals might be similar to the habitat preference of
residents (Newby, 2011; Zeller et al., 2018). For these species, using
habitat suitability as a proxy for landscape resistance to movement
is likely to produce satisfactory results. However, for most species,
it is unknown whether they select similar habitat features for dis-
persal and home range residency. When such information is lack-
ing and more sophisticated data such as movement or genetics data
are available, comparing the performance of the habitat suitability
method with other approaches in estimating landscape resistance
is prudent to help us better identify the advantages and limitations
of the different approaches (Mateo-Sanchez et al., 2015a, 2015b;
Zeller et al., 2018).

The functional form employed to transform habitat suitability
maps into resistance surfaces might also affect predictions (Beier
etal., 2008). Recent studies have demonstrated that a negative expo-
nential transformation of habitat suitability may be the most appro-
priate one (Keeley et al., 2016, 2017; Mateo-Sanchez et al., 20153,
2015b; Trainor et al., 2013; Zeller et al., 2018). Limitations in occur-
rence related to habitat suitability are usually more stringent than
limits to dispersal movement, because dispersers are often willing
to take more risks in their movement and habitat selection than resi-
dents (Elliot et al., 2014). For this reason, the exponential transforma-
tion of habitat suitability is thought to better reflect the resistance
to dispersal movement, since it assumes that areas of moderate to
high habitat quality have low resistance to dispersal movement, and
only the areas of the lowest habitat quality have very high resistance
(e.g. Mateo-Sanchez et al., 2015a; Wan et al., 2019).

Landscape genetics is another commonly used approach to
estimate landscape resistance (Balkenhol et al., 2016; Cushman
et al.,, 2006). Landscape genetic approaches are becoming in-
creasingly popular due to technological advancements and cost
reduction in genetic techniques (Balkenhol et al., 2016; Zeller
et al.,, 2012), along with its superiority, demonstrated in some
systems, relative to expert opinions (Shirk et al., 2010) or habitat
suitability (Mateo-Sanchez et al., 2015a; Wasserman et al., 2010).
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In landscape genetic analyses, genetic data are used to compute
the genetic distance (GD) between individuals, which is then
correlated with measures of cost distance (CD) from different
resistance models (Balkenhol et al., 2016). Genetic data provide
robust information about gene flow between locations, which
makes landscape genetics a powerful tool to parameterize land-
scape resistance values, especially when applied in a multivariate
optimization framework (Cushman et al., 2006; Mateo-Sanchez
et al., 2015a; Shirk et al., 2010; Wasserman et al., 2010; Zeller
et al., 2018).

In this study, we compared landscape resistance predictions
produced from a habitat suitability approach and a landscape
genetics optimization approach for two congeneric species of
Neotropical cats, Leopardus guttulus and L. geoffroyi. Little is
known about the relationship between habitat selection and resis-
tance to movement for South American carnivores. To our knowl-
edge, no study has empirically tested such relationships for any
Neotropical carnivore. For small Neotropical felids, information
about their ecological requirements is scarce, which poses chal-
lenges for effective conservation planning. The two species we
studied have largely allopatric distributions and different ecolog-
ical requirements: L. guttulus is considered a closed-forest habi-
tat specialist (Cruz et al., 2019; de Oliveira et al., 2016), while L.
geoffroyi is considered a habitat generalist (Cuyckens et al., 2016;
Pereira et al., 2015). Given the large ecological differences be-
tween the species, comparing the performance of habitat proxy
and landscape genetic methods for predicting resistance for both
species would be particularly informative.

We addressed four hypotheses: (1) In model comparison,
genetic-based resistance surfaces will outperform the habitat-
based surfaces in explaining movement driving gene flow for both
species; (2) the exponential conversion of habitat suitability into
resistance surfaces will improve the performance of the habitat-
based model and will reflect relatively less restrictive dispersal
than the linear conversion, since only very low quality areas will
present high resistance to movement; (3) predicted landscape
connectivity based on the habitat suitability model will be more
restrictive than connectivity predicted based on genetic data, as
resident individuals are usually less tolerant to low quality habitat
than dispersing individuals; (4) L. guttulus will be more affected by
habitat conversion than L. geoffroyi, since L. guttulus is considered
a forest specialist while L. geoffroyi is considered a more generalist

species.

2 | MATERIALS AND METHODS

2.1 | Study species and study area

The southern tigrina, L. guttulus, has been recently recognized as
an independent species (Trigo, Schneider, et al., 2013). Its cur-

rent distribution is documented in southern-southeastern Brazil,
Argentina and Paraguay, but the full extent of its occurrence and

its ecological requirements are not completely clear. Its distribu-
tion seems to be coextensive with the Atlantic Forest, although
some individuals have been recorded in the Cerrado biome, a sa-
vanna habitat (de Oliveira et al., 2016; Nascimento & Feijé, 2017;
Trigo, Schneider, et al., 2013). However, the Cerrado biome is
highly heterogeneous, ranging from closed woodlands to grass-
lands (Ratter et al., 1997), and it is largely unknown how the spe-
cies utilizes the different features in this biome. Its occurrence
seems to be mainly determined by abiotic features (precipitation,
temperature, elevation and solar radiation) related to the pres-
ence of the Atlantic Forest, making it a forested habitat specialist
(Sartor et al., 2021). Some studies have suggested that the south-
ern tigrina can inhabit disturbed areas, but its occurrence is lim-
ited by the presence of tree cover (Cruz et al., 2019; de Oliveira
et al., 2010; Sartor et al., 2021).

Geoffroy's cat, L. geoffroyi, in contrast, is the most abundant wild
felid in South America and has a broad distribution, occurring from
the Andes of southern Bolivia to the southernmost parts of Argentina
and Chile (Cuyckens et al., 2016; de Oliveira & Cassaro, 2005).
Within this distribution, L. geoffroyi occupies several habitat types,
such as dry forests, savannas, shrublands and grasslands (Cuyckens
et al., 2016; Pereira et al., 2015), but most of its range is composed
of arid or semi-arid habitat with low tree cover (Pereira et al., 2006).
It is traditionally considered an open-habitat species (Sunquist &
Sunquist, 2002). However, some studies have demonstrated that in
human-dominated landscapes, it selects closed vegetation within
open habitats (Caruso et al., 2016; Manfredi et al., 2012; Tirelli
et al., 2019). It also seems to be tolerant to some degree of habitat
alteration (Pereira et al., 2011, 2012; Sartor et al., 2021) and may
sometimes benefit from it, expanding its occurrence and taking ad-
vantage of the higher prey density found in the border of agricultural
areas (Caruso et al., 2016; Cuyckens et al., 2016).

The study area comprised the entire range of both species, cov-
ering an area of approximately 9,000,000km? (Figure 1). There is a
restricted zone of overlap, contact and hybridization between the
two species along the southern edge of Brazil; however, their known
ranges are mostly non-overlapping (Sartor et al., 2021; Trigo, Tirelli,
et al.,, 2013; Trigo et al., 2014).

2.2 | Sample collection

In this study, we used genetic information from 13 microsatellite loci
of 135 individuals of L. guttulus and 140 of L. geoffroyi generated pre-
viously (Sartor et al., 2020, 2021). These samples were distributed
across almost the entire range of both species. As L. geoffroyi and L.
guttulus hybridize at the edge of their distributions (Trigo, Schneider,
et al., 2013; Trigo et al., 2014), to prevent any potential bias that the
ecological preferences of hybrids might cause (Culumber et al., 2012;
Sartor et al., 2021; Walsh et al., 2016), individuals identified as possi-
ble hybrids by Sartor et al. (2021) were not included in the analyses.
In addition, samples with more than 20% of missing data were also
excluded.
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FIGURE 1 Study area and genetic sample points for Leopardus
guttulus and L. geoffroyi in South America. Area delimited by a
continuous red line is the geographic distribution of L. guttulus,
while the area delimited by a blue dotted line is the geographic
distribution of L. geoffroyi according to de Oliveira et al. (2016) and
Pereira et al. (2015), respectively. Map projection: South America
equidistant conic.

2.3 | Genetic distance

We calculated pairwise GDs among individuals using a principal
components analysis (PCA; Shirk et al., 2010, 2017). This method is
more sensitive to detect genetic dissimilarities because alleles that
capture the greatest proportions of genetic variation within a popu-
lation have a more significant contribution to the GDs than common
alleles (Castillo et al., 2014; Shirk et al., 2010, 2017). We constructed
a matrix in which the columns represented the alleles at each locus
and the rows represented the sampled individuals. Each cell was
given avalue of 0, 1 or 2, based on the number of occurrences of that
allele in each individual. We used the Euclidean distance function in
the ‘Ecodist’ package in R (Goslee & Urban, 2007) to generate a GD
matrix based on the distances between individuals along the first 64
axes of the PCA, which was shown by Shirk et al. (2018) to provide
optimal capture of genetic signal. For alleles with missing data, we
assigned the modal value for each allele among all individuals.
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2.4 | Landscape variables

To optimize the genetic-based resistance surface, we used the same
set of variables used by Sartor et al. (2021), including temperature,
precipitation, solar radiation, elevation, tree canopy cover, land
cover, river width, cropland areas and livestock per km?. For the
genetic-based analysis, we also included roads (Meijer et al., 2018)
and human footprint (Venter et al., 2016, 2018; see Table S1, for
more details on landscape variables). These two variables were not
used by Sartor et al. (2021), because a large number of location
points were from road-killed animals located close to urban areas,
and the high correlation of the presence data with these variables
could lead to the erroneous prediction of high habitat suitability near
urban areas and roads. However, since this is unlikely to affect land-
scape genetic analysis, as it is based on cumulative differentiation
across space rather than conditions at a sampled location (Cushman
& Landguth, 2010), they were added to the present study.

2.5 | Genetics-based resistance surface

For the genetic approach for estimating landscape resistance, we
used a restricted multivariate optimization method to evaluate
which landscape variables drive genetic connectivity in these two
felids (Castillo et al., 2014; Shirk et al., 2010). This optimization is
based on the idea that the relationship between a landscape variable
and gene flow might change with its thematic resolution (functional
shape and maximum resistance) and the value of other landscape
variables. Individual-based landscape genetics modelling to predict
resistance to dispersal movement is based on associating GD (de-
scribed above) with alternative cost-distance hypotheses, reflect-
ing different ways in which the landscape can influence gene flow
(Cushman et al., 2006). To compute CDs for each alternative hy-
pothesis (landscape variables), we used the ‘sGD’ package (Shirk &
Cushman, 2011) in R to generate a pairwise CD matrix between the
sampling points.

To optimize the relationship between landscape variables and
resistance to dispersal movement in these Neotropical cats, we
evaluated the relationship between GD and each of the CD matrices
with linear mixed effects models. This statistical test has higher ac-
curacy than other regression methods in predicting the influence of
the landscape on gene flow (Shirk et al., 2018). We used the MLPE.
Imm() function from the package ‘ResistanceGA’ (Peterman, 2018)
in R to fit maximum-likelihood population effects (MLPE; Clarke
et al., 2002) models relating GD to CD for each candidate model. We
compared the models generated based on the lowest Akaike infor-
mation criterion (AIC) score, using the parameter REML = FALSE in
the MLPE.Imm() function, which results in a valid AIC score fit with
maximum likelihood (Shirk et al., 2018).

The optimization analysis was conducted in several steps. First, for
the land cover variable, each land cover class was given a value of resis-
tance from 1 (lowest resistance) to 10 (highest resistance) in increments
of 1. We optimized resistance values by changing the value of one class
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while holding the others constant until the AIC was minimized. After
having optimized the values for land cover, we added roads and riv-
ers to the layer and optimized them with the same method. The resis-
tance value of roads varied between 1 and 100 and rivers between 1
and 10,000 because these features usually have a greater impact on
species movement. Finally, we tested different power functions (0.5,
0.75,1, 1.5, 1.75, 2, 2.5) to produce a range of functional shapes, and
optimized the maximum relative resistance (RMax; Shirk et al., 2010)
by stepping Rmax from 50 to 300 in steps of 10. For the optimization
of the gradient variables, we rescaled them linearly to values between
1 and 10, and the same process was applied (Vergara et al., 2016). We
calculated Pearson's correlation coefficient between each pair of CD
matrices to check for multicollinearity. When two CD matrices were
correlated (i.e. r>0.8; Figure S2), we kept the variable with the lowest
AIC value. Cushman et al. (2014) showed that individual-based land-
scape genetics model selection has high ability to correctly identify the
driving factor when the correlation among hypotheses is 0.8 or lower,
which was subsequently confirmed by Shirk et al. (2018). Cushman
and Landguth (2010) demonstrated that finer resolutions increase the
power of landscape genetics analysis. Therefore, for the genetic-based
analysis, all layers were projected at 1 km? resolution.

In addition, we tested the influence of geographic distance on ge-
netic differentiation (isolation by distance hypothesis). We calculated a
geographic distance matrix, based on the Euclidean distance between

the localities of all individuals, using the package ‘Ecodist’ in R.

2.6 | Habitat-based resistance surface

To estimate landscape resistance based on the habitat approach,
we used habitat suitability models developed by Sartor et al. (2021).
Briefly, Sartor et al. (2021) used presence records and pseudo-absence
data to generate habitat suitability models for both species, for their
entire ranges, with the Random Forest algorithm. In addition to the ge-
netic samples described above, presence records from museum collec-
tions, databases and literature were used in the analysis (Figure S1). As
presence records were unbalanced, the data were subsampled in order
to maintain a similar density of points across the range of each species.
Only noncorrelated variables were used in the analysis. An 8 km? reso-
lution was used, as it encompasses the average home range of both
species (de Oliveira et al., 2016; Pereira et al., 2015) and it has been
shown that carnivores usually select habitat on broad spatial scales (e.g.
Hearn et al., 2018; Mateo-Sanchez et al., 2014; Vergara et al., 2016).
This resolution was different than the one used for the genetic-based
approach because, although this may influence the results, we believe
that the comparison will be fairer and more instructive if the models
of each method were generated with the most suitable methodology
available. Models were selected based on the lowest total out-of-bag
error and lowest maximum within-class error.

We converted the predicted probability maps generated by Sartor
et al. (2021) into resistance surfaces using an exponential decay func-
tion as in Wan et al. (2019) and a linear function. We rescaled the val-
ues, so the areas with highest habitat suitability prediction had the

lowest resistance, with the Rmax proportional to the Rmax optimized
for the genetic data for each species. We calculated CD matrices for

the linear and exponential decay function for both species.

2.7 | Model comparisons

For each species, we initially compared the habitat-based models with
the geographic distance and all genetic-based models based on their
AIC scores using MLPE. Then, to evaluate how effective habitat suit-
ability models are in predicting landscape effects on movement driv-
ing gene flow, similar to Mateo-Sanchez et al. (2015a), we compared
the best resistance surface created by the genetic approach with the
best resistance surface created by the habitat approach. To do this,
we calculated the correlation between the best habitat-based land-
scape resistance and the landscape resistance from the optimized
genetics-based model. We compared the direction and nature of the
relationship with landscape variables between the genetics-based and
habitat-based models to identify differences in how landscape fea-
tures affect the probability of occurrence and resistance to dispersal
movement in each species. We also created difference maps for this
comparison by subtracting the habitat-based resistance surface from
the genetics-based resistance surface. To compare the landscape con-
nectivity restrictiveness of the resistance layers generated by the ap-
proaches, we determined two arbitrary resistance values thresholds
of 10 and 50 and compared the total amount of area of the resistance
layers with resistance value below the thresholds.

The influence of landscape features on dispersal and genetic dif-
ferentiation cannot be detected until they become limiting to move-
ment (Cushman et al., 2011, 2013). Thus, as both species inhabit
altered environments, we decided to test if their dispersal move-
ments were influenced by similar limiting factors, despite present-
ing different habitat preferences (Sartor et al., 2021). To do that, we
compared the optimized genetics-based landscape resistance mod-
els for the two species. Specifically, we calculated landscape resis-
tance across the full study area (including the range of both species)
for each species' model and then calculated a pixelwise correlation
between the surfaces. We generated difference maps by subtracting
the resistance map of one species from the resistance map of the
other species in both areas. We also compared the habitat suitability
maps generated by Sartor et al. (2021) in the same way to further
analyse how habitat preference and dispersal might be affected by

different landscape features in each species.

3 | RESULTS
3.1 | Genetic-based optimized resistance models

For the genetic-based approach, the land cover variables had the strong-
est correlation with GD for both species (Figure 2). For L. guttulus, we
tested 112 models. The optimized thematic resolution was exponen-
tial = 2 and Rmax = 120. For L. geoffroyi, we tested 174 models. The
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FIGURE 2 Genetics-based optimized
landscape resistance model for Leopardus
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optimized thematic resolution was exponential = 2 and Rmax = 260.
For both species, forest was the class with the lowest resistance (re-
sistance = 1), and they presented similar resistance values for cropland,
primary and secondary roads. Nevertheless, for the remaining landscape
classes, L. geoffroyi presented lower resistance values when compared

to L. guttulus, with the exception of flooded areas and rivers (Table 1).

3.2 | Habitat-based optimized resistance models
For the habitat-based approach, the linear transformation had a sig-
nificantly better performance than the exponential transformation
for both species (Figure S3a-d). For L. guttulus, the linear transforma-
tion had a AAIC = 26.77, and the exponential transformation had a
AAIC =75.71 (Table S2). For L. geoffroyi, the AAIC values of these mod-
els were AAIC = 138.28 and AAIC = 204.89, respectively (Tables S3).

3.3 | Model comparisons

Across all the models that we generated, genetic-based models had
the best performance and the habitat-based models consistently
exhibited the worst performance in predicting observed genetic
differences between individuals of both species. The isolation by
distance model (IBD) also did not perform well, being the eighth
worst model (AAIC = 47.52) for L. guttulus and the fifth worst model
(AAIC = 102.27) for L. geoffroyi (Figure 3; Tables S2 and S3).

The resistance surfaces generated by the genetic-based approach
were very different from those obtained by transforming habitat suit-
ability (Figure S3). For both species, the comparison between the two
methods resulted in a very low correlation (r = 0.04; p<0.01 for L.

TABLE 1 Optimized landscape resistance values for Leopardus
guttulus and L. geoffroyi for the different landscape classes
considered in the genetics-based resistance surfaces analyses

Landscape class L. geoffroyi ;Jttulus
Forest 1 1
Shrubland 11.41 29.85
Grasslands 63.47 120
Sparse vegetation 11.41 120
Bare areas 32.24 120
Flooded areas 129.85 29.85
Cropland with natural remnants 11.41 58.70
Cropland 129.85 120
Primary roads 64.77 71.92
Secondary roads 25.73 11.82
Small rivers 194.92 11.82
Medium rivers 260 120
Large rivers 13,014.77 12,020

geoffroyi; r = =0.029; p<0.01 for L. guttulus; Figure 4). The two ap-
proaches also selected different variables. The genetic approach
selected land cover variables, while the habitat suitability models gen-
erated by Sartor et al. (2021) selected mainly climatic variables and el-
evation. Cropland was the only variable selected by both approaches,
for both species, and showed the opposite direction of influence for L.
guttulus. According to the genetic approach, cropland areas have high
resistance to L. guttulus movement. However, the habitat suitability
approach suggested a positive correlation between the cropland areas
and this species occurrence (Sartor et al., 2021).
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FIGURE 3 Boxplot comparing model groups based on their
corrected AIC (AlCc) values. Model group 1 represents the 20 best
optimized genetic-based models, model group 2 represents the
extra environmental and anthropogenic variables considered during
models' optimization individually without the optimized model,
model group 3 represents the IBD and habitat-based models for
Leopardus geoffroyi and L. guttulus. Model group 4, for L. guttulus,
represents the best optimized genetic-based model with the
additional extra parameters. The AlCc values of these models can
be seen in tables S2 and S3.

Regarding the restrictiveness of the predicted resistance layers,
for both species the habitat-based models generated with the linear
transformation had the most restrictive patterns of predicted land-
scape connectivity, regardless of the threshold considered, while the
less restrictive models varied between species. For L. guttulus, for
both thresholds, the habitat-based model generated with the expo-
nential transformation presented the less restrictive layer, and for L.
geoffroyi, it was the genetic-based model (Table S4).

The genetic-based resistance model comparisons between the two
species demonstrated a high and positive correlation value for both
areas (r = 0.98; p >0.01; Figure S4a,b). The same variables were se-
lected in the optimized model for both species, and they had consistent
relative influence, with L. geoffroyi exhibiting lower values for almost all
variables than L. guttulus (Table 1). The comparison of habitat suitability
maps between the two species demonstrated a low negative correla-
tion. The projection of the L. guttulus model onto the L. geoffroyi range
resulted in a correlation of r =-0.3982 (p <0.01; Figure S4c), while the
projection of L. geoffroyi onto the L. guttulus range yielded a correlation
of r =-0.289 (p <0.01; Figure S4d). In addition, the models generated
by Sartor et al. (2021) selected mainly the same variables for both spe-

cies, with the opposite direction of influence between them.

4 | DISCUSSION

4.1 | Habitat-based versus genetics-based
resistance surfaces

The optimized genetic resistance models greatly outperformed the
resistance models created from the habitat suitability approach
in predicting resistance to movement for both studied species, as

measured by the association with observed genetic differentiation
among individuals. Our results confirm and strengthen the conclu-
sion that habitat suitability does not accurately reflect how the land-
scape influences genetic connectivity (Mateo-Sanchez et al., 20153;
Reddy et al., 2017; Wasserman et al., 2010; Zeller et al., 2018). In
contrast to the results of Zeller et al. (2018), who found relatively
high utility in habitat quality as a surrogate for landscape resistance,
in our study, the habitat suitability approach produced poorly vali-
dated models that were considerably different in resistance and the
variables selected in comparison with the genetics-based models.
For example, the only variable selected by both models, cropland,
presented a high negative correlation with genetic resistance for
both species, but a positive correlation with habitat suitability for L.
guttulus. The correlation between the resistance surfaces produced
by the two approaches for both species was virtually null, which em-
phasizes how different their surfaces were.

The low negative correlation observed in the comparison of
the habitat suitability models between the two species demon-
strates how different their ecological niches are (Sartor et al., 2021).
However, the high positive correlation observed in the comparison
of the optimized landscape genetic resistance model suggests that
they select similar landscape features when dispersing. These re-
sults indicate that gene flow and habitat selection are related to dif-
ferent landscape aspects, as also seen by Wasserman et al. (2010),
Cushman and Lewis (2010), Elliot et al. (2014) and Mateo-Sanchez
et al. (2015a). This is extremely important as it shows how the
method chosen for analysis affects the conclusions regarding what
landscape features influence connectivity and in what way they af-
fect it.

Contrary to our expectation, the negative exponential conver-
sion of habitat suitability into resistance surface did not improve
the performance of the habitat-based resistance surface, although
it presented a less restrictive dispersal than the linear conversion,
as we predicted. In our model comparisons, the habitat-based re-
sistance models were ranked as the worst models for both species
even using this transformation, and a linear transformation, although
much weaker than the genetics-based models, outperformed the
exponential transformation based on the AAIC value. This result
is the opposite to what has been previously reported (e.g. Keeley
et al., 2017; Mateo-Sanchez et al., 2015a; Trainor et al., 2013; Zeller
et al., 2018), demonstrating that the performance of the functional
form employed to transform habitat suitability maps into resistance
surfaces may differ between species.

Also, contrary to our expectation, for L. guttulus, not all resis-
tance surfaces created by the habitat suitability models were more
restrictive than the ones created by the genetics-based models. It is
possible that the extensive habitat alteration in this region has over-
come the species tolerance to move through less suitable habitats,
as most of its habitat has been transformed into agricultural areas or
urban spaces. This would reflect the increasing emergence of limit-
ing factors that hamper movement as habitat is lost and becomes
more fragmented (e.g. Cushman et al., 2013; Short Bull et al., 2011;
Vergara et al., 2017).
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It is important to highlight that, in our study, the genetic ap-
proach selected land cover variables that measure habitat fragmen-
tation and alteration, while the habitat suitability models from Sartor
et al. (2021) selected mainly climatic variables that do not carry this
information, and this difference in variables may explain this result.
The inverse of these results was seen by Wasserman et al. (2012),
in which habitat selection of American marten was highly affected
by landscape heterogeneity and fragmentation of forest cover,
while gene flow, as measured by landscape genetics, was primar-
ily affected by climate (elevation as a surrogate). Such observation
demonstrates how each species' biology may affect its response to
habitat features for suitability and/or dispersal in unique ways, high-
lighting the need to explore these relationships in multiple systems.

4.2 | Landscape resistance to felid movement
based on the genetic-based approach

Despite occurring in very different environments, our analysis
showed that gene flow of both species was constrained by similar
limiting factors. As we expected, the L. guttulus model suggested
low resistance values for forested areas, while the L. geoffroyi model
showed a more plastic and general response to landscape features,
with different landscape classes (shrubland, sparse vegetation and
cropland with natural remnants) presenting relatively low resistance
values. Interestingly, forest was the class optimized with the low-
est resistance for both species. Although some studies have dem-
onstrated that L. geoffroyi selects forested habitats in areas with
human disturbance (Caruso et al., 2016; Manfredi et al., 2012; Tirelli
et al., 2019), this result was still unexpected, since it is considered an
open-habitat species. In addition, forested areas are mainly found

in the northern part of L. geoffroyi's distribution, covering a small
portion of the species' range. It is possible that our sampling effort,
more concentrated in this area, is not fully sampling the resistance
values in the central and southern parts of its distribution, which
in turn could reduce the resistance value of forests. Another pos-
sibility is that the species is influenced by different features in dif-
ferent portions of its distribution (e.g. Vergara et al., 2017) and our
results better reflect the resistance to dispersal movement within
the northern area. Therefore, more studies in this area are neces-
sary to fully understand how forest cover affects the movement of
this species.

The resistance value for the river classes differed considerably
between the two species. While rivers less than 200 m-wide do
not seem to impose large dispersal barriers for L. guttulus move-
ment, they seem to be substantial natural barriers to L. geoffroyi.
We also found a similar relationship between species regarding
resistance to flooded areas, with L. geoffroyi showing higher resis-
tance values. These high resistance values optimized for L. geof-
froyi were surprising since its occurrence is considered common in
flooded areas such as the Esteros del Ibera or the Delta of Parana
(Pereira JA personal observation). However, recent studies sug-
gest the existence of genetic structure within L. geoffroyi's range
(Bou et al., 2021; Gémez-Ferndndez et al., 2020), coinciding with
the region of the Uruguay, Parana and Paraguay rivers. These riv-
ers are recognized as important barriers to the dispersal of other
small Neotropical felids (da Silva Santos et al., 2018; Johnson
et al., 1999), and it is possible that they also affect the dispersal of
L. geoffroyi, as indicated by our analysis.

Consistent with other studies (de Oliveira et al., 2016; Sartor
et al., 2021; Trigo, Tirelli, et al., 2013), our results demonstrated
that L. guttulus is a greater habitat specialist and therefore is likely
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to be more susceptible to habitat conversion than L. geoffroyi.
Our resistance optimization for L. geoffroyi showed that agricul-
tural areas do not impose high resistance to movement, as long
as these areas maintain some percentage of natural vegetation,
highlighting the ecological plasticity of the species. However, we
demonstrate that intensive agriculture, which does not have a nat-
ural vegetation component, imposes high resistance to movement
for this species.

Leopardus guttulus seems to be highly dependent on forested en-
vironments for both habitat and dispersal movement, and the con-
version of its natural habitat into agricultural lands imposes great
resistance to dispersal and loss of habitat for residency. The resis-
tance value optimized for cropland was very high, and it seems that
even with the maintenance of natural vegetation within agricultural
lands, this species will avoid crossing these areas. Nonetheless, for
both species, the resistance values for cropland without natural veg-
etation are much higher than the values for cropland that retains
some percentage of natural vegetation. This result demonstrates the
importance of maintaining natural vegetation remnants within dis-
turbed areas. These areas with natural vegetation probably favour
dispersal between patches in highly disturbed landscapes and may
even sustain small populations, depending on the size of the natural
fragments.

The presence of roads was predicted to impose substantial resis-
tance for dispersal movement of both species, but with higher values
for L. guttulus. This was the case for the class of primary roads, but
not for the class of secondary roads. The values, however, were not
greatly different between species, and it seems that they affect the
dispersal of both species in a similar way. For both species, our results
suggest that large roads act as major barriers to movement driving
gene flow, which is similar to results found in a number of other spe-
cies, such as black (Short Bull et al., 2011) and brown (Mateo-Sanchez
et al., 2015a) bears, African lions (Elliot et al., 2014) and pumas (Zeller
et al., 2018). The great importance of roads in the landscape genetics
models suggests that removing roads and human footprint from the
habitat suitability models may have impacted the performance of the
models. However, as said above, the high correlation of these vari-
ables with our presence data would probably bias the results. This
situation demonstrates another benefit of landscape genetics analy-
sis, because, as it uses the cumulative differentiation across space, it
is less likely to be biased by uneven sampling.

5 | CONCLUSIONS AND IMPLICATIONS

Earth is facing a biodiversity crisis in which anthropogenic landscape
change synergizing with rapid climatic warming is driving a mass ex-
tinction episode. To effectively design conservation actions in the face
of rapid habitat loss and fragmentation, it is critical to understand
how landscape features affect both patterns of occurrence and con-
nectivity (Cushman, 2006). In this context, the lack of knowledge on
Neotropical cats' ecological requirements prevents the design and im-
plementation of adequate management and conservation measures.

In this study, we identified the landscape features that drive gene flow
in two species of Neotropical cats across their entire ranges. To our
knowledge, this is the first landscape genetic study ever conducted
across the full range of different species using comparable methods. It
is also one of the few studies that used the same methodology to com-
pare the patterns that drive habitat preference and gene flow in two
congeneric species. We demonstrated that for both species, habitat
preference and gene flow are driven by different landscape features,
and that, for these species, resistance surfaces created based on ge-
netic data are more suitable for connectivity analysis, and habitat suit-
ability models are a poor proxy for landscape resistance to dispersal
movement.

These results have important implications for connectivity mod-
elling. Habitat-based models may produce very different connectivity
maps than landscape genetic optimization, which may lead to incorrect
management decisions. Therefore, when possible, landscape genetics
analysis should be prioritized over habitat suitability models. However,
genetic data are not always available, and sometimes, the conversion
of habitat suitability models into resistance surfaces is the only op-
tion and should be used. In these cases, however, it is important to
make assumptions carefully. Given the complexity of this problem,
and the distinct patterns observed in different species, it is important
that more studies comparing the performance of methods to estimate
landscape resistance be urgently performed, and we thus recommend

increased research focusing on this topic.
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termine conservation actions and clarify their taxonomy and
evolutionary history. We also have great interest in understand-
ing how the use of different data types on connectivity model-
ling analyses may impact management decisions, by producing
distinct resistance layers.
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