
Dynamic Mapping for Many-cores using
Management Application Organization

Angelo Elias Dalzotto∗, Marcelo Ruaro†, Leonardo Vian Erthal∗, Fernando Gehm Moraes∗
∗PUCRS – School of Technology, Porto Alegre, Brazil

angelo.dalzotto@edu.pucrs.br, leonardo.e@edu.pucrs.br, fernando.moraes@pucrs.br
†Univ. Bretagne-Sud, UMR 6285, Lab-STICC, Lorient, France – marcelo.ruaro@univ-ubs.fr

Abstract—The increasing core count in many-core systems
introduced management challenges, including scalability, porta-
bility, and reduced overhead in user applications. This work
adopts the Management Application (MA) organization, where
management tasks execute as applications loosely coupled to the
OS, meeting the above challenges. The main management task
executed in a many-core is the application mapping, where the
primary cost function is the hop count. Satisfying this cost func-
tion reduces the communication energy and latency, improving
the overall application performance. Despite a rich NoC mapping
literature, a gap observed is the mapping implementation in
an actual many-core, considering the management organization.
This work has as main goals: (i) present the task mapping as
a modular and portable management application; (ii) propose
a dynamic mapping heuristic using a sliding window technique,
which produces a low application fragmentation. Results evaluate
the proposal against mapping heuristics in two management
approaches: cluster-based (CBM) and per-application manage-
ment (PAM). Compared to the CBM and PAM approaches, the
average communication cost reduces by 27% in systems with 100
PEs. The PAM latency is 4.3 times larger than CBM and our
proposal. Compared to CBM, our mapping latency presents a
slight increase (3%).

Index Terms—Many-core, Task Mapping, Management Appli-
cation, Management Organizations.

I. INTRODUCTION

The increased number of cores results in complex resource
allocation problems. These problems are addressed by the
many-core management. The many-core management in state-
of-the-art platforms is tightly coupled (Definition 1) to the OS
and hardware. Fast hardware and software evolution demands
modularity (Definition 2) and portability (Definition 3) so the
management strategies can evolve alongside the platforms.

Definition 1. Coupling is defined as the degree of interaction
between modules of a system. A software is desired to have
low, or loose, coupling. In the context of operating systems
(OS), the coupling measures the dependency between kernel
and nonkernel modules [1].

Definition 2. Modularity. Ability to add, modify, or remove
management objectives from the many-core.

Definition 3. Portability. Refers of using the same manage-
ment strategy, goals, and heuristics between distinct platforms
while reusing the code.

The main management action executed in a many-core is
the application mapping. Even with a rich literature related
to task mapping [2], recent works addresses this problem.
Amin et al. [3] (2020) presents a comparative analysis and

categorization of application mapping approaches with current
trends in NoC design implementation. Gaffour et al. [4] (2020)
present a dynamic clustering mapping strategy to place all the
tasks of the same application in the same region. Relevant
features of this work are centralized mapping, dynamic clusters
sizes, and multi-tasking. The Authors compute the cluster
sizes according to the number of tasks, presenting better
results than approaches using static cluster sizes. Lee et al.
[5] (2021) propose an SMT (Satisfiability Modulo Theories)-
based framework to find the contention-free task mapping with
the minimum application schedule length.

The survey presented in [2] highlights distributed ap-
proaches since these can map more than one application
in parallel and may reduce the mapping execution time by
restricting the search space. However, there are two main
weaknesses related to distributed mapping algorithms. The first
one refers to the fact that, when restricting the search space to
a particular region (e.g., a cluster), the mapping may fail due
to a lack of knowledge of the other areas of the many-core.
Reclustering [6] of dynamic clusters [4] increase the search
space if the mapping fails, at the cost of execution time.
Mapping more than one application in parallel only makes
sense if the many-core can receive requests in parallel, which
is usually not the case, since many-cores normally have one
interface dedicated for injecting applications (e.g., network
adapter, external memories).

This work has two strategic objectives. The first is to present
the task mapping as a modular and portable management
task. The second is to present a mapping heuristic using a
sliding window technique, which results in low application
fragmentation in large systems (100 PEs).

The proposal is centralized, allowing the mapper to have
a complete many-core view, improving decision making.
Despite being centralized, the mapping latency is only 3%
slower than a cluster-based mapping, which is a distributed
approach. Modularity and portability (Definitions 2 and 3) of
the heuristic comes from its implementation loosely coupled
to the OS (Definition 1), by running as a standard application.
in user space.

This paper is organized as follows. Section II reviews
many-core management organizations. Section III presents the
main contribution of this work, the management application
mapping heuristic. Section IV compares the mapping heuristic
to state-of-the-art proposals. Section V concludes this paper
and point-out directions for future works.

978-1-7281-8281-0/21/$31.00 ©2021 IEEE

20
21

 2
8t

h
IE

EE
 In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 E
le

ct
ro

ni
cs

, C
irc

ui
ts

, a
nd

 S
ys

te
m

s (
IC

EC
S)

 |
 9

78
-1

-7
28

1-
82

81
-0

/2
1/

$3
1.

00
 ©

20
21

 IE
EE

 |
 D

O
I:

10
.1

10
9/

IC
EC

S5
39

24
.2

02
1.

96
65

54
7

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on April 19,2023 at 20:11:48 UTC from IEEE Xplore. Restrictions apply.

II. MANY-CORE MANAGEMENT ORGANIZATION

The many-core management organization defines where the
management is located and how it is executed in a many-core.
Many-cores adopts three main organization classes: centralized
management [7], Cluster-Based Management (CBM) [8, 9],
and Per Application Management (PAM) [10, 11].

In centralized management the many-core allocates one
Processing Element (PE), called Global Manager (GM), to be
the controller of all actions in a many-core. The centralized
management can be quickly overloaded by answering requests
from numerous PEs, also generating a considerable amount
of traffic around it. The CBM approach divides the many-
core into regions, named clusters. Besides using a GM to
synchronize all the many-core management, each cluster has
a Local Manager (LM). PAM is another distributed way to
manage a many-core that dynamically assigns a manager for
each running application.

We proposed an alternative method, named Management
Application (MA) [12]. The MA has the following features:
• No need for dedicated cores for management execution

as in centralized management, CBM, and PAM. Manage-
ment tasks can share processors with user tasks.

• MA tasks are not bound to specific locations as in other
paradigms and can be migrated. This possibility brings
additional reliability with migration in case of violated
thermal constraints or faulty cores.

• The OS has its memory footprint reduced and is easier
to maintain since it is not overloaded or modified with
the insertion of resource management modules.

This paper proposes a dynamic mapping algorithm for the
MA management approach, and compares it with state-of-the
art mapping for CBM and PAM. CBM and PAM use the
mapping algorithm proposed in [13]. This heuristic consists of:
(i) select one core to map the first task of the application based
on the maximum average distance from other applications; (ii)
starting from this core, mapping each application task based on
a diamond search between the free cores. The implementation
in CBM and PAM differ by the initial search space, being
restricted by clusters in CBM.

III. MA MAPPING HEURISTIC

The proposed mapping heuristic, named MAmap, contains
three phases: window selection, mapping order, and task
mapping. Before executing MAmap, it is verified if the system
can run the incoming application, i.e., if there are enough free
pages1 to map the application. A counter implements this ver-
ification, which increases with the number of application tasks
to be mapped, and decreases when an application finishes.

A. Window selection algorithm

MAmap adopts the concept of virtual clusters. Figure 1
shows a virtual cluster, or window, in orange, in an 8x7 many-
core, in a 2D mesh NoC topology. Therefore the window is
defined by x and y coordinates of its bottom-left corner and
Wx and Wy representing the window size in the x-axis and

1A page is a memory region to execute a task, and each PE has a
parameterizable number of pages defined at design time

the y-axis. In Figure 1, the window x and y are located at
the coordinate (2, 2), and its W size is 3x3. The reasoning to
adopt virtual clusters is to reduce the search space to map a
given application, sliding the window similar to a convolution
matrix, advancing each time by a value called stride (S), which
in the Figure is 2.

0 1 2 3 4 5 6 7

0
1
2
3
4
5
6 W

W

S

Fig. 1. A virtual cluster in the many-core.

The goal of mapping an application into a virtual window is
to reduce the application fragmentation, i.e., have a small hop
count between communicating tasks. The search procedure
to find a window to receive the application starts from the
last selected window. The reasoning for adopting this method
is to avoid using the same many-core region, balancing the
execution load, and in the long term, increase the system
lifetime.

Algorithm 1 presents the window selection algorithm. Its in-
puts are the number of tasks of the application (app.#tasks),
the last selected window, Wx, and Wy . The algorithm always
returns a window because there is a previous verification
related to the availability of resources. The returned window
contains the tuple {x, y,Wx,Wy}.

Algorithm 1: Window selection algorithm.
Input: app.#tasks, last window, Wx, Wy
Output: window

1 increased x ← false
2 while true do
3 window ← window_next(last window, Wx, Wy, stride)
4 while window < last possible position do
5 if window_pages(window, Wx, Wy) ≥ app.#tasks then
6 return window
7 end
8 window ← window_next(last window, Wx, Wy, stride)
9 end

10 window ← (0, 0)
11 while window ≤ last window do
12 if window_pages(window, Wx, Wy) ≥ app.#tasks then
13 return window
14 end
15 window ← window_next(last window, Wx, Wy, stride)
16 end
17 if increased x then
18 Wy ← Wy + 1
19 increased x ← false
20 else
21 Wx ← Wx + 1
22 increased x ← true
23 end
24 end

Line 3 of the Algorithm advances to the next virtual window.
The loop between lines 4 to 9 searches the first window
with available resources to execute the application, after the
selected last window, returning it if it exists. The function

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on April 19,2023 at 20:11:48 UTC from IEEE Xplore. Restrictions apply.

window_pages returns the number of available memory
pages in a window. If the first loop does not find a window, the
same process is repeated from the first window (coordinates
(0,0), line 10) up to the last window (lines 11–16).

Note that these two loops are inside a “while true” external
loop. Suppose the application requires more resources than
those available in the current window size, or the windows
have processors executing tasks belonging to other applica-
tions. In this case, it is necessary to increase the window size.

Lines 17–23 increase Wx or Wy alternately, avoiding to
increase the number of PEs in the window by a large value.
The two main loops rerun after increasing the window size in
one dimension. This process continues up to find a suitable
window.

Figure 2 illustrates the window sliding in a 8x7 many-core.
The window slides in the x-direction by adding the stride value
to the current x value. After sliding in the x-direction, the y
value receives the current y value plus the stride value. Note
that the figure has red windows. These windows are the ones
that the stride reduces to reach the boundaries of the many-
core while keeping the window size.

Window 0 Window 1 Window 2

Window 4 Window 5 Window 6

Window 8 Window 9 Window 10

Window 3

Window 7

Window 11

Fig. 2. Virtual window sliding in a 8x7 many-core, Wx = 3, Wy = 3, and
S = 2.

B. Mapping order algorithm

This step is, in effect, independent of the window selection
and thus could run in parallel with the first phase. The result of
this phase is the mapping order used in the mapping algorithm
(Section III-C). An appropriate mapping order, although not
guaranteed to be optimal, reduces the mapping fragmentation.

Before detailing the mapping order algorithm, Definitions 4
to 6 detail the application model adopted by the current work.

Definition 4. Application (App). A directed and connected
Communication Task Graph, CTG(T,E), models each ap-
plication. Each vertex ti ∈ T represents a task, and each
edge eij ∈ E represents the communication from ti to tj .
Assuming edge eij implicitly modeled in the ti representation,
an application with N tasks is represented as:
App = {t0, t1, ..., tN−1}

Definition 5. Task (ti). A task is a vertex of the CTG. Each
task ti is a tuple with its identification, a list of successors

and a list of predecessors. Successors, sui, are tasks receiving
data from ti. Predecessors, pri, generate data to ti.
ti = {id, {su0, su1, ...}, {pr0, pr1, ...}}

Definition 6. Initial task (ini). A task ti is said to be initial,
ini, if the predecessors set is empty, i.e., there is no edge
directed to it.

Figure 3 illustrates a 5-task application modeled as a CTG.
In this example, t0 is the initial task because it does not
have predecessors. The t0 successors are {t1, t2}, while t4
predecessors are {t2, t3}.

t0

t1

t2

t3

t4

Fig. 3. Application modeled as a CTG.

Algorithm 2 details the mapping order algorithm. The loop
between lines 5–9 creates the Initials set, i.e., a set with all
application initial tasks. Note that an application may have
cyclic dependencies, making this set empty. For example, this
may happen in Figure 3 if t4 sends data to t0. Lines 10-11
adds the first application task, t0, to the Initials set when this
situation happens.

Algorithm 2: Task mapping ordering algorithm.
Input: App // Definition 4
Output: Order

1 Order ← ∅
2 Initials ← ∅ // Definition 6
3 task count ← 0
4 inserted ← 0
5 foreach ti in App do
6 if ti.Predecessor is ∅ then
7 Initials.insert(ti)
8 end
9 end

10 if Initials is ∅ then
11 Initials.insert(t0)
12 end
13 foreach ini in initials do
14 Order[inserted++] ← ini

15 while task count < inserted do
16 foreach sui in Order[task count].Successors do
17 if sui not in Order then
18 Order[inserted++] ← sui

19 end
20 end
21 task count++
22 end
23 end
24 return Order

The next loop, lines 13-23, acts as a breadth-first search
algorithm to traverse the CTG. At line 14, the Order set
receives an initial task, ini. Next, lines 16–20 add all non-
added successors of ini into the Order set. At line 21, the
counter task count increases, making the loop 16–20 to add
the successors of the second element in the Order set into the
Order set.

Table I illustrates how the application is traversed using
the CTG depicted in Figure 3. The algorithm adds the initial

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on April 19,2023 at 20:11:48 UTC from IEEE Xplore. Restrictions apply.

task, t0, at line 14. Next, the first iteration of lines 16-20
adds the successors of the first Order element to the Order
set. The counter inserted is now equal to three, meaning that
there are 3 elements in the Order set. At line 21, task count
increments, moving the traversal index for the next iteration.
At the end of the third iteration, all tasks are in the Order
set (inserted = 5). The loop 16-20 repeats twice, increasing
task count up to be possible to exit the loop. This process is
repeated for each initial task. The resulting mapping order is
t0, t1, t2, t3, t4.

TABLE I
EXECUTION OF THE MAPPING ORDER ALGORITHM, USING FIGURE 3 AS

INPUT.
Iter. Lines Order task count inserted remark

1-9 ∅ 0 0 initial task: t0
14 t0 1

1 16-20 t0, t1, t2 3 t0 successors
21 1

2 16-20 t0, t1, t2, t3 4 t1 successors
21 2

3 16-20 t0, t1, t2, t3, t4 5 t2 successors
21 3

21 t0, t1, t2, t3, t4 4,5 repeats 16-20
twice, exiting

C. Task mapping algorithm
The main cost function of this phase is the hop count reduc-

tion. Satisfying this cost function reduces the communication
energy and latency [14], improving the overall applications
performance. This phase uses the results of the two previous
phases, the window, and the Order set. The window reduces
the mapping complexity due to the limited search space. The
Order set defines the sequence to map tasks to minimize the
communication cost.

The designer can tune the mapping cost-function using two
parameters:
• COST_DIFF_APP: cost related to tasks not belonging

to the application being mapped running in the PE under
evaluation. This cost prevents PE sharing among different
applications.

• COST_SAME_APP: cost related to tasks of the applica-
tion being mapped running in the PE under evaluation.
This value defines CPU sharing. A large value distributes
the tasks in several PEs, increasing the application per-
formance, while small values increase the CPU sharing,
reducing the number of resources used by the application.

Algorithm 3 details the mapping algorithm. The external
loop (lines 2–24) maps the tasks sequentially, according to
the Order set. The algorithm creates, at line 5, the Neighbor
set with all tasks communicating with ti.

The loop between lines 6–22 evaluates all PEs in the
window, with available resources to receive tasks. The func-
tions n_tasks_diff_app and n_tasks_same_app get
the number of tasks in the PE running different and same
applications as the task to map, respectively, multiplying by
the costs. Next, lines 10–15 evaluates the communication cost
between the ti and its neighbor tasks already mapped. Finally,
the lines 16–20, select the PE with the smaller cost. The last
step executed by the algorithm, line 23, is to add the PE
address to the Mapping set.

Algorithm 3: Task mapping algorithm.
Input: Order, window
Output: Mapping

1 Mapping ← ∅
2 foreach ti in Order do
3 cost ← ∞
4 selected PE ← None
5 Neighbors ← ti.Predecessors ∪ ti.Successors
6 foreach PExy ∈ window do
7 if PExy .pages > 0 then
8 diff app cost ← n_tasks_diff_app(PExy , ti)

* COST_DIFF_APP
9 same app cost ← n_tasks_same_app(PExy ,

ti) * COST_SAME_APP
10 comm cost ← 0
11 foreach tc in Neighbors do
12 if tc is mapped then
13 comm cost ← comm cost +

manhattan_distance(ti, tc)
14 end
15 end
16 c ← diff app cost + same app cost + comm cost
17 if c ¡ cost then
18 cost ← c
19 selected PE ← PExy

20 end
21 end
22 end
23 Mapping[ti.id] ← selected PE
24 end
25 return Mapping

The current implementation of the mapping algorithm eval-
uates the PEs first in the y-direction and then in the x-direction
(line 6 of Algorithm 3). The reasoning for this order comes
from the stride parameter, which overlaps windows in the x-
direction. Figure 4 shows step-by step the mapping of the CTG
presented in Figure 3, considering one memory page per PE.
The average communication cost of this mapping is 1.2 (6
hops divided by 5 edges).

Task 0 Task 1 Task 2 Task 3 Task 4

0 0
1

0
1

2 0
1

2

3

0
1

2

3
4

Fig. 4. Execution of the mapping algorithm related to CTG presented in
Figure 3, for Wx = 3 and Wy = 3.

IV. RESULTS

A. Functional validation and computational complexity
A Python implementation enabled the initial functional

validation. This implementation generates logs readable by the
many-core debugger [15], allowing debugging and algorithmic
optimizations.

Figure 5 displays the window of the many-core debugger,
showing the application mapping for a scenario in an 6x6
many-core, with two memory pages per PE. This scenario
contains eleven different applications, each one marked by a
different color in the Figure. The mapping generated contigu-
ous regions for the applications, minimizing fragmentation.

Table II presents the computational cost of each MAmap
phase. For the window selection phase, the average complexity

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on April 19,2023 at 20:11:48 UTC from IEEE Xplore. Restrictions apply.

Fig. 5. MAmap validation on a 6x6 many-core with multitasking, Wx = 3,
Wy = 3, and S = 2.

is O(W 2), being W the window size (maximum between Wx

and Wy). When the system load is high, and most PEs execute
tasks, the algorithm needs to increase the window size, which
may grow up to the system size. Thus, in the worst-case,
the complexity is O(N3) (where N is the PE number in one
dimension).

TABLE II
COMPLEXITY OF EACH PHASE OF THE HEURISTIC.

Window Selection Mapping Order Task Mapping
Average Case O(W 2)

O(t)
O(W 2 × t)

Worst-Case O(N3) O(N2 × t2)

The third column in Table II shows the complexity of the
mapping order phase. The complexity of this phase is O(t),
where t is the number of tasks of the application, since it
verifies all tasks once.

The fourth column in Table II shows the complexity of the
mapping phase. The average complexity is O(W 2 × t). The
average case arises when the selected window has the initial
size, and each task only has a few successors or predecessors.
This phase searches for all PEs in the window for each task
of the application. When the window grows to the many-core
size, its complexity can rise to O(N2 × t). When all tasks
communicate with all other tasks, the worst-case can reach
O(N2 × t2) due to each task computing the communication
cost for all other tasks in the application.

B. Mapping quality
The three managements organizations were implemented

using the Memphis many-core [15] as baseline platform. The
experiments use a 10x10 many-core, with each PE supporting
a single task. The CBM is divided into four 5x5 clusters. The
PAM is also divided into the same clusters with hierarchical
management. All evaluated scenarios, 14, contains the same
set of 9 applications, each one with a different number of
tasks (Table III), with a total of 78 tasks, occupying 78% of
the memory pages in the many-core. What differentiates the 14
evaluated scenarios is the order in which the applications enter
the system. One scenario maps applications from the smaller
to largest number of tasks, one from the largest to the smaller
number of tasks, one balanced, and 11 random scenarios.

The performance figure used to evaluate a mapping result
is its mapping average communication cost, comm cost. The

TABLE III
NUMBER OF APPLICATIONS TASKS.

Application #tasks Application #tasks
JPEG 5 AES 9
DTW 6 MWD 12
Dijkstra 6 VOPD 12
Matrix multip. 6 Sorting 15
MPEG4 7 Total tasks 78

average communication cost of an application modeled as a
CTG is the total number of hops between communicating pairs
(Manhattan distance) divided by the number of communicating
pairs (graph edges). The comm cost is the average cost
between the mapped applications.

Figure 6 shows the mapping of scenario with a balanced
application arrival order in terms of task count. CBM had
a comm cost = 2.27 hops. The CBM mapping produced
mostly contiguous mapping, except for the MWD application,
in blue, which needed reclustering to fit in the many-core. The
PAM mapping solved this issued by allowing a search space
equal to the system size. In addition to the 4 managers of
the CBM, the hierarchical PAM needs one extra manager per
application, resulting in an overhead of 13% of lost mapping
space. Besides searching the entire many-core for the best
location to map, PAM reduced the comm cost by just 1.32%,
resulting in a comm cost = 2.24 hops. The MAmap overhead
is a single memory page, representing 1% of the available PEs.
Moreover, the average communication cost dropped by 21%
compared to CBM, with a comm cost = 1.77 hops, due to the
algorithm considering a restricted search space and a mapping
order that considers the communicating task pairs.

AES Dijkstra DTW JPEG Matrix Mul. MPEG4 MWD Sorting VOPD

C
Cluster Manager

M
App Manager

T
Mapper Task

CBM (comm_cost = 2.27) PAM (comm_cost = 2.24) MAmap (comm_cost = 1.77)

C C

C C

C C

C C

M

M

M

M

M
M

M

M

M

T

Fig. 6. Mapping comparison between CBM, PAM, and MAmap. MAMap uses
Wx = 3, Wy = 3, and S = 2.

The analysis of the 14 scenarios showed that on average,
PAM and CBM produced the same average comm cost =
2.33 hops, indicating that clustering does not penalize the
mapping. The standard deviation of 0.07 in CBM and 0.11
in PAM shows that both approaches have low fragmentation
independent of the application order, indicating that the algo-
rithm keeps the communication distance close to the average
for all scenarios. For MAmap, the average comm cost = 1.71
hops, is 27% smaller than CBM and PAM, for the 14 scenarios.
A small standard deviation, 0.06, is observed, confirming that

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on April 19,2023 at 20:11:48 UTC from IEEE Xplore. Restrictions apply.

AES
Dijkstra DTW JPEG

Matrix Mul.
MPEG4

MWD
Sorting

VOPD

20

40

60

80

H
eu

ri
st

ic
la

te
nc

y CBM PAM MA

Fig. 7. Mapping latency (Kclock-cycles) for different sized applications in CBM, PAM and MAmap.

the MAmap is also independent of the order and the size of
the applications entering the system.

Figure 7 shows a graph of the average mapping latency in
kilo clock cycles (Kcycles) for each management paradigm.
Each bar represents the average heuristic latency from all
evaluated scenarios with the lines marking the standard error.
The latency is measured from the start to the end of the
heuristic in the manager processor (CBM, PAM) or in the
mapper application (MAmap).

In Figure 7, the heuristic used by CBM and PAM is the
same, but PAM has the disadvantage of searching the whole
many-core for the initial PE, resulting in average 4.3 times
higher latency. MAmap shows similar results than CBM, being
in average just 3% slower despite being a centralized heuristic.
Additionally, it is important to note that CBM runs directly
at kernel level, which incurs in less execution time overhead
compared to MAmap, which runs at the application level.

The average standard error showed by MAmap (1.26) is
lower than CBM (2.2) and PAM (8.87). The reason explaining
this result is twofold: (a) MAmap is centralized, thus does
not need to spend time synchronizing the system status with
managers, as CBM does and PAM does more heavily; (b)
the PE running MAmap serves the single purpose of mapping,
being more available than the CBM manager that runs another
management goals in the same software.

V. CONCLUSION

This paper presented a new mapping technique, which
despite being centralized, has a similar execution time to
distributed implementations and presents a better cost related
to communication between tasks. Another differential of the
proposal is its implementation loosely coupled to the OS,
which allows porting it to other many-cores.

Future works include evaluating fragmentation after inser-
tion and removal of multiple applications, implementing frag-
mentation detection techniques, and automatic implementation
of defragmentation through task migration.

ACKNOWLEDGMENT

This work was financed in part by CNPq (Conselho Nacional
de Desenvolvimento Cientı́fico e Tecnológico), grant 309605/2020-2;
and CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nı́vel
Superior), Finance Code 001.

REFERENCES

[1] L. Yu, S. R. Schach, K. Chen, and J. Offutt, “Categorization of Common
Coupling and its Application to the Maintainability of the Linux Kernel,”
IEE Transactions on Software Engineering, vol. 30, no. 10, pp. 694–706,
2004, https://doi.org/10.1109/TSE.2004.58.

[2] A. K. Singh, M. Shafique, A. Kumar, and J. Henkel, “Mapping on
multi/many-core systems: Survey of current and emerging trends,” in
DAC, 2013, pp. 1–10, https://doi.org/10.1145/2463209.2488734.

[3] W. Amin, F. Hussain, S. Anjum, S. Khan, N. K. Baloch, Z. Nain,
and S. W. Kim, “Performance Evaluation of Application Mapping
Approaches for Network-on-Chip Designs,” IEEE Access, vol. 8, pp.
63 607–63 631, 2020, https://doi.org/10.1109/ACCESS.2020.2982675.

[4] K. Gaffour et al., “Dynamic Clustering Approach for Run-time Applica-
tions Mapping on NoC-based multi/many-core systems,” in EDiS, 2020,
pp. 15–20, https://doi.org/10.1109/EDiS49545.2020.9296439.

[5] D. Lee, B. Lin, and C.-K. Cheng, “SMT-based Contention-Free Task
Mapping and Scheduling on SMART NoC,” IEEE Embedded Systems
Letters, pp. 1–1, 2021, https://doi.org/10.1109/LES.2021.3049774.

[6] G. Castilhos, M. Mandelli, G. Madalozzo, and F. Moraes, “Distributed
resource management in NoC-based MPSoCs with dynamic cluster
sizes,” in ISVLSI, 2013, pp. 153–158, https://doi.org/10.1109/ISVLSI.
2013.6654651.

[7] A. M. Rahmani et al., “Reliability-Aware Runtime Power Management
for Many-Core Systems in the Dark Silicon Era,” IEEE Transactions on
Very Large Scale Integration (VLSI) Systems, vol. 25, no. 2, pp. 427–440,
2017, https://doi.org/10.1109/TVLSI.2016.2591798.

[8] M. A. A. Faruque, R. Krist, and J. Henkel, “ADAM: Run-time agent-
based distributed application mapping for on-chip communication,” in
DAC, 2008, pp. 760–765, https://doi.org/10.1145/1391469.1391664.

[9] D. Gregorek, J. Rust, and A. Garcia-Ortiz, “DRACON: A Dedicated
Hardware Infrastructure for Scalable Run-Time Management on Many-
Core Systems,” IEEE Access, vol. 7, pp. 121 931–121 948, 2019, https:
//doi.org/10.1109/ACCESS.2019.2937730.

[10] I. Anagnostopoulos, V. Tsoutsouras, A. Bartzas, and D. Soudris, “Dis-
tributed run-time resource management for malleable applications on
many-core platforms,” in DAC, 2013, pp. 1–6, https://doi.org/10.1145/
2463209.2488942.

[11] S. Kobbe, L. Bauer, D. Lohmann, W. Schröder-Preikschat, and J. Henkel,
“DistRM: Distributed resource management for on-chip many-core
systems,” in CODES+ISSS, 2011, pp. 119–128, https://doi.org/10.1145/
2039370.2039392.

[12] M. Ruaro, A. Santana, A. Jantsch, and F. G. Moraes, “Modular and
Distributed Management of Manycore SoCs,” ACM Transactions on
Computer Systems (TOCS), vol. 38, no. 1-2, pp. 1–16, 2021, https:
//doi.org/10.1145/3458511.

[13] V. Tsoutsouras, S. Xydis, and D. Soudris, “Application-Arrival Rate
Aware Distributed Run-Time Resource Management for Many-Core
Computing Platforms,” IEEE Transactions on Multi-Scale Computing
Systems, vol. 4, no. 3, pp. 285–298, 2018, https://doi.org/10.1109/
TMSCS.2018.2793189.

[14] J. C. S. Palma et al., “Mapping Embedded Systems onto NoCs: the
Traffic Effect on Dynamic Energy Estimation,” in SBCCI, 2005, pp.
196–201, https://doi.org/10.1109/SBCCI.2005.4286856.

[15] M. Ruaro, L. L. Caimi, V. Fochi, and F. G. Moraes, “Memphis: a
framework for heterogeneous many-core SoCs generation and valida-
tion,” Design Automation for Embedded Systems, vol. 23, no. 3-4, pp.
103–122, 2019, https://doi.org/10.1007/s10617-019-09223-4.

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on April 19,2023 at 20:11:48 UTC from IEEE Xplore. Restrictions apply.

		2022-08-24T12:15:52-0400
	Preflight Ticket Signature

