2022 35th SBC/SBMicro/IEEE/ACM Symposium on Integrated Circuits and Systems Design (SBCCI) | 978-1-6654-8128-1/22/$31.00 ©2022 IEEE | DOI: 10.1109/SBCCI55532.2022.9893244

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on April 19,2023 at 20:03:05 UTC from IEEE Xplore. Restrictions apply.

Secure Communication with Peripherals in
NoC-based Many-cores

Rafael Follmann Faccenda*, Gustavo Comard*

*School of Technology, Pontifical Catholic University of Rio Grande do Sul —

, Luciano Lores Caimif, Fernando Gehm Moraes*

PUCRS - Porto Alegre, Brazil

{rafael.faccenda, gustavo.comaru}@edu.pucrs.br, fernando.moraes @pucrs.br
TUFFS, Federal University of Fronteira Sul, Chapecd, Brazil — lcaimi@uffs.edu.br

Abstract—Many-core systems-on-chip (MCSoCs) contain pro-
cessing elements (PEs), peripherals attached to the system, and
an NoC connecting them. These systems have different flows
traversing the NoC: PE-PE and PE-peripheral flows. Malicious
hardware or software can hinder system security due to the
resource sharing feature, such as CPU sharing for multitasking
or sharing NoC links for flows belonging to different applications.
Methods that isolate applications with security constraints, such
as Secure Zones (SZs), protect PE-PE flows against most of
the attacks reported in the literature. Proposals with methods
to secure the communication with peripherals in the literature
are scarce, with most of them focusing on shared memory
protection. This paper presents an original approach, Secure
Mapping with Access Point - SeMAP, which creates mapping
policies for SZs, and communication strategies with IO devices,
to protect PE-peripheral flows. Results show that the application
execution time is not penalized by applying SeMAP, presenting
advantages compared to a state-of-the-art approach. In terms
of security, SeMAP successfully resisted an attack campaign,
blocking malicious packets attempting to enter the SZ.

Index Terms—Security, NoC-based Many-cores, Secure Zones,
Peripherals.

I. INTRODUCTION

Many-core systems on chip (MCSoCs) provide high com-
puting performance due to the parallelism offered by the
numerous resources inside the chip. Current applications have
increasing demands on dedicated resources, such as shared
memories, hardware accelerators (e.g., neural engines), and
communication interfaces [1]. Thus, MCSoCs should contain,
besides the set of processing elements (PEs), support for
peripherals leading to the adoption of heterogeneous architec-
tures instead of homogeneous ones (e.g., MPSoCs). Figure 1
presents a 4x4 MCSoC instance, with four peripherals attached
to the NoC borders.

A consequence of the increasing number of features and
functionalities in MCSoCs is the adoption of third-party IPs
(3PIPs) to meet time-to-market constraints and reduce design
costs. Such IPs come from different vendors, raising the risk
of having malicious hardware and/or software inserted in the
design [2]. Thus, security is a major design constraint.

Malicious hardware/software can hinder system security due
to the resource sharing feature, such as CPU sharing for
multitasking or sharing NoC links among flows belonging to
different applications. Thus, methods that isolate applications
with security constraints (Appsec) [3, 4] protect applications

978-1-6654-8128-1/22/$31.00 ©2022 IEEE

MCSoC: Many-core System-on-Chip

10: 10 devices, or peripherals, as shared
memories, hardware accelerators,
communication interfaces

- |__» PE:Processing Element - contains a
PE PE processor, network interface, local
T T memory, and the NoC router

—» p: example of a path between the SZ and a

PE PE peripheral, exposed to security threats

] : Access Point - opening in the SZ
PE [TlpE [TIPE [TIPE boundary enabling communication with
T I I I peripherals

: Secure Zone - an isolated region
reserved to execute an application
with security constraints

PE 1PE [T|PE PE

Fig. 1. MCSoC and terminology adopted in this work.

against most of the attacks reported in the literature. Secure
Zones (SZ, in Figure 1) [5, 6] is an example of a defense
mechanism based on spatial isolation. SZs reserve PEs and
links to execute an App,.. without sharing the resources inside
the SZ with other applications.

Literature related to many-core that present methods to
secure the communication with peripheral are scarce, with
most of them focusing on shared memory protection [7, 8].
On the other hand, several works present MCSoCs with
peripherals but without security concerns [9, 10]. Therefore,
there is a gap to fulfill: how to protect the communication of
applications with peripherals?

A possible solution is to encrypt data in the communication
path between the SZ and peripherals. However, cryptography
is a partial solution, only ensuring confidentiality. Other secu-
rity threats may compromise the communication path SZ«10
(p in Figure 1):

1) Denial of service (DOS) and side-channel attacks in the

SZ<10 path;

2) Unauthorized access to the 10. IO devices must be aware
of applications with access rights to avoid attacks by
malicious entities;

3) Unauthorized access to the Apps. running into the SZ.
Communication with IO devices requires opening access
points (AP, in Figure 1) at the SZ border. The AP is a
vulnerability that malicious applications can explore to
access the Appsee;

4) DOS due to the lack of paths to the IO devices. A
given application or SZ may isolate IO devices. Thus,
reachability is a design concern, ensuring a path between
SZs<+10s.

The goal of this work is to define SZ mapping policies and
communication strategies with IO devices, addressing issues
3 (APs) and 4 above (ensure reachability to 10 devices).

The original contribution is the Secure Mapping with Ac-
cess Point (SeM AP) approach, which enables the mapping
of multiple SZs simultaneously, protecting Appse.S against
unauthorized accesses, ensuring the availability of paths to the
IO devices.

This paper is organized as follows. Section II presents the
related work regarding peripherals in many-cores. Section III
discusses the threat model assumed in this work. Section IV
presents two methods to protect the communication with
peripherals, DSZ and SeM AP, being SeM AP the original
contribution of this paper. Section V evaluates both methods
in terms of performance and security. Section VI presents the
conclusions and directions for future work.

II. RELATED WORK

Recent works present many-cores with peripherals attached
to them, addressing communication performance improvement
[9, 10] or timing predictability [11, 12, 13].

Lee et al. [10] propose a message-based system calls to
enhance the performance of storage 10 for the MapReduce
application model in many-cores. In addition, the Authors
explore the intracluster locality of task allocation in the cores.
As a result, the execution time of MapReduce was reduced by
29%.

Jiang et al. [11] optimize IO operations in safety-critical
systems with Virtual Machines. The proposal is a hardware
hypervisor to shorten the overhead of the IO communication
in an application inside a VM, called /0-GUARD. The main
objective is to enhance the 1O path and resource management.

Vaas et al. [12] also focus on safety-critical systems, propos-
ing the LOWjq, an interface that reduces the interference
of low-level non-deterministic IO operations on critical tasks.
Hardware units control the access to peripherals, giving prior-
ity to critical transactions.

Zhao et al. [13] propose dedicated IO co-processing units
and a scheduling model to provide predictability for hard real-
time systems. A module named IO Processing Unit (IOPU)
controls the IO tasks. The objective is to make the communi-
cations predictable.

In terms of security, Ehret et al. [14] focus on securing edge
devices against attacks on their IO ports. This approach consid-
ers that the devices are installed away, making it possible for
a malicious user to access the system from its ports manually.
Even though this work does not consider a many-core, it is
possible to apply the adopted threat model to a many-core.

Grammatikakis et al. [7] propose an NoC firewall to protect
the access of a shared memory accessed through the NoC,
avoiding sensitive data corruption or access of an unauthorized
element. The firewall isolates the NoC, only allowing an
authorized process of the MCSoC to access the memory.

Reinbrecht et. al. [8] also focus on the security of MCSoCs
with shared memories. The authors propose two new attack
types targeting shared memories, called Prime+Probe Arrow

and Prime+Probe Firework, that can affect systems with Se-
cure Zones when the application running inside it needs to
use the shared memory. The Authors propose the Gossip-NoC,
which includes a traffic monitor. When an anomalous behavior
is detected, the monitor sends an alert message to a system
manager, which changes the routing algorithm from XY to
YX, avoiding malicious traffic.

In summary, proposals [9, 10, 11, 12, 13, 15] optimize
the communication performance with peripherals, or systems
with real-time constraints. On the other hand, the concern
of [7, 8] is to protect access to shared memory. General
security methods to protect access to peripherals other than
shared memories are a gap in the literature. Actual many-
cores have a rich set of accelerators besides shared memories,
requiring the availability of security mechanisms to protect the
communication.

III. THREAT MODEL

Resource sharing in PEs and NoC links introduces vulnera-
bilities to the applications. Considering the reference MPSoC
architecture (Figure 1), the attack surface includes the access
point (AP) and the exposed path (p). Malicious entities (tasks
or peripherals) may explore this surface in attacks such as:

i Spoofing: falsification of identity — a malicious entity
could try to pass through the AP, pretending to be a
trustworthy peripheral;

ii DoS (flooding): a malicious entity could attempt to flood
the SZ by injecting packets through the AP;

iii DoS (blocking): Hardware Trojans (HTs) may block,
drop, or misroute flows to/from the peripherals;

iv Snooping: once the packet leaves the SZ, it is exposed to

malicious entities, being vulnerable to snooping attacks.

v SCA: a malicious entity could monitor the exposed flows
to execute, e.g., timing attacks [8].

Our proposal addresses threats (i) and (i¢) using a key
shared by the Apps.. and the IO. This key ensures that a given
packet can only enter or leave the SZ if it has the correct key.
The communication protocol mitigates the threat (4i7), which
can detect when an expected answer to a transaction does not
reach the SZ. Encrypting data in the exposed path mitigates
snooping attacks. We assume in this work that packets in
the exposed path are encrypted to avoid such attacks. SCA
mitigation is out of the scope of the current work. Key
exchange between the peripheral Network Interface (NI) and
the SZ is discussed in [16].

The focus of this work is the proposal of methods to
enable secure communication of applications executing in
isolated resources (Secure Zone) with peripherals (outside the
Secure Zone), not on proposing countermeasures. Examples
of countermeasures include the dynamic changing of the AP
location when detecting an attack or using methods to locate
the attack source [17].

IV. SAFE COMMUNICATION WITH PERIPHERALS

This work adopts the opaque SZ model [18]. Once the
SZ is closed, all traffic trying to cross it is re-routed. The
opaque SZ method prevents the attacks described in the threat

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on April 19,2023 at 20:03:05 UTC from IEEE Xplore. Restrictions apply.

!%N

l

Fig. 2. Example of Dynamic SZ method, adapted from [18]

I

o H_A

Pl our Ta

==H==-es--—85--

model, including timing and logical SCA [19]. However, to
allow communication between peripherals and Appse., it is
necessary to open the SZ boundary. The controlled opening at
the boundary of the SZ is called access point (AP).

Opening the SZ does not violate the fundamental rule
governing the SZ method: flows belonging to applications
other than Apps.. must not cross the SZ. Opening the SZ
to peripherals requires a set of rules to ensure the security
of Appsec. Work [18] presents a set of rules to meet security
constraints:

1) Differentiate PE<+PE from PE<+IO communication. This
differentiation prevents malicious applications from try-
ing to inject packets into SZs.

2) Master-slave communication. PEs inside the SZ initiate
all transactions with peripherals. Any unexpected packet
arriving in an AP is discarded.

3) Add a key in 10 packets, ensuring their authenticity and
source.

4) Avoid unreachable resources, i.e., an SZ may not block
the access to peripherals.

We present below two methods for communicating with
peripherals: (z) Dynamic SZ, initially presented in [18]; (¢7)
Secure Mapping with Access Point (SeM AP), herein pro-
posed.

A. Dynamic SZ — DSZ

The DSZ method is flexible in terms of Apps.. mapping.
SZs can be mapped at any region of the MCSoC, respecting
the restriction of not blocking paths to peripherals. Figure 2
illustrates a system with 3 SZs.

APs are established for each communication transaction,
using XY routing by default. The task that starts an IO
communication opens two unidirectional APs (AP IN and AP
OUT in Figure 2), transmitting two control packets to the SZ
border. Each AP is closed when a packet traverses it. This
method ensures that only one packet traverses the AP per
transaction, minimizing attack attempts. On the other hand,
if multiple tasks communicate with peripherals, several APs
can be opened simultaneously (SZ1 in the Figure), increasing
the attack surface. Packets to traverse the APs must meet two
conditions: () be IO packets; (¢7) match the key shared by the
peripheral and the Apps... The packet is discarded otherwise.

AP

Py

N
~

sz2|!

Fig. 3. Example of gray and secure areas. Three Appsecs mapped on the
secure area, each one with an Access Point (AP).

The mapping flexibility brings the masking effect. Consider
Figure 2 having the SZ1 and SZ3 mapped and running in the
system. When SZ2 enters in the system, it blocks path p2,
from the 10 device to SZ3. Thus it is necessary to compute
a new path using source routing. The PE closest to the 10
device computes the new path (p3), transmitting it to the 10
device to be used in the subsequent data transmissions. This
approach adds a security threat, as it involves a PE not related
to Appsec, allowing it to know the location of the AP and use
this information to initiate an attack.

Despite the DSZ application mapping flexibility, there is a
restriction related to the task mapping inside the SZ, named
alignment effect. The DSZ does not allow two or more tasks on
the same X or Y coordinate to communicate with peripherals
because the DSZ authorizes only one transaction per AP. If
two tasks are aligned, both activate the same AP, but only one
packet passes through it, thus blocking one of the tasks.

B. Secure Mapping with Access Point — SeMAP

Our proposal, named SeM AP, restricts the Appse. map-
ping and allows only one bidirectional AP per SZ. The goal
is to have a single aperture for all the IO transactions. Our
mechanism creates two logical regions, at system startup: Gray
areas (GA) run applications without security requirements
and guarantee a path between Apps.. and peripherals, i.e.,
reachability. Secure areas only run Apps..s. Figure 3 illustrates
an example of these two regions, with three Apps.. mapped
in the secure areas. The peripherals are attached to the North
side of the system for the sake of simplicity. The approach
does not restrict peripherals attached to a given system side.
The mapping of Appse.s requires at least one side juxtaposed
to a GA in such a way to have a path to the peripherals.

The process to deploy an Appse. into the secure area
requires four steps, detailed below.

1) SZ Shape and Location: The definition of the SZ shape
prioritizes shapes having the width of the secure area. This
method improves system utilization, avoiding PEs without
access to the gray areas. The SZ shape and coordinates
selection follow a Sliding Search Window (SSW) algorithm.
The starting point of the SSW is the row nearest to the
peripherals. The result of this step is a set of PEs reserved
to execute the Appsec.

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on April 19,2023 at 20:03:05 UTC from IEEE Xplore. Restrictions apply.

2) AP Definition: Any port of any frontier router next to
a GA may receive the AP. The default location is the top-left
or top-right router according to the gray area position. The
second case is the north port of the top-middle router if the
SZ is near to the top of the GA. Figure 3 presents both cases:
the AP of the SZ1 and SZ3 are in the middle-top position,
while the SZ2 is the default case, with the AP at the top-
left position. Since any port can become an AP, there is the
possibility to change the AP location periodically or whenever
suspicious behavior is detected.

3) Task Mapping in the Selected Shape: The system man-
ager maps tasks that communicate with peripherals near the
AP and the remaining tasks according to the hop number
between communicating pairs. After the mapping execution,
the SZ borders are “closed”, isolating the SZ. Only packets
to/from peripherals can cross the SZ through the AP.

4) Path configuration: PEs inside the SZ does not use
the XY routing algorithm to reach the peripheral. The first
communication of a given task with a peripheral fires a
path configuration heuristic. First, the OS computes the path
PE—AP, then the path AP—peripheral, according to the
gray area shape. The path from the peripheral to the PE
is generated using the opposite ports in the reverse order.
Figure 4 illustrates an example of a path computation between
“Task” and IO. There are two paths: path A, the orange arrow
from Task—IO, and B, the blue arrow from IO—Task. The
circles show each of the ports taken for each of the paths.
After computing the path to the peripheral, the next step is to
send the reverse path to the peripheral. The OS sends the path
to the peripheral, which stores the path and uses it for every
communication with that specific task.

Fig. 4. Example of source routing paths from/to task to/from peripheral
through the AP.

SeM AP contains security mechanisms implemented in the
APs. Packets to/from a peripheral only traverse the AP if the
key embedded in the packet header matches the shared key. In
addition to key verification, the AP monitors the frequency of
incoming and outgoing packets, generating a suspicious alert
if a threshold rate is reached. Such behavior may signalize an
external peripheral (incoming packets) or Apps.. is attempting
to execute an attack.

V. RESULTS

This section presents the performance of applications con-
sidering the two methods for communicating with peripherals.
The second part of the results discusses the security aspects

of the communication with peripherals. Section V-C compares
both approaches.

Experiments use as baseline system the Memphis MCSoC
[20], modeled at the RTL level (SystemC and VHDL). The
MCSoC uses two NoCs: one for data and one for control.
The data-NoC is a packet switching network with two physical
channels, supporting XY (default) and source routing (when
rerouting is necessary). The control-NoC is a broadcast NoC
with single-flit packets and a search path mechanism, which
allows path discovery for source routing [21].

A. Performance of the Communication with Peripherals

Figure 5 presents the applications mapping to evaluate
the methods of communication with peripherals. The system
receives the DTW (Dynamic Time Warping) application at
startup. At 5 ms, a new application enters the system (MPEG
decoder). Note that the DTW DSZ (Figure 5(a)) has two paths
broken by the MPEG, firing two path search computations (due
to the “masking effect”). At 9 ms, a PC (Producer-Consumer)
is mapped, also blocking two DTW paths. A second scenario
is evaluated, swapping the DTW with MPEG (the reference
application is always mapped in the bottom-left corner of the
system). In the first scenario (DTW in the left corner), the 10
communication volume (number of messages exchanged with
the peripherals) is higher.

(a) DSZ

(b) SeMAP

Fig. 5. Application mapping to evaluate the methods to communicate with
peripherals.

Figure 6 presents the iteration latency for DTW and MPEG
applications. The y-axis is the time required to execute each
application iteration (in us), and the x-axis is the iteration
number. Graphs omit the first five iterations, considering these
as the warm-up period. Each graph has 4 curves:

« Baseline (black line): execution of the applications with-
out communication with peripherals. Input data is as-
sumed to be stored in the local memories, and results
are also stored in the local memories. Simulating the
baseline MCSoC aims to evaluate the overhead due to
the communication with peripherals.

« Single DSZ (blue line): only the reference application
(DTW or MPEG) executes in the system. The goal of
simulating the DSZ approach without other applications
is to evaluate the DSZ method in the absence of the
masking effect.

o DSZ approach (red line) using evaluation scenario pre-
sented on Figure 5(a).

o« SeMAP approach (green line) using evaluation scenario
presented on Figure 5(b).

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on April 19,2023 at 20:03:05 UTC from IEEE Xplore. Restrictions apply.

780

Baseline |
Single DSZ ——
DS

SeMAP

760

740

720

Time (us)

700

R S S S s S e G e s s G
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Iteration

(a) DTW iteration latency. Execution time (ms): 18.26 (baseline), 18.44
(single DSZ), 18.51 (DSZ), 18.37 (SeM AP).

2420

“Baseline ——
2400 - | SingleDSZ —— |]

DSZ ——
5 2 SeMAP]
= 2360 | 8

£ 230
[— —
2320 / 8
2300 =
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
Iteration

(b) MPEG iteration latency. Execution time (ms): 13.82 (baseline), 13.91
(single DSZ), 13.94 (DSZ), 13.98 (SeM AP).

Fig. 6. Iteration latency using the baseline MCSoC, DSZ and SeMAP.

Figure 6 shows that:

o Comparing SeMAP and Single DSZ versus Baseline,
the latency per iteration increases 1.2% (MPEG) to 7.3%
(DTW) when there is IO communication (average val-
ues). The latency increases due to the: (z) non-minimum
paths; (z¢) master-slave communication protocol, i. e., all
transactions started by the Appsec; (44¢) management of
APs in the DSZ method (opening and closing of APs at
each transaction).

o Total execution time has a minimal overhead - 1.3%
for DTW (Baseline versus DSZ) and 0.5% for MPEG
(Baseline versus SeMAP).

o SeMAP reduces the latency per iteration (0.33% for
MPEG and 2.7% for DTW, best cases) compared to
Single DSZ because it does not need to manage APs.
On the other hand, there is a latency per AP to start the
application execution, as it is necessary to compute the
paths for each AP (254s@100MHz - average value per
path).

o The masking effect, observed in DSZ (red curves), in-
creases the iteration latency when a new application
enters the system, blocking the PE—Peripheral commu-
nication, requiring to reroute the broken paths. In both
scenarios, the masking effect only affects few iterations,
since this mechanism is activated once, being the alter-
native path taken for the subsequent communications.
The valley observed in the first scenario is due to the
application pipeline behavior, i.e., while a task is blocked
waiting for a new path, the other tasks continue to run.
The performance degradation increases in scenarios with
a larger number of broken paths,

e SeMAP is immune to the masking effect, presenting
a small latency increase (0.2% to 1.8%) when a new

application enters the system. The network traffic in-
creases when a new application is admitted due to the
transmission of the object code of the tasks. This increase
in network traffic explains the slight increase observed in
latency.

B. AP Security Evaluation

We executed an attack campaign with three different packet
types arriving on APs: (7) application packets (PE-PE); (i7) 10
packets with incorrect key; (¢¢¢) IO packets with a forged key.
In scenarios ¢ and ¢, the APs correctly dropped the packets
and notified the arrival of a suspicious packet to the system
manager.

The master-slave protocol adds a random sequence number
in the request packet (for read or write operations). The 10
must answer with this number. Consider scenario %7, where
the malicious peripheral forges the key and the AP address. In
both methods, the packet reaches the PE, which notifies the
system manager to isolate the malicious peripheral upon the
reception of an unexpected packet or a packet with a wrong
sequence number (it would be costly in terms of silicon area to
have registers in the AP to store a list of malicious peripherals).
Thus, it is necessary to meet four conditions to execute a suc-
cessful attack (i) correctly forge the key; (i) send the packet
to the AP address; (ii¢) insert the packet into the SZ when
a task is waiting for a peripheral answer; (iv) generate the
correct sequence number. We consider that the fulfillment of
these four conditions has a minimal probability of occurring,
being sufficient to guarantee a secure communication between
Appsecs and peripherals.

C. Discussion

According to the threat model (Section III), both DZS
and SeM AP methods avoid spoofing and DoS (flooding)
by detecting malicious packets arriving at an AP, blocking
them, and notifying the address of the malicious entity (PE
ou peripheral) to the system manager. The communication
API avoids DoS (blocking) attacks when the communication
started in the SZ does not receive an answer after a given
period (watch-dog timer).

Table 1 compares the DSZ and SeM AP methods quali-
tatively. The DSZ is recommended for scenarios with few
SZs coexisting simultaneously (due to the masking effect) and
a few tasks communicating with IO (due to the alignment
effect). The proposed SeMAP is a generic approach to map
Appsecs, without the restrictions observed in the DSZ method.
Despite the advantages, SeM AP has limitations related to
the use of resources and possible congestion in the AP. It is
possible to mitigate the first limitation with defragmentation
techniques, and the second limitation would only occur in
cases of very intense communication with peripherals.

VI. CONCLUSION

The Introduction raised the following question: how fo
protect the communication of applications with peripherals?
The answer is to use the DSZ or SeM AP methods, which
secure the SZ<»IO communication against spoofing, DoS,

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on April 19,2023 at 20:03:05 UTC from IEEE Xplore. Restrictions apply.

TABLE I
DSZ AND SEMAP QUALITATIVE COMPARISON.

DSZ

SeMAP

Better resource utilization due to the mapping flexibility

Single bidirectional AP per Appse.., reducing the attack surface

Communication with peripherals is not concentrated in a

The AP stays opened during the Appsc. execution, avoiding

PROS single AP (better traffic distribution) fg;iggl:rizﬁ? cn(;nsts sages per IO transaction, reducing its
No alignment effect
No masking effect
The nearest PE to the peripheral does not need to be interrupted
to compute a path to the SZ and is unaware of the AP position
. . Smaller resource utilization than DSZ due to the partition of
CONS Masking effect (Section IV-A) the system into gray and secure areas

Alignment effect (Section IV-A)

Fragmentation of the secure areas at runtime. It is possible to
defragment the system using task migration

Several APs opened in SZ simultaneously, increasing the
attack surface

Peripheral traffic concentrated in a single AP may lead to NoC
congestion

and snooping attacks. DSZ is flexible in mapping the SZ at
any place of the MCSoC but presents limitations related to
the SZ<>10 paths and APs (larger attack surface). SeM AP
adopts a restrictive mapping (secure and gray areas) and one
bidirectional AP per SZ. Results show that the iteration latency
increases up to 7.3% when communicating with peripherals,
but the overhead is minimal considering the total execution
time (worst-case 1.3%).

SeM AP is the architecture to adopt due to the absence of
the limitations compromising the DSZ method.

Future work includes: (¢) define a Secure NI to be inserted
between the MCSoC and an IO device; (i¢) add a reservation
protocol in the IO communication API to avoid a peripheral
answering to a malicious request; (i¢¢) study defragmentation
techniques to be deployed at runtime.

ACKNOWLEDGMENT

This work was financed in part by Coordenacdo de
Aperfeicoamento de Pessoal de Nivel Superior — CAPES
(Finance Code 001), and CNPq (grant 309605/2020-2).

REFERENCES
[1] A. Kamaleldin and D. Gohringer, “AGILER: An Adaptive Hetero-
geneous Tile-Based Many-Core Architecture for RISC-V Processors,”
IEEE Access, vol. 10, pp. 43 895-43913, 2022.
H. Li, Q. Liu, and J. Zhang, “A survey of hardware Trojan threat and
defense,” Integration, the VLSI Journal, vol. 55, pp. 426437, 2016.
L. Caimi, R. Faccenda, and F. G. Moraes, “A Survey on Security
Mechanisms for NoC-based Many-Core SoCs,” Journal of Integrated
Circuits and Systems, vol. 16, no. 2, pp. 1-15, 2021.
S. P. Azad, G. Jervan, M. Tempelmeier, and J. Sepilveda, “CAESAR-
MPSoC: Dynamic and Efficient MPSoC Security Zones,” in ISVLSI,
2019, pp. 477-482.
S. Pinto, P. Machado, D. Oliveira, D. Cerdeira, and T. Gomes, “Self-
secured devices: High Performance and Secure I/O Access in TrustZone-
based Systems,” J. Syst. Archit, vol. 119, p. 102238, 2021.
E. M. Benhani, C. M. Lépez, and L. Bossuet, “Secure Internal Com-
munication of a Trustzone-Enabled Heterogeneous SoC Lightweight
Encryption,” in FPT, 2019, pp. 239-242.
M. D. Grammatikakis, P. Petrakis, A. Papagrigoriou, G. Kornaros, and
M. Coppola, “High-level Security Services based on a Hardware NoC
Firewall Module,” in WISES, 2015, pp. 73-78.

[8] C. Reinbrecht, A. A. Susin, L. Bossuet, G. Sigl, and J. Sepilveda,
“Timing attack on NoC-based systems: Prime+Probe attack and NoC-
based protection,” Microprocess. Microsystems, vol. 52, pp. 556-565,
2017.

C. Lee, J. Lee, D. Koo, C. Kim, J. Bang, E.-K. Byun, and H. Eom,
“Towards enhanced I/O performance of a highly integrated many-core
processor by empirical analysis,” Cluster Computing, pp. 1-13, 2021.
C. Lee, J. Cho, J. Kim, and H. Jin, “Transparent many-core partitioning
for high-performance big data 1/0,” Concurr. Comput. Pract. Exp.,
vol. 33, no. 18, 2021.

Z. Jiang, K. Yang, Y. Ma, N. Fisher, N. C. Audsley, and Z. Dong,
“I/O-GUARD: Hardware/Software Co-Design for I/O Virtualization with
Guaranteed Real-time Performance,” in DAC, 2021, pp. 1159-1164.

S. Vaas, P. Ulbrich, C. Eichler, P. Wigemann, M. Reichenbach, and
D. Fey, “Taming Non-Deterministic Low-Level I/O: Predictable Multi-
Core Real-Time Systems by SoC Co-Design,” in ISORC, 2021, pp. 43—
52.

S. Zhao, Z. Jiang, X. Dai, 1. Bate, I. Habli, and W. Chang, “Timing-
Accurate General-Purpose I/O for Multi- and Many-Core Systems:
Scheduling and Hardware Support,” in DAC. IEEE, 2020, pp. 1-6.
A. Ehret, E. D. Rosario, C. Schwicking, K. Gettings, and M. A. Kinsy,
“Reconfigurable Hardware Root-of-Trust for Secure Edge Processing,”
in HPEC, 2021, pp. 1-7.

A. Suyyagh and Z. Zilic, “Energy and Task-Aware Partitioning on
Single-ISA Clustered Heterogeneous Processors,” IEEE Trans. Parallel
Distributed Syst., vol. 31, no. 2, pp. 306-317, 2020.

L. L. Caimi, V. Fochi, E. Wichter, D. Munhoz, and F. G. Moraes, “Se-
cure Admission and Execution of Applications in Many-core Systems,”
in SBCCI, 2017, pp. 65-71.

S. Charles, Y. Lyu, and P. Mishra, “Real-Time Detection and Local-
ization of Distributed DoS Attacks in NoC-Based SoCs,” IEEE Trans.
Comput. Aided Des. Integr. Circuits Syst., vol. 39, no. 12, pp. 4510-
4523, 2020.

L. L. Caimi and F. G. Moraes, “Security in Many-Core SoCs Leveraged
by Opaque Secure Zones,” in ISVLSI, 2019, pp. 471-476.

C. Reinbrecht, A. Aljuffri, S. Hamdioui, M. Taouil, B. Forlin, and
J. Sepilveda, “Guard-NoC: A Protection Against Side-Channel Attacks
for MPSoCs,” in ISVLSI, 2020, pp. 536-541.

M. Ruaro, L. L. Caimi, V. Fochi, and F. G. Moraes, “Memphis: a
framework for heterogeneous many-core socs generation and validation,”
Design Automation for Embedded Systems, vol. 23, no. 3, pp. 103-122,
2019.

E. Wachter, L. L. Caimi, V. Fochi, D. Munhoz, and F. G. Moraes,
“BrNoC: A broadcast NoC for control messages in many-core systems,”
Elsevier Microelectronics Journal, vol. 68, pp. 69-77, 2017.

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on April 19,2023 at 20:03:05 UTC from IEEE Xplore. Restrictions apply.

