
A High-level Model to Leverage NoC-based
Many-core Research

Iaçanã Ianiski Weber, Angelo Elias Dalzotto, Fernando Gehm Moraes
School of Technology, Pontifical Catholic University of Rio Grande do Sul – PUCRS – Porto Alegre, Brazil

iacana.weber@edu.pucrs.br, angelo.dalzotto@edu.pucrs.br, fernando.moraes@pucrs.br

Abstract—This work presents Chronos-V, a Many-Core
System-on-Chip (MCSoC) that adopts abstract hardware mod-
eling, executing the freeRTOS Operating System (OS) at each
processing element (PE). The system architecture contains two
regions: (i) General Purpose Processing Elements (GPPE), re-
sponsible for executing user applications; (ii) peripherals that
provide IO capabilities or hardware acceleration to the system.
The freeRTOS kernel provides scheduling for application tasks,
with modules added to it providing a Message Passing Interface
(MPI) and system management. The goal is to provide a platform
with a parameterizable hardware model that allows software
development and evaluation of system management techniques.
Results evaluate the simulation speedup by comparing the ab-
stract model simulation against an RTL simulation in systems
with up to 100 PEs, and thermal management techniques added
to the freeRTOS as an API.

Index Terms—Many-Core System-on-Chip; High-Level Model;
Heterogeneous Many-Core; Network-on-Chip.

I. INTRODUCTION AND RELATED WORK

Recent advances in the industry, such as the ET-SoC-1 [1],
emphasize that many-core system-on-chip (MCSoCs) is the
predominant paradigm employed to meet high-performance
computing required by Machine Learning applications or
Cyber-Physical systems [2]. In this context, application testing
and management of security, power consumption, and perfor-
mance are an important issues in MCSoCs design [3].

In the current competitive scenario that demands low time-
to-market for new products, the capability to parallelize hard-
ware and software development is paramount. Therefore, a
platform that allows developers to submit the code into a
system model enables software iterations in the early design
stages of a new product design. However, application testing
to promote fast software development is not the only con-
cern. MCSoCs design offer challenges in the management
of system resources. System management includes actions
to keep the system operating at safe conditions, such as
controlling Dynamic Voltage and Frequency Scaling (DVFS)
to maintain safe temperature and power, and deliver resources
to applications, enabling them to meet their constraints (e.g.,
real-time deadlines). System management requires hardware
and software modules to meet system and user constraints.

The goal of the present work is to propose a high-level
simulation platform for MCSoCs research, called Chronos-V.
This platform integrates an instruction-level model of RISC-V
processors into a 2D-mesh Network on Chip (NoC) to create
the MCSoC model. The literature [4]–[11] presents tools and
abstract models for MCSoCs to enable software development
and system validation before the final hardware design.

Many of those works provide platforms that allow hardware
exploration. Lemaire et al. [5] introduced a modeling environ-
ment built around a SystemC-TLM kernel to explore appli-
cation mapping and other hardware features at early design
stages. Helmstetter et al. [6] proposed a platform to evaluate
the hardware costs of a specific architecture according to
application needs. The platform proposed by Duenha et al. [7]
models heterogeneous systems providing energy consumption
estimation. Lima et al. [10] proposed a platform to compare
and select routing algorithms.

Furthermore, software development models seek simulation
speed and not necessarily performance estimation. Madalozzo
et al. [8] proposed a virtual platform that combines different
architecture description languages and simulators to improve
software productivity in many-core systems, providing fast
software validation and debuggability. Cataldo et al. [9] built
an abstract platform on GEM5 to model NoC-based MPSoCs
and evaluate synchronization mechanisms of parallel applica-
tions.

This work provides a platform with a parameterizable hard-
ware model that allows software development and hardware
behavior testing while preserving temporal and spatial traffic
distribution. The knowledge of the traffic behavior may be
used to identify hotspots [12] or detect anomalies that may
signalize attacks [13].

The original contributions of the present work include:
• a many-core platform with a state-of-the-art processor

that uses an open-source Operating System (OS), allow-
ing fast software evaluation in complex systems up to
hundreds of processors;

• modeling that preserves the behavior at the instruction
cycle level, both for the processors and the NoC;

• a set of communication and management Application
Programming Interface (API), loosely coupled to the OS
to enable their portability to other OSs;

• support for management techniques, such as the Observe-
Decide-Act (ODA) loop [14], using the APIs and hard-
ware monitors.

II. Chronos-V MODEL OVERVIEW

Figure 1 presents a general view of the Chronos-V many-
core, organized in three layers.

The hardware layer corresponds to the physical components.
Interrupt signals and MMRs (Memory-Mapped Registers)
implement the interface between hardware and OS layers.
The MCSoC is composed by Processing Elements (PEs)
interconnected through a NoC. Each PE contains a RISC-V
processor, a local memory, a network interface, a NoC router,
and an instruction counter and it has an unique address that978-1-6654-8128-1/22/$31.00 ©2022 IEEE

20
22

 3
5t

h
SB

C/
SB

M
ic

ro
/I

EE
E/

AC
M

 S
ym

po
siu

m
 o

n
In

te
gr

at
ed

 C
irc

ui
ts

 a
nd

 S
ys

te
m

s D
es

ig
n

(S
BC

CI
) |

 9
78

-1
-6

65
4-

81
28

-1
/2

2/
$3

1.
00

 ©
20

22
 IE

EE
 |

 D
O

I:
10

.1
10

9/
SB

CC
I5

55
32

.2
02

2.
98

93
23

5

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on April 19,2023 at 18:59:11 UTC from IEEE Xplore. Restrictions apply.

Processing Element

Operating

System

Layer

Application
Layer

Hardware

Layer

...

System Call

FreeRTOS Commun.

Module

Monitoring

Module

Actuation

Module

Decision

Module

RISC-V Network

Interface Application

Repository

Interruption Memory-Mapped Register

app0
t0 t1 t2
t3 ... tn

app1
t0 t1 t2
t3 ... tn

app2
t0 t1 t2
t3 ... tn

appn
t0 t1 t2
t3 ... tn

Local

Memory

Instruction

CounterRouter

Fig. 1. Chronos-V system layers. Dotted borders represent centralized
modules, whereas contiguous borders represent modules replicated throughout
the system.

identify its position into the NoC. The Application Repository
(Apprep) is a peripheral that provides application binary code
to run in the system.

The application layer encompasses general-purpose applica-
tions (app0, app1, ..., appn). Each application has one or more
tasks (t0, t1, ..., tn). Each task executes in a given PE, whose
address is defined by a mapping heuristic. The communication
paradigm adopted is the Message Passing Interface (MPI),
which is available to applications tasks through system calls
that trigger the OS layer.

The OS layer uses FreeRTOS (https://www.freertos.org/),
an open-source real-time OS responsible for managing the
tasks assigned to the PE. The FreeRTOS received four addi-
tional modules: Communication, Monitoring, Actuation, and
Decision. The Communication Module serves its API to the
Application Layer, implements the MPI message exchange,
and implement drivers to communicate with the NoC. The re-
maining modules implement the ODA management functions.

III. Chronos-V MODEL

A. Hardware Layer
Many-cores may fall in two main classifications: homoge-

neous and heterogeneous [15]. Chronos-V fits in the second
category because it contains two types of PEs: the General Pur-
pose Processing Elements (GPPE) and peripherals. Figure 2(a)
overviews the many-core components, highlighting the GPPE
region that contains a set of homogeneous PEs, which execute
general purpose applications.

Figure 2(b) details the general-purpose PE architecture.
The many-core employs a RV32IM (32-bit RISC-V with
multiply/divide extension) core. The core is connected to the
local memory and to the network interface (NI) that has direct
memory access (DMA) capability, allowing the processor to
delegate data transfers between NoC and local memory. At the
OS level, an API configures the NI for packet reception and
packet transmission, reducing the processor overhead related
to packet handling.

The local memory has two ports and stores code and
instructions. This memory model was selected to reduce the
system complexity and power consumption related to cache
controllers and NoC traffic to supply cache lines. The NoC
router has the following characteristics: wormhole packet
switching, 2D-mesh topology, XY routing, round-robin arbi-
tration, input buffering, and credit-based flow control.

S S S S S S S S

S S S S S S S S

S S S S S S S S

S S S S S S S S

S S S S S S S S

S S S S S S S S

S S S S S S S S

M
 S S S S S S S

Application
Repository Peripheral 3 Peripheral 4

RISC-V

Core

Lo
ca

l M
em

or
y

NI

Router

M

S

Manager PE

Slave PE

Chronos-V top view

Processing Element

(a) (b)

General Purpose Processing
Elements (GPPE)

In
st

ru
ct

io
n

C
ou

nt
er

Peripheral 2

Fig. 2. Chronos-V many-core. The system has two main regions, (a) General
Purpose Processing Elements (GPPE); (b) peripherals connected to the NoC
border ports.

The instruction counter module classifies and counts the
number of instructions executed by the processor to enable
power and temperature estimations. This module is included
in the system when a given management strategy requires
monitoring at the PE level. The OS periodically accesses the
monitored information and transmits it to the management
functions.

Peripherals provide specialized services for the system and
applications (as hardware accelerators). The system requires
at least one peripheral: the Apprep. The Apprep transmits to a
manager PE (MPE) requests for new applications to execute
in the GPPE area. This MPE runs the task mapping, sending
back to the Apprep the address mapped for each task. In the
sequence, the Apprep transmits the tasks binary code to the
PEs in the GPPE area where they were mapped to. Note that
the MPE runs the same OS as the remaining PEs, being able
of executing decision functions, such as application mapping,
its the only difference.

B. Operating System Layer
The main component of the OS layer is the FreeRTOS

kernel that allows tasks to be organized as a collection
of independent threads. The kernel schedules these threads
according to their priority. Kernel functionality is extended by
the following system modules:

• communication module – enables communication
among tasks mapped at different PEs;

• monitoring, decision, and actuation modules – manage
the system using the ODA control method.

Note that general-purpose tasks have lower scheduling pri-
ority when compared to system modules.

Summarizing, the OS layer encompasses the FreeRTOS
kernel that schedules the general-purpose tasks and the system
modules. The proposed architecture aims to achieve a generic
and modular OS layer, enabling designers to perform exper-
iments related to system management by allowing to easily
replace system modules according to their needs.

The communication module works as follows:
• When a PE receives a packet, this module reads this

packet header to identify its service, i.e., the action the
packet is requiring and provides the appropriate address
to write the packet payload. A packet may contain user-
level services, such as a request for data or data deliver,
or OS services, such as start/stop a task, allocate a task,

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on April 19,2023 at 18:59:11 UTC from IEEE Xplore. Restrictions apply.

inform the end of execution of a given task, change the
PE operating frequency, among others.

• This module configures MMRs and signalizes to the NI
to inject the packet into the NoC. A packet transmission
assumes that it is stored in the local memory. Therefore,
after injecting the packet into the NoC, the NI signalizes
to the communication module to release the memory
reserved for that packet, opening space for new packets.

Figure 3 illustrates the communication flowing from a
producer PE to a consumer PE. When the producer PE is
ready to send a packet, the SendRaw() function configures
the NI to inject the packet into the NoC. The consumer PE
NI interrupts the processor upon the packet header reception.
Then, the OS configures the memory address to write the
incoming packet. After writing into the memory, the packet
is available to the task waiting for its reception.

Producer PE Consumer PE

OS Layer

Lo
ca

l M
em

or
y

Sends a packet:

SendRaw(&header)

Hardware

Layer

header
size

payload

data&

Mem. Mapped Reg.

NI configuration

NI with DMA
Send

Local M
em

ory

header
size

payload

data &

NI with DMA
Receive

Interrupt

Mem. Mapped Reg.

NI configuration

Network on-Chip

Packet available to
read

Fig. 3. Communication flowing from a producer PE to a consumer PE.

The monitoring module is triggered periodically to acquire
local data to feed the decision module. The monitoring window
period is defined at design time. In the current Chronos-
V implementation, this module has two sensing sources. The
first one is the Instruction Counter, which classifies and counts
the amount of executed instructions in a given monitoring
window. The second one is the Router Counter (embedded
into the router), which counts the number of packets and flits
traversing the router in a monitoring window. Using these
counters, the monitoring module estimates the PE energy
according to Equation 1. At the end of the monitoring window,
the OS sends the computed energy to the MPE .

EnergyPEx
=

C−1∑
i=0

(ctI[i] ·Ec[i]) + ctM ·Emem + ctF ·Eflit (1)

Where:
• C: Number of categories (e.g., load, store, arithmetic,

branch, jump, multiplication, and division) that the in-
struction counter classifies the executed instructions;

•
∑C−1

i=0 (ctI[i] · E[i]): processor energy component, ob-
tained by multiplying the number of executed instructions
in a given category (ctI[i]) by the average energy to
execute an instruction of the category (Ec[i]);

• ctM · Emem: memory energy component, corresponds
to the number of executed load and store instructions
(ctM) multiplied by the average energy cost to access
the memory (Emem);

• ctF ·Eflit: router energy component, corresponds to the
number of flits that traversed the router (ctF) multiplied
by the average energy cost to transmit one flit (Eflit).

The decision module runs in the MPE . This module
receives raw monitoring data from every PE periodically
according to the monitoring module window. The management
heuristic uses the monitoring information to make decisions
according to design goals. For example, suppose the decision
module detects a temperature violation or a trend in tem-
perature increase in a given PE. In this case, this module
may send a message to the actuation module running at this
PE to migrate a task or reduce the frequency (DVFS). The
application mapping is also a function of the decision module.

The actuation module runs at each PE, including the
MPE . The actuation module executes actions generated by
the decision module.

When a PE receives a task allocation packet, the actuation
module allocates memory to the arriving task. It informs the
task starting memory address to the NI, which writes into the
memory the object code sent by the Apprep. After receiving
the task code, the OS schedules the task to execute in the PE.

Figure 4 illustrates the task migration protocol. The decision
module transmits a migration request packet (event 1)
to the source PE (2). The source PE runs the task to be
migrated until it reaches a safe migration state (3). Reaching
this state, the OS stalls the task, sending a migration
acknowledge (4) to the MPE . Upon receiving this packet,
the MPE stalls all other tasks belonging to the same applica-
tion (5-6), preventing packet exchanges with the task that will
migrate. Next, the MPE notifies the source PE to forward the
task code and data to the target PE (7). When the task reaches
the target PE (8), the OS recreates the task, but it remains
blocked. The target PE (8) notifies the MPE the successful
migration through a forward complete packet (9). The
final step is the application release through a task resume
packet. This process creates an overhead in the application
execution due to the task suspension to prevent losing packets
during the migration.

Manager PE Source PE Target PE Other Tasks

1
2

3

5
6

4

7
8

9
10

Migration Request

Migration Acknowledge

Migration Stall
Stall Acknowledge

Task Forward Forwarding

Forward Complete

Task Resume

 ti
m

e

M
ig

ra
tio

n
O

ve
rh

ea
d

10

Fig. 4. Events diagram of task migration protocol implemented in the
Chronos-V manycore.

Another actuation example supported by the platform is
DVFS. As it is modeled at an abstract level (OVP), the change
in frequency and voltage is simulated by changing the simula-
tion quantum (detailed in Section IV). The energy computation
considers different voltage-frequency pairs, depending on the
processor state.

C. Application Layer
This layer corresponds to general-purpose applications.

Each application contains a set of tasks. Those applications
must be position-independent executables to allow multi-
tasking without virtual memory management support. The

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on April 19,2023 at 18:59:11 UTC from IEEE Xplore. Restrictions apply.

applications, which are stored outside the MCSoC computing
fabric, are deployed into the system through the Apprep. The
Apprep communicates with the MPE , that executes the task
mapping protocol. After transmitting all tasks to the selected
PEs, the MPE releases the application execution. System calls
make the interface between tasks and the OS layer, allowing,
for example, inter-task communication.

Figure 5 presents the message passing protocol. Each mes-
sage exchange requires two packets:

• message request, sent by the consumer task to the
producer task, informing that the task is ready to receive
a message. After sending this packet, the consumer task
remains blocked, waiting for the message reception.

• message delivery, sent by the producer task after
receiving the message request, contains the mes-
sage payload. This packet is sent immediately after the
message request if the message is already in the
packet queue (Figure 5(a)). Otherwise, the OS registers
the request (pending request), transmitting the message
once the task generates it (Figure 5(b)).

Producer

Task

1
2

 ti
m

e

Consumer
Task

3
4

Message Request

Message Delivery

Producer

Task

1

Consumer
Task

2

4
Message Delivery

3

(a) (b)

Message goes to
the queue Pending request

Message Request

Fig. 5. Events diagram of message passing protocol implemented in the
Chronos-V manycore.

When a task finishes its execution, the OS blocks its
scheduling and waits for the consumption of packets stored in
the packet queue. Next, the OS notifies the MPE and releases
the task memory. The MPE upon receiving the “concluded”
packet from all tasks of a given application, this application
is considered finished. This notification is important to release
data structures used by the decision module.

IV. SIMULATION MODEL

We adopted Open Virtual Platform (OVP) [16] to model
and simulate the platform. The Chronos-V model preserves
the temporal and spatial traffic distributions when compared
to the physical implementation [17].

The platform simulation starts with a command line with
five parameters: (i) simulation name, used to create a self-
contained folder with the platform configuration, allowing
reusing its configuration for different applications; (ii, iii) X
and Y, corresponding to the system size; (iv) the management
algorithm used in the simulation (if any); (v) the scenario file
with the applications set to execute. It is possible to define for
each application its injection time and if its runs periodically.

According to the provided parameters, the script responsible
for creating the self-contained folder adjusts the platform
source code and the hardware description. Next, every system
component is compiled. The system components include the
NoC router, the Apprep, the NI, and the virtual components
that support the system simulation, like the iterator (discussed
next).

The script creates a .tcl file with the system component
instances and their interconnections that together forms the

system model. In this file, each processor is defined and
connected to every component that composes a PE, the NoC
routers are connected to their respective neighbors, and the
peripherals are connected to the NoC borders. The .tcl file
is submitted the iGen [16] tool, that generates a .c file that
models the system using the Open Platform (OP) API. Finally,
it is compiled to generate the actual system model.

On top of that, there is the simulation manager, named har-
ness [16], responsible for instantiating the system model and
providing stimulus to it (it acts as a test bench). The simulation
paradigm adopted by OVP is quantum-based with instruction
accuracy. Definition 1 defines the quantum parameter.

Definition 1. Quantum – period that each processor executes.
After all processors have executed their quantum period, the
simulation advances the current time by a quantum, restarting
at the first processor.

To compute the quantum, the number of cycles per instruc-
tion (CPI) is assumed equal to one. Equation 2 presents how
to compute the quantum value.

quantum = InstQ/CoreIPS (2)

Where: InstQ amount of instructions executed during the
quantum period; CoreIPS number of instructions per second.
As CPI=1, this parameter is equal to the processor frequency.

The synchronization between processors, i.e., the communi-
cation among them, occurs after all processors have executed
their quantum. Thus, to avoid processors stalling while waiting
for data, InstQ must consider the trade-off between communi-
cation and computation. If InstQ is too small, the simulation
speed decreases due to the number of synchronization steps,
while large InstQ values stall processors waiting for data.

When all PEs have the same InstQ, we consider that the
system is operating in a homogeneous frequency. As the quan-
tum value is the same for all processors, it is possible to modify
the processor frequency (CoreIPS) by modifying in the same
proportion InstQ. For example, considering CoreIPS=1GHz
and InstQ=10,000, the quantum is 1× 10−5s. If a processor
needs to run at 500MHz, it is necessary to adjust its InstQ
to 5,000. This is the method to simulate the DVFS actuation.

Algorithm 1 presents a pseudo-code of the simulation loop
defined in the harness. The simulation starts by releasing each
processor (Pi) to simulate a quantum period (lines 3 to 5). The
simulate() function returns True if the simulated pro-
cessor finishes its execution, otherwise False. The execution
of those processes is parallelizable, and the join() (line 6)
waits for every process completion. It is important to note
that during the execution within the quantum, each processor
only has access to data in its local memory and, consequently,
packets that were delivered into the local memory by the NI.

The parallel behavior of components that do not rely
purely on executed code, especially those depending on the
communication through the NoC, was a challenge to model
due to the absence of mechanisms that allowed the routers
and processors to execute in parallel. To solve this problem
we have developed a virtual peripheral called iterator, that is
responsible for orchestrating routers after the execution of all
processors.

The iterator behavior is expressed in the pseudo-code at
lines 7 to 11. The execution calls the iterate() function
for each router (Rj) in the system model sequentially. Each

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on April 19,2023 at 18:59:11 UTC from IEEE Xplore. Restrictions apply.

“iteration” makes the router send one flit ahead, if available,
to the next router in the packet route. When no flit can
advance due to traffic or none is available to transmit, the
function returns True. This loop is repeated until every router
“iteration” returns True.

Algorithm 1: Simulation loop pseudo-code
Input: model, InstQ[N], quantum

1 SimulationT ime ← 0

2 repeat
3 foreach Pi in model do
4 Finishedi = simulate(Pi, InstQ[i]).start()
5 end
6 join()

7 repeat
8 foreach Rj in model do
9 Finishedj = iterate(Rj)

10 end
11 until Finishedj = True ∀ j

12 SimulationT ime + = quantum

13 until Finishedi = True ∀ i

Figure 6 exemplifies a 3x3 system with three packets being
sent in the same quantum: 6 → 7; 0 → 7; 2 → 4. Each router
is “iterated” sequentially, and, in the first turn the first flit of
each packet advances one router (Fig. 6(a)). In the next turn,
the R1 selects one of the two available packets to routing,
following a Round Robin policy and forward the flit from 0
while blocking the flow from 2. Also, NI7 receives the packet
from 6 and blocks the R7 local port. This way, in the next
turn the flow 0 → 7 stops at the R7 south buffer and flow
2 → 4 stays blocked at the R1 east port (Fig. 6(b)). At this
point, no flit can be forwarded and the simulation quantum
ends by increasing the simulated time by one quantum (line
12). In the next quantum, the NI7 interrupt the processor to
get a memory address to save the incoming packet, releasing
the R7 local port.

R6 R7 R8

R3 R4 R5

R1R0

NI7

R2

R6 R7 R8

R3 R4 R5

R1R0

NI7

R2

(a) (b)

blocked path due to unavailable port

Fig. 6. Example of packets behavior after being sent in the same quantum.

Harness also provides assessing functions using the OP
API, for example, the “instruction counter” module is a
monitor (opProcessorFetchMonitorAdd()) that gen-
erates a callback in the harness every time the processor
fetches a new instruction from memory. Inside the callback,
the instruction is identified and categorized. After that, it
updates the instruction counter amount in the PE memory
(opProcessorWrite()), which is accessed periodically
by the monitoring module to estimate the processor energy
consumption.

V. RESULTS

This Section evaluates the simulation speedup by comparing
the proposed abstract model simulation against an RTL simula-
tion. Next, we present thermal management techniques added
to the FreeRTOS, to demonstrate that abstract models enable
the development of management heuristics without the need
to execute the RTL simulation. All simulations were executed
in a workstation with a Xeon E-2246G@3.6 GHz processor
(12 cores), 16GB DDR4 2666MHz dual-channel DRAM, with
Ubuntu 20.04.

A. Simulation Effort
How fast is the many-core simulation using an abstract

platform model? We compare the Chronos-V platform, running
FreeRTOS, against a similar platform modeled at the RTL
level (SystemC) – Memphis, running an in-house microkernel
[18]. This experiment evaluates the simulation effort (min/s),
i.e., the time required to simulate one second of the system
model. The experimental included: (i) 9 system sizes, from 4
to 100 PEs; (ii) execution times ranging from 100ms to 1s
(10 scenarios); (iii) system load equal to 50%. For example, a
64-PE system executes 32 tasks. The Chronos-V platform was
evaluated for the 90 scenarios, while the Memphis simulated
46 scenarios due to the higher simulation time.

Figure 7 presents the average simulation effort to execute
the proposed scenarios. The Chronos-V simulation varies from
2.36 min/s up to 92.46 min/s for system sizes ranging
from 4 to 100 PEs, respectively. The Memphis requires
147.9 min/s up to 3,731.39 min/s for the same system
sizes. The speedup decreased because in the quantum-based
simulation all processors need to be simulated (multi-thread
simulation, using up the 12 cores of the host machine) and
synchronized at the end of this period (line 6 of Algorithm 1).
In terms of absolute values, OVP required 1h30min while the
RTL 62h13min to simulate a system with 100 PEs, running
50 tasks simultaneously.

Fig. 7. The Chronos-V and Memphis simulation effort.

It is important to note that the platforms have different goals.
Due to the clock-cycle accuracy, RTL simulation aims to val-
idate the many-core hardware. The abstract model simulation
seeks to validate the software development, both at the user
and management levels. The Chronos-V originality is to offer
to designers simulation speed, with an NoC behavior similar to
the RTL model (paths taken and congestion effects). This fea-
ture allows designers to assess, for example: (i) the presence
of hotspots and improve task mapping; (ii) study security-
related techniques, such as detecting traffic anomalies that may
indicate attacks; (iii) thermal management techniques.

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on April 19,2023 at 18:59:11 UTC from IEEE Xplore. Restrictions apply.

B. Management Evaluation
This experiment aims to demonstrate the Chronos-V capa-

bility to provide an environment to test MCSoC management
techniques. Experiments adopt an 8x8 MCSoC, running 36
tasks. Three scenarios are evaluated: (i) “no management”, i.e.,
tasks execute at the nominal voltage-frequency; (ii) chessboard
patterning mapping [19] (PM), adopted to improve tempera-
ture distribution, but does not use thermal management; (iii)
a Proportional, Integral, and Derivative Temperature Man-
agement (PIDTM) [20]. Figure 8 presents the system peak
temperature and the system average temperature. The system
temperature is calculated by a MatEx [21] module that uses
the power estimations provided by monitoring (Equation 1).

0.20 0.22 0.24 0.26 0.28 0.30 0.32 0.34
Time (s)

60

65

70

75

80

Te
m

pe
ra

tu
re

 (°
C)

Peak Temperature

PIDTM Pattern No Management

0.20 0.22 0.24 0.26 0.28 0.30 0.32 0.34
Time (s)

55

60

65

70

Te
m

pe
ra

tu
re

 (°
C)

Average Temperature

PIDTM Pattern No Management

Fig. 8. Comparison between peak and average system temperature for three
different management techniques.

As shown in the graphs, the absence of a management
technique leads to higher peak temperatures and hotspots,
which may affect reliability and lifetime [22]. PIDTM and PM
present similar peak temperatures, showing that PM effectively
reduces the peak temperature due to the temperature transfer
reduction between neighbor PEs. However, a management
technique relying on monitoring and actuation, like PIDTM,
reduces the average temperature by 4.71º compared to PM.
Our objective here is not to detail the management techniques
but to demonstrate that the Chronos-V platform offers the
possibility to develop and test software for large systems
quickly.

VI. CONCLUSION

This paper presented the Chronos-V platform suitable for
the research in management techniques and the development
of parallel applications for MCSoCs with dozes of PEs.
The hardware model adopted a quantum-based simulator to
speed up the simulation, being two orders of magnitude faster
when compared to clock cycle-accurate models. The software
adopted an open-source OS, freeRTOS, extended with APIs
to enable PE-PE communication and system management. We
demonstrate the capability to evaluate the system management
using thermal heuristics, added to the freeRTOS as an API.
The proposed high-level model help designers leverage the
research in the field of NoC-based many-core systems.

This platform paves the way for future works that include:
(i) inclusion of reliability monitoring metrics into the system;
(ii) perform studies of reliability-aware management tech-
niques.

ACKNOWLEDGMENT

The authors would like to thank Imperas Software and Open
Virtual Platforms for their support and access to their models and
simulator. This work was financed in part by CAPES (Finance Code
001), and CNPq (grant 309605/2020-2).

REFERENCES

[1] D. R. Ditzel and Esperanto team, “Accelerating ML Recommendation
with over a Thousand RISC-V/Tensor Processors on Esperanto’s ET-
SoC-1 Chip,” in HCS, 2021, pp. 1–23.

[2] M. Hassan, “Heterogeneous MPSoCs for Mixed-Criticality Systems:
Challenges and Opportunities,” IEEE Design & Test, vol. 35, no. 4,
pp. 47–55, 2018.

[3] P. Rahimi, A. K. Singh, X. Wang, and A. Prakash, “Trends and
Challenges in Ensuring Security for Low-Power and High-Performance
Embedded SoCs,” in MCSoC, 2021, pp. 226–233.

[4] R. Leupers, L. Eeckhout, G. Martin, F. Schirrmeister, N. P. Topham, and
X. Chen, “Virtual Manycore platforms: Moving towards 100+ processor
cores,” in DATE, 2011, pp. 715–720.

[5] R. Lemaire, S. Thuries, and F. Heitzmann, “A flexible modeling envi-
ronment for a NoC-based multicore architecture,” in HLDVT, 2012, pp.
140–147.

[6] C. Helmstetter, S. Basset, R. Lemaire, F. Clermidy, P. Vivet,
M. Langevin, C. Pilkington, P. G. Paulin, and D. Fuin, “A dynamic
stream link for efficient data flow control in NoC based heterogeneous
MPSoC,” in ASP-DAC, 2013, pp. 41–46.

[7] L. Duenha, M. Guedes, H. Almeida, M. Boy, and R. Azevedo, “MP-
SoCBench: A toolset for MPSoC system level evaluation,” in SAMOS,
2014, pp. 164–171.

[8] G. A. Madalozzo, M. Mandelli, L. Ost, and F. G. Moraes, “A platform-
based design framework to boost many-core software development,” in
ICECS, 2015, pp. 320–323.

[9] R. Cataldo, R. Fernandes, K. J. M. Martin, J. Sepúlveda, A. A. Susin,
C. A. M. Marcon, and J. Diguet, “Subutai: distributed synchronization
primitives in NoC interfaces for legacy parallel-applications,” in DAC,
2018, pp. 83:1–83:6.

[10] G. L. Lima, N. de Farias Traversi, D. F. Adamatti, G. P. Dimuro,
C. Meinhardt, E. W. Brião, and O. M. Mendizabal, “Exploring MAS
to a High Level Abstration NoC Simulation Environment,” in ICECS,
2018, pp. 365–368.

[11] Y. M. Qureshi, W. A. Simon, M. Zapater, D. Atienza, and K. Olcoz,
“Gem5-X: A Gem5-Based System Level Simulation Framework to
Optimize Many-Core Platforms,” in SpringSimu, 2019, pp. 1–12.

[12] M. F. Reza, D. Zhao, and M. A. Bayoumi, “Power- Thermal Aware
Balanced Task-Resource Co-Allocation in Heterogeneous Many CPU-
GPU Cores NoC in Dark Silicon Era,” in SOCC, 2018, pp. 260–265.

[13] G. F. Junior., J. Rodrigues, L. F. Carvalho, J. Al-Muhtadi, and M. L. P. Jr,
“A comprehensive survey on network anomaly detection,” Telecommun.
Syst, vol. 70, no. 3, pp. 447–489, 2019.

[14] H. Hoffmann, M. Maggio, M. D. Santambrogio, A. Leva, and A. Agar-
wal, “A generalized software framework for accurate and efficient
management of performance goals,” in EMSOFT, 2013, pp. 1–10.

[15] P. Chakraborty, B. N. Swamy, and P. R. Panda, “Manycore processor
architectures,” in Many-Core Computing: Hardware and Software, B. M.
Al-Hashimi and G. V. Merrett, Eds. The Institution of Engineering and
Technology, 2019, ch. 17, pp. 419–448.

[16] “Open Virtual Platforms - the source of Fast Processor Models &
Platforms,” 2022. [Online]. Available: www.ovpworld.org

[17] G. Lopes, I. I. Weber, C. A. M. Marcon, and F. G. Moraes, “Chronos:
An Abstract NoC-based Manycore with Preserved Temporal and Spatial
Traffic Distribution,” in LASCAS, 2021, pp. 1–4.

[18] M. Ruaro, L. L. Caimi, V. Fochi, and F. G. Moraes, “Memphis: a Frame-
work for Heterogeneous many-core SoCs Generation and Validation,”
Design Automation for Embedded Systems, vol. 23, no. 3-4, pp. 103–
122, 2019.

[19] X. Wang, A. K. Singh, and S. Wen, “Exploiting dark cores for per-
formance optimization via patterning for many-core chips in the dark
silicon era,” in NOCS, 2018, pp. 1–8.

[20] A. L. da Silva, A. Martins, , and F. G. Moraes, “Mapping and Migration
Strategies for Thermal Management in Many-Core Systems,” in SBCCI,
2020, pp. 1–6.

[21] S. Pagani, H. Khdr, W. Munawar, J. Chen, M. Shafique, M. Li, and
J. Henkel, “MatEx: Efficient transient and peak temperature computation
for compact thermal models,” in DATE, 2015, pp. 1515–1520.

[22] M.-H. Haghbayan, A. Miele, Z. Zouv, H. Tenhunen, and J. Plosila,
“Thermal-cycling-aware dynamic reliability management in many-core
system-on-chip,” in DATE. IEEE, 2020, pp. 1229–1234.

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on April 19,2023 at 18:59:11 UTC from IEEE Xplore. Restrictions apply.

