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Abstract—Artificial Intelligence (AI) solves complex tasks like
human activity and speech recognition. Accuracy-driven AI
models introduced new challenges related to their applicability in
resource-scarce systems. In Human Activity Recognition (HAR),
state-of-the-art presents proposals using complex multi-layer
LSTM networks. The literature states that LSTM networks are
suitable for treating temporal-series data, a key feature for HAR.
Most works in the literature seek the best possible accuracy, with
few evaluating the overall computational cost to run the inference
phase. In HAR, low-power IoT devices such as wearable sensors
are widely used as data-gathering devices, but little effort is made
to deploy AI technology in these devices. Most studies suggest an
approach using edge devices or cloud computing architectures,
where the end-device task is to gather and send data to the
edge/cloud device. Most voice assistants, such as Amazon’s Alexa
and Google, use this architecture. In real-life applications, mainly
in the healthcare industry, relying only on edge/cloud devices is
not acceptable since these devices are not always available or
reachable. The objective of this work is to evaluate the accuracy
of convolutional networks with a simpler architecture, using 1D
convolution, for HAR. The motivation for using networks with
simpler network architectures is the possibility of embedding
them in power- and memory-constrained devices.

Index Terms—Artificial Intelligence, Machine Learning, Hu-
man Activity Recognition, 1D Convolutional CNNs

I. INTRODUCTION

With the ever-increasing elder population, falls were ac-
cepted as an illness for older adults in the International
Classification of Disease-9 (ICD-9) and ICD-10 [1]. Monteiro
et al., in their research, found that more than 30% of deaths
along people older than 60 years old are due to a hard
fall. Much is done to prevent emergencies in elderly homes,
from hold bars in bathrooms to 24/7 nurse care. In a real-
world environment, it’s impossible to prevent all emergencies,
thus the need to detect these situations in real-time and act
accordingly.

Human Activity Recognition (HAR) is the process in which
data is analyzed and processed to determine the person’s
activities, such as walking, running, sitting, and showering.
Historically, sensor data of human activity was scarce, and
retrieval was expensive and complex. Currently, where smart-
phones and wearable devices are affordable and filled with
different sensors such as accelerometers and gyroscopes, data
can be easily obtained, and recorded [2].

The growth and high availability of mobile phones and IoT
sensors with complex sensor arrays led to many proposals
related to the HAR subject. Therefore, embedded devices
became the target platform for HAR. Data gathering for HAR

can be done in various ways with wearable sensors, such as
the use of smartwatches and smart bracelets. With the high
availability of smartphones, even in the elderly population,
recent studies used these devices to record and classify human
activity [1].

Recent studies proposed neural network models to be
applied in HAR tasks, including complex architectures that
presented low real-life applicability due to the computational
costs demanded. This is an issue in various AI tasks. More
complex tasks such as speech recognition for virtual assistants
are mainly cloud-based [3], where the only task of local
devices is to work as input data of the neural network located
off-site in a dense server dedicated to AI.

HAR is essentially a time series classification problem in
which data should be processed in time frames, resembling
signal processing problems. The classification involves pre-
dicting the movement of a person based on raw sensor data.

HAR can also be treated as a pattern recognition problem
using machine learning (ML) approaches. Examples of ML
approaches for HAR include decision trees, support vector
machines (SVM), and Markov models. Recent developments
in Convolutional Neural Networks (CNNs) and Recurrent
Neural Networks (RNN) lead to a high-accuracy activity
recognition [4]. The complexity and overhead (processing
time and memory footprint) of RNNs, in particular LSTMs
(Long Short-Term Memory) implementations, lead to hybrid
approaches, mixing CNNs with LSTMs [5]. The goal is to
combine the CNN feature extraction properties with the time
series processing ability of LSTM.

Recent advances in AI adopt the CNN-only approach to
various problems, seeking overhead reduction during the in-
ference phase while maintaining a state-of-the-art accuracy.
CNNs have shown promising results in applications such as
image processing in battery-powered devices [6]. In a sensor-
based HAR scenario, battery-powered devices are the only
option, and only a few studies evaluate how a low-power CNN-
only approach would perform in this scenario.

The goal of this work is to evaluate and optimize a 1D
Convolutional Neural Network for its use in resource-scarce
embedded systems. To meet this objective, this work evaluates
and extends a 1D CNN for HAR [7].

This paper is organized as follows. Section II presents the
state-of-the-art of AI in HAR tasks. Section III details the
reference 1D CNN model. Section IV details the optimizations
carried out in the 1D CNN model with the goal of improv-
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TABLE I
RELATED WORKS ON ML APPLIED TO HAR.

Work Model Modeling Goals
LSTM Networks Using Smartphone Data for
Sensor-Based Human Activity Recognition in
Smart Homes [2]

LSTM TensorFlow Compare different LSTM approaches

Human activity recognition from inertial sensor
time-series using batch normalized deep LSTM
recurrent networks [8]

LSTM Keras Python LSTM accuracy for temporal correlation analysis

Convolutional Neural Networks for Human Activity
Recognition using Mobile Sensors [1] CNN not defined by the

Authors
Novel CNN approach to achieve state-of-the-art
accuracy in HAR problem

Pre-Impact Fall Detection with CNN-Based Class
Activation Mapping Method [9] CNN PyTorch

Pre-impact fall detection, combining CNNs and
threshold-based methods to reduce the
computational cost to run on the wearable device

All binarized convolutional neural network and its
implementation on an FPGA [10] Binarized CNN Pytorch State-of-the-art accuracy in a FPGA using

low-power and low-area techniques
Deep Convolutional and LSTM Recurrent Neural
Networks for Multimodal Wearable Activity
Recognition [11]

CNN + LSTM Lasagne Improve accuracy of LSTM approach using CNN
as Feature Extractor

Towards effective detection of elderly falls with
CNN-LSTM neural networks [12] CNN + LSTM not defined by the

Authors
Accurate fall detection using wearable sensors in
elderly population

ing accuracy without increasing the CNN model complexity.
Section VI concludes this paper and point-out directions for
future work.

II. RELATED WORK

Table I presents related work, where each row color cor-
responds to an ML method: LSTM in red, CNN in green
and hybrid approaches in blue. Section II-A and Section II-B
present LSTM and CNN approaches, respectively. Hybrid
approaches are described in Section II-C. Section II-D presents
how this work fills the gaps observed in the literature.

A. LSTM Approaches

Standard Recurrent Neural Networks (RNNs) suffer from
short-term memory due to a vanishing gradient problem that
emerges when working with longer data sequences [8]. More
advanced versions of RNNs, such as Long Short-Term Mem-
ory (LSTM) and Gated Recurrent Units (GRU), can preserve
information from earlier sequence parts and carry it forward.
LSTM contains “memory cells”, allowing to make predictions
based on prior information [2].

Mekruksavanich et al. [2] compare LSTM architectures
in activities of daily living recognition: (i) Vanilla LSTM;
(ii) 2-stacked LSTM; (ii) 3-stacked LSTM. The original
LSTM model (Vanilla LSTM) consists of an individual LSTM
layer followed by a classifier with a Dropout Layer, a Fully
Connected Layer, and a SoftMax layer. The stacked LSTM
architectures contain the same classifier layers but include
more LSTM layers, taking advantage of the temporal feature
extraction of each layer. Figure 1 shows these architectures.
Mekruksavanich et al. [2] also proposes a 4-layer CNN-LSTM,
presenting the best performance of all evaluated networks with
the UCI-HAR dataset. The model achieved 99.39% accuracy,
improving 2.24% from the baseline LSTM.

Zebin et al. [8] propose a stacked LSTM approach, with 2
LSTM layers added before the classifier. Differently from [2],
this architecture uses Batch Normalization inside the classifier
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3.2. LSTM Architectures

The following LSTM network architectures are used in this work: Vanilla LSTM net-
work, 2-Stacked LSTM network, and 3-Stacked LSTM network, as illustrated in
Figures 10–12, respectively. The original LSTM model (or Vanilla LSTM network) comprises
an individual hidden layer of LSTM, followed by a common feedforward output layer. The
Stacked LSTM networks are upgraded versions of the original model with multiple hidden
LSTM layers. Each layer of the Stacked LSTM network contains multiple memory cells. A
Stacked LSTM structure can be technologically defined as an LSTM model, consisting of
multiple LSTM layers to take advantage of the temporal feature extraction obtained from
each LSTM layer.

Figure 10. Vanilla LSTM network architecture.

Figure 11. 2-Stacked LSTM network architecture.

Figure 12. 3-Stacked LSTM network architecture.

The CNN-LSTM architecture employs CNN layers in the feature extraction process
of input data incorporated with LSTMs to support sequence forecasting, as shown in
Figure 13. The CNN-LSTMs are built to solve forecasting problems in visual time series
and applications to achieve textual descriptions from image sequences. This architecture is
appropriate for issues involving a temporal input structure or requiring output generation
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Fig. 1. Vanilla and 3-Stacked LSTM Network architectures [2].

to reduce training epochs needed to increase the accuracy,
as demonstrated by [2]. This work uses a waist-worn sensor
with two sensors: (i) accelerometer; (ii) gyroscope. Each
sensor contains three axes. Sensors data are recorded at a
50 Hz sampling frequency. The raw data from the dataset
was reshaped to allow a 3-D structure, as required for the
LSTM Layer 1 input shape. In this work, 128 1D samples
of each sensor axis are grouped. This work achieved a 92%
average recognition accuracy for 6 daily-life activities. The
Authors highlighted the reduction in training epochs and added
robustness due to the Batch Normalization and Dropout layers.

B. CNN Approaches

The feature extraction is a key component of CNN ap-
proaches to the HAR problem. Zeng et al. [1] propose a
traditional CNN approach using one Convolutional Layer, a
Max-Pooling layer, and two fully connected layers (hidden
layers). Figure 2 shows the proposed architecture. The Authors
use a sliding window of 64 samples with a certain percentage
of overlap to extract input data for the CNN. Different than
other works, the Authors use only one sensor: an accelerometer
with three axes. Input data is shaped into a 2-dimensional
array with 64 samples of each of the three axes. This work
showed the superiority of the CNN approach against other
traditional methods. The Authors highlighted that their results
are experimental, and more experiments with larger datasets,
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such as MobiAct [13] need to be made to study the robustness
of the proposed architecture.

parts of the input were captured by the convolutional layer with
a set of local filters. And the pooling layer can preserver the
invariant features. Top fully connected layer finally combine
inputs from all features to do the classification of the overall
inputs. This hierarchical organization generates good results
in image processing [18], [16] and speech recognition [1]
tasks. In the next section, we will present details of CNN and
describe our proposed CNN-based AR approach.

III. CNN-BASED ACTIVITY RECOGNITION

In this section, we discuss our CNN-based feature
extraction approach. Fig 3 shows the structure of the
proposed approach. Following the settings of [23], given a
3D acceleration time series we use a sliding window with a
length of w values and with a certain percentage of overlap
to extract input data for the CNN.

Our L-layer CNN-based model has three kinds of layers:
1) An input layer (with units h0

i ) whose values are fixed by the
input data; 2) hidden layers (with units hl

i) whose values are
derived from previous layers l − 1; 3) and output layer (with
units hL

i ) whose values are derived from the last hidden layer.
The network learns by adjusting a set of weights wl

i,j , where
wl

i,j is the weight from some input hl
i’s output to some other

unit hl+1
j . We use xl

i to denote the total input to unit ul
i (ith

unit in layer l), and yl
i denotes the output of unit hl

i.

Fig. 3. Structure of CNN for Human Activity Recognition. The dimension
of input data is 64, the dimension convolutional output is 12, the dimension
max-pooling output is 4. The dimension of two hidden layers is 1024 and 30,
respectively. The top layer is a Softmax classifier.

A. Convolutional Layer

In the following we describe how CNN captures local de-
pendencies and the scale invariant characteristics of the activity
signals. In order to capture the local dependencies of the data,
one can enforce a local connectivity constraint between units
of adjacent layers. For example, in Fig 4 the units (neurons)
in the middle layer are only connected to a local subset of
units in the input layer. From biology, we know that there
are complex arrangement of cells in visual cortex, which are
sensitive to small regions of the input, called a receptive field,
and are tiled to generate the entire visual field. These filters

are local in input space and are thus suited to exploit local
correlation hidden in the data, so we also call it local filter. In
terms of local filter, the weight of edge connected ith unit with
jth, wi,j can be reduced by wa, and wi,j = wi,j+m = wa,
where m is the width of the local filter. In Fig 4, the 1D
vector [w1, w2, w3] represents three local filters denoted by
different line style, where wi is weight of edge connecting
in two layers. The convolution operation is conducted over
the local subset. This topological constraint corresponds to
learning a weight matrix with sparsity constraint, which is not
only good for extracting local dependencies, but also reduces
the computational complexity. The output of such a set of
local filters constitute a feature map (Fig 5). At each temporal
position, different types of units in different feature maps
compute different types of features.
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Fig. 4. Left) Traditional weight sharing CNN, Right) Partial weight sharing
CNN. Weights denoted by the same line style are shared

Moreover, in order to form a richer representation of
the data, the convolutional layers are composed of a set of
multiple feature maps (Fig 5), x(·,j), j = 1...J . The following
Fig 5 shows two layers of CNN, containing three feature
maps (x(0), x(1)) at the left layer and two feature maps at
the right layer. Unit’s outputs in x(0) and x(1) are computed
by convolution operation from units of left layer which fall
within their local filter (shown as rectangles in Fig 5). Suppose
we have some N unites layer as input which is followed
by convolutional layer. If we use m width filter w, the
convolutional output will be (N − m + 1) unites. Then the
output of convolutional layer l is:

xl,j
i = σ

(
bj +

m∑

a=1

wj
axl−1,j

i+a−1

)
(1)

where xl,j
i is the l convolution layer’s output of the jth feature

map on the ith unit, and σ is a non-linear mapping, it usually
uses hyperbolic tangent function, tanh(·). Take Fig 4 as an
example, the first hidden unit of the first local filter is

x1
1,1 = tanh(w1,1

1 x0,1
1 + w1,1

2 x0,1
2 + w1,1

3 x0,1
3 + b1)

and the second hidden unit of the second local filter is

x2
1,1 = tanh(w1,1

1 x0,1
2 + w1,1

2 x0,1
3 + w1,1

3 x0,1
4 + b1)

.

In traditional CNN model [18], each local filter is addi-
tionally replicated across the entire input space. That means
the weights of local filters are tied and shared by all positions
within the whole input space. For example, in Fig 4, weights
denoted by the same line style are shared (forced to be
identical). The replicated weights allow the features to be

���

Fig. 2. CNN Network architecture proposed by Zent et al. [1].

Shi et al. [9] propose a similar architecture, with three
1D convolutional layers with 32 output channels, 64 and 128
channels, respectively. The classifier contains a pooling layer, a
fully connected layer, and a SoftMax layer. The Author’s goal
is to detect preimpact movement using the MobiAct dataset,
with a sensor worn on the waist, with a sampling rate of
200 Hz. In the training and validation phases, Shi et al. [9]
used data of falls and activities of daily living (ADLs), such
as walking, jumping, and jogging. This work does not use
all MobiAct classes because there are activities unrelated to
falls, such as elevator riding. This work achieved an accuracy
of 95% using a combination of CNN and Class Activation
Mapping. Unlike other papers that used private datasets, this
study used the MobiAct dataset.

Shimoda et al. [10] present a binarized CNN which treats
binarized values (+1/-1) for the weights and the activation
value. Only the first convolutional layer calculates in integer
precision since the input values are 8-bit RGB pixels. The
proposed method enables a binarized CNN to use bitwise
operation in all layers and shares a binarized convolutional
circuit among all convolutional layers. The Authors argue that
the area is smaller and 1.2 times faster than the typical CNNs,
with accuracy reaching 82.8%.

C. Hybrid CNN+LSTM Approaches

Implementations that combine CNN and LSTM are com-
mon in many areas, such as video classification and fall
detection [12, 14]. This hybrid approach combines the feature
extraction of CNNs, with the temporal analysis of LSTMs.

Ordóñez et al. [11] propose a new Deep Neural Network
framework designed for activity recognition using wearable
sensors. This architecture named DeepConvLSTM combines

convolutional and recurrent layers. Similar to other implemen-
tations, this work uses the convolutional layer as the automated
feature extractor, and the recurrent layer analyses the temporal
dynamics of the feature maps created by the convolutional
layer. The authors highlighted that the proposed framework
improved the accuracy by 4% on average compared to a
baseline CNN approach. The paper did not discuss power and
memory overheads when comparing the hybrid approach to
the standalone CNN approach.

Garcı́a et al. [12] use this approach to detect elderly falls.
Their model includes two CNN layers and one LSTM layer,
presented in Figure 3. An accelerometer sensor worn in the
waist area produces data. Raw data is processed using a sliding
window of 1.28 seconds with 50% overlap to extract time
frames from time-series raw sensor data. Using the UCI-FALL
[15] dataset, the Authors concluded that combining CNN and
LSTM improves accuracy compared to standalone models,
achieving 95% in the test dataset. The Authors highlighted
that accuracy improvement could be obtained in the raw data
processing phase.
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Figure 2: The architecture of the LSTMFD model [10]. The constants w and d refer to
the size of the multivariate TS window and the number of features, correspondingly.

Each CNN stage includes a convolutional, an activation layer and a pool-
ing layers. A convolutional layer includes of 64 nodes with kernel of size 5 and
stride 1, an activation layer includes hyperbolic tangent activation functions;
finally, a pooling layer includes max kernels of size 2 and stride 2. The aim
of these pooling layers is to avoid overfitting as they decrease the spatial size
and, consequently, the number of parameters in the network. As explained in
[10], these layers e↵ectively reduce spatial size by applying a max operation
independently for each depth slice.

The LSTM layer includes 64 nodes and the Dense layers include 32 nodes
each. In this study, three di↵erent versions of this model are used. Whenever
an univariate TS is used, the CNN becomes 1D-CNN of 64 filters, just exactly
the same approach as in [10].

4. Materials and Methods

4.1. Staged Falls Data sets

Several staged fall data sets have been published in the literature [51],
each data set include a set of sensors located in one or more places of a body.
From all the data sets in the literature ([52, 39] among others), this study
choses the UCI-FALL [53], which gathered data with a 3DACC (sampling
frequency of 25 Hz, with a 12 g sensors) placed on a wrist with a su�cient
number of participants (17, all of them performing the same number of ADL
and staged falls) and TS (1843 staged falls and 3326 ADL recordings). Up to
20 di↵erent staged fall types are considered (Forward, Lateral and Backwards
falls among them), and 16 ADL such as running, walking, squatting, bending,
sitting down, stumbling, lying on bed, etc.

10

Fig. 3. CNN+LSTM network proposed by Garcı́a et al. [12].

D. Final Remarks
This Section presented works related to ML frameworks

and models, almost all using IoT sensors to capture data. We
observe a lack of studies using IoT devices as the target device
for ML inference. Optimization techniques were proposed
to minimize the accuracy loss without power and memory
footprint analyses, key parameters for embedded systems.
Mekruksavanich et al. [2] mention using smartphones as a data
capture source, but no effort is made to use the smartphone
as the target for the inference phase.

Many of the proposed models [5, 8, 11, 12] consist of
complex LSTM stacked structures, which require the use of
resources that are scarce in embedded systems, such as volatile
memory area. From one side, these works achieved state-of-
the-art accuracy for many datasets. On the other side, they do
not apply to real-time, battery-powered devices, requiring an
edge or cloud device to process this information. In practice,
edge or cloud devices are unavailable everywhere and every
time, creating the risk of not detecting an emergency, such as
a hard fall event.

Due to the limitations of embedded systems in processing
and energy, it is necessary to study networks with simpler
architectures, such as 1D convolutions. The next Section
presents the 1D reference architecture, which uses three con-
volutional layers, organized as vectors and not matrices.

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on April 19,2023 at 18:46:27 UTC from IEEE Xplore.  Restrictions apply. 



�[��[� �[��[�� �[��[�� �[��[��

�[���� �[���
&ODVVHV

�[�

,QSXW�2XWSXW

�'�&11

)&

Fig. 4. 1D CNN Reference Model.

III. BASELINE 1D CNN MODEL

Paszke et al. [16] introduced the Pytorch framework. It is an
open-source Python library that performs tensor computation
with GPU acceleration capability. Despite Pytorch being a
Python framework, most of this library is written in C++ to
improve performance. It is compatible with most commonly
used GPU technologies such as CUDA and recently received
support for Apple Silicon GPU. One of the key features of the
Pytorch framework is the ability to execute dataflow on GPU
asynchronously.

Figure 4 presents the baseline 1D CNN model [7]. It con-
tains three convolutional layers and two fully connected layers.
It is a relatively simple architecture by today’s standards.
Its goal is not to achieve state-of-the-art accuracy but to
demonstrate the effectiveness of simple CNN models in HAR
tasks.

1 def __init__(self, input_size,
num_classes):↪→

2 super().__init__()
3

4 # Extract features, 1D conv layers
5 self.features = nn.Sequential(
6 nn.Conv1d(input_size, 64, 5),
7 nn.ReLU(),
8 nn.Dropout(),
9 nn.Conv1d(64, 64, 5),

10 nn.ReLU(),
11 nn.Dropout(),
12 nn.Conv1d(64, 64, 5),
13 nn.ReLU(),
14 )
15 # Classify output, fully connected

layers↪→

16 self.classifier = nn.Sequential(
17 nn.Dropout(),
18 nn.Linear(1792, 128),
19 nn.ReLU(),
20 nn.Dropout(),
21 nn.Linear(128, num_classes),
22 )

Fig. 5. Pytorch network modeling.

Figure 5 presents the reference CNN modeled using the Py-
torch framework. Lines 6 to 13 present the Feature Extractor.
Each line corresponds to a specific layer inside this network.
Some layers, such as ReLu and Dropout, are hidden in Fig-
ure 4. Conv1d function specifies a 1D convolutional layer. This
function accepts many parameters. In this implementation, the
used parameters are: (i) input size; (ii) number of filters; (iii)
kernel size. Line 17 to 21 model the classifier. Lines 18 and
21 specify the Fully Connected layers, called “Linear” by
Pytorch. The parameters are: (i) input size; (ii) output size.

The reference model adopts ReLu as the activation function.
The dropout layer reduces the probability of overfitting by
adding noise to the ReLu output. This last layer is useful in
models that use a low volume of sensors on each training
iteration [7].

This CNN uses a public dataset, similar to the MobiAct
dataset, containing 20,000 sensor readings from 6 people, each
performing five different actions. Each sensor reading has three
axes (roll, pitch, yaw) of 4 sensors (accelerometer, gyroscope,
pose, magnetometer). A total of 4 sensor positions are included
(belt, arm, dumbbell, forearm). The accelerometer sensor also
outputs a virtual axis designed to specify the total acceleration
measured in a given time. Magnetometers are often used to
normalize the raw data of other sensors. This CNN model
does not include it as an input feature, using the accelerometer,
gyroscope, and pose inputs. The division between training and
evaluation data is as follows: 80% for training and 20% for
evaluation.

Unlike other implementations, the 1D CNN presented in this
reference model can only process single time step, resulting in
a unidimensional, 1x40 input. Figure 6 shows the input shape
of the reference model.

Although processing a single time step do not allow pre-
cise temporal analysis, accelerometer and gyroscope sensors
contain temporal characteristics embedded in raw data, thus
allowing the model to detect human activities with 75%
accuracy.

In this model, the training parameters are set in a class
named params and later inserted into the training function. The
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Fig. 6. Reference CNN input shape.

method pytorch.train is responsible for starting the training
phase. It receives the model defined in Figure 5, training
parameters, and training and evaluation data from the dataset.

IV. OPTIMIZATIONS OF THE REFERENCE MODEL

A simple 1D CNN model has benefits such as reduced
processing power requirements during training and evaluation
and reduced memory usage. This CNN does not provide com-
plex optimization methods, such as pruning and quantization,
neither it is optimized to achieve state-of-the-art accuracy. This
model achieves 75% accuracy in randomly selected activities
from the dataset.

Our optimization process aims to improve accuracy without
substantially increasing the CNN complexity. The following
subsections present the modifications done to the model and
evaluated in the sequel.

A. Classifier Changes

The Fully Connected (FC) layer is present before the Flatten
layer. The FC has an important effect on the accuracy and com-
putational cost. The first layer of the FC nodes is a function
of the number of output nodes of the previous layer. While
changing the number of output nodes is possible, increasing
it may improve the accuracy with the cost of increasing the
number of weights. Initially, the number of output nodes was
changed from 128 to 256 and later to 512.

B. Feature Extraction Changes

The reference model has 3 1D Convolutional layers.
Ordóñez et al. [11] proposed a hybrid approach that included
four CNN layers, taking advantage of its feature extraction
capabilities. We modified the reference model using this
knowledge to include a fourth Convolutional layer. This mod-
ification results in a smaller output feature map at the end of
the feature extraction phase, requiring adaptation on the FC
layer to be compatible with the new feature map input.

C. Kernel size

The reference model adopts a kernel size equal to 1x5
(Figure 6). With the stride defined at its default value (1), the
convolution calculation generates 64 filters with this kernel.
Kernel size choice is commonly chosen during the training
phase. We evaluate the impact on the accuracy using 1x3,
1x5, and 1x7 kernels.

D. Extended 1D Model

The major disadvantage of this 1D CNN model is the
lack of temporal analysis. Human activities are highly related
to previous and future movements. Even though temporal
characteristics are embedded in sensor data, it is insufficient to
detect complex human activities accurately. Recent approaches
[1, 5, 12] process data in time frames, extracted from the
raw sensors data with a sliding-window method. Each work
uses a different window width and overlap percentage. These
approaches increase accuracy by reducing the effect of unin-
tended data (noise or random human motions) on the readings.

To add temporal awareness to the reference model while
keeping its reduced complexity, the convolutional layer was
modified to allow multiple time steps to be included simul-
taneously in a modified input vector. Most HAR datasets use
a time-per-row topology. Thus, a single row in the dataset
contains the sensor data of this single time step, together
with the activity label. A Python data repackager algorithm
was written to convert the dataset into a timeframe-per-row
topology. The data repackager joins a parameterizable number
of time steps in a single row, adding a temporal correlation
to the CNN without modifying its topology. This process is
done for training and inference data at runtime, loaded to the
GPU via PyTorch’s data loader. Figure 7 presents how the
120-width array is created using three different time steps.

Using a single time step as input (40-with array), the
resulting Feature Map size is 1x28 , combined with the number
of Filters (64), the Flatten Layer transforms these multiple
arrays into a single 1x1792 vector (Figure 4). In the Extended
1D Model, the newly formed 120-width timeframe requires
the input shape to be changed to accommodate the new array
size. One of the benefits of using a 1D Convolution is that the
input array can be increased without increasing the number
of weights, reducing memory area, but that is not true for the
Classifier. Using the proposed model, the resulting feature map
size is 1x108, containing roughly 3.8 times more information
than the reference model, consequently improving accuracy.
To accommodate the larger Feature Map, the new Fully
Connected (FC) input size is 1x6912. Despite the increased
number of weights in the FC layer, it requires fewer weights
than other 1D CNN evaluated optimizations while achieving
higher accuracy.

V. RESULTS

The training and evaluation phases were done using PyTorch
using a CUDA-enabled GPU. This model is cross-compatible
with the new Apple Silicon (arm64) architecture. The design
phase was done in an ARM-Powered MacBook Pro, and the
training and evaluation phase in a PC equipped with 16GB
RAM, i7 7700k, and a GTX 1080.

Table II presents results using the optimizations made in
the reference model, evaluating the number of parameters, the
model size (i.e., memory footprint), and accuracy. The 2nd row
presents results related to the baseline 1D model.

The 3rd and 4th rows evaluate the impact of increasing the
fully connected (FC) layer. The accuracy increases by increas-
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Fig. 7. Input data for the Extended 1D Model.

TABLE II
REFERENCE AND OPTIMIZED MODELS ACCURACY. REFERENCES [17] AND

[18] ARE STATE-OF-THE-ART REFERENCES.

Model Number of
Params

Model
Size (MB) Accuracy

Baseline 1D model 271,621 1.18 74%
FC - 256 output nodes 501,765 2.06 76%

FC - 512 output nodes 962,053 3.82 79%

Kernel size = 7 238,981 1.04 72%

Kernel size = 3 304,261 1.32 76%

Added Convolutional Layer 259,397 1.17 70%

Extended 1D Model -
Accurate 926,981 4.03 88%

Extended 1D Model -
Reduced 484,229 2.34 85%

T. S. Jordan CNN [17] 738,000 - 78%

ResNet-18 [18] 11,000,000 - 94.8%

ing the number of output nodes of the first fully connected
layer at the cost of raising the number of weights in this layer.
The number of weights in the fully connected layer doubled
and quadrupled using 256 and 512 output nodes, respectively.
The quadrupled memory area is hardly justified by just a 5%
accuracy increase in a memory-constrained device.

The 5th and 6th rows evaluate the impact of the kernel size.
Increasing the kernel size results in a smaller output feature
map, consequently with less information and reduced accuracy.
A smaller kernel produces larger feature maps and allows a
better feature extraction phase, resulting in an accuracy in-
crease at the cost of a larger output feature map and increased
computational cost. More study needs to be made to decide
if the memory overhead increase justifies small increments in
performance.

Increasing the convolutions while not changing the kernel
size could result in a smaller feature map to be used in the
classifier, negatively affecting the accuracy. It is not clear the
reason explaining the accuracy reduction to 70%. One reason
may be the unbalanced ratio between the feature extraction
and the classificator. It is necessary to further investigate the
model to take advantage of this extra convolutional layer.

The 8th and 9th rows present the accuracy of the proposed
extended 1D models. This result corroborates how relevant the

time-series analysis is to HAR. The accuracy improved 14%
when adding two extra time steps in the input shape. Even
though the number of weights increased due to the change on
the FC layer, it is roughly 5% smaller than the FC with 512
output nodes approach, with 9% higher accuracy.

The FC is responsible for more than 95% of the total number
of weights in the model. We evaluated a reduced version of
the proposed model by minimizing the number of weights in
the FC layer. This version consists of changes in the classifier,
focusing on reducing the number of parameters and model size
while achieving similar accuracy. Compared to the “accurate”
version, the number of parameters and model size was reduced
by roughly 50%, with only a 3% accuracy reduction. Both 1D
extended models increased the accuracy at the cost of a larger
number of parameters and model size compared to the baseline
model.

For comparison purposes, the network proposed in [17],
contains 5 2D layers (64x64x128, 32x32x128, 16x16x128,
8x8x64, 4x4x64) and 2 FC (256 and 6 classes). This network
achieves an overall accuracy of 78% in all activities, achieving
94% in specific test sets, using 738,000 parameters. State-
of-the-art CNNs, as ResNet-18 [18], achieves consistently
94.79% with 11M parameters.

VI. CONCLUSION AND FUTURE WORK

This work reviewed works using machine learning for HAR.
The proposals available in the literature achieve high accuracy
(> 90%) at the cost of complex networks (2D CNNs and
LSTMs). In the context of embedded systems, computing
power and memory footprint are scarce resources. As a result,
we evaluated a network with a simpler architecture, 1D CNN.
As expected, this CNN presented a low accuracy (74%). Our
main contribution was a design space exploration using the 1D
network to increase its accuracy without making the project
more complex. The result was the “extended 1D” network
through the inclusion of temporal analysis to the 1D model.
A precision between 85% and 88% was reached by doubling
the size of the original model. This work paves the way to
embed ML on the end device, as a wearable, without using
edge or cloud devices.

The main direction of future work is the CNN optimization
for energy- and memory-constrained devices. This phase in-
volves studying and applying optimization techniques, such as
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quantization and pruning, and evaluating the impact on power
and memory area usage. Next, to codify the CNN models
using 32-bit integers in C language to run inference and assess
accuracy. It is necessary to adopt the C language since the
CNN model is to be used in embedded processors with energy
and memory constraints. We consider adopting abstract (such
as OVP) or RTL models to evaluate performance, power, and
memory footprint.

The final result expected of this research project is a frame-
work starting from, e.g., Pytorch, and according to the power
and memory footprint constraints, generate C descriptions for
the CNNs targeting embedded processors.
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