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Abstract—Memory fragmentation occurs when non-continuous
areas are allocated, requiring the adoption of memory defrag-
mentation policies. Likewise, in NoC-based many-core systems,
processing elements (PEs) that communicate with each other
may be located in non-contiguous areas, characterizing PE
fragmentation. The literature approaching defragmentation often
acts on fragmented regions instead of fragmented applications,
generating unnecessary task migrations. We propose a reactive
and fine-grain defragmentation method. Two sets of experiments
demonstrate the effectiveness of the proposal. The first evaluates
the defragmentation in an 8x8 system with all PEs executing
tasks. The communication cost starts at 2.11 (average hop
distance), reaching 1.13 after defragmentation. The second one
evaluates the execution time of applications in an actual many-
core, showing that fragmentation penalizes the execution time
of applications. By applying the defragmentation heuristic, the
execution time overhead reduces from 10.6% to 4.2% for an AES
benchmark, considering the execution time of task migrations.

Index Terms—Runtime defragmentation, Application Perfor-
mance, NoC-based many-core.

I. INTRODUCTION AND RELATED WORK

In NoC-based many-core systems, processing elements
(PEs) that communicate with each other may be located in
non-contiguous areas, characterizing PE fragmentation. PE
fragmentation occurs in dynamic workloads, i.e., applications
entering and leaving the system at any moment. Such a process
leads to fragmentation in the application mapping since the
availability of free cores usually will be scattered through non-
contiguous regions [1]. This is observed in Figure 1. Scenario
(a) shows a 10x10 system, with 80% of the PEs used to execute
applications. In scenario (b), a new application is admitted to
the system, and due to the lack of contiguous resources, its
mapping becomes fragmented.

The adverse effects of a fragmented mapping in a Network-
on-Chip (NoC)-based many-core include:

• Degradation of the fragmented application performance
due to increased hop count;

• Interference in the performance in other applications due
to the new traffic crossing regions with already mapped
applications.

Ng et al. [2] identify scattered free cores and migrate
mapped applications when the scattering reaches a certain
threshold. This way, a contiguous region with free cores is
created before the next application arrival. Their defragmenta-
tion algorithm computes a central free core with the minimum
Manhattan distance to other free cores to obtain a free core
area. Afterward, each free core is migrated one hop at a time,
i.e., the running tasks are shifted one by one to minimize
their communication cost penalty after a migration of free
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Fig. 1. (a) Mapping in a 10x10 system, with high resource usage (80%); (b)
Admission of a new application (dark blue), resulting in fragmentation. The
red box highlights that it disturbs the orange, green, and turquoise applications.
T: mapping task.

cores. Their algorithm relies on predicting the number of
tasks of the next incoming application and assumes that non-
fragmented applications can increase their communication cost
by migrating tasks to reduce system fragmentation.

Pathania et al. [3] also defragment a many-core prior to
the application mapping, but in a cached system, that induces
cold cache misses when migrations occur. Their application
mapping demands several constraints to its shape, such as
being limited to using a power of two cores and limiting
the mapping space to polyominoes. This way, the number
of free cores in a contiguous area will also be a power of
two. To defragment the mapping proposed in [3], an area with
free cores, called fragment, can be joined with another of the
same size to be suitable for the next incoming application.
The migrations involved in this process occur by swapping
the fragment with tasks from a running application instead of
sliding the application as in [2]. Despite that, their proposal is
only suited to applications that fit their constraints or have the
ability to scale its number of workers to comply with them.
They also enable migrations of non-fragmented applications,
as in [2].

Modarressi et al. [4] propose a defragmentation that can mi-
grate all tasks of a fragmented application. Their work aims to
reduce the communication energy on a circuit-switched many-
core. It is also stated that larger applications benefit more from
task migrations due to the likelihood of being mapped in non-
contiguous regions. On average, each migration step moved a
task by 2.69 hops. Their work assumes that the communication
volume between communicating tasks changes at runtime. The
defragmentation heuristic executes when a given application
ends its execution. The selected fragmented application is
remapped using the updated communication volume between
tasks. This procedure may migrate all tasks of the fragmented

20
22

 2
9t

h 
IE

EE
 In

te
rn

at
io

na
l C

on
fe

re
nc

e 
on

 E
le

ct
ro

ni
cs

, C
irc

ui
ts

 a
nd

 S
ys

te
m

s (
IC

EC
S)

 |
 9

78
-1

-6
65

4-
88

23
-5

/2
2/

$3
1.

00
 ©

20
22

 IE
EE

 |
 D

O
I: 

10
.1

10
9/

IC
EC

S2
02

25
62

17
.2

02
2.

99
70

84
1

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on April 19,2023 at 19:43:57 UTC from IEEE Xplore.  Restrictions apply. 



application. This method differs from our proposal since we
defragment the system when a task finishes, migrating only
one task, not remapping the application.

The presented proposals seek to solve two problems to
defragment the many-core: (i) what task to migrate; and (ii)
where to migrate such task. The first problem, selecting the
task to migrate, is solved by our heuristic using the cost
functions detailed in Section II. The second problem is not an
issue in our proposal since the task that finished its execution is
at the location that will receive the migrated task. Note that all
the presented algorithms are evaluated using NoC emulators
while we evaluate the heuristics in an actual many-core.

The goal of the present work is to present a reactive
and fine-grain defragmentation method. Reactive because the
heuristic executes when a given task finishes, not when there
are fragmented regions in the system. Fine-grain because it
acts at the task level and not at the application level. This
heuristic adopts two metrics to evaluate if an application is
fragmented: communication cost and interference in other
applications. Despite using the mapping algorithm presented
in [5], the proposal may use different mapping algorithms as
reference.

The original contributions of our proposal include:
• The defragmentation acts on fragmented applications

instead of unallocated areas, reducing the number of
migrations;

• There is no threshold to trigger the defragmentation
process;

• The defragmentation is a fine-grain process, i.e., for each
finished task, the proposal evaluates if it is possible to
use the freed resource to improve the mapping quality of
another application.

II. DEFRAGMENTATION HEURISTIC

Definition 1 and Definition 2 detail the application model
adopted by the current work.

Definition 1. Application (App) – is a directed and connected
Communication Task Graph CTG(T,E) that models each ap-
plication. Each vertex ti ∈ T represents a task, and each edge
eij ∈ E represents communication from ti to tj . Assuming
that edges eij are modeled implicitly in ti (see Definition 2),
an application is represented as: App = {t1, t2, ..., t|T |}.

Definition 2. Task (ti) – is a vertex of the CTG. Each task
ti is a tuple with its identification and a list of communicating
tasks connected by its edges eij . Communicating tasks are
divided into successors and predecessors. Successors sun ∈ Si

are tasks receiving data from ti. Predecessors prn ∈ Pi

generate data to ti. Therefore, a task is represented as:
ti = {id, {su1, su2, ..., su|Si|}, {pr1, pr2, ..., pr|Pi|}}.

Figure 2 illustrates an application modeled as a CTG. It
contains 5 tasks and 5 edges corresponding to communicating
pairs. Task t1 has successors t2 and t3, task t5 has predecessors
t3 and t4, while the remaining tasks have only one successor
and one predecessor.

The defragmentation heuristic adopts two metrics: (i) com-
munication cost (Definition 3); and (ii) bounding box (Defini-
tion 4).

t1

t2

t3

t4

t5

Fig. 2. Example CTG App = {t1, t2, t3, t4, t4}. t1 = {1, {t2, t3}, {}};
t2 = {2, {t4}, {t1}}; t3 = {3, {t5}, {t1}}; t4 = {4, {t2}, {t5}};
t5 = {5, {}, {t3, t4}}.

Definition 3. Communication cost (cc) – is the total number
of hops between communicating pairs using a Manhattan
distance (d), divided by the number of communicating pairs,
corresponding to the CTG edges. The cc of an App is
computed using the application CTG, while the cc of its tasks
ti is computed using the edges connected to its vertex.

Equation (1) defines the communication cost for an appli-
cation. It is obtained by the average of the Manhattan distance
from all vertices (tasks) to all its successors (edges directed
from the vertex to another one). Therefore, it is the average
Manhattan distance of all edges of an application.

cc(App) =

∑|T |
i=1

∑|Si|
n=1 d(ti, ti.sun)

| E | (1)

Equation (2) defines the communication cost computation
for one task of an application. It is obtained by considering
only the edges connected to the vertex in which the commu-
nication cost is computed. Therefore, it sums the Manhattan
distance of ti to all its predecessors and successors and obtains
the average.

cc(ti) =

∑|Si|
n=1 d(ti, ti.sun) +

∑|Pi|
n=1 d(ti, ti.prn)

| Si | + | Pi | (2)

Definition 4. Bounding box (BB) – is the minimum
rectangular-shaped area comprising a set of PEs in which the
application is mapped.

Figure 3 illustrates the mapping of the CTG presented
in Figure 2, in a zoomed 3x3 area of the many-core. In
Figure 3(a), t5 is fragmented, i.e., it is not contiguously
mapped to the remaining tasks. This is also indicated by the
higher communication cost of t5 in relation to other tasks of
the same application, as cc(t1) = 1, cc(t2) = 1, cc(t3) = 2,
cc(t4) = 1.5, and cc(t5) = 2.5.

t1 t2

t3

t4

t5

(a) Fragmented

t1 t2

t3

t4

t5

(b) Defragmented

Fig. 3. Application mapping in an area of a many-core, highlighting its
bounding box and the communication assuming XY routing.
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Assuming that the PE highlighted in yellow in Figure 3(a)
becomes available due to the end of the task running on it,
the defragmentation heuristic picks the task with the highest cc
of the fragmented application to move to the freed PE. Thus,
t5 is migrated to the highlighted PE by the defragmentation
heuristic, given the reduction in the communication cost.
Figure 3(b) shows this scenario, where the cc of t5 and its
communicating pairs are updated to cc(t3) = 1.5, cc(t4) = 1,
and cc(t5) = 1.5, representing a reduction of 40% in the
communication cost of the previously fragmented task.

Equation (3) presents the original communication cost of
the fragmented application, while Equation (4) presents the
communication cost of the same application when defrag-
mented. In this example scenario, the communication cost of
the application is reduced by 25%.

cc(a) =
d(t1, t2) + d(t1, t3) + d(t2, t4) + d(t3, t5) + d(t4, t5)

5

=
1 + 1 + 1 + 3 + 2

5
=

8

5
= 1.6

(3)

cc(b) =
d(t1, t2) + d(t1, t3) + d(t2, t4) + d(t3, t5) + d(t4, t5)

5

=
1 + 1 + 1 + 2 + 1

5
=

6

5
= 1.2

(4)

The operating system of each PE notifies the mapping task
(T in Figure 1) when a given task finishes its execution. The
end of a given task frees up resources in this PE, which can be
used to reduce the communication cost of other applications.
The mapping task executes Algorithm 1 when it receives a
task termination notification in a given PE.

Algorithm 1 details the defragmentation heuristic. It has two
inputs: freed pe and Applications. When a given task fin-
ishes its execution, it frees a memory segment in the allocated
PE, called freed pe. Applications are sorted in the reverse
order by their communication cost into the SortedApps set
(line 1) to initially evaluate the most fragmented applications,
i.e., with the higher communication cost.

Algorithm 1: Defragmentation algorithm.
Input: freed pe, Applications

1 SortedApps ← sort(Applications)
2 foreach ai in SortedApps do
3 if freed pe ∈ ai.bounding box then
4 SortedTasks ← sort(ai.tasks)
5 foreach ti ∈ SortedTasks do
6 if compute_cost(ti, freed pe) <

compute_cost(ti, current pe) then
7 migrate(ti, freed pe)
8 return
9 end

10 end
11 end
12 end

After creating the SortedApps set, a loop starts looking for
the candidate application to have a migrated task. The initial
condition to evaluate a given application is if the freed position

(freed pe) is inside the application bounding box (line 3). If
this condition is satisfied, a set named SortedTasks orders
the application tasks according to the hop distance between its
predecessors and successors (line 4). Thus, tasks with a higher
hop count are prioritized to migrate.

The loop between lines 5-10 evaluates the cost to migrate
ti from its current position to the freed PE, according to
the communication cost between the ti and its successors
and predecessor tasks. If the new cost is lower than the
previous one, the task can migrate. When migration occurs, the
algorithm finishes. Thus, only a single migration can occur per
finished task. Note that other tasks from the same application
may also exit the system when a given task is completed.
Thus, an application leaving the system can trigger multiple
migrations.

Note that Algorithm 1 does not restrict the migration to
fragmented scenarios. When an application terminates, migra-
tions can occur to enhance another application mapping, even
if it is not fragmented. Thus, another benefit of this method
is migrating tasks to locations where the mapping quality is
better, translated by its lower mapping cost.

III. DEFRAGMENTATION RESULTS

Section III-A evaluates the communication cost and average
communication cost of a set of applications considering the
system load. Section III-B evaluates the effect of the frag-
mentation on the execution time of applications in an actual
NoC-based many-core [6], modeled at the RTL level, with a
dedicated multitasking operating system.

A. Communication cost

Experiments are conducted on a 8x8 many-core, with each
PE executing a single task. The mapper task executes at the
same PE as an application task, being the only PE running
two tasks simultaneously. A set of 6 parallel applications with
different communication models and task numbers is used.

Figure 4 presents four mapping states of the experiment.
The first state, shown in Figure 4(a), is the initial state
of the experiment. Initially, the many-core is loaded with
six applications, using 100% of the mapping space. In this
case, applications DTW, in violet, and JPEG, in orange, are
fragmented. The initial average application cc = 2.11.

DTW Fixed-base JPEG MPEG4 MWD Sorting VOPD

(a) cc = 2.11 (b) cc = 1.87 (c) cc = 1.56 (d) cc = 1.13

Fig. 4. Mapping states before defragmentation (a), after defragmentation (b,c),
and with a new application mappped after defragmentation (d).

The first set of task migrations occurs when MWD ends
its execution – Figure 4(b). Applications DTW and JPEG
achieve better communication cost through 6 migrations. Al-
though both applications are still fragmented, DTW reduced
its communication cost from 3 hops to 2 hops, while JPEG
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reduced from 3.75 hops to 2.5 hops. Overall, both migrated
applications had their communication cost reduced by 33%,
resulting in a cc = 1.87, 11.4% smaller than the initial value.

Figure 4(c) shows the mapping when JPEG ends and after 3
desfragmentation rounds, corresponding to two migrations for
DTW and one for Fixed-base. DTW had its communication
cost reduced by 40%, resulting in 1.5 hops. Note that despite
not being fragmented, Fixed-based also had one migration that
enhanced its communication cost, reducing by 6.2%, from 1.78
hops to 1.67 hops. The average cc reduced to 1.56, 16.6%
smaller.

Figure 4(d) shows the mapping of a new application, VOPD.
The VOPD is mapped in a system without fragmentation,
resulting in a cc = 1.13, with a system load equal to 92.2%.

This experiment shows the main advantage of using a
runtime defragmentation heuristic. As tasks finish their execu-
tion, the defragmentation reorganizes the system to generate
contiguous areas for new applications.

B. Application performance

The communication cost impacts the energy consumed in
the NoC and the average latency for sending messages [7].
But what is the impact on the application performance due to
task fragmentation? This section seeks to answer this question.
Applications run on the Memphis NoC-based many-core [6].

We evaluate the execution time of two instances of an AES
application (AES1 and AES2), using a master-slave model,
with tasks ti>1 communicating with t1. Three scenarios are
evaluated: (1) AES1 running without fragmentation (turquoise
color in Figure 5(a)); (2) AES2 mapped in a fragmented way
due to the lack of available PEs (dark blue in Figure 5(b)),
impacting the performance of both AES instances; (3) AES2
defragmented after the end of AES1 (Figure 5(c)). Note that in
Figure 5 the defragmentation is showed when AES1 finished
for sake of simplicity. In fact, Algorithm 1 executes when
every AES1 task ends.

(a) Initial mapping

t1 t2

t3 t5 t7

t4

t6

t8

t9

(b) Fragmented

t1
t2
t3

t4t5
t6t7
t8t9

(c) Defragmented

Fig. 5. Application mapping in a 5x5 area of the many-core. (a) initial
mapping with AES1 executing without disturbing traffic (turquoise); (b)
fragmented AES2 mapping (dark blue); (c) AES2 defragmentation after the
end of AES1.

Table I presents the execution time. The first scenario is the
baseline execution time (11.97 ms), where the AES application
executes without the presence of disturbing traffic. In the
fragmented scenario, both applications have the execution time
penalized (AES1: 7.9% and AES2: 10.6%). Note that AES1
mapping is not fragmented, but due to the disturbing traffic,
its performance is penalized. The last table row presents the
AES2 execution time after executing Algorithm 1. As we can
observe, the execution time penalty was reduced to 4.2%,
despite the cost of the task migration heuristic.

TABLE I
APPLICATION EXECUTION TIME IN DIFFERENT SCENARIOS (ms).

AES1 AES2

AES1 running without disturbing traffic 11.97
Fragmented scenario – Figure 5(a) 12.91 13.24
AES2 defragmented – Figure 5(b) 12.47

The defragmentation algorithm does not impact the appli-
cations performance since it executes in parallel to them. The
average task migration time is 140 µs, with the hop distance
having a negligible impact on the migration time.

Note that task migration execution time is small compared
to the AES execution time – roughly 1.2%. However, task
migration may hinder the defragmentation benefits if the
defragmentation heuristic executes migrations frequently, in
non-fragmented applications, as in [2], [3], without the control
proposed in this work.

IV. CONCLUSION

We showed the adverse effects of a fragmented mapping in
NoC-based many-cores by evaluating the applications execu-
tion time. A fragmented mapping degrades the performance
of fragmented and non-fragmented applications and increases
the consumed energy due to the longer execution time.

The proposed defragmentation heuristic is triggered when
a task finishes its execution. This event-driven proposal dis-
misses the need to control system utilization thresholds and
limits the number of task migrations.

Therefore, defragmentation heuristics should be part of
mapping heuristics for many-cores, in the same way that
operating systems manage memory to avoid memory fragmen-
tation.
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