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Abstract—Real-time Networks-on-Chips (RT-NoCs) provide
timing guarantees for communication in many-cores. However,
RT-NoCs customized routers may conflict with other non-
functional requirements such as low-energy consumption, safety,
and security. To alleviate the effects of non-functional require-
ments on the NoC design, we proposed a framework to deal
with hard real-time flows without modifying the NoC archi-
tecture. One of the drawbacks of the previous framework was
its scalability due to the employed integer-linear programming
(ILP) backend. In this work, we propose a breadth-first depth
backend with parameterized search to accelerate the scheduling
to polynomial-time. Due to the large solution spaces, ILP solvers
struggle with performance, even for medium-sized applications.
Results show that our framework computes a feasible hard real-
time flow scheduling with acceptable performance.

Index Terms—Hard real-time, scheduling, NoC, optimization

I. INTRODUCTION AND RELATED WORK

Real-time Networks-on-Chips (RT-NoCs) provide a foun-

dation for guaranteeing timing requirements in NoC-based

systems. In our previous work [1], we proposed an analytical

framework to statically schedule hard real-time packets in

NoCs, using the same concept of hyper-period often employed

in task scheduling [2]. Instead of presenting another RT-NoC

design, we designed a custom module called “time-controlled

network interface” (TCNI). When attached to the local ports

of NoC routers, the TCNI delays the injection of the packets,

forcing them to enter the network at an exact cycle. The

configuration of the TCNI is generated by an scheduling

algorithm, which searches for a table of injection times that

could make all packets be delivered before their deadline.

Compared to RT-NoCs, our approach requires no modifica-

tion of the NoC architecture, relying solely on the auxiliary

TCNI module and the network zero-load latency model. Con-

sequently, our approach can be used with NoCs without native

support for real-time traffic. As a drawback, our approach

assumes some waste of the network bandwidth and adds some

area and energy overhead to the design (the TCNI).

A. Related Work

Offline scheduling has been applied to allocate time slots in

Time-division multiplexing (TDM) NoCs [3, 4]. However, as

Picornell et al. [5] point out, offline scheduling of TDM slots

often relies on non-optimal solutions to be computationally

affordable. In our framework, time is depicted in time units,

which in its finest grain is represented in cycles. On the

one hand, our framework has more possibilities for packet

allocation than TDM-based techniques, as packets traversal

will not be interrupted once it enters the network. However,

a fine grain time unit dramatically increases the search space,

often resulting in an intractable problem. Picornell et al. [5]

eliminate offline scheduling by configuring delays on each

input port, thus relying on the architecture to solve scheduling.

Our past solution to the offline scheduling problem [1]

adopted integer linear programming (ILP) and was described

using Minizinc language. Other NoC-related studies previ-

ously adopted ILP to solve NP-complete problems in a similar

context, also having difficulties with solving time and problem

representation due to language expressiveness [6, 7]. In this

scenario, heuristic algorithms are alternatives to search the

solution space in polynomial-time at the cost of sub-optimal

solutions, e.g., admitting certain packets to miss their dead-

lines [7]. However, deadline violations are not acceptable in

the hard real-time domain.

B. Goals and Contribution

This paper presents a new scheduling framework, executed

at design time, for hard real-time flows. In contrast to our

previous ILP framework, the new framework implements a

custom backend for a breadth-first search (BFS) algorithm

with polynomial-time performance. Among the new features,

the new framework can either schedule for a given NoC

frequency and, in case of an unfeasible schedule, find the

NoC frequency to make the schedule feasible. We dedicate

the remainder of this paper to introducing the new framework

and discussing the scheduling algorithms, focusing on the

implemented pruning strategies and heuristics.

II. THE SCHEDULING FRAMEWORK

Figure 1 shows the building blocks of our framework. User

inputs comprise the application and NoC models and task

mapping. The instantiator creates an application instance from

the inputs targeting a candidate frequency. Then, the scheduler

— our original contribution — is responsible for scheduling

the application packets by generating a table of injection times.

The outputs include the configuration of the TCNI modules

(injection times) and the minimum frequency required for the

schedule to be feasible. Finally, the outputs consist of graphical

views of the scheduling and a testbench stub to be used with

RTL tools, e.g., in Modelsim.

A. User Inputs

The application model is a directed graph GA = VA×EA,

where VA is the set of vertices and EA is the set of edges.
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Fig. 1. The building blocks of the proposed framework.

Vertices denote the source of the communication flows in

the system, e.g., tasks and sensors. Edges represent the com-

munication flows, containing: (i) period; (ii) data size; (iii)
deadline.

Figure 2 illustrate an example application. For the sake

of simplicity, their tasks periods and deadlines are equal so

that each flow generates only a single packet during the

hyperperiod. Tasks A, B, C, and D are mapped into processing

elements 0, 2, 1, and 3, respectively. Formally, task mapping

is a relation M : VA×VT → B, where B is the binary domain.
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Fig. 2. Synthetic application. Edge labels represent flows period, data size,
and deadline (in parenthesis). Periods and deadlines are measured in seconds,
data is measured in bytes.

The NoC model corresponds to (i) the NoC topology, (ii)
flit width, (iii) routing algorithm, the (iv) zero-load latency

model, and (v) target frequency. We describe the NoC topology

using directed graphs GT = ET × VT , where the edges ET

corresponds to links, and vertices VT correspond to routers.

The routing algorithm is a complete function R : VT × VT →

(ET )
∗, denoting the path (sequence of links) that a packet

takes when traversing from one router to another. The zero-

load latency model represents the cost of transmitting packets

when no contention exists, formally described as Z : VT ×

VT → D, where D is the discrete-time domain. Finally, the

framework will try to schedule packets considering the target

frequency whenever possible. However, may the schedule be

unfeasible for the target frequency, the framework will suggest

a higher frequency.

B. Instantiator

The instantiator module uses the NoC model to create

a candidate version of the target application assuming the

selected frequency. The application instance is described as

I : ET × P → D
3, representing a mapping of links (network

resources) and packets onto three fields: (i) occupancy, the

amount of time that a packet requires from a single resource

during its transmission; (ii) the minimum release time, which

prevent packets from being injected too soon in the network

(lower bound injection time); and (iii) deadline (upper bound

injection time is given by deadline − occupancy). Table I

shows an example of an application instance created by our

framework using the flow unwrapping method [1], which

extents the timing analysis to the hyperperiod H , given by

H = lcm(Fp), the least common multiplier of all flow periods.
Equation 1 computes the occupancy of packets, where r is

the routing time (first flit only, wormhole), hops is the number

of routers in the path of the packet, data size is as in the

application model, and flit width is as defined in the NoC

model. For instance, packet P2 (from flow F2) uses links L-0,

0-1, 1-3, 3-L, with an occupancy equals to 32 cycles (2 hops,

52 bytes in 32-bit flits, r equal to 6 cycles).

Occupancyi = r × (hops+ 1) +
data sizei
flit width

+ 1 (1)

TABLE I
AN INSTANCE OF THE SYNTHETIC APPLICATION.

Pck.
Links

0-1 1-3 2-3 2-0 3-1 3-2 0-L L-0 1-L L-2 3-L L-3
o
cc

u
p

a
n

cy
P1 18 – – – – – – 18 18 – – –

P2 32 32 – – – – – 32 – – 32 –

P3 – – 19 – – – – – – 19 19 –

P4 – – 27 – 27 – – – 27 27 – –

P5 – – – 23 – 23 23 – – – – 23

m
in

.
st

a
rt

P1 0 – – – – – – 0 0 – – –

P2 0 0 – – – – – 0 – – 0 –

P3 – – 0 – – – – – – 0 0 –

P4 – – 0 – 0 – – – 0 0 – –

P5 – – – 0 – 0 0 – – – – 0

d
ea

d
li

n
e

P1 55 – – – – – – 55 55 – – –

P2 55 55 – – – – – 55 – – 55 –

P3 – – 55 – – – – – – 55 55 –

P4 – – 55 – 55 – – – 55 55 – –

P5 – – – 55 – 55 55 – – – – 55

Note: unused links were omitted

After generating the first application instance, it is submitted

to the scheduler, which will try to determine the injection time

of packets. If the scheduler fails to find a feasible schedule,

the instantiator increases the frequency and re-executes the

scheduler until it finds a feasible schedule. After finding the

first feasible schedule, the instantiator searches the minimum

frequency using a binary search heuristic. As the frequency

increases, the possibilities for allocating packets increases as

well, although occupancy is constant.

III. SCHEDULER

The scheduler goal is to find a feasible schedule, that is, to

search the solution space for a schedule in which the following

constraints hold: (I) no packet deadline is violated, (II) packet

will not simultaneously share resources, (III) no packet will

be injected into the network before their minimum release

time. Constraints I and III are guaranteed by construction,

as the application instance carries the candidate release times

interval. Constraint II is a range overlapping checking that

performs O(n) on the number of links.
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The solution space is given by the intervals in which packets

can be injected into the network, bound by their minimum re-

lease time and maximum release time (deadline−occupancy).

Table II shows the solution space for the application in

Figure 2, whose the number of possible schedules is given

by (37× 23× 36× 28× 32) = 2, 7449, 856. Such a solution

space can be searched in a couple of seconds. However, the

size of the application instance and NoC (2×2 2D mesh, single

channel, 4-byte channel width, XY routing) are very small and

do not coincide with real-world applications size. For instance,

our framework unwraps the application introduced by Shi et.

al. [8] into 659 packets (same NoC but 4×4 dimensions) with

≃ 7 × 10206 possible schedules. The scheduling problem is

intractable and cannot be solved through exhaustive search

except for very small instances.

TABLE II
SEARCH SPACE FOR SYNTHETIC APPLICATION

Pck.
Links

L-0 0-1 1-L 1-3 3-L L-2 2-3 3-1 L-3 3-2 2-0 0-L

se
a
rc

h
sp

a
ce P1 [0;37] – – – – – – [0;37] [0;37] – – –

P2 [0;23] [0;23] – – – – – [0;23] – – [0;23] –

P3 – – [0;36] – – – – – – [0;36] [0;36] –

P4 – – [0;28] – [0;28] – – – [0;28] [0;28] – –

P5 – – – [0;38] – [0;38] [0;38] – – – – [0;38]

We prune the search space by inserting a pruning factor (PF)

parameter to the algorithm. Instead of increment the release

time by one cycle after each allocation attempt, we increment it

by the prune factor. The prune factor “aligns” the allocation to

a multiple factor by skipping neighbor solutions. For instance,

if an allocation attempt just failed, we can skip ahead a couple

of values as neighbor values are likely to fail as well. For any

n ∈ N
+, a PF of n reduces the size of the search space to

a
n

where a is the number of alternatives for the exhaustive

algorithm.

A. Guided Search

Pruning the search space considerably reduce the number of

alternatives for medium-to-small sized problems. However, it

is not of much use in larger problems. For instance, it reduces

the solution space of Shi et al. [8] problem from ≃ 7× 10206

to only 7×10204 if using a PF of 100 (which means skipping

99 alternatives ahead).

For larger problems, we selectively choose which packets

to try to allocate first, using one of three sorting criteria: (i)
Least Slack-Time First (LSTF), allocates packets with fewer

scheduling alternatives first; (ii) Most Bandwidth Consuming

First (MBCF), allocates packets that consume more bandwidth

first as they are likely to collide with other packets; and (iii)
Most Critical Path First (MCPF), a version of MBCF weighted

on the use of individual network links. The guided search

algorithm has two steps: (i) executing LSTF, MCPF, or MBCF

to generate an ordered list of packets, and (ii) allocate nodes

according to the generated list. Regardless the adopted criteria,

the guided search algorithm performs O(pm), where p is the

number of packets to schedule and m = a/n is the number

of alternatives per packet.

B. Adaptive Guided Search

The guided search (LSTF, MBCF, and MCPF) may even-

tually fail to allocate one or more packets, approximating

the performance of the exhaustive search algorithm. Critical

packets are those that congest links due to their period-size

ratio. Allocating such packets early in the algorithm skips the

exploration of dead nodes (local minima) in the solution space.

Figure 3 shows the pseudo-code for the adaptive guided

search algorithm. This algorithm assumes the same two steps

as the guided search algorithm. However, we add a threshold

to limit the number of tries when scheduling packets. Once a

packet fails to be scheduled, it will be selected to be scheduled

first at the next algorithm reset. The algorithm works as

follows. First, it generates a ordered list R of packets using

either LSTF, MBCF, or MCPF (line 3). The goal is to remove

all packets from R and either schedule them (line 15) or flag

them as critical (line 21). Every time a packet could not be

scheduled, it increments the number of tries for that packet

(line 16). Finally, the algorithm returns the generated schedule

and the set of packets that could not be scheduled (line 22).

 Algorithm Adaptive Guided Search

1.
2.
3.
4.
5.
6.
7.
8.
9.

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.

Inputs: the set of packets to be scheduled, P.
Begin
         Let R ← lstf(P) or mbcf(P) or mcpf(P)
         Let Q ← an empty ordered set
         Let S ← { } // the skipped packets
         Let F ← the prunning factor, 
         Let G ← threshould (max. tries per packet)
         Let T ← [ zeroes ] // tries per packet (critical pkts.)
         While |R| ≠ 0:
                Let schedule ← { }, temp_schedule ← { }
                For q in Q:      // partial schedule
                       schedule ← allocate(schedule, q, F)
                temp_schedule ← schedule
                For r in R:      // adaptive permutation
                       If not allocate(temp_schedule, r, F) Then
                               T[r] ← T[r] + 1
                               If  T[r] < G Then
                                      R.push_front(r) // next to be tried
                                     Goto Line 7
                               Else // packet could not be scheduled
                                     R.remove(r), S.push(r) 
                Return  temp_schedule, S
End                              

Fig. 3. Adaptive guided search algorithm. Packets that could not be scheduled
will be selected to be tried first at the next algorithm reset. The output is the
set of scheduled packets and a list of packets that could not be scheduled.

C. The Minimum Frequency Required for a Feasible Schedule

Using the adaptive guided search algorithm, we detect

which packets could not be scheduled for the given application

instance. Although not searching the entire search space, we

could find a feasible schedule in an acceptable computing time.

In cases where we could not find a schedule, we detect which

packets could not be scheduled. By employing a binary search

algorithm, we tune the NoC frequency in such a way to find

the minimal frequency allowing to schedule all packets.
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TABLE III
EXECUTION PERFORMANCE (visited solutions/skippped solutions). COLUMNS: CRITERIA AND PRUNING FACTOR.

LSTF MBCF MCPF

Applications 10 20 40 10 20 40 10 20 40

Synthetic-Application-D 40/96 16/12 6/2 40/96 16/12 6/2 6/4 6/2 10/3
DCT-Verify [9] 8/158 8/314 8/80 8/416 8/209 8/105 214/8970 111/2322 60/626
Shi et al. [8]* 660/13629 660/7267 660/3683 660/13641 660/7282 660/3684 660/5073 660/3002 660/1762

* : Prunning Factor ×100

TABLE IV
MINIMUM SCHEDULING FREQUENCY (MHZ)

Criteria and Pruning Factor

Applications PF LSTF MBCF MCPF

Synthetic-Application-D

10 1, 928.1 1, 928.1 1, 928.1
20 1, 928.1 1, 928.1 1, 928.1
40 2, 182.7 2.182.7 2, 182.7

DCT-Verify [9]

10 792.0 1700.6 791.9
20 794.8 1706.3 794.7
40 800.0 1706.3 800.0

Shi et al. [8]

10 2, 812.5 2, 812.5 4, 218.7
20 2, 812.5 2, 437.5 4, 218.7
40 2, 812.5 2, 437.5 4, 687.5

PF: Prunning Factor

IV. RESULTS

We evaluate our framework by comparing the three pro-

posed criteria LSTF, MBCF, and MCPF, using three applica-

tions: (i) Synthetic-Application-D (Section II); (ii) verify task

from discrete-cosine transform (DCT-verify) application [9];

(iii) Shi et al. [8] application. The Synthetic-Application-D

has multiple scheduling alternatives; it has 4 tasks mapped

into 4 nodes with 5 flows and 5 packets. The DCT-verify

application has 7 tasks mapped to 6 nodes, each task producing

one flow. Finally, the Shi et al. [8] application has 33 tasks

producing 38 flows, mapped to 16 nodes, resulting in 660
packets. We use PFs 10, 20, and 40, for the first two appli-

cations. We increase the PF to 1000, 2000, and 4000 for the

third application so that the pruning would have a significant

effect on the number of skipped nodes.

Table III shows the performance of the LSTF, MBCF, and

MCPF algorithms for each application using different PFs. We

observed that the adaptive guided search algorithm could find

valid schedules for the Shi et al. [8] application inspecting

the same number of nodes in the solution space. The PF is

inversely proportional to the number of skipped solutions in

all cases. Besides, the number of skipped nodes were similar

in LSTF and MBCF criteria. For that application, the MCPF

algorithm showed the best visited solution nodes per skipped

nodes ration, reaching a solution faster than the other criteria.

Except for Synthetic-Application-D, the number of visited

nodes was linear to the number of packets in the application.

In the case of the first application, the search space was too

small for the PF, leading to a late discovery of a valid solutions

for LSTF and MBCF. Contrarily, the MCPF could mitigate the

effect of a higher PF.

Table IV shows the achieved frequencies. We initialized

our framework targeting 2MHz for all the applications. All

criteria reach the same minimum frequency for Synthetic-

Application-D when using a PF of 10 and 20. However, a PF

of 40 dramatically decreased the number of potential solutions,

thus the algorithm picked a “bad” solution, requiring a higher

frequency for that schedule to be feasible. A higher PF increase

necessary frequency in most cases, although it seemed to have

a lower impact for the Shi et al. [8] application.
The Shi et al. [8] application took on average 5 seconds

to execute one iteration of the adaptive guided search algo-

rithm (Intel I9-7940X, 3.10GHz, 64 GB RAM). Our previous

framework (ILP backend) executed 1 week, and failed to find

a solution for the same application.

V. CONCLUSION

This paper presented a framework for scheduling hard real-

time traffic in NoC-based systems. In comparison to our previ-

ous work, the new framework can handle larger problems due

to the herein discussed adaptive guided search. In comparison

to the strict behavior of ILP, our framework can tune the

target frequency and always find a feasible schedule. Future

works include extending the framework to handle design space

exploration for energy consumption and area overhead.
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