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Abstract—State machine replication (SMR) is a well-known approach to implementing fault-tolerant services, providing high

availability and strong consistency. In classic SMR, commands are executed sequentially, in the same order by all replicas. To improve

performance, two classes of protocols have been proposed to parallelize the execution of commands. Early scheduling protocols

reduce scheduling overhead but introduce costly synchronization of worker threads; late scheduling protocols, instead, reduce the cost

of thread synchronization but suffer from scheduling overhead. Depending on the characteristics of the workload, one class can

outperform the other. We introduce a hybrid scheduling technique that builds on the existing protocols. An experimental evaluation has

revealed that the hybrid approach not only inherits the advantages of each technique but also scales better than either one of them,

improving the system performance by up to 3� in a workload with conflicting commands.

Index Terms—Parallel state machine replication, scheduling, dependability
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1 INTRODUCTION

STATE machine replication (SMR) is a conceptually simple
yet effective way to design services that must withstand

failures [1], [2]. SMR provides clients with the abstraction of
a highly available servicewhile hiding the existence ofmulti-
ple replicas, in what is known as strong consistency, or line-
arizability [3], [4]. In classic SMR, linearizability is achieved
by having clients atomically broadcast commands to the rep-
licas. Atomic broadcast is a communication abstraction that
totally orders commands submitted by clients. Replicas
deliver broadcast commands and execute them sequentially
in delivery order (see Fig. 1a).

Despite its widespread use, classic SMR makes poor use
of multi-processor architectures since command execution
is sequential (e.g., [5], [6]). A natural solution to improve the
performance limitation of SMR would be to schedule com-
mands to execute concurrently. Scheduling in state machine
replication, however, differs from traditional scheduling
techniques used in parallel systems in that SMR supports
online services in a replicated environment. Guaranteeing
strong consistency in the presence of replication introduces
the need for determinism across replicas. Determinism in
this context means that replicas must provide the same

response upon executing the same command. It does not
mean that replicas must make the same choices when
scheduling commands for execution. Replicas must ensure
determinism even though the queue of ordered commands
at any two replicas may never be the same when a com-
mand is scheduled for execution, even though the complete
sequence of ordered commands is the same at all replicas.

Several approaches have been proposed to accommodate
concurrent execution in SMR (e.g., [7], [8], [9], [10], [11],
[12], [13]). Most of these solutions are based on an early
observation about SMR: although (multi-processor) concur-
rent command execution may result in non-determinism,
independent commands (i.e., those that are neither directly
nor indirectly dependent) can be executed concurrently
without violating consistency [2]. Two commands are inde-
pendent (or non-conflicting) if they either access different
parts of the service state or only read state commonly
accessed; conversely, two commands are dependent (or con-
flicting) if they access common state and at least one of the
commands changes the shared state.

In this paper, we consider two categories of solutions to
parallel state machine replication, and propose a novel
approach that combines the advantages of existing techni-
ques. Depending on how command interdependencies are
identified and how commands are scheduled for execution,
we can distinguish between late scheduling and early
scheduling techniques.

With late scheduling, the scheduling of commands is han-
dled entirely at the server side (see Fig. 1b). Clients atom-
ically broadcast commands for execution. A parallelizer at
each replica delivers commands in total order, examines
command dependencies, and includes delivered commands
in a data structured shared with worker threads. The most
common data structure to represent dependencies is a
directed acyclic graph, or DAG (e.g., [8], [11], [13]). The
DAG maintains a partial order among all pending com-
mands, where vertices represent commands and directed
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edges represent dependencies. While dependent commands
are ordered according to their delivery order, independent
commands are not directly connected in the graph. Worker
threads get commands ready for execution from the graph
(i.e., vertices with no incoming edges) to be concurrently
executed. When a worker thread completes the execution of
a command, it removes the command from the graph
(together with the edges to nodes that depend on it) and
responds to the client that submitted the command. This
approach poses the challenge that under high load (e.g.,
hundreds of thousands of commands per second) depen-
dency tracking may become itself the performance bottle-
neck. This aspect is tackled in [13] with a lock-free graph to
handle dependencies.

In the early scheduling technique, requests are divided into
classes andworker threads are preassigned to each class. Cli-
ents atomically broadcast commands, each command
labelled with its class [12]. When a server delivers a com-
mand, a classifier at the server schedules the command to
the worker threads previously assigned to the command’s
class (see Fig. 1c). State partitioning or sharding is a natural
way to divide requests into classes. For example, we could
have one class per shard, to handle commands that access a
single shard, and additional classes for commands that
access multiple shards. This scheme results in relatively low
scheduling overhead at the server since the scheduling of
commands only requires a few simple operations, instead of
more complex graph operations, as in late scheduling. How-
ever, additional synchronization is necessary at the worker
threads to execute conflicting commands. Moreover, skewed
workloads may cause unbalanced load among worker
threads due to the fixed assignment of threads to classes [14].

We show in the paper that in the absence of conflicting
commands (i.e., any two commands can execute concur-
rently) early scheduling largely outperforms late scheduling
under different settings. This happens because the classifier
can efficiently assign commands to threads, according to the
classes-to-threads mapping, while the parallelizer becomes a
bottleneck in late scheduling. Late scheduling, however, can
handle conflicting commands more efficiently than early
scheduling, even when the percentage of conflicting com-
mands in the workload is low (i.e., 5%), since the cost of

synchronizing threads in early scheduling is high. In this
paper, we introduce a hybrid scheduling technique that builds
on the advantages of late and early scheduling. The main
idea is to shard the service state, then use a classifier to assign
a command for execution to the corresponding shard, where
a shard-specific parallelizer includes the command in a per-
shard DAG. Worker threads remove the commands from
their DAG and execute them. A central aspect is how to han-
dle cross-shard commands without compromising the lock-
freedom of the graph operations. In these cases, the related
parallelizers insert the dependencies to the nodes in their
respective DAGs and the command is inserted in any one of
these DAGs. Notice that the scheduling of such a command
may insert an edge that connects two DAGs (see Fig. 1d). A
performance evaluation shows that, in a sharded service, the
hybrid scheduling performs similar to the early scheduling
in a workload without conflicts and outperforms both late
and early techniques by up to 3� in aworkloadwith conflict-
ing commands.

This paper makes the following contributions:

� It revisits both late and early scheduling, discussing
their main advantages and drawbacks.

� It proposes the hybrid scheduling approach, includ-
ing detailed algorithms and correctness argument.

� It presents a detailed experimental evaluation, consid-
ering four different applications, to show the behavior
of each scheduler in different settings. The experimen-
tal study showed that the hybrid approach is signifi-
cantlymore efficient than late and early scheduling.

The paper is organized as follows. Section 2 states the
system model. Sections 3 and 4 detail the late and early
scheduling techniques, respectively. Section 5 introduces
the hybrid approach, combining both techniques. Section 6
reports on the performance evaluation. Section 7 survey
related work and Section 8 concludes the paper.

2 SYSTEM MODEL AND DEFINITIONS

We assume a distributed system composed of intercon-
nected processes. There is an unbounded set of client pro-
cesses and a bounded set of n server processes (replicas).
The system is asynchronous: there is no bound on message

Fig. 1. Classic versus parallel state machine replication. Atomic broadcast and service are replicated in multiple servers (i.e., multiple boxes in the
figure). Although it is possible to separate ordering (atomic broadcast) from execution (service), usually both are deployed in the replicas.
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delays and on relative process speeds. We assume the
crash failure model, excluding malicious and arbitrary
behavior. A process is correct if it does not fail, or faulty
otherwise. There are up to f faulty replicas, out of
n ¼ 2f þ 1 replicas.

Processes communicate by message passing, using one-
to-one or one-to-many communication. One-to-one commu-
nication uses primitives sendðmÞ and receiveðmÞ, where m
is a message. If a sender sends a message enough times, a
correct receiver will eventually receive the message. One-to-
many communication uses atomic broadcast, defined by
primitives broadcastðmÞ and deliverðmÞ.1 Atomic broadcast
ensures the following properties [15], [16] 2:

� Validity: If a correct process broadcasts a message m,
then it eventually deliversm.

� Uniform Agreement: If a process delivers a message
m, then all correct processes eventually deliverm.

� Uniform Integrity: For any message m, every process
delivers m at most once, and only if m was previ-
ously broadcast by a process.

� Uniform Total Order: If both processes p and q deliver
messages m and m0, then p delivers m before m0, if
and only if q deliversm beforem0.

State machine replication provides linearizability [19], a
form of strong consistency. An execution is linearizable if
there is a way to total order client commands such that (a) it
respects the semantics of the objects accessed by the com-
mands, as expressed in their sequential specifications; and
(b) it respects the real-time ordering of the commands in the
execution. There exists a real-time order among two com-
mands if one command finishes at a client before the other
command starts at a client.

The scheduling algorithms we discuss in the paper
exploit concurrency among commands. Let C be the set of
possible commands and #C � C � C the conflict relation
between commands. If fci; cjg 2 #C , then commands ci and
cj conflict and replicas must serialize their execution; other-
wise, replicas can execute ci and cj concurrently.

3 LATE SCHEDULING

We generalize the requirements for parallel execution of
commands using late scheduling with an abstract data type
that keeps track of the order among conflicting com-
mands [13]. We call this data structure Conflict-Ordered Set
(COS). This data structure is defined by three primitives
with sequential specification as follows.

� insertðc 2 CÞ inserts command c in the data
structure;

� c 2 C : getðÞ returns c if and only if:
– c is in the data structure,
– no previous getðÞ has returned c, and
– there is no c0 in the data structure inserted before

c such that ðc; c0Þ 2 #C ; and

� removeðc 2 CÞ removes c from the data structure.
Algorithm 1 details the behavior of the parallelizer and

worker threads based on COS. There is a configurable set of
worker threads T and a shared COS structure (lines 2 and
3). We use a semaphore to limit the number of commands
in the COS data structure (line 4) and another to keep track
of the number of commands that can be executed (line 5).
When a command is delivered and there is enough space in
the data structure, it is inserted in the COS (line 9). The
insert primitive returns the number of commands ready to
execute, so that the ready semaphore can be updated (lines
9 and 10). A working thread waits for ready commands
(line 13), requests a command with the get primitive, exe-
cutes the command, and then removes it, freeing space in
the graph (line 17). During removal, new commands may
become ready due to solved references (lines 16 and 18).

Algorithm 1. Late Scheduling: Parallelizer and Workers

1: Constants and data structures:
2: T : set of working thread identifiers
3: COS: the conflict-ordered set
4: space new SemaphoreðmaxSizeÞ {graph space}
5: ready new Semaphoreð0Þ {ready nodes}
6: Parallelizer works as follows:
7: onDeliver(req): {when a new request arrives}
8: space:downðÞ {wait for space available}
9: rdy COS:insertðreqÞ {insert it in the stucture}
10: ready:upðrdyÞ {allow to retrieve ready nodes}
11: Each WorkingThread with tid 2 T executes as follows:
12: while true do
13: ready:downðÞ {wait free nodes to execute}
14: c COS:getðÞ {get a command c free to run}
15: executeðcÞ {execute c and then}
16: rdy COS:removeðcÞ {remove c from the structure}
17: space:upðÞ {allow to insert new nodes}
18: ready:upðrdyÞ {allow to retrieve ready nodes}

3.1 Algorithm

In this section, we present a nonblocking COS implementa-
tion. Our algorithm uses native atomic types and an atomic
compare-and-set operation. We also assume that inserts are
called sequentially, according to the order defined by
atomic broadcast (see Algorithm 1). This ensures that repli-
cas handle conflicting commands consistently. While insert
invokations are sequential (among themselves), get and
remove invokations are concurrent with any operations.

The algorithm builds a directed acyclic graph to represent
dependencies among commands. Each Node of the graph
(Algorithm 2, line 2) contains a command c, an atomic field
with the command state, a list depOn of references to nodes it
depends on, a list depMe of references to other nodes that
depend on this node, and the nxt field, which represents the
total order among commands. Each command transits
through the following states, in the order shown:

? starting: the command is being inserted in the graph;
wtg waiting: the command has already been inserted and

depends on other commands to execute;
rdy ready: all dependencies have been resolved and the

command can be executed;

1. We use the terms send/receive for one-to-one communication
and broadcast/deliver for one-to-many or group communication.

2. Atomic broadcast needs additional synchrony assumptions to be
implemented [17], [18]. These assumptions are not explicitly used by
the protocols proposed in this paper.
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exe executing: the command was taken for execution by
some worker thread; and

rmd removed: the node with the command has been logi-
cally removed from the COS data structure.

Algorithm 2. Lock-Free COS: Data Types and Operations

1: Data types:
2: Node : f
3: c : Command;
4: atomic st : f?; wtg; rdy; exe; rmdg

{node may be starting, ...}
5: {...waiting, ready, executing, removed}
6: depOn : set ofNodeRef {nodes this one depends on}
7: depMe : set ofNodeRef {nodes that depend on this}
8: nxt : NodeRef {next node in arrival order}
9: g
10: NodeRef : atomic reference to Node
11: Variables:
12: N : NodeRef {nodes in COS}
13: insertðc : CommandÞ: int
14: nn  createNodeðcÞ {create new node structure}
15: n calculateDependenciesðN;nnÞ

{compute the dependencies}
16: if n ¼ ? thenN  nn else n:nxt nn

17: nn:st wtg {the node is now waiting...}
18: return testReadyðnnÞ {...and tested if ready}
19: get():NodeRef {assumes a ready node exists}
20: n N {start searching for a ready node}
21: while n 6¼ ? do {consider each node, in arrival order}
22: if compareAndSetðn:st; rdy; exeÞ then
23: return n {if node is ready, mark it and return}
24: n n:nxt {go to next}
25: removeðn : NodeRefÞ: int {assumes n with n:st ¼ exe exists}
26: n:st rmd {logic removal}
27: rdys 0 {ready nodes counter}
28: for all ni 2 n:depMe do {for all nodes depending on me}
29: rdys rdysþ testReadyðniÞ {check if ni is ready, count}
30: return rdys {return number of ready nodes}

The strategy used to allow lock-free operations is to
change the graph topology exclusively in the insert opera-
tion, while other operations may take commands for execu-
tion as well as logically remove nodes by appropriately
marking their state only, without modifying any other field
or the graph topology. The remove operation is logic in that
it marks the node as removed while actual removal from
the graph takes place during insertion of another node
using the helping technique, when one operation helps the
other to accomplish its modifications.

The insert operation (Algorithm 2, line 13) assumes there
is room in the graph to create a node. The new node is cre-
ated with command c (Algorithm 3, line 1). Function
calculateDependencies (Algorithm 3, line 12) traverses
nodes in N , from the oldest to the newest, and builds the
needed dependencies. If any n0 2 N not logically removed
conflicts with the new node nn, then lines 18 and 19 insert
edges to represent this dependency. During a physical
remove (Algorithm 3, line 16) nodes logically removed have
their outgoing edges deleted (Algorithm 3, lines 22 to 24).
Then, the new node is included in the list N of nodes to
become reachable in the graph, and its state is changed to

waiting (Algorithm 2, lines 16 and 17). Finally, testReady
(Algorithm 3, line 7) checks for dependencies. If none are
found, then the node becomes ready.

The get operation (Algorithm 2, line 19) returns a node in
the graph ready to execute. When this operation is called, a
ready node in the graph exists due to Algorithm 1, lines 10
and 18. The first node atomically tested to be equal to rdy
(i.e., ready) is set to exe (i.e., executing) and returned. Since
insertion follows delivery order, the node returned is the old-
est ready to execute. Due to the atomicity of compareAndSet
(Algorithm 3, line 3) the node is returned by at most one get.

The remove operation (Algorithm 2, line 25) marks the
node as logically removed by assigning rmd to its state. It
checks if each of the dependent nodes became ready (lines
28 and 29). The edges from older (the one logically
removed) to newer nodes (depMe) identify which nodes
may become ready when this dependency is solved. The
edges in the other direction (depOn) allow to evaluate if a
node has all dependencies solved, that is, all nodes it
depends on are logically removed (Algorithm 3, line 8).
With this, the logical remove operation is able to signal new
ready nodes only by checking the state of referred nodes
and without any modifications to the graph structure,
which is left to the insert operation, while performing
helped remove.

Algorithm 3. Lock-Free COS: Auxiliary Operations

1: createNodeðc : CommandÞ: NodeRef
2: return reference to new Nodefc;?; ;; ;;?g
3: compareAndSetða; b; cÞ: boolean
4: return atomic f if a ¼ b then a c; true else false g
5: conflictðni; nj : NodeÞ: boolean
6: return ðni:c; nj:cÞ 2 #C {is this pair in conflicts set}
7: testReadyðn : NodeRefÞ : 0; 1
8: if fni 2 n:depOnjni:st 6¼ rmdg ¼ ; then

{n has no dependency}
9: if compareAndSetðn:st; wtg; rdyÞ then {switch to rdy}
10: return 1
11: return 0
12: calculateDependenciesðN;nn : NodeRefÞ : NodeRef
13: n0  n N {n0 and n equal to N}
14: while n0 6¼ ? do {consider each node, in order}
15: if n0:st ¼ rmd then {n0 logically removed}
16: helpedRemoveðN; n0; nÞ {remove it}
17: else if conflictðn0; nnÞ then {n0 is valid, they conflict?}
18: n0:depMe n0:depMe [ fnng {nn depends on n0}
19: nn:depOn nn:depOn [ fn0g {reference count in nn}
20: n n0; n0  n0:nxt {consider the next}
21: return n
22: helpedRemoveðN;n0; n : NodeRefÞ
23: for all ni 2 n0:depMe do {for every node that depends on n0}
24: ni:depOn ni:depOn n fn0g

{remove n0 from dependencies}
25: if !compareAndSetðN;n; n0:nxtÞ then
26: atomic fn:nxt n0:nxtg {bypass n0}

3.2 Correctness

The main argument for correctness is that the insert opera-
tion performs all structural modifications to the graph, and
its invocations are sequential (according to the atomic
broadcast deliver order). Operations get and remove do not
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change the topology of the graph, they logically mark nodes
as taken for execution or as logically removed, using the
Node’s atomic st attribute. As discussed, operation insert is
responsible for removing from the graph any logically
removed nodes as soon as it traverses the graph to insert a
new node. This rules out any possible topological inconsis-
tency due to concurrency.

Graph traversals are performed only by insert and get.
These concurrent traversals are consistent despite the fact
that the insert operation may change the topology. Since
both operations traverse nodes in the same order, and a pos-
sible modification on the reference to next node is atomic, be
it due to the removal or insertion of a node, the get opera-
tion will either use the previous reference, or the new one.
In either case due to the nature of the operation, the result is
the same. Consider that get traverses a logically removed
node. Since the node was already executed, get will not
return it.

The remove operation atomically marks a referenced
node as executed, not traversing the graph. It also reads
information from nodes depending on the one being logi-
cally deleted to check if any one became ready to execute.
Since these operations may only atomically change the state
of a node, they do not affect other operations. Also, since
the nodes checked exist due to the existing references, by
the logically removed node and the assumption of a garbage
collector, the operation succeeds.

Liveness follows from the fact that the graph is a DAG.
Since commands can only depend on previous conflicting
ones, according to a total order, dependencies will never
build a cycle (i.e., the graph is acyclic). After a command
executes, it will inductively remove dependencies to com-
mands assuring that there is at least a next command that
can be executed, or no command left.

4 EARLY SCHEDULING

The early scheduling approach classifies requests into
request classes and defines dependencies between clas-
ses [12], [20]. Consider a service with a set R of requests,
and let C ¼ fC1; C2; . . . ; Cncg be a set of class descriptors,
where nc is the number of classes. We define request
classes as R ¼ C ! PðCÞ � PðRÞ,3 that is, any class in C
may conflict with any subset of classes in C, and is asso-
ciated to a subset of requests in R. Two classes conflict if
one class contains at least one request that conflicts with
a request in the other class. We restrict classes to be dis-
junct and non-empty.

4.1 From Applications to Request Classes

Defining request classes for an application is related to the
problem of sharding the application state. In its simplest
form, the application state can be sharded into disjoint parti-
tions according to some criteria (e.g., hash partitioning, range
partitioning). More sophisticated sharding mechanisms may
account for how data is accessed (e.g., grouping entries in
the same shard if they are accessed together by the requests)
[21]. For each shard, one can define a class of read-only
requests (i.e., request that do not modify the shard state) and

a class of update requests. Depending on the data accessed
by requests and on the criterion used for sharding the data,
one may need to define classes that involve multiple shards,
either read-only or update. A read-only class does not con-
flict with any other read-only classes. An update class con-
flicts with itself (since it may contain conflicting requests)
and with any other classes that contain requests that access
the same shard.

For example, consider a key-value store application with
an operation to write (put) a (key, value) pair and an opera-
tion to read (get) the value associated to a key. Each key is
mapped to a single shard using hashing partitioning (i.e.,
hash_function(key) returns the key’s shard). In a system
with two shards, we could have one class to read and one
class to write each shard, respectively, classes CR1 and CW1

for shard 1 and classes CR2 and CW2 for shard 2. The read
classes contain get operations and the write classes contain
put operations on the keys associated with the shard. A
multi put operation that writes multiple entries would be
part of a class CMW that involves both shards. Class CMW

would conflict with all classes.

4.2 From Request Classes to Threads

To ensure that requests in a class are executed, we map one
or more threads to each class. To guarantee a correct execu-
tion (i.e., linearizable), we determine whether the execution
of requests in the class must be sequential or concurrent,
and whether classes must share worker threads. More pre-
cisely, the classes-to-threads mapping respects the follow-
ing rules:

R1. Every class is associated with at least one thread. The
threads mapped to the class execute requests that
belong to the class.

R2. If a class is self-conflicting (i.e., the class contains requests
that conflict), it is sequential. Even though a class is
sequential, we may want to assign multiple threads
to the class since this provides a means for classes to
synchronize, as we show below. In this case, each
request is scheduled to all threads of the class and
processed as described below.

R3. If two classes conflict, at least one of them must be sequen-
tial. The previous requirement may help decide
which one.

R4. For conflicting classes c1, sequential, and c2, concurrent,
the set of threads associated to c2 must be included in the
set of threads associated to c1. This requirement ensures
that requests in c2 are serialized w.r.t. requests in c1.

R5. For conflicting sequential classes c1 and c2, it suffices that
c1 and c2 have at least one thread in common. The com-
mon thread ensures that requests in the classes are
serialized.

A classes-to-threads mapping is defined as CtoT ¼ C !
fSeq; Concg � PðT Þ, where C is the set of class descriptors;
fSeq; Concg is the sequential or concurrent synchronization
mode of a class; and PðT Þ is the possible subsets of the n
threads T ¼ ft0; ::; tn�1g at a replica. The previous rules
result in several possible mappings and can be modeled as
an optimization problem that searches the configuration
that allows maximum concurrency in the execution [12].
The general idea is to observe the workload and maximize3. We denote the power set of set S as PðSÞ.
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(resp., minimize) the number of threads in concurrent
(resp., sequential) classes.

4.3 Algorithm

Clients label requests with their corresponding class. A rep-
lica has one classifier thread and n (worker) threads, each
one with a separate input FIFO queue. The classifier deliv-
ers each request r in total order and schedules the request to
one or more workers according to Algorithm 4: if r’s class is
sequential, then all threads mapped to the class receive the
request to synchronize the execution (lines 16–17); if r’s
class is concurrent, the classifier assigns r to one thread
among the ones mapped to the class (lines 18–19), following
a round-robin policy (function next).

Algorithm 4. Early Scheduling: Classifier

1: Data types:
2: T : set of thread identifiers
3: C : set of class identifiers
4: Req : fc : Command; {a request has the command to execute}
5: classId : Cg {and the identifier to the class it belongs}
6: CtoT ¼ {the class to threads mapping is...}
7: 8 classId 2 C ! {for each class}
8: smode : fSeq; Concg; {a synchronization mode}
9: threads : PðT Þ {a nonempty subset of threads}
10: smodeðclassIdÞ ¼ CtoT ðclassIdÞ:smode
11: threadsðclassIdÞ ¼ CtoT ðclassIdÞ:threads
12: Variables:
13: queues½0; . . . ; n� 1�  ; {one queue per thread}
14: Classifier works as follows:
15: onDeliver(req):
16: if smodeðreq:classIdÞ ¼ Seq then

{if execution is sequential}
17: 8t 2 threadsðreq:classIdÞ {for each conflicting thread}
18: queues½t�:fifoPutðreqÞ {synchronize to exec req}
19: else {else assign it in round-robin}
20: queues½nextðthreadsðreq:classIdÞÞ�:fifoPutðreqÞ
21: {assign req to one thread in round-robin}

Each worker (Algorithm 5) takes one request at a time
from its queue in FIFO order (line 6) and then proceeds
depending on its class synchronization mode. If it is sequen-
tial, the worker synchronizes with other workers in the class
using barriers before the request is executed (lines 11–18),
and only one worker executes the request. If it is concurrent,
then the worker simply executes the request (line 10).

4.4 Correctness

We argue by case analysis that any mapping that follows
rules R1 to R5 generates linearizable executions. We start
with classes without external conflicts.

(1) Class c has no internal and no external conflicts. Then any
request r 2 c is independent of any other requests and can
be dispatched to the input queue of any thread (assigned to
c). According to R1, such a thread exists. The thread
dequeues and executes without further synchronization
(Algorithm 5, line 10).

(2) Class c has internal conflicts but no external conflicts.
Then, by rule R2, c is sequential and any request r 2 c is
enqueued to the input queues of all threads associated
to c, according to the delivered order. These threads

eventually dequeue r due to the same order in their
queues and synchronize to execute it (Algorithm 5,
line 8), i.e., requests belonging to c are executed respect-
ing their delivery order.

Now we consider external conflicting classes.

Algorithm 5. Early Scheduling: Workers

1: Variables:
2: queue½T � {one empty request queue per thread in T}
3: barrier½C� {one initialized barrier per request class}
4: Each WorkingThread with tid 2 T executes as follows:
5: while true do {infinite loop}
6: req  queue½tid�:fifoGetðÞ {wait until a request is available}
7: if smodeðreq:classIdÞ ¼ Seq then {if execution is sequential}
8: execWithBarrierðreq; barrier½req:classId�Þ {use barrier}
9: else {concurrent execution}
10: execðreqÞ {execute the request}
11: execWithBarrier(req, barrier):
12: if tid ¼ minðthreadsðreq:classIdÞÞ then {smallest id}
13: barrier:awaitðÞ {wait for signal}
14: execðreqÞ {execute request}
15: barrier:awaitðÞ {resume workers}
16: else
17: barrier:awaitðÞ {signal worker}
18: barrier:awaitðÞ {wait execution}

(3) Class c1 has no internal conflicts, but conflicts with c2. By
rule R3, one of the classes must be sequential. Assume c2 is
sequential. From R4 we have that the threads that imple-
ment c1 are contained in the set of threads that implement
c2. It then follows that every request from c1 is executed
before or after any c2’s request, according to their delivery
order. Notice that this holds even though requests in c1 are
concurrent.

(4) Classes c1 and c2 have internal conflicts and conflict with
each other. Then c1 and c2 are both sequential. Both synchro-
nize their threads to execute requests. According to restric-
tion R5, these classes have at least one common thread tx
which suffices to impose that c1 and c2 execute their
requests according to the delivery order.

5 A HYBRID APPROACH

The hybrid scheduling shards the service state and uses an
instance of COS per shard, leading to a set of subgraphs
(Fig. 1d). Commands that access two or more shards inter-
connect the related subgraphs. In doing so, the hybrid
scheduling removes the late scheduling bottleneck since
there is one parallelizer per subgraph.

A sequential class is associated to each shard and
mapped to a different parallelizer thread. (All insertions in
a subgraph are sequential, and thus, there is no point in
assigning multiple parallelizers per shard.) We also create
sequential classes for all possible sets of shards accessed by
a command and assign to these classes the parallelizers in
the corresponding single-shard classes. These classes ensure
proper synchronization of commands that access multiple
shards. For example, if CS1 and CS2 are classes associated to
shards S1 and S2, then each one will be mapped to a paral-
lelizer thread tp1 and tp2 , respectively. Additionally, there is
a class CS1;S2 , mapped to both threads tp1 and tp2 .
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While in the early scheduler the classes-to-threads map-
ping affects performance, in the hybrid scheduler this map-
ping is not a concern since we use a special mapping
instance, as previously described. Since we have just one
parallelizer per single-shard class, it is not necessary to exe-
cute any additional synchronization and these parallelizers
include requests in parallel in their subgraphs. Moreover,
we optimized the multi-shard request scheduling by avoid-
ing the use of barriers in their classes, and instead we use
atomic counters to define when all parallelizers included
the dependencies in their subgraphs.

Algorithm 6.Hybrid Scheduling: Types and Variables

1: Data types:
2: Shard : f
3: queue ;; {execution queue}
4: cos hN : ?; R : ;i, {extended lock-free COS - Alg. 10}
5: ready new Semaphoreð0Þ {shard ready nodes}
6: space new SemaphoreðmaxSize=jSjÞ {shard space}
7: g
8: Req : f. . .g {as defined in Algorithm 4}
9: Node : f. . .g {as defined in Algorithm 3}
10: HyNode extends Node : f {specialization ofNode}
11: sid : S; {shard id}
12: rems : int {remaining parallelizer counter}
13: with nxt : HyNodeRef
14: with depOn½� : array of sets of HyNodeRef , one per

shard
15: with depMe½� : array of sets of HyNodeRef , one per

shard
16: g
17: HyNodeRef atomic reference toHyNode
18: Variables:
19: C {as defined in Algorithm 4}
20: S {set of shard ids}
21: CtoS : C ! PðSÞ {a class maps to a subset of shards}
22: shards½S� {one shard struct per shard id}

Clients label requests with the class identifier, as in early
scheduling. Every replica has one classifier and one parallel-
izer thread per shard, and a set of worker threads per shard.
Each parallelizer has a separate input queue and removes
requests from the queue in FIFO order. The classifier in a
replica delivers requests in total order and dispatches each
request r to one or more input queues:

� If r accesses only one shard S, r depends on preced-
ing requests assigned to S and is inserted in the
related queue.

� If r accesses two or more shards, one parallelizer
inserts r in its subgraph and all parallelizers
involved in the command insert dependencies in
their subgraph to r.

Each worker thread selects a request available for execu-
tion from the related subgraph, marking it as executing, and
then removes it from the subgraph after execution.

5.1 Algorithm

We now present hybrid scheduling in more detail. Algo-
rithm 6 presents the structure types and variables used. In
the following, we emphasize the main differences to the

previous algorithms. C has the same previous definition of a
set of request classes identifiers. We add a set of shard identi-
fiers S and amapping from classes to subsets of shardsCtoS,
similar to the classes-to-threads mapping of early schedul-
ing. Each shard has an input queue and an associated lock-
free COS extended from Algorithm 2 to handle cross-shard
commands. There are counting semaphores per shard to
record the number of ready commands and free space for
new commands. The extended COS node, now called
HyNode, adds two new attributes to the node used in the
lock-free graph: sidsid stores the identifier of the shard that will
store the node; and remsrems stores the number of parallelizers
that have not yet processed this node during insertion. Each
HyNode also has two arrays of sets of nodes, one for nodes
that depend on the inserted node and another for nodes the
inserted node depends on. Each parallelizer accesses only its
position in the arrays, avoiding race conditions on these sets.
Variable shards (line 22) represents all shards in a replica.

Algorithm 7. Per Replica Classifier

1:Classifier works as follows:
2: onDeliverðreq : RequestÞ :
3: shardsids  CtoSðreq:classIdÞ {involved shards identification}
4: ssid  selectShardðreq:classIdÞ {responsible shard selection}
5: rems  shardsids:size {number of parallelizer involved}
6: node createNodeðreq:c; ssid; remsÞ {COS HybridNode}
7: for all s 2 shardsids do {for each shard involved}
8: shards½s�:queue:fifoPutðnodeÞ {put in shard’s queue}

Auxiliary functions:
9: selectShardðclassid : CÞ : S
10: return shard s chosen in round-robin among

CtoSðclassidÞ
11: createNodeðc : Command; sid : int; rems : intÞ :HyNodeRef
12: return reference to newHyNodefc;?; ;; ;;?; sid; remsg

Whenever a request is delivered, the classifier identifies
the shards involved in the request (Algorithm 7, line 3) and
chooses one of them to store the node (line 4). It then creates
a hybrid node with these attributes and enqueues it in the
input queue of all involved shards.

Algorithm 8. Per-Shard Parallelizer

1: Parallelizer of shard sid executes as follows:
2: while true do {infinite loop}
3: node shards½sid�:queue:fifoPullðÞ {next node to schedule}
4: if node:sid ¼ sid then {is this the responsible parallelizer?}
5: shards½sid�:space:downðÞ {grant space to insert...}
6: shards½sid�:cos:insertðnode; sid; trueÞ {...node and deps.}
7: else
8: shards½sid�:cos:insertðnode; sid; falseÞ {or deps. only}

Next, the request is scheduled in each shard (Algo-
rithm 8). A parallelizer per shard keeps reading in FIFO
order the next node to schedule (line 3). If the shard is
responsible for the node (line 4), it allocates space (line 5)
to store the node and creates dependencies (line 6); other-
wise, it only creates dependencies (line 8). Notice that the
shard identifier is used in the insert operation to indicate
in which subgraph the node and its dependencies must be
included.
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Before we delve into details of the extended lock-free
COS operations for hybrid scheduling, we describe how
worker threads execute commands (Algorithm 9). This algo-
rithm adapts Algorithm 1 to associate each worker to a
shard sid to process requests. Whenever there is a node free
of dependencies in that shard (line 3) it is retrieved (line 4),
executed (line 5) and logically removed from its shard
(line 6), releasing space (line 7).

Algorithm 9. Per-Shard Worker Threads

1: Each WorkingThread of shard sid executes as follows:
2: while true do {infinite loop}
3: shards½sid�:ready:downðÞ {grant a ready node to work}
4: node shards½sid�:cos:getðÞ {get a node free to run}
5: executeðnode:cÞ {execute the command and then}
6: shards½sid�:cos:removeðnodeÞ {mark node as removed}
7: shards½sid�:space:upðÞ {allow to insert new nodes}

Algorithm 10 presents the extended COS implementation
to deal with a sharded service. A node belongs to the respon-
sible shard selected in Algorithm 7, and is related to all the
other shards involved in its class. Nodes that belong to a
shard are stored inN (line 2), and related nodes are stored in
a setR (line 3). Each shard is responsible for allocating space,
executing, and deleting nodes in N . While executing nodes
inN , dependencies to other shards have to be respected. For
each shard, related nodes represent nodes that are stored in
other shards but may have dependencies with the shard
nodes and thus must be checked during an insertion. The set
R is onlymanipulated by the parallelizer related to the shard,
thus also does not present race conditions.

The insert operation has as argument a flag that tells
whether the node should be included in N (line 8) or in R
(line 10). After the node is processed in all subgraphs it is
involved in (line 11), the node changes its status to waiting
(wtg), and is tested if ready (lines 12-13). The remove opera-
tion marks the node as removed (line 15), and evaluates if
dependent nodes become executable. Finally, get is the
same operation as in Algorithm 2. It returns the first ready
node in the subgraph.

Functions insertDeps and insertRelatedDeps insert the
dependencies related to nodes in N and R, respectively. In
these functions, logically removed nodes are physically
removed from the structures. Function removeDeps
removes the ingoing edges to a removed node. The bind
function is responsible for including a dependency between
two nodes. Similar to the late scheduling, function
testReady verifies if a node is ready to execute.

5.2 Correctness

The hybrid scheduling combines the early with the late
scheduling, and adds some refinements. Commands are
delivered at each replica in total order (from atomic broad-
cast). The classifier sequentially evaluates the command
classes and enqueues commands in the input queue of one
or more parallelizers, according to the classes. By the dis-
cussed properties of early scheduling, we have that the
delivery order is respected at all parallelizer queues.

Conflict classes represent any possible combinations of
shards involved in cross-shard commands. A single-shard

command belongs to a class that maps to the parallelizer
representing that shard only, while a multi-shard command
belongs to a class that maps to all involved parallelizers.

Algorithm 10. Extended Lock-Free COS

1: Variables:
2: N : HyNodeRef; initially ?

{List of HyNodes in the subgraph}
3: R : set of HyNode; initially ; {Set of related HyNodes}
4: insertðnn : HyNodeRef; sid : int; insertnode : booleanÞ
5: insertRelatedDepsðnn; sidÞ {build dependencies with R}
6: n insertDepsðnn; sidÞ {build dependencies withN}
7: if insertnode then {insert the node in this graph...}
8: if n ¼ ? thenN  nn else n:nxt nn

9: else {...or in the related nodes set}
10: R R [ fnng
11: if decrementAndGetðnn:remsÞ ¼ 0 then {if this is the last...}
12: nn:st wtg {...parallelizer, the node is now waiting...}
13: testReadyðnnÞ {...and tested if ready}
14: removeðn : HyNodeRefÞ

{assumes n exists and has n:st ¼ exe}
15: n:st rmd {logic removal}
16: for all sid 2 S do {for all shards}
17: for all ni 2 n:depMe½sid� do

{for all nodes depending on me}
18: testReadyðniÞ {check if ni is ready}
19: getðÞ : HyNodeRef {as defined in Algorithm 2}
Auxiliary functions:
20: insertRelatedDepsðnn : NodeRef; sid : intÞ
21: for all n 2 R do {consider each n node in R}
22: if n:st ¼ rmd then {n logically removed}
23: removeDepsðn; sidÞ {remove its dependencies}
24: R R n n {remove n from R}
25: else if conflictðnn; nÞ then
26: bindðnn; n; sidÞ {conflict, insert a dependency}
27: insertDepsðnn : NodeRef; sid : intÞ : NodeRef
28: n0  n N
29: while n0 6¼ ? do {consider each node n0 inN , in order}
30: if n0:st ¼ rmd then {n0 logically removed}
31: removeDepsðn0; sidÞ {remove its dependencies}
32: if !compareAndSetðN;n; n0:nxtÞ then {if not first node}
33: atomic fn:nxt n0:nxtg {bypass it}
34: else if conflictðnn; n

0Þ then
35: bindðnn; n

0; sidÞ {conflict, insert a dependency}
36: n n0; n0  n0:nxt {go to the next}
37: return n {return the last node in N}
38: removeDepsðn : NodeRef; sid : intÞ
39: for all ni 2 n:depMe½sid� do {consider each dependency}
40: ni:depOn½sid�  ni:depOn½sid� n fng {and remove it}
41: bindðnnew; nold : NodeRef; sid : intÞ
42: nold:depMe½sid�  nold:depMe½sid� [ fnnewg {nnew depends}
43: nnew:depOn½sid�  nnew:depOn½sid� [ fnoldg {on nold}
44: testReadyðn : NodeRefÞ
45: if {ni 2 f9sid 2 S : ni 2 n:depOn½sid� ^ ni:st 6¼ rmd}}¼ ;

then {n has no dependency}
46: if compareAndSetðn:st; wtg; rdyÞ then {switch to rdy}
47: shards½n:sid�:ready:upðÞ {inform a new node ready in sid}
48: decrementAndGetðvalue : intÞ : int

return atomic fvalue value� 1; valueg
49: compareAndSetða; b; cÞ: boolean {as defined in Algorithm 3}
50: conflictðni; nj : NodeÞ: boolean {as defined in Algorithm 3}
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The parallelizer of a shard takes commands from its
input queue, while preserving delivery order, and calcu-
lates conflicts against pending commands in the shard. This
ensures that there will never be dependency cycles within
or among shards—the last because the total order is pre-
served across all shard input queues.

Cross-shard commands are considered completely
scheduled only when all parallelizers involved have cal-
culated dependencies to pending commands in their
respective shards. This is ensured by the number of par-
allelizers involved in the node (rems) which is atomically
decremented whenever a parallelizer has completed its
dependency analysis. Therefore, a node will never be
considered for execution before all involved parallelizers
have processed it and dependencies have been fully
represented.

A command is considered for execution only if free from
dependencies. This is ensured by get, which takes only
ready commands, and by testReady, which switches com-
mands from waiting to ready when dependencies are
solved. Function testReady is fired whenever a new node is
inserted or a node is logically removed to respectively check
if a new node is free from dependencies and if the removal
of a node will free any other nodes to execute.

All arguments above show that dependent commands
execute according to the total order, while independent
commands from different or same shards execute concur-
rently. Due to acyclic dependencies, as discussed above,
considering all shards, at all times it holds that there exists
an oldest command that does not depend on any previous
one and can execute. When this command executes, it is log-
ically removed and dependencies solved. Consequently, it
will inductively free dependencies to other commands,
resulting in a dependency structure with the same property
above, ensuring progress.

In addition, each command has a responsible shard.
Workers associated to each shard will consider its com-
mands for execution whenever they are ready. If more than
one command is ready, then the oldest one is chosen, ensur-
ing that ready commands at all shards eventually execute.

Regarding the lock-free concurrent access to the depen-
dency graph, safety at each shard has the same arguments
as in Section 3.2. Besides, during insertion of a cross-shard
node, the involved shard parallelizers concurrently com-
pute dependencies of the incoming node to different sets of
nodes. This is done by adding node references to node
attributes depOn and depMe. These attributes are built with
different subsets for each shard. Since each shard parallel-
izer updates a different set, the operation is both safe and
free from synchronization among parallelizers.

When ready, a node is taken for execution (get) by one
thread belonging to the shard responsible for the node. This
thread executes and logically removes the node. During a
physical removal, all nodes on depMe are visited to update
their respective depOn sets, by the parallelizer of each shard.
When workers from different shards concurrently remove
nodes that affect (release dependencies) a common node,
the common node’s depOn set will be accessed concurrently.
Again, due to the per shard dependency list at nodes, this is
ensured to be safe and free from synchronization among
workers from different shards.

6 EXPERIMENTS

We experimentally evaluated the proposed scheduling pro-
tocols, aiming to show (1) the advantages and the draw-
backs of the late and early approaches (x6.4); (2) how hybrid
scheduling circumvents these performance problems by
leveraging the best characteristics of each of these techni-
ques in a multi-sharded system (x6.5); (3) the performance
of the protocols with skewed workloads (x6.6); and (4) the
performance of the data structures alone without integra-
tion in a SMR framework (x6.7). We also analyzed the pro-
posed protocols using different applications (x6.8).

6.1 Environment

We implemented all the scheduling techniques in BFT-
SMART [22], an SMR library that can be configured to use
protocols optimized to tolerate crash failures only or Byzan-
tine failures. In all experiments, we configured BFT-SMART

to tolerate crash failures. BFT-SMART was developed in Java
and its atomic broadcast protocol executes a sequence of
consensus instances, where each instance orders a batch of
commands. To further improve the performance of BFT-
SMART ordering protocol, we implemented interfaces to
enable clients to send a batch of commands in the same mes-
sage. The experimental environment was configured with 7
machines connected to a 1Gbps switched network. The
machines were configured with the Ubuntu Linux 18.04
operating system and a 64-bit Java virtual machine version
10.0.2. BFT-SMART was configured with 3 replicas hosted in
separate machines (Dell PowerEdge R815 nodes equipped
with four 16-core AMD Opteron 6366HE processors run-
ning at 1.8 GHz and 128 GB of RAM) to tolerate up to 1 rep-
lica crash. Up to 800 clients were distributed uniformly
across another 4 machines (HP SE1102 nodes equipped
with two quad-core Intel Xeon L5420 processors running at
2.5 GHz and 8 GB of RAM). The experiments with the graph
data structures alone without integration in a SMR were
executed in one of the Dell PowerEdge machines.

6.2 Applications

We implemented four applications: a linked list, a Key-
Value (KV) Store, an authenticated KV-Store, and a digital
coin. The linked list was used to microbenchmark the sys-
tem under different workloads, ranging the number of
shards and conflicts, as well as the operations costs.

We implemented both single- and multi-sharded services
based on a linked list. For a single-sharded service, we used
a linked list application with operations to check whether
an entry (i.e., an integer) is in the list (contains) and to
include an entry in the list (add), representing a readers-
and-writers service. Operation containsðiÞ returns true if
entry i is in the list, otherwise it returns false; operation
addðiÞ includes i in the list and returns true if i is not in the
list, otherwise it returns false. In this context, contains com-
mands do not conflict with each other but conflict with add
commands, which conflict with all commands. For a multi-
sharded service, we used a set of linked lists (one per shard)
application with single-shard and multi-shard operations to
check whether an entry is in a subset of lists (containsSðiÞ
executes containsðiÞ in the lists associated with each shard
k 2 S) and to include an entry in a subset of lists (addSðiÞ
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executes addðiÞ in the lists associated with each shard k 2 S).
In this case, addS0 conflicts with each containsS00 and with
each addS00 if S

0 \ S00 6¼ ;.
Hereafter, we refer to operations that check whether an

entry is in one or more lists and to operations that include
an entry in one or more lists as read and write operations,
respectively. Each list was initialized with 1k and 10k entries
at each replica (ranging from 0 to list size - 1), representing
operations with different execution costs. The integer
parameter used in an entry in a read and write operations
was a randomly chosen position in the list.

6.3 Optimizations and Implementation

The first important optimization we introduced in the
hybrid scheduling prototype was the moving of node crea-
tion from the classifier (Algorithm 7) to the parallelizers
(Algorithm 8) in single-sharded commands. This is possible
because there is only one shard involved and parallelizers
do not share node information. We also avoid the atomic
execution of line 11 in Algorithm 10 and simply execute
lines 12 and 13 because the if statement will always return
true in these cases. Another important remark about the
hybrid scheduling is that we opted to assign workers per
shard instead of global workers. This approach presented a
better performance since fewer workers share common
structures (mainly semaphores) and they already know the
shard to lookup for a free command when unblocked.

We used an efficient lock-free single-producer single-
consumer implementation [23] for the FIFO queues used in
the early and hybrid techniques. We also configured the
maximum size of the dependency graph to 150 entries for
the late and hybrid approaches. In the experiments, we
measured the throughput of the system at the servers and
the latency of each command at the clients. In the experi-
ments with the data structures alone, we measured only the
overall throughput obtained by the worker threads since it

does not make sense to compute the latency in this case. A
warm-up phase preceded each experiment.

6.4 Single-Sharded Systems

The first set of experiments considers reads and writes in a
single shard. Figs. 2 and 3 show the throughput presented
by each scheduling approach for different execution costs
and number of worker threads, considering three work-
loads: a workload with read operations only, a mixed work-
load composed of 5% of writes and 95% of reads, and a
mixed workload composed of 10% of writes and 90% of
reads. For the mixed workloads, read and write operations
were uniformly distributed among clients.

In general, early scheduling excels in workloads without
conflicts, but the performance decreases abruptly when con-
flicts are present. This happens because the processing at
the classifier is fast, but workers need to synchronize to exe-
cute conflicting commands. Moreover, increasing the num-
ber of workers decreases performance in the workloads
with conflicts. In fact, the mapping of requests classes to
worker threads is a complex optimization problem [12].

Late scheduling uses a lock-free graph to track command
dependencies [13] and the parallelizer is responsible for
maintaining the graph by inserting and removing com-
mands (recall that workers only mark a command as logi-
cally removed). Although this approach better balances the
workload among the workers, the parallelizer becomes a
bottleneck and performance does not increase with addi-
tional workers. Hybrid scheduling performs similar to late
scheduling since for systems with only one shard both
approaches work similarly.

6.5 Multi-Sharded Systems

Fig. 4 presents the results for a multi-sharded system con-
sidering different number of shards and workers and three
workloads: a workload with single-shard read operations

Fig. 2. Throughput for different percentage of writes and number of workers (list of 1k entries).

Fig. 3. Throughput for different percentage of writes and number of workers (list of 10k entries).
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only; a mixed workload composed of 5% of writes and 95%
of reads, out of which 1% are multi-shard operations and
99% are single-shard operations; and a mixed workload
composed of 10% of writes and 90% of reads, out of which
5% are multi-shard operations and 95% are single-shard
operations. Single-sharded operations are uniformly distrib-
uted among shards and all operations are uniformly distrib-
uted among clients. Moreover, 10% of multi-shard
operations involve all shards while the remaining ones are
addressed to two shards randomly chosen.

Since hybrid scheduling uses one parallelizer per shard
to insert (and remove) commands in (from) a subgraph, its
performance scales with the number of shards. It also
reaches the peak throughput of early scheduling in the
workload with only read commands, when configured with
6 or more shards. Early scheduling does not scale with
more than 2 workers per shard with conflicting commands
and the performance of late scheduling is limited by the
thread that maintains the graph. Notice that late scheduling
was executed with fewer workers than the others since the
parallelizer becomes a performance bottleneck with few
workers.

Fig. 5 shows the latency versus throughput results for the
configurations that better performed with 8 shards and the
workload with 5% global and 10% of writes (Fig. 4c). In the
approaches for parallel SMR, all commands have similar
latency because they have similar execution costs and the
synchronization of writes impacts the performance of reads
ordered after a write. Obviously, the same behavior occurs
in classic SMR. Consequently, Fig. 5 presents the average
latency considering all operations. It is possible to observe
that all approaches presented similar latency until near sys-
tem saturation and from this point on, latency increases
abruptly. Since the same behavior occurs for the other con-
figurations and workloads, we present only these cases. The

same behavior is reported in previous works on SMR (e.g.,
[12], [13], [22]).

6.6 Skewed Workloads

Fig. 6 presents the throughput for a system with 4 shards
considering the same workloads presented in the previous
section (balanced) and also for cases in which one shard
receives 50% of the single-sharded operations and the
remaining ones are uniformly distributed across the other
three shards (skewed). For each technique, we used the con-
figuration that in general presented best performance for
balanced workloads (Fig. 4).

Late scheduling presented similar performance for
skewed and balanced workloads since it does not distin-
guish between shards. The performance of early and hybrid
scheduling decreases in skewed workloads since while
some shard is overwhelmed, others have fewer work to pro-
cess. However, hybrid scheduling still outperforming the
others by a large margin.

6.7 Data Structures Performance

This section reports the performance for the data structures
alone (i.e., without integration in a SMR). We consider one
replica, where a thread loops over a list of pre-created
requests (to spare creation times). We executed the experi-
ments for the read only and no global operations workload
since it is the one that most challenges SMR.

The results presented in Fig. 7 report a similar perfor-
mance for the techniques when integrated in the SMR
framework (Fig. 4a). This means that overall performance is
limited by the synchronizations inside each replica as well
as the time demanded to create objects (e.g., nodes to be
inserted in the graph and requests from the serialized
received commands to be delivered at upper layers).

Fig. 4. Throughput for different percentage of writes and global operations for systems configured with different number of shards and worker threads
(list of 1k entries). For early and hybrid approaches, the number of workers is per shard, while in the late scheduling this number represent the total
workers.

Fig. 5. Latency versus throughput for a system with 8 shards and a work-
load composed by 10% of writes and 5% of global operations (list of 1k
entries).

Fig. 6. Throughput for a system with 4 shards considering balanced and
skewed workloads (list of 1k entries).
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6.8 Other applications

In this section, we comment on three other applications
implemented to understand the performance of the pro-
posed techniques: a KV-Store, an Authenticated KV-Store,
and a Digital Coin.

KV-Store. We implemented a sharded KV-Store based on
a set of tree maps (one per shard), with an operation to write
(put) a (key, value) pair and another to read (get) a value
associated to a key, where keys and values are integers. The
concurrency model for this application is equal to the one
for the linked lists. A KV-Store is particularly important
because it is broadly used in many large online services
(e.g., Twitter [24], Amazon [25] and Facebook [26]). For
example, Twitter uses a KV-Store to store tweets that are
usually written once and read multiple times. Such applica-
tions have a workload that contains mostly read operations
and state that is easy to shard based on the keys values, as
explained in Section 1.

Fig. 8 presents the throughput of the KV-Store consider-
ing different configurations. The read and write operation
percentages are distributed as described in Section 6.5.
Although the performance results are similar to the ones
reported for the linked list (Fig. 4), it is interesting to notice
that the operation cost for this application is small and, con-
sequently, the sequential execution outperforms the late
scheduler in all scenarios. In fact, it is cheaper to execute a
put in a tree map than to include and remove a request in
the dependency graph.

Authenticated KV-Store. Some KV-Stores provide authen-
ticated access to increase security (e.g., [27], [28]). In this
case, clients sign their requests and servers must verify the
signatures to define if a client has permission to store or
retrieve a value. Fig. 9 presents performance values for our
authenticated KV-Store. The scheduling overhead does not
significantly impact performance since the operation costs
in this case are high due to signature verification. In all set-
ups, hybrid scheduling outperforms the other solutions.

Digital Coin. Finally, we implemented a digital coin
application based on the UTXO (Unspent Transaction Out-
put) model. This model is used by Bitcoin [29] to avoid dou-
ble spending. In this context, recent work has shown that
traditional SMR sequential execution can lead to poor per-
formance [30]. We implemented operations (transactions) to
issue a coin, to return an account balance, and to transfer
coins among two user accounts. Similar to the KV-Store, the
state of this application can be sharded based on the
accounts identifiers. In our concurrency model for this

application, two operations conflict if they share a common
user. For example, a transfer operation contains the sender
and the receiver of some amount of coins and two transfers
conflict if they share a common user (sender or receiver).
However, all transfers for the same shard conflict in the
early scheduler model, since it is not possible to infer that
two different workers of a shard will execute in parallel
only transfers without a common user. Bitcoin uses an even
less restrictive concurrency model where two transactions
conflict if they spend the same UTXO. Our model is based
on the users because a per user list of valid UTXOs must be
updated.

Fig. 10 presents the throughput for a workload composed
by transfer operations only. The users were uniformly dis-
tributed among the shards and randomly chosen, and 70%
of the operations were between users in the same shard.
Depending on the workload, even higher rates of single-
shard operations can be obtained by moving accounts to the
same shard based on affinity [21].4 The transfer operations
are costly because it is necessary to verify a signature and
create/destroy UTXOs. Consequently, the late and hybrid
approaches presented similar performance since their
scheduling overheads are not significant. However, early
scheduling performed poorly because it needs additional
synchronization at the workers since all transfers to the
same shard conflict.

7 RELATED WORK

This paper is at the intersection of two areas of research:
concurrent graph structures and state machine replication.

7.1 Concurrent Graph Structures

In [33], a concurrent graph is proposed to compute serializ-
able executions. Nodes and edges in the graph represent
transactions and their conflicts, respectively. Whenever a
transaction is added, edges are included to represent con-
flicts. In case of cycles, vertices and edges are removed to
keep the graph acyclic. The graph is implemented as a
linked list. Nodes and edges can be created individually
and concurrently. The node list is ordered according to a
key. The synchronization strategy is lazy [34], or optimistic:
in a first step, the list is searched without locks. Once the
right position to operate on the list is found, locks are
acquired on needed nodes. Once locks are obtained, a vali-
dation is performed to check if the conditions during search
are still valid for those nodes. If not, the operation is
repeated. Upon deletion, the node is first marked as logi-
cally deleted, then locking and actual removal take place.
Nodes and edges are manipulated independently. The strat-
egy allows wait-free operations to traverse the graph to
check if a node is in the list as well as to detect cycles.

In [35], the authors propose a concurrent graph, repre-
sented as an adjacency matrix. It contains a fixed vertex set
and allows concurrent operations to insert, remove or mod-
ify weights of edges. A dynamic traversal is proposed to
obtain a consistent view, i.e., the weights of all edges visited

Fig. 7. Throughput for the workload composed of read only and no global
operations for systems configured with different number of shards and
worker threads (list of 1k entries). For early and hybrid approaches, the
number of workers is per shard, while in the late scheduling this number
represent the total workers.

4. Clustering coefficients of many current cryptocurrencies transac-
tion graphs (e.g., 0:15 for Ethereum and Z-Cash; and 0:05 for Bitcoin)
are much higher than coefficients for random graphs (0.0037) [31], [32].
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have co-existed at some point in time despite concurrent
modifications. Operations are wait-free [36], achieved using
a helping mechanism [37]. Operations concurrent to
updates help updates to carry out edge modifications.

A concurrent, unbounded and directed graph is pro-
posed in [38]. Addition, removal and lookup on the sets of
vertices and edges are supported on a lock-free basis, while
a reachability query is obstruction-free. It also uses a help-
ing strategy to achieve lock-freedom.

Both our lock-free graph algorithm and the ones
described above build on basic principles to allow concur-
rent access to a shared data structure. However, while our
algorithm implements a COS, the ones above implement
operations on a single node or a single edge. It is unclear
how to implement COS using these approaches.

7.2 State Machine Replication

It has been early observed that independent commands can
be executed concurrently in SMR [2]. Previous works have
shown that many workloads are dominated by independent
commands, which justifies strategies for concurrent execu-
tion (e.g., [8], [9], [10]). Existing proposals to parallelize the
execution in state machine replication differ in the strategy
and architecture to detect and handle conflicts. We can
broadly classify related work in three groups.

7.2.1 Techniques Based on Application Knowledge

A scheduler that serializes the execution of dependent com-
mands and dispatches independent commands to be proc-
essed in parallel by a pool of worker threads is an example
of technique that exploits application knowledge (i.e., in the
form of dependent and independent commands) [8], [9],
[12], [20]. This idea has also been explored in transactional
systems, where information about data items accessed by
transactions can be inferred a priori (e.g., [39], [40]). The
schedulers studied in this paper use application knowledge.

7.2.2 Techniques Oblivious to Application Knowledge

Rex [41], and CRANE [42] are techniques oblivious to appli-
cation knowledge but resort to more complex runtime archi-
tectures to coordinate replicas and ensure consistent parallel
execution. Instead of using a consensus-execution model as in
SMR, Rex [41] uses an execute-agree-follow strategy. In Rex, a
single primary server receives requests and processes them
in parallel using different threads. While executing, the pri-
mary logs a trace of dependencies among requests based on
the shared variables accessed (locked and unlocked) by
each thread. Periodically it proposes a consistent cut of the
trace for agreement to the pool of replicas. The other repli-
cas receive the traces and replay the execution respecting
the partial order of commands, following the causality on
lock and unlock operations. While in SMR different consen-
sus instances are independent, traces in Rex consensus
instances are not since they have to satisfy the condition
that one is a prefix of the other. Trace synchronization may
incur in high network bandwidth consumption and perfor-
mance overhead [42].

CRANE [42] solves non-determinism during run-time
using several run-time mechanisms. The socket interface is
augmented to perform agreement (using an underlying
Paxos implementation) on the sequence of incoming calls
across replicas. Thread synchronization uses deterministic
multithreading (DMT) [43]. Additionally, CRANE introdu-
ces a time bubbling technique to enforce deterministic logical
times for request bursts. However, the runtime overhead is
non-negligible. Besides agreeing on each socket event, the
DMT system incurs 12.7 % of overhead.

Deterministic schedulers have also been studied consid-
ering models more similar to the SMR model [44], [45].
These solutions provide a lock-level concurrency but repli-
cas must execute a distributed consensus to define the order
of lock requests. This strategy decreases the concurrency
granularity (lock-level) but it imposes a considerable over-
head since it needs to order lock requests.

Fig. 8. Throughput for different percentage of writes and global operations for a KV-Store systems configured with different number of shards and
worker threads. For early and hybrid approaches, the number of workers is per shard, while for late scheduling we show the total number of workers.

Fig. 9. Authenticated KV-Store throughput for the workload composed of
10% of writes and 5% global. For all approaches, the number of workers
is per shard.

Fig. 10. Digital coin throughput for a workload composed by only transfer
operations. For all approaches, the number of workers is per shard.
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Techniques in this class, including those using determin-
istic multithreading, tend to depart from the SMR model,
which is based on input replication followed by independent
execution at replicas. Instead, coordination among replicas is
needed during the execution phase, using consensus, as
reported. This penalizes performance, makes the design of
the replicated service more complex and reduces the possi-
ble use of equivalent but different replica implementations
at service level (e.g., for diversity).

7.2.3 Optimistic Techniques

Finally, some techniques employ optimistic strategies to
parallelize commands. In [7], [10] replicas execute com-
mands in parallel as they arrive and then check for consis-
tency after execution. If violated replicas coordinate to
reexecute. In [46] application specific knowledge is used to
predict the same ordered sequence of locks across replicas.
While forecasts are correct, commands can be executed in
parallel. If the forecast made by the predictor does not
match the execution path of a command, then the replicas
have to establish a deterministic execution order in coopera-
tion with other replicas, using a consensus protocol.

8 CONCLUSION

Parallel state machine replication techniques allow indepen-
dent commands to be executed concurrently in a replica. To
keep replicas consistent, each replica has to carefully handle
and respect dependencies among commands. This is a non-
trivial task since it requires dependency detection on a pos-
sibly high volume of commands. In this paper, we consider
two classes of parallel SMR techniques and introduce a
hybrid approach that leverages the advantages of the exist-
ing approaches. A detailed experimental evaluation showed
that the hybrid approach outperforms the techniques it
builds upon.

REFERENCES

[1] L. Lamport, “Time, clocks, and the ordering of events in a distrib-
uted system,” Commun. ACM, vol. 21, no. 7, pp. 558–565, 1978.

[2] F. B. Schneider, “Implementing fault-tolerant services using the
state machine approach: A tutorial,” ACM Comput. Surv., vol. 22,
no. 4, pp. 299–319, 1990.

[3] M. P. Herlihy and J. M. Wing, “Linearizability: A correctness con-
dition for concurrent objects,” ACM Trans. Program. Lang. Syst.,
vol. 12, no. 3, pp. 463–492, 1990.

[4] H. Attiya and J. Welch, Distributed Computing: Fundamentals, Simu-
lations, and Advanced Topics. Hoboken, NJ, USA: Wiley, 2004.

[5] M. Burrows, “The chubby lock service for loosely-coupled distrib-
uted systems,” in Proc. 7th Symp. Oper. Syst. Des. Implementation,
2006, pp. 335–350.

[6] P. Hunt, M. Konar, F. P. Junqueira, and B. Reed, “Zookeeper:
Wait-free coordination for internet-scale systems,” in Proc. USE-
NIX Conf. USENIX Annu. Techn. Conf., 2010, pp. 1–14.

[7] M. Kapritsos, Y. Wang, V. Quema, A. Clement, L. Alvisi, and
M. Dahlin, “All about Eve: Execute-verify replication for multi-
core servers,” in Proc. 10th USENIX Conf. Oper. Syst. Des. Imple-
mentation, 2012, pp. 237–250.

[8] R. Kotla and M. Dahlin, “High throughput Byzantine fault toler-
ance,” in Proc. Int. Conf. Dependable Syst. Netw., 2004, pp. 575–584.

[9] P. J. Marandi, C. E. B. Bezerra, and F. Pedone, “Rethinking state-
machine replication for parallelism,” in Proc. 34th Int. Conf. Distrib.
Comput. Syst., 2014, pp. 368–377.

[10] P. J. Marandi and F. Pedone, “Optimistic parallel state-machine
replication,” in Proc. IEEE 33rd Int. Symp. Reliable Distrib. Syst.,
2014, pp. 57–66.

[11] O. M. Mendizabal, R. T. S. Moura, F. L. Dotti, and F. Pedone,
“Efficient and deterministic scheduling for parallel state machine
replication,” in Proc. IEEE Int. Parallel Distrib. Process. Symp., 2017,
pp. 748–757.

[12] E. Alchieri, F. Dotti, and F. Pedone, “Early scheduling in parallel
state machine replica,” in Proc. ACM Symp. Cloud Comput., 2018,
pp. 82–94.

[13] I. Escobar, E. Alchieri, F. Dotti, and F. Pedone, “Boosting concur-
rency in parallel state machine replication,” in Proc. 20th Int. Mid-
dleware Conf., 2019, pp. 228–240.

[14] E. Batista, E. Alchieri, F. Dotti, and F. Pedone, “Resource utiliza-
tion analysis of early scheduling in parallel state machine repli-
cation,” in Proc. 9th Latin-Amer. Symp. Dependable Comput., 2019,
pp. 1–10.

[15] X. D�efago, A. Schiper, and P. Urb�an, “Total order broadcast and
multicast algorithms: Taxonomy and survey,” ACM Comput.
Surv., vol. 36, no. 4, pp. 372–421, Dec. 2004.

[16] V. Hadzilacos and S. Toueg, “Fault-tolerant broadcasts and
related problems,” in Distributed Systems, 2nd ed. Boston, MA,
USA: Addison-Wesley, 1993.

[17] T. D. Chandra and S. Toueg, “Unreliable failure detectors for
reliable distributed systems,” J. ACM, vol. 43, no. 2, pp. 225–267,
1996.

[18] M. J. Fischer, N. A. Lynch, and M. S. Paterson, “Impossibility of
distributed consensus with one faulty process,” J. ACM, vol. 32,
no. 2, pp. 374–382, 1985.

[19] M. Herlihy and J. M. Wing, “Linearizability: A correctness condi-
tion for concurrent objects,” ACM Trans. Program. Lang. Syst., vol.
12, no. 3, pp. 463–492, Jul. 1990.

[20] E. Alchieri, F. Dotti, O. M. Mendizabal, and F. Pedone,
“Reconfiguring parallel state machine replication,” in Proc. IEEE
36th Symp. Reliable Distrib. Syst., 2017, pp. 104–113.

[21] L. Hoang Le, E. Fynn, M. Eslahi-Kelorazi, R. Soul�e, and F. Pedone,
“Dynastar: Optimized dynamic partitioning for scalable state
machine replication,” in Proc. IEEE 39th Int. Conf. Distrib. Comput.
Syst., 2019, pp. 1453–1465.

[22] A. Bessani, J. Sousa, and E. Alchieri, “State machine replication for
the masses with BFT-SMART,” in Proc. 44th Annu. IEEE/IFIP Int.
Conf. Dependable Syst. Netw., 2014, pp. 355–362.

[23] V. Maffione, G. Lettieri, and L. Rizzo, “Cache-aware design of
general-purpose single-producer-single-consumer queues: Cache-
aware single-producer-single-consumer queues,” Softw.: Prac.
Exp., vol. 49, no. 5, pp. 748–779, 2019.

[24] T. Manhattan, “Manhattan, our real-time, multi-tenant distributed
database for Twitter scale,” Accessed: Sep. 2021. [Online]. Available:
https://blog.twitter.com/engineering/en_us/a/2014/manhattan-
our-real-time-multi-tenant-distributed-database-for- twitter-scale

[25] G. DeCandia et al., “Dynamo: Amazon’s highly available key-
value store,” in Proc. ACM SIGOPS Symp. Oper. Syst. Princ., 2007,
pp. 205–220.

[26] S. Masti, “Howwe built a general purpose key value store for Face-
book with ZippyDB,” Accessed: Aug. 2021. [Online]. Available:
https://engineering.fb.com/2021/08/06/core-data/zippydb/

[27] y. GUO, X. Yuan, X. Wang, C. Wang, B. Li, and X. Jia, “Enabling
encrypted rich queries in distributed key-value stores,” IEEE
Trans. Parallel Distrib. Syst., vol. 30, no. 6, pp. 1283–1297, Jun. 2019.

[28] L. Chen, W. Dai, M. Qiu, and N. Jiang, “A design for scalable and
secure key-value stores,” in Proc. IEEE Int. Conf. Smart Cloud,
2017, pp. 216–221.

[29] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,”
Accessed: Jan. 10, 2021. [Online]. Available: http://bitcoin.org/
bitcoin.pdf

[30] A. Bessani, E. Alchieri, J. Sousa, A. Oliveira, and F. Pedone, “From
byzantine replication to blockchain: Consensus is only the
beginning,” in Proc. 50th Annu. IEEE/IFIP Int. Conf. Dependable
Syst. Netw., 2020, pp. 424–436.

[31] D. Kondor, M. P�osfaosfai, I. Csabai, and G. Vattay, “Do the rich
get richer? An empirical analysis of the bitcoin transaction
network,” PLoS One, vol. 9, no. 2, 2014, Art. no. e97205.

[32] A. P. Motamed and B. Bahrak, “Quantitative analysis of crypto-
currencies transaction graph,” Appl. Netw. Sci., vol. 4, 2019, Art.
no. 131.

[33] S. Peri, M. Sa, and N. Singhal, “Maintaining acyclicity of concur-
rent graphs,” CoRR, pp. 1–23, 2016. [Online]. Available: http://
arxiv.org/abs/1611.03947v1

[34] M. Herlihy and N. Shavit, The Art of Multiprocessor Programming.
Cambridge, MA, USA: Morgan Kaufmann, 2008.

2146 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 9, SEPTEMBER 2022

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on April 20,2023 at 13:54:19 UTC from IEEE Xplore.  Restrictions apply. 

https://blog.twitter.com/engineering/en_us/a/2014/manhattan-our-real-time-multi-tenant-distributed-database-for- twitter-scale
https://blog.twitter.com/engineering/en_us/a/2014/manhattan-our-real-time-multi-tenant-distributed-database-for- twitter-scale
https://engineering.fb.com/2021/08/06/core-data/zippydb/
http://bitcoin.org/bitcoin.pdf
http://bitcoin.org/bitcoin.pdf
http://arxiv.org/abs/1611.03947v1
http://arxiv.org/abs/1611.03947v1


[35] N. D. Kallimanis and E. Kanellou, “Wait-Free Concurrent Graph
Objects with Dynamic Traversals,” in Proc. 19th Int. Conf. Princ.
Distrib. Syst., 2015, pp. 1868–8969.

[36] M. Moir and N. Shavit, “Concurrent data structures,” in Handbook
of Data Structures and Applications. Boca Raton, FL, USA: CRC
Press, 2004, pp. 1–32.

[37] M. Herlihy, “A methodology for implementing highly concur-
rent data structures,” ACM SIGPLAN Notices, vol. 25, no. 3,
pp. 197–206, 1990.

[38] B. Chatterjee, S. Peri, M. Sa, and N. Singhal, “A simple and practical
concurrent non-blocking unbounded graph with reachability quer-
ies,” 2018, arXiv:1809.00896v2.

[39] B. Kemme, F. Pedone, G. Alonso, A. Schiper, and M. Wiesmann,
“Using optimistic atomic broadcast in transaction processing sys-
tems,” IEEE Trans. Knowl. Data Eng., vol. 15, no. 4, pp. 1018–1032,
Jul. 2003.

[40] A. Thomson, T. Diamond, S.-C. Weng, K. Ren, P. Shao, and
D. J. Abadi, “Calvin: Fast distributed transactions for parti-
tioned database systems,” in Proc. ACM SIGMOD Int. Conf.
Manage. Data, 2012, pp. 1–12.

[41] Z. Guo, C. Hong, M. Yang, D. Zhou, L. Zhou, and L. Zhuang,
“Rex: Replication at the speed of multi-core,” in Proc. 9th Eur.
Conf. Comput. Syst., 2014, pp. 1–14.

[42] H. Cui, R. Gu, C. Liu, T. Chen, and J. Yang, “Paxos
made transparent,” in Proc. 25th Symp. Oper. Syst. Princ., 2015,
pp. 105–120.

[43] M. Olszewski, J. Ansel, and S. Amarasinghe, “Kendo: Efficient
deterministic multithreading in software,” ACM Sigplan Notices,
vol. 44, no. 3, pp. 97–108, 2009.

[44] G. Habiger, F. J. Hauck, J. K€ostler, and H. P. Reiser, “Resource-effi-
cient state-machine replication with multithreading and vertical
scaling,” in Proc. Eur. Dependable Comput. Conf., 2018, pp. 87–94.

[45] G. Habiger, F. J. Hauck, H. P. Reiser, and J. K€ostler, “Self-opti-
mising application-agnostic multithreading for replicated state
machines,” in Proc. Int. Symp. Reliable Distrib. Syst., 2020,
pp. 165–174.

[46] R. Kapitza, M. Schunter, C. Cachin, K. Stengel, and T. Distler,
“Storyboard: Optimistic deterministic multithreading,” in Proc.
Workshop Hot Top. Syst. Dependability, 2010, pp. 1–8.

Aldenio Burgos is currently working toward the
master’s degree in computer science from the
University of Brası́lia, Brazil. His research inter-
ests include the theory and practice of dependable
systems, replication paradigm, and blockchains.

Eduardo Alchieri received the PhD degree from
the Federal University of Santa Catarina, Brazil,
in 2011. He is currently a professor with the
Department of Computer Science, University of
Brası́lia, Brazil. His research interests include the
theory and practice of secure and dependable
distributed systems.

Fernando Dotti received the PhD degree from
Technical University Berlin, Germany, in 1997.
He is currently a full professor with the School of
Technology, Pontifical Catholic University, Rio
Grande do Sul, Brazil. His research interests
include the theory, modelling and analysis of dis-
tributed systems, including distributed algorithms
and fault tolerance.

Fernando Pedone received the PhD degree
from EPFL in 1999. He is currently a full professor
with the Faculty of Informatics, Universit�a della
Svizzera Italiana (USI), Switzerland. He has also
been affiliated with Cornell University, as a visit-
ing professor, EPFL, and Hewlett-Packard Labo-
ratories (HP Labs). He has authored more than
100 scientific articles and seven patents. He is
the co-editor of the book Replication: Theory and
Practice. His research interests include the the-
ory and practice of distributed systems and dis-
tributed data management systems.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

BURGOS ET AL.: EXPLOITING CONCURRENCY IN SHARDED PARALLEL STATE MACHINE REPLICATION 2147

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on April 20,2023 at 13:54:19 UTC from IEEE Xplore.  Restrictions apply. 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


