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Aging is associated with an increased incidence of autoimmune diseases, despite

the progressive decline of immune responses (immunosenescence). This apparent

paradox can be explained by the age-related chronic low-grade systemic

inflammation (inflammaging) and progressive dysregulation of innate signaling.

During cellular aging, there is an accumulation of damaged DNA in the cell’s

cytoplasm, which serves as ubiquitous danger-associated molecule, promptly

recognized by DNA sensors. For instance, the free cytoplasmic DNA can be

recognized, by DNA-sensing molecules like cGAS-STING (cyclic GMP-AMP

synthase linked to a stimulator of interferon genes), triggering transcriptional

factors involved in the secretion of pro-inflammatory mediators. However, the

contribution of this pathway to the aging immune system remains largely

unknown. Here, we highlight recent advances in understanding the biology of

the cGAS-STING pathway, its influence on the senescence-associated secretory

phenotype (SASP), and its modulation of the immune system during sterile

inflammation. We propose that this important stress sensor of DNA damage is

also a trigger of immunosenescence and inflammaging.
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Introduction

The aging immune system, i.e., immunosenescence, has been associated with increased

morbidity and mortality across the lifespan, of note in elderly populations. The progressive

homeostatic imbalance of the immune system is accompanied by a higher incidence of

autoimmune disorders, infections, and neoplasia (1–3). At the same time, a sterile and
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persistent low-grade inflammation (i.e., inflammaging) contributes

significantly to the physiological decline and development of age-

related pathologies (2). Indeed, the interplay of immunosenescence

and inflammaging significantly increases the risk for the

development of diabetes, atherosclerosis, autoimmune diseases,

cognitive impairment, neurodegenerative diseases, and cancer (4).

Howev e r , t h e unde r l y i n g mechan i sms conne c t i n g

immunosenescence and inflammaging remain unclear. One

potential explanation could be the gradual accumulation of

senescent cells in tissues alongside the impaired recognition and

removal of those by the aging immune system.

Senescent cells are powerful stimulators of immune cells,

triggering local and systemic inflammation by actively releasing

pro-inflammatory mediators and stress signals (2, 5). The

recognition and subsequent clearance of these cells by the

immune system are crucial to restrain inflammation and promote

tissue regeneration (6). During cellular aging, there is an

accumulation of damaged DNA in the cell’s cytoplasm which can

be promptly recognized by DNA sensors. In this context, the stress

sensor pathway mediated by the cyclic guanosine monophosphate-

adenosine monophosphate (cGAMP) synthase (cGAS) and the

adaptor stimulator of interferon genes (STING) emerges as an

important link between senescence and immune response (7, 8).

The cGAS-STING pathway has been reported to be critically

involved in autoimmune and chronic inflammatory disorders,

orchestrating a connection between immune responses against

DNA damage-derived stimuli (8, 9). In this review, we summarize

the current knowledge on the biology of the cGAS-STING pathway

during aging and we discuss its involvement in the context

(regulation) of immunosenescence and inflammaging.
Cellular senescence as a source
of alarmins

Cellular senescence is considered an underlying cause of

physiological aging and it has been implicated in all age-related

diseases (5). The senescent phenotype is characterized by a stable

cell cycle arrest accompanied, extensive macromolecular damage,

an altered active metabolic state with a distinct secretory profile (10,

11). While it represents a physiological stress response attempted to

restrain cellular damage and mediate tissue repair (6), the

progressive accumulation of senescent cells has a detrimental

effect on tissue physiology during aging (12, 13).

Senescent cells typically engage a DNA damage response

(DDR), defined by increased recruitment of DNA damage

signaling histones (e.g., phosphorylated H2AX; gH2AX) and the

DNA damage repair that directs protein complexes to damaged

sites of DNA (11, 14). The accumulation of these foci observed in

aged tissues correlates with persistent chromatin alterations (14),

which further relates to the disruptive remodeling of the nuclear

lamina, i.e., decreased expression of Lamin B1 (15, 16). In addition,

a progressive redistribution and loss of heterochromatin (16), as

well as an increased genomic instability and altered global gene

expression, are observed (17, 18).
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Defective DDR driving genomic and nuclear instability

accounts for the accumulation of micronuclei and cytoplasmic

chromatin fragments (CCF) or cytosolic DNA fragments (10, 19–

22). These dsDNA fragments constitute potent pro-inflammatory

stimuli, driving the senescence-associated secretory phenotype

(SASP) (10, 23), a hallmark of senescent cells (5). SASP

contemplates a dynamic and varied set of pro-inflammatory

cytokines and chemokines (e.g., IL-1a, IL-6, IL-8, and TNF-a),
growth and angiogenic factors (e.g., epithelial growth factor [EGF],

vascular epithelial growth factor [VEGF], and insulin growth factor

binding protein [IGFBP] 1 and 2), and matrix metalloproteinases

(MMPs | e.g., MMP1, MMP3, MMP12 and tissue inhibitor of

metalloproteinase 1 [TIMP-1]) ultimately orchestrated by the

nuclear factor ĸB (NF-ĸB), CCAAT/enhancer-binding protein b
(C/EBPb), bromodomain-containing protein 4 (BRD4), lysine

methyltransferase MLL1 and G9A (24). While it is true that SASP

is involved in the recruitment and activation of immune cells for

senescence clearance (5, 6), it also exerts a direct effect on wound

healing and tissue regeneration (25, 26). However, persistent SASP

secretion leads to altered tissue structure and function (10, 27),

dysregulated tissue metabolism (28), and accelerated aging process

(12). SASP is further aggravated by the downregulation of

deoxyribonucleases (DNases) (29) which potentiates cytoplasmic

accumulation of double-strand DNA (dsDNA) and SASP secretion

(29, 30). Both secreted SASP factors and cytoplasmic dsDNA act

during normal or accelerated aging as potent triggers of sterile

inflammation (28, 31). Indeed, the crosstalk of damage-associated

molecular pattern (DAMP) sensors and persistent macromolecular

damage may constitute an important link between inflammaging

and senescence (19, 32, 33).

SASP modulation of tissue microenvironment is crucially

connected with impaired immune function and inflammaging (2,

34). A notorious aspect of SASP is its potential for reinforcing and

spreading senescence through autocrine and paracrine pathways

(5), affecting local cells and, in particular, immune cells (e.g. resident

macrophages, Mj) (35, 36). Indeed, increased levels of pro-

inflammatory mediators derived from SASP correlate to Mj
function decline similarly to observed in aging (37, 38).

Moreover, selective elimination of senescent cells improves

immune functions in peripheral compartments (39) ,

corroborating the potential systemic deleterious effect of

exacerbated SASP secretion (2). In parallel, senescent immune

cells, especially Mj, present ineffective clearance capacity

promoting prolonged local inflammation and eventual systemic

extrapolation, therefore contributing to inflammaging (2, 28).
The cGAS-STING pathway: A regulator
of inflammation

The innate immune cells respond to pathogens and damaged

tissues via recognition of pathogen-associated molecular patterns

(PAMPs) and DAMPs, respectively (40). Among danger molecules,

self-DNA is a potent alarming molecule. Both endogenous

molecules (ROS) or exogenous damaging agents may induce
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single or double strand DNA breaks (ssDNA or dsDNA) that escape

to the cytoplasm. The cytoplasmic DNA generates an alarm signal

that, if unrepaired, can induce inflammation (41). Sterile

inflammation triggered by the recognition of self-content has

been greatly expanded with the discovery of new sensors and

recently extensively reviewed (31).

In this context, the cGAS-STING pathway emerges as a central

node modulating the expression and activity of DAMP sensors and

eliciting optimal immune function (42, 43). This pathway integrates

immune sensing of DNA damage and cfDNA derived from

senescent cells (10, 44). The cGAS protein is the major

cytoplasmic dsDNA recognition sensor, recognizing the cell’s

DNA when damaged and outside its subcellular compartments,

such as the nucleus and mitochondria (45). Disrupted cGAS-

STING signaling accounts for defective DAMP sensing and

impaired immune activation (46, 47), which may contribute to

cumulative senescence and SASP-derived inflammation (48, 49).

This connection, however, has not been directly addressed,

representing an open avenue to be explored and a major focus of

interest of this review. The cGAS-STING are expressed by a variety

of immune and non-hematopoietic cells, including Mj, dendritic
cells, natural killer (NK) cells, T and B cells, endothelial cells,

epithelial cells, and neurons (50).
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STING was first described in 2008 (51). It is a transmembrane

homodimer protein localized in the endoplasmic reticulum (ER)

previously reported to participate in innate immune signaling against

viral pathogens. STING is activated upon cGAMP binding,

oligomerization, and translocation to ERGIC. STING inducing the

activation of transcription factors IRF3 and NF-kB and drives the

secretion of type I interferons (IFN-a and IFN-b) and inflammatory

cytokines (51, 52). However, its connection to cGAS was only

established in 2013, identified as a cytosolic DNA sensor

responsible for synthesizing cGAMP, the second messenger that

activates STING (53–55). Since then, the cGAS-STING pathway

has been considered a major pathway for cellular stress that senses

self and non-self DNA and connects DNA damage to inflammation

(Figure 1), modulating pro-inflammatory cytokines and type I

interferons (IFN-I) production (7, 8). In this sense, the cGAS-

STING pathway is implicated in multiple age-related diseases,

including autoimmune diseases (9) and neoplasias (10, 32).

cGAS-STING activation may act both in favor and against

senescence spreading. Functional cGAS-STING is required for

optimal response in immune cells (42, 43). For instance, STING

modulates the expression of NKG2D, an activating cell surface

receptor, present on NK and T cells and associated with immune

surveillance (56). In parallel, STING activity in senescent and
FIGURE 1

cGAS-STING pathway. Loss of Lamin B1, increased oxidative stress, genomic instability, mitochondrial dysfunction, as well as reduced expression of
nucleases, lead to dsDNA break and accumulation in cytosol. Cytoplasmic cGAS recognizes dsDNA and synthetizes the endogenous secondary
messenger 2’3’-cGAMP, which in turn, activates the ER transmembrane protein STING. cGAMP binds to STING, oligomerizes and becomes active
with translocation to ERGIC. During translocation, STING recruits TBK1 [(D or E)xPxPLR(S or T)D] motif (in which “x” denotes any amino acid) and
induces its phosphorylation, leading to the recruitment of IRF3. TBK1 phosphorylates IRF3, leading to dimerization and translocation into the
nucleus, where it induces transcription of genes encoding various cytokines, chemokines, and interferons. Activated TBK1 also phosphorylates IkBa,
the inhibitor subunit of the IKK complex, promoting the release of the heterodimer p50/p65 (NF-kB), which translocates with IRF3 into the nucleus,
providing a synergistic pro-inflammatory response. STING can also undergo numerous conformational changes that can also trigger the activation
and increased expression of AIM2 and NLRP3 inflammasomes and TLR2 expression and TLR9 pathway response (dashed rectangle). AIM2, absent in
melanoma 2; cGAS, cyclic GMP–AMP synthase; 2’3’-cGAMP, cyclic guanosine monophosphate-adenosine monophosphate; ER, endoplasmic
reticulum; ERGIC, endoplasmic-reticulum–Golgi intermediate compartment; IKK, inhibitor kB kinase; IkBa, NF-kB inhibitor a subunit; IRF3,
interferon regulatory factor-3; NF-kB, nuclear factor kB; NLRP3, nucleotide-binding oligomerization domain-like receptor protein 3; STING,
stimulator of interferon genes; TBK1, TANK-binding kinase-1; TLR, Toll-like receptor.
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cancer cells do also mediate the expression of NKG2D ligands,

favoring immune recognition (57, 58). At the same time, STING

activation is implicated in the senescence associated secretory

phenotype (SASP) production and its inhibition shows a

significant reduction in the expression of pro-inflammatory

mediators in senescent cells (33). Defects identified in cGAS or

STING interfere with the expression of distinct components of

SASP and lead to deficient activation of immune cells due to loss of

responsiveness to cGAMP (46). Indeed, the significance of cGAS

has been demonstrated in mouse embryonic fibroblasts deficient in

cGAS (cGAS−/−). In this context, knock-out cells exhibited reduced

signs of senescence (59).

On the other hand, STING downregulation is correlated with

cancer progression (60). Inhibition of the cGAS-STING pathway

may facilitate the escape of cancer cells from immunosurveillance

(10, 43). For example, the proportions of CD3+, CD4+, and CD8+ T

cells producing IFN-g were significantly lower in double-deficient

cGAS-STING tumors (61). In contrast, STING activation triggered

the migration of Mj to tumors and induced CD4+ and CD8+ T-cell

infiltration by increased chemokine secretion (62–64). STING

agonists may also lead cancer cells to apoptotic death (65) and

initiate subsequent clearance by phagocytic cells, thus promoting

increased immune cell recruitment and decreased susceptibility for

developing new tumours (29, 66). Ultimately, cGAS or STING

expression were found reduced in many cancers cell lines (67), a

possible mechanism to circumvent the immune system.

The STING pathway has been described as essential for CD4+

and CD8+ lymphocytic infiltration into tumors, governed by IFN-a
and IFN-b and other chemokines, like CCL5 and CXCL10 (63, 68–

72). STING agonists might facilitate the activation of dendritic cells

(DCs) and priming and infiltration of cytotoxic T cells through

CXCR3 ligands (68, 73). On the other hand, STING knockdown

inhibited the nuclear import of the Nuclear Factor NF-Kappa-B p65

subunit and IRF3 and restricted the secretion of the CXCL10 and

IL-6 in an odontoblast−like cell line (74).

STING activation may yet be associated with exacerbated pro-

inflammatory responses of Mj in chronic inflammatory diseases,

such as non-alcoholic fatty liver disease (NAFLD) and hepatic

fibrosis (66, 75). STING disruption in NAFLD promotes

decreased Mj pro-inflammatory activation and exhibits marginal

effects on Mj alternative (M2) activation (66). In addition, an

enrichment analysis showed that activation of the cGAS-STING

pathway increased proteins involved in cell cycle control of

chromosomal replication, mitochondrial dysfunction, sirtuin

signaling, protein ubiquitination, antigen processing, and Fc

receptor-mediated phagocytosis in Mj (76). In a silica-induced

lung inflammation model, an important role to self-dsDNA

released upon silica-induced injury was demonstrated activating

the pro-inflammatory response by IFN-I and CXCL10 in a STING-

dependent manner (55).
Inflammaging: A fuel for cGAS

Aging is associated with a chronic low-grade sterile

inflammation termed inflammaging (2, 77). While its origins
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remain unclear, inflammaging is typically characterized by high

serum levels of pro-inflammatory cytokines (e.g., tumour necrosis

factor a [TNF-a], interleukin 6 [IL-6], and IL-1), chemokines (e.g.,

monocyte chemoattractant protein [MCP] and IL-8), acute phase

proteins (e.g., C-reactive protein [CRP]), and soluble cytokine

receptors (e.g., soluble tumour necrosis factor receptor [sTNF-R]

I and II) (2, 78). Inflammaging has been directly associated with the

systemic physiological decline observed in aging, representing an

increased risk of morbidity and mortality per se (2, 79). Despite its

multiple triggers, the inflammaging is frequently understood as a

result of multiple age-related changes linked to the progressive

accumulation of cellular damage (80, 81). Chronic sterile

inflammation is triggered by DAMPs (endogenous molecules

including proteins and DNA) which can be altered, damaged, or

misplaced inside the cell (45). Senescent cells have increased levels

of damaged mtDNA or nDNA, located outside their cellular

compartments, triggering inflammaging and thus contributing to

SASP and increased production of pro-inflammatory cytokines.

Inflammaging and immunosenescence are not the same, but

classically interconnected and linked by a vicious cycle of

overstimulation and functional impairment (81). For instance,

chronic stimulation by cytokines, chemokines, and cell debris

derived from dyeing or damaged aged tissues correlates with T

cell exhaustion, cellular senescence, and a dysfunctional pro-

inflammatory phenotype (82, 83). Increased proportion of

exhausted and senescent T cells, in its turn, is related to

augmented susceptibility to infections, neoplasia, and chronic

inflammatory disorders, which further contributes to systemic

inflammation (2, 84).

Inflammaging has been implicated in a plethora of age-related

conditions and disorders like obesity (85–87), type II diabetes (85,

88), atherosclerosis (89), autoimmune diseases, cognitive

impairment, neurodegenerative diseases (90–93), and cancer (94).

In addition, the chronic inflammation observed in these disorders

equally contributes to a systemic physiological decline similarly

observed in the elderly, reinforcing the deleterious effect of this

phenomenon per se (91, 95). A causal link between the

inflammatory status and pathogenesis is also established in

chronic respiratory diseases (93), fatty liver disease (66, 92) and

osteoarthritis (93).

Considering the multiple elements contributing to

inflammaging-like conditions, a critical point is to understand

why they are reinforced and exacerbated in aging and age-related

diseases. In this sense, cellular senescence emerges as a central

mediator, integrating age-related cumulative cellular damage (e.g.,

DNA damage) and chronic inflammation (79, 80). In fact, the

aberrant activation of cGAS-STING is a feature of senescent cells

and critical for the induction of senescence. The depletion of cGAS

in mouse embryonic fibroblasts (MEF) has been shown to inhibit

the secretion of cytokines of the SASP phenotype (IL-1b, IL-6 and

metalloprotease-12) in a similar manner to the action of two

anticancer agents for DNA damage, etoposide or irradiation (59).

Indeed, the elimination of senescent cells has been shown to

improve several bodily tissue functions via reducing pro-

inflammatory cytokines and chemokines (27), in parallel with a

concomitant improvement of immune cell functions (39). However,
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the complex mechanisms linking senescence, inflammaging, and

immunosenescence are still unclear.
Crosstalk between cGAS-STING and
DAMP sensors

Receptors to endogenous host-derived molecules (DAMPs)

are expressed by innate immune cells and are highly activated in

sterile inflammation (31). Aging is associated with DAMP receptor

dysregulation, which may contribute to increased morbidity and

mortality (96). In particular, many cytosolic and endosomal

receptors recognize self-DNA accumulation beyond cGAS, such

as absent in melanoma 2 (AIM2), NOD-like receptor P3 (NLRP3)

and TLR9, or extracellular cell free DNA (cfDNA), and TLR4 (30,

31, 97–99). These receptors not only share intracellular pathways

but are also interconnected with STING activity (31, 43, 100).

Experiments of gain/loss of function in the context of

oncogene-induced senescence (OIS) have shown that TLR2

transcription is repressed on silenced STING cells while its

expression and activation seem to be downstream of the cGAS-

STING node (43). In human monocytes, TLR2 activation

upregulates NLRP3 expression (101). Moreover, TLR9 and

STING stimulation induce IFN-g production synergistically (102).

Stimulation of cGAS-STING also increases the suppressor of

cytokine signalling 1 (SOCS1) and SOCS3 (103), involved in

targeting IRF7 degradation, an activator of TLR9 (75). In

addition, decreased capacity to secrete IFN-I results in impaired

phosphorylation of the IRF7 transcription factor (104). cGAMP is

also described as an AIM2 (43) and NLRP3 inflammasome activator

(8), being STING required for optimal cGAMP-induced

inflammasome function (100, 105, 106). Moreover, it has been

shown that STING colocalizes with AIM2 and is required for IL-1b
secretion and caspase-1 activation (107). cGAMP may also activate

inflammasomes via an AIM2-NLRP3-ASC-dependent pathway

(100). On the other hand, inflammasome activation has been

shown to negatively regulate cGAS activity by caspase cleavage of

cGAS (108). Hence, AIM2 inflammasome can attenuate cGAS–

STING-mediated IFN-I production in viral infections while Mj
DKO (Asc−/− and Caspase 1−/−) increase IFN production upon

DNA virus infection, suggesting a cross-regulation between these

pathways. STING has been implicated in the antiviral response. For

example, the deletion of Atm (Atm-/-), a kinase that plays a central

role in the DNA repair pathway, induces the accumulation of self-

damaged DNA in the cytoplasm and increases the expression of

type I IFNs. This signaling enhances the anti-microbial response in

neighboring cells through STING by priming the antiviral innate

immune response upon microbial challenge. In this model, the

accumulation of DNA damage increases the expression of IFN-I, a

Tlr4, Tlr2, and Rig-I downstream Irf7, and STING, as observed in

patients with the neurodegenerative disease AT (109). Taken

together, these results demonstrated that the cGAS-STING

pathway could be considered an important central node of

communication between DAMP sensors and its optimal activity.

On the other hand, failure to activate cGAS-STING signaling might
Frontiers in Immunology 05
downregulate directly or indirectly this same DAMP receptors’

activity and expression.
Immunosenescence: Focus on T-cells
and macrophages

Immunosenescence is characterized by an age-dependent

remodeling of the immune system. It involves structural alterations

of lymphoid organs as well as phenotypical and functional changes

in peripheral immune cells (110). This process is marked by the

progressive loss of adaptive immune function and the relative

conservation and overcompensation of innate immunity (1, 81),

which is associated with a state of increased autoimmunity,

immunodeficiency and sterile inflammation (2, 3, 81).

The hematological decline of adaptive immunity initiates after

adolescence when there is a progressive thymus involution and

consequently reduced export of naïve T cells (CD27+CD28 +CD

45RA+) from the thymus (1). The shrinkage of the naïve T-cell

compartment as well as memory inflation with increased expansion

of senescent T cells (CD27-CD28-CD57+CD45RA+) is associated

with reduced immune responses to vaccination and impaired

immunity against infections in older adults (81, 111, 112). Some

immunosenescent changes are particularly well observed later in life.

Indeed, after the sixth decade of life, there is a robust contraction of

the T-cell diversity and clonal expansion, drastically limiting the

recognition of new antigens by T cells (113).

In contrast, the innate immunity remodeling during aging is

characterized by an increased basal level of stimulation associated

by disrupted specific functions (e.g., phagocytosis) (34). In this

context, Mj emerge as critical players due to their central role in

maintaining tissue homeostasis (2, 37). Aged Mj present a

dysregulated pro-inflammatory response to local damage

alongside an ineffective resolution potential, thus favouring the

exacerbation of tissue inflammation (37, 77). Failure in Mj
function can result in a gradual increase of low-grade

physiological inflammation and an aberrant adaptive immune cell

activation contributing to morbidity and mortality in advanced age

(114). Furthermore, resident Mj accumulate cellular damage (77,

115) concomitant with diminished expression of Toll-like receptors

(TLRs) and major histocompatibility complex (MHC II), which

provides an ineffective recognition of invading pathogens and

commensal flora (114). Recent data have demonstrated that long-

term selective elimination of Mj in aging mice decreased pro-

inflammatory cytokine concentrations while systemic immune

stimulation (high-dose anti-CD40/IL-2 or IL-2/IL-12) led to early

death (38, 77). In line with these results, it was observed that aged-

foamy Mj accumulate in the sub-endothelial space, driving the

atherosclerotic process through increased expression of

inflammatory cytokines, chemokines, and metalloproteinases

(116). The involvement of Mj in developing age-related diseases

(17, 37, 117) and maintaining inflammation has been widely

explored and has been termed “macroph-aging” (37).

The age-dependent decline of Mj function correlates with

alterations in the aged tissue microenvironment, delineated by
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increased levels of pro-inflammatory mediators and stress signals

(38). These persistent immune triggers may drive metabolic and

functional alterations in resident Mj irrespective of their

ontological origin (38, 118). For instance, while transplanted

peritoneal Mj from old to young mice show similar phagocytic

function as young-derived Mj, transplanted peritoneal Mj from

young to old animals have impaired phagocytosis acquiring features

of aged Mj (119). In addition, embryonic-derived resident Mj are

gradually replaced by bone marrow-derived monocytes, which in

turn have a potent pro-inflammatory signature in the elderly,

further enhancing tissue inflammation (36, 120).
Connecting the cGAS-STING
pathway to immunosenescence
and inflammaging

Despite many research efforts, some crucial questions remain to

be answered in gerontology: what are the triggers of

immunosenescence? How does immunosenescence contribute to

inflammaging and vice versa? Are the phenotypical and functional

age-related changes in immune cells intrinsic to immunosenescence

or derived from aging tissues? In this context, the cumulative

macromolecular damage derived from senescent cells, especially in

DNA damage, and its implication on inflammation and immune

activation seems to be a central element (48, 121). In particular, its

connection to the cytosolic DNA sensing system mediated by cGAS-

STING seems to provide a direct link with immunosenescence (10).

While functional STING is required for optimal immune function

(42, 43) and its disruption is associated with reduced sensitivity of

innate immune receptors (47), which could be related to impaired

senescence clearance (49). Considering that these events have

common characteristics associated with immunosenescence (49,

114), defective cGAS-STING signaling may represent a central

node in the age-related transition of immune function decline and

accumulation of senescent cells (Figure 2).

Following these hypotheses, a recent link between immunosenescence

and senescent somatic cell (SSC) accumulation has been established (122,

123). For instance, reduced age-related chemotaxis and phagocytosis in

Mj and neutrophils seem to correlate with impaired elimination of SSCs.

Besides, cytotoxic T cells may also mediate SSC clearance directly or by

releasing inflammatory cytokines such as IFN-g, functions equally

disrupted (123). The dysregulation of these mechanisms may ultimately

result in increased SASP production, contributing to inflammaging (81,

122, 123).

Although direct connections between the cGAS-STING node

and immunosenescence remain barely explored, a plethora of

indirect evidence may sustain this idea. STING knockout and

inhibition studies, in particular, demonstrate impaired DAMP

recognition due to disruptive function of their receptors in

immune cells (43, 46, 47, 108). In this sense, aged Mj presents

reduced NLRP3 inflammasome activation (124) as well as AIM2

expression and ligand-dependent activity in whole blood cells (104).
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In addition, TLR functions were found impaired in multiple

immune cells in the elderly (96, 104). On the other hand, TLR,

AIM2, and NLRP3 expression were found to increase in non-

immune tissues (124–127), which seems in accordance with

STING activation in non-immune senescent cells (33, 46). Taken

together, these data suggest altered cGAS-STING signaling may be a

plausible player involved in the age-related changes in

DAMP receptors.

Moreover, it is noteworthy tomention that aged immune cells have

a limited capacity to secrete IFN-I (128, 129), a cGAS-STING-related

function (52). Elderly-plasmacytoid dendritic cells (pDCs), for

instance, secrete lower levels of IFN-I after stimulation because of

age-associated impaired IRF7 phosphorylation. Besides, pDCs present

reduced capacity to present antigens to CD4+ and CD8+ T

lymphocytes while retaining a certain production of pro-

inflammatory cytokines that activate CD8+ T cells (130). Despite

IFN production may be modulated by cGAS-STING and TLR, the

former accounts for the majority of IFN secretion upon stimulation

(126, 131), while its knockout significantly compromises IFN signaling

(132). Interestingly, increased expression of IL-6, a marker of

inflammaging was shown to promote STING degradation following

dsDNA stimulation (133), which may reinforce the link between

inflammaging and STING impaired function.

Immunosenescence also correlates with a higher incidence of

autoimmune disorders (134) and neoplasia (135) as well as poor

vaccine response (1–3). In this regard, STING knockout animals

present attenuated inflammation in autoimmune diseases (136, 137),

characterizing a potential therapeutic target with small-molecules

STING antagonists ready for clinical trials (138). In contrast, the lack

of STING signaling has been associated with increased cancer during

aging and specific mutations compromising STING expression can

prevent DNA damaged cells from producing pro-inflammatory

cytokines and alert the immune system (60, 139). Pharmacological

activation of the STING pathway has been shown important in T-cell

mediated tumor regression (140). Furthermore, STING agonists (e.g.,

MK-1454 and ABZI) have been tested successfully in advanced/

metastatic solid tumors and lymphomas (141). In parallel, some

isoforms of cGAMP were identified as effective vaccine adjuvants,

being useful for developing novel immunotherapies with protective

antiviral CD8+ T cell responses (142). In summary, we propose cGAS-

STING as important intracellular pathway crucially involved with the

hallmarks of aging as well as development of immunosenescence and

inflammaging (Figure 3).

Nonetheless, convincing evidence to corroborate the causal

link between cGAS-STING and immunosenescence as well as to

elucidate the consequences of its dysregulation is still required. This

is particularly of note in autoimmune and chronic inflammatory

diseases where STING activation further aggravates inflammation

(9, 66). Furthermore, STING mediates calcium homeostasis

disruption in T cells triggering cell death (143), while STING

ligands (e.g., cGAMP and DMXAA) inhibited the proliferation of

naïve CD4+ T cells by mTORC1 and IFN-I signaling pathways

(144), unexpected outcomes associated with this node. These
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discrepant results could be explained by the presence of numerous

molecules involved in cGAS-STING modulation (75, 103, 145). For

instance, TOLLIP was found to positively regulate STING-mediated

immune response while Tollip –/– mice presented reduced STING

expression with a more pronounced effect in nonhematopoietic

tissues (103). Besides, gamma-interferon-inducible protein (IFI16)

was also found to be required for cGAMP-induced activation,

phosphorylation, and translocation of STING in human

keratinocytes (146, 147) and Mj (147, 148). On the other hand,

p38 -MAPK-med ia t ed phosphory l a t i on o f USP21 , a

deubiquitinating protein, induces STING deubiquitination

blocking STING-TBK1-IRF3 complex formation and inactivating

IFN-I signaling (149, 150). The intracellular concentration of

cGAMP may yet determine STING translocation or condensation

(151), being high levels of this second messenger associated with

downregulation of innate immunity and lowered IFN-I production

(152). These interactions may be thus dependent on the cellular

responses to metabolic processes and the cellular type and

activation state (103).
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Concluding remarks

Aging is accompanied by the accumulation of non-repaired

cellular damage, stem cell exhaustion, and phenotypic and

metabolic changes – all of which are considered drivers of chronic

inflammatory diseases, immunosenescence, and cancer. As the

immune system is crucially involved in tracking and eliminating

senescent cells (81, 123), dysfunctional immune mechanisms of

clearance liaise with persistent and cumulative cellular damage,

thus favoring a low-grade inflammation (inflammaging).

In this context, the cGAS-STING emerges as a new pathway that

connects cellular damage and inflammation. Because cGAS-STING is a

signal amplifier to produce IFNs in sterile inflammation, we propose that

the low immunogenicity of immune cells in responding to cellular

damage presented in aging could be connected to the malfunctioning of

cGAS-STING signaling. New findings suggest that its relationship with

other DAMPs´ sensors might explain decreased expression and activity

of innate sensors during aging. As many molecular interactions are yet

unclear, the modulation of STING and its impairment remain uncertain.
A

B

FIGURE 2

A proposed model of STING as a modulator of immunosenescence. (A) Effective STING response is required for efficient immune cell recruitment,
elimination of senescent cells, and damaged tissue repair. (B) Impaired STING signaling can be associated with increased cytoplasmatic DNA,
impaired chemotaxis, decreased DNA sensors’ expression and effectivity, increased frequency of senescent cells and SASP mediators leading to
impaired clearance of senescent cells. These alterations are consistent with changes present in aged-immune cells. SASP (blue); T cells chemokines
(purple); IFN (red). cGAS, cyclic GMP–AMP synthase; 2’3’-cGAMP, cyclic guanosine monophosphate-adenosine monophosphate; SASP, senescence-
associated secretory phenotype; STING, stimulator of interferon genes.
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However, the crystal resolution of the cGAS-dsDNA structures report

the design of a new class of inhibitors that compete with ATP/GTP and

bind to the active site (153), or compete with dsDNA (154) suggesting

potential venues for intervention. Therefore, new studies are essential to

understand the activation of the cGAS-STING pathway to shed light on

the understanding and the interplay between immunosenescence and

inflammaging as well as develop new therapies.
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