IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received October 26, 2021, accepted November 8, 2021, date of publication November 11, 2021,

date of current version November 19, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3127468

Detection and Countermeasures of Security
Attacks and Faults on NoC-Based Many-Cores

RAFAEL FOLLMANN FACCENDA', LUCIANO L. CAIMI*“2, AND

FERNANDO GEHM MORAES !, (Senior Member, IEEE)

!Pontifical Catholic University of Rio Grande do Sul (PUCRS), School of Technology, Porto Alegre 90619-900, Brazil
2Department of Computer Science, Federal University of Fronteira Sul (UFES), Chapecé 89815-899, Brazil

Corresponding author: Fernando Gehm Moraes (fernando.moraes @pucrs.br)

This work was supported in part by the Coordenacdo de Aperfeicoamento de Pessoal de Nivel Superior —Brasil (CAPES)—Finance Code
001. The work of Fernando Gehm Moraes was supported by CNPq (309605/2020-2), Brazilian funding agency.

ABSTRACT The modularization and manufacture of many-cores system-on-chip that involve several
vendors open up a vulnerability: the inclusion of Hardware Trojans (HT). In addition to that, the reduced
feature size of transistors may accelerate aging effects, leading to faults. The literature presents techniques
to tackle security and fault-tolerance, such as cryptography, authentication codes, error correction codes,
creation at runtime of flow profiles to detect anomalous behavior. However, at the communication level (i.e.,
NoC), there is a gap in generic methods to detect attacks or faults. As detailed in the state-of-the-art session,
approaches targeting the NoC protection against attacks add additional hardware in the NoC itself, which is
prone to security attacks or faults. This work decouples the detection of attacks or faults by using data and
control NoCs. The adoption of a control NoC enables the proposal of the Communication Session Protocol
to monitor message exchange, detect abnormal behavior, and recover the communication from an eventual
failure or attack. The execution time overhead varies according to the application communication model,
from 3.5% to 33%. Such overhead is acceptable because once detected an abnormal communication behavior,
the protocol changes the path between communicating task pairs and resumes the application execution.

INDEX TERMS Security countermeasures, fault-tolerance, hardware trojans, NoC-based many cores.

I. INTRODUCTION

Many-core Systems on Chip (MCSoCs) are platforms
designed to provide high-performance systems based on par-
allelism, meeting the current demand of embedded devices
with power consumption and communication constraints [1].
Examples of modern architectures with a large number
of processors interconnected by NoCs (Networks-on-Chip)
includes the Mellanox family TILE-Gx72 (72 cores) [2],
Intel Knights Landing [3], Oracle M8 (32 cores) [4], Kalray
array (256 cores) [5], KiloCore chip (1,000 cores) [6], and
Esperanto (1,100 RISC-V cores) [7].

The increasing number of different features and func-
tionalities inside a single chip also increases the variety
of third-party IPs (3PIPs). Such IPs come from different
vendors due to competitive prices and time-to-market. The
presence of 3PIPs raises the risk of having a Hardware Trojan
(HT) insertion [8]. Assuming HTs infect the NoC, these can

The associate editor coordinating the review of this manuscript and

approving it for publication was Mario Donato Marino

153142

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

perform several types of attacks that threaten security princi-
ples [9]. Such attacks may affect confidentiality by redirect-
ing messages to malicious agents, availability by dropping
messages or blocking a communication path, and integrity by
corrupting the content of a packet traversing the NoC.

Besides HT attacks, eventual faults may violate the system
dependability. Dependability is the ability to deliver service
that can justifiably be trusted [10]. Dependability includes the
following attributes: availability, reliability, safety, integrity,
and maintainability. The literature presents works focusing
on communication dependability using secure cryptography
key exchange [11] and cooperative communication [12] in
environments as wireless network sensors, differently to our
proposal, targeting MCSoCs.

Thus, in the context of MCSoCs, a unified method must
be proposed to deal with security threats, manufacturing
faults, aging, or application constraints (e.g., QoS). Although
this work focuses on securing the communication against
HT attacks, the method is general and applicable to fault-
tolerance and QoS constraints.

VOLUME 9, 2021

https://orcid.org/0000-0003-2018-169X
https://orcid.org/0000-0001-6126-6847
https://orcid.org/0000-0001-8336-9150

R. F. Faccenda et al.: Detection and Countermeasures of Security Attacks and Faults

IEEE Access

The motivation of this work is the following question:
“how to make the communication between processing
elements safe and fault-tolerant”? The literature presents
several techniques, such as cryptography [13], authentication
codes [14], error correction codes [15], creation at runtime
a flow profile to detect anomalous behavior [16]. Adopting
these techniques makes it possible to detect violations related
to security or faults in the NoC. However, they do not provide
a generic method to detect the attacks or faults and evidence
for the execution of countermeasures. For example, a PE
may detect a tampered packet, then discard it and request
a retransmission. This retransmission will probably use the
same path, and the new packet will arrive with the same
problem.

The goal of this work is to propose an original method
to secure the communication between processing elements.
This method relies on three pillars: (1) control NoC with
broadcast transmission; (2) data network with support for
XY and source routing; (3) an additional layer in the
message exchange mechanism. The Processing Element (PE)
operating system (OS) has exclusive access to the control
NoC, thus preventing access to it by malicious applications.
The message exchange mechanism involves at least two
packets, requests for data, and data transmission. Our
proposal adds to each packet an additional packet sent by the
control NoC, with a unique identifier to each communicating
pair, named session key, or K;. This method enables the
receiver of a packet to confirm its authenticity using K.
Decoupling the attack or fault detection method between
the data and control NoCs helps in anomalies detection
and decision-making regarding countermeasures or fault
tolerance. If K does not match the stored key, a possible
countermeasure is the request to resend the packet, avoiding
the original path. As the data network supports source routing,
it computes a new path, circumventing the affected region.

The original contributions of this work concerning the
state-of-the-art include:

« a unified method to handle security threats and faults,
being possible to extend it to cope with aging effects and
quality-of-service;

« a protocol that mitigates attacks or circumvents faults
without the need to locate the issue. A new path avoids
the affected path by using a clever rerouting mechanism;

o a proposal that decouples the communication medium
(NoC) from the infrastructure responsible for dealing
with security and fault issues. Proposals in the literature
add hardware modules in the hardware prone to attacks
and faults, i.e., the NoC. Our work adopts a parallel
and simple NoC to detect these issues. This contribution
enables the adoption of 3PIP NoCs, keeping the design
safe.

This work is organized as follows. Section II presents
the baseline architecture and the threat model. Section III
discusses the related work. Section IV describes the main
original contribution, the Communication Session Protocol.
The protocol: (i) monitors the message exchange; (i) detects

VOLUME 9, 2021

abnormal behavior (possibly caused by a failure or an attack);
(iii) recovers the communication from an eventual failure
or attack. Section V evaluates the proposed protocol, and
Section VI concludes this work and point-out directions for
future work.

Il. SECURE ARCHITECTURE AND THREAT MODEL

Figure 1 presents the MCSoC reference architecture, a homo-
geneous NoC-based many-core. Each PE has a 32-bit RISC
processor, a DMNI module (a network interface with DMA
capabilities) [17], local dual-port memory, two routers, and
wrappers. The reference architecture is derived from the
public-available MEMPHIS [18] many-core. !

Two NoCs interconnect the PEs: data and control NoC.
The data NoC transfers data messages exchanged by
applications. The data NoC adopts duplicated physical
channels, wormhole packet switching, simultaneous support
for distributed XY, and source routing. The control NoC
transfers the control messages, such as: (i) the set of PEs
belonging to a secure zone; (ii) definition of a fault-free
path to circumvent a secure zone. The control NoC has
the following features: adoption of broadcast as the default
transmission mode, bufferless router, each message has one
flit. Its router has five internal blocks: two finite state
machines, two arbiters, and an 8-slot CAM buffer. The control
NoC router has a small area footprint, corresponding roughly
to 20% of the data router [19].

Both NoCs contain wrappers in the flow control signals (W
in Figure 1). When activated, the wrapper enables to discard
all incoming and outcoming packets of a given port. This
approach guarantees the creation of a logical barrier at the
hardware level and thus the secure zones creation.

44 4
Vi]
/ Control
/| Hog [wf-»
4 outer
' (o =
o~ DMNI
Data 2 ¥
NoC |=
Router [] >
N, AKX
. 1]
. P
\ -
\ [%] Processing Element [W]

vy v

FIGURE 1. MCSoC architecture (adapted from [20]).

A. SECURE ARCHITECTURE MODEL
Secure Zone (SZ) is a defense mechanism that spatially
isolates a region of the many-core, reserving it for the execu-
tion of an application with security constraints (Appsec) [21].
SZs isolate the Apps.. computation and communication from
other applications running on the system.

A particular case of SZ is the Opaque Secure Zone
(0SZ)[22]. OSZ is a defense mechanism executed at runtime.
In summary, the method relies on finding a rectilinear region

! Available at: https://github.com/gaph-pucrs/Memphis.

153143

IEEE Access

R. F. Faccenda et al.: Detection and Countermeasures of Security Attacks and Faults

on the system with PEs not executing user tasks to map
Appgec. If there is no “free” region to map Appgec, the
method migrates tasks to open space in the system. The OSZ
activation occurs by setting wrappers (“W”’ in Figure 1) at
the boundaries of the rectilinear region, blocking all incoming
and outgoing traffic trying to cross the OSZ.

OSZ prevent attacks from outside sources, such as
Denial-of-Service (DoS), timing attack, spoofing, man-in-
the-middle [22], [23]. Even though the method is robust
against external attacks, it still presents vulnerabilities when
considering that data-NoC routers infected by HTs placed
inside a Secure Zone.

The method we present to secure the communication is
general and not coupled to the OSZ method. We chose the
OSZ secure architecture because it prevents most of the
attacks reported in the literature [22], [24].

B. THREAT MODEL

Figure 2 illustrates an example of a DoS attack executed
by an HT. Figure 2(a) presents a 3 x 3 system with two
communicating tasks running on it: T1 and T2, and an
HT (deactivated) in a router of the path. Figure 2(b) illustrates
the HT activation. Thus, the HT blocks the communication
after its activation, inducing the DoS attack (Figure 2(c)).

. 1AL

T T2 T T2 T -& T2

(a) (b) (©)

FIGURE 2. Example of a Hardware Trojan affecting communication.

According to [25], HTs can be Always On - meaning
that they are always active, or Triggered - meaning they
need to meet a condition to be activated, as the one used in
the example above. HT triggers include time and physical
condition (internal triggers) or user input and component
output (external triggers).

Thus, even OSZ can be attacked internally by HTs,
regardless the activation model. Assuming an NoC as a 3PIP,
it can be infected by HTs, requiring countermeasures to avoid
or mitigate the attacks. The threat model considered in this

work includes the following DoS HT attacks [26]:
o Packet Loss: one or more of the routers are drop-

ping packets. Therefore, the target never receives the
message, and the tasks are left waiting, blocking their
execution. This is a DoS-type attack and is also known
as a blackhole attack [27].

« Packet Misrouting: one or more routers change the
packet header, sending it to the wrong destination.
Consequently, the target PE stays blocked, waiting for
the requested packet, as in the previous attack.

« Port Blocking: one or more ports of the routers cannot
send or receive packets, making them stall and causing

153144

contention. In this case, the blocking can be temporary,
affecting only the packet latency, or it can also be
permanent, blocking the application.
The present work considers the CPU, memory, DMNI,
control NoC, and the OS as reliable entities. Third-party
entities like data NoC and applications are unreliable.

IIl. RELATED WORK

This section presents works exploring the effects or coun-
termeasures against attacks, including Hardware Trojans and
DoS. Then, Section III-A presents a table summarizing the
related work, comparing them to our proposal.

Charles and Mishra [28] propose a trust-aware routing to
bypass malicious IPs during a message transmission through
an NoC. In this work, the routers compute the frust they have
in their neighbors. The trust values are computed following a
trust model, adjusted at runtime. Whenever a packet does not
reach the destination or the response does not come back to
the source, the trust values of the routers are updated. Then,
the packet is resent, and the routing now considers the new
values of trust. However, this trust-aware routing uses the
same NoC that is considered unsafe to update and configure
the trust values, which might also be vulnerable to attacks.
Our work also adopts routing to bypass malicious IPs, but
using a control NoC to avoid paths in the data NoC that may
be compromised by attacks.

Software-Defined Networking (SDN) is a paradigm that
can be used as a countermeasure against attacks in the NoC.
SDN removes the communication management from routers
and moves it into a centralized controller responsible for
configuring the routers. Ruaro et al. [29] adopt SDN to
reduce the NoC energy consumption, provide QoS and fault
tolerance. Moreover, the proposal adopts a secure method to
configure the SDN routers using private keys. Experiments
show that SDN can avoid attacks such as DoS, Flooding,
and Spoofing. According to the Authors, the proposal is still
vulnerable to HTs, lacking the discussion of methods that can
be applied to prevent them.

Charles et al. [16] propose a detection and localization
method of malicious IPs attacking the system with a
distributed denial-of-service (DDoS) attack. The proposed
framework is based on a communication model obtained
at design time. At runtime, attacks are detected when
performance boundaries are violated. In terms of localization
of the IP causing the DoS attack, the authors use a congested
graph containing information of all congested paths and
routers of the system. Based on that, the attacker can be
found most of the time. Similar to our threat model, this
proposal focuses on DoS attacks, however, only in detection
and localization, not exploring the recovery or defense
mechanisms against such attacks on the system.

Zhang et al. [30] explore and evaluate the effects of two
HT-based DoS-attacks: blackhole and sinkhole. The black-
hole attack occurs when an infected router stops transmitting
forward the packets that it receives, dropping the packet,
or sending to unsafe destinations. The sinkhole attack works

VOLUME 9, 2021

R. F. Faccenda et al.: Detection and Countermeasures of Security Attacks and Faults

IEEE Access

mostly on adaptive routing by requesting packets from
neighbor routers, claiming to have buffer space. Then, when
it receives the packet, it might also drop it or send it to
another recipient. The authors explore several configurations
of those attacks, varying parameters such as HT location,
packet length, and the presence of a defense mechanism based
on adaptive routing. In this case, HT-attacks are similar to
our threat model. Nonetheless, the difference is that Zhang
designed an NoC equipped with the defense mechanism is
considered untrusted, making the countermeasure vulnerable,
while we chose a control NoC to circumvent this issue
since it is responsible for detecting and recovering from
HT attacks.

Chaves et al. [31] propose detecting DoS (flooding)
attacks in an NoC by monitoring packet collision, being
able to locate the collision point and the directions of the
malicious traffic. They propose to enhance the routers with
a DoS monitor, which supervises the latency of the packets
and reports it to the OS of the PE processor. When reaching
the OS, the latency values are analyzed, triggering a DoS
suspicion report in case of latencies out of the expected
value, identifying the router where the collision happened.
To detect the direction of the malicious traffic, the authors
also proposed the store in the packet the inputs that competed
to enter the sensitive traffic. Thus, when reaching the OS, it is
possible to extract the direction from the malicious traffic.
More recently, Chaves et al. in [32] explored protection
against flooding DoS, proposing an extra monitor in the
Network Interface, which monitors the length of the packets,
reporting the presence of large malicious packets intended
to cause congestion in the network. Similar to our proposal,
both works present approaches for detecting DoS attacks,
however, without detailing the recovery method, as our
proposal does.

Hussain et al. [33] propose an Energy Efficient Trojan
Detection design (EETD) to detect the presence of HTs.
The proposal is based on two detection units. The first
one, named End-to-end Trojan Detection Units (EDU),
is placed at the PE and is always active. The EDUs are
responsible for packet authentication and send an attack
detection signal to a detection management unit. The second
detection unit is named Localization Units (LUs), placed at
each routers port and are power gated to save energy. The
work can detect HTs with low performance overhead and
energy consumption compared to state-of-the-art techniques.
However, the difference of this work with ours is that this
work does not present security countermeasures once an
attack is detected.

Daoud and Rafla explore the effects of the blackhole
attack [27] and a method to detect this attack [34]. They
propose a protocol based on inter-router acknowledgment,
making it possible to detect which router dropped a packet.
Once again, the instrumentation is in the router, which is a
structure considered vulnerable to attacks. Even though the
authors also focus on detecting blackhole attack, they do not
present a recovery procedure.

VOLUME 9, 2021

Raparti et al. [35] propose a security mechanism against
a snooping attack caused by HTs. The HT could trans-
mit a packet to the wrong destination (misrouting). The
Snooping Invalidation Module aims to discard packets
with invalid headers, thus, preventing sensitive information
from reaching undesired targets. Furthermore, they present
THANOS, a mechanism that observes the network and
sends an alert in case of suspicious behavior. However,
according to the authors, THANOS only mitigates the
attacks. Thus, still requires a more robust defense mechanism
that could completely recover the system against such
attack.

Harttung et al. [36] and Moriam et al. [37] use cryp-
tography and authentication to protect the system against
HTs that can tamper or drop messages in the NoC. Three
authentication approaches with symmetric cryptography
are considered to detect modifications on the messages,
which are discarded in case of tempering. Furthermore, the
receiver can detect a packet loss via timeout and request a
retransmission. This work is similar to ours since it detects
the attack with a timeout mechanism. However, the recovery
protocol occurs in the same network that tempered the
received packet, thus also being exposed to HT attacks.
Moreover, the recovery protocol is not detailed by the
authors.

JYV et al. [38] consider four HT types: Flit Quantity
Trojan (QT), Address Trojan (AT), and Head Hardware
Trojan (HHT), and Tail Hardware Trojan (THT). The
proposed solution to mitigate the action of the HTs is a
Shuffle Encoder placed before the Input FIFO, obfuscating
the information inside the packet and avoiding the triggering
of the HT that could affect the packet. Simulation results in
a4 x 4 NoC show that the proposed method is efficient in
thwarting the HT attacks. This work presents versions of HTs
that are similar to the ones discussed in our Threat Model.
However, the solution is based on instrumenting the router
that is considered not trusted, affecting the reliability of the
security mechanism.

Hazra et al. [39] also model four HT types and propose
a detection mechanism. The detection mechanism is based
on machine learning techniques such as Decision Tree (DT),
Support Vector Machine (SVN), and K-Nearest Neighbor
(KNN). The learning phase uses the total execution time,
the power consumption, the total number of instructions
executed, the total number of read misses and the total
number of write misses. The Authors evaluate the accuracy
of prediction for each different models of Trojans separately.
The DT and SVM are the methods with better detection
accuracy. Related to our proposal, this work focus on
detecting an HT attack. However, as discussed above, there is
a lack of works that focus on recovery besides the detection
of attacks.

Sinha et al. [40] also use machine learning (ML) tech-
niques to enhance system security. The Authors propose
Sniffer, a tool to detect and locate flood DoS attacks. The
authors train the ML module with network features such as

153145

IEEE Access

R. F. Faccenda et al.: Detection and Countermeasures of Security Attacks and Faults

Buffer Waiting Time, Inter-Flit Interval, and Virtual Channel
Occupancy. Each router has a module to observe the features
mentioned above and a module for detecting abnormal traffic
based on the ML technique. This work does not present the
recovery process, besides instrumenting the same NoC to
detect the attack.

A. DISCUSSION

Table 1 classifies the works in terms of the adopted security
mechanism; the instrumentation, meaning the unit/units
responsible for the security mechanisms; and if there
is a detection and recovery protocol. Daoud et al. [27],
Charles et al. [16] and Hazra et al. [39] are examples of
works that focus only on the detection of attacks, instead of

implementing a countermeasure.

TABLE 1. Related work summary.

‘Work Method Instrumentation Detection ~ Recovery
Charles [28] Adapt. Routing: Data NoC
(2020) Trust-aware Routing (Router)
Ruaro [29] Adapt. Routing:
(2020) SDN SDN Subnet
Charles [16] Detection and Data NoC v
(2020) Localization (Router)
Chaves [31] [32] Latency and Collision Data NoC v
(2019) (2021) Monitoring (Router)
Zhang [30] Detection: Data NoC v
(2018) Traffic collision (Router)
Hussain [33] -
(2018) Authentication Router v
Daoud [34] [27] Adapt. Routing: Data NoC v
(2019) Inter-router Ack. (Router)
Raparti [35] Packet Data NoC v
(2019) Monitoring NI
Harttung [36](2019) Criptography and Data NoC v v
Moriam [37](2018) Authentication Operating System
Jyv [38] . Data NoC
(2018) Obfuscation (Router) v
Hazra [39] Detection:
(2018) Machine Learning Cache v
Sinha [40] Detection: Rout v
(2021) Machine Learning outer
This Adapt. Routing Control NoC v v
Work Authentication Operating System

Adaptative routing is an approach used by several Authors
when the goal is to protect the communication against
DoS attacks and HTs. However, implementations are mostly
inserted in routers assumed to be vulnerable against HTs,
which compromises the reliability of the security mechanism.
Moreover, even though most works focus on detecting HT's
and suspicious behavior, only a few of them propose a
recovery protocol.

Our proposal adopts a detection and recovery protocol
that uses a control NoC to monitor packet transmission and
find alternative paths to avoid faulty or malicious nodes
of an NoC. The adoption of a control NoC enables the
detection of suspicious behaviors on 3PIP NoCs. It is possible
to insert an HT in the control NoC, but it can be easily
detected. The detection is considered simple because the
control NoC router has a low complexity design and a
small silicon area footprint (20% of the data router [19]).
For this reason, the control NoC is considered a reliable
entity.

153146

IV. COMMUNICATION SESSION PROTOCOL

The Introduction Section mentioned the three pillars of the
proposal: (1) control NoC; (2) data network with support for
XY and source routing; (3) an additional layer in the message
exchange mechanism.

The control NoC [19] is a lightweight network-on-chip,
with all packets having one flit. When transmitting in
broadcast, default transmission mode, packets reach all PEs
of the system. Thus, this NoC can find a path from a source
PE to a target PE if it exists, even in the presence of a fault
or an HT in the path of the data NoC. This NoC may also
use the unicast transmission to create a path between a source
and a target PE, using a backtracking procedure. For security
reasons, only the OS accesses the control NoC, avoiding its
use by malicious applications.

The data NoC is a standard wormhole packet switching
NoC without virtual channels. It has two particular architec-
tural features. The first one is the adoption of two physical
channels, acting as two disjoint NoCs. The flit size is half
of the word size to minimize the area overhead, being the
network interface responsible for serializing/deserializing the
flits. The reason to adopt two physical NoC is to enable
fully adaptive routing. The second feature is simultaneous
support for XY (default routing algorithm) and source routing
(SR). Source routing is required when, e.g., it is necessary to
circumvent an OSZ or avoid a path with a faulty or infected
router.

The following subsections detail the third pillar of the
method, the additional layer in the message exchange mecha-
nism. This layer is the communication session protocol, able
to supervise message exchanges, detect suspicious behaviors
and recover from attacks or failures.

A. MONITORING MESSAGE EXCHANGE

The protocol starts by establishing a session (Definition 1).
Figure 3(b) presents the sequence diagram with each step of
the protocol, from its creation up to its end.

Definition 1 (Session): establishment of a virtual connec-
tion between a producer-consumer pair, using the control
NoC. The session is defined by a unique identifier, known
only to the communicating pair.

Definition 2 (Session Key (Ks)): unique identifier for a
communicating pair, represented by the tuple {rnd, ID), ID},
being rnd a random number, /D), the producer task identifier,
and ID. the consumer task identifier. The OS of each PE has
a table to store Ks.

The consumer starts the protocol in the first Message_
Request packet, transmitted using the data NoC. In par-
allel, through the control NoC, the consumer sends a
Start_Session packet to the producer, with Kj in its pay-
load (Definition 2). When receiving this packet, the producer
starts the session, by using rnd and the task identifiers. When
the producer delivers the requested message, it also transmits
the Session_Ack packet confirming the successful session
creation, using the control NoC. The Session_Ack also

VOLUME 9, 2021

R. F. Faccenda et al.: Detection and Countermeasures of Security Attacks and Faults

IEEE Access

Processing Element

Consumer

S Producer
A A (Consumer Side) A
v 3 CreateSession)
mm—— _@4_ - Start_Session o,
Label 1 Control Message_Request

Message < " NoG >
Hequegst p H R,o’u_tg[p___ ly Session_Ack

ctrl Memory e CPU L~y @ Delivery
Message s = Label
Request

Packet i [END_TASKT) . G 99}[5’],”99,M§§S,§9§,>

Message_Req_Ctrl Data NoC M I

Message A/“ DMNI] Request et e
Delivery v N B

ctrl @ '—'H/ % MR 2
Message = MessﬂeﬁDelivﬁClrl

Delivery “P1' Data NoC .

Packet Router L 4 »_Delivery

< le > 4 L
U
4 End Session
Clear Structures
L 2 7 v End_Session ['] End Session
Clear Structures

(@)

(b)

FIGURE 3. (a) Processing Element internal organization and the path taken from each step of the protocol. (b) Sequence Diagram of the Session Manager
operation between the consumer and producer Tasks. The numbers 1-4 indicate each of the protocol steps spatially (a) and temporally (b).

contains K; to avoid tampered acknowledgments. At this
point, both sides of the communication have K; and
can exchange packets. Although not implemented in this
work, additional security can be obtained by sending a
cryptographic key at system startup, allowing to send the
session key of each communicating pair encrypted, such
as [23], [24].

Then, after the creation of the Session, the messages
exchange occurs as follows:

o The consumer sends two packets to the producer:
MRC (Message_Reqg_Ctrl) through the control NoC
and MR (Message_Request) through the data NoC.
Numbers 1 and 2 in Figure 3 illustrate this step.

o Once the producer receives the MRC, MR and has data
to send, it transmits two packets to the consumer:
MDC (Message_Deliv_ Ctrl) through the control
NoC, and MD (Message_ Delivery) through the
data NoC. Numbers 3 and 4 in Figure 3 illustrate this
step.

Step four then goes back to step one, until there are
messages to be transmitted. Once the consumer finishes
its execution, it closes the current session sending an
End_Session message (control NoC) to all tasks that
produce data to this task. The producers close the session
on their side when they receive a End_Session message,
clearing all the values used by the protocol.

Two important issues in a message exchange protocol
are: (i) correct reception order; (if) network congestion by
transmitted but not consumed packets. The message exchange
protocol adopted in this work avoids these two problems.
Data transmission does not inject packets into the network but
stores them in the OS, until a consumption request, through
the reception of a MR packet. Thus, a packet injected into
the network is consumed by the receiver, ensuring message
ordering, and avoiding network congestion.

Packets transmitted in both NoCs may arrive in any order.
If the data packet arrives before the control packet, the OS
stores it up to the reception of the corresponding control

VOLUME 9, 2021

packet. The same scenario occurs in the opposite reception
order.

The data packet (MR or MD) enables the OS to retrieve part
of K: {IDp, ID.} — steps 2 and 4 in Figure 3. The control
packet (MRC or MDC) contains the rnd value — steps 1 and 3
in Figure 3. To validate a data packet, the OS retrieves from
the K; table a line matching the received {ID,, ID., rnd}. The
OS accepts the data packet iff the received values match with
some line of the K| table.

B. DETECTING SUSPICIOUS BEHAVIOR

Three situations may signalize to the OS a suspicious
behavior: (i) a mismatch when comparing Ks; (ii) an
unexpected packet arriving at the data NoC without a previous
message request; (iif) a timeout in the reception of the data or
control packet.

Figure 4(a) illustrates a correct packet reception. The
straight yellow arrow corresponds to data packets, while the
dashed purple arrow refers to control packets.

According to Section II-B, the proposed method may deal
with:

« Packet Loss: the receiver PE knows that a data packet

should arrive due to the reception of a control packet.
The present work uses a timeout mechanism to detect
this type of event.

« Packet Misrouting: for the receiver PE, the effect is
similar to a packet loss. However, the misrouted packet
goes to a PE that was not expecting data, and as this PE
did not receive a control packet, it is discarded.

« Port Blocking: this attack may be permanent or inter-
mittent. If it is permanent, it is similar to a packet
loss. If the attack is intermittent, the data packet may
arrive with a wrong sequence number or a latency higher
than a threshold, which is also detected by the timeout
mechanism.

Figure 4(b) illustrates a packet loss or permanent port

blocking due to a fault in the router. The current work uses
K to detect the above threats. A sequence number in the

153147

IEEE Access

R. F. Faccenda et al.: Detection and Countermeasures of Security Attacks and Faults

data packet payload enables detecting intermittent packet
blocking.

I
1T

~=H=~s e I.--F-~Ie
AP:’1 APP1 APP1 |—— x — APP1

ﬁﬁw,ﬁmﬁ

(a) (b)

T 1
Y=g
STE-TC

I

APP1

T 1T
I
I

I

FIGURE 4. Representation of a message recovery process using the
control NoC. (a) Successful message transmission. (b) Data transmission
interrupted in the data NoC due to a fault or HT. (c) Request for packet
retransmission using the control NoC. (d) Successful retransmission using
source routing. Dashed arrows: packets transmitted in broadcast using
the control NoC. Straight arrows: packets transmitted through the data
NoC.

To increase the ability of the method to detect attacks
and faults, the control NoC may embed in the payload other
parameters, such as a sequence number (currently embedded
in the payload of the data packet), a Message Authentication
Code (MAC), or a timestamp. The sequence number enables,
e.g., the detection of packets dropped by an HT or a faulty
link. A MAC enables the detection of corrupted packets. The
timestamp allows for detecting anomalous variations on the
latency, which may imply a timing attack.

C. RECOVERING FROM ATTACKS OR FAILURES

After detecting an attack or fault, the receiver starts the
recovery process. Here, the control NoC also plays a
major role. Instead of wasting resources to detect the HT
location [16] or the faulty link [31], the proposal adopts a
rerouting mechanism. To find a new path, the control NoC
avoids the output port used by the producer task and the input
port used by the consumer task. These two rules ensure a new
path without using the previous routers due to the restrictions
imposed on the broadcast transmission.

Figure 4(c) shows the consumer PE notifying the producer
PE a missing packet detected by the timeout (could be
dropped or received in an incorrect order). The use of the
control NoC and the broadcast transmission ensures the
reception of this packet, avoiding the affected router(s).
The producer PE injects a Path_Search message in the
control NoC to the consumer PE. If a path exists, this packet
arrives at the consumer PE, and the consumer PE starts a

153148

backtracking process to the producer PE, with the new path,
as shown in Figure 4(d).

Note that the focus of this work is not the detection of the
HT(s) or faulty router(s) location. The method uses a path
search approach that avoids the previous path. With the new
path, the producer PE resends the lost packet (as explained
previously, the producer stores the message in a local buffer)
using source routing (SR). All subsequent packets use this
path up to the detection of a new event. Note that once defined
the path, there is no additional overhead in the producer-
consumer communication, excepting a slight increase in
the latency if the SR path is longer than the previous
one (e.g., Figure 4).

V. RESULTS

This section evaluates the Communication Session Pro-
tocol in terms of application execution time overhead
(Section V-A), overhead on the session handling routines
(Section V-B), and analysis of the recovery protocol impact
on real benchmarks (Section V-C).

The many-core, described in Section II, is modeled at the
RTL level (NoCs and DMNI in VHDL, and the processor
and memory in SystemC) [20]. The OS and applications are
described in C language. Such low-level simulation generates
clock-cycle accurate results.

Each application is a CTG(T, E) (Communicating task
Graph), a directed and connected graph. Each vertex
t; € T represents a task, and each edge e;; € E represents
the communication from #; to ;. Tasks communicate with
each other using a message-passing protocol, similar to MPI
(Message Passing Interface). Results are gathered simulating
seven benchmarks: DTW, MPEG, MWD, MPEG4, Dijkstra,
VOPD, and AES in a 4 x 4 MCSoC. These benchmarks
are used in the many-core research community [41], [42].
Figure 5 presents two application graphs corresponding to the
MPEG and AES applications.

MPEG

OO OO

FIGURE 5. CTG (Communicating Task Graphs) for MPEG and AES
benchmarks. Note the for MPEG the inner tasks synchronize two sessions,
while the Master task in the AES benchmark synchronizes 6 sessions.

The benchmarks have distinct communication models,
such as pipeline and master-slave, to avoid biased results. The
MPEG application follows a pipeline communication model.
The AES application follows a master-slave model, with one
task responsible for distributing the computation to other
tasks. The AES benchmark is parameterizable in the number
of slave tasks (4 or 8) and the number of 16-byte blocks to
encrypt (8 up to 512). For example, AES_4_8 requires two
iterations to encrypt or decrypt a 128-byte message (8 blocks

VOLUME 9, 2021

R. F. Faccenda et al.: Detection and Countermeasures of Security Attacks and Faults

IEEE Access

of 16 bytes), while AES_8_8 requires only one iteration for
the same workload.

A. OVERHEAD OF THE COMMUNICATION PROTOCOL
Table 2 compares the applications’ execution time between
the baseline system and the one with the Communication
Session protocol.

TABLE 2. Applications execution time with and without the protocol.

Application Original ~ Session ~ Overhead

PP (ms) (ms) (%)

DTW 36.29 37.58 3.55

MPEG 22.68 23.54 3.79

VOPD 3.19 3.94 23.51

MWD 2.51 3.05 21.51

MPEG4 23.14 29.61 27.96

Dijkstra 5.65 7.56 33.81

8 2.72 3.21 18.01

16 3.98 4.79 20.35

32 6.49 7.75 19.41

AES4 64 11.58 13.96 20.55

128 21.70 26.19 20.69

256 41.99 50.79 20.96

512 72.59 89.69 23.56

8 3.13 3.81 21.73

16 4.14 5.09 22.95

32 6.16 7.65 24.19

AES8 64 10.28 12.90 25.49

128 18.31 23.29 27.20

256 34.55 43.82 26.83

512 68.05 86.23 26.72

Two applications follow the pipeline communication
model, MPEG and DTW. The execution time overhead for
these applications corresponds to 3.79% (MPEG) and 3.55%
(DTW). This small performance overhead is due to the com-
munication model. Only one message is exchanged between
each communicating task pair per iteration, requiring one
session synchronization per iteration.

The CTG of the remaining applications follows a master-
slave model (AES, Dijkstra), or has a complex CTG with
tasks acting as master tasks (MWD, MPEG4, VOPD). For
these applications, the execution time overhead ranges from
18.01% to 33.31%. The execution time overhead for these
applications is higher due to the number of messages the
master task(s) needs to synchronize. The protocol synchro-
nization directly affects the execution time. When a task
has many communication dependencies, the synchronization
delay is propagated and impacts the sending or receiving of
subsequent messages to the next tasks.

The AES application is used to illustrate the effect of
protocol synchronization. The increase in the number of
slave tasks, from 4 to 8, implies a higher execution time
overhead due to the large number of messages to synchronize.
The number of iterations the application executes (number
of blocks to be handled divided by the number of slave
tasks) shows the effect of the synchronization propaga-
tion. The AES_4 stabilizes the execution time overhead
at approximately 24% from 16 iterations (64 blocks).

VOLUME 9, 2021

For AES_8, the execution penalty also stabilizes at 16 iter-
ations, but for 128 blocks, at approximately 27%.

These results define the protocol execution time over-
head according to the communication characteristics of
the application. We consider that the overhead of up to
27% on application execution time is an acceptable cost
considering the security and fault tolerance benefits added by
the communication session protocol.

B. OVERHEAD OF SESSION HANDLING ROUTINES
The Communication Session protocol adds additional com-
putation in the OS to handle the protocol packets. There
are two new algorithms: the handling of the MRC and
MDC packets. In addition, the routines to handle MR and
MD packets were modified to interface with the control NoC.
To analyze the impact of the protocol in the OS, Table 3
shows the time (in clock cycles) taken by the OS to handle the
messages in the Session protocol, compared to the baseline
implementation, considering 128 iterations of the application.
The values refer to the AES 4_128 simulation, considering

two cases:
o Case 1: control packets arrive before data packets,

observed in the AES Slaves.

o Case 2: data packets arrive before control packets,
observed in the AES Master. This happens because the
master receives the MR and MD messages from the four
slaves almost simultaneously. The OS prioritizes the
handling of the data NoC packets to avoid network
congestion.

TABLE 3. Average overhead (in clock cycles) for each service compared to
the baseline implementation.

. Baseline Session
Service Case (Data) (Data-+Control) Overhead
Case | 443.0 679.7 53.44%
REQUEST iic2 4667 810.2 73.61%
Case | 227.0 324.9 43.14%
DELIVERY 2 2227 373.0 67.48%

Results show that the second case presents a higher
overhead for both services because data packets arrive before
control packets. In this case, the packets arriving at the data
NoC need to be stored and then retrieved when the control
packets arrive to validate them.

This experiment also showed the difference between
services: the REQUEST takes longer than the DELIVERY.
This happens because the REQUEST is also responsible
for sending the packet (i.e., execute the DELIVERY) if the
producer already has the packet ready when the REQUEST
arrives.

Table 3 shows that message exchange transactions have a
relatively high percentual overhead, but small if we consider
it in clock cycles (less than 400 cycles in the worst case).
Thus, applications with a pipeline model (such as MPEG)
have a minor execution time penalty adding the proposed

153149

IEEE Access

R. F. Faccenda et al.: Detection and Countermeasures of Security Attacks and Faults

protocol, as shown in Table 2. On the other hand, due
to the serialization in handling messages in applications
with a master-slave communication model (such as AES),
this overhead accumulates, explaining the higher runtime
overhead.

C. RECOVERY COST

After detecting a suspicious behavior, the recovery process
starts, as detailed in Section IV-C. The recovery process
adopts a rerouting mechanism. With a new path established,
all subsequent packets use this path. Thus, the overhead of the
recovery process occurs once, when detecting the suspicious
behavior.

Two scenarios are simulated to evaluate the impact
of the rerouting and packet recovery mechanisms: one
with a pipeline application (MPEG) and the other with a
master-slave application (AES4), both applications having
five tasks. The tasks are mapped inside an OSZ that
encloses six routers (yellow-highlighted area), one of them
infected by an HT. Figure 6 illustrates the MPEG and HT
mapping. This Figure shows the MESSAGE_DELIVERY
and MESSAGE_REQUEST packets, according to the XY
algorithm. The HT activation interrupts flows 3, 5, and 8.

[——]9rART PRINT
I 1

L A: :iQUANT

i]rrf?

() (b)

FIGURE 6. Task mapping of the MPEG application with the inter-task
communication on a 3 x 3 Mesh NoC with a 2 x 3 OSZ (yellow area).
(a) Message Delivery packets. (b) Message Request packets.

Each application executes ten iterations, with the HT
configured to block all ports of the infected router at 3 ms.
Figure 7 shows the time taken for each iteration for both
applications. Each graph has three curves:

e Baseline, execution without the Communication Session
protocol;
o Session, execution with the Communication Session
protocol, without the activation of the HT;
o Attack, execution with the protocol, the HT activation
at 3 ms, and the time spent for the recovery process.
Figure 7(a) illustrates the MPEG application. The appli-
cation stalls at iteration 6, firing the recovery process in
parallel at different PEs. The next iteration, after the recovery
process, executes faster. Due to the pipeline structure of
the application, data remains buffered in the producer PEs.
Once the new path is established, the data is transferred
to their targets. Figure 7(b) illustrates the AES application.
This application also stalls at iteration 6. Due to the

153150

(a) MPEG
800

T T T T
Baseline —e—
Session ——
700 - Attack —»—

A /)

400

Time (us)

300

Iteration

(b) AES

800 ————
Baseline —e—
Session ——

700 - Attack —»—

600 / \
500

400 N / \

300 A

Time (us)

Iteration

FIGURE 7. Impact of the Recovery Protocol on applications (a) MPEG
(b) AES. X-axis: iteration number, y-axis: iteration latency.

master-slave communication model, it is not possible to
buffer intermediate data. Therefore, it is necessary to finish
the recovery process to restore the original latency.

As shown in Figure 7, the recovery process overhead
happens once. After the recovery process, the HT is still
active, but the applications are not affected by it. Note that
the latency after the attack is the same for the ‘session’ and
‘attack’ scenarios. The latency is the same because the new
paths have the same number of hops as the original ones.

TABLE 4. Applications execution time with and without the protocol.

A Baseline Session Attack
PP (ms) (ms) (ms)
MPEG 5.03 5.26 (4.57%) 5.30 (5.37%)
AES 4.52 5.56 (23.01%) 5.96 (31.86%)

Table 4 presents the execution time for each scenario. The
overheads using the Communication Session Protocol are
according to the ones presented in Table 2, varying accord-
ing to the communication model. The MPEG application
increases its execution time by 0.8% when it is necessary to
reconfigure the paths due to the HT attack. The additional
overhead of the AES application is 8,85% for the execution
of 10 iterations. These overheads reduce when the number of
executed iterations increases.

This work is an option for the ones that seek HT location
and isolation. The method can detect anomalous behaviors
and create a new path that avoids the original path through
rerouting.

VOLUME 9, 2021

R. F. Faccenda et al.: Detection and Countermeasures of Security Attacks and Faults

IEEE Access

VI. CONCLUSION

This work presented an original method to detect security
attacks and faults in the communication architecture - NoC.
Proposals available in the literature seek to add security
mechanisms to the NoC itself, which may be faulty or under
attack. Thus, to avoid instrumentalizing the data NoC itself,
we use a simple control NoC that uses broadcast transmission
to find alternative paths to the paths used before detecting the
attack or fault. The proposed method does not need to locate
the source of the problem, which is the goal of most works
found in the literature. The cost of our proposal is the increase
in the execution time. On the other hand, the Communication
Session Protocol operates efficiently to recover from attacks,
such as Packet Loss, Packet Misrouting, and Port Blocking,
caused by HTs or failures in NoC links.

This work does not exclude methods that locate HTs or
faulty routers. Our proposed method combined with these
methods can simplify the rerouting procedure: instead of
avoiding all routers in the original path, only infected or faulty
routers could be avoided in the new path.

Another future work direction is to make the synchro-
nization of packet reception more flexible in master-slave
applications. Currently, the master task must wait for packets
from all the slave tasks sequentially, which impacts the
execution time. This flexibility would help to reduce the
overhead observed in master-slave applications.

REFERENCES

[1]1 K. Popovici, FE. Rousseau, A. A. Jerraya, and M. Wolf, Embedded Software
Design and Programming of Multiprocessor System-on-Chip: Simulink
and System C Case Studies. New York, NY, USA: Springer, 2010, p. 290.
[Online]. Available: https://link.springer.com/book/10.1007/978-1-4419-
5567-8

[2] M. Technologies. (Nov. 2018). TILE-Gx72 Processor Overview. [Online].
Available: http://www.mellanox.com

[3] A. Sodani, R. Gramunt, J. Corbal, H. S. Kim, K. Vinod, S. Chinthamani,
S. Hutsell, R. Agarwal, and Y. C. Liu, “Knights landing: Second-
generation Intel xeon phi product,” IEEE Micro, vol. 36, no. 2, pp. 34-46,
Mar./Apr. 2016, doi: 10.1109/MM.2016.25.

[4] Oracle, “Oracle’s SPARC T8 and SPARC M8 server architecture,” Oracle
Corp., Santa Clara, CA, USA, White Paper, 2017. [Online]. Available:
https://www.oracle.com/a/ocom/docs/sparc-t8-m8-server-architecture.pdf

[5] B. D. D. Dinechin, D. V. Amstel, M. Poulhies, and G. Lager, “Time-
critical computing on a single-chip massively parallel processor,” in
Proc. Design, Autom. Test Eur. Conf. Exhib. (DATE), 2014, pp. 1-6, doi:
10.7873/DATE.2014.110.

[6] B. Bohnenstiehl, A. Stillmaker, J. Pimentel, T. Andreas, B. Liu, A. Tran,
E. Adeagbo, and B. Baas, “A 5.8 pJ/Op 115 billion ops/sec, to 1.78 trillion
ops/sec 32nm 1000-processor array,” in Proc. IEEE Symp. VLSI Circuits
(VLSI-Circuits), Jun. 2016, pp. 1-2, doi: 10.1109/VLSIC.2016.7573511.

[7] O. Peckham. (Dec. 2020). Esperanto Unveils ML Chip With Nearly
1,100 RISC-V Cores. [Online]. Available: https://www.hpcwire.com/
2020/12/08/esperanto-unveils-ml-chip-with-nearly-1100-risc-v-cores

[8] H. Li, Q. Liu, and J. Zhang, “A survey of hardware Trojan threat
and defense,” Integration, vol. 55, pp.426-437, Sep. 2016, doi:
10.1016/j.v151.2016.01.004.

[9] J. Ramachandran, Designing Security Architecture Solutions. Hoboken,
NJ, USA: Wiley, 2002, p. 483.

[10] A. Avizienis, J.-C. Laprie, B. Randell, and C. Landwehr, ““Basic concepts
and taxonomy of dependable and secure computing,” IEEE Trans.
Depend. Sec. Comput., vol. 1, no. 1, pp. 11-33, Jan./Mar. 2004, doi:
10.1109/TDSC.2004.2.

[11] G. Mehmood, M. S. Khan, A. Waheed, M. Zareei, M. Fayaz, T. Sadad,
N. Kama, and A. Azmi, “An efficient and secure session key management
scheme in wireless sensor network,” Complexity, vol. 2021, pp. 1-10,
Jun. 2021, doi: 10.1155/2021/6577492.

VOLUME 9, 2021

[12]

[13]

(14]

[15]

[16]

[17]

(18]

[19]

(20]

(21]

(22]

[23]

(24]

(25]

[26]

(27]

(28]

(29]

[30]

(31]

G. Mehmood, M. Z. Khan, S. Abbas, M. Faisal, and H. U. Rahman,
“An energy-efficient and cooperative fault-tolerant communication
approach for wireless body area network,” IEEE Access, vol. 8,
pp. 69134-69147, 2020, doi: 10.1109/ACCESS.2020.2986268.

S. Charles and P. Mishra, ““Securing network-on-chip using incremental
cryptography,” in Proc. IEEE Comput. Soc. Annu. Symp. VLSI (ISVLSI),
Jul. 2020, pp. 168-175, doi: 10.1109/ISVLSI49217.2020.00039.

G. Sharma, V. Kuchta, R. Anand Sahu, S. Ellinidou, S. Bala,
O. Markowitch, and J. Dricot, “A twofold group key agreement protocol
for NoC-based MPSoCs,” Trans. Emerg. Telecommun. Technol., vol. 30,
no. 6, pp. 1-18, Jun. 2019, doi: 10.1002/ett.3633.

H. A.H. Gondal, S. Fayyaz, A. Aftab, S. Nokhaiz, M. Bilal, and W. Saleem,
“A method to detect and avoid hardware Trojan for network-on-chip
architecture based on error correction code and junction router (ECCJR),”
Int. J. Adv. Comput. Sci. Appl., vol. 11, no. 4, pp. 581-586, 2020, doi:
10.14569/1JACSA.2020.0110476.

S. Charles, Y. Lyu, and P. Mishra, ‘‘Real-time detection and localization of
distributed DoS attacks in NoC-based SoCs,” IEEE Trans. Comput.-Aided
Design Integr. Circuits Syst., vol. 39, no. 12, pp. 4510-4523, Dec. 2020,
doi: 10.1109/TCAD.2020.2972524.

M. Ruaro, F. B. Lazzarotto, C. A. Marcon, and F. G. Moraes, “DMNI:
A specialized network interface for NoC-based MPSoCs,” in Proc.
IEEE Int. Symp. Circuits Syst. (ISCAS), May 2016, pp. 1202-1205, doi:
10.1109/ISCAS.2016.7527462.

M. Ruaro, L. L. Caimi, V. Fochi, and F. G. Moraes, ‘“Memphis: A frame-
work for heterogeneous many-core SoCs generation and validation,”
Design Autom. Embedded Syst., vol. 23, nos. 3—4, pp. 103-122, Dec. 2019,
doi: 10.1007/s10617-019-09223-4.

E. Wachter, L. L. Caimi, V. Fochi, D. Munhoz, and F. G. Moraes, “BrNoC :
A broadcast NoC for control messages in many-core systems,” Microelec-
tron. J., vol. 68, pp. 69-77, Oct. 2017, doi: 10.1016/j.mejo.2017.08.010.
L. L. Caimi, V. Fochi, E. Wichter, D. Munhoz, and F. G. Moraes, “Acti-
vation of secure zones in many-core systems with dynamic rerouting,” in
Proc. ISCAS, 2017, pp. 1-4, doi: 10.1109/ISCAS.2017.8050256.

L. L. Caimi, V. Fochi, E. Wachter, and F. G. Moraes, ‘“‘Runtime creation
of continuous secure zones in many-core systems for secure applications,”
in Proc. IEEE 9th Latin Amer. Symp. Circuits Syst. (LASCAS), Feb. 2018,
pp. 1-4, doi: 10.1109/LASCAS.2018.8399904.

L. L. Caimi and F. G. Moraes, ““Security in many-core SoCs leveraged
by opaque secure zones,” in Proc. IEEE Comput. Soc. Annu. Symp. VLSI
(ISVLSI), Jul. 2019, pp. 471-476, doi: 10.1109/ISVLSI1.2019.00091.

L. L. Caimi, V. Fochi, and F. G. Moraes, ““Secure admission of applications
in many-cores,” in Proc. 25th IEEE Int. Conf. Electron., Circuits Syst.
(ICECS), Dec. 2018, pp. 761-764, doi: 10.1109/ICECS.2018.8618021.
M. Ruaro, L. L. Caimi, and F. G. Moraes, “SDN-based secure
application admission and execution for many-cores,” IEEE Access, vol. 8,
pp. 177296-177306, 2020, doi: 10.1109/ACCESS.2020.3025206.

B. Shakya, T. He, H. Salmani, D. Forte, S. Bhunia, and M. Tehranipoor,
“Benchmarking of hardware Trojans and maliciously affected circuits,”
J. Hardw. Syst. Secur, vol. 1, no. 1, pp.85-102, Mar. 2017, doi:
10.1007/s41635-017-0001-6.

J. Philomina, “A study on the effect of hardware Trojans in the
performance of network on chip architectures,” in Proc. 8th Int.
Conf. Smart Comput. Commun. (ICSCC), Jul. 2021, pp. 314-318, doi:
10.1109/ICSCC51209.2021.9528249.

L. Daoud and N. Rafla, “Analysis of black hole router attack in
network-on-chip,” in Proc. IEEE 62nd Int. Midwest Symp. Circuits
Syst. (MWSCAS), Aug. 2019, pp. 69-72, doi: 10.1109/MWSCAS.2019.
8884979.

S. Charles and P. Mishra, “Lightweight and trust-aware routing in NoC-
based SoCs,” in Proc. IEEE Comput. Soc. Annu. Symp. VLSI (ISVLSI),
Jul. 2020, pp. 160-167, doi: 10.1109/ISVLSI49217.2020.00038.

M. Ruaro, L. L. Caimi, and F. G. Moraes, “A systemic and secure
SDN framework for NoC-based many-cores,” IEEE Access, vol. 8,
pp. 105997-106008, 2020, doi: 10.1109/ACCESS.2020.3000457.

L. Zhang, X. Wang, Y. Jiang, M. Yang, T. Mak, and A. K. Singh,
“Effectiveness of HT-assisted sinkhole and blackhole denial of service
attacks targeting mesh networks-on-chip,” J. Syst. Archit., vol. 89,
pp. 84-94, Sep. 2018, doi: 10.1016/j.sysarc.2018.07.005.

C. G. Chaves, S. P. Azad, T. Hollstein, and J. Sep.ilveda, “DoS
attack detection and path collision localization in NoC-based MpsoC
architectures,” J. Low Power Electron. Appl., vol. 9, no. 1, pp. 1-20, 2019,
doi: 10.3390/j1pea9010007.

153151

http://dx.doi.org/10.1109/MM.2016.25
http://dx.doi.org/10.7873/DATE.2014.110
http://dx.doi.org/10.1109/VLSIC.2016.7573511
http://dx.doi.org/10.1016/j.vlsi.2016.01.004
http://dx.doi.org/10.1109/TDSC.2004.2
http://dx.doi.org/10.1155/2021/6577492
http://dx.doi.org/10.1109/ACCESS.2020.2986268
http://dx.doi.org/10.1109/ISVLSI49217.2020.00039
http://dx.doi.org/10.1002/ett.3633
http://dx.doi.org/10.14569/IJACSA.2020.0110476
http://dx.doi.org/10.1109/TCAD.2020.2972524
http://dx.doi.org/10.1109/ISCAS.2016.7527462
http://dx.doi.org/10.1007/s10617-019-09223-4
http://dx.doi.org/10.1016/j.mejo.2017.08.010
http://dx.doi.org/10.1109/ISCAS.2017.8050256
http://dx.doi.org/10.1109/LASCAS.2018.8399904
http://dx.doi.org/10.1109/ISVLSI.2019.00091
http://dx.doi.org/10.1109/ICECS.2018.8618021
http://dx.doi.org/10.1109/ACCESS.2020.3025206
http://dx.doi.org/10.1007/s41635-017-0001-6
http://dx.doi.org/10.1109/ICSCC51209.2021.9528249
http://dx.doi.org/10.1109/MWSCAS.2019.8884979
http://dx.doi.org/10.1109/MWSCAS.2019.8884979
http://dx.doi.org/10.1109/ISVLSI49217.2020.00038
http://dx.doi.org/10.1109/ACCESS.2020.3000457
http://dx.doi.org/10.1016/j.sysarc.2018.07.005
http://dx.doi.org/10.3390/jlpea9010007

IEEE Access

R. F. Faccenda et al.: Detection and Countermeasures of Security Attacks and Faults

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

C. G. Chaves, J. Sepilveda, and T. Hollstein, “Lightweight monitoring
scheme for flooding DoS attack detection in multi-tenant MPSoCs,” in
Proc. IEEE Int. Symp. Circuits Syst. (ISCAS), May 2021, pp. 1-5, doi:
10.1109/ISCAS51556.2021.9401153.

M. Hussain, A. Malekpour, H. Guo, and S. Parameswaran, “EETD:
An energy efficient design for runtime hardware Trojan detection in
untrusted network-on-chip,” in Proc. IEEE Comput. SoC. Annu. Symp.
VLSI (ISVLSI), Jul. 2018, pp. 345-350, doi: 10.1109/ISVLSI.2018.00070.
L. Daoud and N. Rafla, “Detection and prevention protocol for black hole
attack in network-on-chip,” in Proc. 13rd IEEE/ACM Int. Symp. Netw.
Chip, Oct. 2019, p. 22, doi: 10.1145/3313231.3352374.

V. Y. Raparti and S. Pasricha, “Lightweight mitigation of hardware Trojan
attacks in NoC-based manycore computing,” in Proc. 56th Annu. Design
Autom. Conf., Jun. 2019, pp. 1-6, doi: 10.1145/3316781.3317851.

J. Harttung, E. Franz, S. Moriam, and P. Walther, “Lightweight authen-
ticated encryption for network-on-chip communications,” in Proc. Great
Lakes Symp. VLSI, May 2019, pp. 33-38, doi: 10.1145/3299874.3317990.
S. Moriam, E. Franz, P. Walther, A. Kumar, T. Strufe, and G. Fettweis,
“Protecting communication in many-core systems against active attack-
ers,” in Proc. Great Lakes Symp. VLSI, May 2018, pp.45-50, doi:
10.1145/3194554.3194582.

M. K. J. Y. V,, A. K. Swain, S. Kumar, S. R. Sahoo, and K. Mahapatra,
“Run time mitigation of performance degradation hardware Trojan attacks
in network on chip,” in Proc. IEEE Comput. SoC. Annu. Symp. VLSI
(ISVLSI), Jul. 2018, pp. 738-743, doi: 10.1109/ISVLSI.2018.00139.

S. Hazra, J. S. Sattenapalli, A. Roy, and M. Dalui, “Evaluation and
detection of hardware Trojan for real-time many-core systems,” in Proc.
8th Int. Symp. Embedded Comput. Syst. Design (ISED), Dec. 2018,
pp. 31-36, doi: 10.1109/ISED.2018.8703990.

M. Sinha, S. Gupta, S. S. Rout, and S. Deb, “Sniffer: A machine learning
approach for DoS attack localization in NoC-based SoCs,” IEEE J. Emerg.
Sel. Topics Circuits Syst., vol. 11, no. 2, pp. 278-291, Jun. 2021, doi:
10.1109/JETCAS.2021.3083289.

W. N. Costa, L. P. Lima, and O. A. de Lima Junior, “Extracting method
of packet dependence from NoC simulation traces using association
rule mining,” Anal. Integr. Circuits Signal Process., vol. 106, no. 1,
pp. 235-247, Jan. 2021, doi: 10.1007/s10470-020-01645-6.

S. Kashi, A. Patooghy, D. Rahmati, and M. Fazeli, “An energy efficient
synthesis flow for application specific SoC design,” Integration, vol. 81,
pp. 331-341, Nov. 2021, doi: 10.1016/j.v1si.2021.08.005.

153152

RAFAEL FOLLMANN FACCENDA received the
B.Sc. degree in computer engineering and the
M.Sc. degree from the Universidade Federal de
Santa Maria (UFSM), Santa Maria, Brazil, in
2018 and 2020, respectively. He is currently
pursuing the Ph.D. degree in computer science
with PUCRS, Brazil. His research interests include
many-cores, NoCs, embedded systems, and secu-
rity for NoC-base many-cores.

LUCIANO L. CAIMI received the M.Sc. degree in
electrical engineering from the Federal University
of Santa Catarina (UFSC), Florianopolis, Brazil,
in 1998, and the Ph.D. degree in computer science
from PUCRS University, Porto Alegre, Brazil,
in 2019. He is currently an Adjunct Professor with
the Federal University of Fronteira Sul (UFFS).
His research interests include multiprocessor sys-
tems on chip (MPSoCs) and security for embedded
systems.

FERNANDO GEHM MORAES (Senior Member,
IEEE) received the B.Sc. degree in electrical
engineering and the M.Sc. degree from Univer-
sidade Federal do Rio Grande do Sul (UFRGS),
Porto Alegre, Brazil, in 1987 and 1990, respec-
tively, and the Ph.D. degree from the Laboratoire
d’Informatique, Robotique et Microélectronique
de Montpellier, France, in 1994. He has been
a Full Professor with PUCRS, since 2002.
He has authored and coauthored 47 peer-refereed

journal articles in the field of VLSI design. His research interests
include microelectronics, FPGAs, reconfigurable architectures, NoCs, and

MPSoCs.

VOLUME 9, 2021

http://dx.doi.org/10.1109/ISCAS51556.2021.9401153
http://dx.doi.org/10.1109/ISVLSI.2018.00070
http://dx.doi.org/10.1145/3313231.3352374
http://dx.doi.org/10.1145/3316781.3317851
http://dx.doi.org/10.1145/3299874.3317990
http://dx.doi.org/10.1145/3194554.3194582
http://dx.doi.org/10.1109/ISVLSI.2018.00139
http://dx.doi.org/10.1109/ISED.2018.8703990
http://dx.doi.org/10.1109/JETCAS.2021.3083289
http://dx.doi.org/10.1007/s10470-020-01645-6
http://dx.doi.org/10.1016/j.vlsi.2021.08.005

