
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 69, NO. 12, DECEMBER 2022 5171

A Fast, Accurate, and Comprehensive PPA
Estimation of Convolutional Hardware Accelerators

Leonardo Rezende Juracy , Alexandre de Morais Amory , and Fernando Gehm Moraes , Senior Member, IEEE

Abstract— Convolutional Neural Networks (CNN) are widely
adopted for Machine Learning (ML) tasks, such as classification
and computer vision. GPUs became the reference platforms for
both training and inference phases of CNNs due to their tailored
architecture to the CNN operators. However, GPUs are power-
hungry architectures. A path to enable the deployment of CNNs
in energy-constrained devices is adopting hardware accelerators
for the inference phase. However, the literature presents gaps
regarding analyses and comparisons of these accelerators to
evaluate Power-Performance-Area (PPA) trade-offs. Typically,
the literature estimates PPA from the number of executed
operations during the inference phase, such as the number of
MACs, which may not be a good proxy for PPA. Thus, it is
necessary to deliver accurate hardware estimations, enabling
design space exploration (DSE) to deploy CNNs according to
the design constraints. This work proposes a fast and accurate
DSE approach for CNNs using an analytical model fitted from
the physical synthesis of hardware accelerators. The model is
integrated with CNN frameworks, like TensorFlow, to generate
accurate results. The analytic model estimates area, performance,
power, energy, and memory accesses. The observed average error
comparing the analytical model to the data obtained from the
physical synthesis is smaller than 7%.

Index Terms— CNN, convolutional hardware accelerator,
power-performance-area (PPA) estimation, design space
exploration (DSE).

I. INTRODUCTION

MACHINE Learning (ML) is a sub-area of artificial intel-
ligence that contains a class of algorithms able to solve

problems involving knowledge and “learning” characteristics
from determined patterns. The ML decision capability [1]
enables its adoption in classification and pattern recognition
problems. Many applications can use ML, such as computa-
tional vision, virtual reality, voice assistants, chatbots, health
care, and self-driving vehicles [2], [3], [4], [5].

Manuscript received 12 July 2022; revised 30 August 2022; accepted
5 September 2022. Date of publication 15 September 2022; date of current
version 9 December 2022. This work was supported in part by the Conselho
Nacional de Desenvolvimento Científico e Tecnológico (CNPq) under Grant
309605/2020-2; in part by the Fundação de Amparo à pesquisa do Estado
do RS (FAPERGS) under Grant 21/2551-0002047-4; and in part by the
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES),
Finance Code 001. This article was recommended by Associate Editor J. Di.
(Corresponding author: Fernando Gehm Moraes.)

Leonardo Rezende Juracy and Fernando Gehm Moraes are with the School
of Technology, PUCRS University, Porto Alegre 90619-900, Brazil (e-mail:
leonardo.juracy@acad.pucrs.br; fernando.moraes@pucrs.br).

Alexandre de Morais Amory is with Scuola Superiore Sant’Anna,
56127 Pisa, Italy (e-mail: alexandre.amory@santannapisa.it).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TCSI.2022.3204932.

Digital Object Identifier 10.1109/TCSI.2022.3204932

One of the most common ways to deliver ML is by using
Artificial Neural Networks (ANN), particularly Convolutional
Neural Networks (CNN). CNNs have the advantage of having
sparse connections, in contrast to fully connected ANNs,
where all neurons of one layer are connected to all neurons
of the next layer.

A CNN contains four main layers: (i) convolutional layer,
which is the CNN core and performs the synapses by mul-
tiplying and accumulating weights and input feature maps;
(i i) activation function, a nonlinear transformation sent to the
next layer of neurons; (i i i) pooling layer, used to reduce the
amount of data processed by the CNN; (iv) fully connected
layer, used in the classification result.

The deployment of CNNs applications comprises two
phases [6]. The first is the training, which defines the weights
of the synapse. The second is inference, which uses the
weights previously computed during the training phase to
classify or predict output values based on the inputs. A CNN
can correctly classify inputs not used in the training phase.

The success of CNNs led to the development of frame-
works that help developers to build their models by offering
mechanisms required for training and inference. Examples of
frameworks include Caffe [7], Pytorch [8] and TensorFlow [9].
These frameworks use a high-level approach to abstract the
implementation of functions, such as convolution, and aid
in implementing CNN applications. Also, these frameworks
abstract the training phase by implementing functions like
back-propagation algorithms.

GPUs became the reference platform for training and infer-
ence due to their tailored architecture to the CNN opera-
tors [10], [11], reducing the time spent in training. The main
GPU drawback is its energy consumption. Considering energy-
constrained applications, such as the Internet of Things (IoT),
autonomous driving, and wearable devices, the adoption of
specialized hardware for computing inference became a trend.

CNN hardware accelerators are a suitable replacement
for CPUs and GPUs for the inference phase [12]. CNN
accelerators can reduce power consumption and/or improve
throughput [10], [13], [14]. Also, consumer products are
increasingly receiving these blocks [15], [16], [17]. Most of
these accelerators are application-specific and can focus only
on one characteristic to optimize, such as power, performance,
or area [18], [19].

The literature presents gaps regarding analyses and compar-
isons of CNN hardware accelerators. Even with a representa-
tive number of accelerators using different implementations,
there is a lack of proposals exploring the trade-offs between

1549-8328 © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on April 24,2023 at 14:16:44 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0001-8432-3162
https://orcid.org/0000-0001-6126-6847
https://orcid.org/0000-0003-1445-7610

5172 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 69, NO. 12, DECEMBER 2022

implementations. For example, Eyeriss proposes a comparison
between accelerators but lacks performance or area trade-offs
evaluation [10]. Also, some works compare accelerators con-
sidering different technology nodes, resulting in an unfair
analysis [20].

For design space exploration (DSE), literature presents
works using analytic models integrated into frameworks and
system simulators. Analytical models estimate the power, per-
formance, and area (PPA) of hardware accelerators to a given
hardware constraint [21], [22]. System simulators [23], [24]
describe accelerators in high-level languages, like Python and
C++, reducing the design time and providing PPA evaluation.
Both analytical and simulator approaches present as drawbacks
the PPA accuracy, typically estimated from the number of
required MACs (multiply-accumulate operators) [23], [25].
Despite the efforts to increase the abstraction level to imple-
ment CNN accelerators using high-level synthesis (HLS) [26],
this approach presents several challenges, as (i) long synthesis
time; (i i) huge design space; (i i i) effective impact of design
parameters in the hardware [27].

The goal of this paper is to propose a method to perform
a comprehensive DSE in a f ast and accurate way, inte-
grated with an ML framework, to estimate the costs of the
hardware accelerator parameters. Besides the CNN parameters,
the proposed method also allows the user to change hardware
parameters, such as dataflow type (weight stationary (WS),
input stationary (IS), and output stationary (OS)), memory
type, memory latency and accelerator frequency. We also
demonstrated that estimating PPA values using MACs pro-
duces an inaccurate PPA estimation.

The original contributions of this work include:

1) Adoption of an ML framework (TensorFlow) as
a front-end to perform DSE for CNN hardware
accelerators;

2) The use of data from the physical synthesis of the
complete hardware accelerators, not only from basic
components, to obtain accurate results;

3) A method to fairly compare different CNN hardware
accelerators, allowing to compare accelerators with dif-
ferent dataflows, considering the same characteristics,
such as the technology node, frequency, and memory
type;

4) An analytical method to perform DSE. A set of equa-
tions derived from the physical synthesis flow enables
the ML framework to estimate power, performance,
and area. The analytical model, integrated into the
ML framework, is the key to obtaining a fast and
accurate DSE.

This paper is organized as follows. Section II reviews CNN
hardware accelerators and simulators, positioning our work
with regard to the state-of-the-art. Section III introduces the
convolutional accelerator architecture proposed in this work.
Section IV presents two DSE flows, the first based on physical
synthesis and the latter on MAC counting. Section V details
the main original contribution of this work, the proposed DSE
method based using an analytical approach to produce PPA
results. Section VI compares the proposed DSE method with

the flow described in Section IV and with related works.
Finally, Section VII concludes this paper, pointing out the
direction for future work.

II. STATE-OF-THE-ART

Section II-A describes frameworks enabling the design and
DSE of hardware accelerators. Section II-B presents CNN
simulators. Section II-C compares qualitatively the presented
works with regard to our proposal.

Besides CNNs, literature also presents Spiking Neural
Network (SNN) proposals [28], [29]. SNNs are based on
firing patterns computation, similar to the human brain, and
are commonly implemented using an analog approach. The
advantage of using SNNs is reduced area and energy consump-
tion once analog components can be smaller than a digital
adder or multiplier, allowing the connection of thousands
of neurons with low area cost. However, our focus is on
digital implementations, being SNNs out of the scope of this
work.

A. Frameworks for CNN Hardware Accelerators
MLPAT [30] is a framework that allows modeling power,

area, and timing for machine learning accelerators. MLPAT
models components such as systolic arrays, on-chip memory,
and activation pipeline. Also, MLPAT supports different pre-
cision types, which allows validating the trade-off between
accuracy and precision, and different dataflows, such as WS
and OS. As input, the MLPAT allows specifying the accelera-
tor architecture, the circuit, and the technology. The framework
generates an optimized chip representation to report the results,
such as area, power, and performance.

MAESTRO [31], [32] is a framework to describe and
analyze neural network hardware, which allows obtaining
the hardware cost to implement a target architecture. It has
a domain-specific language to describe the dataflow that
allows specifying the number of PEs, memory size, and NoC
bandwidth parameters. The results generated by the frame-
work are focused on performance analyses. In recent work,
MAESTRO was used to estimate tradeoffs between execution
time and energy efficiency for CNN models, such as VGG and
AlexNet.

Timeloop [23] is a DSE framework for CNNs. It can
emulate a set of accelerators, such as NVDLA [33]. Timeloop
focuses on the convolution layer analyses. Timeloop uses
as input a workload description, such as input dimension
and weight values, a hardware architecture description, such
as arithmetic modules, and hardware constraint. Instead of
using a cycle-accurate simulator, Timeloop uses data trans-
fers deterministic behavior to perform analytic analyses.
As energy models, Timeloop has memory, arithmetic units,
and wire/network models based on TSMC 16nm FinFET.

Accelergy [25] allows estimating the energy of accelerators
without a complete hardware description, using a library of
basic components. Accelergy uses a high-level architectural
description to capture the circuit behavior characteristics, such
as memory reads. Accelergy considers the number of memory
reads and the memory access pattern, which can be random
or acccess at the same address repetitively.

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on April 24,2023 at 14:16:44 UTC from IEEE Xplore. Restrictions apply.

JURACY et al.: FAST, ACCURATE, AND COMPREHENSIVE PPA ESTIMATION OF CONVOLUTIONAL HARDWARE ACCELERATORS 5173

Heidorn et al. [21] propose an analytical model that esti-
mates throughput and energy to a given hardware constraint.
A DSE is proposed to determine the accelerator architecture
limits in terms of throughput, number of parallel opera-
tions, and memory. The Authors propose an accelerator to
evaluate the model with a tile-local memory, a bus, and
a coarse-grained reconfigurable array (CGRA). Each CGRA
presents a two-dimensional array of PEs, and the accelerator
can have more than one CGRA to parallelize the processing.

Zhao et al. [22] propose an analytical performance predic-
tor to estimate energy, throughput, and latency for ASIC and
FPGA. The predictor uses DNN models, hardware architec-
ture, dataflows types, and hardware cost regarding a tech-
nology node. The results are generated with AlexNet and
SkyNet CNN models, with Eyeriss, an FPGA implementation
from [34], and synthesized results of a proposed accelerator.

DNNExplorer [35] is a framework for DSE of ML accel-
erators. DNNExplorer supports machine learning frameworks
(Caffe and PyTorch), besides three accelerator architectures.
The architecture also supports WS and IS dataflows. This
framework adopts analytical models to estimate performance
and hardware configuration.

Gemmini [36] is an open-source systolic array generator
that allows evaluating deep-learning architectures. Gemmini
generates a custom ASIC accelerator for matrix multiplication
based on a systolic array architecture. Gemmini is compatible
with the RISC-V Rocket ecosystem [37].

Interstellar [38] is a DSE framework that uses Halide
language (https://halide-lang.org) to generate hardware and
compare different accelerators, such as different dataflows
(WS, OS, RS) in 2D arrays and a MAC tree schemes. The
authors propose a systematic approach to describe the design
space of DNN accelerators using Halide. The framework also
optimizes the memory hierarchy.

DeepOpt [39] is a DSE framework to explore ASIC imple-
mentation of systolic hardware accelerators for CNNs. The
main goal of this DSE is to reduce the number of mem-
ory accesses based on hardware characteristics like on-chip
SRAMs and the number of parallel PEs. The DeepOpt uses
a search tree to schedule the convolution process. Thus, it is
possible to minimize the number of accesses from memory
by modeling memory access patterns (weight and output
stationary) and pruning branches from the search tree.

Karbachevsky et al. [40] propose a method to estimate area
and power values based on the bit operations performed (BOP)
metric [41]. BOP is the number of bit operations required to
perform the calculation, defined by the input bit size, output
bit size, number of inputs, and number of outputs. According
to the authors, BOP metric allows estimating the area and
power required by accelerator hardware with high accuracy
in the early stages of the design process. Also, the method
can show the trade-off between the number PEs and the
bottlenecks caused by the parameters quantization, such as
memory bandwidth or computational resources.

Ferianc et al. [42] propose a method to improve the perfor-
mance of DSE analyses. The method is based on a Gaussian
process regression model parameterized by the features of
the accelerator and the target CNN, such as filter, channel,

and data parallelism. The method is capable of predicting the
hardware latency and energy, and was compared to machine
learning-based methods to perform DSE (linear regression,
Gradient tree boosting, and neural network).

Aladdin [43] is a pre-RTL power-performance accelerator
modeling framework. It estimates performance, power, and
area. Aladdin infrastructure uses dynamic data dependence
graphs (DDDG) to represent accelerators. The DDDG is
generated from a C program and allows Aladdin to report
the program dependencies and resource constraints.

B. Hardware Simulators
SCALE-Sim (Systolic CNN Accelerator Simulator) [44],

[45] is a systolic array cycle-accurate simulator. This simu-
lator allows configuring micro-architectural features such as
array size, array aspect ratio, scratchpad memory size, and
dataflow mapping strategy. Also, it is possible to configure
system integration parameters, such as memory bandwidth.
SCALE-Sim simulates convolutions and matrix multiplica-
tions, and models the compute unit as a systolic array. Also,
it allows simulation in a system context with CPU and DMA
components.

STONNE [24] is a cycle-accurate architecture simulator
for CNNs which allows end-to-end evaluation. It is con-
nected with Caffe framework [7] to generate the CNNs, and
models the MAERI accelerator [46]. The results are focused
on performance and hardware utilization. To estimate area
and energy, STONNE uses the Accelergy energy estimation
methodology [25], which considers basic modules to calculate
the energy values, such as adders.

AccTLMSim [47] is a pre-RTL cycle-accurate CNN accel-
erator simulator based on SystemC transaction-level modeling
(TLM). The simulator allows maximizing the throughput per-
formance for a given on-chip SRAM size. An accelerator is
proposed to validate the simulator. AccTLMSim is focused
only on performance, not power or area.

C. Summary Related to DSE Frameworks and Simulators
Table I summarizes the reviewed works. The second column

indicates whether the work has integration with high-level
modeling CNN frameworks, such as TensorFlow and Caffe.
The third and fourth columns are related to the evaluated
metrics. The third column presents metrics based on basic
components, such as MACs and register files. The fourth
column shows the evaluated metrics regarding the entire
convolution, our original contribution.

Maestro [32] does not allow the accelerator simula-
tion, limiting the performance evaluation (e.g., throughput).
SCALE-Sim [45] does not provide power or energy results.
MLPAT [30] and Timeloop [23] provide PPA based on basic
operations, such as adders and multipliers. Methods relying on
operations counting do not consider how these operators are
interconnected (e.g., 1D or 2D systolic arrays or adder trees),
resulting in imprecise hardware metrics.

Works [21] and [22] show analytical results for power,
performance, and area. Also, [22] consider features like the
dataflow type, which can contribute to the power consumption.
Similar occurs to Aladdin [43].

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on April 24,2023 at 14:16:44 UTC from IEEE Xplore. Restrictions apply.

5174 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 69, NO. 12, DECEMBER 2022

Fig. 1. Generic architecture and the modules required to build the convolutional accelerators.

TABLE I

DSE FRAMEWORKS AND SIMULATORS STATE-OF-THE-ART SUMMARY

Works like Gemmini [36], Interstellar [38], DeepOpt, [40],
and [42], have a limited PPA analyses. Also, [40] claims
that the main effect of changing the circuit frequency is to
reduce power consumption. However, this is not exact since
logical synthesis with different frequency constraints produces
different area values.

STONNE [24] and SimuNN [48] present flows integrated to
frameworks to model CNNs. However, SimuNN has an energy
estimation based on basic elements, not considering data
movement through the accelerator. STONNE does not address
power estimation, but the authors argue that it is possible
to integrate STONNE with Accelergy (which only evaluates
power). DNNExplorer [35] also allows frameworks to model
CNNs, but lacks PPA analyses. SCALE-Sim and AccTLMSim
lack integration with frameworks to model CNNs.

Considering the reviewed works, we identify the following
gaps:

1) Comprehensive PPA analyses, not considering all per-
formance figures;

2) An analytical method based on the entire convolution
accelerator to produce an accurate PPA estimation;

3) A framework or environment to produce a fast DSE.

Our proposal provides a comprehensive PPA estimation
method that integrates a CNN modeling framework to perform
DSE using data from actual CNNs. The DSE starts with a

framework to model CNNs (TensorFlow) and executes an
analytical analysis considering the accelerator architecture,
allowing a fast and accurate DSE. The adoption of TensorFlow
was a design choice, and other frameworks, such as Caffe or
Pytorch, can be used as a front-end to execute the training and
weight extraction.

III. CONVOLUTIONAL ACCELERATOR

ARCHITECTURE OVERVIEW

Figure 1 shows the accelerator model, with a unified
interface with input and output external memories. External
memories play an important role in the total accelerator energy,
being mandatory to evaluate its cost [10]. This model contains
three modules:

• INPUT memory: stores the IFMAP, filter weights, and
bias values. It acts as a read only memory for the
accelerator;

• Convolutional core, executes the convolution;
• Output Feature Map (OFMAP) memory, stores partial

and complete convolution values.
The main modules of the convolutional core include:
• Input buffer, used to reduce the number of input memory

readings. According to the accelerator type, this buffer
may store, e.g., an input channel, a set of rows of the
input channel, or a set of weights;

• Input memory access control logic, used to control the
input memory access. This module is an FSM configured
according to the dataflow type;

• MAC array, is the unit that processes the convolution
operation, which may adopt a 2D (matrix) or 1D (vector).
It contains MACs and registers;

• Activation function, a non-linear function applied to
the OFMAP results. Examples are sigmoid, ReLU, leaky
ReLU [49]. This works adopts the ReLU function
(max(0, x)) due to its simpler hardware implementation;

• Output control logic, used to control the OFMAP mem-
ory access. It can be implemented with buffers to reduce
memory access.

Our previous work, [50], details the architecture of the
convolutional core (WS and 1D array). The focus of [50] is the
convolutional core design, without modeling memory effects
in the PPA, neither propose a DSE analytical model.

The dataflow type is related to the reused data and how the
MAC array computes the convolution. We implemented in the
MAC array the main dataflows used in the literature [51]:

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on April 24,2023 at 14:16:44 UTC from IEEE Xplore. Restrictions apply.

JURACY et al.: FAST, ACCURATE, AND COMPREHENSIVE PPA ESTIMATION OF CONVOLUTIONAL HARDWARE ACCELERATORS 5175

• Weight Stationary – WS. Stores weights in an internal
buffer, aiming their reuse. Thus, each weight value is
read once from the input memory, and the convolution
is performed using stationary weights and reads from
memory IFMAP values.

• Input Stationary – IS. Stores an IFMAP window in an
internal buffer to provide its reuse. The window size is
equal to the filter size. The accelerator reads IFMAP
values once and reads the weight values from memory.

• Output Stationary – OS. Stores partial convolution results
in registers. The OS does not present buffers to store the
inputs; each convolution fetches the IFMAPs and weight
values from the input memory.

Figure 1 presents the set of signals between the convolu-
tional core and memories, and signals used by the hardware
controlling the accelerator (start_conv and end_conv).
Both memories use a standard set of busses, such as addresses,
output data (ifmap_value and pixel_in), input data
(pixel_out), memory enable and write notification. Mem-
ories have different implementation technologies (e.g., SRAM
or DRAM) and latencies, varying according to their speci-
fication. Thus, it is necessary to model the memory latency
to estimate the power and performance of the convolu-
tional accelerator. A validity signal (ifmap_valid and
ofmap_valid) models the memory latency, indicating the
end of memory accesses.

This unified memory interface makes it possible to imple-
ment different dataflows with distinct protocols, allowing a fair
comparison between the accelerators.

The accelerators adopted for this work have a 3 × 3 MAC
array, and the convolution stride equals 2. Despite being a
design limitation, state-of-the-art CNNs adopt these values,
such as VGG16 [52], ensuring that the proposed accelerators
reflect real CNNs.

IV. PHYSICAL SYNTHESIS AND MAC-BASED FLOWS

This Section introduces two flows to execute DSE. The
first one uses a standard-cell synthesis flow. Results for one
instance of each dataflow are the basis for the main original
contribution of this work, the analytical DSE flow, presented
in the next Section. The second flow uses number of MACs,
a method used in related work.

A. Physical Synthesis Flow

The DSE physical synthesis flow performs both logical and
physical synthesis steps and uses IFMAP and weights data
from real CNNs to obtain PPA results. This flow includes the
steps described below.

1) TensorFlow Modeling: Model the CNN application in
the TensorFlow framework to generate the VHDL packages
used in the RTL and gate-level simulations, and the gold
model (expected outputs values). The VHDL packages contain
the IFMAP, weights, bias, and OFMAP values. This step
also generates parameters for configuring the RTL description,
such as the size of the filters, OFMAP, and IFMAP. This
step is generic, supporting different CNNs, such as MNIST
or CIFAR10.

2) RTL Simulation: Verification of the accelerator descrip-
tion behavior. This step uses the VHDL packages, comparing
the results against the gold model. It is necessary to check
if the simulation output matches the expected values during
the development of a new accelerator. Once validated the
accelerator description, it is possible to bypass this step.

3) Physical Synthesis: This step comprises logical and
physical synthesis. The logic synthesis inputs include the
RTL accelerator description, technology files (LEF and LIB
files), and constraints (such as clock frequency or power). The
physical synthesis corresponds to the placement and routing.
This step generates a gate-level netlist with annotated wire
capacitances (SDF file).

4) Annotated Gate-Level Simulation and Power Estimation:
Simulation of the annotated gate-level netlist, also using the
VHDL packages and the gold model. This step may fail
due to the applied constraints, such as clock frequency and
input/output delays. In this case, the designer must modify
the constraints used in the physical synthesis. The output of
this simulation is a VCD file, with the switching activity
induced by the CNN IFMAP and weight values. The power
estimation tool uses the VCD file to estimate the accelerator
power dissipation.

The execution of this flow produces an accurate PPA esti-
mation for a given accelerator architecture with actual CNN
data. However, it is necessary to execute this flow for each
new set of weights and IFMAPs. The reason is that different
data sets present different switching activities, changing the
power dissipation. Also, the hardware may show differences
due to the number of channels in a given layer or the IFMAP
and OFMAP sizes, changing the number of bits in counters
or the buffers’ depth. Thus, we have an accurate PPA, but it
requires a significant processing time, which takes hours.

B. MAC-Based Flow
This Section describes a DSE flow based on estimating the

required number of MACs. Several works in the literature use
the MAC-based method to evaluate the area, and power [21],
[22], [23], [30], [48]. The MAC-based flow does not model
memory accesses, having as primary goal a fast area and power
estimation.

The MAC-based flow used in this work considers the power
and area values related to MACs and registers extracted from
the physical synthesis flow. The number of required MACs,
registers, and the data width is a function of the accelerator
design. The performance, i.e., the number of clock cycles to
execute a complete convolution, is obtained through the RTL
simulation.

The area and power accuracy of this flow are expected to be
worse than the physical synthesis flow, as it does not consider
the control circuitry (such as FSMs), buffers, and accesses to
the memory.

V. ANALYTIC DSE FLOW

The proposed DSE flow analytically estimates the PPA of
CNN layers using results obtained from the physical synthesis
of one CNN layer. This flow is faster than the physical

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on April 24,2023 at 14:16:44 UTC from IEEE Xplore. Restrictions apply.

5176 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 69, NO. 12, DECEMBER 2022

Fig. 2. DSE analytic flow for PPA extraction.

synthesis flow because the synthesis is executed once for each
accelerator and is more accurate than the MAC-based flow
once it considers the entire convolution hardware. Figure 2
presents the analytic DSE flow.

The flow starts with the training phase of the CNN using
TensorFlow, according to the CNN configuration defined
in the application.py file. The training phase ends when
reaching the target accuracy. After the training phase, the
flow executes a quantization step, converting 32-bit floating-
point weights and IFMAP values to 16-bit integers using
a fixed-point representation. Adopting integer values avoids
floating-point arithmetic in the accelerator, reducing its area
and power consumption. This step generates two output files:
(i) tensorflow.vhd, with the IFMAP and weights values and
the gold model (expected output values) of the first CNN
layer; (i i) accelerator.cfg, with the CNN convolutional layers
parameters.

The right side of Figure 2 corresponds to the physical
synthesis flow, presented in Section IV-A. The flow executes
the synthesis of the first convolutional layer for each dataflow.
The remaining layers are estimated from the first layer results.
From one side, this procedure avoids the synthesis of all layers,
speeding up the DSE. On the other side, there is a penalty in
the PPA accuracy, evaluated in the Results Section. The output
of the physical synthesis flow is a set of PPA reports used
during DSE.

The Analytic Model uses four inputs to execute the DSE
loop: (i) configuration of the convolutional layers (accelera-
tor.cfg); (i i) user’s constraints; (i i i) PPA reports related to the
synthesis of the first convolutional layer; (iv) memory energy
estimated by the Cacti-IO tool [53].

The accelerator.cfg file contains hardware parameters (italic
parameters corresponds to a variable in the analytic model):

1) Word size (bits);

2) IFMAP size: single integer value (we assume square
IFMAPs) - IFMAP_D;

3) Number of input channels: integer value - InChannels;
4) Number of output channels: integer value -

OutChannels;
5) Filter size: single integer value (we assume square

filters) - Filter_D;
6) Stride: integer value.

The user’s constraints file contains constraints applied to the
accelerator (italic parameters corresponds to a variable in the
analytic model):

1) Clock period (ns);
2) 2D dataflow type: WS, IS, and OS. It is possible to use

buffered versions (output buffer) for WS and IS;
3) Memory features: type (SRAM or DRAM) and its

latency - MemLat;

For example, a designer wants to define the accelerator for a
layer with the following characteristics: (1) 16-bit word size;
(2) IFMAP size=32 (cifar10); (3) 3 input channels (RGB);
(4) 16 output channels; (5) 3 × 3 filters; (6) stride=2. The
designer executes the DSE loop by selecting the clock period,
dataflow type, and memory parameters. The DSE loop may
be executed up to reaching the user constraint, such as
performance, area, or power.

The analytic model produces the following results:

• Power: power values for the accelerator, output buffer,
and the sum of both (total power), mW ;

• Performance: number of clock cycles required to execute
the layer convolution;

• Area: area values for the accelerator, output buffer, and
the sum of both (total area), µm2;

• Accelerator energy: total power × number of cycles ×
clock period, p J ;

• Memory accesses:
– Number of input memory reads (IFMAPs, weights

and bias);
– Number of input memory writes (always zero, once

the input memory acts as a ROM);
– Number of output memory reads (partial sums

values);
– Number of output memory writes (partial sums val-

ues, and OFMAPs);

• Memory read energy: total memory reads × energy per
reading (estimated by Cacti-IO), n J ;

• Memory write energy: total memory writes × energy per
writing (estimated by Cacti-IO), n J ;

• Total energy: accelerator energy + memory read
energy + memory write energy, n J .

The physical synthesis produces PPA reports for the accel-
erator core. The performance to compute the convolution of
a given layer is calculated by the analytic model, process
detailed on Section V-A. The analytical model calculates the
effect of the memory accesses on performance and power
(Section V-B). Another component that affects the PPA is the
output buffers. The influence of these components is described
in Section V-C.

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on April 24,2023 at 14:16:44 UTC from IEEE Xplore. Restrictions apply.

JURACY et al.: FAST, ACCURATE, AND COMPREHENSIVE PPA ESTIMATION OF CONVOLUTIONAL HARDWARE ACCELERATORS 5177

A. Performance Estimation

Note that the OFMAP size is not a parameter in the acceler-
ator.cfg file. The OFMAP size is a function of the IFMAP size
(I F M AP_D), filter size (Filter_D), and the stride value.
Equation 1 computes the OFMAP size.

O F M AP_D =
⌊

I F M AP_D − F I LT E R_D

Stride
+ 1

⌋
(1)

For example: a 32 × 32 IFMAP, with 3 × 3 filters and
stride=2 generates a 15 × 15 OFMAP.

The convolution performance is a function of the dataflow
defined by the designer.

1) WS Dataflow: Equation 2 computes the number of clock
cycles, CyclesW S, to execute the convolution of a given layer
using the WS dataflow. Weights and bias are stationary, i.e.,
pre-loaded in a buffer.

CyclesW S = 6 × O F M AP_D2 × InChannels

×OutChannels × (1 + MemLat) (2)

where:
• 6 constant: number of clock cycles to read 9 (3 × 3)

IFMAP values. Due to the stride value (equal to 2), each
reading reuse one column, reducing memory accesses;

• O F M AP_D2 × InChannels: number of convolutions
to produce one output channel. Due to the accelerator
pipeline implementation the IFMAP reading and the
convolution occurs in parallel;

• The process is repeated for all output channels
(OutChannels);

• The constant value added to the memory latency (1 clock
cycle) corresponds to the address phase.

Equation 2 computes most of the clock cycles required to
calculate the convolution of a given layer (>80%). The analyt-
ical model also computes the time to read the weights and the
number of bubbles in the pipeline when it is necessary to return
to the first X coordinate after O F M AP_D convolutions. For
the sake of simplicity, the other equations are not presented.

2) IS Dataflow: Equation 3 computes the number of clock
cycles, Cycles I S, to execute the convolution of a given layer
using the IS dataflow. In the IS approach values read from the
IFMAP are stationary, i.e., they are used to compute a partial
output value at each output channel.

T erm1 = OutChannels × (1 + MemLat)

+(Filter_D2 × OutChannels × InChannels)

×(1 + MemLat)

T erm2 = Filter_D2 × O F M AP_D2

×InChannels × (1 + MemLat)

T erm3 = (9 × O F M AP_D2 × InChannels

×OutChannels)

Cycles I S = T erm1 + T erm2 + T erm3 (3)

where:
• T erm1: cycles to load bias and weights, and store in

internal buffers. The number of bias values is equal to
the number of OutChannels;

• T erm2: cycles to read Filter_D × Filter_D IFMAP
values read from the memory;

• T erm3: cycles to execute all convolutions of the layer.

Equation (3) computes most of the clock cycles required
to calculate the convolution of a given layer (Cycles I S >
83% for IS and Cycles I S > 90% for buffered IS). As in
the previous dataflow, the time spent with bubbles is also
accounted by the proposed analytic model.

The WS dataflow reads the IFMAP for each partial
result (Equation 2). For the IS dataflow, a partial read-
ing of the IFMAP is performed (Term 2 of Equation 3),
reusing these values for all partial convolutions (Term 3 of
Equation 3).

3) OS Dataflow: The OS dataflow does not have buffers
for IFMAP and weight values. Thus, the OS dataflow reads
18 values from the input memory to execute each convolution
(9 weights and 9 IFMAP values). Due to the pipeline imple-
mentation, the convolution occurs in parallel to the memory
reading.

Equation 4 computes most of the clock cycles required
to calculate the convolution of a given layer (>98%). The
analytic model considers the number of clock cycles to write
in the OFMAP memory and the bubbles in the pipeline. The
number of memory readings is the main difference concerning
the WS dataflow (Equation 2), which is larger in the OS
dataflow.

CyclesOS = 18 × O F M AP_D2 × InChannels

×OutChannels × (1 + MemLat) (4)

B. Memory Accesses Estimation

The number of memory accesses is a function of the
dataflow defined by the designer.

1) Memory Readings for the WS Dataflow: Equation 5
presents the number of memory readings for WS and buffered
WS dataflows.

T erm1 = 6 × (O F M AP_D + 5)

×InChannels × OutChannels

T erm2 = (Filter_D2 + 1) × InChannels

×OutChannels

T erm3 = 6 × O F M AP_D2 × InChannels

×OutChannels

Mem ReadW S = T erm1 + T erm2 + T erm3 (5)

where:
• T erm1: refers to “invalid” readings. At the end of each

row, the WS accelerator accesses memory locations not
used in the convolution. It would be possible to avoid
these readings at the cost of more control logic in the
hardware. Our design choice was to keep the hardware
simple.

• T erm2: number of reads to load weight and bias values;
• T erm3: number of reads to load IFMAP values (core of

Equation 2).

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on April 24,2023 at 14:16:44 UTC from IEEE Xplore. Restrictions apply.

5178 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 69, NO. 12, DECEMBER 2022

2) Memory Readings for the IS Dataflow: Equation 6
presents the number of memory readings for IS and buffered
IS dataflows.

T erm1 = OutChannels + ((Filter_D2)

×InChannels × OutChannels)

T erm2 = Filter_D2 × O F M AP_D2 × InChannels

Mem Read I S = T erm1 + T erm2 (6)

where:
• T erm1: number of reads to load bias and weight values;
• T erm2: number of reads to load Filter_D × Filter_D

IFMAP values from the memory.

3) Memory Readings for the OS Dataflow: Equation 7
presents the number of memory readings for the OS dataflow.

Mem Read OS = 18 × O F M AP_D2

×InChannels × OutChannels (7)

It is possible to observe the smaller number of memory
accesses for the IS dataflow (Equation 6 T erm2) compared to
the WS and OS dataflows (Equations 5 T erm3 and 7).

4) Memory Writings: Equation 8 computes the number of
memory writings for a buffered accelerator (WS and IS). The
output buffer reduces the memory writes once partial results
are stored on it.

O f mapWri tes (bu f f ered acc.) = O F M AP_D2

×OutChannels (8)

Equation 9 computes the number of memory writings for
a non-buffered accelerator (WS, IS, and OS). Non-buffered
accelerators read and write partial sums in the output memory.

O f mapWri tes (non bu f f ered acc.) = O F M AP_D2

×OutChannels × InChannels (9)

C. Output Buffer Area and Power Estimation

Two dataflows may present an output buffer: WS and IS.
The output buffer area and power are obtained from interpo-
lation. The data source for the interpolation are the results
obtained from the physical synthesis flow for a three-layer
Cifar10 CNN (presented in Section VI). The variable NumBits
is the number of bits of each output buffer. Equation 10
computes the number of bits for the WS output buffer.
The WS output buffer has the size of one OFMAP channel
(O F M AP_D2) multiplied by the word size (16 bits).

Num Bits(W S) = O F M AP_D2 × 16 (10)

Equation 11 computes the number of bits for the IS out-
put buffer. The IS dataflow computes one line of results
(O F M AP_D), for all output channels (OutChannel).

Num Bits(I S) = O F M AP_D × OutChannel × 16 (11)

Figure 3 presents in the x-axis the number of bits for each
dataflow, and in the y-axis the area. The Cifar10 CNN has
three convolutional layers. The OFMAP sizes for each layer
are (Figure 4): L1: 15 × 15, 16 output channels; L2: 7 × 7,

Fig. 3. Output buffer area results obtained from the physical synthesis flow,
for the three layers of Cifar10 CNN.

Fig. 4. Cifar10 CNN.

32 output channels; L3: 3 × 3, 64 output channels. According
to Equation 10 the size of the WS output buffers decreases
from layer 1 to layer 3 since the OFMAP size reduces. On the
other side, according to Equation 11 the size of the IS output
buffers increases from layer 1 to 3 due to the increase in the
number of output channels.

The interpolation of the area results are used to compute the
output buffer area. Equations 12 and 13 compute the output
buffer area for WS and IS, respectively.

W SOutput Bu f f Area = (10.4 × Num Bits) + 493 (12)

I SOutput Bu f f Area = (10.5 × Num Bits) + 539 (13)

The same interpolation method is applied to obtain the
power consumption due to the output buffers. However, each
memory type has a interpolation equation, due to the latency
access. Equations 14 and 15 compute the output buffer power
dissipation for WS and IS using a SRAM, respectively.

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on April 24,2023 at 14:16:44 UTC from IEEE Xplore. Restrictions apply.

JURACY et al.: FAST, ACCURATE, AND COMPREHENSIVE PPA ESTIMATION OF CONVOLUTIONAL HARDWARE ACCELERATORS 5179

Equations 16 and 17 compute the output buffer power dis-
sipation for WS and IS using a DRAM, respectively.

S R AM_W SOutput Bu f f Power

= 0.0792 + (0.000305 × Num Bits)

+(0.0000000117 × Num Bits2) (14)

S R AM_I SOutput Bu f f Power

= −5.4 + (0.00346 × Num Bits)

+(−0.000000402 × Num Bits2) (15)

DR AM_W SOutput Bu f f Power

= 0.0794 + (0.000245 × Num Bits)

+(0.0000000109 × Num Bits2) (16)

DR AM_I SOutput Bu f f Power

= −7.98 + (0.00484 × Num Bits)

+(−0.000000595 × Num Bits2) (17)

VI. RESULTS

Section VI-A details the experimental setup adopted to
obtain the results. Next, we evaluate the MAC-based and
analytic flows using the physical synthesis flow as reference,
in Section VI-B and Section VI-C, respectively. Section VI-D
compares the analytical mode to related works.

A. Experimental Setup

We adopt the CNN illustrated in Figure 4 as a case study,
with three convolutional layers and one fully-connected layer.
TensorFlow executes the fully-connected layer, not accelerated
in hardware. The number of filters per layer is 16, 32, and 64.
The CNN implemented in the TensorFlow uses the Cifar10
dataset with a 32 × 32 × 3 (RGB) IFMAP. After training,
the obtained accuracy was 67%. The obtained accuracy with
the quantization using 16-bit words at the inputs was 66.98%,
a value 0.02% smaller than the one obtained in TensorFlow
with float point values.

Cadence Genus and Innovus tools were used for logic and
physical synthesis, with 28nm technology and a frequency
of 500MHz. The logic synthesis uses clock-gating to reduce
the accelerator energy consumption. The power dissipation
uses the VCD file generated after a post-physical synthesis
simulation and the Cadence Voltus tool.

The netlist simulation inputs are the Cifar10 CNN layers
(Figure 4) extracted from TensorFlow, according to the flow
presented in Figure 2). Layer 0 uses a 32 × 32 × 3 IFMAP
(RGB image from CIFAR10 dataset), 16 3×3 filters, stride 2,
generating a 15 ×15 ×16 output. Layer 1 uses a 15 ×15 ×16
IFMAP, 32 3×3 filters, stride 2, generating a 7×7×32 output.
Layer 2 uses a 7 × 7 × 32 IFMAP, 64 3 × 3 filters, stride 2,
generating a 3×3×64 output. Thus, power values come from
a real dataset and not synthetic values. The total energy is
computed by multiplying the average power by the number of
clock cycles required to execute a complete convolution.

The Cacti-IO tool [53] models the external memories. For
a 28nm 64KB SRAM, Cacti-IO reports 0.01356nJ for reading
and 0.01351nJ for writing. For a 64kB DRAM, 0.1633nJ for
reading and 0.1662nJ for writing.

TABLE II

MAC-BASED AND PHYSICAL SYNTHESIS FLOWS AREA RESULTS (µm2)
FOR LAYER 1. MAXIMUM ERROR: 39.90% IN LAYER 2 AND MINIMUM

ERROR: 29.34% IN LAYER 0

TABLE III

MAC-BASED AND PHYSICAL SYNTHESIS FLOWS POWER RESULTS (mW)
FOR LAYER 1. MAXIMUM ERROR: 44.58% IN LAYER 0 AND MINIMUM

ERROR: 12.62% IN LAYER 1

B. MAC-Based DSE Flow Results

This Section evaluates the MAC-based DSE flow, using
the physical synthesis flow as a reference. The goal is to
demonstrate that executing power and area estimation using
the required amount of MACs (Section IV-B) does not produce
accurate results.

Table II presents area results for the three dataflows and
their versions with output buffers for the CIFAR10 CNN
layer 1. The MAC-based flow area is the same, regardless
of the dataflow type, because this flow only considers the
arithmetic core plus input and output registers. The area of the
synthesized accelerators does not include the output buffers in
such a way to fairly compare both approaches. The difference
observed in the non-buffered and buffered versions is due to
the presence of control logic to access the OFMAP memory,
not present in the buffered versions, translating in a larger
area.

As expected, the MAC-based flow underestimates the accel-
erator area because it does not consider the control logic
(FSMs), internal registers, internal buffers, and logic to inter-
connect components. The area estimation error varies from
29.3% to 39.9%, with an average error of 35.9%.

Table III presents power results using the same setup of
the previous table. The MAC-based flow power is the same
because this flow only considers the arithmetic core.

The MAC-based flow also presents significant errors in
the power estimation. The main reasons for the differences
observed in the power estimation are the switching activity
and the presence of input buffers. The MAC-based flow uses
an average of the switching activity of MACs and registers,
fixing this value for the estimation (in this example, 1.16 mW).
The physical synthesis uses the switching activity of the whole
circuit with actual data. The actual switching activity may
be smaller than the average due to the presence of IFMAP
and weight values near zero. This fact justifies optimization

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on April 24,2023 at 14:16:44 UTC from IEEE Xplore. Restrictions apply.

5180 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 69, NO. 12, DECEMBER 2022

Fig. 5. Area estimation using the analytic DSE flow, for the 3 Cifar10 layers
(L0, L1, L2) (percentages represent the difference between flows).

techniques such as pruning [54]. Power is overestimated for
WS and OS, and underestimated for IS due to the presence of
input buffers. The absolute power estimation error varies from
12.62% to 44.58%, with an average absolute error of 30.1%
for layer 1.

We demonstrate from the above results that estimating
area and power using the number of arithmetic operators
produces results that are far from the actual hardware. Thus,
we claim that methods such as the analytical flow evaluated
below produce reliable PPA estimates for CNN hardware
accelerators.

C. Analytic DSE Flow Results

This Section evaluates the proposed analytic DSE flow. The
reference for the analytic DSE flow is the physical synthesis
flow for the Cifar10 CNN layer 0.

1) Area Estimation: Figure 5 presents results for area
estimation. The WS, IS, and OS areas are the same in layer
L0 (error=0) since the synthesis of this layer is the refer-
ence for the other layers. Due to the interpolation approach,
dataflows with output buffers presented a small error in layer
L0 (below 1%). The area error estimation for layers L1 and
L2 stays below 4% for layers L1 and L2, excepting OS L2,
with an error of 5.17%. The reason for explaining the error
is the increased number of output channels compared to L0,
which affects the control logic and counters. The OS dataflow
does not have buffers, requiring a more complex circuitry to
manage memory accesses.

It is worth highlighting that the IS implementations require
an input buffer to store weights and bias values, which
increase the accelerator area. The area for these buffers is
not included in the area results since this buffer acts as a
cache memory, requiring an external memory. We adopted this
approach because memory compilers are needed to generate
these buffers. The use of memory compilers is considered a
future work. The IS for this CNN needs 7,168, 74,240, and
295,936 bits for layers L0, L1, and L2, respectively. Thus,
in terms of total area, the IS dataflow is larger than the others,
requiring further development to reduce this area, as splitting
the weights into small samples to minimize the output buffer
size and not read and store all weight values in internal buffers.

The overall area estimation error stays below 6%, with an
average error of 1.85% with a standard deviation of 1.51%
(minimal error: 0.14%, maximum error: 5.17%).

Fig. 6. Performance estimation, in clock cycles, using the analytic DSE
flow, for the 3 Cifar10 layers (L0, L1, L2), for SRAM and DRAM memories
(percentages represent the difference between flows).

2) Performance Estimation: Figure 6 presents results for
performance estimation, using Equations from Section V-A.
The performance results consider different memory latencies,
two clock cycles for SRAM and five clock cycles for DRAM.
The main source of error is due to synchronization states not
included in the Equations. These synchronization states occur
mainly at the end of a row, where buffers must be flushed to
start a new one. The largest errors occur in layer two due to
the larger number of output channels.

The overall performance estimation error stays below 10%,
with an average error of 3.50% with a standard deviation of
2.78% (minimal error: 0.12%, maximum error: 9.29%).

3) Memory Accesses Estimation: Figure 7 presents results
for memory accesses. Estimating the number of memory
accesses is mandatory to estimate the total energy consumed
by the accelerator.

The analytical model correctly captures the number of
memory accesses, except for IS and buffered IS readings, with
the worst-case occuring in layer 0 – 9.38%. The reason is
similar to the error observed in the performance estimation,
where there are synchronization states, mainly in the exchange
of rows. At the end of a row, there are invalid reads to avoid
increasing the complexity of the FSM. Thus, the memory is
active for some clock cycles, inducing these invalid reads.
If the memory latency is small (2 cycles for SRAM), more
invalid reads may occur, while this effect is masked for higher
latencies (5 cycles for DRAM).

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on April 24,2023 at 14:16:44 UTC from IEEE Xplore. Restrictions apply.

JURACY et al.: FAST, ACCURATE, AND COMPREHENSIVE PPA ESTIMATION OF CONVOLUTIONAL HARDWARE ACCELERATORS 5181

TABLE IV

CIFAR10 CNN POWER ANALYTIC RESULTS (ACCELERATOR CORE) - mW

TABLE V

CIFAR10 CNN ENERGY ANALYTIC RESULTS (ACCELERATOR CORE AND EXTERNAL MEMORIES) - n J

Fig. 7. Estimated number of memory accesses.

4) Accelerator Power Estimation: Table IV shows the
results for power estimation. Note that this table only considers
the accelerator core. Similar to the area estimation, the L0 is
the reference. WS, IS and OS present an absolute error equal
to 0% (bold values on Table IV), while the buffered dataflows
presented an error due to the interpolation approach.

TABLE VI

SUMMARY OF THE ANALYTIC APPROACH RESULTS

The power estimation has a larger error than the area and
performance estimation. Two reasons explain this mismatch:

• The power reference is layer L0, with its switching
activity. The switching activity of other layers is different,
affecting the power estimation. The switching activity is
a function of the input data, not being possible to capture
it in the analytic model.

• The buffered dataflows has an error induced by the
interpolation method.

The overall power estimation error presents an average error
of 7.00% with a standard deviation of 6.21% (minimal error:
0.05%, maximum error: 23.55%).

5) Total Energy Estimation: Table V presents results for
the energy estimation, considering the accelerators and the
memory accesses. Memory accesses are responsible for most
of the consumed energy. According to [10], the memory
energy can spend 200 times more energy than the accelerator
array. As observed, there is a mismatch higher than 1% only
in the IS dataflows due to the errors in the memory readings
estimations (Section VI-C.3). The errors in the IS dataflows
occur due the following reasons:

• The IS dataflow presents a small energy error estima-
tion because the number of OFMAP accesses is higher

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on April 24,2023 at 14:16:44 UTC from IEEE Xplore. Restrictions apply.

5182 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 69, NO. 12, DECEMBER 2022

TABLE VII

ANALYTIC AND STATE-OF-THE-ART RESULT ERRORS COMPARISON

than the IFMAP readings (where the estimation presents
errors), resulting in a small energy estimation error,
below 3%.

• The bufferd IS dataflow makes more IFMAP readings
(with an estimation error equal to 9.38%) than OFMAP
writes. The result is a higher energy estimation error.

The overall performance energy error stays below 7%, with
an average error of 0.66% with a standard deviation of 1.54%
(minimal error: 0%, maximum error: 6.26%).

6) Analytic Model Summary: The proposed analytic flow
enabled an accurate PPA estimation. Table VI summarizes the
results. The main source of error is in estimating the number
of IFMAP readings for the dataflow IS, impacting the average
power estimation. Also, improvements may be done in the
interpolation approach to estimate the area and consumption
of output buffers.

Besides the PPA accuracy, the method is fast. Below we
compare the computing time of each flow.

• Physical synthesis flow. The physical synthesis of
one accelerator can take up to 45 minutes (Intel
i9-7940X@3.10GHz, 28 cores, 64 GB memory). The
DSE of a given CNN configuration takes several hours,
considering all layers and channels.

• Analytical flow. It is necessary to synthesize the first
convolutional layer of each dataflow, with the remaining
layers estimated from the first layer results. The obtained
PPA data is used to extract the model. The DSE of a
given CNN configuration took 0.025 seconds for the CNN
evaluated in this Section.

• MAC-based flow. It also requires a synthesis step for
the MAC and registers. The area and power related to
the synthesis step are the values used to estimate the
accelerator cost.

For comparison purposes, Shao et al. [43] mention that
their simulator, Aladdin, takes 7 minutes to execute a full DSE
of a given set of accelerators against 52 hours for the synthesis
flow.

D. Analytic Model Compared to the State-of-the-Art

Table VII compares the analytic model results with results
available in the literature. Power and energy consider only the
accelerator, not the memories. The Table presents for each
work the min/max/average error, when it is available.

Few works in the literature present a comprehensive esti-
mation as the method proposed in this paper. MLPAT and
Accerlergy present a limited evaluation of area and energy.
Stone evaluates only performance with higher errors compared

to our method. Aladdin presents the most complete evaluation
compared to the other methods. However, the proposed method
has an area evaluation more accurate than Aladdin, while the
evaluation of the other metrics has errors of the same order.

As a conclusion, the proposed flow presents a more com-
prehensive evaluation of more metrics with lower errors, and
can provide a large set of estimates for each dataflow.

VII. CONCLUSION

This work presented a fast, comprehensive, and accurate
design space exploration analytic method for CNN hardware
accelerators. The method integrates front-end frameworks
(such as TensorFlow) to a hardware back-end design flow.
Despite the coupling of the DSE framework to the accelerator
architecture, the flow presented in this work is a guideline for
executing DSE for other dataflows. We showed that methods
based on basic components, such as MACs, are not enough
to have accurate results and present errors between 12.51%
and 44.68% for area and power. The average error comparing
the analytical model to the data obtained from the physical
synthesis is smaller than 7%. Compared to the literature, the
proposed method shows a more accurate area evaluation, while
the assessment of power and performance have errors of the
same order.

Accelerators source code, synthesis and DSE scripts are
available at the following GitHub repository:

https://github.com/leorezende93/acc_dse_env
Future work covers accelerator and system levels. At the

accelerator level, we plan to: (i) optimize the accuracy of the
PPA results, as the performance of the IS dataflow estimation;
(i i) add other dataflows, such as NLR (No Local Reuse),
RS (Row Stationary), and FG (Fine-Grained), and implement
in hardware other CNN functions, such as max and aver-
age pooling; (i i i) implement larger arrays as 16 × 16, and
integrate the DSE flow with the Imagenet dataset to allow
simulation of the accelerators using more complex CNNs;
(iv) use both SRAM and DRAM, implementing a memory
hierarchy scheme. At the system level, we plan to combine
the DSE method with system simulators to perform DSE
regarding an entire system composed of CPUs, DMA, and
CNN accelerators.

REFERENCES

[1] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. Cambridge,
MA, USA: MIT Press, 2016, http://www.deeplearningbook.org.

[2] Facebook. (2022). Facebook Horizon. [Online]. Available: https://www.
oculus.com/horizon-worlds/

[3] Google. (2022). Google Assistant, Your Own Personal Google. [Online].
Available: https://assistant.google.com

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on April 24,2023 at 14:16:44 UTC from IEEE Xplore. Restrictions apply.

JURACY et al.: FAST, ACCURATE, AND COMPREHENSIVE PPA ESTIMATION OF CONVOLUTIONAL HARDWARE ACCELERATORS 5183

[4] ServiceNow. (2022). Enterprise Chatbot—Virtual Agent. [Online]. Avail-
able: https://assistant.google.com/

[5] Tesla. (2022). Autopilot. [Online]. Available: https://www.tesla.com
[6] S. S. Haykin, Neural Networks and Learning Machines, 3rd ed. London,

U.K.: Pearson, 2009.
[7] (2022). Caffe. [Online]. Available: https://caffe.berkeleyvision.org/
[8] (2022). PyTorch. [Online]. Available: https://pytorch.org/
[9] (2022). TensorFlow. [Online]. Available: https://www.tensorflow.org/

[10] Y. H. Chen, T. Krishna, J. S. Emer, and V. Sze, “EyeRiss: An energy-
efficient reconfigurable accelerator for deep convolutional neural net-
works,” IEEE J. Solid-State Circuits, vol. 52, no. 1, pp. 127–138,
Jan. 2016.

[11] N. Strom, “Scalable distributed DNN training using commodity GPU
cloud computing,” in Proc. Interspeech, Sep. 2015, pp. 1488–1492.

[12] W. J. Dally, Y. Turakhia, and S. Han, “Domain-specific hardware
accelerators,” Commun. ACM, vol. 63, no. 7, pp. 48–57, Jun. 2020, doi:
10.1145/3361682.

[13] R. Andri, L. Cavigelli, D. Rossi, and L. Benini, “YodaNN: An architec-
ture for ultralow power binary-weight CNN acceleration,” IEEE Trans.
Comput.-Aided Design Integr. Circuits Syst., vol. 37, no. 1, pp. 48–60,
Jan. 2018.

[14] S. Shivapakash, H. Jain, O. Hellwich, and F. Gerfers, “A power efficient
multi-bit accelerator for memory prohibitive deep neural networks,” in
Proc. IEEE Int. Symp. Circuits Syst. (ISCAS), Oct. 2020, pp. 1–5.

[15] S.-F. Hsiao, K.-C. Chen, C.-C. Lin, H.-J. Chang, and B.-C. Tsai, “Design
of a sparsity-aware reconfigurable deep learning accelerator supporting
various types of operations,” IEEE J. Emerg. Sel. Topics Circuits Syst.,
vol. 10, no. 3, pp. 376–387, Sep. 2020.

[16] F. Spagnolo, S. Perri, F. Frustaci, and P. Corsonello, “Reconfigurable
convolution architecture for heterogeneous systems-on-chip,” in Proc.
9th Medit. Conf. Embedded Comput. (MECO), Jun. 2020, pp. 1–5.

[17] S.-F. Hsiao and H.-J. Chang, “Sparsity-aware deep learning accelerator
design supporting CNN and LSTM operations,” in Proc. IEEE Int. Symp.
Circuits Syst. (ISCAS), Oct. 2020, pp. 1–4.

[18] TESLA. (2019). Autopilot and Full Self-Driving Capability. [Online].
Available: https://analyticsindiamag.com/under-the-hood-of-teslas-ai-
chip-that-takes-the-driverless-battle-to-nvidias-home-turf/

[19] Apple. (2022). iPhone 11. [Online]. Available: https://www.apple.com/
iphone-11/

[20] S. Das, A. Roy, K. K. Chandrasekharan, A. Deshwal, and S. Lee,
“A systolic dataflow based accelerator for CNNs,” in Proc. IEEE Int.
Symp. Circuits Syst. (ISCAS), Oct. 2020, pp. 1–5.

[21] C. Heidorn, F. Hannig, and J. Teich, “Design space exploration for layer-
parallel execution of convolutional neural networks on CGRAs,” in Proc.
23th Int. Workshop Software Compilers Embedded Syst. (SCOPES),
2020, pp. 26–31.

[22] Y. Zhao, C. Li, Y. Wang, P. Xu, Y. Zhang, and Y. Lin, “DNN-chip pre-
dictor: An analytical performance predictor for DNN accelerators with
various dataflows and hardware architectures,” in Proc. IEEE Int. Conf.
Acoust., Speech Signal Process. (ICASSP), May 2020, pp. 1593–1597.

[23] A. Parashar et al., “Timeloop: A systematic approach to DNN acceler-
ator evaluation,” in Proc. IEEE Int. Symp. Perform. Anal. Syst. Softw.
(ISPASS), Mar. 2019, pp. 304–315.

[24] F. Muñoz-Martínez, J. L. Abellán, M. E. Acacio, and T. Krishna,
“STONNE: A detailed architectural simulator for flexible neural network
accelerators,” Comput. Res. Repository, vol. 2006, no. 1, pp. 1–8, 2020.

[25] Y. Nellie Wu, J. S. Emer, and V. Sze, “Accelergy: An architecture-
level energy estimation methodology for accelerator designs,” in Proc.
IEEE/ACM Int. Conf. Comput.-Aided Des. (ICCAD), Nov. 2019, pp. 1–8.

[26] D. Giri, K.-L. Chiu, G. Di Guglielmo, P. Mantovani, and L. P. Carloni,
“ESP4ML: Platform-based design of systems-on-chip for embedded
machine learning,” in Proc. Design, Autom. Test Eur. Conf. Exhib.
(DATE), Mar. 2020, pp. 1049–1054.

[27] A. Sohrabizadeh, Y. Bai, Y. Sun, and J. Cong, “Enabling automated
FPGA accelerator optimization using graph neural networks,” Comput.
Res. Repository, vol. abs/2111.08848, pp. 1–12, Jun. 2021.

[28] G. Datta and P. A. Beerel, “Can deep neural networks be converted to
ultra low-latency spiking neural networks?” in Proc. Design, Autom. Test
Eur. Conf. Exhib. (DATE), Mar. 2022, pp. 718–723.

[29] P. Panda, S. A. Aketi, and K. Roy, “Toward scalable, efficient, and
accurate deep spiking neural networks with backward residual con-
nections, stochastic softmax, and hybridization,” Frontiers Neurosci.,
vol. 14, pp. 1–18, Aug. 2020.

[30] T. Tang and Y. Xie, “MlPat: A power area timing modeling framework
for machine learning accelerators,” in Proc. IEEE Int. Workshop Domain
Specific Syst. Archit. (DOSSA), Aug. 2018, pp. 1–3.

[31] H. Kwon, M. Pellauer, and T. Krishna, “MAESTRO: An open-source
infrastructure for modeling dataflows within deep learning accelera-
tors,” Comput. Res. Repository, vol. abs/1805.02566, no. 1, pp. 1–5,
2018.

[32] H. Kwon, P. Chatarasi, M. Pellauer, A. Parashar, V. Sarkar, and
T. Krishna, “Understanding reuse, performance, and hardware cost of
DNN dataflow: A data-centric approach,” in Proc. IEEE/ACM Int. Symp.
Microarchitecture (MICRO), May 2019, pp. 754–768.

[33] NVIDIA. (2022). NVDLA. [Online]. Available: http://nvdla.org/
[34] C. Hao et al., “FPGA/DNN co-design: An efficient design methodology

for IoT intelligence on the edge,” in Proc. ACM/IEEE Design Automat.
Conf. (DAC), Mar. 2019, pp. 1–6.

[35] X. Zhang, H. Ye, and D. Chen, “Being-ahead: Benchmarking and
exploring accelerators for hardware-efficient AI deployment,” Comput.
Res. Repository, vol. abs/2104.02251, no. 1, pp. 1–12, Jun. 2021.

[36] H. Genc et al., “Gemmini: Enabling systematic deep-learning archi-
tecture evaluation via full-stack integration,” in Proc. 58th ACM/IEEE
Design Autom. Conf. (DAC), Dec. 2021, pp. 769–774.

[37] K. Asanovic et al., “The rocket chip generator,” Univ. California,
Los Angeles, CA, USA, Tech. Rep. UCB/EECS-2016-17,
2016. [Online]. Available: https://aspire.eecs.berkeley.edu/wp/wp-
content/uploads/2016/04/Tech-Report-The-Rocket-Chip-Generator-
Beamer.pdf

[38] X. Yang et al., “Interstellar: Using halide’s scheduling language
to analyze DNN accelerators,” in Proc. ACM Int. Conf. Archi-
tectural Support Program. Lang. Operating Syst. (ASPLOS), 2020,
pp. 369–383.

[39] S. D. Manasi and S. S. Sapatnekar, “DeepOpt: Optimized scheduling of
CNN workloads for ASIC-based systolic deep learning accelerators,” in
Proc. ACM/IEEE Asia South Pacific Design Automat. Conf. (ASPDAC),
May 2021, pp. 235–241.

[40] A. Karbachevsky et al., “Early-stage neural network hardware perfor-
mance analysis,” MDPI Sustainability, vol. 13, no. 2, p. 717, 2021.

[41] C. Baskin et al., “UNIQ: Uniform noise injection for non-uniform
quantization of neural networks,” ACM Trans. Comput. Syst., vol. 37,
nos. 1–4, pp. 1–15, 2021.

[42] M. Ferianc et al., “Improving performance estimation for design space
exploration for convolutional neural network accelerators,” MDPI Elec-
tron., vol. 10, no. 4, pp. 1–14, 2021.

[43] Y. S. Shao, B. Reagen, G.-Y. Wei, and D. Brooks, “Aladdin: A pre-
RTL, power-performance accelerator simulator enabling large design
space exploration of customized architectures,” in Proc. ACM Int. Symp.
Comput. Archit. (ISCA), 2014, pp. 97–108.

[44] A. Samajdar, Y. Zhu, P. Whatmough, M. Mattina, and T. Krishna,
“SCALE-SIM: Systolic CNN accelerator,” Comput. Res. Repository,
vol. abs/1811.02883, no. 1, pp. 1–11, 2018.

[45] A. Samajdar, J. M. Joseph, Y. Zhu, P. Whatmough, M. Mattina, and
T. Krishna, “A systematic methodology for characterizing scalability of
DNN accelerators using SCALE-sim,” in Proc. IEEE Int. Symp. Perform.
Anal. Syst. Softw. (ISPASS), Aug. 2020, pp. 58–68.

[46] H. Kwon, A. Samajdar, and T. Krishna, “MAERI: Enabling flexible
dataflow mapping over dnn accelerators via reconfigurable intercon-
nects,” ACM Special Interest Group Program. Lang. Notices, vol. 53,
no. 2, pp. 461–475, 2018.

[47] S. Kim et al., “Transaction-level model simulator for communication-
limited accelerators,” Comput. Res. Repository, vol. abs/2007.14897,
no. 1, pp. 1–11, 2020.

[48] S. Cao, W. Deng, Z. Bao, C. Xue, S. Xu, and S. Zhang, “SimuNN:
A pre-RTL inference, simulation and evaluation framework for neural
networks,” IEEE J. Emerg. Sel. Topics Circuits Syst., vol. 10, no. 2,
pp. 217–230, 2020.

[49] Keras. (2022). PReLU layer. [Online]. Available: https://keras.io/
api/layers/activations/

[50] L. R. Juracy, M. T. Moreira, A. M. Morais, A. Hampel, and F. G. Moraes,
“A high-level modeling framework for estimating hardware metrics of
CNN accelerators,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 68,
no. 11, pp. 4783–4795, 2021.

[51] D. Moolchandani, A. Kumar, and S. R. Sarangi, “Accelerating CNN
inference on ASICs: A survey,” J. Syst. Archit., vol. 113, no. 1, pp. 1–26,
2021.

[52] K. Simonyan and A. Zisserman, “Very deep convolutional net-
works for large-scale image recognition,” Comput. Res. Repository,
vol. abs/1409.1556, no. 1, pp. 1–14, 2014.

[53] N. P. Jouppi, A. B. Kahng, N. Muralimanohar, and V. Srinivas, “Cacti-
IO: Cacti with off-chip power-area-timing models,” IEEE Trans. Very
Large Scale Integr. (VLSI) Syst., vol. 23, no. 7, pp. 1254–1267, 2014.

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on April 24,2023 at 14:16:44 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1145/3361682

5184 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 69, NO. 12, DECEMBER 2022

[54] N. J. Kim and H. Kim, “FP-AGL: Filter pruning with adaptive
gradient learning for accelerating deep convolutional neural net-
works,” IEEE Trans. Multimedia, early access, Jul. 1, 2022, doi:
10.1109/TMM.2022.3189496.

Leonardo Rezende Juracy received the bachelor’s
degree in computer engineering and the M.Sc.
degree in computer science from the Pontifical
Catholic University of Rio Grande do Sul (PUCRS),
Porto Alegre, Brazil, in 2015 and 2018, respectively,
where he is currently pursuing the Ph.D. degree.
His research interests include design for testabil-
ity, fault-tolerant designs, asynchronous designs,
resilient designs, and machine learning hardware
accelerators.

Alexandre de Morais Amory received the Ph.D.
degree in computer science from UFRGS, Brazil,
in 2007. His professional experience include the
Lead Verification Engineer at CEITEC Design
House from 2007 to 2009, a Post-Doctoral Fellow
at PUCRS from 2009 to 2012; and a Professor
at PUCRS from 2012 to 2020. He is currently
a Research Fellow at Scuola Superiore Sant’anna,
Italy. His research interests include design, test,
fault-tolerance, and safety-critical systems.

Fernando Gehm Moraes (Senior Member, IEEE)
received the bachelor’s degree in electrical engineer-
ing and the M.Sc. degree from UFRGS, Brazil, in
1987 and 1990, respectively, and the Ph.D. degree
from the Laboratoire d’Informatique, Robotique et
Microélectronique de Montpellier, France, in 1994.
Since 2002, he has been a Full Professor at PUCRS
University. He has authored and coauthored 48
peer-refereed journal articles in the field of VLSI
design. His primary research interests include micro-
electronics, security, MPSoCs, NoCs, and hardware
accelerators.

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on April 24,2023 at 14:16:44 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1109/TMM.2022.3189496

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Black & White)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /ArborText
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /EstrangeloEdessa
 /EuroSig
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Impact
 /KozGoPr6N-Medium
 /KozGoProVI-Medium
 /KozMinPr6N-Regular
 /KozMinProVI-Regular
 /Latha
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LucidaConsole
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /MVBoli
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Webdings
 /Wingdings-Regular
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 900
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

