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Abstract

Inflammatory markers represent important candidates responsible for the

altered behavior and physiology observed after stressful experiences. In the

maternal brain, the olfactory bulb (OB) is a key constituent of the neural

circuit that mediates the reciprocal interaction between mother and infant.

This study aimed to investigate the effects of stress during pregnancy on

maternal behavior and inflammatory changes in the olfactory bulb of lactating

mice. Female Balb/c mice were divided into two groups: control (CT) and

restraint stress (RS). Maternal behavior was performed during the first 8 days

of life of the offspring. On the 10th day after parturition, corticosterone, gene,

and protein expression were assessed. Stress during pregnancy decreased the

maternal index at postnatal day 4 and the nuclear factor-κB 1 (NFκB1) gene
expression in the OB. Moreover, females from the RS group showed increased

interleukin (IL-1β) protein expression. In contrast, stressed females exhibited a

decreased tumor necrosis factor (TNF-α) protein expression in the OB. In

conclusion, exposure to stress during pregnancy was able to induce specific

postnatal effects on maternal behavior and balance of inflammatory mediators

in the OB.
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1 | INTRODUCTION

Stress during pregnancy is a high prevalent health prob-
lem that affects about 9% to 22% of women worldwide
(Fairbrother et al., 2016). Evidence report that exposure
to chronic stress during pregnancy is an important com-
ponent to increase the vulnerability to postpartum
depression, anxiety, and decreased mother–infant inter-
action (Haim et al., 2014; Leuner et al., 2014; Racine
et al., 2019; Xia et al., 2016). Inflammatory markers rep-
resent important candidates responsible for the altered
behavior and physiology observed after stressful experi-
ences (Garcia-Bueno et al., 2008). In particular, the
hyper-activation of the hypothalamic–pituitary–adrenal
(HPA) axis participates by altering the glucocorticoid sen-
sitivity and promoting upregulation of genes related to
the pro-inflammatory response, as nuclear factor-κB
(NFκB) and cytokines (Ross et al., 2019; Silverman &
Sternberg, 2012). However, little is known on the effects
of stressors during pregnancy on inflammatory markers,
especially in the postpartum period. The upregulation of
inflammatory mediators after stress is observed both at
peripheral level and in brain-specific cells, which is posi-
tively correlated with abnormal maternal behavior
(Bekhbat et al., 2019; Coussons-Read et al., 2007).

In the maternal brain, the olfactory bulb (OB) repre-
sents a key region of the neural circuitry that mediates the
reciprocal interaction between mother and infant
(Corona & Levy, 2015). Its functions are strongly regulated
by hormonal alterations and studies have shown that
maternal stress induces detrimental effects in the OB of
lactating rodents, including decreased neural differentia-
tion, proliferation, and morphological alterations (Belnoue
et al., 2016; Czarnabay et al., 2019). Furthermore, it has
been shown that increased inflammation in the OB pro-
motes atrophy, activation of glial cells and astrocytes, in
addition to increased cell death (Doursout et al., 2013;
Hasegawa-Ishii et al., 2017, 2020).

Nevertheless, it is not clear whether maternal stress
during pregnancy promotes changes on inflammatory
markers in the OB of lactating mice. Thus, considering
the importance of the OB to the mother-offspring interac-
tion, this study aimed to investigate the effects of stress
during pregnancy on maternal behavior and inflamma-
tory markers in the OB of lactating mice.

2 | MATERIAL AND METHODS

2.1 | Animals and experimental design

Balb/c female mice were randomized into two groups:
control (CT) (n = 5) and restraint stress (RS) (n = 5). The
estrous cycle was monitored through vaginal smear

visualization. During the fertile period, two females were
paired with one male and mating confirmed by the pres-
ence of a vaginal plug (G1 - day 1 of gestation). After
birth, litters were adjusted to four to six animals (sex ratio
at birth: CT = 0.33 and RS = 0.53). Maternal behavior
was evaluated during the first 8 days of life of the off-
spring. On day 10 postpartum, mothers were euthanized,
by conscious decapitation, and samples collected. The
experimental protocol was approved by the University
Ethics Committee for the Use of Experimental Animals
(number 8465), and all mice were manipulated according
to national guidelines (CONCEA). Experimental design
is shown in Figure 1a.

2.2 | Restraint stress

Prenatal stress was performed as described previously
(Luft, Levices, da Costa, et al., 2020; Luft, Levices,
Pedrazza, et al., 2020). Briefly, pregnant mice were
restrained for 30 minutes, on intercalated days, from the
8th day of gestation. Mice from the control group were
kept undisturbed without any interventions during preg-
nancy, except for routine husbandry.

2.3 | Maternal behavior

After birth, mothers were individually housed and
maternal behavior monitored daily during the light
(10 AM, 1 PM, and 4 PM) and dark cycles (7 PM), in
the first 8 postpartum days, by two independent trained
observers. Each behavioral observation lasted for
72 min, with recordings performed every 3 min, total-
ing 100 observations per mother per day. The following
behaviors were considered maternal care: mother lick-
ing the pups (body surface or anogenital region),
breastfeeding (arched-back posture, blanked posture,
and supine posture), and building the nest. No interac-
tion with pups and eating/drinking were also evalu-
ated. The maternal index was obtained by the
frequency of the maternal care behaviors described
above divided by the number of all observations
(de Souza et al., 2012).

2.4 | Corticosterone

The maternal serum levels of corticosterone were deter-
mined using a commercial ELISA kit (Diagnostics Bio-
chem Canada Inc, Ontario, Canada), according to the
manufacturer’s instructions. The final results were
expressed as μg/dL. The lowest limit of detection was
0.69 μg/dl.
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2.5 | Gene expression

The total OB cellular RNA from dams was extracted
using the Trizol method (ThermoFisher-Scientific), and
1 μg of RNA was reverse-transcribed using the
GoScript™ Reverse Transcription System Protocol
(Promega). Gene expression was performed in real-time
quantitative PCR (Step One Plus, ThermoFisher-Scien-
tific). The glyceraldehyde-3-phosphate dehydrogenase
(GAPDH) was used as the endogenous reference gene.
The qRT-PCR was performed using the SYBR® Green
fluorescence marker (ThermoFisher-Scientific). The fol-
lowing primers were used: glucocorticoid receptor
(GR) (forward: 50 GGAATAGGTGCCAAGGGTCT 30;
reverse 50 GAGCACACCAGGCAGAGTTT 30), nuclear
factor-κB 1 (NFκB1) (QT00154091), nuclear factor-κB
2 (NFκB2) (QT00129864), and glyceraldehyde
3-phosphate dehydrogenase (GAPDH) (QT01658692)
(Qiagen, Hilden, Germany).

2.6 | Protein expression

The OB lysates from dams were prepared with CHAPS
(3-[(3-cholamidopropyl)dimethylammonio]-

1-propanesulfonate) buffer plus protease inhibitors. Pro-
tein samples (40 μg) were analyzed by electrophoresis
and immunoblotting (Haute et al., 2020). Membranes
were incubated with interleukin (IL-1β), tumor necrosis
factor (TNF-α), and interleukin-6 (IL-6) at 1:500. Blots
were incubated with secondary antibodies at 1:2000.
GAPDH was used for normalization of quantitative den-
sitometry values and total expression was evaluated with
Image J software (National Institutes of Health, USA).
The antibodies used were the following: anti-IL-6 mouse
(1:500 dilution, sc-32,296, Santa Cruz Biotechnology,
USA), anti-TNF-α mouse (1:500 dilution, sc-52,746, Santa
Cruz Biotechnology, USA), and anti-IL-1β mouse (1:500
dilution, sc-12,742, Santa Cruz Biotechnology, USA).

2.7 | Statistical analysis

The normality of data was tested using the Shapiro–Wilk
test. Outliers were detected with the Grubbs’ test and
excluded from analyses. Data were expressed using mean
and standard error of the mean (SEM). Comparisons
between two groups were evaluated by the Student’s
t test. Two-way ANOVA followed by Fisher’s LSD post-
test was used for maternal behavior. In all cases,

F I GURE 1 Experimental design of the study (a), maternal behavior (b), corticosterone levels (c), and GR gene expression (d).

Significant effects for group (F(8,56) = 6.66, p < 0.0001; two-way ANOVA) were found for the maternal index analysis. Stress during

pregnancy significantly decreased the maternal index on postpartum day 4 (p = 0.04, Fisher’s test, five animals per group). No significant

differences were found regarding maternal plasma corticosterone concentration (t(10) = 0.91, p = 0.38; Student’s t test, six animals per

group) and GR expression (t(6) = 0.014, p = 0.98). G0: gestational day 0; G8: gestational day 8; G21: gestational day 21; PND0: postnatal day

0, PND8: postnatal day 8, PND10: postnatal day 10. Data are shown as mean � SEM. CT: control; RS: restraint stress from the second week

of pregnancy
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statistical significance was set at 5%. Data were analyzed
using the Prism GraphPad software (version 8.0.1, Gra-
phPad Software Inc., USA).

3 | RESULTS

Stress during pregnancy disrupted normal maternal
behavior, as demonstrated by the significant decrease in
maternal index at day 4 when the RS group was com-
pared to the CT group (Figure 1b). No significant differ-
ences were found for corticosterone secretion and GR
gene expression in the maternal OB (Figure 1c,d, respec-
tively). Figure 2a shows a significant decrease in the
expression of NFκB1 in the maternal OB of the RS group
when compared to the CT group. However, no differ-
ences were found between groups for the NFκB2 gene
expression (Figure 2b).

When the effects of maternal stress on protein levels
of inflammatory markers in the OB from dams were
investigated, we observed a significant increase in the IL-
1β protein expression in the OB of RS females when com-
pared to the CT group (Figure 3a). On the other hand,
Figure 3b shows a significant TNF-α protein expression
decrease in the RS group compared to CT. No significant
differences were found for IL-6 (Figure 3c).

4 | DISCUSSION

Although the association between adverse events during
pregnancy and negative outcomes on maternal behavior
has been widely reported (Belnoue et al., 2016; Gatta
et al., 2018; Hakanen et al., 2019), the period, intensity,
and frequency of the stressor are determining factors.
The maternal HPA axis responsiveness is attenuated

during late pregnancy, whereas stress during early preg-
nancy promotes an increased response and could have
more detrimental effects (Brunton, 2013). Our data
showed that restraint stress, from the second week of ges-
tation, decreases maternal behavior only at postpartum
day 4. Between the third and fourth day of life, important
processes occur for the offspring’s neurodevelopment,
such as increased cerebral synaptogenesis and the forma-
tion of sensory barriers (Chen et al., 2017). Alterations
during this period may be relevant to the long-term
development of different diseases in the offspring. Studies
have already shown compromised maternal behavior and
increased corticosterone secretion in response to stress in
dams submitted to experimental to gestational stress
(Bosch et al., 2007; Patin et al., 2002). Moreover, it is well
established that glucocorticoid levels during the postpar-
tum period in mice are low and the HPA axis is relatively
hyporesponsive (Douglas et al., 2003). Conversely, our
study did not find significant differences in the HPA axis
activity, as observed by the basal corticosterone secretion
and GR gene expression. Although a second-hit stress
was not performed, hormonal long-term effects are typi-
cally not observed at basal levels (Douglas et al., 2003)
(Zoubovsky et al., 2020). Thus, we hypothesize that the
behavioral changes observed may be due to mechanisms
not directly dependent on the activity of the HPA axis.

Several studies have shown increased expression of
proinflammatory mediators during neuropsychiatric dis-
orders (DiSabato et al., 2020; Mao et al., 2018; Niraula
et al., 2019). NF-κB activation elicits the transcription of
inflammatory cytokines (Oeckinghaus et al., 2011),
although NF-κB1 and NF-κB2 subunits suppress κB-
dependent transcription (Oeckinghaus & Ghosh, 2009).
Our data demonstrated a decrease in the OB NF-κB1
gene expression in lactating mice submitted to prenatal
stress. The reduction of NF-κB1 would contribute to

F I GURE 2 Gene expression in the

maternal olfactory bulb. (a) Gestational stress

significantly decreased tissue NFκB1 mRNA

expression (t(8) = 2.92, p = 0.01; Student’s t
test, five animals per group) in the olfactory

bulb of dams. (b) No significant differences

were found regarding the NFκB2 expression
(t(6) = 0.37, p = 0.71; Student’s t test, four
animals per group). Data are shown as

mean � SEM. NFκB1: Nuclear factor-κB 1;

NFκB2: Nuclear factor-κB 2; CT: control; RS:

restraint stress from the second week of

pregnancy

LUFT ET AL. 183

 1873474x, 2022, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/jdn.10156 by C

A
PE

S, W
iley O

nline L
ibrary on [27/04/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



decrease the inhibition upon NF-κB and thus lead to
increased inflammatory markers. Evidence has shown a
direct relationship between stress, NF-κB and decreased
neuronal proliferation, leading to altered behavior (Koo
et al., 2010).

The present results also demonstrated that stress dur-
ing pregnancy decreased TNF-α in the OB and increased
IL-1β protein expression in the postpartum period. The
increase in inflammatory markers associated with behav-
ioral changes has been previously described (Salvador
et al., 2021). Particularly, IL-1β is a well-recognized cyto-
kine marker for the central nervous system (CNS)-related
diseases (Mendiola & Cardona, 2018). For example,
increased IL-1β has already been found in different brain
regions of rodents with mood disturbances, such as depres-
sion and anxiety (Goshen et al., 2008; Rossi et al., 2012).
During the perinatal period, there is increased blood levels
of IL-1β in depressed women (Corwin et al., 2008; Leff
Gelman et al., 2019; O’Mahony et al., 2006). Stressors dur-
ing pregnancy have also been associated with increased
levels of IL-6 and TNF-α (Coussons-Read et al., 2005). In
contrast, our data revealed that stress during pregnancy
decreases the expression of TNF-α in the OB of lactating
mice. It is well established that TNF-α has a key role in
several neurological processes, including excitatory trans-
mission, homeostatic synaptic activity, and glutamate
release (Olmos & Llado, 2014). Therefore, clinical and
experimental studies have demonstrated that decreased
signaling of TNF-α in the CNS could contribute to the

development of pathological conditions such as neurode-
generative diseases, neuronal impairment, and altered
microglia activation (De Lella Ezcurra et al., 2010;
McCoy & Tansey, 2008; Paouri et al., 2017). Thus, we
believe it is possible to speculate that an imbalance in the
expression of this proinflammatory cytokine could impact
the normal function of the OB, although further studies
would be needed to confirm that.

This study has also limitations, including the limited
sample size, which could have prevented us from achiev-
ing a higher power for the analyses performed. Further-
more, it is not possible to exclude, from the results
presented, that stress during pregnancy may be influenc-
ing post-transcriptional processes in the expression of fur-
ther inflammatory mediators, such as NF-κB. However,
we believe present findings may serve as a starting point
for future studies to further examine the relationship
between prenatal stress and its maternal effects on the
postnatal period.

In conclusion, our results have shown that exposure
to stress during pregnancy was able to induce specific
post-natal effects on maternal behavior and balance of
inflammatory mediators in the OB. These findings may
not be related to alterations in the HPA axis, as no differ-
ences were found for both corticosterone secretion and
GR expression. Although these are preliminary results
that should be further explored, it may contribute to a
better understanding of prenatal stress and maternal
postpartum changes.

F I GURE 3 Protein levels of inflammatory markers in the maternal olfactory bulb. Stress during pregnancy significantly increased IL-1β
(t(7) = 2.65, p = 0.03; Student’s t test, CT = 4 animals per group, RS = 5 animals per group) protein expression in the olfactory bulb (a).

There was a significant decrease (t(7) = 2.47, p = 0.04; Student’s t test, CT = 4 animals per group, RS = 5 animals per group) in the protein

expression of TNF-α in the olfactory bulb of dams (B). No significant differences (t(8) = 0.66, p = 0.52; Student’s t test, five animals per

group) were found regarding IL-6 protein expression (c). Data are shown as mean � SEM. IL-1β: nterleukin-1β; TNF-α: tumor necrosis

factor-α; IL-6: interleukin-6; CT: control; RS: restraint stress from the second week of pregnancy
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