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Abstract
OpenMP is an industry and academic standard for parallel programming. However, 
using it for developing parallel stream processing applications is complex and chal-
lenging. OpenMP lacks key programming mechanisms and abstractions for this par-
ticular domain. To tackle this problem, we used a high-level parallel programming 
framework (named SPar) for automatically generating parallel OpenMP code. We 
achieved this by leveraging SPar’s language and its domain-specific code annota-
tions for simplifying the complexity and verbosity added by OpenMP in this appli-
cation domain. Consequently, we implemented a new compiler algorithm in SPar 
for automatically generating parallel code targeting the OpenMP runtime using 
source-to-source code transformations. The experiments in four different stream 
processing applications demonstrated that the execution time of SPar was improved 
up to 25.42% when using the OpenMP runtime. Additionally, our abstraction over 
OpenMP introduced at most 1.72% execution time overhead when compared to 
handwritten parallel codes. Furthermore, SPar significantly reduces the total source 
lines of code required to express parallelism with respect to plain OpenMP parallel 
codes.
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1 Introduction

Multi-core processors are ubiquitous in modern hardware architectures. They 
expose parallelism in the form of replicated cores. Developers aiming to extract 
higher performance must deal with parallel programming. Developing parallel 
code for multi-core processors means that programmers must deal with error-
prone concepts such as thread creation and management, cache optimizations, 
communication mechanisms, load balancing, data dependencies, critical or 
mutual exclusive data access, etc. Also, regular developers do not have the skills 
or knowledge to develop efficient parallel code. Instead, they are interested in eas-
ily achieving good performance without entering in low-level and architecture-
specific details. That is where parallel programming abstractions apply. In par-
ticular, domain-specific languages (DSL) are computer languages that allow the 
programmer to specialize on a specific domain [8, 27]. They can be an efficient 
alternative to achieve better performance through parallel computing while still 
allowing the developer to mainly focus on specific algorithmic solutions to its 
own field of work or study.

When adopting parallel abstractions, one may consider structured or non-struc-
tured parallelism. The structured approach equips the developers with patterns or 
algorithmic skeletons (i.e. Map, Reduce, Pipeline). These patterns are generally 
developed by experts in the parallel computing field and are made to be readily 
available for a series of well-defined situations commonly found in the development 
of parallel programs. For multi-cores, several application programming interfaces 
(API) have been developed with this intent such as Intel Threading Building Blocks 
(TBB) [25] and FastFlow [2]. They require restructuring the sequential code into 
their respective API and the necessity for programmers to understand the semantics 
and characteristics of each parallel pattern. This way, it is possible for the appli-
cation programmer obtaining a parallel version without entering into low-level 
parallelism details. The other approach for parallel programming is adopting non-
structured techniques for implementing ad hoc parallelism. Common examples are 
OpenMP [23] and Pthreads [15], although they show contrasting complexity and 
flexibility levels. In this case, the programmer can freely write parallel code as 
long as it is correct regarding the respective API syntax and semantics. However, it 
requires the programmer to deal with low-level parallelism aspects such as critical 
sections, scheduling, data management, and others.

Stream processing applications are generally computationally intensive. There-
fore, they must leverage parallel computing to complete processing in a feasible 
time. This class of applications is characterized by a data stream flowing through 
a sequence of independent computational stages or filters. Some common exam-
ples can be found in audio and video processing, sensor monitoring, cryptogra-
phy, data analysis, statistics, etc. When developing parallelism for these applica-
tions, a linear or nonlinear Pipeline [18] pattern can typically be employed to 
represent most common situations [2].

Parallel APIs follow distinct design principles that may impact positively or 
negatively in programmability and productivity aspects of writing parallel code 
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for a given application domain. For example, OpenMP is popular for data par-
allelism; however, it requires a non-trivial implementation when it is used to 
develop parallel stream processing applications [8, 24]. Extra mechanisms must 
be sought in order to correctly and efficiently develop stream applications with 
OpenMP, as will be discussed in Sect.  2. The lack of higher-level abstractions 
to parallelize stream processing applications defeats the simplicity purpose of 
OpenMP’s pragma directive approach.

To tackle this problem, our goal is to employ SPar1 [9] as a DSL that aims at 
providing parallel abstractions for stream processing applications through the use 
of standard C++ code annotations. The idea is to use SPar’s own compiler to trans-
form code annotations into a supported runtime parallel system directly on the AST 
(Abstract Syntax Tree). This way, efficient parallel code may be generated from 
simple code annotations that do not require significant sequential code refactoring 
from the programmer neither apriori parallel pattern know-how. In prior works, we 
successfully managed to automatically generate parallel code for the FastFlow [9] 
and TBB [13] runtimes, which provide a similar level of abstraction because both 
of them employ a structured parallel programming approach. In contrast, this work 
posed a new challenge: automatically generating OpenMP stream processing code 
without changing the original syntax and semantic rules for SPar annotations. We 
innovate by investigating the methodology proposed in this work for using a high-
level language like SPar (contains only five annotation attributes) to perform auto-
matic and efficient OpenMP parallel code generation in stream processing applica-
tions. On the other hand, other works mainly focus on C++ templates, new parallel 
patterns, and/or extensions to current libraries for improving parallel programming.

We made the following contributions: (1) Efficient OpenMP linear and nonlinear 
Pipeline implementation for parallel stream processing; (2) new compiler definitions 
and transformation rules for generating OpenMP parallel code, which were imple-
mented in the SPar compiler; and (3) performance and programmability analysis of 
the proposed solution with a set of representative applications.

The remainder of this paper is organized as follows. Section 2 explained difficul-
ties and requirements for developing stream processing applications with OpenMP 
and presented a structured Pipeline template for it. Then, Sect. 3 described our meth-
odology for generating lower-level OpenMP parallel code using SPar’s language. 
The experimental analysis was conducted in Sect.  4 considering performance and 
programmability aspects. Subsequently, we described and discussed related work in 
Sect. 5. Finally, Sect. 6 concluded this study and presented some final remarks.

2  OpenMP pipeline for stream processing

The goal of this Sect.  2 is demonstrating the challenges introduced by OpenMP 
in stream processing applications as well as demonstrating an efficient solu-
tion. In Sect.  2.1, we first reasoned about the challenges, possible solutions, and 

1 https:// gmap. pucrs. br/ spar.

https://gmap.pucrs.br/spar
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requirements for developing stream processing applications with OpenMP. Then, in 
Sect. 2.2, we employ these concepts and demonstrate how to efficiently develop an 
OpenMP Pipeline.

2.1  OpenMP for stream processing

Writing parallel code using OpenMP is difficult when targeting stream processing 
applications [24]. To approach this issue, possible solutions are creating language 
extensions, deploying parallel patterns, or DSLs (domain specific languages). A dis-
cussion about the solutions that were already investigated in the past can be found 
in the related work (Sect. 5). In short, none of these works have solved the program-
mability gap between OpenMP and stream processing. Instead, we propose a new 
approach by combining the Pipeline parallel pattern strategy with a domain spe-
cific language suitable for stream processing. This way, we leverage the best of both 
worlds: parallel patterns efficiency and programmability with DSL’s higher level of 
abstraction.

Although OpenMP provides task-based parallelism (section and task directives), 
it lacks two essential key aspects that are not supported by the standard API. The 
first one is MPMC (Multiple Producer Multiple Consumer) parallel thread commu-
nication. OpenMP has depend clauses to express task producer–consumer relations. 
However, it cannot be used with stream processing applications since it is not effi-
cient for producer-consumer cycles (i.e. for loop generating items) and lacks syn-
chronization. Therefore, an external communication queue must be implemented or 
imported. The second key aspect is the necessity for efficient thread runtime syn-
chronization to enable concurrent MPMC communication. This must be sought 
from external sources. Based on these aspects, we defined the following require-
ments that need to be fulfilled for our Pipeline template in OpenMP: 

1. Efficient MPMC queues Each communication queue must be able to handle any 
positive number of producers and consumers greater than 0.

2. Synchronization It is necessary to synchronize insert and remove operations in the 
queue. To that end, we used default C++ conditional_wait mechanisms 
coupled with mutex.

3. Mutually exclusive access To avoid concurrency issues, we used a single default 
C++ mutex mechanism. Standard OpenMP locks could not be used since; with 
it, it would not possible to synchronize producers and consumers.

4. End of processing signals When terminating execution, the queue must propa-
gate end-of-processing signals through all associated producers and consumers. 
Additionally, when end-of-processing is propagated through the stream, it must 
guarantee no data item is left unprocessed.

5. Unpredictable Workload The queue must handle varying or starving workload.
6. Non-blocking behavior Producers or consumers unable to operate on the queue 

must not maintain a busy-waiting or blocking status. They should halt execution 
and wake up only when work can resume. This was achieved with default C++ 
conditional_wait mechanisms.
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7. Customizable buffer size Configurable and restrained buffer size. A very small 
buffer size may turn into a stream bottleneck, whereas a huge buffer size may use 
unnecessary extra memory.

8. Circular FIFO access pattern First-in-first-out data access in a circular pattern.
9. Ordering constraints Due to the non-deterministic nature of parallel processing, 

stream items may reach certain processing stages in a different order from which 
they were generated. This is a problem for a number of applications, where the 
integrity of the output depends on the order of the stream items (e.g. frame order 
on an output video). For that, the implementation must accommodate the possibil-
ity to maintain the original stream order on a sequential or output stage. For that 
purpose, we used the algorithm proposed in [12], which adds a tagging module 
to the stream generator and a re-ordering module to the stream consumer.

To fulfill these requirements, we created an MPMC synchronized communication 
queue named SParSharedQueue, which is a concurrent queue implemented with 
standard C++ mechanisms. It was used in our Pipeline template. Note that, although 
alternative MPMC queues can be employed, there are specific mechanisms that still 
must be manually implemented by the programmer such as communicating the end 
of stream or re-ordering data items. Effectively, this would expose the developer to 
many low-level parallelism details that are difficult to reason about in the context of 
multi-core architecture and systems. SParSharedQueue helps to ease the process 
of integrating these features. Alternatively, SParSharedQueue could be easily 
adapted to be used as a skeleton for integrating another communication queue.

2.2  OpenMP pipeline

Regularly, OpenMP implementations are not classified as structured parallel pro-
gramming. However, we specified a strictly structured approach in Listing 1 that is 
a Pipeline pattern. Here, we did not propose a new Algorithm; rather, we exemplify 
with this pseudo-code how to compose a Pipeline using OpenMP in C++. We have 
studied different OpenMP mechanisms for implementing stream parallelism, and 
this was the most efficient. We can observe that it is a verbose code. Many mecha-
nisms are exposed to the programmer, and it is difficult to separate the application 
code from the parallelism strategy. Later, we used this Pipeline template as the gen-
eration target code for SPar in Sect. 3. This code is equivalent to the manual imple-
mentation when using OpenMP for stream processing applications, plus the SPar-
SharedQueue mechanisms that sum approximately 88 source lines of code. The 
code in Listing 1 parallelized a generic three stages stream processing application.

Regarding Listing 1, the communication queues are defined in lines 1 and 2. In 
this example, we have multiple Pipeline stages that communicate with each other 
using two different queues: one for the consumer and other for the producer relation. 
These queues take as initialization arguments the maximum buffer size (q_size) 
and the number of producers. Next, we create a parallel region in line 3 where the 
queues are defined as shared arguments.
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In lines 4 and 5, OpenMP directives single nowait and taskgroup 
are used to guarantee that the parallel region will execute once and all tasks fin-
ish before proceeding. Then, lines 6 to 15 implement the first stage of the Pipeline, 
where the parallel generation loop in line 6 creates as many threads as specified. 
This is typically the generation stage that must iterate the stream items. Items are 
en-queued (queue Add method) in line 12 inside the first stage. After the stage has 
finished generating items, it signals the end of the stream in line 14 using Noti-
fyEOS method.

The first stage is the only unique one, while every subsequent stage follows a 
similar pattern between each other. Therefore, we only detailed the stage in lines 
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16–27. It all starts with its parallel generation loop (line 16) which creates as 
many parallel threads as specified. This number must be defined by the developer. 
Sequential stages, such as the one in line 28, only spawn one thread. In line 21, 
it defines a temporary stream item for local computations. Then, in lines 20–25, 
it begins an infinite iteration statement that will constantly try to consume items 
from the queue in line 21 (queue Remove method). The consume operation from 
the queue is non-blocking. Then, in line 22 it verifies if the end of the stream 
was reached and if so breaks from the iteration statement and notifies the end of 
stream to the next queue in line 26. In line 23, the regular stage code is executed. 
After it is done processing, it produces and adds the item to the next communi-
cation queue (line 24 Add method). The only exception is the last stage, which 
needs to propagate end of stream signals.

3  Abstracting OpenMP stream parallelism with SPar

The goal of this section was to describe how SPar may be used for abstracting 
the complexity added by OpenMP in stream processing applications. In short, we 
aimed to leverage high-level SPar annotations while automatically generating effi-
cient OpenMP parallel code using the Pipeline template discussed in Sect. 2. With 
that, our goal was to simplify the process of developing OpenMP stream processing 
applications. Initially, we described SPar’s language and compiler methodology in 
Sect. 3.1. Then, we presented OpenMP code generation in SPar in Sect. 3.2.

3.1  SPar abstractions

SPar (an acronym for Stream Parallelism) is a domain-specific language compat-
ible with C++ structured parallel programming [9]. SPar language provides a 
set of five attributes that describe different aspects commonly found in stream 
processing applications. The attribute mechanism is supported by standard C++. 
With this set of attributes, SPar uses the CINCLE compiler infrastructure support 
to perform source-to-source code transformations directly on the AST [8]. This 
strategy allows SPar’s compiler to automatically generate parallel code targeting 
a parallel runtime system (e.g. FastFlow or TBB). It does so based on a set of 
transformation rules unique to each underlying interface. By default the parallel 
runtime system is FastFlow. We did not explain FastFlow and TBB transforma-
tion rules in this paper, but more details may be found in [8] and [13]. The under-
lying parallel runtime system is responsible for the performance gains, and both 
FastFlow and TBB have ongoing active projects. With SPar, the programmer can 
parallelize C++ sequential code with an extra abstraction layer while maintaining 
the original code structure. Ultimately, SPar’s goal is to increase parallel code 
development productivity at the lowest possible performance cost. The annota-
tions were explained in Sect. 3.1.1 and code generation in Sect. 3.1.2.
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3.1.1  SPar annotations

After ISO C++11, the C++ language provided default support for attribute mech-
anisms [14]. They can be used with an annotation, which is delimited by double 
brackets and takes a list of attributes as input [[attr-list]]. Furthermore, the C++ 
standard grammar states that annotations can be placed almost anywhere in the 
code, allowing for the original code structure to be maintained. However, the attrib-
ute implementation will determine whether it can be used for types, objects, code 
blocks, etc. Each C++ compiler may support different attributes, but every com-
piler must be able to parse them and place them in the AST. For that purpose, SPar 
has its own compiler. In SPar’s language, five different attributes have been defined 
for expressing common stream processing concepts. They are briefly described in 
Table 1 where ID stands for identifier and AUX for auxiliary attributes. Every attrib-
ute list must begin with an ID attribute which may be followed by a list of comple-
mentary AUX attributes. In this work, we leveraged these existing attributes. An 
exhaustive syntax and semantics detailed description may be found in [8].

Relative to the semantics, some rules must be respected to generate correct paral-
lel code. First, every annotation must be placed in front of an iteration or compound 
statement. This ensures the correct definition of each computational stage. Also, 
there can be no nested ToStream attributes (stream of streams), as it’s not possible 
to generate a stream flowing inside another stream in SPar’s language. However, the 
number of Stage inside a ToStream region is not restricted. Both Input and 
Output must contain at least one argument where the arguments must match for 
producer-consumer relations. Finally, Replicate can only be used with a Stage 
attribute, which must be a stateless operator. This means the programmer can not 
leave unattended critical/atomic code regions inside a replicated Stage.

An example of SPar language usability is demonstrated in Listing 2. It is a C++ 
algorithm that discovers and prints palindrome numbers between 1 and 1000. ToS-
tream is used to mark the stream region, which is the scope of the for loop. The 
code situated between ToStream and the first Stage attribute is always the stream 
generation stage. In lines 4 and 10, Stage is used to specify two stream computing 
regions. The first one uses Input and Output to, respectively, consume (from 
the previous stage) and produce (to the next stage) num and rev. Specifying every 
Stage is a task that must be performed by the developer.

Table 1  SPar attributes

Attribute name Type Short description

ToStream ID Defines the scope of the parallel stream region.
Stage ID Defines the scope of one processing stage or filter inside

the parallel stream region.
Input AUX Defines the data consumed by stream or stage regions.
Output AUX Defines the data produced by stream or stage regions.
Replicate AUX Parallelizes the associated stage region.
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The code in Listing 2 also has a Replicate that effectively spawns 4 parallel 
threads that compute that stage’s code. In this case, this is a safe replication, since 
this is a stateless stage. In SPar, safe replications must be ensured by the program-
mer. Numbers are processed independently from one another since they do not 
require access to past variable states. Additionally, this number of stages must be 
defined by the user. This is an important part that may have high impact on perfor-
mance. To ease this burden, it has been developed a research in self-adaptive paral-
lelism to automatically define this number during execution time for a different par-
allel runtime library [28], which can be extended to OpenMP in the future. Lastly, 
Stage in line 10 consumes num and rev from the previous stage with Input 
checks if the number is palindrome and prints it. It is a sequential stage since it does 
not have a Replicate attribute.

3.1.2  Parallel code generation

After the code is properly annotated, SPar’s compiler begins the parallel code gen-
eration using CINCLE’s support. CINCLE (Compiler Infrastructure for new C/
C++ Languages Extensions) is a compiler infrastructure for generating new C/C++ 
embedded DSLs. It provides basic features and a simple interface to enable AST 
transformations, semantic analysis, and source-to-source code generation. Figure 1 
depicts the compilation flow of SPar’s compiler using CINCLE. In it, the orange 

Fig. 1  SPar compilation flow. Extracted from [8]
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dotted lines represent CINCLE modules, while cyan blue dotted lines represent 
SPar’s compiler modules.

The compilation process starts with a call to GCC compiler, which performs a 
semantic and syntax analysis of basic C++ code. After that, the code is scanned by 
CINCLE and the resulting tokens are parsed in order to create an AST represent-
ing the entire semantics of the C++ ISO. This AST is fully accessible, allowing 
for complete control of every node. This way, the code transformations can be per-
formed directly on the AST during compile time. Nodes can be removed or shifted 
freely, allowing for any possible code transformation required to generate the calls 
to the abstracted underlying parallel runtime system. This is one of the main advan-
tages of CINCLE, since GCC compiler does not support direct AST transformations 
[8].

Subsequently, the first SPar compiler module that performs semantic analysis 
checks the AST for semantic errors in the annotations implemented by the program-
mer. Inconsistencies are reported back to the developer. If everything is correct, 
later, the code transformation step performs the appropriate transformations directly 
on the AST. For that, it switches the annotation nodes in the AST for an internally 
generated sub-tree that contains the proper code with the underlying parallel runt-
ime system. However, this step must be done with extensive care to the C++ ISO 
[14], as errors can easily break the entire code. Finally, GCC is called again to pro-
duce the final binary file, which contains parallel code automatically generated by 
SPar compiler. There are also a few compilation flags that can be used to change the 
behavior of the runtime system. They are:

• spar_ondemand: used to generate on-demand scheduling [2].
• spar_blocking: used to activate FastFlow blocking mode.
• spar_ordered: used to guarantee that output stream elements are delivered 

respecting the original input order.

3.2  OpenMP with SPar

In Sect.  2, we showed how to implement stream parallelism in OpenMP using 
the Pipeline parallel pattern. In this section, our contributions are the new defini-
tions, transformation rules, and compiler algorithm we created to abstract low-level 
OpenMP stream parallelism details. We explained and characterized the transfor-
mation phase necessary to automatically generate stream parallelism code with 
OpenMP using SPar’s language and compiler.

We define the Pipeline as: pipe(stage0, queue0, stage1, ..., queuen−1, stagen) . 
This is not de-facto OpenMP code, but rather a high-level representation to guide 
the compiler in generating correct structured code. Each stage can behave sequen-
tially (seq) or parallel (par). Therefore, a parallel stage is denoted par(stagen) and 
seq(stagen) for sequential stage. Each stagen is an independent computational stage. 
Typically, the Pipeline parallel pattern defined in the literature does not specify 
the queues inside its argument list [19]. The queues are implemented by the par-
allel pattern and abstracted to the programmer. Instead, OpenMP does not follow 
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a structured parallel programming approach and this implies that communication 
queues are explicit to programmers. With our Pipeline pattern definition, we allow 
that non-structured runtimes such as OpenMP and possibly others (C++ standard 
threads or Pthreads) follow a pseudo-structured approach.

In addition to the Pipeline template, we provided a set of rules to perform code 
transformations and support automatic parallel code generation. The transformation 
is successful when it can translate the annotations into a valid pipe template struc-
ture, such as described in Sect. 2. This set of rules must be able to accomplish the 
semantics described in Sect. 3.1.1. Each supported underlying API has its own set 
of rules. In this work, we presented new rules for automatically generate OpenMP 
stream processing code. To clarify the rest of this Section content, we defined some 
terms. A ◻ is a generic block of code, and the scope of the sentences is represented 
by {...} . Generic blocks of code can contain any valid C++ code, including function 
calls. Annotations were marked as [[...]] and may contain a list of attributes as an 
argument. The ID attributes are T (ToStream) and S (Stage). The AUX attrib-
utes are I (Input), O (Output), and R (Replicate). � is a special case Stage 
sometimes required. In Table 2, we summarized the definitions to generate the trans-
formation rules specific for OpenMP Pipeline (Sect. 2.2). It is important to specify 
that more than one definition Di may apply to the same annotation.

The flow in Fig. 2 is a visual depiction of the decision process of applying these 
definitions. Starting the process, it checks the first annotation, which, if correct, 
must always be a ToStream. Then, it unconditionally applies D4 and moves back 
to question which is the next annotation. Every subsequent annotation should be 
a Stage, which always applies D1 . This is the queue generation that happens for 
every stage. If this Stage is not replicated, it applies D2 and goes back to the initial 
step. Otherwise, it applies D3 , which considers that as a parallel stage. The follow-
ing decisions are solely to apply or not D0 . If the replicated stage is not the last one 
or if ToStream does not have an Output, it does not apply D0 and goes back to 
the start. Otherwise, D0 is applied and it goes back to the next annotation decision. 
From this point forward, if there is no other annotation, the process is ended. In 
summary, this whole process iterates all code annotations and decides the correct 
parallel Pipeline template to be generated.

To better understand the use of these definitions, we demonstrated their appli-
cation in Rule  1. It refers to [[T0]]{◻0, [[S1, I1,O1,R1]]{◻1}, [[S2, I2]]{◻2}} . 
Remember that according to our previous definition T is a ToStream, S is a 

Table 2  Definitions of the transformation rules

D0 An additional gatherer stage � and a queue are generated when the last block of code is annotated 
with S that contains in its attribute list R

n
 and its associated T contains an O.

D1 A queue must be generated before each S inside the T attribute list.
D2 A generic block of code is a sequential stage if its annotation list S does not contain the attribute R

n
.

D3 A generic block of code with an annotation list S containing an R
n
 attribute may be a parallel stage.

D4 A T annotation is transformed into a pipe when the attribute list contains at least one S and its block 
of code is the sequential stream generator.
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Stage, and so forth. Annotations are parsed starting from the first ToStream 
up to the last Stage. Initially, [[T0]] applies for definition D4 , which generates 
a Pipeline with ◻0 as the first sequential stage. The first Stage [[S1, I1,O1,R1]] 
applies D1 , which generates the first queue, and D3 to generate a parallel stage. 
Then, the last annotation with [[S2, I2]] will be the a sequential stage to conform 
with definition D2 while generating its queue for D1 . In this case, D0 does not 
apply. D0 is used in rarer cases, where the output of a replicated stage might be 
used outside of the stream region.

Rule  2 refers to [[T0]]{◻0, [[S1, I1,O1]]{◻1}, [[S2, I2,R2]]{◻2}} . The [[T0]] anno-
tation matches with D4 , which generates a pipe receiving as first sequential stage 
◻1 . Then, the [[S1, I1,O1]] annotation matches with the definition D2 , generating 
a sequential stage, while D1 generates its queue. Then the [[S2, I2,R2]] annotation 
matches for D3 to generate a parallel filter and the unconditional D1 to generate the 
stage communication queue.

(1)

[[T0]]{◻0, [[S1, I1,O1,R1]]{◻1}, [[S2, I2]]{◻2}}

⇓

pipe(seq(◻0), queue0, par(◻1), queue1, seq(◻2))

Fig. 2  OpenMP definitions flow
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Rule 3 is a special case where D0 applies. [[T0,O0]]{◻0}, [[S1, I1,R1]]{◻1}} applies 
for D0 since the last stage [[S1, I1,R1]] contains a R and [[T0,O0] contains an O. Defi-
nition D1 applies for [[S1, I1,R1]] since its a Stage while also applying D3 since it is 
replicated. Finally, [[T0,O0]] applies D4 which is unconditional for T.

Once the correct Pipeline pattern is assembled from the definitions, the compiler 
executes the final step which is responsible for automatically generating OpenMP 
parallel code. From this point on, the code generation is performed directly on the 
AST using source-to-source transformations that will ensure the full semantics of 
the sequential program annotated with SPar. The compiler will replace every SPar 
annotation from the C++ program and generate actual OpenMP code leveraging the 
Pipeline template previously defined in Sect. 2.2. Since OpenMP is non-structured, 
we implemented a new compiler algorithm to perform this compiler step. The algo-
rithm supports automatic code generation for the Pipeline template and that employs 
the new definitions and transformation rules previously presented. Besides, we had 
to manually develop the reordering algorithm (introduced in [11]) for the SPar com-
piler because OpenMP does not offer task ordering.

Regarding SPar’s compilation flags presented in Sect. 3.1.2, the new compiler 
algorithm for OpenMP handles them as follows:

• spar_ondemand [integer_size]: used to generate on-demand sched-
uling. Sets different SParSharedQueue buffer/queue size since the access 
pattern is already on-demand. Default buffer/queue size is 100 items and can 
be changed during compile-time.

• spar_blocking: used to activate blocking mode. This flag was not sup-
ported by OpenMP SPar compiler since the implemented SParShared-
Queue is non-blocking.

• spar_ordered: used to say that output stream elements must be delivered 
respecting the original input order. Behavior left unaltered.

In summary, in this Section, we created and explained new SPar transformation 
rules for OpenMP stream processing that could be used in SPar for other non-
structured parallel programming API’s such as C++ threads. The main reason we 
supported OpenMP on SPar is that it performs better under certain circumstances, 
as will be shown in Sect. 4. Consequently, a C++ program already annotated with 
SPar may significantly improve performance only by changing a compilation flag 
to select the OpenMP runtime.

(2)

[[T0]]{◻0, [[S1, I1,O1]]{◻1}, [[S2, I2,R2]]{◻2}}

⇓

pipe(seq(◻0), queue0,seq(◻1), queue1, par(◻2))

(3)

[[T0,O0]]{◻0}, [[S1,I1,R1]]{◻1}}

⇓

pipe(seq(◻0), queue0,par(◻1), queue1, seq(�))



7668 R. B. Hoffmann et al.

1 3

4  Experiments

The goal of this Section was to assess the performance of the parallel code auto-
matically generated by the SPar compiler for OpenMP stream processing. We also 
evaluated programmability aspects for handwritten OpenMP code compared to SPar 
language. First, we described the experimental setup in Sect. 4.1. The performance 
was evaluated in Sect. 4.2 and programmability in Sect. 4.3.

4.1  Experimental setup

For the experimental analysis, we selected four different stream processing appli-
cations that represent different computational characteristics. They have different 
I/O intensity, varied data granularity, critical access requirements, throughput, and 
stream data reordering. They are: LaneDetection [12], Person Recognition [12], 
Bzip2 [7], and Ferret [3]. The parallel implementation details are beyond the scope 
of this paper. However, we described their basics as well as referenced where more 
detailed information can be found below:

• Ferret [3]: application for content similarity search in feature rich data such 
as video, audio, and images. In this case, the version utilized was adapted for 
image search. Its algorithm [3] finds the top 50 similar images. It was originally 
parallelized with Pthreads using a 6 stages Pipeline. The first stage implements 
sequential input and the final one sequential output, respectively. The four mid-
dle stages execute the bulk of the processing and are all executed in parallel.

• Bzip2 [7]: is a widely used lossless compression program in Linux-based distri-
butions. It has independent modules for compression and decompression. The 
original Pthreads implementation developed a three stages Pipeline and a hand-
written reordering algorithm in the output filter to maintain the integrity of the 
file.

• Lane Detect [12]: reads an input video stream from a camera recording a lane 
in front of the vehicle. Then, it outputs the detected lanes after a sequence of 
filters. It utilizes Canny filter and Hough Transform, which are provided by the 
OpenCV C++ image processing library. Accuracy of the system is dependent on 
OpenCV [4] detection algorithms. The parallel implementation technique uses 
a three-stage Pipeline where the first and last stages perform sequential I/O and 
the central one processes individual frames in parallel. The frame order must be 
guaranteed to keep the integrity of the video.

• Person Recognition [12]: reads a video input stream from a camera positioned in 
front of a point of interest. Then, it detects faces and uses an image database to 
recognize if that face belongs to a specific person. This database is pre-processed 
and derives from a series of training images from one person of interest. This 
application is also supported by OpenCV image processing runtime. Accuracy 
of the system is dependent on OpenCV [4] detection algorithms. The parallelism 
implementation consists of a three-stage Pipeline with a middle parallel stage 
and the output video frames must also be reorganized before outputting them.
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All tests were carried out in a machine equipped with 32 GB of RAM and two pro-
cessors Intel(R) Xeon(R) CPU E5-2620 v3 2.40 GHz (total of 12 physical cores and 
24 threads with Hyper-Threading). The operating system was Ubuntu Server 64 bits 
kernel 4.15.0-88-generic, and GCC 7.4.0. The compilation was also performed with 
the -O3 optimization flag. Other software details are OpenCV version 2.4.13.6, TBB 
(interface version 9107), and FastFlow version 3.0 for all applications except Bzip2 
and Ferret, which are version 2.2.0 due to missing features in newer versions. Addi-
tionally, FastFlow versions did not use default thread mapping with LaneDetect and 
PersonRecognizer applications to increase performance. Moreover, we guaranteed 
the correctness of the parallel versions by comparing the hash value of the output 
with the sequential version.

We tested handwritten versions for FastFlow (ff), TBB (tbb), our OpenMP Pipe-
line (omp), and Pthreads (pthread). These are consolidated parallel program-
ming interfaces from industry and academia. These will be further explained later 
in Sect. 5. Both FastFlow and TBB can be generated with SPar [9, 13], and, there-
fore, we also tested SPar generated code (spar) for the supported interfaces and 
OpenMP introduced in this work. This way, there can be a fair comparison to assess 
SPar’s impact on the performance regarding the handwritten implementation. Note 
that the annotated source code is the same for every different spar version, so per-
formance differences relate solely to code generation and underlying runtime paral-
lel system. Save for omp, every other handwritten implementation, as well as SPar’s 
annotated source code, is either from external [1, 3, 7] or previous studies [10, 11].

For every application, the execution time was chosen to assess performance. With 
the execution time, workload information (depicted in the title of the graphs), and 
the number of replicas, most other performance metrics can be derived. Each plot-
ted value in the graphs was obtained from the arithmetic mean of 5 executions per-
formed for each parallelism degree value ranging from 1 up to 24. Additionally, the 
standard deviation is also plotted in the form of error bars, which may not be visible 
in some cases as it is mostly negligible. Concerning the graphs, the x axis is always 
the number of replicas (related to the Replicate attribute), which goes from 1 
up to 24 (number of cores with hyper-threading in the system). Another important 
aspect to consider is that the number of replicas in the x axis may not represent the 
actual active thread count in the system. Rather, each runtime may spawn one dedi-
cated thread for each stage, or in the case of parallel stages, a thread pool is deter-
mined in size by the value of the number of replicas. In the graphs, the y axis is the 
execution time in seconds, using a logarithmic scale 2.

4.2  Performance

The Lane Detect results depicted in Fig. 3a showcased that the application scaled 
up to the 12th replica. This same behavior repeated for every other application. That 
is because the test machine only had 12 physical cores. Another detail is that the 
FastFlow versions deteriorated performance after the 11th replica since they suf-
fered from load balancing issues due to FastFlow’s static scheduling. Even though 
the machine has 12 physical cores, it happened at 11 replicas because FastFlow sets 
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aside a dedicated thread for stage communication. This did not happen in the tbb 
versions, which generate work-stealing scheduling. Regarding omp, among all appli-
cations, it performed up to 0.64% less than pthread, indicating that our new com-
piler algorithm is efficient since the OpenMP code automatically generated is com-
parable to a handwritten low-level Pthreads program.

Figure 3b shows the results for Person Recognizer, which are mostly similar to 
Lane Detect. This demonstrated the consistency of the implementation under drasti-
cally varying workload. In this case, Lane Detect had a maximum throughput of 
157 FPS (frames per second) while Person Recognizer had 16 FPS. Again, for Per-
son Recognizer FastFlow versions, the same load balancing issues happened after 
11 replicas for the same reasons as Lane Detect. Relative to OpenMP and TBB 
versions, SPar code automatically generated performed very similarly to its corre-
sponding handwritten implementation. In this application, spar-tbb and tbb had 
0.17% different performance wise while spar-omp and omp were at most 1.77% 
apart. Also, spar-ff and ff only differed in execution time by 0.74%. Despite the 
comparable performance, the advantage of SPar over the handwritten implementa-
tions is the higher-level parallel programming interface. This is further demonstrated 
in the programmability discussion in Sect. 4.3.

Now, Fig. 3c shows the results for Bzip2 application. The analysis here is more 
complex due to the higher standard deviation. Generally, results were mostly similar, 
but during standard deviation spikes, they differed by up to 10%. This behavior was 
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also observed in [13]. This may be caused by variations in disk access or machine 
configuration. In fact, we confirmed this by performing tests with the same software 
details in a different machine, where the standard deviation was mostly negligible. 
Here, spar-omp and omp were only 1.24% separated.

The final Ferret results are shown in Fig.  3d and highlight the main contribu-
tions of our work. The results demonstrated a clear performance difference between 
OpenMP, TBB, and FastFlow versions. The best versions were pthread and 
omp|spar-omp with a maximum observed difference between the two of 1.72%. 
OpenMP performed better than TBB, which in turn performed better than FastFlow. 
In hard numbers, at the 12th replica, TBB was 10.1% worse than OpenMP, Fast-
Flow was 17.04% worse than TBB, and FastFlow was 25.42% worse than OpenMP. 
Again, SPar versions were very similar to their handwritten implementations coun-
terparts, with performance differences lower than 2.49%. Despite the higher-level of 
abstractions, the execution time is comparable.

4.3  Programmability

In this section, the goal was to evaluate programmability aspects for each parallel 
version evaluated in the performance Sect. 4.2. In Fig. 4, we present the total SLOC2 
(Source Lines of Code) for each version, including the sequential implementation 
seq. The spar version only contains one entry since both spar-ff, spar-tbb, 
and spar-omp used the same annotations. SLOC does not consider blank lines and 
comments, only valid programming language syntax. Alone, SLOC is not expres-
sive enough to conclude which version is more productive to code with. However, 
it provides an overview of the level of code intrusion that each API introduces. It 
represents how much extra code each interface requires to enable parallelism.

Among all applications, spar achieved the lowest SLOC value. At the highest 
amount of SLOC for Bzip2, SPar introduced 9.85% extra SLOC compared to seq. 
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It is closely followed by tbb and ff versions, which are an abstraction layer below. 
As expected, pthread obtained the highest SLOC evaluation, since it is the most 
complex implementation. In fact, pthread introduced up to 230.95% extra SLOC 
regarding seq. The omp-task version was the second highest overall SLOC count 
(up to 123.31%). When putting these results together with the performance results 
previously presented, it is possible to observe that the highest SLOC implementa-
tions achieved the overall best performance results. This is because they provided 
more customization options that can be leveraged by an experienced developer. 
Beyond reducing the SLOC number, SPar reduced the complexity of switching 
between runtime versions (FastFlow, TBB, and OpenMP) since the SPar annotations 
were the same for every one of these APIs. The code can simply be recompiled with 
a different flag. This allows for lower time-to-deploy when changing from one sys-
tem to another.

5  Related work

In this section, we selected related work that investigate OpenMP for stream pro-
cessing or present code generation solutions similar to SPar. The difficulties of 
developing stream processing applications with OpenMP have been noticed by other 
researchers [8, 24]. Aiming to solve this problem, the ompSs [22] programming 
model proposed the use of in, out, inout pragma directives to express data-flow par-
allelism in multi-core, GPGPU, and FPGA environments. They are language exten-
sions. However, their clauses are not sufficient to describe iterative producer item 
generation cycles to feed consumer stages. Another solution called OpenStream [24] 
extended existing pragmas to better represent stream processing application char-
acteristics. They reported better performance than ompSs. The main reason is that 
OpenStream uses persistent tasks, while ompSs assumes lightweight tasks combined 
with work-stealing scheduling. Similarly, our parallel programming abstraction also 
opted for the persistent task approach.

Both ompSs and OpenStream share two fundamental characteristics. The first is 
that both used fixed OpenMP versions with a fixed GCC compiler prototype. On the 
other hand, our solution allows the developer to use any GCC or OpenMP available 
in the system. The second characteristic is that OpenStream and ompSs adopted a 
different stream processing concept than ours. In their case, the programmer speci-
fies a data-flow represented by a directed acyclic graph and lets the interface handle 
parallelism details. On the other hand, we adopted an execution flow with a struc-
tured and domain-specific vision for stream processing.

Related to heterogeneous architectures, some researches have been proposed to 
help abstract the process of developing code that targets both CPU and GPGPU 
devices [20, 21]. Like SPar, they employ a compiler to perform source-to-source 
code transformations. They used an OpenMP inspired methodology as a language 
extension. Unlike these works, our work did not consider GPGPU generation (in 
SPar this was done in [26]). However, since their CPU generation only considered 
default OpenMP, they are limited by the same problems we previously discussed in 
this paper.
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In the field of parallel patterns, FastFlow [2] and Intel TBB [25] are C++ librar-
ies that provide ready to use patterns as structured parallel programming solutions. 
To the programmer, they provide building blocks to instantiate ready-to-use paral-
lel patterns (e.g., Map, Farm, and Pipeline). What they all share in common is that 
the programmer must know the implications of each pattern and the library syn-
tax to manually implement parallelism. GrPPI [6] is an API for existing underlying 
runtime parallel systems. Although GrPPI does not focus only on stream processing 
applications, it does provide a Pipeline pattern. The patterns are deployed as C++ 
templates, which means the programmer must refactor the code into their specific 
API. Comparatively, the annotation approach adopted by SPar allows the program-
mer to maintain the original code structure and also abstracts from the programmer 
pattern syntax details. Besides, GrPPI requires the programmer to choose the best 
parallel pattern, while our programming abstraction takes advantage of the trans-
formation rules to automatically generate a suitable parallel pattern. GrPPI could be 
considered as another runtime to SPar.

Advances in parallel patterns have been made in [5]. In it, the authors proposed 
patterns suitable for data parallelism and stream parallelism. These patterns were 
later implemented in FastFlow, which is SPar’s default underlying parallel runt-
ime system. Another abstract parallel programming API is Intel’s CILK [17]. Its 
simplicity is well demonstrated by its only three keywords (cilk_spawn, cilk_sync, 
and cilk_for). However, similarly to OpenMP, it cannot support stream parallelism. 
As an extension, the work of [16] has proposed on-the-fly Pipeline parallelism for 
CILK as well as work-stealing scheduling. However, [16] also requires sequential 
code refactoring and its interface has not been updated since the publication date.

More closely related to SPar, StreamIt [27] is a stream DSL. StreamIt is more 
productive in expressing stream parallelism and communication than traditional C/
C++ libraries. It has a straightforward and flexible structure that can be composed 
to create complex stream graphs without requiring significant modifications to the 
source code. However, StreamIt requires the programmer to learn new restrictive 
language syntax and semantics that are specific for their stream computation con-
cepts. In contrast, we used standard C++ embedded into the programming language 
syntax.

Table  3 summarizes and compares this work with the main aforementioned 
related research. It was partially extracted from [8]. Highlighted in red is SPar, 
which is the interface used in this work to abstract OpenMP stream processing 
code. In the table, tools specify the methodology used to make the parallelism avail-
able and stream paradigm indicates if the runtime adopts a stream parallelism or 
data-flow approach for stream computation. Data-flow is a directed acyclic graph 
expressed computation where the runtime defines when and if to parallelize some 
code at a lower-level. On the other hand, stream parallelism uses a parallel pattern 
approach to perform its computations and specify an execution-flow. The parallelism 
shows if the shared-memory and communication mechanisms are explicit, implicit 
or abstract from the users perspective.

This work is the only one that fulfills all of the presented characteristics. Only 
this work, OpenMP, OpenStream and ompSS are annotation based. Another impor-
tant aspect in Table 3 is parallelism. It can be abstract, where the programmer does 



7674 R. B. Hoffmann et al.

1 3

not need to code with data oriented concerns since the interface handles these 
aspects, or explicit where the programmer must consider data characteristics in their 
design. In this case, only SPar and StreamIt are abstract. However, StreamIt requires 
the programmer to learn a new language while SPar uses C++ standard annotation 
mechanisms. Finally, most parallel runtime systems design goals focus at extracting 
maximum performance and productivity while ignoring abstractions. They require 
the programmer to understand at least the basics of data-flow specification or API 
definitions. They could potentially be used as future target underlying SPar runtime 
parallel systems.

In a nutshell, our scientific contribution is not SPar itself as it was already defined 
in the past [9]. Rather, we proposed an efficient stream Pipeline for OpenMP and 
implemented a new compiler algorithm for automatically generating parallel code 
based in this OpenMP Pipeline template. Besides, we created new definitions and 
transformation rules to leverage source-to-source code transformations and that can 
be further extended to support other non-structured parallel APIs besides OpenMP. 
So, we inherit all SPar characteristics, meaning that we are the only OpenMP solu-
tion that uses C++11 attributes for multi-core stream parallelism while focusing 
mainly on abstractions.

6  Conclusion

In this paper, we investigated an approach to simplify the development of OpenMP 
parallel stream processing applications employing source code annotations. We 
started by describing a template for OpenMP Pipeline processing and implementa-
tion requirements. From that, we used SPar’s higher-level set of annotations to auto-
matically generate the OpenMP Pipeline code. For that, we created and explained 
new SPar transformation rules for OpenMP stream processing that could be used in 
SPar for other non-structured parallel programming API’s such as C++ threads. In 

Table 3  Related work comparison

API Tools Stream Target Parallelism
paradigm architecture

SPar C++11 attributes Stream Multi-core Abstract
parallelism

StreamIt New language Stream Multi-core Abstract
parallelism and cluster

OpenMP C pragma Data-flow Multi-Core Explicit
and accelerators

OpenStream C pragma Data-flow Multi-Core Explicit
ompSS C pragma Data-flow Multi-core Explicit

and Accelerators
Cilk-Piper C/C++ Stream Multi-Core Explicit

language extension parallelism
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the experiments, we evaluated four stream processing applications comparing hand-
written state-of-the-art code with SPar’s automatically generated parallel code.

We observed that all SPar generated code performed only 2.49% less when com-
pared to the handwritten solution. Additionally, it was possible to improve the exe-
cution time by up to 25.42%. Evaluating programmability aspects, we observed that 
SPar is the parallel programming API that requires the lowest amount of extra code. 
It is worth mention that our solution is limited to multi-core architectures. Addition-
ally, our OpenMP Pipeline implementation performance might be degraded by lock 
contention. In the future, this could be addressed by using fine-grained lock access 
or employing lock-free multiple single producer single consumer queues. Other 
future works are enabling different parallel patterns to support big data applications 
and integrating other architecture support such as GPGPU or distributed systems.
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