Computing (2023) 105:1077-1099
https://doi.org/10.1007/s00607-021-01025-6

SPECIAL ISSUE ARTICLE

®

Check for
updates

SPBench: a framework for creating benchmarks of stream
processing applications

Adriano Marques Garcia'(» - Dalvan Griebler' ® - Claudio Schepke?
Luiz Gustavo Fernandes'

Received: 15 May 2021 / Accepted: 22 October 2021 / Published online: 10 January 2022
© The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2021

Abstract

In a fast-changing data-driven world, real-time data processing systems are becoming
ubiquitous in everyday applications. The increasing data we produce, such as audio,
video, image, and, text are demanding quickly and efficiently computation. Stream
Parallelism allows accelerating this computation for real-time processing. But it is still
achallenging task and most reserved for experts. In this paper, we present SPBENCH, a
framework for benchmarking stream processing applications. It aims to support users
with a set of real-world stream processing applications, which are made accessible
through an Application Programming Interface (API) and executable via Command
Line Interface (CLI) to create custom benchmarks. We tested SPBENCH by implement-
ing parallel benchmarks with Intel Threading Building Blocks (TBB), FASTFLOW,
and SPAR. This evaluation provided useful insights and revealed the feasibility of
the proposed framework in terms of usage, customization, and performance analy-
sis. SPBENCH demonstrated to be a high-level, reusable, extensible, and easy of use
abstraction to build parallel stream processing benchmarks on multi-core architectures.

Keywords Parallel computing - Stream parallelism - Performance analysis -
Computing workloads - Parallel programming

Mathematics Subject Classification 68W27 - 68U01 - 68M20

1 Introduction

The parallelism in stream processing is exploited explicitly through the implemen-
tation of operators or stages in a sequence that can be view as a directed acyclic

B Adriano Marques Garcia
adriano.garcia@edu.pucrs.br

1 School of Technology, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto
Alegre, Brazil

2 Federal University of Pampa (UNIPAMPA), Bagé, Brazil

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s00607-021-01025-6&domain=pdf
http://orcid.org/0000-0003-4796-773X
http://orcid.org/0000-0002-4690-3964
http://orcid.org/0000-0003-4118-8831
http://orcid.org/0000-0002-7506-3685

1078 A. M. Garcia et al.

graph [1]. These graphs can present different patterns of parallelism such as pipeline,
data, and task parallelism [2]. Moreover, different Parallel Programming Interfaces
(PPIs) such as libraries, frameworks, and Domain-Specific Languages (DSLs) are
adopted to express and exploit stream parallelism. Some target distributed systems
and Java-based languages, for instance: Apache Flink [3], Apache Storm [4], and
Apache Spark [5]. These distributed platforms rely on the Java Virtual Machine (JVM)
to abstract the underlying hardware and streamline the development process of such
commercial platforms. Unfortunately, JVM cannot provide efficient data access due to
processing overheads. The overhead is induced by data serialization (and deserializa-
tion), objects scattering in main memory, virtual functions, and garbage collection [6].
Such disadvantages, allied to the advancements in multi-core technologies, turn PPIs
targeting shared-memory systems and C++, such as Intel TBB [7], FASTFLOW [8],
SPAR [9], GrPPI [10], and WindFlow [11], quite interesting for adoption and investi-
gation.

New PPIs and related solutions are constantly evaluated in the stream processing
domain. Some researches focus on evaluating PPIs [11-14] or developing techniques
to improve different aspects of them, such as self-adaptive parallelism [15], perfor-
mance optimizations [16], add new features [17], and support for new parallelism
abstractions [13,18] and architectures [14,19,20]. There are some recent initiatives
to build stream processing benchmark suites [21-26] that could be useful for such
researchers to evaluate their work, and evaluate and compare different PPIs. However,
none of them provide a suitable programming abstraction to create custom benchmarks
for evaluating new PPIs, parallelism strategies, platforms, architectures, and others.
Therefore, researchers end up having to develop their specific-purpose solutions that
require a huge effort or use outdated benchmarks [8,11,27-29].

In this paper, we first present SPBENCH', a framework for benchmarking stream
processing applications over a variety of options. It continues our previous research
work published at [30], which was preliminary and lacks several conceptual ideas of
the proposed framework regarding the API (new application) and evaluation (newer
computer architecture and other benchmark versions). SPBENCH aims to provide a set
of real-world stream processing applications for the C++ community in a higher-level,
reusable, and cleaner abstraction so that users can fast or with minimal effort build
custom benchmarks for evaluating different approaches or technologies. SPBENCH
offers an API to program stream processing applications in a standardized way, which
automatically supports different performance metrics that can be evaluated across
multiple layers. It also envisions automatically support different workload options
such as data sources, problem sizes, and others.

One of the main features of SPBENCH is the way the user interacts with the bench-
marks. Figure 1 illustrates how this interaction occurs and how it differs from others.
This interaction is usually direct and manual in other benchmarks. Users select an
application, compile, and run it with a given workload and performance metric. To
add a new parallel implementation, users need to do the integration manually as well.
Most parallel benchmark suites do not even provide a sequential version of the parallel
benchmarks for users to start a new version.

1 https://github.com/GMAP/SPBench.

@ Springer

https://github.com/GMAP/SPBench

SPBench: a framework for creating benchmarks... 1079

i |
Source ! !
and sink | Sequential Library !
! G — . 1
SPBench : applications dependencies :
1 1 Benchmarks
- : : database
etrics 1 1
]
n Command / i Parallel | l
—> line API ! benchmark — PPls :—)L’
A Interface suite
/&%\ \ Workload i o i]
classes ! i
i i
| User's 1
! custom —— NewPPls ||
! benchmarks !
[— — —
—— e)
Other benchmarks | Parallel !
I
I~ benchmark PPIs r e
! - 1 classes
m : suite !
> |
! I
A2 | Users |
| custom —— NewPPls | —— Metrics
| benchmarks |
]

Fig.1 SPBENCH methodology versus other benchmarks

In SPBENCH, the interaction occurs through a command-line interface (CLI).
SPBENCH maintains a database of the suite of benchmarks. With CLI, users can access
these benchmarks, modify them, and even add new custom versions. The CLI allows
new versions to be easily integrated, reimplemented, and configured. It also manages
the compilation and execution process of the benchmarks, allowing users to select dif-
ferent data sources, workloads, and performance metrics. Our scientific contributions
are twofold:

— A framework to create benchmarks of stream processing applications. It provides
an API and CLI to simplify, reuse code, customize, extend, and evaluate different
aspects or properties regarding parallel programming and architectures.

— A performance benchmark of Intel TBB [7], FASTFLOW [8], and SPAR [9] on
stream processing by using SPBENCH.

The paper organization is as follows. Section 2 discusses related benchmark suites
and frameworks. Section 3 presents the SPBENCH and all its features, including the
API, the current applications set, and the CLI. Section 4 presents a use case of
SPBENCH. We use the framework to characterize the applications, build custom par-
allel benchmarks, and evaluate the performance of some PPIs. Finally, Sect. 5 draws
our conclusions and discusses possible future works and challenges that come along
with them.

@ Springer

1080 A. M. Garcia et al.

2 Related work

First, we searched for benchmark suites of stream processing or benchmark suites that
include at least some stream processing applications. We found the following bench-
mark suites: RIoTBench [23], StreamBench [24], StreamBench [25], SparkBench
[26], DSPBENCH [21], Streamlt [31], and PARSEC [32].

Most of the stream processing benchmark suites focus only on data stream appli-
cations [21,23-26]. These are applications that intersect the domains of Big Data and
IoT, which are developed using frameworks for distributed platforms. All of them
are implemented in JVM languages. The remaining benchmark suites [31,32] include
some stream processing applications, but their benchmarks have limitations in terms
of programming language, parallelism exploitation, execution metrics, and paramet-
ric options [27,33]. The benchmark suite provided by SPBENCH focuses on the C++
community and aims to include any type of stream application. It also includes most
of the representative metrics found in related work [21,26].

Past work already discussed the related work regarding benchmark suites in
detail [30]. Therefore, this paper focuses the discussion on related frameworks instead.
These are frameworks that ease somehow the parallelism or the use of stream appli-
cations. NAMB (Not only A Micro-Benchmark) is a platform for the generation of
prototype applications based on their high-level description [22]. It consists of a frame-
work based on fundamental data stream characteristics that supports a configurable
topology description. It aims is to avoid the user having to edit the application code. It
can generate a set of synthetic/micro-benchmarks as well as prototypes of Java appli-
cations for Apache Flink, Storm, and Heron platforms. The framework also allows
users to change input data frequency, parallelism degree, tuple size, etc.

Theodolite is a framework for evaluating the scalability of distributed plat-
forms [34]. This framework comprises a seven-dimension workload generator for
microservice architectures. The middleware is an Apache Kafka system that allows
changing the characteristics of the stream, such as item frequency, and add multiple
sources. It includes four benchmarks with Apache Flink and Apache Kafka Streams.

SpinStreams [16] is a framework for predicting the performance of a given stream
application and statically restructure its data flow topology to improve performance.
It tries to apply operations such as join and fission to stages to correct backpressure
and bottleneck problems in specific way. It supports Java applications and generates
parallelism for the Akka Streams engine.

Similar to [34], there are several others focused on generating workloads to test
different aspects of distributed PPIs. In [35] their framework runs in a separated sys-
tem and generates realistic workloads to evaluate latency and throughput of DSPSs,
supporting stateful performance analysis. [36] provides network security monitoring
for data streams to test the ability of the most common distributed PPIs to process
this type of data. [37] proposes a framework to generate representative workloads for
social media applications to evaluate DSPSs.

Table 1 summarizes and compares the main features of each related framework,
including SPBENCH in the last row. Although all of these frameworks are designed for
distributed platforms, they provide workloads only for domain-specific applications,
as shown in the second column of the table. SPBENCH targets any stream processing.

@ Springer

1081

SPBench: a framework for creating benchmarks...

SJUTEI)SUOD BAR[0} 9NP SW| Jopun [eAIour o[dnj-Iojur ue Jos J0U Ued] 4

SISATeUE 0JUBWIIO}Io]

J0ye19do-19g4
Quin-3urssaoolq :Koudre|

uoneIauas yrewyouag a3esn
Kseqg 9)INS YIeWYOULYg ‘WRN/NdD IndySnoayy, Surssedold Krowour-ug QI0ON NN 3uIs$2001J WEANg [eIoun) HONAGJS
SISATeUR 90URULION] Adouare] owN-JUIAY so01nos a[dnnA
Kseq UONBIAUAS BIRp ONAYIUAS ndy3noxy, Kouonbaryeleq panquisIq (e1paul [e100S) WEANSs Bleq [sel
SISA[RUR 90URULIONS]
Ksed JON QJINS YIBUWIYOUIG-OIOIA ndy3noxyg, soomos o[dnny paInquusiq Surssao01d mo[JION [9¢]
$901n0s J[dnnA
SISA[eu’ 90UBULIONIOJ 9zIs JaseIe(
Ksea JON uonerouds ejep ndug ndy3noxy, Kouanbaiy vle(q 1001 NN (eyep payuIy) weans eleq [Le]
SISATeUR QOUBWLIONOJ soyoIeq POXIA
uoneIduas BIep JUAYPUAS $201n0s [dnnA
Asea 10N 9)INS MIBWYOUAq dNAYIUAS Aniqereos Kouonbaryeieq panquusiq (SOOIAIRSOIOIUT) WEBANS BIe(] [¥€]
SISA[eUR 90UBWLION]
uoneziundo aourwWION]
o[y wistorered onewony ndySnoayy, Kousnbaryeie@ paInquusIq weans eieq [911]
uoneIduas vjep onoyIuks
wsta[ered snewony oz1s ordng,
o[y uonerouasd uoneorddy sAouanbaiy eleq - pangusig weans ejeq [zz]
ANpqisuaIx? 1dd [eon sommow payioddng SISYIPOW Weans wojie[d suoneorjdde 1031e], ‘MY

JIom PaJE[aI JO SONSLIgYOBIRYD urew jo uostredwo)) | d|qel

pringer

as

1082 A. M. Garcia et al.

In addition, most of these frameworks focus on distributed platforms. SPBENCH tries
to meet the growing trend of stream processing on multicore systems, but we also look
at supporting distributed architectures in the future.

In addition, most of these frameworks focus on distributed platforms. SPBENCH
tries to meet the growing trend of stream processing on multicore systems, but we
also look at supporting distributed architectures in the future. In addition, none of the
related frameworks we found support C++, all of them target JVM languages.

The fourth column of the Table 1 lists any modifications to the input stream that the
frameworks support. The most common modification allows the user to change the
data arrival frequency, use multiple data sources, or select tuple/batch/dataset size. For
now, SPBENCH only supports in-memory processing as a stream modifier. However,
data frequency (microsecond precision), multiple sources, and batch size control will
be included in the following stages of implementation.

Regarding metrics (fifth column), throughput is the most common. [34] is the
only framework that supports a specific composite metric called scalability. Latency
can be evaluated in at least three dimensions: event-time, processing-time, and per-
operator [35]. SPBENCH can evaluate latency in these three dimensions. In addition,
SPBENCH also evaluates memory and CPU consumption. Our framework can evaluate
and monitor these metrics in different time dimensions as well: end-to-end (global
average), per item, and per custom time intervals. Hence, SPBENCH allows users to
evaluate benchmarks comprehensively at different layers.

The second-to-last column of Table 1 tries to summarize the goals of each frame-
work. Most of them include some small benchmark suite with performance evaluation.
Other goals revolve around the generation of applications/benchmarks, input data, or
parallel code. However, this code/data generation part is usually tied to specific PPIs,
which limits the extensibility of them. Frameworks marked as difficult to extend (in
the last column) are those that require a lot of programming effort to support a new
PPI. That being a task most reserved for the framework’s developers. By “Not easy”
to extend we mean that the framework’s code still requires some modification, but
experienced users can do this. And easy to extend means that no change is required
on the framework’s source code to add an implementation with a new PPI. SPBENCH
is in this category, where the user only needs to write the parallelism and describe the
building dependencies.

3 SPBench

In [29], the author proposed SPAR [9] for expressing high-level stream parallelism.
The “high-level” term, in that context, is for parallelism abstractions that prevent the
user from the deal with details related to parallel architecture optimizations, avoid
code rewriting, and reduce the programming effort to support parallelism. This PPI
requires the programmer to only annotate the parallelism without having to rewrite the
original code. Programmers basically must identify the operators and their respective
data dependencies. Hence, SPAR is one of the PPIs for stream parallelism that offers
the highest level of parallelism abstractions for programmers.

@ Springer

SPBench: a framework for creating benchmarks... 1083

Stream processing application

Disk Disk

Memory| Source Sink Memory|

Networ T T Network|

1
Performance Metrics

API/Middleware

Customized parallel
Benchmark Suite implementations from users

SPBench sequential benchmarks Some PPI Some other ¢ New PPI§ or
PPI new versions

int main(int argc, char *argv[]){

>

init_bench(argc, argv);

1

2

3 while(1) {

4 Item item;

5 if(!source_op(item)) break; O—PO 00 3
6 operator_op(item);

7

o 1

sink_op(item);}
}

v v

Command-Line Interface

New /—P\Conﬁgure Compile /—P\ Execute

$ bench new -name my_parallel_implementation -bench <some of the suite benchmarks> -ppi <some PPI>

$ bench configure my_parallel_implementation

$ bench compile my_parallel_implementation

$ bench exec my_parallel_implementation -input <input file> -source <disk, memory, or network> -latency -throughput ...

Fig.2 SPBENCH framework

There are stream processing applications with thousands of lines of code, where it
can be still very difficult to identify the beginning and end of each operator, and also
identify all the data dependencies across them. Therefore, exploring stream parallelism
can be difficult even using high-level abstractions and PPIs that provide structured
parallel patterns such as FastFlow [8] and TBB [7].

Stream parallelism is still a challenging task, even disregarding the complexity
of writing parallel code. The goal of the SPBENCH is to ease for programmers to
write their parallel code and create a specific custom version for benchmarking stream
processing. The structure of the framework is illustrated in Fig. 2. The framework has
three main parts: the API (on top), the applications/benchmarks area (middle), and the
command-line interface (bottom).

3.1 SPBench API

The kernel of SPBENCH is an API that offers three main advantages to users: (1) it
allows the implementation of stream processing applications in a modular, reconfig-
urable, and standardized way; (2) it automatically and transparently adds all the main
benchmarking metrics used in this domain, which can evaluate the benchmarks in dif-
ferent layers and time dimensions; (3) and it can offer various workload customization,
such as data input rate, batch size, different and multiple sources, etc.

To build this API, we disassemble all operators from the original application and put
them individually into a new source code. This way, the application calls the operators

@ Springer

1084 A. M. Garcia et al.

by including a C++ header file with their implementations. Beside operators, the API
also encapsulates the data communicated among them and manages the input/output
streams (sources and sinks). It must also handle the management of command-line
arguments, variables initialization, metrics, and some other application requirement.
Therefore, an application inside the framework integrates all of this and makes it totally
transparent for the user.

In the SPBENCH API, all operators of an application are encapsulated individually,
from source to sink. For this, we first optimized and restructured the application code so
that the different operators are highlighted and data dependencies identified. Then, we
rewrite them as individual functions, containing the sequential code of the respective
operator. Here, code for time measurements are added at the beginning and end of the
operator for later performance computations. Operators can be accessed by functions
calls, for instance: OperatorName_op ().

The API also encapsulates the dependent data into a class called Item. Although
this is standardized for all applications, the data within this item may vary for each
case. Therefore, each application have its own type of data item with a variable
structure, which must load all the data communicated across the operators. These
items are also optimized to avoid over-sizing. In the application implemented with the
SPBENCH API, these items must be used as argument when calling the operators, such
as OperatorName_op (item).

3.1.1 Input data management

Besides the internal operators, each application must have at least a source and a
sink operator. The source operator receives the task for initializing the data item with
the data received from external sources. Sink works similarly, but in reverse mode. The
framework must support three alternatives for external source or sink: disk, memory,
or network. In the “disk” option, the application receives a pointer to a file on disk
and the source operator reads micro-batches of it, which can be a video frame, a set of
frames, a block of bytes, etc. The items are processed and then received by the sink,
which builds the resulting file on disk.

The “memory” option consists of an in-memory execution. Specialized in-memory
stream processing architectures are emerging ([38,39]) and our framework must also
address such architectures. To do so, the input file is first loaded into memory. Then,
the source operator receives only the memory address of the data and makes the
assignment of the memory blocks to each item.

The third external source/sink option planned is “network”. This option is important
to represent some real-world scenarios. For instance, a Person Recognition application
could receive video frames from a monitoring camera over the network. This option is
the most complex functionality to implement in SPBENCH and we are still working on
it. This system must run independently, simulating real external data stream sources.
So, it has to run in a parallel thread alongside the application and use communication
protocols.

To simulate realistic scenarios, it is necessary to induce other different behaviors.
SPBENCH has to allow users to vary the frequency of arriving items and batch size
anytime during the execution. In addition, it must support input streams from multiple

@ Springer

SPBench: a framework for creating benchmarks. .. 1085

sources. All of these features need to be generic enough to support all applications
workloads (when required) and be easily configurable. SPBENCH will also allow users
to register custom workload classes.

3.2 SPBench benchmarks

In the middle part of Fig. 2 (under the API region) is the benchmark applications
area. SPBENCH have three distinct sets of applications: default sequential applications
(left), applications from the benchmark suite (center), and custom benchmarks added
by users (right).

The piece of code in Fig. 2 (left) is an implementation example of a sequential
application with its operators using SPBENCH’s API, where applications share similar
program structure. The only thing that changes among applications are the name
and amount of internal operators (line 6 in the example). In real applications, the
amount of internal operators can vary from a single one to over a dozen. Besides the
internal operators, all other elements are identical in all applications for simplicity. All
this standardization of elements and operators names and code structure is planned
to facilitate the understanding of applications. Once users understand the structure
of an application, they can automatically understand the structure of all of them.
Thus, maintaining this structure is important to increase parallel code reuse among
applications.

Listing 1 Example of custom benchmark using the SPAR PPI.

/*beginning of the stream region?*/
[[spar::ToStream]] while (1) {

Item item;

//Read a piece of data from a external source

if (!source_op(item)) break;
[[spar::Stage, spar::Input(item), spar::O0Output(item), spar::
Replicate ()11¢{

//A single operator 1in the pipeline stage
operatorA_op (item) ;

}

[[spar::Stage, spar::Input(item), spar::Output(item), spar::

Replicate ()11]1¢{

//Two operators combined in the same pipeline stage
operatorB_op (item) ;
operatorC_op (item) ;

}

[[spar::Stage, spar::Input(item)]]{
sink_op(item); //sink operator

}

}

/*end of the stream region*/

Based on the sequential applications, programmers can write the parallel code using
some PPI and build their own custom benchmarks. These benchmarks automatically
include all performance metrics and workload management. This way, users can focus
only on the parallel code and parallelism strategies.

Listing 1 presents an application example with three intermediate operators, besides
source and sink. It shows how it looks like a customized implementation. This example

@ Springer

1086 A. M. Garcia et al.

uses SPAR to implement a four-stage Pipeline parallelism strategy with replicated
stages. As can be noted, no single rewriting of the original code is needed. The first
Pipeline stage runs the source operator. The second stage runs n replicas of operator
A. The third stage combines the operators B and C and also runs » replicas of them,
and last stage runs the sink operator. In this way, users can set up different parallelism
strategies just by moving the sequential operators around, without having to deal with
large blocks of code or worry about data dependency. For stateful operators there are
some limitations and synchronization mechanisms may be needed.

These custom parallel implementations are represented by the right part of Fig. 2.
However, SPBENCH also provides users with several ready-to-run parallel implemen-
tations, using different PPIs and parallelism strategies, for all applications. These
parallel implementations that come with the framework are the SPBENCH benchmark
suite (shown in the center of Fig. 2) and later presented in this work.

3.3 Current applications set

The current applications set of SPBENCH comprises four real-world applica-
tions: Bzip2,Lane Detection,Person Recognition,and Ferret (PAR-
SEC [32]). These applications have already been studied and used as benchmarks in
prior work [12,13]. Although, they were reimplemented to fit in SPBENCH API. Our
plan is to include more stream processing applications in the near future.

— Bzip2 [40] is a free and open-source data compression application. It compresses
data more effectively than the older LZW (.Z) and Deflate (.zip and .gz) algorithms,
but it is considerably slower than them. Therefore, parallel implementations that
increase compression speed are useful. This application can be divided into a three-
stage Pipeline (source, compress/decompress, sink), as shown in Fig. 3a, and has
two operation modes: compress and decompress.

— Person Recognition [41] tries to match human faces from a video frame against
a database of faces. It could be used to recognize faces in a crowd and compare
against a police database to identify wanted criminals, for instance. For each video
frame it applies a detection algorithm to detect all the faces in it. Then, it uses
a set of face images and compares each of the detected faces in the frame with
the faces on that set. The recognized faces are marked with a circle, and then the
frames are written to the output file. Therefore, this application can be divided into
a four-stage Pipeline, represented by Fig. 3b. This application is described with
details in Reference [13].

— Lane Detection is the task of detecting lanes of a road from a camera device. It can
be used to keep autonomous cars on track to avoid collisions, for instance. This
application captures each frame of a input video file and applies three computer
vision algorithms. It can be divided into a nine-stage Pipeline, as shown in Fig. 3c.
Through these stages, the detected lanes are marked with straight lines in a new
frame. This new frame with the marked lanes is then overlaid on the original, and
the resulting frame is written to the output file. More details about this application
can be found in Reference [13].

@ Springer

SPBench: a framework for creating benchmarks... 1087

Compress/
Decompress,

a) Bzip2 b) Person Recognition
(a) Bzip (g

(c) Lane Detection

(d) Ferret

Fig.3 Applications flow graphs

— Ferret is a PARSEC [32] application intended for a content similarity search in
data such as video, audio, and images. In PARSEC the parallelism is implemented
with POSIX Threads using a six-stage Pipeline (Fig. 3d). The first and last ones
are source and sink. The second stage performs the segmentation, a process that
organizes the regions of each image into sets. The third stage extracts 14 features
from the segmented regions of each image. The fourth stage (vectorization) applies
anindexing method, which selects possible similar images. The fifth stage performs
arefined search of the images selected in the fourth stage, ranking the most similar
images.

3.4 Performance metrics

The goal of SPBENCH is to ease the creation of custom benchmarks for stream
parallelism from real-world stream applications. These benchmarks need to be repre-
sentative for the scenario being evaluated. Therefore, it needs to provide evaluation
metrics that are also representative. [21] conducted a broader survey and identified
some metrics that were more representative in stream processing benchmarks. The
result of the survey is similar to what we identified in our related work. Therefore,
SPBENCH also includes such metrics, which are: latency, throughput, and resource
usage, such as CPU and memory.

— Latency: It is basically the time need to complete a task [2]. It can be the time
a operator takes to process a single item, or the the time the application takes to
process this item from end-to-end. Lower latency is better.

@ Springer

1088 A. M. Garcia et al.

— Throughput: It is the rate of processed items per unity of time. Higher throughput
is better.

— CPU and Mem. usage: Here this metric refers to CPU and memory usage. It can
be used to monitor an application and analyze the behavior of different workloads
at discrete intervals of time.

The framework applications implemented with the API offer these metrics by
default to developers. That is, custom parallel implementation have these metrics
automatically available and users can enable or disable them at runtime. The perfor-
mance can be evaluated at different levels of accuracy and detail. About accuracy, it
consists of the granularity of the measurement. Here users can choose a fine-grain
evaluation, such as once per item, at minimum, or they can also select coarse granular-
ities dynamically. Here, it is necessary to define a time interval in which the selected
metrics will be measured, as once per second.

Regarding detailing, in SPBENCH users can select three levels. The first level pro-
vides a global average of the selected metrics, considering the execution as a whole and
measuring latency and throughput from end-to-end of the Pipeline. This level allows
the evaluation of global performance of the application. The second level presents
such results as an average per operator, individually. This is important for the user to
evaluate aspects such as bottlenecks and load balancing between operators, allowing
the optimization of the parallelism strategy.

The third level monitors the metrics at time intervals defined by users and generates
areport. This greater level of detail allows the application to be monitored throughout
the execution and the workload characteristics to be evaluated. All measurements are
calculated and stored in-memory, to reduce disk I/O overhead and printed into a file
when computation ends.

3.5 Command-line interface

The bottom of Fig. 2 illustrates the SPBENCH Command-Line Interface (CLI). This
interface allows users to run all applications, modify the provided benchmark codes,
implement new versions, add implementations with new PPIs, select different work-
load configurations, select and configure performance metrics, and among others. (see
Fig. 1). Bellow are the main commands:

— ‘new’ - create a new copy of an application for users to customize and implement
their own benchmark with one of the PPIs available in the framework.

— ‘edit’ - open the source code of a application/benchmark for the user to write/-
modify the parallel code.

— ‘configure’ - open for editing a JSON file that allows the user to insert specific
compilation commands, library dependencies, compiling and PPI flags, etc.

— ‘compile’ - compile a specific benchmark.

— ‘execute’ - execute a specific benchmark (here users can select workload options,
execution metrics, and add custom arguments).

@ Springer

SPBench: a framework for creating benchmarks. .. 1089

4 SPBench use case

In this section we present a use case for SPBENCH. We first run the sequential appli-
cations to characterize their behavior and the workloads. Here we demonstrate how
the metrics work in monitoring mode. Next, we use the SPBENCH interface to create
parallel versions of the applications with different PPIs. Then we use these parallel
versions as benchmarks to compare and evaluate the performance of these PPIs. At
the end, we summarize and discuss the results (Sect. 4.5).

4.1 Experimental setup

The experiments were performed on two computers. The one we used for most exper-
iments in this paper has 64 GB of RAM and two processors Intel® Xeon® Silver 4210
(total of 20 physical cores and 40 threads with Hyper-Threading). We will refer to
it as “computer A” in the following sections. The operating system was Ubuntu
Server 20.04, 64 bits, kernel 5.4.0-59-generic, and GCC 9.3.0 using —O3 optimization
flag. Other libraries used were OpenCV version 2.4.13.6, Intel® TBB 2020 Update 2
(TBB_INTERFACE_VERSION 11102), and FASTFLOW version 3.

The second computer (computer B) has 32 GB of RAM and two processors
Intel® Xeon® E5-2620 v3 (total of 12 physical cores and 24 threads). Benchmarks
for the Bzip2, Lane Detection,and Person Recognition applications have
already been run on this machine using SPBENCH in [30]. Hence, here we only evaluate
the parallel benchmarks for Ferret, which is the application that has not yet been
evaluated on this architecture.

To monitor the sequential applications, we used the routines of the SPBENCH API
itself. These routines allow us to monitor runtime with microsecond precision and get
CPU/memory usage information obtained from the /proc/ [pid] /stat pseudo-
file. Although each new item can be monitored, we choose to monitor every 250 ms
and all performance metrics are stored in a vector and calculated after the stream
region, to avoid interfering with the results. For parallel executions, we used 1-40 and
1-24 replicas. Zero replica indicates the result of sequential applications. Each result
represents the average of 10 executions, with standard deviation properly included in
the graphs with error-bars.

Due to the space constraints, we evaluated the applications using a single workload
and input type. For Bzip2 benchmarks, we used an ISO Image of 702 MB as an
input file, using 900 KB micro-batches. We choose 640 x 360 resolution MPEG-4
videos with 450 frames for Person Recognition and 1858 frames for Lane
Detection. Finally, for Ferret we used the native workload from PARSEC [32].
The validation of the results was done through the md5sum tool, comparing our
solution with the ones given by the original applications.

4.2 Applications characterization

To show the behavior of the applications and how they differ from each other, in Fig. 4
we present the characterization results for the sequential applications. We monitor

@ Springer

1090 A. M. Garcia et al.

Bzip2 (Compress) Lane Detection Person Recognition Ferret

2100 |- | 100 |- 100 oo 100 fpomsssier——y
s [[
[
8 50 | 50 50 |- 50 |
-]
o
© 0 0 0 0
@13 69 |- 86 - 100
=3
e12 - 66 |- 80 |- 50 |-
§
="r 63 |- 74 | ol
_ 05 0.2 - 11 2.4
@
&
£ 03 0.1 0.8 1.2
5

0.1 [= 0.5 0
e)
c | 4.5
8 5.5 12 1.5
[0
(2]
2 5 11 1.2 u 3.5
[22]
g
=45 . 10 0.9 . 25 . .

0 80 160 0 90 180 0 200 400 0 500 1000

Execution time (seconds)

Fig.4 Characterization results for the sequential applications

latency, throughput, and CPU and memory usage, which are the metrics currently
supported by SPBENCH. Analyzing CPU usage, we can see that all three applications
used 100% CPU almost all the time. It shows great potential to achieve performance
through parallelism. Regarding memory, they present distinct behaviors. Bzip2 is
the application that used less, and Person Recognition presents a lower curve
until reaching its maximum level. Ferret presented a stable memory usage, a high
variation in latency, and a consistent throughput throughout the execution.

The variation in latency and throughput is explained by the workload characteris-
tics. The sharp drop in latency in the second half of the Person Recognition
execution exactly matches the moments when there is no front face identified in the
input video and, therefore, no face to be recognized. These moments of more or less
activity also apply to the other applications. The throughput at each time point repre-
sents a partial average of the execution as a whole. Therefore, it is not immediately
impacted by changes in the workload, unlike latency, which is not affected by previous
results.

@ Springer

SPBench: a framework for creating benchmarks... 1091

4.3 Building custom benchmarks

To evaluate the main features of SPBENCH, we use it to build custom benchmarks
that will be made available for users along with the sequential versions. We paral-
lelize them using Intel TBB, FASTFLOW, and SPAR, and evaluate their performance
only in terms of latency and throughput due to space constraints. These PPIs were
chosen because they are widely used for stream processing in C++. TBB offers few
customization options and is by default very well optimized for these scenarios that
we will test. On the other hand, FASTFLOW provides more optimization options, and
it is up to the programmer to understand the characteristics of each application and
workload to extract the maximum performance. In contrast, SPAR provides a small
set of annotations to express stream parallelism. Its compiler generates parallel code,
calling FASTFLOW’s pattern routines.

For FASTFLOW and SPAR, we implemented an on-demand + blocking queue
configuration [8], as recommended by [13]. We also built benchmarks version using
the custom FASTFLOW’s thread mapping (physical cores first) and without it (default
mapping). For all benchmarks a Farm pattern is implemented with the PPIs. This
parallelism strategy was based on prior works [12,13]. Our focus is not to provide
a very optimized version, because there are several options that could be combined
in each PPI, instead we provide the basic strategies suggested in the state-of-the-art
works for these applications. Other researcher interested in deeply evaluate each PPI
may extend and continue this study using SPBENCH.

Bzip2 has three operators: source (), compress () (or decompress()),
and sink (), which can be seen in Fig. 3a. The operator in the middle is stateless,
which means that it does not need to keep the state of previous iterations and can work
independently on each iteration. Therefore, we implement the parallelism instantiating
a ordered Farm pattern in FASTFLOW (££_OFarm). In TBB, we built a three-stage
Pipeline, setting the middle stage to perform with a parallel filter. We annotated the
code with SPAR, adding replication for the middle stage.

The Person Recognition application has four operators (Fig. 3b). Besides
the basic source () and sink (), there is detect () and recognize (). The
latter two are also stateless operators, just like the compress () operator of Bzip?2.
It means that we could replicate both independently. However, previous studies have
shown that unifying both operators into one avoids load imbalance and improves per-
formance [13]. Therefore we follow this same strategy. Thus, both internal operators
are joined into a single one and then replicated n times.

In the applications with many operators, such as Lane Detectionand Ferret
(Fig. 3c and 3.d), there are several ways to combine and replicate them. For space
reasons, with Lane Detection we follow the same Farm strategy and combine all
the intermediate operators into a single stage/worker. For Ferret, besides the Farm
pattern, we explore other compositions as well.

4.3.1 Ferret custom compositions

The Ferret application in PARSEC is originally parallelized using a Pipeline-Farm
pattern: pipe(sedq(source), Farm(seg, n), Farm(extract, n), Farm(vect,

@ Springer

1092 A. M. Garcia et al.

n), Farm(rank, n), seqg(sink)), where n is the number of replicas/workers in each
Farm and n = 1 represents a simple Pipeline. Although some operators are stateful
in Ferret, the concurrent access to the state is lock-protected. Therefore, other
compositions can also be explored.

SPBENCH allows the application operators to be evaluated individually. We pre-
viously evaluated the sequential Ferret and realized that the rank operator does
most of the computation. So, this application is unbalanced, making the Pipeline-farm
implemented in PARSEC not efficient in some scenarios, since it takes more resources
than necessary. Therefore, in addition to the Farm and Pipeline-farm, in this work we
also used the SPBENCH to implement other Ferret compositions. TBB does not
support many compositions besides Farm, Pipeline and Pipeline-farm, so we only
use FASTFLOW for these other compositions. Other compositions for Ferret have
already been explored in P> ARSEC [33], but there the authors evaluated speedup.

Pipeline compositions in FasFlow increase the latency, because the items wait a
long time idle in the queue of each stage. This occurs even using an on-demand
setup with queue size one in Ferret, because the most intensive stage (rank) is at
the end part of the Pipeline. Therefore, to try to improve both latency and through-
put, we implemented this composition: pipe (seq(source), Farm((seg,
extract, vect),np), Farm(rank,nj), seq(sink)) compositions. The goal
is to reduce the number of Pipeline stages while building a dedicated Farm for the
rank operator. SPBENCH allowed to add and run all these Ferret’s parallel ver-
sions easily and quickly, because it is just a matter of moving operators across building
blocks (classes or functions).

4.4 Parallelism performance

The experiments were conducted as described in Sect. 4.1. We performed experi-
ments evaluating memory as source/sink in a previous work [30]. Here we use disk as
source/sink option (the network option is still in developing phase). Performance in
stream processing is usually defined in terms of latency or throughput. In this case, each
value in the Farm charts in Fig. 5 represents the average latency (top) and throughput
(bottom) calculated among all the processed items.

All cases with Farm share a reduction in performance scalability when using over
20 replicas. From this point, the processor needs to allocate threads in both physical
and virtual cores. This is the expected behavior for these applications that have high
CPU usage. Regarding latency, lower is better. With less than 20 replicas the latency
with TBB is less than half as high as FASTFLOW and SPAR for all cases. Above 20
replicas, the latency quickly increases and gets more than twice as high with 40 replicas
in most scenarios.

The difference between TBB and FASTFLOW/SPAR can be explained by the char-
acteristic of the communication queues between the workers and the source (emitter),
and sink (collector). TBB has a work stealing scheduler. This means that a thread
process an item and can take over any stage. In FASTFLOW the threads always run the
same stage. Therefore, the one that runs the source_op () operator is done faster.

@ Springer

SPBench: a framework for creating benchmarks. .. 1093

SPar (custom mapping) —&— FF (custom mapping) ——&— BB —o—
SPar (default mapping) —=— FF (default mapping) ——
14 Bzip2 (compress J 45 Lane Detection 35 Person Recognition
1.2 4 i s ol
25
~ 2 h
o*]
A4 1.5 oot e
S0 1 '
0 0 L 0.5
0 5 10 15 20 25 30 35 40 O 5 10 1520 25 30 35 40 0O 5 10 15 20 25 30 35 40
120 —T 250 —T T T 30 —T T
100 g 25
g F e eese 7 200 Az] jw
g 80 o 20 /
s x‘”{ 150 7
5 60 jf 15 iy
2L £ 100 P,
2 40 ’f 10 Fa
Q
= "V L
0 0 0

0 5 10 15 20 25 30 35 40 O 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40
Number of replicas.

Fig.5 Latency and throughput for the Farm implementations

This adds an extra delay when calculating from the moment a item is read to the
moment it is finally processed by the last stage, increasing the latency.

Regarding throughput, higher is better. All PPIs and test cases presented good
scalability. The higher latency of FASTFLOW/SPAR did not negatively impact the
throughput and these PPIs showed even better performance than TBB with 20 replicas.
The exception is Bzip2 with FASTFLOW, when not using its custom mapping policy,
where performance above 20 replicas was about 20% lower than the other versions.
The default mapping in the other scenarios showed equivalent performance, being
only slightly better in Person Recognition above 20 replicas.

The Lane Detection benchmarks on Fig. 5 (middle column) presented a dis-
tinct behavior for both latency and throughput. Over 20 replicas the latency increases
faster and throughput can not scale-up. This result can be explained by the work-
load characteristic (Sect. 4.1). Bzip2 processes 783 data items, while Person
Recognition processes 450 items. On the other hand, Lane Detection
receives 1858 data items to process and do it in a similar time to other applications
(Fig. 4). It shows the presence of a disk I/O bottleneck, which impacted the scalability
of this application. This shows also why persistent memory architectures are becoming
more popular and why it is important that SPBENCH provides this option for users to
test these realistic scenarios.

4.4.1 Ferret results
Here we present the results for the Ferret only. We implemented three types of

compositions, as described in Sect. 4.3.1: Farm, Pipeline-farm, and a customized
Pipeline-farm. With this customized version we aim to find an alternative version that

@ Springer

1094 A. M. Garcia et al.

SPar pipe-farm —v— FF pipe-farm —e— TBB pipe-farm —o—
SPar farm —4— FF farm —<— TBB farm
256 S 220 S e
: : : : : : : 200 [: :

B84 [f e P g R R S] 180 |-
o) b2 -
> 4 —
LI 1 2

0.25 : : :

0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40

Total number of replicas Total number of replicas

(@) Ferret: Farm and Pipeline-farm versions (computer A)

—_
o

Latency (seconds)
'S
Itens per second

e
)
a

0 5 10 15 20 25 0 5 10 15 20 25
Total number of replicas Total number of replicas

(b) Ferret: Farm and Pipeline-farm versions (computer B)

Fig.6 Latency and throughput for the Farmand Pipeline of Farms compositions of Ferret. The
pipe-farm versions have four Farms, so each increment of n increases four replicas at once

is able to achieve a better trade-off between latency and throughput. Figure 6 shows
the result for the first two compositions and Fig. 7 shows variations of the customized
version. Here, the y-axis of the latency graphs (left) is presented in logarithmic scale
for better visualization of the results. The x-axis in all graphs presents the total sum
of replicas (n) of the workers used in each Farm. Since Pipeline-farm implements
four Farms, in this version each increment of n is multiplied by a factor of four. In
the customized versions in Fig. 7 this factor varies for the values of n and n;. For
all implementations with SPAR/FASTFLOW, we enabled the blocking mode and, to
be able to implement the on-demand policy, the versions were compiled with the
macros FF_BOUNDED_BUFFER and DEFAULT BUFFER_CAPACITY=1.

In the Farm implementations of Ferret in Fig. 6, the increasing in latency after
the number of replicas reach the physical cores limit is lower than the first three
applications (Fig. 5). It is due to the fact that this application does not require the
resulting items to be written in a specific order at sink. Therefore, input order does
not need to be preserved in the sink, which alleviates latency for reordering items.
The same reason is applied for the increasing scalability after 20 replicas. This same
behavior occurs on both architectures tested (computers A and B). However, the
results presented some differences in these architectures. Ferret achieved lower

@ Springer

SPBench: a framework for creating benchmarks. .. 1095

FFny=n, —s— FFny=2n, FFn,=3n; —&a— FFny,=4n, FFny,=5n; —x—
200
180
160
140
120
100
80
60
40
20

0
5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40

Number of replicas (ny + ny). Number of replicas (ny + ny).

Itens per second

(a) Custom Ferret Pipeline-farm versions (computer A)

32 N T T 140 T T T T
16 A s S N 120
— : : v V¥
B B [R SRR 2 100
S 4 . : b e 8
o \ : : r (]
8 2 ! %% {\%/g g %
> o ..
% 1 bl) w2 60
T o5 : ‘ I e N
0.25 [-oooveorsooh BB /. e;/L.@ 20 [
0.125 L L L 0
0 5 10 15 20 25 0 5 10 15 20 25
Number of replicas (nq + ny). Number of replicas (n; + ny).

(b) Custom Ferret Pipeline-farm versions (computer B)

Fig.7 Latency and throughput for the custom pipe-farmversions of Ferret. These versions are defined
aspipe (seq(source), farm((seg,ext,vect),ny), farm(rank, ny),seq(sink)), where
n1 and ny are the number of workers. The five versions represent different proportions of the number of
workers in each Farm. E.g., np = 3n1 means that every time n is increased by 3, nj is increased by 1

latencies on computer B, while the throughput of the Farm versions of SPAR and
FASTFLOW were equivalent to TBB on this same computer.

Regarding the Pipeline-farm and Farm patterns in Fig. 6, versions imple-
mented with TBB presented no difference with respect to each other. In [42] the
authors also implemented Farm and Pipeline-farmfor Ferret using TBB and
came up with similar results. Here, the same happened in both tested architectures. The
way the application executes with these two patterns is similar due to the work-stealing
runtime model. However, the same is not true for FASTFLOW/SPAR. The increase in
the number of queues for each pair of stages of the Pipeline with these PPIs causes
the latency to increase dozens of times. Also, stages that require less processing use
resources that could be dedicated to the slowest one (rank).

Finally, we have the performance of the custom Pipeline-farm versions run-
ning in the two tested computers in Fig. 7. This versions consist of a four-stage
Pipeline with a Farm in the second and a Farm in the third stage. We imple-
mented five variations, each representing a different ratio between n; (first Farm)
and ny (second Farm): 1:1, 1:2, 1:3, 1:4, and 1:5. For instance, for the 1 : 3 ratio
(np = 3n1), 40 replicas in the charts equals to 10 replicas for the first Farm plus 30
replicas for the second Farm.

@ Springer

1096 A. M. Garcia et al.

Although the results are somewhat different between the two tested architectures,
the conclusions we can draw from these results are the same for both scenarios. The
1:1 version was the worst for both latency and throughput metrics. Although 1:2 and
1:3 achieved good throughput, they did not achieved low latency. On the other hand,
version 1:5 achieved the lowest latency of all, but pays the price for throughput. We can
observe that the 1:4 ratio is the most balanced for this custom Ferret implementation.
This version achieved a throughput equivalent to the simple FASTFLOW Farm, but with
a latency about 15% lower with 40 replicas.

These experiments highlighted the importance of SPBENCH to build custom bench-
marks and its easy of use to tune FASTFLOW, SPAR, and TBB. We successfully
evaluated PPIs for stream parallelism while these applications were quickly imple-
mented when using SPBENCH. We were able to achieve similar overall results to those
in the literature [17,33,42], which also demonstrates the reliability.

4.5 Summary of the results and discussion

In this paper the main features of the SPBENCH were presented and tested. We first used
SPBENCH to characterize the workloads, through monitoring metrics (Fig. 4). Here, the
sequential applications presented distinct results among them. They all presented high
CPU usage, indicating high potential for parallelism exploitation. Such feature will
help users to better understand the behavior of the SPBENCH applications to parallelize
it without the need for instrumenting the code and extracting these metrics.

Next, we used SPBENCH to implement 16 custom benchmarks using three different
PPIs (Sect. 4.3). It was easy and fast to implement the parallel benchmarks. Once the
parallel code is written for a single application, that same code can be reused to other
SPBENCH applications in a few steps. Users only need to change parallel code itself
using the target PPI. Reusing existing code for building new parallel applications will
increase user productivity to fast obtain results.

With these custom benchmarks, the first experiments (Fig. 5) were useful to eval-
uate and compare the performance of each PPI. These experiments were a plus to
the ones presented in [30], which were performed on the computer B. Our bench-
marks achieved good performance scalability. In Lane Detection, we observed
the impact of the I/O bottleneck due to excessive read/write operations on disk. We also
evaluated two different scheduling policies in this part. Therefore, these experiments
added important insights and demonstrates that the same code can run on different
multi-core architectures.

Finally, the Ferret application are unique, therefore, results are for two dif-
ferent architectures. As Ferret is an application originally implemented with a
Pipeline-farm pattern in PARSEC, we used the same strategy for testing the
SPBENCH’s advantages for creating, managing, and evaluating multiple versions of
benchmarks quickly and easily. It was possible to compose different number of stages
and number of threads per stage. The custom Pipeline-farm (Fig. 7) versions
showed how a fine-tuning number of threads per stage can improve the performance.
These versions allow you to prioritize latency or throughput, or even a balanced con-
figuration between the two. This shows that SPBENCH is flexible, which is good

@ Springer

SPBench: a framework for creating benchmarks... 1097

for adapting the configurations that best fits to the architectures characteristics and
resources available.

In summary, the SPBENCH framework worked for evaluating the performance with
multiple metrics and time dimensions for different PPIs, stream applications, parallel
patterns, parallel versions, and architectures. Even though the framework is in an early
stage of development, it can already be used for research, as it is public available?.

5 Conclusions and future work

As discussed in Sects. 1 and 3, researchers face several challenges when they need
to evaluate PPIs and similar solutions for stream processing, which becomes a time-
consuming task. In the related work section (Sect. 2), we have demonstrated that none
of them solve this problem. This way, in this paper we contributed with SPBENCH,
a framework for creating benchmarks of stream processing applications. We demon-
strated its ease of use for creating custom benchmarks when aiming at evaluating and
implementing stream parallelism. Through SPBENCH, we built custom benchmarks
with different PPIs, parallel patterns, compositions, and other variations, including
Ferret, a well-known benchmark from the PARSEC suite [32]. We evaluated all
implemented versions with different performance metrics to compare TBB, FAST-
FLow, and SPAR. All those versions are available to SPBENCH’s user as a parallel
benchmark suite.

We have provided a few subsets of experiments. It was enough to show that
SPBENCH can be easily used to implement different types of stream parallelism. In the
future, we expect SPBENCH for evaluating parallel programming in general and for
educational or teaching purposes. There is also room to include more applications to
cover and represent other scenarios, which requires an extensive study to understand
what is representative in this domain. Then, we must find suitable applications and
implement them as part of the SPBENCH API. In addition, the framework does not
currently include applications with stateful operations. Adding this type of application
while keeping the SPBENCH metrics system consistent is challenging. We will face
this same challenge to add the option to instantiate multiple sources.

Other forthcoming features are the support to receive data incoming from the
network and to dynamically control batch size and data input rate. Here, it is also
challenging to present all this in a simple and abstract way to users. Another minor
upcoming feature is the possibility for users to register custom workload classes.
Besides all this, as future work we will also continue adding new PPIs and different
parallelism strategies to SPBENCH.

Acknowledgements This study was financed in part by the Coordenagao de Aperfeicoamento de Pessoal de
Nivel Superior - Brasil (CAPES) - Finance Code 001, FAPERGS 05/2019-PQG project PARAS (N° 19/2551-
0001895-9), FAPERGS 10/2020-ARD project SPAR4.0 (N° 21/2551-0000725-7), Universal MCTIC/CNPq
N° 28/2018 project SPARCLOUD (N° 437693/2018-0). The authors acknowledge LAD-IDEIA/PUCRS for
computing resources.

2 https://github.com/gmap/spbench.

@ Springer

https://github.com/gmap/spbench

1098 A. M. Garcia et al.

References

1. Andrade HC, Gedik B, Turaga DS (2014) Fundamentals of stream processing: application design,
systems, and analytics. Cambridge University Press, Cambridge
2. McCool M, Reinders J, Robison A (2012) Structured parallel programming: patterns for efficient
computation. Elsevier, Amsterdam
3. Friedman E, Tzoumas K (2016) Introduction to Apache Flink: stream processing for real time and
beyond. O’Reilly Media, Inc., Sebastopol
4. Jain A (2017) Mastering apache storm: Real-time big data streaming using kafka, hbase and redis.
Packt Publishing Ltd, Birmingham
5. Nabi Z (2016) Pro Spark Streaming: The Zen of Real-Time Analytics Using Apache Spark. Apress,
New York
6. Zeuch S, Monte BD, Karimov J, Lutz C, Renz M, Traub J, Bref S, Rabl T, Markl V (2019) Analyzing
efficient stream processing on modern hardware. Proc VLDB Endow 12(5):516-530
7. Voss M, Asenjo R, Reinders J (2019) Pro TBB: C++ parallel programming with threading building
blocks. Apress, New York
8. Aldinucci M, Danelutto M, Kilpatrick P, Torquati M (2017) Fastflow: high-level and efficient streaming
on multicore, chap. 13, pp. 261-280. John Wiley & Sons Ltd, Hoboken
9. Griebler D, Danelutto M, Torquati M, Fernandes LG (2017) SPar: A DSL for high-level and productive
stream parallelism. Parallel Process Lett 27(01):1740005
10. del Rio Astorga D, Dolz MF, Fernandez J, Garcia JD (2017) A generic parallel pattern interface for
stream and data processing. Concurr Comput Pract Exp 29(24):e4175
11. Mencagli G, Torquati M, Griebler D, Danelutto M, Fernandes LGL (2019) Raising the parallel abstrac-
tion level for streaming analytics applications. IEEE Access 7:131944-131961
12. Griebler D, Hoffmann RB, Danelutto M, Fernandes LG (2018) High-level and productive stream
parallelism for Dedup, Ferret, and Bzip2. Int J Parallel Program 47(1):253-271
13. Griebler D, Hoffmann RB, Danelutto M, Fernandes LG (2017) Higher-Level Parallelism Abstrac-
tions for Video Applications with SPar. Parallel Computing is Everywhere. In: Proceedings of the
international conference on parallel computing, ParCo’17. IOS Press, Bologna, Italy, pp 698-707
14. Rockenbach DA, Stein CM, Griebler D, Mencagli G, Torquati M, Danelutto M, Fernandes LG (2019)
Stream Processing on Multi-cores with GPUs: Parallel Programming Models” Challenges. In: Interna-
tional parallel and distributed processing symposium workshops (IPDPSW). IPDPSW’19. IEEE, Rio
de Janeiro, Brazil, pp 834-841
15. Vogel A, Griebler D, Fernandes LG (2021) Providing high- level self- adaptive abstractions for stream
parallelism on multicores. Softw Pract Exp 51:1194-1217
16. Mencagli G, Dazzi P, Tonci N (2018) Spinstreams: A static optimization tool for data stream process-
ing applications. In: Middleware ’18: Proceedings of the 19th international middleware conference,
middleware *18, Association for Computing Machinery, New York, NY, USA, pp 66-79
17. Griebler D, Hoffmann RB, Danelutto M, Fernandes LG (2018) Stream parallelism with ordered data
constraints on multi-core systems. J Supercomput 75(8):4042—4061
18. Hoffmann RB, Griebler D, Danelutto M, Fernandes LG (2020) Stream Parallelism Annotations
for Multi-Core Frameworks. In: XXIV Brazilian Symposium on Programming Languages (SBLP).
SBLP’20. ACM, Natal, Brazil, pp 48-55
19. Rockenbach DA, Griebler D, Danelutto M, Fernandes LG (2019) High-level stream parallelism abstrac-
tions with SPar targeting GPUs. Parallel computing is everywhere. In: Proceedings of the International
Conference on Parallel Computing (ParCo), ParCo’19. vol 36, 10S Press, Prague, Czech Republic, pp
543-552
20. Stein CM, Rockenbach DA, Griebler D, Torquati M, Mencagli G, Danelutto M, Fernandes LG (2020)
Latency- aware adaptive micro- batching techniques for streamed data compression on graphics pro-
cessing units. Concurr Comput Pract Exp 33:e5786
21. Bordin MV, Griebler D, Mencagli G, Geyer CFR, Fernandes LG (2020) DSPBench: a suite of bench-
mark applications for distributed data stream processing systems. IEEE Access 8:222900-222917
22. Pagliari A, Huet F, Urvoy-Keller G (2020) Namb: A quick and flexible stream processing application
prototype generator. In: 2020 20th IEEE/ACM international symposium on cluster, cloud and internet
computing (CCGRID), pp 61-70
23. Shukla A, Chaturvedi S, Simmhan Y (2017) Riotbench: An iot benchmark for distributed stream
processing systems. Concurr Comput Pract Exp 29(21):e4257

@ Springer

SPBench: a framework for creating benchmarks. .. 1099

24.

25.
26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

Lu R, Wu G, Xie B, Hu J (2014) Stream bench: towards benchmarking modern distributed stream
computing frameworks. In: 7th International conference on utility and cloud computing, pp 69-78
Wang Y (2016) Stream processing systems benchmark: Streambench. Master’s thesis, Aalto University
Agrawal D, Butt A, Doshi K, Larriba-Pey JL, Li M, Reiss FR, Raab F, Schiefer B, Suzumura T, Xia
Y (2016) Sparkbench - a spark performance testing suite. In: Nambiar R, Poess M (eds) Performance
evaluation and benchmarking: traditional to big data to internet of things. Springer International, Cham,
pp 2644

Maron CAF, Vogel A, Griebler D, Fernandes LG (2019) Should PARSEC benchmarks be more para-
metric? a case study with Dedup. In: 27th Euromicro international conference on parallel. Distributed
and network-based processing (PDP), PDP’19. IEEE, Pavia, Italy, pp 217-221

Zhang S, He B, Dahlmeier D, Zhou AC, Heinze T (2017) Revisiting the design of data stream processing
systems on multi-core processors. In: 2017 IEEE 33rd International conference on data engineering
(ICDE), pp 659-670

Griebler D (2016) Domain-Specific Language & Support Tool for High-Level Stream Parallelism.
Ph.D. thesis, Faculdade de Informdtica - PPGCC - PUCRS, Porto Alegre, Brazil

Garcia AM, Griebler D, Schepke C, Fernandes LG (2021) Introducing a Stream Processing Framework
for Assessing Parallel Programming Interfaces. In: 29th Euromicro international conference on parallel,
distributed and network-based processing (PDP), PDP’21. IEEE, Valladolid, Spain

Thies W, Amarasinghe S (2010) An empirical characterization of stream programs and its implications
for language and compiler design. In: 2010 19th international conference on parallel architectures and
compilation techniques (PACT), pp 365-376

Bienia C, Kumar S, Singh JP, Li K (2008) The parsec benchmark suite: Characterization and architec-
tural implications. In: Proceedings of the 17th international conference on Parallel architectures and
compilation techniques, pp 72-81

De Sensi D, De Matteis T, Torquati M, Mencagli G, Danelutto M (2017) Bringing parallel patterns out
of the corner: The p3 arsec benchmark suite. ACM Trans Archit Code Optim 14(4):1-26

Henning S, Hasselbring W (2021) Theodolite: Scalability benchmarking of distributed stream pro-
cessing engines in microservice architectures. Big Data Res 25:100209

Karimov J, Rabl T, Katsifodimos A, Samarev R, Heiskanen H, Markl V (2018) Benchmarking
distributed stream data processing systems. In: 2018 IEEE 34th international conference on data engi-
neering (ICDE), pp 1507-1518

Cermak M, Tovariidk D, Lastovicka M, Celeda P (2016) A performance benchmark for netflow data
analysis on distributed stream processing systems. In: NOMS 2016 - 2016 IEEE/IFIP network opera-
tions and management symposium, pp 919-924

Le-Phuoc D, Dao-Tran M, Pham MD, Boncz P, Eiter T, Fink M (2012) Linked stream data processing
engines: Facts and figures. In: The Semantic Web — ISWC 2012. Springer, Berlin, Heidelberg, pp
300-312

Amanullah MA, Habeeb RAA, Nasaruddin FH, Gani A, Ahmed E, Nainar ASM, Akim NM, Imran M
(2020) Deep learning and big data technologies for iot security. Comput Commun 151:495-517
Hazelcast: Hazelcast in-memory computing platform (2020). https://hazelcast.com/products/in-
memory-computing-platform/#in-memory-solutions

Seward J (2017) A Program and Library for Data Compression. http://www.bzip.org/1.0.5/bzip2-
manual-1.0.5.html

Arubas E (2013) Face detection and recognition (theory and practice) . http://eyalarubas.com/face-
detection-and-recognition.html

Navarro A, Asenjo R, Tabik S, Cascaval C (2009) Analytical modeling of pipeline parallelism. In:
2009 18th international conference on parallel architectures and compilation techniques, pp 281-290

Publisher’'s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

@ Springer

https://hazelcast.com/products/in-memory-computing-platform/#in-memory-solutions
https://hazelcast.com/products/in-memory-computing-platform/#in-memory-solutions
http://www.bzip.org/1.0.5/bzip2-manual-1.0.5.html
http://www.bzip.org/1.0.5/bzip2-manual-1.0.5.html
http://eyalarubas.com/face-detection-and-recognition.html
http://eyalarubas.com/face-detection-and-recognition.html

	SPBench: a framework for creating benchmarks of stream processing applications
	Abstract
	1 Introduction
	2 Related work
	3 SPBench
	3.1 SPBench API
	3.1.1 Input data management

	3.2 SPBench benchmarks
	3.3 Current applications set
	3.4 Performance metrics
	3.5 Command-line interface

	4 SPBench use case
	4.1 Experimental setup
	4.2 Applications characterization
	4.3 Building custom benchmarks
	4.3.1 Ferret custom compositions

	4.4 Parallelism performance
	4.4.1 Ferret results

	4.5 Summary of the results and discussion

	5 Conclusions and future work
	Acknowledgements
	References

