
Vol:.(1234567890)

International Journal of Parallel Programming (2022) 50:454–485
https://doi.org/10.1007/s10766-022-00737-2

1 3

DSParLib: A C++ Template Library for Distributed Stream
Parallelism

Júnior Löff1 · Renato B. Hoffmann1 · Ricardo Pieper1 · Dalvan Griebler1,2 ·
Luiz G. Fernandes1

Received: 5 October 2021 / Accepted: 19 September 2022 / Published online: 29 October 2022
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature
2022

Abstract
Stream processing applications deal with millions of data items continuously gener-
ated over time. Often, they must be processed in real-time and scale performance,
which requires the use of distributed parallel computing resources. In C/C++, the
current state-of-the-art for distributed architectures and High-Performance Com-
puting is Message Passing Interface (MPI). However, exploiting stream parallelism
using MPI is complex and error-prone because it exposes many low-level details to
the programmer. In this work, we introduce a new parallel programming abstraction
for implementing distributed stream parallelism named DSParLib. Our abstraction
of MPI simplifies parallel programming by providing a pattern-based and building
block-oriented development to inter-connect, model, and parallelize data streams
found in modern applications. Experiments conducted with five different stream
processing applications and the representative PARSEC Ferret benchmark revealed
that DSParLib is efficient and flexible. Also, DSParLib achieved similar or better
performance, required less coding, and provided simpler abstractions to express par-
allelism with respect to handwritten MPI programs.

Keywords Parallel programming · Distributed systems · Stream processing · Parallel
patterns · MPI

 * Dalvan Griebler
 dalvan.griebler@pucrs.br

1 School of Technology, Pontifical Catholic University of Rio Grande do Sul (PUCRS),
Porto Alegre, Brazil

2 Laboratory of Advanced Research on Cloud Computing (LARCC), Três de Maio Faculty
(SETREM), Três de Maio, Brazil

http://orcid.org/0000-0002-4690-3964
http://crossmark.crossref.org/dialog/?doi=10.1007/s10766-022-00737-2&domain=pdf

455

1 3

International Journal of Parallel Programming (2022) 50:454–485

1 Introduction

Stream Processing is a computing model to perform real-time processing in live
data streams [4]. Its importance is evidenced by the common necessity for filter-
ing data sources that often produce data on the scale of millions of items per
day. In stream processing, this data can be viewed as a potentially infinite flow
of items. Moreover, the items that flow through the data stream can have a varied
workload which may spike or slow down the quality of service. In some cases,
on-the-fly processing may be required to leverage the data utility window fully.
Therefore, adapting the stream processing systems to this dynamic environment
while striving for efficiency is challenging. In fact, over the last few years, several
improvements have been made toward distributed and scalable stream processing
systems such as Apache Storm [5] and Apache Flink [9], which are written in
high-level languages such as Java.

Thanks to ongoing advances, application programmers now have various
options to choose from when developing parallel software. Languages such as
Rust and C++ benefit from libraries that implement high-level parallel abstrac-
tions, like Rayon [33] and Intel Threading Building Block [34], and Rust-
SSP [31, 32]. These solutions employ parallel patterns as API (Application Pro-
gramming Interface) developed by experts in the field. They help the application
programmer by hiding the complexity of parallelism while still delivering good
performance and productivity solutions [10, 26, 27].

Clustered architectures introduce another level of communication hierarchy.
They are characterized by multiple computational nodes connected via a com-
munication network (e.g., Infiniband, wi-fi, etc.). In these cases, scaling the com-
putation to satisfy the performance demand of modern stream processing applica-
tions requires distributed processing techniques. In High-Performance Computing
(HPC), Message Passing Interface (MPI) is the state-of-the-art parallel API for
implementing parallel C/C++ programs. However, using MPI is difficult for
application developers since it exposes several low-level programming aspects.
Therefore, programmers have to deal with exhaustive and error-prone parallelism
concepts. Namely, data handling, process communication through message pass-
ing and synchronization models, fault tolerance, work scheduling, load balanc-
ing, and parallelism strategies. No framework or library in C++ provides all of
these features, while in other programming domains, they are available. There-
fore, as shown by our related work, programmers do not have reliable options that
they can use. Moreover, porting all application codes from C++ to Java/Scala for
using Apache Storm or Apache Flink may not be doable. Our work goes in this
direction, in which we tackle this research gap and provide a library in C++ with
better programmability aspects. However, we are not trying to compete against
consolidated solutions (e.g., Flink and Storm); instead, our main contributions are
to provide the first set of abstractions based on a structured parallel programming
approach and evaluate our solution in terms of programmability and performance.

In summary, the goal of this research is helping to ease the process of develop-
ing distributed C++ parallel programs. We propose to handle the steep learning

456 International Journal of Parallel Programming (2022) 50:454–485

1 3

curve of MPI parallel programming by providing parallel patterns or algorithmic
skeletons as higher-level abstractions. Parallel patterns are an already existing
approach that uses structured parallel programming strategies to model common
data flows that can easily be composed and comprehended by the programmers.
In the state-of-the-art, similar approaches have been employed by FastFlow [1],
GrPPI [12], eSkel [11], and Muesli [13]. In contrast, we provide a higher-level
programming abstraction specifically targeting stream processing applications
(see more details in Sect. 2). We also address the challenges inherent to dis-
tributed parallel programming. This work introduces programming abstractions
to deal with data communication (serialization and message passing), synchro-
nization between parallel processes via parallel patterns (protocols for message
passing), and two scheduling algorithms for balanced and unbalanced workloads.
Implementing these challenges in C++ is more complex than in languages such
as Java and Python. Unlike these languages, data communication is significantly
more difficult since there is no metadata about types available during runtime in
C++. We summarize our contributions as follows:

• A high-level parallel programming abstraction for parallel and distributed stream
parallelism implementation in C++ named DSParLib. Its main characteristics
are transparent data communication, support for two different scheduling tech-
niques, and abstracted synchronization between parallel processes.

• A parallel implementation of PARSEC’s Ferret Benchmark [6] with DSParLib
and its evaluation, as no distributed version is available.

• A comprehensive set of experiments for comparing our high-level abstraction
(DSParLib) with respect to state-of-the-art handwritten MPI programs.

The remainder of this document is organized as follows. Section 2 discusses the
related work. Then, Sect. 3 presents the implementation details of DSParLib and its
API. Subsequently, Sect. 4 introduces the applications we used in our experiments
and their respective parallelization techniques. Section 5 describes and analyses the
experiments performed with different stream processing applications for compar-
ing DSParLib with state-of-the-art handwritten MPI versions and evaluating pattern
composition. Finally, Sect. 6 concludes with final remarks and future works.

2 Related Work

In this related work, we consider the parallel programming abstractions that support
distributed stream parallelism in C++ targeting HPC systems. Therefore, we do not
consider Big Data frameworks (e.g. Apache Flink, Akka Streams, Apache Storm,
etc.) because they do not face the same programming language challenges. They are
not related work, but we considered them background when designing our library. In
contrast, our goal is to open research questions about HPC for leveraging distributed
stream systems in a low-level programming language like C++.

FastFlow [2] is a high-level C++ pattern-based parallel programming library.
FastFlow targets shared memory but also supports distributed computing. Our works

457

1 3

International Journal of Parallel Programming (2022) 50:454–485

are similar since both of them provide implementations for parallel patterns. Patterns
are described in the literature long before the libraries implementing them were cre-
ated [26]. DSParLib provides new implementations to the Pipeline and Farm pat-
terns for stream processing, while FastFlow provides a wider set of patterns for dif-
ferent types of computation. The main differences between the implementations are
that FastFlow supports multi-node systems using ZeroMQ as the transport layer and
to create processes, while DSParLib uses MPI [1]. Also, DSParLib employs newer
MPI specifications and dynamic process management to improve performance.
Another difference is that programmers manually handle serialization in FastFlow
while DSParLib provides abstractions to help programmers communicate data. For
native C++ data types, DSParLib completely abstracts data communication, and in
the case of custom data types, DSParLib provides high-level data abstractions via
templates.

GrPPI (Generic Reusable Parallel Pattern Interface) [12] is a C++ library that
implements composable and generic interfaces for parallel patterns. This means that
the programmers only implements the parallel patterns once and chooses at compile
time, which is the desired runtime that GrPPI should use. FastFlow, Intel TBB, and
C++ Parallel STL (Standard Template Library) are available options. The support
for distributed computing was studied by [24, 28] using MPI. However, the source
code is unavailable, and we could not evaluate their solution.

Thrill [7] is an experimental C++14 framework for distributed stream process-
ing. Instead of merging existing Big Data frameworks with HPC tools like oth-
ers [3], their goal is to implement a new Big Data framework targeting HPC directly
in C++. Networking in Thrill is done via TCP sockets and optionally via MPI. Cur-
rently, no delivery guarantees or fault-tolerance mechanisms are implemented. Thrill
deals with data communication abstraction using the Cereal library [16], which pro-
vides a lightweight serializer that uses a similar interface to Boost archives [8].

The work of [25] provides a high-performance abstraction based on a MPI
hybrid approach. The work is mainly concerned with supporting heterogeneous
systems. The communication is achieved using both MPI and TCP sockets. The
work also implements optimizations to reduce overheads, for example, using POSIX
Threads instead of operating system processes. MPI Lightweight Stream [36]
proposes a lightweight interface for MPI stream processing. The work focuses on
communication optimizations and their functional correctness when using MPI for
stream processing. They aim to create a library to support data flow via a directed
acyclic graph (DAG). Likewise, they investigate employing a graph-coloring algo-
rithm to properly label the DAG to arrange the intra- and inter-communica-
tors for the Pipeline.

MPI Streams [29][30] proposes an extension to the Message Passing Interface
standard for better supporting streaming applications. The work introduced a generic
streaming communication model consisting of entities like producers, consumers,
and message passing channels. Consumers support receiving data from multiple
producers while computing them using a "first-come, first-served" approach. MPI
Streams do not abstract message passing.

In addition to MPI-based libraries that extended MPI to leverage stream pro-
cessing applications, other C/C++ skeleton libraries support the standard MPI

458 International Journal of Parallel Programming (2022) 50:454–485

1 3

specification. The work in [15] performed an extensive survey on skeleton libraries,
and we describe some of these libraries here. Unfortunately, many of them are no
longer being maintained. Also, for the most part, they do not tackle programmability
aspects and do not propose high-level abstractions for data communication.

ESkel [11] is from the same authors of Algorithmic Skeletons [10]. ESkel is a
C library based on MPI that implements the parallel patterns Pipeline, Farm, and
Divide-and-Conquer. Users of eSkel must be familiar with basic MPI concepts as
well. Message passing is done by using eDM (eSkel Data Model). This model is
very similar to MPI, in which the user must specify a pointer to data, size, and data
type.

Muesli [13] implements MPI support for the Farm pattern in a hybrid environ-
ment using MPI and OpenMP. Muesli provides parallel and distributed data struc-
tures such as distributed arrays and matrices. It also allows serializing arbitrary data
types. The programmers can implement an abstract class MSL_Serializable on
the type that needs to be serialized. The interface requires the programmers to copy
the data to a buffer provided by Muesli. Quaff [14] is a C++ template-based skele-
ton library aiming at reducing the overhead of object-oriented abstractions. Accord-
ing to to [14], libraries like Muesli frequently introduce overheads due to virtual
function calls. The work supports MPI but does not elaborate on the serialization
process.

Table 1 presents a summary of our findings regarding C++ libraries for distrib-
uted stream processing. The results show that many libraries lack implementations
for stream parallel patterns since they target data-parallel applications only. Data
communication is often done with low-level MPI or external libraries such as Boost
and Cereal. Message passing is generally done implicitly, where the programmers
do not need to know how programs communicate with each other. However, for
libraries that extend MPI, communication is explicit.

DSParLib fills these gaps by introducing a new implementation of stream pat-
terns with high-level data communication based on C++ templates, allowing

Table 1 A comparison of C++ programming and runtime libraries

Work Stream patterns Runtime Data communication Built-in
schedul-
ers

Message passing

FastFlow [1] Yes ZeroMQ Zero-copy Yes Implicit
GrPPI [12] Yes MPI* Boost* Yes Implicit
MPI Streams [29] No MPI Low-level MPI No Explicit
MPI Hybrid [25] No MPI Low-level MPI No Explicit
MPI Lightweight [36] No MPI Low-level MPI No Explicit
Thrill [7] No TCP, MPI “Cereal” library Yes Implicit
eSkel [11] Yes MPI Low-level MPI No Implicit
Muesli [13] Yes MPI Boost Yes Implicit
Quaff [14] Yes MPI Boost No Implicit
DSParLib (Ours) Yes MPI Zero-copy Yes Implicit

459

1 3

International Journal of Parallel Programming (2022) 50:454–485

zero-copy data communication. Moreover, DSParLib has implicit communication
and a built-in scheduler. In addition, DSParLib provides a high-level programming
abstraction for low-level MPI details. For example, it does not unnecessarily expose
the programmers to raw pointers or explicit message passing protocols. DSParLib
also ensures strong type-safety since we check at compile-time, through C++ tem-
plates, for possible incorrect usage.

3 DSParLib

This section presents how we conceived DSParLib (an acronym for Distributed
Stream Parallelism Library). DSParLib1 is a programming abstraction for express-
ing or implementing stream parallelism on C++ applications targeting distributed
architectures. DSParLib abstractions over MPI simplify parallel programming
via high-level and easy-to-use API. Section 3.1 presents the design principles and
implementation choices of DSParLib. Section 3.2 shows how users can compose
different stream parallel patterns and semi-arbitrary pattern nesting. Section 3.3 pre-
sents the basic components of the building block development approach. Then, the
remaining Sects. 3.4–3.7 summarize how DSParLib works underneath our high-
level abstractions.

3.1 Design Principles

Our main design principles are focused on programmability and efficiency. Regard-
ing the programmability, we want DSParLib to be a parallel programming abstrac-
tion that is simple to use for application programmers. Therefore, we developed it
as a safe and high-level API that checks for incorrect usage at compile time. This
is done mostly using built-in checking mechanisms and features introduced in the
C++11 standard for inferring data types. Also, DSParLib strives not to expose
application programmers to raw pointers while ensuring that data types are seman-
tically correct using C++ templates instead of void* pointers. The efficiency
design principle is aligned with the HPC domain that considers scalability and
performance.

We implemented DSParLib in C++, a widely used programming language.
Through the notion of building blocks, we designed an intuitive API for DSParLib
that allows the programmers to "wrap" existing code with few refactorings. We state
that refactoring sequential code and wrapping it via DSParLib ’s building blocks
should be accomplished with safety and simplicity. For example, DSParLib guar-
antees the functional correctness of the pipeline data types implemented by the pro-
grammers so that a stage receiving an integer is inter-connected with a stage send-
ing integers. Likewise, the semi-arbitrary composition of parallel patterns and each

1 Available in: https:// github. com/ GMAP/ DSPar Lib.

https://github.com/GMAP/DSParLib

460 International Journal of Parallel Programming (2022) 50:454–485

1 3

inter-connected operator is checked to validate the resulting data flow. Checkers are
helpful in avoiding simple mistakes introduced by programmers.

The runtime is MPI, which is the standard for HPC. Our design principles were
based on newer MPI versions, starting from MPI-2. MPI-2 equips programmers
with new features for creating more flexible but complex strategies that impose
additional challenges when writing distributed parallel code. In our case, MPI-2 can
be considered a different parallel programming paradigm from the MPI-1 standard
because it allows the creation and communication with new processes. We mainly
employ MPI-2 in our work because it supports dynamic process management. In
stream processing, the dynamic characteristics of this domain (workload spikes and
slowdown, infinite and heterogeneous data, etc.) impose additional challenges in
efficiently exploiting distributed resources when executing a streaming application.
For that, creating and removing MPI processes during execution time complies with
our plan for supporting auto-adaptive and fault-tolerance strategies in the future.

Furthermore, communication is a significant abstraction issue that needs to be
addressed in C++. Instead of using a third-party library such as Boost or Cereal,
DSParLib provides a new and lightweight strategy that abstracts message passing
while allowing efficient and zero-copy data communication. Finally, the library is
header-only, so there is no need to compile dynamic or static libraries separately.
We also provide implementations of concepts commonly found in the literature,
such as Pipeline and Farm, to provide ready-to-use parallel patterns [26]. We allow
the semi-arbitrary composition of the Pipeline and Farm parallel patterns in which
Farms can be included as Pipeline Stages. Currently, other pattern compositions are
not supported.

3.2 Building Block Developing Approach

DSParLib is designed to develop parallel stream processing applications follow-
ing the structured parallel programming paradigm. The main benefits are that many
low-level parallelism details are hidden from application programmers. Developers
are expected to implement parallel code using composable and reusable structures
to design an assembly line for data stream processing. The building blocks termi-
nology is popular in C++ among state-of-the-art structured parallel programming
abstractions, such as Intel Threading Building Blocks (TBB) and FastFlow. We take
inspiration from these libraries to design our DSParLib ’s API.

In DSParLib, there are three possible compositions of building blocks, as illus-
trated in Fig. 1a. The basic component of a building block is the Sequential Wrapper
(white block), which wraps the computational processing. More details about how
this block works will be discussed later in Sect. 3.3. The other two blocks are the
Input and Output communicators (yellow and blue), which are used to implement
the message passing through the network. They can also be seen as blocks that wrap
the mechanisms for sending and receiving data.

Each building block must have a Sequential Wrapper and optionally Input or
Output communicator. Implementing data communicators depends on whether
other building blocks precede or succeed the current building block. For example,

461

1 3

International Journal of Parallel Programming (2022) 50:454–485

suppose a given building block is preceded by another one or a different parallel
pattern. In that case, it must implement the Input communicator while the previ-
ous building block implements the Output communicator. The same happens if
the building block is succeeded by another one or by a parallel pattern. Figure 1b,
c illustrate the previous example and DSParLib inter-connected building blocks
from a high-level point of view. Each couple of blue and yellow blocks is a net-
work communication abstracted by DSParLib ’s message passing mechanisms.

Figure 1b presents the available parallel patterns, which are Pipeline and Farm.
For example, the Pipeline pattern starts with a Sequential Wrapper + Output com-
municator and ends with an Input communicator + Sequential Wrapper. Those
are respectively representing the beginning and end of a stream. Additionally, all
intermediate blocks implement both Input and Output communicators combined
with Sequential Wrappers since they receive an input from the previous block
and send an output to the next one. On the other hand, the Farm pattern is a par-
ticular case of the Pipeline containing three stages. Sometimes stages have inten-
sive computations, and we want to replicate them to improve performance. We
employ the Farm parallel pattern, where the intensive computation is assigned
to the middle stage (Worker) that can be replicated. To maintain the functional
correctness of the data flow, stream items require a scheduler (Emitter) to assign

(a) DSParLib’s building blocks. (b) DSParLib’s parallel patterns.

(c) Pattern composition/nesting in DSParLib.

Fig. 1 DSParLib composable and reusable building blocks

462 International Journal of Parallel Programming (2022) 50:454–485

1 3

data for these parallel workers and a step that gathers the parallel Workers’ results
(Collector). The communication data flow moves from left to right.

In contrast to the ready-to-use parallel patterns, DSParLib supports semi-
arbitrary pattern composition. It allows nesting Farms into Pipeline stages, as
depicted in Fig. 1c. Other compositions are currently not supported. By default,
the Farm pattern depicted in Fig. 1b does not require the Input and Output com-
municators. However, when a Farm pattern is added as a Pipeline stage (Fig. 1c),
it may require new data communicators depending on where it is positioned. For
example, when a Farm is positioned as a middle Pipeline stage, extra Input and
Output communicators are mandatory for communicating data. Otherwise, when
a Farm becomes the first or last stage of the Pipeline, it may not require input or
output communicators. Both situations are represented by the optional building
blocks illustrated in the bottom-most part of Fig. 1b.

Parallel patterns may be reused and are suitable for complex stream processing
applications, especially when they follow an object-oriented approach. Imagine
that each building block from DSParLib can be seen as a programming func-
tion that receives input parameters (Input Communicator), applies a computa-
tional step (Sequential Wrapper), and returns the results (Output Communicator).
The same benefits perceived by using the object-oriented programming paradigm
are enforced via structured parallel programming paradigms rather than ad-hoc
parallelism.

3.3 Sequential Wrappers

The concept of a sequential code wrapper was introduced in the previous Sect. 3.2.
In other words, the Sequential Wrapper is a class that wraps the sequential code
of the application. Then, the wrapped code can be managed in terms of DSPar-
Lib ’s building blocks. This further allows the programmers to combine the building
blocks using ready-to-use parallel patterns. The main benefit is that parallel patterns
already abstract many parallelism complexities, so the programmers do not need to
implement them from scratch, like schedulers, message passing queues, synchroni-
zations, etc. Moreover, DSParLib’s patterns have built-in features and optimizations
that the programmers can seamlessly turn on and off.

In Listing 1, we show an example of sequential code wrappers implemented in
DSParLib. They process the accumulation of square roots from 0 to 9. First, the
Stage1 generates the data (lines 1 to 7). Each new loop iteration (line 4) emits
a new data item (line 5). Then, the Stage2 receives the items and emits their
square root as a double (lines 10 to 16). Any C++ computation or function could
replace the computation from line 13. The Process() method executes over
each stream item received. Finally, the Stage3 accumulates all the results (lines
18 to 24). In DSParLib, the inputs from the previous building block are received
using the Process(inputs) and the resulting outputs are scheduled using the
Emit(outputs) function. In this way, the lower-level data communication and
message passing implementations are abstracted from the programmers.

463

1 3

International Journal of Parallel Programming (2022) 50:454–485

1 class Stage1: public wrapper <Nothing, int > {
2 public:
3 void Produce() override {
4 for(int i=0; i<9; i++){
5 Emit(i);
6 }
7 };
8 };
9

10 class Stage2: public wrapper < int , double> {
11 public:
12 void Process(int &i) override {
13 double square_root = sqrt(i);
14 Emit(square_root);
15 };
16 };
17

18 class Stage3: public wrapper <double, Nothing> {
19 public:
20 double total;
21 void Process(double &square_root) override {
22 total += square_root;
23 };
24 };

Listing 1: Example of DSParLib sequential wrappers.

Consider the parallel activity graph pipe(◻0,◻1,◻2) , where ◻n is a wrapped
block of code. It represents a Pipeline with three sequential stages, as illustrated
in Fig. 2. The Stage2 wrapper in Listing 1 (line 10) can be in place of ◻1 .
However, it can not be in place of ◻0 , nor ◻2 . The reason is that this function
expects an input and an output, which is not acceptable when it is the first or
last stage of the Pipeline. DSParLib checks this type of semantics at compile
time and reports inconsistencies to the programmers. To introduce the last stage,
for instance, programmers must first adapt the sequential wrapper. The output
type is then replaced by a special type Nothing. In Listing 1, we show a last
stage example via Stage3 (line 18). Note that the sequential wrapper types are
Wrapper<double, Nothing> and it does not emit data items via Emit().

1 20Pipeline

Fig. 2 Parallel activity graph example

464 International Journal of Parallel Programming (2022) 50:454–485

1 3

3.4 Communicators and Data Communication

Frameworks and libraries for shared-memory architectures do not have to handle
data communication because data can be accessed directly. In MPI or any other
distributed parallel application, data must be copied between processes. This is a
complex task, and different options are available for message passing programming
models. For instance, in Java and . NET-based applications, data communication can
be more transparent since these environments support runtime reflection (or intro-
spection). This allows users of these frameworks to write distributed code that never
handles message passing communication because frameworks will often handle it
automatically.

DSParLib offers a layer of abstraction for simplifying this step without dealing
with MPI low-level parameters (e.g., MPI types, tags, and communicators) or imple-
menting its protocols to send and receive messages. In DSParLib, each data stream
item is represented as a message. A message comprises one header and a data
payload. The header contains the MPI rank of the process that sends the message,
the MPI rank that receives the message, the type of a message, and a unique message
identifier for each data item. When required, the identifier is used to automatically
re-order the stream items in any sequential consumer wrapper. DSParLib employs a
protocol that first sends a header message to establish communication between two
processes (sender and receiver). Then, this channel can be used to receive multiple
messages containing the actual data. The messages are non-blocking; after sending,
the processes can resume other tasks.

From a programmers viewpoint, our solution provides two abstractions to sim-
plify data communication: MPISender and MPIReceiver. We provide Pack
and Unpack methods for implementing message passing to the sender and receiver,
respectively. The programmers must call these methods in the correct order to seri-
alize and deserialize the data. Data must be contiguously allocated in memory. This
way, we provide zero-copy operations since data is sent as it is and thus does not
involve the CPU. Additionally, DSParLib implements another programming abstrac-
tion on top of these features to simplify data communication, it is called Send-
erReceiver. The purpose of SenderReceiver is to provide an abstraction to
serialize and deserialize data being sent/received through the network. When using
native C++ data types, the SenderReceiver becomes a communicator object
that automatically deals with data serialization. The following Section shows how
to use this abstraction. When custom data types are sent through the network, the
SenderReceiver abstraction can be overridden to implement the custom data
type behavior.

Listing 2 showcases DSParLib ’s SenderReceiver API when dealing with
custom data types. Lines 1 to 5 describe a custom data type containing three fields.
To implement data communication, the programmers implement a class extending
SenderReceiver (line 6) and overrides its functions for Send() (line 7) and
Receive() (line 12). Then, the programmers call Pack() for the sender and
Unpack() for the receiver to each struct field in the same order while DSPar-
Lib handles the details and automatically creates and serializes the MPI commu-
nications using the aforementioned protocol. DSParLib ’s templates can deal with

465

1 3

International Journal of Parallel Programming (2022) 50:454–485

up to 3-dimensional statically or dynamically allocated arrays or other contiguously
allocated data.

1 struct CustomType{
2 double value;
3 size_t bytes;
4 unsigned char * buffer;
5 };
6 class CustomAbstraction : public SenderReceiver <CustomType > {
7 void Send(MPISender &sender ,MessageHeader &msg ,CustomType &

data) override {
8 sender.Pack(msg ,data.value);
9 sender.Pack(msg ,data.bytes);

10 sender.Pack(msg ,data.buffer ,size);
11 }
12 CustomType Receive(MPIReceiver &receiver ,MessageHeader &msg)

override {
13 receiver.Unpack(msg ,value);
14 receiver.Unpack(msg ,bytes);
15 receiver.Unpack(msg ,buffer ,size);
16 return CustomType(value ,bytes ,buffer);
17 }
18 }

Listing 2: Example of Custom Type serialization.

If a sequential wrapper contains more than one Emit() in a single computa-
tional step (see Sect. 3.3), DSParLib will spawn messages using the same identi-
fier. However, that constitutes an implementation error by the programmers, and the
ordering may yield unpredictable results. A different aspect is that we implemented
a special message informing the stream’s end. When there is no more data, the pro-
ducer informs all consumers to finish their execution and exit.

C++ compilers implement RTTI (Run-Time Type Information), which provides
type information during runtime. We have investigated using this approach for
DSParLib. Nonetheless, it does not work for automatic data communication pur-
poses. RTTI only provides basic information about a type and does not support list-
ing the fields of a struct. Furthermore, there is no standard approach to get the
size of dynamically allocated data. The programmers need to intervene and man-
ually specify the size of the allocations. Although we can not use more advanced
techniques like RTTI, we implement a lightweight abstraction in DSParLib for sim-
plifying data communication through message passing instead of using low-level
MPI communicators.

3.5 Pipeline and Farm Patterns

In this section, we discuss the parallel patterns implemented and how they can be
instantiated using C++11 features to improve programmability. It is possible to use
C++ type inference and the auto keyword so that the programmers do not need to
manually specify all the data types. Listing 3 shows how the programmers can use

466 International Journal of Parallel Programming (2022) 50:454–485

1 3

DSParLib’s building blocks to write parallel code. The example presents patterns
composition using the following schema: pipe{◻0, farm[E(◻1),W(◻2),C(◻3)],◻4} .
The resulting parallel activity graph is illustrated in Fig. 3. In this example, the mes-
sage is composed of the double data type. Since this is a contiguous memory type
(data is placed in a single chunk of memory), the message passing communication
is abstracted using dspar::SenderReceiver<double>() (line 2). Pipeline
stages can be created as shown in lines 3 and 8, passing as parameters the sequen-
tial wrapper and the communicator mechanism. The Farm is created as shown in
line 4, where the programmers inform the sequential wrappers and respective mes-
sage passing mechanisms as parameters. Then, the final data stream can be modeled
by building these blocks (sequential wrappers and patterns), as presented in line 9.
The final parallel activity graph connects a Stage to a Farm pattern (with multiple
blocks already inter-connected internally) and to the last stage. Finally, the method
Start() (line 10) computes the complete parallel activity graph and schedules the
MPI ranks. Each MPI rank will be responsible for a sequential wrapper.

1 void PipelineComposition () {
2 auto communicator = dspar::SenderReceiver<double>();
3 auto stageBeforeFarm = dspar::Stage(FirstStage ,communicator);
4 auto farm = dspar::Farm(communicator , Emitter, communicator ,

Worker, communicator , Collector , communicator);
5 farm.SetWorkerReplicas(10);
6 farm.SetOnDemandScheduling(true);
7 farm.SetCollectorIsOrdered(true);
8 auto stageAfterFarm = dspar::Stage(LastStage, communicator);
9 Pipeline pipe(& stageBeforeFarm , &farm , &stageAfterFarm);

10 pipe.Start();
11 }

Listing 3: Example of Pipeline and Farm composition.

The dspar::Farm pattern automatically infers the types and fails compila-
tion if the programmers specify incompatible stages and communicators. The same
is done for dspar::Stage. Regarding Farm’s scheduling, the default option is
round-robin. However DSParLib also implements on-demand scheduling, which can
improve load balancing if the network is not a bottleneck, especially when Work-
ers have a different computational load or when data stream items have unbalanced

C(3)

W(2)

W(2)

...0 4E(1)

Pipeline Farm

Fig. 3 Parallel activity graph example

467

1 3

International Journal of Parallel Programming (2022) 50:454–485

computational complexity. The messages are distributed on demand as soon as the
Worker finishes the previous computation. Additionally, the Farm object supports
the following customization options:

• SetWorkerReplicas(int) to set the integer number of parallel Worker
replicas;

• SetCollectorIsOrdered(bool) to enable ordering constraints in the
Collector if set to true;

• SetOnDemandScheduling(bool) to enable on-demand scheduling if
set to true.

3.6 Runtime

This section explains how the runtime uses the wrapper classes to compute the
stream activity graph. Also, we present the mechanisms that provide efficient
scheduling protocols and ordering constraints in the runtime implementation. Fig-
ure 4 shows the relationship between the classes used in DSParLib. DSParNode
inherits from DSParLifecycle. FarmPattern and PipelineStage create
instances of DSParNode and run them based on their process rank. Abstract-
PipelineElement is used in the node allocation and will be explained in next
Sect. 3.7. A PipelinePattern contains one or more instances of Abstract-
PipelineElement that can be of class type PipelineStage or FarmPat-
tern (enables pattern composition).

Each DSParLib component internally implements an interface of type DSPar-
Node that is executed by all MPI processes created during execution. DSParNode
inherits from DSParLifecycle, which listens for messages coming from other
processes and gathers information about important stream events such as the stream
start, stream stops, and new messages. It executes actions according to the informa-
tion captured. For example, capturing a stop signal message contains the informa-
tion on whether the DSParNode must immediately finish execution or ignore the
signal and wait for further instructions. This is useful for gatherers to track which
Workers have stopped and only stop when the last Worker stops. Similarly, the start
signal is part of the protocol to check whether a working node can immediately start
receiving messages or ignore the signal and wait for further instructions.

Standard messages’ payload do not require special treatment and are executed by
the sequential wrapper implemented within the Process() method, as previously
explained in Sect. 3.3. Nonetheless, if re-ordering is required, the messages’ payload
is not executed immediately. Instead, a precomputation determines if the payload
should be processed or it should be stored for processing later. Since parallelism is
non-deterministic in nature, some applications may require re-ordering so that the
integrity of the output is guaranteed (e.g., order of frames in a video). The order-
ing mechanism is based on work described in [23] and uses a std::priority_
queue for ordering the messages’ payload in ascending order.

Concerning the scheduling protocols, DSParLib provides round-robin and on-
demand scheduler protocols. The default scheduler is round-robin, which distributes

468 International Journal of Parallel Programming (2022) 50:454–485

1 3

balanced workloads among parallel processes using a circular order. We also imple-
ment on-demand scheduling. This way, data messages are only sent when the sched-
uler receives a demanding signal from a Worker. On the other side, Workers only
demand new data when they finish their previous task. This protocol uses more mes-
sages in the network but can improve workload balancing. For example, if a process
is faster than another, it demands more data to compute.

3.7 Planning Node Allocation

Before starting the stream processing execution, DSParLib needs to know which
node must be executed by a given MPI rank. This section describes the process of
allocating DSParLib nodes and MPI ranks.

First, we explain the Farm parallel pattern. By default, the Emitter and Collector
are placed as neighbors (Emitter on rank 0, Collector on rank 1), and parallel work-
ers go from 2 to 2 + degree_of_parallelism − 1 . If the default MPI process alloca-
tion is used, rank 0 and 1 will be placed in the same cluster node equipped with a
multi-core processor. Considering the Emitter and Collector are network or disk I/O
intensive, both processes may have degraded performance since they would compete
for limited resources. However, the user can change it by providing their custom
hostfiles with different allocation configurations.

When dealing with a Pipeline or Pipeline with Farm, DSParLib uses the fol-
lowing strategy. Each instance in DSParLib requires its nodes to implement the
AbstractPipelineElement class from previous Fig. 4. This class stores
information about the stage’s position and how many parallel processes exist when
the pipeline node is a Farm. We define the information used to provide processes’
ranks as input and output offsets and the total number of processes. This informa-
tion is later used to provide the correct rank for each process. By default, Pipeline
stages will have their rank matching their position in the Pipeline. When combining
a Pipeline with Farm, each Pipeline stage will be dislocated according to the Farm
topology, depending on its degree of parallelism.

Fig. 4 Relationship of classes in DSParLib

469

1 3

International Journal of Parallel Programming (2022) 50:454–485

For instance, let us define the following parallel activity graph as example:
pipe{◻0,◻1, farm[E(◻2),W(◻3),C(◻4)],◻5} . The activity graph example is
illustrated in Fig. 5. In practice, Each Pipeline stage implements an Abstract-
PipelineElement where some of them are of type FarmPattern while
others are of type PipelineStage. By default the FarmPattern com-
municates its input and output offsets as 0 and 1, and total number of processes
as 2 + degree_of_parallelism . Since there are other building blocks (stages ◻0
and ◻1) before the FarmPattern, these offsets are used to calculate the actual
ranks where the Farm will be positioned. For example, if two PipelineStage
instances precede the FarmPattern, the input offset 0 is summed to 2. Conse-
quently, ◻0 and ◻1 are positioned at rank 0 and 1, while the FarmPattern has
its Emitter on rank 2, Collector is rank 3, and parallel workers from ranks 3 to
3 + degree_of_parallelism − 1 . Finally, ◻5 is positioned at the end of the Pipeline.
This means that DSParLib assigns the MPI ranks based on the final parallel activity
graph.

4 Stream Processing Applications

In this section, we briefly describe the applications and their parallelizations using
DSParLib. First, in Sect. 4.1 we discuss the parallelization methodology of five
different stream processing applications: two of them are synthetic applications,
and the remaining three are real-world streams processing applications. Then, in
Sect. 4.2 we parallelize the PARSEC’s Ferret benchmark with different parallel pat-
tern compositions.

4.1 Parallelized Application with the Farm Pattern

We select five applications from the stream processing domain: two synthetic appli-
cations for stressing the schedulers with highly unbalanced workloads (Mandelbrot
and Prime numbers); and three applications that represent real-world scenarios
(Face Recognition, Lane Detection, and Bzip2). We briefly describe them:

1. Mandelbrot is a mathematical application that computes a fractal in the com-
plex plane [17]. This application is naturally unbalanced. By default, it performs
almost no I/O operations, but it can easily be modified to do so to mimic a typical
stream processing application. We have implemented equivalent parallel versions
for both programming abstractions (DSParLib and MPI). The parallel version
implements a Farm pattern with re-ordering disabled. In the MPI version, the
message passing step in this application uses default MPI data types. The data to
be communicated is a 2D matrix which is sent in the shape of lines. In short, each
Worker starts receiving a line_id (MPI_INT) for computation and finishes
sending the resulting line (MPI_BYTE).

2. Prime numbers counts how many prime numbers are within a given range [18].
The algorithm checks if: for a given number n, there is any number between 2

470 International Journal of Parallel Programming (2022) 50:454–485

1 3

and n − 1 that n is divisible. This synthetic application is highly unbalanced by
default. We obtained a pre-existing handwritten MPI version [20]. We manually
inspected it to guarantee that the code is similar to ours. The DSParLib and MPI
versions were implemented using a Farm-like pattern with re-ordering disabled.
The message passing in this application is straightforward because it only com-
municates integers.

3. Face recognition is a program that recognizes faces in a video stream using
OpenCV [21]. A lightweight model is trained before execution, and later used to
detect faces. To our knowledge, this code has no pre-existing handwritten MPI
versions. Therefore, we developed a Farm-like parallel version with re-ordering
enabled for both MPI and DSParLib versions. Implementing message passing in
this application is challenging because data is communicated using an OpenCV
data type. So we investigated the source code and inspected the OpenCV to find
the primitive data types of the data object. Finally, we manually send and receive
each one of the members separately using the appropriate data types, and then
we reconstruct the OpenCV data type.

4. Lane detection is a program that detects the limits of road lanes for autonomous
vehicles based on a video stream using OpenCV [21]. We use a pre-existing
handwritten MPI application [35]. The MPI version employs a Farm pattern, and
we manually implemented an ordering strategy. On the other hand, the DSParLib
version uses the Farm pattern and our library’s built-in ordering. Similar to Face
Recognition, this application communicates data using the same OpenCV object
(cv:Mat). So we implemented the same strategy for the message passing step.
We have checked the strategy used in the MPI version (implemented by others),
which is similar to ours.

5. Bzip2 is a compression library used in some Linux distributions. The MPIBzip2 is
a parallel version using OpenMPI. The parallelism strategy of MPIBzip2 is like a
master-worker [20] pattern, where the master splits the file into smaller blocks and
collects them while the workers perform the compression. In DSParLib version,
the parallel implementation uses a Farm pattern with re-ordered enabled. The
main difference between MPI and ours is that the master task is split into Emitter
and Collector. Concerning the message passing, since we are dealing with the
compression phase, the blocks read from the original file have a default size of
900Kb. Therefore, the communication starts by sending and receiving messages
with a known amount of bytes. However, considering compression rate varies,

C(4)

W(3)

W(3)

...1 5E(2)0

Pipeline Farm

Fig. 5 Parallel activity graph example

471

1 3

International Journal of Parallel Programming (2022) 50:454–485

the new size must be known for passing messages after compressing a block of
data.

For each application, we additionally implemented different versions using two
scheduling policy strategies: on-demand and round-robin. The former expects the
Workers to request new tasks once they are free, and the latter uses a round-robin
distribution fashion that distributes balanced workloads among the Workers in a
circular order. The on-demand scheduling can improve performance when dealing
with unbalanced workloads, as will be shown in the experimental section. Listing 4
shows the optimization options available in DSParLib. Instead of implementing
the scheduler or the re-ordering strategies from scratch, programmers can inform
DSParLib which features they want to enable.

1 auto c = dspar::SenderReceiver<... >();
2 auto farm = dspar::Farm(Emitter, c, Worker, c, Collector);
3 farm.SetCollectorIsOrdered(true/ fa l se);
4 farm.SetOnDemandScheduling(true/ fa l se);
5 farm.SetWorkerReplicas(degree_of_parallelism);
6 farm.Start();

Listing 4: DSParLib Farm template used in all applications.

Using DSParLib required significantly less effort than writing a distributed par-
allel code with MPI. Most of the development work regards the code refactoring
from the application into the Farm pattern and implementing the data communica-
tion (marshaling and unmarshalling data). Because of that, during the conception
of DSParLib we focused on data message passing abstractions while balancing the
trade-off between programmability and flexibility aspects for writing stream parallel
codes.

4.2 Ferret with Different Parallel Patterns

The Ferret application belongs to the PARSEC benchmark suite and is used for
detecting similarities between video, audio, and image files [6, 22]. The Ferret appli-
cation contains an original parallelization targeting multi-cores using the Pthreads
library. In this version, the authors have parallelized Ferret using a Pipeline parallel
pattern. There are six pipeline stages, and two of them are responsible for loading
and collecting the data. In comparison, the other four stages are responsible for com-
putational processing: Segmentation, Extraction, Vectorization, and Ranking.

We have based our parallelization on the original Pthreads version. Therefore,
the first distributed version we implemented with DSParLib is a pipeline con-
taining four computational stages, as shown in the bottom part of Fig. 6. Note
that the four computational stages are stateless, meaning they do not maintain
previous states and do not have data dependencies. Therefore, we can replicate
the stages to increase the degree of parallelism up to the maximum degree avail-
able on a target machine. This version was the most difficult one to implement

472 International Journal of Parallel Programming (2022) 50:454–485

1 3

because message passing in Ferret is complex. The complete struct used for
communicating data has more than 20 members, varying from integers, point-
ers using 1 or 2 dimensions, and custom data types such as Ferret’s CASS types
(Content-Aware Search System). Other complexities rely on non-contiguous data
and nested data structures.

To conceive this parallel activity graph in Ferret, our parallel implementation
uses the composition of Pipeline and Farm parallel patterns. We created Farms to
express the parallel Worker, as represented in Listing 5. Note that the Farms have
a different number of parameters. Since the parallelization strategy employs a
Pipeline of Farms, all Farms are implemented accordingly to their graph position.
For example, the Farm 0 communicates with Farm 1. Therefore, the Farm 0 adds
an extra communicator at the end, while Farm 1 adds an extra communicator at
the beginning. Also, all Farms implement at least one Emitter or Collector stage
using an empty stage. We implemented our solution with this strategy to maintain
the functional correctness of the data flow. The Farm parallel pattern, as men-
tioned in previous Sect. 3.2, must implement a scheduler and a gatherer, namely
Emitter and Collector. For example, a replicated stage cannot directly communi-
cate with another replicated stage without a proper scheduling protocol. We plan
to implement optimized strategies in the future, like the all-to-all communica-
tion model. This means that each Worker from the previous stage has multiple
messages passing queues to each Worker from the subsequent stage. For now,
our strategy is compliant with the Farm parallel pattern, having a clear notion of
Emitter, Worker, and Collector. Sometimes applications have natural Emitter and
Collector stages, like the Load and Collect computations of Ferret. On the
other hand, when no sequential application code fits in (Ferret internal stages),
we use empty stages with no computational processing. These are empty stages
because they do not process anything. Rather, they simply forward the messages
received from the previous stage.

1 auto comm = dspar::SenderReceiver<... >();
2 EmptyStage <task > E, C;
3

4 auto farm_0 = dspar::Farm(Load, comm , Seg, comm , C, comm);
5 auto farm_1 = dspar::Farm(comm , E, comm , Extract, comm , C, comm);
6 auto farm_2 = dspar::Farm(comm , E, comm , Vect, comm , C, comm);
7 auto farm_3 = dspar::Farm(comm , E, comm , Rank, comm , Collect);
8

9 Pipeline pipe;
10 pipe.Add(& farm_0);
11 pipe.Add(& farm_1);
12 pipe.Add(& farm_2);
13 pipe.Add(& farm_3);

Listing 5: Example of Pipeline and Farm composition.

Alternatively, we have implemented another similar parallel and distributed
version with DSParLib. The most difficult part of the message passing is commu-
nicating the Vect stage results to the next rank stage. To get the correct sizes

473

1 3

International Journal of Parallel Programming (2022) 50:454–485

of the amount of memory allocated for each data struct, we must look deep into
Ferret’s source files. Therefore, in our second version, we combine the Vect and
rank stages into a single one. The resulting parallel activity graph can be seen
on the top right-hand side of Fig. 6.

Finally, we developed one last version that implements the Farm parallel pattern
without composition, as illustrated in the top left-hand side of Fig. 6. This version
contains a single computational stage (Worker) obtained by merging the Segmen-
tation, Extraction, Vectorization, and Ranking stages into a single one. The mes-
sage passing in this version is significantly simpler than other DSParLib versions.
The reason is that we only communicate the data items from the Emitter to the
Worker and later from Worker to Collector. Intermediate data are not sent over the
network because the computation stays in the same node and is performed locally
using shared memory. As discussed by the authors from [22], Ferret’s stages are
not well balanced, showing some drawbacks regarding parallelism. If the computing
stages are replicated using the same factor, the unbalancing problem remains, and
resource usage is not optimized, resulting in performance losses. This will be shown
in Sect. 5.2 when we discuss Ferret’s results.

5 Experiments

In this section, we experimentally evaluate the performance and programmability
aspects of DSParLib concerning MPI, which is the de-facto parallelism abstraction
for HPC. Section 5.1 aims to evaluate DSParLib performance with Farm-like paral-
lel versions and compare the results to MPI handwritten versions. In Sect. 5.2, we
extended our performance evaluation using the PARSEC Ferret benchmark as a use
case to embody characteristics of modern stream processing applications. Therefore,
we evaluate the strategies designed to parallelize Ferret’s complex activity graph.

Seg, Extract,
Vect, Rank

W

W

...
W

W

...
Load

Seg Extract Vect Rank

C E

W

W

...C E

W

...C E

Collect

C

W

W

...
Load Collect

W

E

E C

W

W

...
W

W

...
Load

Seg Extract
Vect,
Rank

C E

W

W

...C E

Collect

E C

Farm
(1 stage)

Pipeline
(3 stages)

Pipeline
(4 stages)

Fig. 6 The parallel activity graph of the Ferret application’s parallel versions

474 International Journal of Parallel Programming (2022) 50:454–485

1 3

The experiments were executed on a cluster using eight computing nodes. Each
node was equipped with 2 Intel(R) Xeon(R) CPU E5-2620 v3 @ 2.40GHz (totaling
12 cores and 24 threads) with 24GB of RAM memory. The nodes were connected
via Gigabit Ethernet and InfiniBand QDR 4x (32GBit/s). The operating system was
Ubuntu 16.04 64 bits with kernel 4.4.0-146-generic. The MPI version was OpenMPI
1.4.5. The applications were compiled with GCC 9.3.0 using -O3 optimizations.
OpenCV version was version 2.4.13.

The throughput is measured using items/time, where items is the total number of
stream items transmitted and time is the total execution time. Bzip2 is an exception;
it is measured in MB/time using the original file’s size and execution time. Regarding
the plotted graphs, the x-axis is the degree of parallelism, while y-axis represents the
performance metric (items/time or size/time). The results plotted were obtained from
the arithmetic mean of 30 executions performed for each configuration. The stand-
ard deviation is plotted using error bars, which may not be visible when the value is
negligible. The mpi-ond label refers to the MPI on-demand version and mpi-rr
refers to the MPI round-robin version. Likewise, dspar-ond and dspar-rr are
the DSParLib on-demand and round-robin versions, respectively.

5.1 Performance Evaluation with Farm‑Like Applications

In this section, our goal is to assess the performance of DSParLib concerning
handwritten MPI codes. We investigated the experimental results and observed
that DSParLib ’s programming model could be slightly more efficient than standard
MPI implementations. Although the parallelism strategy is equivalent between the
versions, we cannot ensure they are identical because of particular communication
protocols and contrasting programming models. The significant difference between
the versions is that DSParLib uses dynamic process allocation from MPI-2, while
handwritten MPI codes generate static processes via MPI-1. In DSParLib, the pro-
gram is initiated with a single MPI process that will later create and allocate the
other processes via MPI-2 functions like MPI_Comm_spawn and MPI_Inter-
comm_merge. Other differences are regarding the number of messages sent or
received by each version, which is not always the same, especially for the paral-
lel versions we obtained from the literature. Besides that, performance variations
between versions may result from low-level MPI optimizations. Regarding total
number of processes, Figs. 7 and 8 simply add 2 processes (one for Emitter and
one for Collector) to the degree of parallelism. Furthermore, we individually explain
each application in the remainder of this section.

The handwritten MPI programs we implemented do not use the MPI-2 pro-
gramming model during the parallelization. Other works [20, 35] do not imple-
ment their applications using MPI-2 to support dynamic process management,
which highlights the challenges inherited from this programming model. In short,
some key differences exist regarding implementing MPI programs using different
programming models. In MPI-1, all processes are created at the beginning and
in a single communication group (intracommunication) as MPI_COMM_WORLD.
In MPI-2, a single parent process can dynamically initialize children processes

475

1 3

International Journal of Parallel Programming (2022) 50:454–485

during execution time. However, they form a new group of processes since they
create their MPI_COMM_WORLD. Consequently, the MPI program now must use
intercommunicators to bind a communication context between these two groups
of processes recognized as local and remote. Adding or removing processes
becomes very difficult during the application execution because other features
must be considered. Some examples are reasoning about where processes are
physically allocated and executed, rearranging multiple communicators, and the
relationship of each process’s role in the parallel activity graph.

The tests were executed by varying the degree of parallelism using multiples
of 4, starting from 4 up to the maximum number of available resources. For the
first five Farm-like applications, we set the maximum number of processes on
each node to avoid hyper-threading. Each node runs 12 processes on 12 physi-
cal cores. Also, our experimental analysis considered different process allocation
strategies (e.g., isolate Emitter and Collector, allocate all available cores first,
etc.). For brevity, we only report the allocation strategy with the highest over-
all performance in all versions (MPI and DSparLib). This strategy isolates the
Emitter and Collector: Each runs in a separate node (nodes #0 and #1). Then, the
other processing nodes are allocated to available nodes in a round-robin fashion.
For example, Worker 2 is placed in node #2, Worker 3 is placed in node #3, and
so on. We have verified the functional correctness of our parallel versions using
checksum in the output and MD5 hash comparison.

Mandelbrot computes a 6000 × 6000 pixel image of the Mandelbrot set,
using 10,000 iterations. For all versions, computation is performed line-by-line,
similar to the shared-memory parallelism strategy proposed in [17]. The perfor-
mance between MPI and DSParLib is similar as shown in Fig. 7a. However, at
its peak, DSParLib has up to 7.6% higher throughput than MPI. In this test, lines
near the middle of the Mandelbrot image are more computationally intensive than
other regions, causing load balancing issues. The on-demand scheduling is bet-
ter in this situation, resulting in better performance for the DSParLib and MPI
on-demand implementations. When we run the DSParLib program with dynamic
process allocation, DSParLib creates a new communication group containing

(a) Mandelbrot (b) Prime numbers

Fig. 7 Performance evaluation of Mandelbrot and Prime numbers

476 International Journal of Parallel Programming (2022) 50:454–485

1 3

all the spawned processes. However, for the MPI versions, all processes live in
MPI_COMM_WORLD.

Prime numbers tests the prime property of all numbers between 0 and 1.2
million. In this benchmark application, the performance difference between
scheduler types is bigger than in Mandelbrot. This is shown in Fig. 7b. The main
problem is due to an unbalanced load. Using the on-demand scheduler helps bal-
ance the workload as Workers ask for more items on demand. Another detail that
can be observed in Fig. 7b is the unstable behavior of the round-robin schedul-
ing versions. The reason is that the degree of parallelism directly interferes with
the scheduling. For example, a degree of parallelism 2 implies that one Worker
always receives even numbers while the other receives odd numbers. Checking
if an even number is a prime is simpler than an odd one. In Prime numbers, the
difference between the abstractions is smaller. DSParLib has up to 5.5% higher
throughput than MPI in the peak performance.

Face Recognition processes a 15-second video input. In this application, it is
worth mentioning that all frames are computationally expensive. Therefore, Face
Recognition never reached the disk I/O bottleneck in our tests. We could not find

(a) Face Recognition (b) Lane Detection

(c) Bzip2

Fig. 8 Performance of face recognition, lane detection, and Bzip2

477

1 3

International Journal of Parallel Programming (2022) 50:454–485

such an application implemented with MPI in the literature, so we implemented
it ourselves. Figure 8a shows the throughput in frames per second (FPS), where
the application continues scaling until the maximum degree of parallelism. At
its peak performance, DSParLib has 5.8% higher throughput than MPI. The MPI
on-demand and DSParLib on-demand versions have similar performance, but
DSParLib is slightly faster. DSParLib and MPI are sending and receiving simi-
lar messages, and the MPI version have an advantage since the header messages
are smaller. This is similar to lane detection, where header messages are smaller;
however, DSParLib is still faster.

Lane Detection computes over a video input containing 1858 frames of size
640x480 pixels. Figure 8b shows the throughput in frames per second (FPS). The
peak throughput is 214.55 frames per second with 32 Workers (DSParLib on-
demand). After that, it reaches the bottleneck for disk I/O, and the program stops
scaling. The on-demand MPI version has similar performance until 28 Workers. The
difference becomes more evident as the number of processes increases. Both ver-
sions need to send 3 messages to transmit a video frame. The MPI version uses a
header message of size MPI_INT (4 bytes) to communicate the frame number and
2 messages to send the frame data. DSParLib sends a bigger header message with
24 bytes and then 2 messages to send the frame data. Although DSParLib slightly
consumes more network bandwidth, results show that our version achieves better
performance with respect to handwritten MPI.

Bzip2 has an existing parallel MPI version called Mpibzip2. It uses a master-
worker approach instead of a native stream processing pattern. Since the DSParLib
version isolates the Emitter and Collector, we also isolated the Mpibzip2 master in
a separate cluster node. We tested with a 512MB MP4 video file. Figure 8c shows
the performance of all versions. Mpibzip2 achieves lower performance compared
to DSParLib. The maximum throughput of DSParLib is 2.98 times higher than the
handwritten MPI program. The main reason is networking and synchronization bot-
tlenecks because the master process is responsible for both I/O operations: read-
ing and writing data. At 44 processes, the MpiBzip2 master reaches its maximum
throughput. The DSParLib version has the advantage of having an extra MPI pro-
cess for the Collector. In this test, the Collector is isolated in another cluster node.
Consequently, I/O work is divided between two machines, and the performance con-
tinues to scale as more processes are added.

5.2 Performance Evaluation of Ferret with DSParLib

In this section, our goal is to assess the performance of DSParLib using the
semi-arbitrary pattern composition of Pipeline and Farm. Ferret application
exhibits complex data communication through message passing and data flows.
We implemented three different distributed and parallel versions according to
the parallel activity graphs illustrated in Fig. 6. Unlike the previous experimen-
tal setup, to evaluate Ferret we used our system’s maximum available computing
resources. Effectively, all cores, including logical ones, are used. Additionally,
we configured different MPI process allocation strategies to study their impact

478 International Journal of Parallel Programming (2022) 50:454–485

1 3

on dynamic process allocation. We conducted tests using the round-robin and
fill-node allocation strategies combined with different Emitter and Collector
configurations:

• round-robin, EC-dedicated: This configuration uses a strategy that
allocates one process in each available node in a round-robin fashion. Both
Emitter and Collector have dedicated nodes.

• fill-node, EC-dedicated: This configuration uses a strategy that allo-
cates processes in the same node and only goes to the next node when it is
fully allocated. Both Emitter and Collector have dedicated nodes.

• fill-node, EC-shared: This configuration uses a strategy that allocates
processes in the same node and only goes to the next node when it is fully
allocated. Both Emitter and Collector share the same node.

We tested the PARSEC Ferret benchmark with the default native workload
composed of 3.500 images. The performance results are shown in Fig. 9. We
depicted all results until they peaked and began decreasing performance. There
are two different explanations: (1) the workload size limits further scaling when
reaching higher degrees of parallelism, which explains the limited scalability
observed in Farm implementations; (2) both pattern composition versions (Pipe-
line) stop scaling long before that since they have reached a point where they are
using all available cores. For example, at the degree of parallelism 2, there are
actually 12 (6 + 2 ∗ 3) processes running for the Pipeline with 3 stages and 16
(8 + 2 ∗ 4) processes for the Pipeline with 4 stages.

To help understand the results from the graphs, we prepared Table 2 showing
the best throughput measured in each version and configuration. As expected,
the Farm version scales better than the other versions and only stops scaling
when the workload size becomes a problem. In the best-case scenario, the Farm
version has up to 37% higher throughput than the other versions. For both the
Pipeline versions, we observed that the maximum throughput is equivalent
between themselves and varies less than 1% . Considering that the Pipeline (3
stages) version communicates less data because we have merged the last two
stages avoiding a significant amount of communication, we expected this ver-
sion to be slightly faster. Nonetheless, these positive results highlight that the
overhead introduced by our data message passing abstraction is negligible.

Concerning the different process allocation strategies, both Table 2 and
graphs from Fig. 9 show us that the maximum throughput is similar among all
versions. But if we look at the graphs from Fig. 9, we observe that the round-
robin, EC-dedicated configuration is smoother than the others. Both
experiments using the fill-node allocation strategy show serious performance
losses after reaching the peak throughput. Therefore, we concluded that it is bet-
ter to use the round-robin, EC-dedicated configuration as default in
DSParLib while allowing the programmers to use custom configurations.

479

1 3

International Journal of Parallel Programming (2022) 50:454–485

5.3 Programmability

In this section, we discuss programmability aspects of parallel and distributed
implementations for DSParLib with respect to handwritten and manually opti-
mized MPI programs. We measured SLOC (Source Lines of Code) for each of
the five applications described in Sect. 4.1. We do not consider Ferret for this
comparison because we do not have a handwritten pure MPI parallelization. The
SLOC metric does not consider blank lines and comments, only valid program-
ming language syntax. With SLOC, it is possible to infer a general idea about the
level of code intrusion that each programming abstraction requires for introduc-
ing parallelism. The goal is to measure and compare the extra number of code
lines needed for parallelizing a sequential application. It is worth noting that
this metric has its limitations. For example, SLOC is not representative enough
to express which parallel programming abstraction has the best programmability
characteristics. Other aspects need to be taken into account. For example, a rea-
sonable approach could measure the total development time, programmer experi-
ence, application context, etc.

(a) Ferret (round-robin, EC-dedicated) (b) Ferret (fill-node, EC-dedicated)

(c) Ferret (fill-node, EC-shared)

Fig. 9 Performance of Ferret using DSParLib and different process allocation strategies

480 International Journal of Parallel Programming (2022) 50:454–485

1 3

Table 3 compares the measured SLOC for DSParLib and handwritten MPI ver-
sions. The Sequential entry represents the sequential application version. MPI has
two entries since each version requires different implementation and synchronization
details. DSParLib represents both versions, where On-Demand and Round-Robin
are the same, requiring only an extra parameter that is either enabled or disabled.

Mandelbrot is the only application where DSParLib requires more lines of code.
The explanation is that DSParLib wraps each different building block in a class,
resulting in more code. Yet, comparing DSParLib with MPI On-Demand shows
that the difference is as small as 13.3% . Prime numbers indicate a higher difference
between our abstraction and MPI, where DSParLib is up to 6x less intrusive than
MPI. For MPI versions, the SLOC is higher because it requires low-level imple-
mentation details that make the source code more verbose. Face recognition also
showcases a higher difference, where MPI SLOC is 91.1% higher than DSParLib.
In Lane Detection and PBzip2, the handwritten MPI programs are 25.3% and 37.4%
respectively more intrusive than DSParLib.

These results highlight one of the significant advantages of DSParLib. Our
abstraction can simplify many low-level parallel details intrinsic to MPI program-
ming. During the experiments, we had to fix a series of bugs in handwritten MPI
C++ programs implemented by other experts, mainly due to memory and logic
errors when dealing with message passing. DSParLib introduces a high-level API
that makes it simpler to express parallelism while hiding message-passing commu-
nication details. Moreover, DSParLib implements a strong type-check system that
looks for incorrect usage and wrong semantics at compilation time.

To give the reader an idea of the challenges inherited from stream processing
applications parallelized via MPI, we extracted a code region from the Person Rec-
ognition application. Note that this slice of code (Listing 6) only shows the worker
scope, while the operator’s scheduling and sink strategies are hidden. Their strat-
egy can become intricate when implementing efficient schedulers or ordering con-
straints. The worker logic and MPI functions are described between lines 5 and 28.

Table 2 Best throughputs measured in Ferret application

Ferret Version Metrics Farm (1 stage) Pipeline (3 stages) Pipeline (4 stages)

Round-robin EC-
dedicated

Degree of Parallelism 112 60 48
Number of Processes 114 186 200
Throughput (img/sec) 395.88 288.37 288.88
Std. Dev. 17.87 7.60 6.99

Fill-node EC-dedicated Degree of Parallelism 140 60 44
Number of Processes 142 186 184
Throughput (img/sec) 391.48 294.24 297.16
Std. Dev. 6.75 16.42 2.80

Fill-node EC-shared Degree of Parallelism 124 60 44
Number of Processes 126 186 184
Throughput (img/sec) 384.82 294.07 294.29
Std. Dev. 16.72 2.20 4.23

481

1 3

International Journal of Parallel Programming (2022) 50:454–485

Lines 8 and 9 are part of the on-demand scheduling. Once the Emitter acknowledges
the demand signal, lines 11 to 17 perform the MPI functions to receive data. Line 18
abstracts the person recognition computation. Then, lines between 20 and 26 send
the result to the Collector.

In MPI, the programmers are responsible for manually implementing the data
communication. They must understand MPI specifications and deal with low-level
parallelism and architecture aspects, such as manually implementing the scheduler
while providing the correct information about various data types, MPI message
options, and data sizes without crashing the program. It is worth noting that MPI’s
parallelism strategy is mixed-up with the application business logic. It is challenging
to debug and maintain code, especially in large applications.

Table 3 Comparison of applications Source Lines of Code (SLOC)

Versions Mandelbrot Prime numbers Face Recog-
nition

Lane Detection PBzip2

Sequential 42 35 126 114 1388
MPI on-demand 147 329 293 302 1880
MPI round-robin 97 324 296 297 –
DSParLib 161 83 215 264 1746

482 International Journal of Parallel Programming (2022) 50:454–485

1 3

1 int main (int argc , char ∗∗ argv){
2 i f (i sEmi t t e r){
3 /∗ abs t rac ted schedu l ing l o g i c ∗/
4 }
5 else i f (isWorker){
6 while (true){
7 // reques t work
8 MPI Send(&demand , 1 ,MPI INT, emitterRank ,DEMANDMSG,comm) ;
9 MPI Probe(emitterRank ,MPIANYTAG, comm,& s ta tu s) ;

10 // Receive Data
11 MPI Recv(&msgId , 1 ,MPI INT, emitterRank , ID MSG,comm,& s ta tu s) ;
12 MPI Recv(&nframe , 1 ,MPI INT, rank ,DATAMSG,comm,& s ta tu s) ;
13 MPI Recv(&rows , 1 ,MPI INT, rank ,DATAMSG,comm,& s ta tu s) ;
14 MPI Recv(&co l s , 1 ,MPI INT, rank ,DATAMSG,comm,& s ta tu s) ;
15 MPI Recv(&type , 1 ,MPI INT, rank ,DATAMSG,comm,& s ta tu s) ;
16 MPI Recv(& s i z e , 1 ,MPI INT, rank ,DATAMSG,comm,& s ta tu s) ;
17 MPI Recv(data , s i z e ,MPIBYTE, rank ,DATAMSG,comm,& s ta tu s) ;
18 /∗ abs t rac ted computation ∗/
19 // Send r e s u l t
20 MPI Send(&messageId , 1 ,MPI INT, co l l ectorRank , ID MSG,comm) ;
21 MPI Send(&data . nframe , 1 ,MPI INT, rank ,DATAMSG,comm) ;
22 MPI Send(&mat . rows , 1 ,MPI INT, rank ,DATAMSG,comm) ;
23 MPI Send(&mat . co l s , 1 ,MPI INT, rank ,DATAMSG,comm) ;
24 MPI Send(&type , 1 ,MPI INT, rank ,DATAMSG,comm) ;
25 MPI Send(& s i z e , 1 ,MPI INT, rank ,DATAMSG,comm) ;
26 MPI Send(mat . data , s i z e ,MPIBYTE, rank ,DATAMSG,comm) ;
27 }
28 }
29 else i f (i s C o l l e c t o r){
30 /∗ abs t rac ted s ink l o g i c ∗/
31 }
32 MPI Finalize () ;
33 }

Listing 6: Slice of Person Recognition’s parallel code implemented with
MPI.

On the other hand, employing a structured parallel programming approach via
parallel patterns improves programmability. For comparison, the parallelization on
the same stream processing application (Person Recognition) is similar to Listing 4.
Instead of manually implementing the message passing strategy, DSParLib provides
programming abstractions that hide communication complexities, and the program-
mer’s concern move towards how to use and interconnect DSParLib building blocks
or parallel patterns. Likewise, on-demand scheduling and ordering in DSParLib are
enabled with a single function call.

6 Conclusion

In this paper, we introduced DSParLib, a parallel programming abstraction for
expressing distributed stream parallelism in C++ programs. It is based on estab-
lished parallel pattern concepts and building blocks developing approach. DSParLib
offers ready-to-use abstractions to model and parallelize stream processing applica-
tions. By default, it supports round-robin and on-demand schedulers and supports

483

1 3

International Journal of Parallel Programming (2022) 50:454–485

built-in item re-ordering. The programmers can use these features simply by inform-
ing DSParLib which ones they wish to enable. Also, we implemented abstractions
for message passing communication and synchronization.

To assess the performance of DSParLib, we executed a set of experiments over
different applications. For comparison, we have extracted MPI handwritten pro-
grams from other authors or implemented by experts. The results revealed that
DSParLib achieves better performance with respect to MPI versions. We investi-
gated the effects and concluded that the improved performance is due to the bet-
ter parallelism strategies implemented in DSParLib. In some cases, we achieve a
throughput at most 6.3% higher than handwritten MPI. Regarding programmability,
DSParLib generally requires the lowest amount of extra lines of code for expressing
stream parallelism. The results show that DSParLib requires up to 6x less extra lines
of code than handwritten MPI programs.

Additionally, the experiments performed on Ferret show that DSParLib can be
used to efficiently implement complex stream processing applications with semi-
arbitrary pattern composition. In future work, we plan to use DSParLib as a runtime
library for SPar [19], which is a higher-level abstraction based on the C++-11 code
annotation mechanism. It has a source-to-source compiler that may generate parallel
code with calls to DSParLib. Finally, we intend to support more parallelism optimi-
zations, self-adaptive strategies, and fault-tolerance mechanisms.

Acknowledgements We would like to acknowledge the support of LAD-PUCRS, GMAP research group,
and PUCRS university. This research is partially funded by Coordenação de Aperfeiçoamento de Pes-
soal de Nível Superior - Brasil (CAPES) - Finance Code 001, FAPERGS 05/2019-PQG project ParaS
 (No 19/2551-0001895-9), FAPERGS 10/2020-ARD project SPar4.0 (No 21/2551-0000725-7), Universal
MCTIC/CNPq call 28/2018 project SParCLouD (No 437693/2018-0), and MCTIC/CNPq call 25/2020
 (No 130484/2021-0)

References

 1. Aldinucci, M., Campa, S., Danelutto, M., Kilpatrick, P., Torquati, M.: Targeting Distributed Sys-
tems in Fastflow. In: Proceedings of the 18th International Conference on Parallel Processing Work-
shops, Euro-Par’12, pp. 47–56. Springer, Berlin (2013)

 2. Aldinucci, M., Danelutto, M., Kilpatrick, P., Torquati, M.: Fastflow: High-Level and Efficient
Streaming on Multicore, chapter 13, pp. 261–280. Wiley (2017)

 3. Anderson, M., Smith, S., Sundaram, N., Capotă, M., Zhao, Z., Dulloor, S., Satish, N., Willke, T.L.:
Bridging the gap between HPC and big data frameworks. Proc. VLDB Endow. 10(8), 901–912
(2017)

 4. Andrade, H.C.M., Gedik, B., Turaga, D.S.: Fundamentals of Stream Processing: Application
Design, Systems, and Analytics, 1st edn. Cambridge University Press, New York (2014)

 5. Apache Storm.: Apache Storm. https:// storm. apache. org, July 2019. Accessed 16 May 2021
 6. Bienia, C., Kumar, S., Singh, J. P., Li, K.: The PARSEC benchmark suite: characterization and

architectural implications. In: 17th International Conference on Parallel Architectures and Compila-
tion Techniques, PACT ’08, pp 72–81. ACM, Toronto (2008)

 7. Bingmann, T., Axtmann, M., Jöbstl, E., Lamm, S., Nguyen, H. C., Noe, A., Schlag, S., Stumpp, M.,
Sturm, T., Sanders, P.: Thrill: high-performance algorithmic distributed batch data processing with
C++. In: 2016 IEEE International Conference on Big Data (Big Data), pp. 172–183 (2016)

 8. Boost committee: Boost C++ library: Serialization. https:// www. boost. org/ doc/ libs/1_ 79_0/ libs/
seria lizat ion/ doc/ index. html (2004)

https://storm.apache.org
https://www.boost.org/doc/libs/1_79_0/libs/serialization/doc/index.html
https://www.boost.org/doc/libs/1_79_0/libs/serialization/doc/index.html

484 International Journal of Parallel Programming (2022) 50:454–485

1 3

 9. Carbone, P., Katsifodimos, A., Ewen, S., Markl, V., Haridi, S., Tzoumas, K.: Apache FlinkTM :
stream and batch processing in a single engine. IEEE Data Eng. Bull. 38, 28–38 (2015)

 10. Cole, M.: Algorithmic Skeletons: Structured Management of Parallel Computation. University of
Glasgow, Glasgow (1989)

 11. Cole, M.: Bringing skeletons out of the closet: a pragmatic manifesto for skeletal parallel program-
ming. Paral. Comput. 30(3), 389–406 (2004)

 12. del Rio Astorga, D., Dolz, M.F., Fernández, J., García, J.D.: A generic parallel pattern interface for
stream and data processing. Concurr. Comput.: Pract. Exp. 29(24), 1–12 (2017)

 13. Ernsting, S., Kuchen, H.: A scalable farm skeleton for hybrid parallel and distributed programming.
Int. J. Parallel Program. 42, 968–987 (2013)

 14. Falcou, J., Sérot, J., Chateau, T., Lapresté, J.: Quaff: efficient C++ design for parallel skeletons.
Parallel Comput. 32(7), 604–615 (2006). (Algorithmic Skeletons)

 15. González-Vélez, H., Leyton, M.: A survey of algorithmic skeleton frameworks: high-level structured
parallel programming enablers. Softw.: Pract. Exp. 40(12), 1135–1160 (2010)

 16. Grant, W. S., Voorhies, R.: Cereal—a C++11 library for serialization. https:// github. com/ USCiL ab/
cereal, 2017

 17. Griebler, D.: Domain-specific language & support tool for high-level stream parallelism. PhD the-
sis, Faculdade de Informática—PPGCC - PUCRS, Porto Alegre, Brazil (2016)

 18. Griebler, D., Danelutto, M., Torquati, M., Fernandes, L. G.: An Embedded C++ domain-specific
language for stream parallelism. In: Parallel Computing: On the Road to Exascale, Proceedings of
the International Conference on Parallel Computing, ParCo’15, pp. 317–326. IOS Press, Edinburgh
(2015)

 19. Griebler, D., Danelutto, M., Torquati, M., Fernandes, L.G.: SPar: a DSL for high-level and produc-
tive stream parallelism. Parallel Process. Lett. 27(01), 1740005 (2017)

 20. Griebler, D., Fernandes, L. G.: Towards Distributed Parallel Programming Support for the SPar
DSL. In: Proceedings of the International Conference on Parallel Computing, ParCo’17, pp. 563–
572. IOS Press, Bologna (2017)

 21. Griebler, D., Hoffmann, R. B., Danelutto, M., Fernandes, L. G.: Higher-level parallelism abstrac-
tions for video applications with SPar. In: Proceedings of the International Conference on Parallel
Computing, ParCo’17, pp. 698–707. IOS Press, Bologna (2017)

 22. Griebler, D., Hoffmann, R.B., Danelutto, M., Fernandes, L.G.: High-Level and Productive Stream
Parallelism for Dedup, Ferret, and Bzip2. Int. J. Parallel Program. 47(1), 253–271 (2018)

 23. Griebler, D., Hoffmann, R.B., Danelutto, M., Fernandes, L.G.: Stream Parallelism with Ordered
Data Constraints on Multi-Core Systems. J. Supercomput. 75(8), 4042–4061 (2018)

 24. López-Gómez, J., Fernández Muñoz, J., del Rio Astorga, D., Dolz, M.F., Garcia, J.D.: Exploring
stream parallel patterns in distributed MPI environments. Parallel Comput. 84, 24–36 (2019)

 25. Mancini, E.P., Marsh, G., Panda, D.K. An MPI-stream hybrid programming model for computa-
tional clusters. In 2010 10th IEEE/ACM International Conference on Cluster, Cloud and Grid Com-
puting, pp. 323–330 (2010)

 26. Mattson, T., Sanders, B., Massingill, B.: Patterns for Parallel Programming, 1st edn. Addison-Wes-
ley Professional (2004)

 27. McCool, M., Robison, A.D., Reinders, J.: Structured Parallel Programming: Patterns for Efficient
Computation. Elsevier, Waltham, MA (2012)

 28. Muñoz, J. F., Dolz, M. F., del Rio Astorga, D., Cepeda, J. P., García, J. D.: Supporting MPI-dis-
tributed stream parallel patterns in GrPPI. In: Proceedings of the 25th European MPI users’ group
meeting, EuroMPI’18, pp. 17:1–10. ACM, New York (2018)

 29. Peng, I. B., Markidis, S., Gioiosa, R., Kestor, G., Laure, E.: MPI streams for HPC applications. In:
New Frontiers in High Performance Computing and Big Data, number 30 in Advances in Parallel
Computing, pp. 75–92 (2017)

 30. Peng, I. B., Markidis, S., Laure, E., Holmes, D., Bull, M.: A data streaming model in MPI. In Pro-
ceedings of the 3rd Workshop on Exascale MPI, ExaMPI ’15. Association for Computing Machin-
ery, New York (2015)

 31. Pieper, R., Griebler, D., Fernandes, L. G.: Structured stream parallelism for rust. In: 23rd Brazilian
Symposium on Programming Languages (SBLP), SBLP’19, pp. 54–61. ACM, Salvador (2019)

 32. Pieper, R., Löff, J., Hoffmann, R.B., Griebler, D., Fernandes, L.G.: High-level and efficient struc-
tured stream parallelism for rust on multi-cores. J. Comput. Lang. 65, 101054 (2021)

 33. Rayon: Rayon—Rust. https:// docs. rs/ rayon/1. 4.0/ rayon/, September 2020. Accessed 16 May 2021

https://github.com/USCiLab/cereal
https://github.com/USCiLab/cereal
https://docs.rs/rayon/1.4.0/rayon/

485

1 3

International Journal of Parallel Programming (2022) 50:454–485

 34. Reinders, J.: Intel Threading Building Blocks, 1st edn. O’Reilly & Associates Inc, Sebastopol
(2007)

 35. Vogel, A., Rista, C., Justo, G., Ewald, E., Griebler, D., Mencagli, G., Fernandes, L.G.: Parallel
stream processing with MPI for video analytics and data visualization. In: High Performance Com-
puting Systems, volume 1171 of Communications in Computer and Information Science (CCIS),
pp. 102–116. Springer, Cham (2020)

 36. Wagner, A., Rostoker, C.: A lightweight stream-processing library using MPI. In: 2009 IEEE Inter-
national Symposium on Parallel Distributed Processing, pp. 1–8 (2009)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article
is solely governed by the terms of such publishing agreement and applicable law.

	DSParLib: A C++ Template Library for Distributed Stream Parallelism
	Abstract
	1 Introduction
	2 Related Work
	3 DSParLib
	3.1 Design Principles
	3.2 Building Block Developing Approach
	3.3 Sequential Wrappers
	3.4 Communicators and Data Communication
	3.5 Pipeline and Farm Patterns
	3.6 Runtime
	3.7 Planning Node Allocation

	4 Stream Processing Applications
	4.1 Parallelized Application with the Farm Pattern
	4.2 Ferret with Different Parallel Patterns

	5 Experiments
	5.1 Performance Evaluation with Farm-Like Applications
	5.2 Performance Evaluation of Ferret with DSParLib
	5.3 Programmability

	6 Conclusion
	Acknowledgements
	References

