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Abstract
Stream processing applications deal with millions of data items continuously gener-
ated over time. Often, they must be processed in real-time and scale performance, 
which requires the use of distributed parallel computing resources. In C/C++, the 
current state-of-the-art for distributed architectures and High-Performance Com-
puting is Message Passing Interface (MPI). However, exploiting stream parallelism 
using MPI is complex and error-prone because it exposes many low-level details to 
the programmer. In this work, we introduce a new parallel programming abstraction 
for implementing distributed stream parallelism named DSParLib. Our abstraction 
of MPI simplifies parallel programming by providing a pattern-based and building 
block-oriented development to inter-connect, model, and parallelize data streams 
found in modern applications. Experiments conducted with five different stream 
processing applications and the representative PARSEC Ferret benchmark revealed 
that DSParLib is efficient and flexible. Also, DSParLib achieved similar or better 
performance, required less coding, and provided simpler abstractions to express par-
allelism with respect to handwritten MPI programs.
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1  Introduction

Stream Processing is a computing model to perform real-time processing in live 
data streams [4]. Its importance is evidenced by the common necessity for filter-
ing data sources that often produce data on the scale of millions of items per 
day. In stream processing, this data can be viewed as a potentially infinite flow 
of items. Moreover, the items that flow through the data stream can have a varied 
workload which may spike or slow down the quality of service. In some cases, 
on-the-fly processing may be required to leverage the data utility window fully. 
Therefore, adapting the stream processing systems to this dynamic environment 
while striving for efficiency is challenging. In fact, over the last few years, several 
improvements have been made toward distributed and scalable stream processing 
systems such as Apache Storm  [5] and Apache Flink  [9], which are written in 
high-level languages such as Java.

Thanks to ongoing advances, application programmers now have various 
options to choose from when developing parallel software. Languages such as 
Rust and C++ benefit from libraries that implement high-level parallel abstrac-
tions, like Rayon  [33] and Intel Threading Building Block  [34], and Rust-
SSP [31, 32]. These solutions employ parallel patterns as API (Application Pro-
gramming Interface) developed by experts in the field. They help the application 
programmer by hiding the complexity of parallelism while still delivering good 
performance and productivity solutions [10, 26, 27].

Clustered architectures introduce another level of communication hierarchy. 
They are characterized by multiple computational nodes connected via a com-
munication network (e.g., Infiniband, wi-fi, etc.). In these cases, scaling the com-
putation to satisfy the performance demand of modern stream processing applica-
tions requires distributed processing techniques. In High-Performance Computing 
(HPC), Message Passing Interface (MPI) is the state-of-the-art parallel API for 
implementing parallel C/C++ programs. However, using MPI is difficult for 
application developers since it exposes several low-level programming aspects. 
Therefore, programmers have to deal with exhaustive and error-prone parallelism 
concepts. Namely, data handling, process communication through message pass-
ing and synchronization models, fault tolerance, work scheduling, load balanc-
ing, and parallelism strategies. No framework or library in C++ provides all of 
these features, while in other programming domains, they are available. There-
fore, as shown by our related work, programmers do not have reliable options that 
they can use. Moreover, porting all application codes from C++ to Java/Scala for 
using Apache Storm or Apache Flink may not be doable. Our work goes in this 
direction, in which we tackle this research gap and provide a library in C++ with 
better programmability aspects. However, we are not trying to compete against 
consolidated solutions (e.g., Flink and Storm); instead, our main contributions are 
to provide the first set of abstractions based on a structured parallel programming 
approach and evaluate our solution in terms of programmability and performance.

In summary, the goal of this research is helping to ease the process of develop-
ing distributed C++ parallel programs. We propose to handle the steep learning 
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curve of MPI parallel programming by providing parallel patterns or algorithmic 
skeletons as higher-level abstractions. Parallel patterns are an already existing 
approach that uses structured parallel programming strategies to model common 
data flows that can easily be composed and comprehended by the programmers. 
In the state-of-the-art, similar approaches have been employed by FastFlow [1], 
GrPPI  [12], eSkel  [11], and Muesli  [13]. In contrast, we provide a higher-level 
programming abstraction specifically targeting stream processing applications 
(see more details in Sect.  2). We also address the challenges inherent to dis-
tributed parallel programming. This work introduces programming abstractions 
to deal with data communication (serialization and message passing), synchro-
nization between parallel processes via parallel patterns (protocols for message 
passing), and two scheduling algorithms for balanced and unbalanced workloads. 
Implementing these challenges in C++ is more complex than in languages such 
as Java and Python. Unlike these languages, data communication is significantly 
more difficult since there is no metadata about types available during runtime in 
C++. We summarize our contributions as follows:

•	 A high-level parallel programming abstraction for parallel and distributed stream 
parallelism implementation in C++ named DSParLib. Its main characteristics 
are transparent data communication, support for two different scheduling tech-
niques, and abstracted synchronization between parallel processes.

•	 A parallel implementation of PARSEC’s Ferret Benchmark [6] with DSParLib 
and its evaluation, as no distributed version is available.

•	 A comprehensive set of experiments for comparing our high-level abstraction 
(DSParLib) with respect to state-of-the-art handwritten MPI programs.

The remainder of this document is organized as follows. Section  2 discusses the 
related work. Then, Sect. 3 presents the implementation details of DSParLib and its 
API. Subsequently, Sect. 4 introduces the applications we used in our experiments 
and their respective parallelization techniques. Section 5 describes and analyses the 
experiments performed with different stream processing applications for compar-
ing DSParLib with state-of-the-art handwritten MPI versions and evaluating pattern 
composition. Finally, Sect. 6 concludes with final remarks and future works.

2 � Related Work

In this related work, we consider the parallel programming abstractions that support 
distributed stream parallelism in C++ targeting HPC systems. Therefore, we do not 
consider Big Data frameworks (e.g. Apache Flink, Akka Streams, Apache Storm, 
etc.) because they do not face the same programming language challenges. They are 
not related work, but we considered them background when designing our library. In 
contrast, our goal is to open research questions about HPC for leveraging distributed 
stream systems in a low-level programming language like C++.

FastFlow  [2] is a high-level C++ pattern-based parallel programming library. 
FastFlow targets shared memory but also supports distributed computing. Our works 
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are similar since both of them provide implementations for parallel patterns. Patterns 
are described in the literature long before the libraries implementing them were cre-
ated  [26]. DSParLib provides new implementations to the Pipeline and Farm pat-
terns for stream processing, while FastFlow provides a wider set of patterns for dif-
ferent types of computation. The main differences between the implementations are 
that FastFlow supports multi-node systems using ZeroMQ as the transport layer and 
to create processes, while DSParLib uses MPI [1]. Also, DSParLib employs newer 
MPI specifications and dynamic process management to improve performance. 
Another difference is that programmers manually handle serialization in FastFlow 
while DSParLib provides abstractions to help programmers communicate data. For 
native C++ data types, DSParLib completely abstracts data communication, and in 
the case of custom data types, DSParLib provides high-level data abstractions via 
templates.

GrPPI (Generic Reusable Parallel Pattern Interface)  [12] is a C++ library that 
implements composable and generic interfaces for parallel patterns. This means that 
the programmers only implements the parallel patterns once and chooses at compile 
time, which is the desired runtime that GrPPI should use. FastFlow, Intel TBB, and 
C++ Parallel STL (Standard Template Library) are available options. The support 
for distributed computing was studied by [24, 28] using MPI. However, the source 
code is unavailable, and we could not evaluate their solution.

Thrill [7] is an experimental C++14 framework for distributed stream process-
ing. Instead of merging existing Big Data frameworks with HPC tools like oth-
ers [3], their goal is to implement a new Big Data framework targeting HPC directly 
in C++. Networking in Thrill is done via TCP sockets and optionally via MPI. Cur-
rently, no delivery guarantees or fault-tolerance mechanisms are implemented. Thrill 
deals with data communication abstraction using the Cereal library [16], which pro-
vides a lightweight serializer that uses a similar interface to Boost archives [8].

The work of [25] provides a high-performance abstraction based on a MPI 
hybrid approach. The work is mainly concerned with supporting heterogeneous 
systems. The communication is achieved using both MPI and TCP sockets. The 
work also implements optimizations to reduce overheads, for example, using POSIX 
Threads instead of operating system processes. MPI Lightweight Stream  [36] 
proposes a lightweight interface for MPI stream processing. The work focuses on 
communication optimizations and their functional correctness when using MPI for 
stream processing. They aim to create a library to support data flow via a directed 
acyclic graph (DAG). Likewise, they investigate employing a graph-coloring algo-
rithm to properly label the DAG to arrange the intra- and inter-communica-
tors for the Pipeline.

MPI Streams [29][30] proposes an extension to the Message Passing Interface 
standard for better supporting streaming applications. The work introduced a generic 
streaming communication model consisting of entities like producers, consumers, 
and message passing channels. Consumers support receiving data from multiple 
producers while computing them using a "first-come, first-served" approach. MPI 
Streams do not abstract message passing.

In addition to MPI-based libraries that extended MPI to leverage stream pro-
cessing applications, other C/C++ skeleton libraries support the standard MPI 
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specification. The work in [15] performed an extensive survey on skeleton libraries, 
and we describe some of these libraries here. Unfortunately, many of them are no 
longer being maintained. Also, for the most part, they do not tackle programmability 
aspects and do not propose high-level abstractions for data communication.

ESkel  [11] is from the same authors of Algorithmic Skeletons  [10]. ESkel is a 
C library based on MPI that implements the parallel patterns Pipeline, Farm, and 
Divide-and-Conquer. Users of eSkel must be familiar with basic MPI concepts as 
well. Message passing is done by using eDM (eSkel Data Model). This model is 
very similar to MPI, in which the user must specify a pointer to data, size, and data 
type.

Muesli  [13] implements MPI support for the Farm pattern in a hybrid environ-
ment using MPI and OpenMP. Muesli provides parallel and distributed data struc-
tures such as distributed arrays and matrices. It also allows serializing arbitrary data 
types. The programmers can implement an abstract class MSL_Serializable on 
the type that needs to be serialized. The interface requires the programmers to copy 
the data to a buffer provided by Muesli. Quaff [14] is a C++ template-based skele-
ton library aiming at reducing the overhead of object-oriented abstractions. Accord-
ing to to  [14], libraries like Muesli frequently introduce overheads due to virtual 
function calls. The work supports MPI but does not elaborate on the serialization 
process.

Table 1 presents a summary of our findings regarding C++ libraries for distrib-
uted stream processing. The results show that many libraries lack implementations 
for stream parallel patterns since they target data-parallel applications only. Data 
communication is often done with low-level MPI or external libraries such as Boost 
and Cereal. Message passing is generally done implicitly, where the programmers 
do not need to know how programs communicate with each other. However, for 
libraries that extend MPI, communication is explicit.

DSParLib fills these gaps by introducing a new implementation of stream pat-
terns with high-level data communication based on C++ templates, allowing 

Table 1   A comparison of C++ programming and runtime libraries

Work Stream patterns Runtime Data communication Built-in 
schedul-
ers

Message passing

FastFlow [1] Yes ZeroMQ Zero-copy Yes Implicit
GrPPI  [12] Yes MPI* Boost* Yes Implicit
MPI Streams [29] No MPI Low-level MPI No Explicit
MPI Hybrid [25] No MPI Low-level MPI No Explicit
MPI Lightweight [36] No MPI Low-level MPI No Explicit
Thrill [7] No TCP, MPI “Cereal” library Yes Implicit
eSkel [11] Yes MPI Low-level MPI No Implicit
Muesli [13] Yes MPI Boost Yes Implicit
Quaff [14] Yes MPI Boost No Implicit
DSParLib (Ours) Yes MPI Zero-copy Yes Implicit
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zero-copy data communication. Moreover, DSParLib has implicit communication 
and a built-in scheduler. In addition, DSParLib provides a high-level programming 
abstraction for low-level MPI details. For example, it does not unnecessarily expose 
the programmers to raw pointers or explicit message passing protocols. DSParLib 
also ensures strong type-safety since we check at compile-time, through C++ tem-
plates, for possible incorrect usage.

3 � DSParLib

This section presents how we conceived DSParLib (an acronym for Distributed 
Stream Parallelism Library). DSParLib1 is a programming abstraction for express-
ing or implementing stream parallelism on C++ applications targeting distributed 
architectures. DSParLib abstractions over MPI simplify parallel programming 
via high-level and easy-to-use API. Section 3.1 presents the design principles and 
implementation choices of DSParLib. Section  3.2 shows how users can compose 
different stream parallel patterns and semi-arbitrary pattern nesting. Section 3.3 pre-
sents the basic components of the building block development approach. Then, the 
remaining Sects.  3.4–3.7 summarize how DSParLib works underneath our high-
level abstractions.

3.1 � Design Principles

Our main design principles are focused on programmability and efficiency. Regard-
ing the programmability, we want DSParLib to be a parallel programming abstrac-
tion that is simple to use for application programmers. Therefore, we developed it 
as a safe and high-level API that checks for incorrect usage at compile time. This 
is done mostly using built-in checking mechanisms and features introduced in the 
C++11 standard for inferring data types. Also, DSParLib strives not to expose 
application programmers to raw pointers while ensuring that data types are seman-
tically correct using C++ templates instead of void* pointers. The efficiency 
design principle is aligned with the HPC domain that considers scalability and 
performance.

We implemented DSParLib in C++, a widely used programming language. 
Through the notion of building blocks, we designed an intuitive API for DSParLib 
that allows the programmers to "wrap" existing code with few refactorings. We state 
that refactoring sequential code and wrapping it via DSParLib ’s building blocks 
should be accomplished with safety and simplicity. For example, DSParLib guar-
antees the functional correctness of the pipeline data types implemented by the pro-
grammers so that a stage receiving an integer is inter-connected with a stage send-
ing integers. Likewise, the semi-arbitrary composition of parallel patterns and each 

1  Available in: https://​github.​com/​GMAP/​DSPar​Lib.

https://github.com/GMAP/DSParLib
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inter-connected operator is checked to validate the resulting data flow. Checkers are 
helpful in avoiding simple mistakes introduced by programmers.

The runtime is MPI, which is the standard for HPC. Our design principles were 
based on newer MPI versions, starting from MPI-2. MPI-2 equips programmers 
with new features for creating more flexible but complex strategies that impose 
additional challenges when writing distributed parallel code. In our case, MPI-2 can 
be considered a different parallel programming paradigm from the MPI-1 standard 
because it allows the creation and communication with new processes. We mainly 
employ MPI-2 in our work because it supports dynamic process management. In 
stream processing, the dynamic characteristics of this domain (workload spikes and 
slowdown, infinite and heterogeneous data, etc.) impose additional challenges in 
efficiently exploiting distributed resources when executing a streaming application. 
For that, creating and removing MPI processes during execution time complies with 
our plan for supporting auto-adaptive and fault-tolerance strategies in the future.

Furthermore, communication is a significant abstraction issue that needs to be 
addressed in C++. Instead of using a third-party library such as Boost or Cereal, 
DSParLib provides a new and lightweight strategy that abstracts message passing 
while allowing efficient and zero-copy data communication. Finally, the library is 
header-only, so there is no need to compile dynamic or static libraries separately. 
We also provide implementations of concepts commonly found in the literature, 
such as Pipeline and Farm, to provide ready-to-use parallel patterns [26]. We allow 
the semi-arbitrary composition of the Pipeline and Farm parallel patterns in which 
Farms can be included as Pipeline Stages. Currently, other pattern compositions are 
not supported.

3.2 � Building Block Developing Approach

DSParLib is designed to develop parallel stream processing applications follow-
ing the structured parallel programming paradigm. The main benefits are that many 
low-level parallelism details are hidden from application programmers. Developers 
are expected to implement parallel code using composable and reusable structures 
to design an assembly line for data stream processing. The building blocks termi-
nology is popular in C++ among state-of-the-art structured parallel programming 
abstractions, such as Intel Threading Building Blocks (TBB) and FastFlow. We take 
inspiration from these libraries to design our DSParLib ’s API.

In DSParLib, there are three possible compositions of building blocks, as illus-
trated in Fig. 1a. The basic component of a building block is the Sequential Wrapper 
(white block), which wraps the computational processing. More details about how 
this block works will be discussed later in Sect. 3.3. The other two blocks are the 
Input and Output communicators (yellow and blue), which are used to implement 
the message passing through the network. They can also be seen as blocks that wrap 
the mechanisms for sending and receiving data.

Each building block must have a Sequential Wrapper and optionally Input or 
Output communicator. Implementing data communicators depends on whether 
other building blocks precede or succeed the current building block. For example, 
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suppose a given building block is preceded by another one or a different parallel 
pattern. In that case, it must implement the Input communicator while the previ-
ous building block implements the Output communicator. The same happens if 
the building block is succeeded by another one or by a parallel pattern. Figure 1b, 
c illustrate the previous example and DSParLib inter-connected building blocks 
from a high-level point of view. Each couple of blue and yellow blocks is a net-
work communication abstracted by DSParLib ’s message passing mechanisms.

Figure 1b presents the available parallel patterns, which are Pipeline and Farm. 
For example, the Pipeline pattern starts with a Sequential Wrapper + Output com-
municator and ends with an Input communicator + Sequential Wrapper. Those 
are respectively representing the beginning and end of a stream. Additionally, all 
intermediate blocks implement both Input and Output communicators combined 
with Sequential Wrappers since they receive an input from the previous block 
and send an output to the next one. On the other hand, the Farm pattern is a par-
ticular case of the Pipeline containing three stages. Sometimes stages have inten-
sive computations, and we want to replicate them to improve performance. We 
employ the Farm parallel pattern, where the intensive computation is assigned 
to the middle stage (Worker) that can be replicated. To maintain the functional 
correctness of the data flow, stream items require a scheduler (Emitter) to assign 

(a) DSParLib’s building blocks. (b) DSParLib’s parallel patterns.

(c) Pattern composition/nesting in DSParLib.

Fig. 1   DSParLib composable and reusable building blocks
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data for these parallel workers and a step that gathers the parallel Workers’ results 
(Collector). The communication data flow moves from left to right.

In contrast to the ready-to-use parallel patterns, DSParLib supports semi-
arbitrary pattern composition. It allows nesting Farms into Pipeline stages, as 
depicted in Fig. 1c. Other compositions are currently not supported. By default, 
the Farm pattern depicted in Fig. 1b does not require the Input and Output com-
municators. However, when a Farm pattern is added as a Pipeline stage (Fig. 1c), 
it may require new data communicators depending on where it is positioned. For 
example, when a Farm is positioned as a middle Pipeline stage, extra Input and 
Output communicators are mandatory for communicating data. Otherwise, when 
a Farm becomes the first or last stage of the Pipeline, it may not require input or 
output communicators. Both situations are represented by the optional building 
blocks illustrated in the bottom-most part of Fig. 1b.

Parallel patterns may be reused and are suitable for complex stream processing 
applications, especially when they follow an object-oriented approach. Imagine 
that each building block from DSParLib can be seen as a programming func-
tion that receives input parameters (Input Communicator), applies a computa-
tional step (Sequential Wrapper), and returns the results (Output Communicator). 
The same benefits perceived by using the object-oriented programming paradigm 
are enforced via structured parallel programming paradigms rather than ad-hoc 
parallelism.

3.3 � Sequential Wrappers

The concept of a sequential code wrapper was introduced in the previous Sect. 3.2. 
In other words, the Sequential Wrapper is a class that wraps the sequential code 
of the application. Then, the wrapped code can be managed in terms of DSPar-
Lib ’s building blocks. This further allows the programmers to combine the building 
blocks using ready-to-use parallel patterns. The main benefit is that parallel patterns 
already abstract many parallelism complexities, so the programmers do not need to 
implement them from scratch, like schedulers, message passing queues, synchroni-
zations, etc. Moreover, DSParLib’s patterns have built-in features and optimizations 
that the programmers can seamlessly turn on and off.

In Listing 1, we show an example of sequential code wrappers implemented in 
DSParLib. They process the accumulation of square roots from 0 to 9. First, the 
Stage1 generates the data (lines 1 to 7). Each new loop iteration (line 4) emits 
a new data item (line 5). Then, the Stage2 receives the items and emits their 
square root as a double (lines 10 to 16). Any C++ computation or function could 
replace the computation from line 13. The Process() method executes over 
each stream item received. Finally, the Stage3 accumulates all the results (lines 
18 to 24). In DSParLib, the inputs from the previous building block are received 
using the Process(inputs) and the resulting outputs are scheduled using the 
Emit(outputs) function. In this way, the lower-level data communication and 
message passing implementations are abstracted from the programmers.
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1 class Stage1: public wrapper <Nothing, int > {
2 public:
3 void Produce() override {
4 for( int i=0; i<9; i++){
5 Emit(i);
6 }
7 };
8 };
9

10 class Stage2: public wrapper < int , double> {
11 public:
12 void Process( int &i) override {
13 double square_root = sqrt(i);
14 Emit(square_root);
15 };
16 };
17

18 class Stage3: public wrapper <double, Nothing> {
19 public:
20 double total;
21 void Process(double &square_root) override {
22 total += square_root;
23 };
24 };

Listing 1: Example of DSParLib sequential wrappers.

Consider the parallel activity graph pipe(◻0,◻1,◻2) , where ◻n is a wrapped 
block of code. It represents a Pipeline with three sequential stages, as illustrated 
in Fig.  2. The Stage2 wrapper in Listing  1 (line 10) can be in place of ◻1 . 
However, it can not be in place of ◻0 , nor ◻2 . The reason is that this function 
expects an input and an output, which is not acceptable when it is the first or 
last stage of the Pipeline. DSParLib checks this type of semantics at compile 
time and reports inconsistencies to the programmers. To introduce the last stage, 
for instance, programmers must first adapt the sequential wrapper. The output 
type is then replaced by a special type Nothing. In Listing 1, we show a last 
stage example via Stage3 (line 18). Note that the sequential wrapper types are 
Wrapper<double, Nothing> and it does not emit data items via Emit().

1 20Pipeline

Fig. 2   Parallel activity graph example
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3.4 � Communicators and Data Communication

Frameworks and libraries for shared-memory architectures do not have to handle 
data communication because data can be accessed directly. In MPI or any other 
distributed parallel application, data must be copied between processes. This is a 
complex task, and different options are available for message passing programming 
models. For instance, in Java and . NET-based applications, data communication can 
be more transparent since these environments support runtime reflection (or intro-
spection). This allows users of these frameworks to write distributed code that never 
handles message passing communication because frameworks will often handle it 
automatically.

DSParLib offers a layer of abstraction for simplifying this step without dealing 
with MPI low-level parameters (e.g., MPI types, tags, and communicators) or imple-
menting its protocols to send and receive messages. In DSParLib, each data stream 
item is represented as a message. A message comprises one header and a data 
payload. The header contains the MPI rank of the process that sends the message, 
the MPI rank that receives the message, the type of a message, and a unique message 
identifier for each data item. When required, the identifier is used to automatically 
re-order the stream items in any sequential consumer wrapper. DSParLib employs a 
protocol that first sends a header message to establish communication between two 
processes (sender and receiver). Then, this channel can be used to receive multiple 
messages containing the actual data. The messages are non-blocking; after sending, 
the processes can resume other tasks.

From a programmers viewpoint, our solution provides two abstractions to sim-
plify data communication: MPISender and MPIReceiver. We provide Pack 
and Unpack methods for implementing message passing to the sender and receiver, 
respectively. The programmers must call these methods in the correct order to seri-
alize and deserialize the data. Data must be contiguously allocated in memory. This 
way, we provide zero-copy operations since data is sent as it is and thus does not 
involve the CPU. Additionally, DSParLib implements another programming abstrac-
tion on top of these features to simplify data communication, it is called Send-
erReceiver. The purpose of SenderReceiver is to provide an abstraction to 
serialize and deserialize data being sent/received through the network. When using 
native C++ data types, the SenderReceiver becomes a communicator object 
that automatically deals with data serialization. The following Section shows how 
to use this abstraction. When custom data types are sent through the network, the 
SenderReceiver abstraction can be overridden to implement the custom data 
type behavior.

Listing  2 showcases DSParLib ’s SenderReceiver API when dealing with 
custom data types. Lines 1 to 5 describe a custom data type containing three fields. 
To implement data communication, the programmers implement a class extending 
SenderReceiver (line 6) and overrides its functions for Send() (line 7) and 
Receive() (line 12). Then, the programmers call Pack() for the sender and 
Unpack() for the receiver to each struct field in the same order while DSPar-
Lib handles the details and automatically creates and serializes the MPI commu-
nications using the aforementioned protocol. DSParLib ’s templates can deal with 



465

1 3

International Journal of Parallel Programming (2022) 50:454–485	

up to 3-dimensional statically or dynamically allocated arrays or other contiguously 
allocated data.

1 struct CustomType{
2 double value;
3 size_t bytes;
4 unsigned char * buffer;
5 };
6 class CustomAbstraction : public SenderReceiver <CustomType > {
7 void Send(MPISender &sender ,MessageHeader &msg ,CustomType &

data) override {
8 sender.Pack(msg ,data.value);
9 sender.Pack(msg ,data.bytes);

10 sender.Pack(msg ,data.buffer ,size);
11 }
12 CustomType Receive(MPIReceiver &receiver ,MessageHeader &msg)

override {
13 receiver.Unpack(msg ,value);
14 receiver.Unpack(msg ,bytes);
15 receiver.Unpack(msg ,buffer ,size);
16 return CustomType(value ,bytes ,buffer);
17 }
18 }

Listing 2: Example of Custom Type serialization.

If a sequential wrapper contains more than one Emit() in a single computa-
tional step (see Sect.  3.3), DSParLib will spawn messages using the same identi-
fier. However, that constitutes an implementation error by the programmers, and the 
ordering may yield unpredictable results. A different aspect is that we implemented 
a special message informing the stream’s end. When there is no more data, the pro-
ducer informs all consumers to finish their execution and exit.

C++ compilers implement RTTI (Run-Time Type Information), which provides 
type information during runtime. We have investigated using this approach for 
DSParLib. Nonetheless, it does not work for automatic data communication pur-
poses. RTTI only provides basic information about a type and does not support list-
ing the fields of a struct. Furthermore, there is no standard approach to get the 
size of dynamically allocated data. The programmers need to intervene and man-
ually specify the size of the allocations. Although we can not use more advanced 
techniques like RTTI, we implement a lightweight abstraction in DSParLib for sim-
plifying data communication through message passing instead of using low-level 
MPI communicators.

3.5 � Pipeline and Farm Patterns

In this section, we discuss the parallel patterns implemented and how they can be 
instantiated using C++11 features to improve programmability. It is possible to use 
C++ type inference and the auto keyword so that the programmers do not need to 
manually specify all the data types. Listing 3 shows how the programmers can use 
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DSParLib’s building blocks to write parallel code. The example presents patterns 
composition using the following schema: pipe{◻0, farm[E(◻1),W(◻2),C(◻3)],◻4} . 
The resulting parallel activity graph is illustrated in Fig. 3. In this example, the mes-
sage is composed of the double data type. Since this is a contiguous memory type 
(data is placed in a single chunk of memory), the message passing communication 
is abstracted using dspar::SenderReceiver<double>() (line 2). Pipeline 
stages can be created as shown in lines 3 and 8, passing as parameters the sequen-
tial wrapper and the communicator mechanism. The Farm is created as shown in 
line 4, where the programmers inform the sequential wrappers and respective mes-
sage passing mechanisms as parameters. Then, the final data stream can be modeled 
by building these blocks (sequential wrappers and patterns), as presented in line 9. 
The final parallel activity graph connects a Stage to a Farm pattern (with multiple 
blocks already inter-connected internally) and to the last stage. Finally, the method 
Start() (line 10) computes the complete parallel activity graph and schedules the 
MPI ranks. Each MPI rank will be responsible for a sequential wrapper.

1 void PipelineComposition () {
2 auto communicator = dspar::SenderReceiver<double>();
3 auto stageBeforeFarm = dspar::Stage(FirstStage ,communicator);
4 auto farm = dspar::Farm(communicator , Emitter, communicator ,

Worker, communicator , Collector , communicator);
5 farm.SetWorkerReplicas(10);
6 farm.SetOnDemandScheduling(true);
7 farm.SetCollectorIsOrdered(true);
8 auto stageAfterFarm = dspar::Stage(LastStage, communicator);
9 Pipeline pipe(& stageBeforeFarm , &farm , &stageAfterFarm);

10 pipe.Start();
11 }

Listing 3: Example of Pipeline and Farm composition.

The dspar::Farm pattern automatically infers the types and fails compila-
tion if the programmers specify incompatible stages and communicators. The same 
is done for dspar::Stage. Regarding Farm’s scheduling, the default option is 
round-robin. However DSParLib also implements on-demand scheduling, which can 
improve load balancing if the network is not a bottleneck, especially when Work-
ers have a different computational load or when data stream items have unbalanced 
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Fig. 3   Parallel activity graph example
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computational complexity. The messages are distributed on demand as soon as the 
Worker finishes the previous computation. Additionally, the Farm object supports 
the following customization options:

•	 SetWorkerReplicas(int) to set the integer number of parallel Worker 
replicas;

•	 SetCollectorIsOrdered(bool) to enable ordering constraints in the 
Collector if set to true;

•	 SetOnDemandScheduling(bool) to enable on-demand scheduling if 
set to true.

3.6 � Runtime

This section explains how the runtime uses the wrapper classes to compute the 
stream activity graph. Also, we present the mechanisms that provide efficient 
scheduling protocols and ordering constraints in the runtime implementation. Fig-
ure 4 shows the relationship between the classes used in DSParLib. DSParNode 
inherits from DSParLifecycle. FarmPattern and PipelineStage create 
instances of DSParNode and run them based on their process rank. Abstract-
PipelineElement is used in the node allocation and will be explained in next 
Sect. 3.7. A PipelinePattern contains one or more instances of Abstract-
PipelineElement that can be of class type PipelineStage or FarmPat-
tern (enables pattern composition).

Each DSParLib component internally implements an interface of type DSPar-
Node that is executed by all MPI processes created during execution. DSParNode 
inherits from DSParLifecycle, which listens for messages coming from other 
processes and gathers information about important stream events such as the stream 
start, stream stops, and new messages. It executes actions according to the informa-
tion captured. For example, capturing a stop signal message contains the informa-
tion on whether the DSParNode must immediately finish execution or ignore the 
signal and wait for further instructions. This is useful for gatherers to track which 
Workers have stopped and only stop when the last Worker stops. Similarly, the start 
signal is part of the protocol to check whether a working node can immediately start 
receiving messages or ignore the signal and wait for further instructions.

Standard messages’ payload do not require special treatment and are executed by 
the sequential wrapper implemented within the Process() method, as previously 
explained in Sect. 3.3. Nonetheless, if re-ordering is required, the messages’ payload 
is not executed immediately. Instead, a precomputation determines if the payload 
should be processed or it should be stored for processing later. Since parallelism is 
non-deterministic in nature, some applications may require re-ordering so that the 
integrity of the output is guaranteed (e.g., order of frames in a video). The order-
ing mechanism is based on work described in [23] and uses a std::priority_
queue for ordering the messages’ payload in ascending order.

Concerning the scheduling protocols, DSParLib provides round-robin and on-
demand scheduler protocols. The default scheduler is round-robin, which distributes 
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balanced workloads among parallel processes using a circular order. We also imple-
ment on-demand scheduling. This way, data messages are only sent when the sched-
uler receives a demanding signal from a Worker. On the other side, Workers only 
demand new data when they finish their previous task. This protocol uses more mes-
sages in the network but can improve workload balancing. For example, if a process 
is faster than another, it demands more data to compute.

3.7 � Planning Node Allocation

Before starting the stream processing execution, DSParLib needs to know which 
node must be executed by a given MPI rank. This section describes the process of 
allocating DSParLib nodes and MPI ranks.

First, we explain the Farm parallel pattern. By default, the Emitter and Collector 
are placed as neighbors (Emitter on rank 0, Collector on rank 1), and parallel work-
ers go from 2 to 2 + degree_of_parallelism − 1 . If the default MPI process alloca-
tion is used, rank 0 and 1 will be placed in the same cluster node equipped with a 
multi-core processor. Considering the Emitter and Collector are network or disk I/O 
intensive, both processes may have degraded performance since they would compete 
for limited resources. However, the user can change it by providing their custom 
hostfiles with different allocation configurations.

When dealing with a Pipeline or Pipeline with Farm, DSParLib uses the fol-
lowing strategy. Each instance in DSParLib requires its nodes to implement the 
AbstractPipelineElement class from previous Fig.  4. This class stores 
information about the stage’s position and how many parallel processes exist when 
the pipeline node is a Farm. We define the information used to provide processes’ 
ranks as input and output offsets and the total number of processes. This informa-
tion is later used to provide the correct rank for each process. By default, Pipeline 
stages will have their rank matching their position in the Pipeline. When combining 
a Pipeline with Farm, each Pipeline stage will be dislocated according to the Farm 
topology, depending on its degree of parallelism.

Fig. 4   Relationship of classes in DSParLib
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For instance, let us define the following parallel activity graph as example: 
pipe{◻0,◻1, farm[E(◻2),W(◻3),C(◻4)],◻5} . The activity graph example is 
illustrated in Fig.  5. In practice, Each Pipeline stage implements an Abstract-
PipelineElement where some of them are of type FarmPattern while 
others are of type PipelineStage. By default the FarmPattern com-
municates its input and output offsets as 0 and 1, and total number of processes 
as 2 + degree_of_parallelism . Since there are other building blocks (stages ◻0 
and ◻1 ) before the FarmPattern, these offsets are used to calculate the actual 
ranks where the Farm will be positioned. For example, if two PipelineStage 
instances precede the FarmPattern, the input offset 0 is summed to 2. Conse-
quently, ◻0 and ◻1 are positioned at rank 0 and 1, while the FarmPattern has 
its Emitter on rank 2, Collector is rank 3, and parallel workers from ranks 3 to 
3 + degree_of_parallelism − 1 . Finally, ◻5 is positioned at the end of the Pipeline. 
This means that DSParLib assigns the MPI ranks based on the final parallel activity 
graph.

4 � Stream Processing Applications

In this section, we briefly describe the applications and their parallelizations using 
DSParLib. First, in Sect.  4.1 we discuss the parallelization methodology of five 
different stream processing applications: two of them are synthetic applications, 
and the remaining three are real-world streams processing applications. Then, in 
Sect. 4.2 we parallelize the PARSEC’s Ferret benchmark with different parallel pat-
tern compositions.

4.1 � Parallelized Application with the Farm Pattern

We select five applications from the stream processing domain: two synthetic appli-
cations for stressing the schedulers with highly unbalanced workloads (Mandelbrot 
and Prime numbers); and three applications that represent real-world scenarios 
(Face Recognition, Lane Detection, and Bzip2). We briefly describe them: 

1.	 Mandelbrot is a mathematical application that computes a fractal in the com-
plex plane [17]. This application is naturally unbalanced. By default, it performs 
almost no I/O operations, but it can easily be modified to do so to mimic a typical 
stream processing application. We have implemented equivalent parallel versions 
for both programming abstractions (DSParLib and MPI). The parallel version 
implements a Farm pattern with re-ordering disabled. In the MPI version, the 
message passing step in this application uses default MPI data types. The data to 
be communicated is a 2D matrix which is sent in the shape of lines. In short, each 
Worker starts receiving a line_id (MPI_INT) for computation and finishes 
sending the resulting line (MPI_BYTE).

2.	 Prime numbers counts how many prime numbers are within a given range [18]. 
The algorithm checks if: for a given number n, there is any number between 2 
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and n − 1 that n is divisible. This synthetic application is highly unbalanced by 
default. We obtained a pre-existing handwritten MPI version [20]. We manually 
inspected it to guarantee that the code is similar to ours. The DSParLib and MPI 
versions were implemented using a Farm-like pattern with re-ordering disabled. 
The message passing in this application is straightforward because it only com-
municates integers.

3.	 Face recognition is a program that recognizes faces in a video stream using 
OpenCV [21]. A lightweight model is trained before execution, and later used to 
detect faces. To our knowledge, this code has no pre-existing handwritten MPI 
versions. Therefore, we developed a Farm-like parallel version with re-ordering 
enabled for both MPI and DSParLib versions. Implementing message passing in 
this application is challenging because data is communicated using an OpenCV 
data type. So we investigated the source code and inspected the OpenCV to find 
the primitive data types of the data object. Finally, we manually send and receive 
each one of the members separately using the appropriate data types, and then 
we reconstruct the OpenCV data type.

4.	 Lane detection is a program that detects the limits of road lanes for autonomous 
vehicles based on a video stream using OpenCV [21]. We use a pre-existing 
handwritten MPI application [35]. The MPI version employs a Farm pattern, and 
we manually implemented an ordering strategy. On the other hand, the DSParLib 
version uses the Farm pattern and our library’s built-in ordering. Similar to Face 
Recognition, this application communicates data using the same OpenCV object 
(cv:Mat). So we implemented the same strategy for the message passing step. 
We have checked the strategy used in the MPI version (implemented by others), 
which is similar to ours.

5.	 Bzip2 is a compression library used in some Linux distributions. The MPIBzip2 is 
a parallel version using OpenMPI. The parallelism strategy of MPIBzip2 is like a 
master-worker [20] pattern, where the master splits the file into smaller blocks and 
collects them while the workers perform the compression. In DSParLib version, 
the parallel implementation uses a Farm pattern with re-ordered enabled. The 
main difference between MPI and ours is that the master task is split into Emitter 
and Collector. Concerning the message passing, since we are dealing with the 
compression phase, the blocks read from the original file have a default size of 
900Kb. Therefore, the communication starts by sending and receiving messages 
with a known amount of bytes. However, considering compression rate varies, 
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Fig. 5   Parallel activity graph example
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the new size must be known for passing messages after compressing a block of 
data.

For each application, we additionally implemented different versions using two 
scheduling policy strategies: on-demand and round-robin. The former expects the 
Workers to request new tasks once they are free, and the latter uses a round-robin 
distribution fashion that distributes balanced workloads among the Workers in a 
circular order. The on-demand scheduling can improve performance when dealing 
with unbalanced workloads, as will be shown in the experimental section. Listing 4 
shows the optimization options available in DSParLib. Instead of implementing 
the scheduler or the re-ordering strategies from scratch, programmers can inform 
DSParLib which features they want to enable.

1 auto c = dspar::SenderReceiver<... >();
2 auto farm = dspar::Farm(Emitter, c, Worker, c, Collector);
3 farm.SetCollectorIsOrdered(true/ fa l se );
4 farm.SetOnDemandScheduling(true/ fa l se );
5 farm.SetWorkerReplicas(degree_of_parallelism);
6 farm.Start();

Listing 4: DSParLib Farm template used in all applications.

Using DSParLib required significantly less effort than writing a distributed par-
allel code with MPI. Most of the development work regards the code refactoring 
from the application into the Farm pattern and implementing the data communica-
tion (marshaling and unmarshalling data). Because of that, during the conception 
of DSParLib we focused on data message passing abstractions while balancing the 
trade-off between programmability and flexibility aspects for writing stream parallel 
codes.

4.2 � Ferret with Different Parallel Patterns

The Ferret application belongs to the PARSEC benchmark suite and is used for 
detecting similarities between video, audio, and image files [6, 22]. The Ferret appli-
cation contains an original parallelization targeting multi-cores using the Pthreads 
library. In this version, the authors have parallelized Ferret using a Pipeline parallel 
pattern. There are six pipeline stages, and two of them are responsible for loading 
and collecting the data. In comparison, the other four stages are responsible for com-
putational processing: Segmentation, Extraction, Vectorization, and Ranking.

We have based our parallelization on the original Pthreads version. Therefore, 
the first distributed version we implemented with DSParLib is a pipeline con-
taining four computational stages, as shown in the bottom part of Fig.  6. Note 
that the four computational stages are stateless, meaning they do not maintain 
previous states and do not have data dependencies. Therefore, we can replicate 
the stages to increase the degree of parallelism up to the maximum degree avail-
able on a target machine. This version was the most difficult one to implement 
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because message passing in Ferret is complex. The complete struct used for 
communicating data has more than 20 members, varying from integers, point-
ers using 1 or 2 dimensions, and custom data types such as Ferret’s CASS types 
(Content-Aware Search System). Other complexities rely on non-contiguous data 
and nested data structures.

To conceive this parallel activity graph in Ferret, our parallel implementation 
uses the composition of Pipeline and Farm parallel patterns. We created Farms to 
express the parallel Worker, as represented in Listing 5. Note that the Farms have 
a different number of parameters. Since the parallelization strategy employs a 
Pipeline of Farms, all Farms are implemented accordingly to their graph position. 
For example, the Farm 0 communicates with Farm 1. Therefore, the Farm 0 adds 
an extra communicator at the end, while Farm 1 adds an extra communicator at 
the beginning. Also, all Farms implement at least one Emitter or Collector stage 
using an empty stage. We implemented our solution with this strategy to maintain 
the functional correctness of the data flow. The Farm parallel pattern, as men-
tioned in previous Sect. 3.2, must implement a scheduler and a gatherer, namely 
Emitter and Collector. For example, a replicated stage cannot directly communi-
cate with another replicated stage without a proper scheduling protocol. We plan 
to implement optimized strategies in the future, like the all-to-all communica-
tion model. This means that each Worker from the previous stage has multiple 
messages passing queues to each Worker from the subsequent stage. For now, 
our strategy is compliant with the Farm parallel pattern, having a clear notion of 
Emitter, Worker, and Collector. Sometimes applications have natural Emitter and 
Collector stages, like the Load and Collect computations of Ferret. On the 
other hand, when no sequential application code fits in (Ferret internal stages), 
we use empty stages with no computational processing. These are empty stages 
because they do not process anything. Rather, they simply forward the messages 
received from the previous stage.

1 auto comm = dspar::SenderReceiver<... >();
2 EmptyStage <task > E, C;
3

4 auto farm_0 = dspar::Farm(Load, comm , Seg, comm , C, comm);
5 auto farm_1 = dspar::Farm(comm , E, comm , Extract, comm , C, comm);
6 auto farm_2 = dspar::Farm(comm , E, comm , Vect, comm , C, comm);
7 auto farm_3 = dspar::Farm(comm , E, comm , Rank, comm , Collect);
8

9 Pipeline pipe;
10 pipe.Add(& farm_0);
11 pipe.Add(& farm_1);
12 pipe.Add(& farm_2);
13 pipe.Add(& farm_3);

Listing 5: Example of Pipeline and Farm composition.

Alternatively, we have implemented another similar parallel and distributed 
version with DSParLib. The most difficult part of the message passing is commu-
nicating the Vect stage results to the next rank stage. To get the correct sizes 
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of the amount of memory allocated for each data struct, we must look deep into 
Ferret’s source files. Therefore, in our second version, we combine the Vect and 
rank stages into a single one. The resulting parallel activity graph can be seen 
on the top right-hand side of Fig. 6.

Finally, we developed one last version that implements the Farm parallel pattern 
without composition, as illustrated in the top left-hand side of Fig. 6. This version 
contains a single computational stage (Worker) obtained by merging the Segmen-
tation, Extraction, Vectorization, and Ranking stages into a single one. The mes-
sage passing in this version is significantly simpler than other DSParLib versions. 
The reason is that we only communicate the data items from the Emitter to the 
Worker and later from Worker to Collector. Intermediate data are not sent over the 
network because the computation stays in the same node and is performed locally 
using shared memory. As discussed by the authors from  [22], Ferret’s stages are 
not well balanced, showing some drawbacks regarding parallelism. If the computing 
stages are replicated using the same factor, the unbalancing problem remains, and 
resource usage is not optimized, resulting in performance losses. This will be shown 
in Sect. 5.2 when we discuss Ferret’s results.

5 � Experiments

In this section, we experimentally evaluate the performance and programmability 
aspects of DSParLib concerning MPI, which is the de-facto parallelism abstraction 
for HPC. Section 5.1 aims to evaluate DSParLib performance with Farm-like paral-
lel versions and compare the results to MPI handwritten versions. In Sect. 5.2, we 
extended our performance evaluation using the PARSEC Ferret benchmark as a use 
case to embody characteristics of modern stream processing applications. Therefore, 
we evaluate the strategies designed to parallelize Ferret’s complex activity graph.
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The experiments were executed on a cluster using eight computing nodes. Each 
node was equipped with 2 Intel(R) Xeon(R) CPU E5-2620 v3 @ 2.40GHz (totaling 
12 cores and 24 threads) with 24GB of RAM memory. The nodes were connected 
via Gigabit Ethernet and InfiniBand QDR 4x (32GBit/s). The operating system was 
Ubuntu 16.04 64 bits with kernel 4.4.0-146-generic. The MPI version was OpenMPI 
1.4.5. The applications were compiled with GCC 9.3.0 using -O3 optimizations. 
OpenCV version was version 2.4.13.

The throughput is measured using items/time, where items is the total number of 
stream items transmitted and time is the total execution time. Bzip2 is an exception; 
it is measured in MB/time using the original file’s size and execution time. Regarding 
the plotted graphs, the x-axis is the degree of parallelism, while y-axis represents the 
performance metric (items/time or size/time). The results plotted were obtained from 
the arithmetic mean of 30 executions performed for each configuration. The stand-
ard deviation is plotted using error bars, which may not be visible when the value is 
negligible. The mpi-ond label refers to the MPI on-demand version and mpi-rr 
refers to the MPI round-robin version. Likewise, dspar-ond and dspar-rr are 
the DSParLib on-demand and round-robin versions, respectively.

5.1 � Performance Evaluation with Farm‑Like Applications

In this section, our goal is to assess the performance of DSParLib concerning 
handwritten MPI codes. We investigated the experimental results and observed 
that DSParLib ’s programming model could be slightly more efficient than standard 
MPI implementations. Although the parallelism strategy is equivalent between the 
versions, we cannot ensure they are identical because of particular communication 
protocols and contrasting programming models. The significant difference between 
the versions is that DSParLib uses dynamic process allocation from MPI-2, while 
handwritten MPI codes generate static processes via MPI-1. In DSParLib, the pro-
gram is initiated with a single MPI process that will later create and allocate the 
other processes via MPI-2 functions like MPI_Comm_spawn and MPI_Inter-
comm_merge. Other differences are regarding the number of messages sent or 
received by each version, which is not always the same, especially for the paral-
lel versions we obtained from the literature. Besides that, performance variations 
between versions may result from low-level MPI optimizations. Regarding total 
number of processes, Figs. 7 and  8 simply add 2 processes (one for Emitter and 
one for Collector) to the degree of parallelism. Furthermore, we individually explain 
each application in the remainder of this section.

The handwritten MPI programs we implemented do not use the MPI-2 pro-
gramming model during the parallelization. Other works  [20, 35] do not imple-
ment their applications using MPI-2 to support dynamic process management, 
which highlights the challenges inherited from this programming model. In short, 
some key differences exist regarding implementing MPI programs using different 
programming models. In MPI-1, all processes are created at the beginning and 
in a single communication group (intracommunication) as MPI_COMM_WORLD. 
In MPI-2, a single parent process can dynamically initialize children processes 
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during execution time. However, they form a new group of processes since they 
create their MPI_COMM_WORLD. Consequently, the MPI program now must use 
intercommunicators to bind a communication context between these two groups 
of processes recognized as local and remote. Adding or removing processes 
becomes very difficult during the application execution because other features 
must be considered. Some examples are reasoning about where processes are 
physically allocated and executed, rearranging multiple communicators, and the 
relationship of each process’s role in the parallel activity graph.

The tests were executed by varying the degree of parallelism using multiples 
of 4, starting from 4 up to the maximum number of available resources. For the 
first five Farm-like applications, we set the maximum number of processes on 
each node to avoid hyper-threading. Each node runs 12 processes on 12 physi-
cal cores. Also, our experimental analysis considered different process allocation 
strategies (e.g., isolate Emitter and Collector, allocate all available cores first, 
etc.). For brevity, we only report the allocation strategy with the highest over-
all performance in all versions (MPI and DSparLib). This strategy isolates the 
Emitter and Collector: Each runs in a separate node (nodes #0 and #1). Then, the 
other processing nodes are allocated to available nodes in a round-robin fashion. 
For example, Worker 2 is placed in node #2, Worker 3 is placed in node #3, and 
so on. We have verified the functional correctness of our parallel versions using 
checksum in the output and MD5 hash comparison.

Mandelbrot computes a 6000  ×  6000 pixel image of the Mandelbrot set, 
using 10,000 iterations. For all versions, computation is performed line-by-line, 
similar to the shared-memory parallelism strategy proposed in [17]. The perfor-
mance between MPI and DSParLib is similar as shown in Fig. 7a. However, at 
its peak, DSParLib has up to 7.6% higher throughput than MPI. In this test, lines 
near the middle of the Mandelbrot image are more computationally intensive than 
other regions, causing load balancing issues. The on-demand scheduling is bet-
ter in this situation, resulting in better performance for the DSParLib and MPI 
on-demand implementations. When we run the DSParLib program with dynamic 
process allocation, DSParLib creates a new communication group containing 

(a) Mandelbrot (b) Prime numbers

Fig. 7   Performance evaluation of Mandelbrot and Prime numbers
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all the spawned processes. However, for the MPI versions, all processes live in 
MPI_COMM_WORLD.

Prime numbers tests the prime property of all numbers between 0 and 1.2 
million. In this benchmark application, the performance difference between 
scheduler types is bigger than in Mandelbrot. This is shown in Fig. 7b. The main 
problem is due to an unbalanced load. Using the on-demand scheduler helps bal-
ance the workload as Workers ask for more items on demand. Another detail that 
can be observed in Fig. 7b is the unstable behavior of the round-robin schedul-
ing versions. The reason is that the degree of parallelism directly interferes with 
the scheduling. For example, a degree of parallelism 2 implies that one Worker 
always receives even numbers while the other receives odd numbers. Checking 
if an even number is a prime is simpler than an odd one. In Prime numbers, the 
difference between the abstractions is smaller. DSParLib has up to 5.5% higher 
throughput than MPI in the peak performance.

Face Recognition processes a 15-second video input. In this application, it is 
worth mentioning that all frames are computationally expensive. Therefore, Face 
Recognition never reached the disk I/O bottleneck in our tests. We could not find 

(a) Face Recognition (b) Lane Detection

(c) Bzip2

Fig. 8   Performance of face recognition, lane detection, and Bzip2
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such an application implemented with MPI in the literature, so we implemented 
it ourselves. Figure 8a shows the throughput in frames per second (FPS), where 
the application continues scaling until the maximum degree of parallelism. At 
its peak performance, DSParLib has 5.8% higher throughput than MPI. The MPI 
on-demand and DSParLib on-demand versions have similar performance, but 
DSParLib is slightly faster. DSParLib and MPI are sending and receiving simi-
lar messages, and the MPI version have an advantage since the header messages 
are smaller. This is similar to lane detection, where header messages are smaller; 
however, DSParLib is still faster.

Lane Detection computes over a video input containing 1858 frames of size 
640x480 pixels. Figure 8b shows the throughput in frames per second (FPS). The 
peak throughput is 214.55 frames per second with 32 Workers (DSParLib on-
demand). After that, it reaches the bottleneck for disk I/O, and the program stops 
scaling. The on-demand MPI version has similar performance until 28 Workers. The 
difference becomes more evident as the number of processes increases. Both ver-
sions need to send 3 messages to transmit a video frame. The MPI version uses a 
header message of size MPI_INT (4 bytes) to communicate the frame number and 
2 messages to send the frame data. DSParLib sends a bigger header message with 
24 bytes and then 2 messages to send the frame data. Although DSParLib slightly 
consumes more network bandwidth, results show that our version achieves better 
performance with respect to handwritten MPI.

Bzip2 has an existing parallel MPI version called Mpibzip2. It uses a master-
worker approach instead of a native stream processing pattern. Since the DSParLib 
version isolates the Emitter and Collector, we also isolated the Mpibzip2 master in 
a separate cluster node. We tested with a 512MB MP4 video file. Figure 8c shows 
the performance of all versions. Mpibzip2 achieves lower performance compared 
to DSParLib. The maximum throughput of DSParLib is 2.98 times higher than the 
handwritten MPI program. The main reason is networking and synchronization bot-
tlenecks because the master process is responsible for both I/O operations: read-
ing and writing data. At 44 processes, the MpiBzip2 master reaches its maximum 
throughput. The DSParLib version has the advantage of having an extra MPI pro-
cess for the Collector. In this test, the Collector is isolated in another cluster node. 
Consequently, I/O work is divided between two machines, and the performance con-
tinues to scale as more processes are added.

5.2 � Performance Evaluation of Ferret with DSParLib

In this section, our goal is to assess the performance of DSParLib using the 
semi-arbitrary pattern composition of Pipeline and Farm. Ferret application 
exhibits complex data communication through message passing and data flows. 
We implemented three different distributed and parallel versions according to 
the parallel activity graphs illustrated in Fig. 6. Unlike the previous experimen-
tal setup, to evaluate Ferret we used our system’s maximum available computing 
resources. Effectively, all cores, including logical ones, are used. Additionally, 
we configured different MPI process allocation strategies to study their impact 
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on dynamic process allocation. We conducted tests using the round-robin and 
fill-node allocation strategies combined with different Emitter and Collector 
configurations:

•	 round-robin, EC-dedicated: This configuration uses a strategy that 
allocates one process in each available node in a round-robin fashion. Both 
Emitter and Collector have dedicated nodes.

•	 fill-node, EC-dedicated: This configuration uses a strategy that allo-
cates processes in the same node and only goes to the next node when it is 
fully allocated. Both Emitter and Collector have dedicated nodes.

•	 fill-node, EC-shared: This configuration uses a strategy that allocates 
processes in the same node and only goes to the next node when it is fully 
allocated. Both Emitter and Collector share the same node.

We tested the PARSEC Ferret benchmark with the default native workload 
composed of 3.500 images. The performance results are shown in Fig.  9. We 
depicted all results until they peaked and began decreasing performance. There 
are two different explanations: (1) the workload size limits further scaling when 
reaching higher degrees of parallelism, which explains the limited scalability 
observed in Farm implementations; (2) both pattern composition versions (Pipe-
line) stop scaling long before that since they have reached a point where they are 
using all available cores. For example, at the degree of parallelism 2, there are 
actually 12 ( 6 + 2 ∗ 3 ) processes running for the Pipeline with 3 stages and 16 
( 8 + 2 ∗ 4 ) processes for the Pipeline with 4 stages.

To help understand the results from the graphs, we prepared Table 2 showing 
the best throughput measured in each version and configuration. As expected, 
the Farm version scales better than the other versions and only stops scaling 
when the workload size becomes a problem. In the best-case scenario, the Farm 
version has up to 37% higher throughput than the other versions. For both the 
Pipeline versions, we observed that the maximum throughput is equivalent 
between themselves and varies less than 1% . Considering that the Pipeline (3 
stages) version communicates less data because we have merged the last two 
stages avoiding a significant amount of communication, we expected this ver-
sion to be slightly faster. Nonetheless, these positive results highlight that the 
overhead introduced by our data message passing abstraction is negligible.

Concerning the different process allocation strategies, both Table  2 and 
graphs from Fig. 9 show us that the maximum throughput is similar among all 
versions. But if we look at the graphs from Fig. 9, we observe that the round-
robin, EC-dedicated configuration is smoother than the others. Both 
experiments using the fill-node allocation strategy show serious performance 
losses after reaching the peak throughput. Therefore, we concluded that it is bet-
ter to use the round-robin, EC-dedicated configuration as default in 
DSParLib while allowing the programmers to use custom configurations.
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5.3 � Programmability

In this section, we discuss programmability aspects of parallel and distributed 
implementations for DSParLib with respect to handwritten and manually opti-
mized MPI programs. We measured SLOC (Source Lines of Code) for each of 
the five applications described in Sect.  4.1. We do not consider Ferret for this 
comparison because we do not have a handwritten pure MPI parallelization. The 
SLOC metric does not consider blank lines and comments, only valid program-
ming language syntax. With SLOC, it is possible to infer a general idea about the 
level of code intrusion that each programming abstraction requires for introduc-
ing parallelism. The goal is to measure and compare the extra number of code 
lines needed for parallelizing a sequential application. It is worth noting that 
this metric has its limitations. For example, SLOC is not representative enough 
to express which parallel programming abstraction has the best programmability 
characteristics. Other aspects need to be taken into account. For example, a rea-
sonable approach could measure the total development time, programmer experi-
ence, application context, etc.

(a) Ferret (round-robin, EC-dedicated) (b) Ferret (fill-node, EC-dedicated)

(c) Ferret (fill-node, EC-shared)

Fig. 9   Performance of Ferret using DSParLib and different process allocation strategies
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Table 3 compares the measured SLOC for DSParLib and handwritten MPI ver-
sions. The Sequential entry represents the sequential application version. MPI has 
two entries since each version requires different implementation and synchronization 
details. DSParLib represents both versions, where On-Demand and Round-Robin 
are the same, requiring only an extra parameter that is either enabled or disabled.

Mandelbrot is the only application where DSParLib requires more lines of code. 
The explanation is that DSParLib wraps each different building block in a class, 
resulting in more code. Yet, comparing DSParLib with MPI On-Demand shows 
that the difference is as small as 13.3% . Prime numbers indicate a higher difference 
between our abstraction and MPI, where DSParLib is up to 6x less intrusive than 
MPI. For MPI versions, the SLOC is higher because it requires low-level imple-
mentation details that make the source code more verbose. Face recognition also 
showcases a higher difference, where MPI SLOC is 91.1% higher than DSParLib. 
In Lane Detection and PBzip2, the handwritten MPI programs are 25.3% and 37.4% 
respectively more intrusive than DSParLib.

These results highlight one of the significant advantages of DSParLib. Our 
abstraction can simplify many low-level parallel details intrinsic to MPI program-
ming. During the experiments, we had to fix a series of bugs in handwritten MPI 
C++ programs implemented by other experts, mainly due to memory and logic 
errors when dealing with message passing. DSParLib introduces a high-level API 
that makes it simpler to express parallelism while hiding message-passing commu-
nication details. Moreover, DSParLib implements a strong type-check system that 
looks for incorrect usage and wrong semantics at compilation time.

To give the reader an idea of the challenges inherited from stream processing 
applications parallelized via MPI, we extracted a code region from the Person Rec-
ognition application. Note that this slice of code (Listing 6) only shows the worker 
scope, while the operator’s scheduling and sink strategies are hidden. Their strat-
egy can become intricate when implementing efficient schedulers or ordering con-
straints. The worker logic and MPI functions are described between lines 5 and 28. 

Table 2   Best throughputs measured in Ferret application

Ferret Version Metrics Farm (1 stage) Pipeline (3 stages) Pipeline (4 stages)

Round-robin EC-
dedicated

Degree of Parallelism 112 60 48
Number of Processes 114 186 200
Throughput (img/sec) 395.88 288.37 288.88
Std. Dev. 17.87 7.60 6.99

Fill-node EC-dedicated Degree of Parallelism 140 60 44
Number of Processes 142 186 184
Throughput (img/sec) 391.48 294.24 297.16
Std. Dev. 6.75 16.42 2.80

Fill-node EC-shared Degree of Parallelism 124 60 44
Number of Processes 126 186 184
Throughput (img/sec) 384.82 294.07 294.29
Std. Dev. 16.72 2.20 4.23
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Lines 8 and 9 are part of the on-demand scheduling. Once the Emitter acknowledges 
the demand signal, lines 11 to 17 perform the MPI functions to receive data. Line 18 
abstracts the person recognition computation. Then, lines between 20 and 26 send 
the result to the Collector.

In MPI, the programmers are responsible for manually implementing the data 
communication. They must understand MPI specifications and deal with low-level 
parallelism and architecture aspects, such as manually implementing the scheduler 
while providing the correct information about various data types, MPI message 
options, and data sizes without crashing the program. It is worth noting that MPI’s 
parallelism strategy is mixed-up with the application business logic. It is challenging 
to debug and maintain code, especially in large applications.

Table 3   Comparison of applications Source Lines of Code (SLOC)

Versions Mandelbrot Prime numbers Face Recog-
nition

Lane Detection PBzip2

Sequential 42 35 126 114 1388
MPI on-demand 147 329 293 302 1880
MPI round-robin 97 324 296 297 –
DSParLib 161 83 215 264 1746
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1 int main ( int argc , char ∗∗ argv ){
2 i f ( i sEmi t t e r ){
3 /∗ abs t rac ted schedu l ing l o g i c ∗/
4 }
5 else i f ( isWorker ){
6 while ( true ){
7 // reques t work
8 MPI Send(&demand , 1 ,MPI INT, emitterRank ,DEMANDMSG,comm) ;
9 MPI Probe( emitterRank ,MPIANYTAG, comm,& s ta tu s ) ;

10 // Receive Data
11 MPI Recv(&msgId , 1 ,MPI INT, emitterRank , ID MSG,comm,& s ta tu s ) ;
12 MPI Recv(&nframe , 1 ,MPI INT, rank ,DATAMSG,comm,& s ta tu s ) ;
13 MPI Recv(&rows , 1 ,MPI INT, rank ,DATAMSG,comm,& s ta tu s ) ;
14 MPI Recv(&co l s , 1 ,MPI INT, rank ,DATAMSG,comm,& s ta tu s ) ;
15 MPI Recv(&type , 1 ,MPI INT, rank ,DATAMSG,comm,& s ta tu s ) ;
16 MPI Recv(& s i z e , 1 ,MPI INT, rank ,DATAMSG,comm,& s ta tu s ) ;
17 MPI Recv( data , s i z e ,MPIBYTE, rank ,DATAMSG,comm,& s ta tu s ) ;
18 /∗ abs t rac ted computation ∗/
19 // Send r e s u l t
20 MPI Send(&messageId , 1 ,MPI INT, co l l ectorRank , ID MSG,comm) ;
21 MPI Send(&data . nframe , 1 ,MPI INT, rank ,DATAMSG,comm) ;
22 MPI Send(&mat . rows , 1 ,MPI INT, rank ,DATAMSG,comm) ;
23 MPI Send(&mat . co l s , 1 ,MPI INT, rank ,DATAMSG,comm) ;
24 MPI Send(&type , 1 ,MPI INT, rank ,DATAMSG,comm) ;
25 MPI Send(& s i z e , 1 ,MPI INT, rank ,DATAMSG,comm) ;
26 MPI Send(mat . data , s i z e ,MPIBYTE, rank ,DATAMSG,comm) ;
27 }
28 }
29 else i f ( i s C o l l e c t o r ){
30 /∗ abs t rac ted s ink l o g i c ∗/
31 }
32 MPI Finalize ( ) ;
33 }

Listing 6: Slice of Person Recognition’s parallel code implemented with
MPI.

On the other hand, employing a structured parallel programming approach via 
parallel patterns improves programmability. For comparison, the parallelization on 
the same stream processing application (Person Recognition) is similar to Listing 4. 
Instead of manually implementing the message passing strategy, DSParLib provides 
programming abstractions that hide communication complexities, and the program-
mer’s concern move towards how to use and interconnect DSParLib building blocks 
or parallel patterns. Likewise, on-demand scheduling and ordering in DSParLib are 
enabled with a single function call.

6 � Conclusion

In this paper, we introduced DSParLib, a parallel programming abstraction for 
expressing distributed stream parallelism in C++ programs. It is based on estab-
lished parallel pattern concepts and building blocks developing approach. DSParLib 
offers ready-to-use abstractions to model and parallelize stream processing applica-
tions. By default, it supports round-robin and on-demand schedulers and supports 
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built-in item re-ordering. The programmers can use these features simply by inform-
ing DSParLib which ones they wish to enable. Also, we implemented abstractions 
for message passing communication and synchronization.

To assess the performance of DSParLib, we executed a set of experiments over 
different applications. For comparison, we have extracted MPI handwritten pro-
grams from other authors or implemented by experts. The results revealed that 
DSParLib achieves better performance with respect to MPI versions. We investi-
gated the effects and concluded that the improved performance is due to the bet-
ter parallelism strategies implemented in DSParLib. In some cases, we achieve a 
throughput at most 6.3% higher than handwritten MPI. Regarding programmability, 
DSParLib generally requires the lowest amount of extra lines of code for expressing 
stream parallelism. The results show that DSParLib requires up to 6x less extra lines 
of code than handwritten MPI programs.

Additionally, the experiments performed on Ferret show that DSParLib can be 
used to efficiently implement complex stream processing applications with semi-
arbitrary pattern composition. In future work, we plan to use DSParLib as a runtime 
library for SPar [19], which is a higher-level abstraction based on the C++-11 code 
annotation mechanism. It has a source-to-source compiler that may generate parallel 
code with calls to DSParLib. Finally, we intend to support more parallelism optimi-
zations, self-adaptive strategies, and fault-tolerance mechanisms.
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