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SIMPLIFYING SELF-ADAPTIVE DISTRIBUTED STREAM PROCESSING

IN C++

ABSTRACT

Data sources such as IoT sensors, user activity logs, health surveillance, and

video streaming are becoming ubiquitous worldwide. Often, these sources produce big

amounts of raw data, which traditional computing systems based on a store-first and

compute-later batch paradigm struggle to handle. Stream processing is an effective so-

lution that can manage these massive workloads while meeting low-latency and high-

throughput requirements. However, developing a streaming system from scratch is a chal-

lenging endeavor. Distributed stream processing systems (DSPS) like Apache Flink and

Apache Storm already provide many abstractions for transparent fault-tolerance, schedul-

ing, communication protocols, and many other mechanisms that assist programmers in

writing distributed parallel code. These tools are mostly written in higher-level program-

ming languages like Java and Scala. Nevertheless, C/C++ distributed computing systems

are preferred for high-performance computing (HPC), but in this domain, programmers

lack high-level programming abstraction options. Consequently, C++ programmers usu-

ally rely on low-level MPI for coordinating distributed applications. Also, when using MPI,

programmers often employ a static programming model to write their distributed applica-

tions, opposite to stream processing which dynamically deals with irregular workloads that

vary in content, format, size, and input rate. Streaming systems should allow reconfigura-

tion to self-adapt in response to data flow spikes, slowdowns, and load-balancing issues.

This work aims to address these challenges by investigating the adaptability aspects of

distributed streaming systems. For that, we introduce a new C++ framework called MPR

(Message Passing Runtime), which simplifies the implementation of distributed stream

processing applications. The framework relies on MPI’s message-passing communication

and implements many programming abstractions, including data transfer, serialization,

load balancing, and back pressure. Moreover, we design a novel runtime system that



supports MPR’s adaptability capabilities. The runtime system implements algorithms to

handle dynamic process creation and includes a synchronization protocol for distributed

process coordination. The experimental analysis reveals that MPR’s dynamic runtime sys-

tem can achieve performance comparable to a static MPI implementation. In addition,

we also conduct experiments to evaluate and characterize MPR’s adaptability capabili-

ties. The characterization experiments show that MPR can readily self-configure itself in

response to workload variations. Thanks to this work, MPR’s runtime system on top of MPI

is now a valuable tool that can be used to test and evaluate other self-adaptive algorithms

for distributed stream processing.

Keywords: stream processing, distributed systems, parallel programming, programming

abstractions, stream parallelism, self-adaptive, C++.



SIMPLIFICANDO O PROCESSAMENTO DISTRIBUÍDO DE STREAM

AUTO-ADAPTATIVO EM C++

RESUMO

Fontes de dados como sensores IoT, logs de usuários, monitoramento de sinais

vitais e streaming de vídeo estão cada vez mais presentes na sociedade. Muitas vezes,

essas fontes produzem uma massiva quantidade de dados que os sistemas de computa-

ção tradicionais têm dificuldade para lidar. O processamento de stream é uma abordagem

computacional que consegue lidar com essas cargas de trabalho massivas, atendendo aos

requisitos de baixa latência e alta vazão. No entanto, desenvolver um sistema de strea-

ming é uma tarefa desafiadora. Soluções como o Apache Flink e Apache Storm fornecem

diversas abstrações de programação para tolerância a falhas, escalonamento, protocolos

de comunicação e muitos outros mecanismos que ajudam os programadores a implemen-

tar códigos paralelos e distribuídos. Essas ferramentas são principalmente escritas em

linguagens de programação de alto nível como Java e Scala. No entanto, no domínio de

computação de alto desempenho, os programadores têm poucas opções de abstração de

programação de alto nível quando se trata de sistemas de computação distribuídos es-

critos em linguagens de sistema como C/C++. Consequentemente, esses programadores

muitas vezes dependem de ferramentas de mais baixo nível como o MPI para implemen-

tar aplicações distribuídas. Além disso, com MPI é comum empregar-se um modelo de

programação estática para implementar aplicações distribuídas, opondo-se ao processa-

mento de stream que lida dinamicamente com cargas de trabalho irregulares que variam

em conteúdo, formato, tamanho e taxa de entrada. Os sistemas de processamento de

stream devem permitir reconfigurações para se auto-adaptarem a picos no fluxo de da-

dos, desacelerações e problemas de balanceamento de carga. Este trabalho tem como

objetivo abordar esses desafios investigando os aspectos de adaptabilidade de sistemas

distribuídos de processamento de stream. Para isso, introduziu-se uma nova ferramenta

em C++ chamada MPR (Message Passing Runtime), que simplifica a implementação de



aplicações distribuídas de processamento de stream. Além disso, criou-se uma nova estra-

tégia que suporta as funcionalidades auto-adaptativas do MPR. A estratégia implementa

algoritmos para lidar com a criação dinâmica de processos e inclui um protocolo de sin-

cronização para coordenação de processos distribuídos. Experimentos mostraram que o

MPR consegue alcançar desempenho comparável a uma implementação MPI. Além disso,

foram realizados experimentos para avaliar e caracterizar a auto-adaptatividade do MPR.

Os experimentos de caracterização revelaram que o MPR é capaz de se autoconfigurar

em resposta a variações na carga de trabalho. Com este trabalho, o MPR torna-se uma

nova opção para implementar, testar e analisar algoritmos auto-adaptativos para proces-

samento distribuído de stream.

Palavras-Chave: processamento de stream, sistemas distribuídos, programação para-

lela, abstrações de programação, paralelismo de stream, auto-adaptativo, C++.
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1. INTRODUCTION

This chapter introduces the motivation, scope, and goals of this work. Also, it pro-

vides an overview of the initially proposed research plan and how it changed as research

advanced. It then presents the objectives and the research contributions we achieved in

this thesis. This chapter concludes with an outline of the contents that will be presented

in this document.

1.1 Motivation

With the advancement of parallel hardware, it is crucial for legacy and modern

sequential computing systems to adopt concurrency and parallelism for efficient resource

exploitation. This has led to the modernization of software-layer systems in nearly ev-

ery field of computer science. However, this process can range from being straightfor-

ward to challenging, depending on technology choices and system design. The difficul-

ties of writing parallel computing systems have been widely documented in the litera-

ture [60, 37, 3, 82, 53]. Writing low-level parallel code is challenging and complex, requir-

ing expertise in the application business domain and the underlying hardware. Otherwise,

the computing system may face limited performance, inefficiencies, and unexpected prob-

lems.

To address these challenges, different computational approaches have been pro-

posed over time. The first approach, ad-hoc parallelism (i.e., OpenMP [26] and MPI [42]),

provide low-level mechanisms for synchronization, communication, and other specific fea-

tures of each architecture, but requires the programmer to manually coordinate the com-

putation. The second approach, higher-level parallelism abstractions (i.e., Intel TBB [67],

Apache Flink [20], FastFlow [3], and WindFlow [61]), build on these low-level mecha-

nisms to provide ready-to-use parallel patterns, like Map, Reduce, FlatMap, Pipeline, Farm,

among others. The programmer only needs to focus on the parallelism semantics to as-

semble the correct data flow, instead of low-level complexities such as scheduling, com-

munication, data transfer, and ordering. Recently, some attempts have been made to-

wards even higher-levels of abstraction, using domain-specific languages, high-level pro-

gramming models, and interactive interfaces that provide a unified language or model

that can be compiled using different runtimes (i.e., SPar [37] and Apache Beam [6]).

Application programmers must align with the available solutions to efficiently ex-

ploit parallel hardware. Concurrently, modern applications from various domains have

advanced and preemptively demand more computational power. Single multi-core ma-

chines can no longer meet these requirements, so these applications must be relocated

to scalable distributed environments [53]. Streaming systems are an excellent example
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of applications that must handle large amounts of continuously generated data, usually

with high-throughput and low-latency. In stream processing, data items are processed

on-the-fly before their value decreases over time rather than being stored in a database.

Meanwhile, accumulated results are constantly updated each time a new data item flows

through the stream. The streaming data items cannot randomly flow through the stream.

Instead, they use a directed acyclic graph (DAG) as a guide.

Implementing distributed stream processing systems is particularly challenging

as writing parallel code involves the programmer in many low-level details that require ex-

pertise for handling. Over the years, distributed streaming systems have become highly

complex as they provide many transparent features for programmers, including load-

balancing, back pressure, fault-tolerance, serialization, and message delivery guarantees.

Most state-of-the-art distributed stream processing systems (DSPS) [7, 13] are imple-

mented using high-level programming languages like Java and Scala as they are available

in the same languages. However, in the high-performance computing (HPC) domain, C

and C++ are the dominant programming languages. Despite attempts to provide pro-

gramming abstractions for distributed stream processing in C++, they have not gained

widespread popularity [14, 30, 24, 2, 17]. Instead, most programmers still rely on low-

level parallelism abstractions such as MPI to write parallel applications.

The research challenge of distributed stream processing in C++ was already well

studied by Pieper [64] during his master thesis in our research group. The author’s re-

search revealed that there are notable gaps in existing solutions for distributed stream

processing in C++, with many discontinued, not compiling, or lacking documentation.

Pieper’s work introduced a new skeleton library (named DSParLib) [64] that aims to ad-

dress these gaps by introducing a new skeleton library that provides programming ab-

stractions via parallel patterns, improving programmability compared to MPI handwritten

programs.

DSParLib was implemented on top of MPI, which is the focus of this work as we use

it for the communication layer. The Message Passing Interface (MPI) is a widely used pro-

gramming model for developing parallel applications in scientific and real-world domains

that leverage High Performance Computing (HPC) for efficient processing. When MPI was

first introduced, the target applications primarily relied on a static execution environment,

executing on homogeneous computing systems and processing data with regular flow and

good memory locality [25].

However, research advances in several application fields, including stream pro-

cessing, data science, and machine learning, have revealed new challenges for computing

systems that cannot handle dynamic scenarios. Overall, the challenges include resource

exploitation in heterogeneous systems, handling irregular workloads, and scaling with var-

ied communication patterns [25]. The stream processing paradigm, in particular, presents

extra challenges, including dealing with large amounts of data, potentially infinite data in-
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come, various data generation rates, and balancing low-latency and high-throughput. MPI

has had to adapt to these changing demands in order to maintain its relevance. There-

fore, different approaches were proposed in newer MPI releases, such as non-blocking

communication and dynamic process management.

Unfortunately, a recent survey on MPI usage showed that some of these new-

added features are rarely used [44], including dynamic process management. To address

these challenges, a new runtime system is proposed that incorporates optimization strate-

gies for self-adaptive distributed stream processing in MPI. We start from the assumption

that using MPI’s static execution paradigm is not well suited for self-adaptive stream pro-

cessing applications. Adaptability is a key feature of the framework we introduce in this

work, allowing applications to dynamically adjust the number of active processes during

execution time. This type of adaptability is also known as horizontal scaling and enables

streaming systems to self-adapt the number of active processes to workload variations.

1.2 Research Plan Roadmap

This section outlines the roadmap for our master’s thesis studies. It is essential to

understand the key aspects of our work and why we address different research domains

with distinct challenges: programming abstractions for distributed stream processing in

C++, runtime system design for dynamic process management on MPI, traces of design

choices for process recovery, and self-adaptive distributed stream processing algorithms.

In the initial proposal of this thesis, the aim was to investigate recovery and

adaptability in MPI, recognizing their requirement similarities. For instance, removing pro-

cesses during execution time requires processes to be excluded from Pipeline execution.

Recovery could be a viable solution, as to remove processes, we could simply kill a pro-

cess and it would trigger the Pipeline Graph to re-configure itself, remove the process, and

continue executing. However, our research showed that recovery in MPI is a challenging

topic [41, 18, 51, 73, 72, 56], particularly as the MPI specification did not yet include an in-

terface for fault-tolerance at the time of our research. Consequently, we decided to focus

on the adaptability feature for the master’s thesis, given the limited time available and

the lack of recovery specification in MPI standardization.

Our original plan for this thesis was to extend DSParLib [64] (from our research

group) to support dynamic process management capabilities, allowing for the addition

and removal of processes during execution time. To that end, we conducted a thorough

investigation of DSParLib and published some of our findings in a journal paper [55]. The

results showed that DSParLib’s runtime system was not designed to handle dynamic pro-

cess management due to its specific design goals. We explain the limitations in further
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detail later in Chapter 4. Therefore, we concluded that it would be more challenging to

add this feature to DSParLib than to build a new distributed runtime system from scratch.

DSParLib was developed focusing on supporting distributed stream parallelism

in SPar [37], a domain-specific language for expressing stream parallelism in C++ appli-

cations. SPar enables programmers to annotate their code using a simple and high-level

language with only five attributes. Once annotated, SPar’s compiler automatically gener-

ates parallel code targeting a specific architecture. By default, SPar generates code only

for multi-core architectures, but DSParLib’s work [64] extended SPar to also generate code

for distributed systems.

At this point, our aim was to replace DSParLib’s runtime system while retain-

ing its high-level API. DSParLib drew inspiration from the structured parallel programming

model [60]. The primary motivation of structured parallelism is the use of parallel pat-

terns, which can be thought of as templates or skeletons that abstract away many of the

parallelism complexities. DSParLib inherited knowledge from structured parallelism and

offered two parallel patterns and their semi-arbitrary composition: Farm and Pipeline par-

allel patterns.

Our studies investigating DSParLib revealed some limitations regarding the use of

parallel patterns. For example, the flexibility of the library is compromised since DSParLib

enables stage replication to increase the degree of parallelism only via the Farm pattern.

We explain the consequences of this design choice in greater detail and other limitations

in Chapter 4. In addition, we discovered a simpler way of working with stream processing

parallelism on top of MPI. Due to our findings, we decided not to use DSParLib’s runtime

system nor its high-level API. Instead, we propose implementing a new C++ framework

called MPR (Message Passing Runtime) for self-adaptive distributed stream processing.

1.3 Research Contributions

The main objective of this thesis is to address the research problem of simplify-

ing self-adaptive distributed stream processing. This research is focused on leveraging

C++ and MPI, which are the leading programming language and programming model for

distributed clusters, respectively. Combining stream processing with HPC and MPI posed

a significant challenge, requiring extensive research to be conducted. Traditionally, ap-

plications implemented with MPI and HPC tend to be static. However, stream processing

is highly dynamic, especially when it comes to enabling streaming applications to self-

adapt. The focus of this work is to bridge this gap and enable stream processing to adapt

to changing conditions and requirements.

We propose the following scientific contributions:
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• A new C++ framework called MPR that simplifies the implementation of self-adaptive

distributed stream processing. MPR provides different programming abstractions,

such as dynamic process creation, scheduling, all-to-all data communication, trans-

parent serialization, load-balancing mechanisms, ordering, and back pressure.

• A novel runtime system that is flexible, scalable, and capable of automatic self-

adaptation based on a configuration file to support MPR’s adaptability capabilities.

The runtime system implements algorithms to handle process creation, job assign-

ment, and data management and also includes a leader-based synchronization pro-

tocol that enables distributed process coordination on top of MPI.

• An MPI-based and self-adaptive algorithm for autonomic management on MPR’s run-

time system. This algorithm implements a MAPE feedback loop that monitors MPR’s

pipeline execution statistics and dynamically adds or removes processes to achieve a

target throughput. The algorithm uses a dynamic adaptive scaling factor that varies

based on how far the application’s measured throughput is from the goal.

• An analysis of the performance impacts and overheads based on a set of experi-

ments conducted on four stream processing applications with different characteris-

tics. We provide performance comparisons with respect to DSParLib and handwritten

MPI versions and characterize MPR’s adaptability. These experiments demonstrate

the flexibility and expressiveness of MPR’s API while measuring the performance im-

pacts and overheads introduced by its runtime system.

1.4 Outline and contents

The remainder of this thesis is organized as follows.

• Chapter 2 - Background presents the background to make this work self-contained.

First, we introduce stream processing and its distributed concerns. Then, we present

popular distributed programming models we consider to implement our work. Finally,

we present an overview of state-of-the-art distributed stream processing systems,

which include Apache Flink, Apache Spark (Spark Streaming), and Kafka Streams.

• Chapter 3 - Related Work presents our related work, which selects works targeting

distributed stream processing in C++.

• Chapter 4 - DSParLib Investigation extends our related work by expanding the inves-

tigation in DSParLib, which is the foundation of our research.

• Chapter 5 - MPR: Framework for Distributed Stream Processing presents the new

framework we introduce with this work called MPR for enabling self-adaptive dis-
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tributed stream processing. We present MPR’s details regarding its architecture,

adaptive features, processing engine, reconfiguration protocols, and others.

• Chapter 6 - MPR Performance Evaluation provides a performance analysis to under-

stand MPR’s overheads and its impact on the execution of stream processing appli-

cations.

• Chapter 7 - MPR Adaptability Evaluation complements the experiments by present-

ing the evaluation of MPR’s external autonomic module for application self-adaptive

capabilities.

• Chapter 8 - Conclusion discusses the final remarks and future work.
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2. BACKGROUND

This chapter aims to provide the necessary background to facilitate the under-

standing of the remaining content of this thesis. First, in Section 2.1, we introduce stream

processing by discussing its main concepts. Then, Section 2.2 continues the discussion

targeting distributed stream processing and its key mechanisms. Subsequently, in Sec-

tion 2.3, we present two important programming models for communicating distributed

resources. Finally, Section 2.4 presents a review of state-of-the-art DSPS and their mech-

anisms to support distributed stream processing.

2.1 Stream Processing

With the continuous growth of data sources, stream processing systems are be-

coming increasingly popular as an effective solution to handle massive amounts of fresh

data. Traditional computing systems, based on a store-first and compute-later batch

paradigm, struggle to keep up with the unique attributes of modern streaming work-

loads [53]. On the other hand, stream processing systems can process data as it arrives,

extracting valuable insights before its value diminishes over time. By consuming and

processing data in-memory, this computing paradigm can naturally model, express, and

implement live data streams, enabling near real-time processing with low-latency charac-

teristics [5].

The data flow is created by human interactions or devices such as cameras, IoT

sensors, event logs, consumer activities, and financial transactions. Each produced infor-

mation is considered a stream item and is included in the streaming data flow. In stream

processing, stream data items can be processed long before all data is available. This

allows computing systems to process over a consecutive, possibly infinite, data income.

However, since the nature of the data is unknown, it also introduces dynamism to the

system. Due to these characteristics, streaming systems should allow reconfiguration to

self-adapt in response to spikes or slowdowns in the data flow. Also, data can vary in

format and content, requiring flexibility with adequate pre-processing steps.

The stream processing paradigm can express and model a plethora of modern

computing systems. Figure 2.1 illustrates such an ecosystem of streaming systems. From

the exhibited applications, many do not yet have a practical implementation consider-

ing hardware barriers and/or software limitations. Therefore, a consolidation towards the

stream processing paradigm may contribute directly to these computing systems, such as

real-time efficient machine learning and its entire subset of applications, epidemic track-

ing, disaster forecasting, and many others.
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Figure 2.1: Ecosystem of stream processing applications [54].

Stream processing systems operate as a sequence of interconnected computing

operators, which can be dynamically scaled in terms of parallelism to meet the perfor-

mance requirements of the workload. Each operator processes a specific computation

on an incoming stream item, similar to a production line. For example, the stream item

starts in the first operator (source), then it flows by each operator until reaching the final

one (sink). These operators can either be stateful or stateless, where stateful means that

they keep an internal state while stateless means vice-versa. Stateful operators are more

complex to handle due to their potential replication challenges. In cases where stateful

operators are replicated, synchronization mechanisms must be implemented to ensure

the correctness of their replicated states. For instance, the Reduce parallel pattern can be

used to synchronize associative computations by merging the operator’s results using an

associative binary operation.

2.2 Distributed Stream Processing

The exponential growth of data volume has made it clear that single-node, multi-

core systems are not sufficient to handle modern stream processing workloads. Dis-

tributed stream processing systems (DSPS) have emerged as a solution to tackle the

challenge of processing massive data flows. However, the current state-of-the-art DSPS

have not kept up with the recent advancements in commodity clusters, virtualization tech-

niques, public and private clouds, and other related technologies that enable distributed
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computing. As a result, there is a growing demand for efficient and scalable DSPS capable

of leveraging these modern technologies.

The emergent demand for DSPS introduced new challenges that remain open

research issues until technology consolidation is achieved. Research advances towards

DSPS are gradually being introduced within the state-of-the-art solutions, such as Apache

Storm and Apache Flink, for further providing fault-tolerance capabilities, horizontal scal-

ing, programmability aspects, transparent serialization, resource management, and job

scheduling.

Over the years, DSPS have evolved to adopt a common architecture layout, al-

though the underlying technologies may vary. A DSPS typically operates as a middleware

in a three-tier streaming system, serving as an intermediary between a streaming user

application and the underlying infrastructure [53]. Figure 2.2 provides a bird’s-eye view

of the hierarchical structure of a streaming system, which was inspired by work [53]. This

figure serves to illustrate the motivation of our work, highlight open research challenges,

and describe the role of a DSPS in streaming systems.

Replica1

Operator A Operator B Operator C

Replica2

Replica3

Replica4

Replica5

Operator A

Operator B

Operator C

Replica1 Replica5Replica2 Replica3

Replica4

Node 1 Node 2

Source Sink

Data Dependencies (Topology)

Distributed Stream
Processing System

Infrastructure

Source

Sink

SinkSource

Figure 2.2: Bird’s-eye view of a streaming system.
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As can be seen in Figure 2.2, in the topmost abstraction layer, a data dependence

schema is used to represent the streaming application topology. The representation is de-

picted as a sequence of operators where stream data items flow from the Source to the

Sink operators. In between, stream items flow through one or more Compute operators, in-

crementally applying a computational step to each one of the received stream items. The

processing of each Compute operator can be applied independently, where some exam-

ples are filters, aggregations, and transformations. The arrows of the topology represent

the paths that stream items can travel inside the streaming system.

The DSPS is a critical component of a streaming system (middle abstraction

layer), serving as a runtime system that enables high-throughput and low-latency pro-

cessing while ensuring system resilience and availability. To achieve these goals, modern

DSPS [7, 9, 10, 12] offer several abstractions, including fault-tolerance, load balancing,

data serialization, back pressure, and task scheduling. By leveraging the data dependen-

cies represented in the topology layer of the system, the DSPS processes a directed acyclic

graph (DAG) of operators, optimizing resource utilization and exploiting parallel and dis-

tributed computing. In stream processing, Pipeline parallelism is the most common way to

achieve parallelism, where independent tasks can be executed concurrently across mul-

tiple operators. Additionally, some operators can be replicated to execute in parallel on

top of distributed resources to increase the application’s overall throughput and decrease

latency.

In the example illustrated in Figure 2.2, operators A and C run with a single pro-

cess each, while operator B is replicated and runs with three processes. Together, they

form a three-stage Pipeline that replicates the middle stage. This strategy is interesting

when Operator A generates stream items faster than Operator B is able to process. By

replicating, the Pipeline allows more items to be processed in less time. However, find-

ing the optimal degree of parallelism is challenging as systems can experience workload

incoming rate spikes or computing nodes can fail. This is where self-adaptive capabili-

ties become essential in streaming systems to dynamically adjust the system’s behavior

in response to changes in the workload or infrastructure [76, 21]. In practice, achieving

such self-adaptive capabilities and allowing the runtime system to adapt is still an open

research issue.

Finally, the bottom-most layer of a streaming system represents its physical in-

frastructure, which can be a commodity cluster consisting of interconnected computing

nodes or a cloud environment employing resource provisioning. In this layer, each com-

puting node has one or more multicore processors capable of running multiple tasks in

parallel. The DSPS creates replicas of the operators from the previous layer, which are

then allocated to the physical resources. Protocols are needed to efficiently allocate the

replicas to physical resources, taking into consideration the data dependencies expressed

in terms of the streaming system’s topology, as well as maintaining track of data com-
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munication between different processes for load balancing purposes. Memory has new

hierarchical levels for reading and writing data, and the DSPS must optimize this. For ex-

ample, exchanging data between processes from the same shared space is significantly

faster than exchanging data between distant processes via messages. Further complex-

ities can arise from heterogeneous resources, such as accelerators or edge devices from

fog computing. The underlying physical infrastructure layer plays a vital role in providing

the necessary computing resources for the DSPS to achieve high-throughput and low-

latency processing.

In the subsequent sections ( 2.2.1 to 2.2.8), we present and discuss in further

detail the key mechanisms of DSPS that are of paramount importance to the distributed

stream processing computing paradigm. These mechanisms ensure the readiness of DSPS

for orchestrating the computation between a high-level programming interface for stream

management and low-level efficient resource exploitation.

2.2.1 Fault-tolerance

Resilience is a critical feature for DSPS, as it enables a computing system to con-

tinue operating at an acceptable level of service in the face of various challenges and

failures. Such issues may include sudden spikes in the data flow, bugs in the application

logic, suboptimal memory usage, and other unexpected events. Some of these issues are

further discussed in the next sections.

In this section, we are precisely interested in fault-tolerance, which is the ability

of a distributed system to recover from failures while maintaining a consistent system

state. Checkpoint-based rollback recovery is a popular approach for implementing fault-

tolerance [28]. In it, all DSPS’s processes will take periodic checkpoints (snapshots) of their

consistent state and store them in persistent storage. Upon failure, the DSPS restores the

system state to the most recent consistent set of checkpoints, which is known as recovery

line [28].

There are different approaches for taking the snapshots using checkpoint-based

recovery [22, 28]. Snapshots can be taken using uncoordinated or coordinated check-

pointing. Uncoordinated protocols allow each process to decide when to take the snap-

shot, while coordinated checkpointing requires processes to synchronize their snapshots

toward a consistent global state. The main advantage of coordinated protocols is it sim-

plifies recovery and decreases storage overhead by maintaining a single consistent state

for each process. However, disadvantages may include a higher latency due to extra syn-

chronization between processes. Conversely, uncoordinated checkpointing protocols do

not require synchronization. Instead, a consistent global state must be computed by piec-

ing together all local snapshots. The main disadvantage of uncoordinated protocols are
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twofold: the possibility of domino effect that can invalidate significant amounts of com-

puted work and pointless snapshots that will never integrate a globally consistent state.

Figure 2.3 illustrates a recovery example using an uncoordinated checkpointing

protocol. We took inspiration from [70]. In the Figure, S are snapshots, P are concurrent

processes, and m are messages. Upon failure on P2, the algorithm considers the recovery

line as the most recent snapshots S1,2, S2,2, and S3,2. However, S1,2 says it received a

message m3 that was never sent in S2,2, meaning S1,2 is inconsistent. So, the algorithm

rolls back P1 from S1,2 to snapshot S1,1. Meanwhile, in the new recovery line (S1,1, S2,2,

and S3,2), messages m1 and m2 were not sent in S1,1, which is inconsistent with S2,2 and

S3,2. This domino effect may continue until all computed work is discarded and the system

reaches the initial state.

P1

P2

P3

S1,1

S2,1

S3,1

m3

S1,2

S2,2

S3,2

m2
m1

Fault

Figure 2.3: Consistent global states and domino effect.

Coordinated checkpointing is a widely used mechanism in DSPS to ensure fault

tolerance. Unlike the domino effect that can occur in uncoordinated checkpointing, where

the failure of one process can trigger a series of failures in other processes, coordinated

checkpointing ensures consistent and successful snapshots. However, the overhead costs

of synchronization can be significant. To minimize these overheads, non-blocking algo-

rithms such as Chandy-Lamport’s distributed snapshot algorithm [22] are preferred.

Chandy-Lamport’s algorithm relies on the First-In-First-Out (FIFO) channel capa-

bilities when exchanging messages throughout the distributed system. The algorithm is

initiated when a process takes a snapshot and broadcasts a marker to all of its output

channels. Upon receiving the marker, each process takes a snapshot of the current state

and the channel and broadcasts a marker to its output channels. This process is repeated

until all processes have a snapshot of their states and channels. Notably, the marker

broadcast message is sent before sending any new application messages. At the end of

the protocol, a consistent global state of the distributed system is obtained by saving a

copy of all local processes’ states and their channels.
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2.2.2 Message Delivery Guarantees

The message delivery guarantees are critical for ensuring the correctness and

consistency of the output in DSPS. There are three main guarantees: at-most-once, at-

least-once, and exactly-once. At-most-once is a guarantee that ensures messages may

be lost during execution time. It occurs when a message is sent at most once, which

means that in case of a crash failure, the message can be lost forever, resulting in non-

deterministic output. At-least-once ensures that messages are computed at least once,

but duplicated items can be inserted into the streaming when unexpected events occur.

In this case, the DSPS processes them twice and aggregates them to their computation

output, resulting in a non-deterministic output. Exactly-once is the best-case scenario de-

livery guarantee because it ensures that each stream item will be processed exactly once.

In case of crash failures, the runtime ensures that the output is correct and deterministic.

Unfortunately, this guarantee is usually associated with costly overheads.

It is important to note that DSPSs can use a combination of these guarantees

to achieve the best trade-off between output consistency and system performance. For

example, some DSPSs may use at-least-once delivery guarantee with deduplication tech-

niques to achieve output consistency and decrease system overheads.

2.2.3 Adaptability

Stream processing systems operate in highly dynamic and unpredictable envi-

ronments that can be subject to fluctuations in workload size, data spikes, and other en-

vironmental changes. Furthermore, these systems may need to run indefinitely without

interruption, making it crucial for them to be able to reconfigure themselves without down-

time while maintaining the desired quality of service. Self-adaptation is a promising area

of research that seeks to enhance a system’s ability to detect and respond to unexpected

challenges by making autonomous decisions and reconfiguring itself [75]. Self-adaptive

streaming systems are particularly interested in managing the inherent dynamism of the

stream processing paradigm and introducing autonomy to the computing system.

Self-adaptive systems can improve the performance, energy consumption, and

operational cost of stream processing systems, among other aspects. During runtime,

the system may adjust the degree of parallelism, processor frequency/voltage, or even

completely reconfigure the streaming data flow. By doing so, self-adaptive systems can

increase the intelligence of the streaming system, thereby reducing the need for manual

intervention from programmers. This not only saves time and effort, but also reduces the
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potential for human error and makes it possible to optimize the system in ways that would

otherwise be infeasible.

Although self-adaptive streaming systems exhibit great potential, implementing

and evaluating them remains a challenge [75]. One concern is that self-adaptive strate-

gies have the potential to affect the safety of a streaming system. For example, changing

the degree of parallelism during runtime can result in stream data item losses or duplica-

tion. Another difficulty is the integration of a self-adaptive algorithm with existing DSPS,

as there is often a gap between industry solutions and new research proposals. This cre-

ates challenges for testing new approaches. Finally, self-adaptive strategies can introduce

undesired overheads that significantly impact application execution and are difficult to

detect. For example, other researchers [21] integrated their solution with Apache Storm’s

framework at the cost of performance losses due to halting the application each time a

re-configuration was applied.

According to a recent survey [75], self-adaptive strategies hold great promise

for improving stream processing systems, particularly in terms of performance. However,

there are still many challenges to implementing and evaluating these strategies. Cur-

rently, most research in this area focuses on reactive strategies that use feedback loops

and concepts from control theory to create instant responses based on application and

environment monitoring. While some researchers are exploring proactive strategies that

leverage machine learning to anticipate variations, this approach has its drawbacks, such

as the need for large amounts of data to train and the time required to learn. Neverthe-

less, despite the current limitations, the state-of-the-art self-adaptive systems holds great

potential for practical applications in the next generation of stream processing systems.

2.2.4 Serialization

Distributed computing environments are inherently designed to work with limited

or no shared memory space. This property introduces many of the challenges that are

currently faced by distributed systems, particularly with respect to how resources can

be effectively coordinated to achieve optimal computing capabilities. In this section, we

focus on the critical need for efficient serialization mechanisms that enable data to be

exchanged as messages across a distributed stream processing system (DSPS).

Traditional DSPS rely on third-party software to convert application data struc-

tures stored in memory into architecture and language-independent formats that will be

later transmitted throughout the network or stored on a disk. Serialization mechanisms

can become a bottleneck because there are many computing steps involved each time

new data is received over the network. For example, when new data is received over the

network, the computing system must first prepare the data, resulting in access misses
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until the data is copied from the network interface controller (NIC) to the main memory or

cache. Then, the CPU becomes involved, computing the encode/decode step of the new

data, which can be a time-consuming process. Finally, the data becomes available to the

application.

In applications, data structures are often composed of multiple pointers (i.e.,

graphs and binary trees). Pointers are common for optimizing memory operations that

otherwise would have to re-organize all memory contiguously each time a new data is

stored [66]. However, communicating these data structures between computing nodes

in a distributed system can lead to well-known overheads that increase the memory wall.

The work [48] revealed that serialization represents a great slice of all the computation

used by the applications executed on Google machines. It can be seen as a "datacenter

tax" each application pays to run in a distributed environment.

The high cost of serialization is not the only issue but also the frequency with

which these operations are performed. In the stream processing domain, communicat-

ing fine-grained and numerous stream items is commonplace in many applications from

this domain. Therefore, serialization needs to be carefully addressed to not become a

bottleneck and deteriorate the application performance.

A wide range of serialization libraries and protocols are available in the literature,

each with different goals and trade-offs. Programmers can choose between performance

and flexibility, or human-readability and data size, depending on their needs [80]. How-

ever, the design principles of these solutions can significantly impact their performance.

For example, Java serialization provides reflection meta-data to facilitate serialization, but

this comes at the cost of performance. Alternatively, compiled-based serialization can

achieve higher efficiency than Java serialization, but they are more difficult to employ.

Other options also include zero-copy serialization to reduce the overhead of multiple mem-

ory copies each time a network message is received.

Achieving zero-copy I/O has long been a goal of distributed computing research,

as it can significantly reduce serialization and deserialization overhead [80]. Zero-copy

serialization and deserialization strategies ensure that data is represented the same way

in memory and on the message, so that processor cores are not involved with memory

operations such as encode/decode steps. Today, some computing abstractions can exploit

this and other approaches for optimization purposes by employing optimal strategies from

hardware and software co-design [66, 80] (i.e., Direct Memory Access - DMA).

2.2.5 Resource Management

Job is a runtime entity representing a computation that needs to be done. An

application may be expressed by a single or many jobs [5]. In stream processing, due to
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fine-grained workloads and other characteristics, the applications from this domain are

usually conceived using many jobs executed in parallel. Additionally, a job may be further

subdivided into smaller computing slices to improve some aspects of application execu-

tion, specially latency-critical ones.

One of the main advantages of jobs relies upon the fact that they introduce cer-

tain degrees of isolation between distinct sections of an application. The benefits of that

are manyfold. Unexpected faults that may occur in a part of the application do not directly

affect the other running parts. Meanwhile, it also reinforces the placement of computa-

tions along different cores in a multi-core machine or different nodes in a distributed sys-

tem. Those are fundamental mechanisms for allowing stream processing applications to

further scale [5].

Resources may be described as any physical or virtual component of a comput-

ing system that has limited availability [53]. This term is broad and can be interpreted in

many ways depending on the abstraction levels we are referring to in a computing sys-

tem. In a local cluster, a DSPS may consider resources the memory, storage, network

bandwidth, and processor cores. However, in public clouds, a DSPS may concern about IP

addresses, network traffic, and object storage. More recently, an increased resource di-

versity is reached when the managed components become heterogeneous, such as spe-

cialized hardware that co-exists with general-purpose hardware in a computing system.

DSPS may have to orchestrate computational jobs between dozens of multi-cores at the

same pass they deal with GPUs and FPGAs.

Resource management is a critical aspect of DSPS, as these systems need to en-

sure that their resources are available and functioning optimally. One approach to achieve

this is through the use of a heartbeat mechanism, where resources are required to either

report their availability (push) or respond to probes (pull) to confirm their status [5]. This

technique can help DSPS maintain an up-to-date inventory of resources and detect any

anomalies that may arise. Additionally, it is important for DSPS to collect and analyze

usage metrics to determine how much of each resource is being utilized. The metrics

should be continuously collected and monitored throughout the system’s execution to

enable prompt adaptations to resource requirements, whether it’s due to scaling up or

down, or in the event of unexpected faults. Implementing proper resource management

mechanisms can help DSPS efficiently exploit the available resources and improve system

performance.

There are two approaches for adding or removing resources, they are known as

horizontal and vertical scaling. In horizontal scaling, the user adds or removes comput-

ing nodes within the distributed system infrastructure. On the other hand, vertical scal-

ing means adding or removing resources within a single node (i.e., adding storage disks,

adding RAM memory, etc.). The solutions for supporting dynamic changes in the dis-

tributed environment are in their early stages and exhibit many limitations. When some
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resource adaptation occurs, it often involves downtime to detect the modification due to

system or application restart [53]. The main challenges of DSPS regarding resource man-

agement are avoiding application downtime and achieving transparency when dealing

with the underlying parallel resources.

2.2.6 Task placement

Once resources are actively being monitored and checked for availability, the

next step is to ensure that streaming systems efficiently exploit the available resource

by optimal mapping decisions [53]. However, optimal task placement has been a long-

standing challenge in distributed systems. For instance, in multi-core systems, placing

intensive communicating threads as neighbors can improve communication through high-

speed cache memory. Similarly, in distributed systems, placing communicating tasks in

the same computing node can reduce overheads such as serializations and network traffic.

Despite being reasonable, placing tasks in local resources may not always lead to optimal

performance due to the potential for resource contention. When tasks compete for the

same resources, the streaming system may experience severe performance degradation.

Therefore, it is essential to employ efficient resource allocation and scheduling techniques

that can mitigate resource contention and optimize task placement.

There is a great interest in resource-aware schedulers [53]. Traditional batch

workloads can leverage historical data for gathering information to achieve load balanc-

ing, as their raw data is already stored and can be statically analyzed. However, streaming

systems operate over an infinite stream of data items produced by sources and compute

them even before all the data is available, leading to dynamic characteristics with volatile

workloads that introduce uncertainty to the DSPS. This way, scheduling strategies are

stuck in this dilemma of finding an optimal task placement. So, they may appeal to real-

time scheduling decisions to deal with the workload and environment variations.

During the decision-making process, there are many considerations that can be

taken into account as they represent trade-offs between different system capabilities.

For example, a DSPS may achieve optimal resource usage by constantly moving around

streaming tasks to balance the workload. However, migrating tasks between different

computing nodes is computationally intensive. Besides, it considerably escalates in com-

plexity when streaming tasks are stateful. This means that they need to repartition and

migrate their internal states along with themselves to a new computing node. Therefore,

the current strategies implemented in state-of-the-art DSPS may suffer from severe insta-

bility and high latency during the adjustment period.
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2.2.7 Stream and Batch Processing

We have already characterized the stream processing paradigm in Section 2.1.

In a nutshell, it is a natural and intuitive paradigm that can be used to model continuous

flows of data. It works similarly to the human body, in which it constantly receives end-

less stimuli (i.e., visual, tactile, olfactory, etc.) and generates actions for these. When it

comes to computing systems, despite the timely nature of data production, the majority

of DSPS forgets it and often produces artificial batched stream items [20]. Data batches

are sets of data collected over time that are dealt with together rather than processing

individual data items. The batches may be created using a maximum time interval (i.e.,

hours, days, months, etc.), a maximum number of stream items, or a composition of both.

The main reason for that is technology still imposes many overheads that cannot cope

with the stream items’ individual requirements. For example, each individual stream item

communicated between different computing nodes includes its own share of overhead by

serialization, message queuing, and network transportation.

More recently, some DSPS are moving towards a hybrid approach that integrates

stream and batch processing as a unified model [1, 20]. This way, programmers can

leverage a single programming model to implement real-time systems that continuously

aggregate stream items in windows or that can process huge amounts of static data stored

somewhere. Having these two streaming flow manipulation options is of paramount impor-

tance as they represent a trade-off between throughput and latency. For example, batch

manipulation may be used to increase the maximum throughput of a streaming system,

where the batching size stands for how much latency it is willing to give up for achieving

higher throughput. Although streaming is the preeminent flow manipulation choice, batch-

ing is still needed for legacy streaming systems and algorithms that yet cannot execute

using a true streaming flow.

Modern streaming systems impose strict requirements for low-latency and high-

throughput aspects. This conceives a new streaming flow called micro-batching [71].

Compared to a true stream processing flow that handles each item at its arrival, micro-

batching rather groups the streaming items in small batches with fixed time intervals. In

practice, the ideal size of a batch or micro-batch depends on the DSPS capabilities, the

streaming application needs, and workload characteristics. It is difficult to be predicted,

and cumbersome for a programmer to statically configure an optimal size. For example,

enlarging the micro-batching may result in higher waiting time intervals (compromising

latency), but it reduces the frequency of communication calls (increasing throughput).
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2.2.8 Streaming Flow Manipulation

In traditional computing systems, processing a finite amount of data is relatively

easy, as the data can be divided into static chunks that match the number of processing

nodes. In some cases, chunks of different sizes may be used to achieve load balancing.

However, when dealing with streaming systems, the challenge of dividing computations

in a balanced fashion becomes more complex, as the data stream is infinite and its size is

not known in advance. To address this challenge, several strategies have been proposed,

many rely upon slicing the infinite data stream into a collection of bounded datasets [1].

In the following paragraphs, we will discuss some of the most popular strategies used to

address this issue.

When dealing with infinite workloads, one popular approach is to filter the data

and transform the unordered data flow into a finite dataset of filtered stream items based

on a time constraint. Another strategy is to use approximation algorithms, such as k-

means or Latent Dirichlet allocation, to group the data into finite datasets that share com-

mon characteristics. By doing so, a mass of raw data that may seem odd at first glance

can be reorganized into more manageable datasets.

Windowing is a widely used and essential concept in stream processing. It in-

volves dividing data from a finite or infinite source into smaller chunks or windows. Window-

based strategies are used in many DSPS to implement operations that would be infeasible

or impractical otherwise. For instance, aggregations and averages do not need to store the

entire streaming flow, and instead, windowing can be used to perform partial computa-

tions and incrementally aggregate their results using proper synchronization mechanisms.

One possible strategy of windowing is sliding windows. They are defined by fixed

size and fixed time period. Figure 2.4 sketches some windowing strategies: (1) When the

period is less than the size (left-hand side), windows will overlap and the same data may

belong to multiple windows at the same time. (2) When both parameters are equal (middle

one), it creates fixed windows. (3) When the period is greater than the size (right-hand

side), windows will periodically select samples of the streaming flow.

Streaming Flow

Time

Overlaping Windows Fixed Windows Sample Windows
Period < Size Period = Size Period > Size

Figure 2.4: Windowing strategies.



34

Besides sliding windows, windowing also encompasses strategies for dynamic

windows. One such strategy is sessions. The window expands dynamically and ingests

stream items until a gap of inactivity greater than a given timeout is reached. This strategy

is important for some classes of streaming applications. For example, a streaming system

that analyses user behavior may adopt such an approach to process data in a proper way.

2.3 Parallel Programming Models

Managing the execution of a computing system with ease and maximum effi-

ciency is a major challenge in computer science, particularly in distributed environments

with heterogeneous resources. To address this challenge, many parallel programming

models have been developed to optimize the utilization of computational resources and

manage communication between processes. Two of the most important models in the

high-performance computing (HPC) domain are Message Passing Interface (MPI) and High

Performance ParalleX (HPX). In this section, we will discuss these models and their efficient

approaches for coordinating the execution of parallel applications in distributed environ-

ments.

2.3.1 Message Passing Interface

The Message Passing Interface (MPI) is the leading parallel programming model

for distributed computing in HPC and scientific applications. It was first conceived and

released in 1994 and since then, the official standard has been updated multiple times.

We are currently in standard MPI 4.0 [62], released in the middle of 2021. The intentions

of newer MPI standards are to maintain relevance to the community by identifying and

updating the interface according to the needs of modern computing systems [50]. For

instance, ongoing working groups are actively exploring methods to facilitate the incorpo-

ration of standard techniques for fault-tolerance and integration with hybrid programming

models, such as OpenMP, CUDA, and OpenCL, among others.

MPI is a specification rather than an implementation [62]. It defines a library

interface with distributed operations represented as function routines. This does not make

MPI a programming language, but rather a standard interface and programming model

that can be used to optimize mechanisms in both upper and lower levels of abstraction.

This allows vendors to exploit lower-level aspects to further optimize their proprietary

hardware and programmers to exploit higher-level aspects to create new runtime systems

that abstract message passing complexities using these same standard MPI routines.
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MPI is a well-established standard interface that aims to provide efficient com-

munication among processes in distributed systems. While MPI is mainly concerned with

the message passing parallel programming model, it also offers a wide range of routines

that support other parallel programming paradigms. These routines include collective op-

erations, remote memory access (RMA), dynamic process management, and more.

The primary goal of MPI is to become a modern and self-contained standard for

writing distributed programs. In pursuit of this objective, MPI has been designed to of-

fer several essential features, including efficient communication, portability, flexibility,

and language-independent semantics. These features enable MPI to provide a common

foundation for developing parallel programs that can run efficiently on many hardware

platforms and software environments.

MPI is designed to work on various platforms, ranging from a single machine to

a combination of shared and distributed memory machines. By default, MPI processes

communicate via TCP/IP sockets, but MPI also implements optimizations to exploit high-

performance interconnect technologies, such as InfiniBand and Intel Omni-Path. MPI pro-

vides a wide range of functions to move data efficiently between processes and orches-

trate communication among them.

While MPI targets efficiency and portability, it lacks programmability. Program-

mers need to manually implement mechanisms such as serialization, fault-tolerance, and

elasticity, which may be challenging and time-consuming. MPI does not provide any of

these mechanisms, although recent versions have made some efforts in fault-tolerance.

Nonetheless, they are limited and might not be available in the short term. Thus, pro-

gramming using MPI requires careful consideration of these factors to achieve optimal

performance and functionality.

We mentioned MPI is a specification and not an implementation. Examples of

existing MPI implementations are Open MPI and MPICH. Both are in conformance with

standard MPI 3.1 and are slowly starting to support some specifications from MPI 4.0.

MPI standard 3.1 exposes message passing and other mechanisms to efficiently orches-

trate the computation between distributed resources [50]. Some of these mechanisms

are: (1) Point-to-point communication are concerned with message passing between two

processes in a cooperative fashion. (2) Collectives are concerned with coordinating com-

munication and computation within a group of processes. (3) Persistent communication

optimizes message passing that use the same argument list between two processes. (4)

One-sided communication allows reading or writing data between processes, where only

a single process is involved. (5) MPI-IO supports multiple processes to perform concurrent

reads/writes to a single file. (6) Dynamic process management allows MPI processes to be

created during execution time.



36

2.3.2 High Performance ParalleX

High Performance ParalleX (HPX) is a runtime system for concurrency and paral-

lelism that was written in conformance with the newest C++ standards. The focus relies

on high efficiency, scalability, and ease of programming for heterogeneous exascale dis-

tributed computing systems. HPX leverages asynchronous computing [45], which is a

concurrent programming model that allows coordinating a large number of concurrent

tasks, instead of a small number of processes. The asynchronous programming model is

an alternative to the traditional message passing model. Moreover, it shows some advan-

tages with respect to the latency barriers often implicitly imposed by MPI to synchronize

communicating processes. In HPX, due to its programming model, each message may

become an isolated task that can be computed asynchronously.

The HPX architecture is composed of different components that cooperate for

achieving high efficiency through asynchronous computation [46]. Some components are:

(1) a manager for the lightweight user-level threads created by HPX, which have tiny con-

text switching overheads. (2) An active global address space (AGAS) that provides mech-

anisms to move objects in between nodes in a distributed system using a unique global

address to identify them. (3) A message-driven networking layer (Parcel) that allows mov-

ing data to the work as well as assigning the work to data. (4) A light-weight local control

object (LCO) are mechanisms that may be synchronous (i.e., barrier, semaphore, etc.) or

asynchronous (i.e., future, dataflow, etc.) and have the ability to be triggered by a set of

events that once are satisfied they authorize a thread to execute. (5) Performance coun-

ters that provide system metrics that are accessible through global addresses provided by

AGAS mechanisms.

In a cluster, HPX nodes communicate via the parcel transport layer. The objects

are identified using global IDs that point to the physical location of the data. This is sup-

ported by AGAS dynamic and adaptive capabilities that may move data between nodes

for improving efficiency while holding the same global ID. Parcel messages by default use

MPI via non-blocking calls for sending and receiving messages [15]. Upon receiving a Par-

cel message, a lightweight thread is created by HPX and is included in a thread manager

system. In HPX, its asynchronous protocol enables messages to overlap communication

and computation, meaning a message contains either data or remote method calls. Each

message becomes a lightweight thread and is scheduled using the threading subsystem

manager, which implements work-stealing scheduling to improve load balancing. This

is one of the main contrasting characteristics of HPX with respect to MPI. While MPI cre-

ates coarse-grained threads (processes) that are placed in cores usually in a one-to-one

fashion, HPX embraces fine-grained threads that may be handled in a thousand-to-one

placement fashion.
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The coordination between HPX lightweight threads is achieved with LCOs that can

be in the shape of futures, dataflows, or traditional synchronization mechanisms. Futures

represent results that are not ready yet, their states vary between executing and sus-

pended depending on the availability of the required resources. Dataflows are operations

that become available once a global state is achieved, for instance, when the runtime

identifies that a set of futures finished their computations. Traditional synchronization

mechanisms of HPX are in conformance with newer C++ standards and implement proto-

cols such as mutexes, spinlocks, semaphores, and global barriers.

HPX is a recent distributed runtime system compared to MPI implementations,

but it is increasing in popularity over the last few years. HPX leverages a new program-

ming model that aims at achieving the high scalability required by the new era of exascale

computing systems [46, 44]. Unfortunately, although HPX adopts C++ standards to im-

prove writing parallel and distributed code, its programmability levels still rely closer to

MPI than other state-of-the-art distributed systems.

2.4 Distributed Stream Processing Systems

This section presents the state-of-the-art frameworks and libraries that belong

to the distributed stream processing domain. Our work is not directly compared to these

tools, since our goal is not to create a new DSPS to compete with them. Instead, we want

to leverage a lower-level parallel programming model, such as MPI or HPX, and provide

higher-level abstractions. By studying these frameworks, we aim to investigate and un-

derstand the state-of-the-art mechanisms employed in different DSPS. This allows us to

gain a broad perspective of the advancements in the stream processing domain, and to

provide better functionalities to the runtime system introduced in this work.

2.4.1 Apache Flink

Apache Flink [7] is a unified stream and batch processing framework from Apache

Software Foundation written in Java and Scala. It executes streaming flows in a pipeline

and data-parallel fashion. Apache Flink provides fault-tolerance with exactly-once guaran-

tees using a mechanism called Asynchronous Barrier Snapshotting (ABS) [20], which re-

sembles the Chandy-Lamport’s algorithm we explained in Section 2.2.1. Fundamentally,

the synchronization is performed by control barriers inserted inside the streaming flows.

Periodically, an operator finds a barrier in each one of its input streaming ports. Once all

the input path barriers arrive, the operator takes a snapshot of its current state and writes

it into persistent storage. When the state has been backed up, the operator forwards new
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barriers to its output streaming ports. Eventually, all operators from the streaming sys-

tem obtain a backed-up snapshot of their own states, and a consistent global snapshot is

accomplished. Upon failures, the system reverts all operator states to the last consistent

global snapshot and reloads all streaming items outside the snapshot barrier.

For serialization, Apache Flink provides built-in serializers for basic types (Java

primitives), arrays, tuples, and a few others. User-defined or more complex data types

may require a third-party library called Kryo. Apache Flink does not implement self-

adaptive mechanisms yet, although there has been some progress in adaptive schedul-

ing for a beta version [7] and also in research [47]. Still, the adaptability support does

not make applications self-adaptive. Instead, it makes the application take a consistent

snapshot of the job state, then halt the computation, and redeploy it with the updated

parallelism. Additionally, the mechanisms are not fully integrated with the runtime and

there are many limitations, especially regarding fault-tolerance and resource manage-

ment tools.

2.4.2 Apache Storm

Apache Storm [13] is an open-source framework for distributed stream process-

ing. With Trident, a high-level abstraction built on top of Apache Storm, it also supports

batch and micro-batch processing with aggregations, filters, grouping, and join operations,

as well as a better fault-tolerant strategy. By default, Apache Storm provides at-least-

once message delivery guarantees. Additionally, it may provide exactly-once guarantees

through Trident. Since Trident uses micro-batching tuples to process over the streaming

flow, it attributes a unique identifier to each tuple. When tuples are replayed, they pro-

duce the same exact unique identifier. Operator states are stored in persistent storage.

To keep a consistent global view of states, the mechanisms keep track of each tuple that

updates the state and writes its identifier in an ordered manner. Upon failure, the fault-

tolerant mechanisms recover the last stored state and replay the tuples. Considering that

the state updates are ordered, the fault-tolerant mechanisms know exactly what tuples

were already executed and which ones are the next. As a consequence, the strongest

fault-tolerance guarantee of Apache Storm is satisfied with a considerable cost regarding

storage space and computational overhead.

Apache Storm leverages the serialization mechanisms provided by a library called

Kryo, the same as Apache Flink. By default, the DSPS can deal automatically with the se-

rialization of primitive data types, strings, byte arrays, and some others. Otherwise, the

user is expected to provide a custom serializer. If no serialization is provided, Apache

Storm uses Java serialization whenever possible, which is known for being computation-

ally expensive. Apache Storm does not implement self-adaptive mechanisms. Nonethe-
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less, some efforts were made from the literature to implement adaptive mechanisms on

top of Apache Storm [29, 81, 27, 32, 52]. Storm has more adaptive scheduling extensions

than any other DSPS. We attribute this to the possibility of replacing Apache Storm’s de-

fault scheduler with a custom scheduler. This highlights the contributions of our work that

aims at providing a modular framework to enable programmers and researchers to focus

on an isolated part of the runtime system.

2.4.3 Apache Spark

Apache Spark [12] was initially conceived for dealing with batch processing only.

However, it includes spark streaming, an extension built on top of Apache Spark to further

support near real-time stream processing. Spark streaming supports micro-batching to

meet the low-latency requirements of stream processing. Apache Spark was introduced

as an optimized runtime system with respect to Apache Hadoop [8], which is historically

relevant in Big Data. For instance, Apache Hadoop suffers from severe performance degra-

dation when dealing with iterative workloads that require frequent access to a storage

disk. Therefore, Apache Spark introduced a new concept based on RDDs (Resilient Dis-

tributed Datasets) that load data in memory. The strategy is similar to a cache hierarchy

from shared memory architectures, in which constantly used data items remain in mem-

ory closer to the processor. Therefore, avoiding the overhead cost of reading data from

distant memories.

By default, Apache Spark uses Java serialization mechanisms to provide data

serialization. Also, it supports integration with the Kryo library, similar to the previous

frameworks. Apache Spark implements a fault-tolerant system that provides at-least-once

message delivery guarantees. For that, is uses a mechanism based in a write-ahead log-

ging and checkpointing. Checkpointing in Spark streaming is straightforward and consists

in periodically writing the operator’s state in a persistent storage. Write-ahead logging is a

complementary strategy that can detect if a data item has already been processed or not,

thus obtaining a consistent view of a streaming system. All state updates are first writ-

ten to ahead logs and only after the operation is successful the modifications are made

available for processing. When failures occur, Apache Spark uses these logs and com-

bines information from the metadata and state from the last checkpoint. This strategy

cannot detect if streaming items are processed twice, and because of that Spark stream-

ing guarantees are at-least-once only. Although Apache Spark introduced a few adaptive

strategies in its release version, Spark streaming does not enable such adaptive strate-

gies by default. In spite of that, there are experimental attempts from research to provide

adaptive mechanisms to replace the default Spark streaming scheduler [23, 63].
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2.4.4 Apache Heron

Apache Heron [9] is a distributed stream processing engine written mostly in Java.

It is another incubated DSPS within the Apache Software Foundation. It was first conceived

and implemented by developers from Twitter to replace Apache Storm, that according to

them, could no longer suit their needs due to some limitations [49]. Apache Heron uses

Kryo for serialization and deserialization, the same as other Apache tools. Additionally,

it does not support self-adaptive mechanisms by default. However, Dhalion [31] is an

adaptive system from research that provides self-regulation capabilities and that can be

enabled in Apache Heron. It is not completely clear how the fault-tolerance mechanism

works for Apache Heron according to the available documentation.

Apache Heron declares they provide at-most-once, at-least-once, and effectively-

once that will take place depending on how the user architectures the topology. The

later guarantee is a term used by Heron since they claim that exactly-once is mislead-

ing and impossible to guarantee. Instead, they define effectively-once as a system that

may compute twice but the output is only considered once. Also, they claim that to ensure

effectively-once, the topology must be stateful and idempotent, while embracing a data

source with strong consistency. In this case, stateful component means that the stream-

ing operators from the topology must store their own state each time a new stream item

is processed (this can be done manually or using state managers); and the idempotent

component means that executing over the same data twice always produces the same

outcome/result. Upon failure, the fault-tolerance mechanism uses an ordered identifier

incremented for each new state update and a deduplication strategy in the sink to ignore

duplicated writes. According to Apache Heron’s documentation, effectively-once is only

guaranteed when a de-duplication sink is available. If that is the case, Spark Streaming

and other DSPS also could ensure exactly-once guarantees using a de-duplication sink.

2.4.5 Kafka Streams

Kafka [10] is a distributed streaming framework that has tremendously increased

in popularity over the last years. The framework embraces tools like Apache Kafka, Kafka

Streams, and Kafka Connect under the same umbrella, each one with a different goal:

(1) Apache Kafka provides a set of mechanisms to deal with the steaming flow. Sources

produce data and publish onto Kafka topics. These topics are a collection of messages that

last forever inside a Kafka cluster. Users can read, modify, or even replay old messages.

Furthermore, Apache Kafka implements fault-tolerant mechanisms to support the never-

ending workload of stream processing systems. Because of that, Apache Kafka is used
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as a middle layer between real data sources and streaming systems. Consequently, it is

used by almost every state-of-the-art DSPS and plays an essential role in each of their

own strategies for ensuring fault-tolerance. (2) Kafka Streams is a DSPS that allows the

processing of streaming items. This is the API layer that compares to our work and we

will give more details in the following. (3) Kafka Connect is a high-level API of Apache

Kafka that allows the integration between Kafka topics and different DSPS, such as Apache

Spark, Apache Storm, Apache Flink, etc.

Kafka Streams inherit fault-tolerance capabilities due to the native integration

between Apache Kafka and its runtime system. In this strategy, all local state updates

are stored in a durable changelog, which is an Apache Kafka topic by default. Once the

state is stored in a topic, Apache Kafka ensures it is persistent using the exact mechanism

that enables stream messages to be persistent. Kafka has a strong notion of "commit-

ted" messages to ensure they are actually stored in a log and de-duplicates them using

transactions. To prevent a topic from growing indefinitely, a log compaction mechanism

keeps track of the most recent values and purges the old ones. Kafka Streams can provide

exactly-once guarantees due to this fault-tolerant mechanism. Upon failure, the system

restarting time depends on the size of the state that was stored in a changelog topic. To

minimize the overhead, Kafka Streams enable replicated standby copies of local states.

The user specifies the number of standby replicas and what state they should replicate.

If tasks reinitialize or are migrated, Kafka Streams will assign them to nodes that already

contain a replicated state. Kafka Streams provides built-in serialization mechanisms for

several Java primitives. Additionally, it equips users with templates for serializing and

deserializing data using the Avro and Protobuf libraries.

2.4.6 Apache Samza

Apache Samza [11] is written in Scala and Java and is another DSPS supported

by Apache Foundation. It was developed by LinkedIn and was designed in conjunction

with Apache Kafka. Apache Samza provides data serialization through Java serialization.

It expects the user to register their own custom data types or to use Apache Kafka topics

for communication. Apache Samza proposes a fault-tolerant mechanism different from

the others, which is a composition of Kafka state changelogs and message checkpointing.

Upon failure, which can be of a software nature, Apache Samza leverages a strategy they

call host-affinity. Therefore, the state is stored on the same machine disk as the processing

task to establish data state locality. The complementary strategy to ensure fault-tolerance

is message checkpointing. Some requirements are expected from the streaming source,

like a fixed order of messages and their offset indicating a position in the stream.
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Consequently, each Apache Samza task stores the current offset of read mes-

sages, in which each new message moves the offset forward. Periodically, another pro-

cessing component checkpoints the current offset of each processing task. Because of

this synchronization gap, the current offsets checkpoint may not be consistent, compro-

mising the strong exactly-once delivery guarantee but ensuring at-least-once. Both Kafka

Streams and Apache Samza do not provide self-adaptive mechanisms.

2.4.7 Akka Streams

Akka is a framework leveraging an actor-based model that simplifies the con-

struction of concurrent and distributed applications. It was written in Scala, but it allows

Scala and Java bindings. An actor-based system is basically composed of actors, similar

to object-oriented, which is essentially composed of objects. Actors communicate using

message passing. Upon receiving a message, actors may take actions such as: processing

the message itself, forwarding it, initializing a new actor and forwarding the message, or

completely ignoring it. In this work, we are interested in Akka streams, a library built on

top of the Akka framework for stream processing.

A user may implement a DSPS in Akka using different strategies. The most nat-

ural way is integrating Akka streams with Akka actors. This way, Akka streams manages

the streaming flow while each actor manages its state. Concerning the type of actor, per-

sistent actors are more suitable than traditional ones because they ensure that internal

states are persistent and can be recovered when an actor fails or is migrated. Addition-

ally, the streaming system may become even more resilient when integrating it with the

Akka persistence API. Akka streams uses Protobuf to serialize data types. Alternatively, it

supports Java serialization, Kryo library, and Chill.

By default, instead of snapshotting the entire internal states, Akka uses an event-

sourcing approach that only stores the events that modify the state. Therefore, in case

of recovery, the modifications are replayed to rebuild the internal state. Upon failure,

a persistent actor uses the latest snapshot and replays the subsequent modifications to

obtain a consistent state. Durable states are an alternative fault-tolerant mechanism with

respect to event sourcing. In this mechanism, the entire state is stored in persistent

storage. Only the latest state is saved, and old ones are discarded. The state is first

stored in memory and after written into the storage. During this period, all actions are

halted until the state is successfully stored. Akka persistence provides message delivery

guarantees for at-least-once.
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2.4.8 Summary

Table 2.1 summarizes our findings regarding the distributed stream processing

systems (DSPS) investigated in this section. Our research indicates that Java is the dom-

inant programming language used to write the DSPS. The performance gap between a

higher-level language abstracting hardware details (i.e., JVM-based) and lower-level sys-

tem languages (i.e., C/C++) is well known [82]. The work [82] concluded that streaming

systems parallelized with state-of-the-art DSPS presented bottlenecks due to inefficient

resource exploitation in a single node. Meanwhile, when providing an equivalent C++

and MPI implementation, the throughput increased, achieving gains of up to two orders of

magnitude with respect to DSPS like Apache Flink, Apache Storm, and Apache Spark [82].

Our investigation also revealed that only a few DSPS support a hybrid processing

model that integrates stream and batch processing. Micro-batching, which is critical for

stream processing, allows the system to balance throughput and latency by adjusting the

batch size. The serialization is accomplished using the Kryo library for almost all DSPS.

Alternatively, some implement built-in serialization for primitive data types (i.e., Apache

Flink and Kafka Streams) or use standard Java serialization support. However, nearly all

DSPS do not recommend using Java serialization due to its overhead penalties.

All DSPS are fault-tolerant. They provide different implementations and strate-

gies to achieve fault-tolerance, which explains the different delivery guarantees. Exactly-

once is the strongest guarantee that allows streaming systems’ results to be deterministic

and reliable, similar to the sequential programming paradigm. DSPS that provide exactly-

once store the state in persistent storage and monitors the progress made in the stream-

ing system. For others, their strategy does not allow the detection of duplicated items.

Therefore, they provide exclusively at-least-once guarantees. For low-level systems like

MPI implementations or HPX, fault-tolerance is non-existent and the runtimes provide at-

most-once guarantees. In case messages are not successfully received, the user must

manually implement a strategy to resend them.

Self-adaptive mechanisms are not commonly integrated in stable releases of

DSPS. Although many solutions have been proposed in the literature, their practical ap-

plication is limited due to the lack of experimental setups using realistic workloads and

real-world streaming systems. Dynamic changes during execution time can have side-

effects, such as halting the DSPS for a long time or requiring a system restart to apply the

modifications. Consequently, self-adaptive mechanisms are still under active research and

development, and how they can be effectively integrated into stream processing Pipelines

remains an open issue.

Maintaining the exact ordering of stream data items is required in some appli-

cations such as video or compression, where the output results must follow the same
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order as the input stream. However, integrating ordering with other mechanisms such

as fault-tolerance and self-adaptive adds further complexity to streaming systems. Our

investigation revealed that some DSPS do not support ordering, while others employ dif-

ferent approaches for addressing it. Some DSPS can reorder stream items but only in

batch mode, while others employ actor-based systems or are integrated with streaming

producers like Apache Kafka. However, we found no information about how ordering is

handled when failures occur.



Table 2.1: Comparison between state-of-the-art Distributed Stream Processing Systems.

Framework
Programming

Language
Serialization Fault-tolerance Self-adaptive

Delivery

Guarantee

Processing

Type

Stream

Ordering

Apache Flink
Java

Scala

Built-in for primitives;

Kryo library

Asynchronous Barrier

Snapshotting (ABS)
- Exactly-once

Stream;

Batch;

Micro-batch

No

Apache Storm
Java

Clojure

Java serialization;

Kryo library

Re-playable data;

State management
-

At-least-once;

Exactly-once via

Trident

Stream;

Micro-batch via

Trident

Yes, via Trident

(batch only)

Apache Spark
Scala

Java

Java serialization;

Kryo library

Write-ahead logging;

Checkpointing
- At-least-once

Batch;

Micro-batch via

Spark Streaming

No

Apache Heron
Java

C++
Kryo library

Re-playable data;

State management
- At-least-once Stream No

Apache Samza
Scala

Java
Java serialization

State Changelog;

Message Checkpoint
- At-least-once Stream Yes

Kafka Streams Java

Built-in for primitives;

Avro;

Protobuf

State Changelog - Exactly-once Stream Yes

Akka Streams Scala Protobuf
Event sourcing;

Durable state
- At-least-once Stream Yes
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3. RELATED WORK

This chapter presents related work to ours. We selected papers that provide high-

level abstractions which aim at supporting distributed stream processing in C++. Most of

these works introduced libraries and programming APIs based on the structured parallel

programming paradigm. Their majority was conceived employing low-level mechanisms

built on top of MPI. HPX is more recent and was not used by related work.

FastFlow is a C++ programming library that was originally designed for multi-

core processors and later extended to support heterogeneous and distributed computing.

In previous work [2], FastFlow used ZeroMQ for inter- and intra-node communication, and

provided programming templates for zero-copy message passing. In a recent study [74],

FastFlow was further extended to implement a new runtime system that supports the exe-

cution of FastFlow shared-memory applications on a distributed domain. This new runtime

system allows for a single structured parallel programming model to run applications in

hybrid shared/distributed-memory environments. The modifications to make a program

distributed include identifying parallelism opportunities in FastFlow’s building blocks, and

assigning them to different groups accordingly. Then, FastFlow enables parallel execution

by mapping these groups to distributed nodes using a Json configuration file. Serialization

is done using Cereal or by manually implementing a programming template for zero-copy

data transfer. Fault-tolerance and adaptability are not covered by their work.

Thrill [17] is a C++ framework for computing distributed batch workloads. Their

goal is to implement a new Big Data framework to compete against the ones we discussed

in Section 2.4. Their solution does not consider self-adaptive and they do not implement

mechanisms to include fault-tolerance. To communicate messages they provide custom

routines that resemble MPI calls and, optionally, the user can use MPI itself. Serialization

is done using built-in templates or Cereal library for complex data types.

The next two works [78, 59] represent early attempts to provide stream pro-

cessing abstractions over MPI. However, when these studies were published, the stream

processing programming model was not as widespread as it is today, so their proposed

frameworks and libraries are not high-level abstractions for MPI-based stream process-

ing. Instead, their contributions are closer to stream-oriented programming models for

MPI. In [59], the authors study how to integrate MPI and stream processing to exploit net-

work locality and topology. Meanwhile, in [78], a lightweight strategy is introduced for

employing MPI in stream processing to support workflow computation using a directed

acyclic graph (DAG). However, neither work implements abstractions for serialization,

fault-tolerance, and self-adaptive, nor do they ensure delivery guarantees or implement

ordering.
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MPI Streams [68] proposes an extension to MPI targeting the stream processing

paradigm. It specifies a new set of MPI functions that are able to support the Map and

Reduce patterns. For example, using standard MPI functions (i.e., MPI_reduce, MPI_sum,

etc.) the authors created new functions (i.e., MPIStream_send, MPIStream_Operate). As

consequence, the proposed extension is not a high-level abstraction over MPI. Instead, it

helps building streaming systems but still couples the user with low-level MPI aspects.

ESkel [14] is a programming abstraction for MPI that was written in C. It leverages

parallel patterns (or simply, skeletons) that already implement many parallelism complexi-

ties. For example, eSkel provides the Pipeline and Farm patterns that are popular in stream

processing. These parallel patterns are prototypes that already implement mechanisms

such as scheduling protocols, an underlying DAG, communication strategies, and others.

However, the abstractions are still very similar to native MPI and the programmer deals

with lower-level aspects such as pointers, MPI data types, and buffer sizes. ESkel also

does not implement fault-tolerance or self-adaptive approaches. Serialization is done via

default MPI data types.

Muesli [24] is a pattern-based parallel programming abstraction for shared and

distributed architectures. It was written in C++ and uses MPI to perform communication

between different nodes in a cluster while using OpenMP to support multi-cores. Muesli

supports both data and stream parallel patterns. It does not implement fault-tolerance

and self-adaptive mechanisms. Serialization is done using built-in templates that require

to be manually implemented by the user.

Quaff [30] is another C++ pattern-based parallel programming library written in

C++ to abstract low-level MPI. Due to optimizations at compile time and template-based

meta-programming techniques, their programming abstraction reaches a good balance

between performance and programmability. Their library provides parallel patterns using

a object-oriented paradigm. Same as the others, Quaff does not mention fault-tolerance

and self-adaptive, also does not provide mechanisms for ordering and delivery guaran-

tees.

DSParLib [64] is a pattern-based programming abstraction from our research

group. It can be used for expressing distributed stream parallelism on C++ via arbitrary

composition of parallel patterns. DSParLib provides abstractions to ease the development

of streaming systems using MPI. It offers building blocks that can "wrap" existing sequen-

tial code, and then interconnect between themselves to obtain a DAG of computation.

DSParLib uses dynamic processes management from MPI-2 that for now is statically con-

figured at compile time. DSParLib does not provide fault-tolerance and only tries to send

messages once, ensuring at-most-once guarantees. Additionally, it does not implement

self-adaptive. DSParLib serializes data types using built-in C++ templates. More details

are presented in Section 4 as we extend our study on DSParLib’s investigation.
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Table 3.1 summarizes our findings when investigating C/C++ parallel program-

ming abstractions for distributed stream processing. The results revealed that almost

half of the programming abstractions do not tackle modern stream parallelism or do so

partially. Serialization is often done using low-level MPI data types or via built-in C++ tem-

plates that require manual implementations. Most programming abstractions proposed

by our related work were discontinued and documentation is scarce. Fault-tolerance and

self-adaptive are topics that remain research issues. None of the related work approached

these topics. Only two mention it by proposing fault-tolerance as future work. Delivery

guarantees are also not focused on any work. Messages are sent once and are expected

to always be received on the other side. Ordering is a challenging feature because it re-

quires to be implemented inside the runtime system in conformance with the remaining

mechanisms. Only DSParLib made an effort to fully support it.

Our work addresses critical gaps in the field of distributed stream processing for

C++. We go in a different direction from the related work solutions presented in Table 3.1,

that mostly leverage a static MPI programming model. Instead, we focus on the dynamic

characteristics of stream processing and try to bridge it with dynamic process manage-

ment in MPI. Our primary objective is to enable adaptability in streaming systems by al-

lowing processes to be added or removed during execution. In order to achieve this goal,

we propose the novel design of a flexible, efficient, and modular runtime system called

MPR (Message Passing Runtime), which to the best of our knowledge, is the first to enable

adjusting parallelism during execution time for self-adaptive distributed stream process-

ing in C++. MPR’s runtime system includes algorithms for dynamic process creation, Job

assignment, data management, and a leader-based synchronization protocol that is used

to coordinate the MPI processes.

In addition to the lower-level runtime system, we also implement a set of pro-

gramming abstractions for MPR to become a viable solution for implementing distributed

streaming systems in C++. We implemented programming abstractions for dynamic pro-

cess management, scheduling, data communication, serialization, load balancing, order-

ing, and back pressure. To develop MPR, we leverage insights from state-of-the-art so-

lutions and aim to contribute to a modular framework that can be extended with new

algorithms and optimizations by other researchers. Currently, there is a significant re-

search gap between conceiving a new self-adaptive algorithm for distributed mechanisms

and integrating it with a real DSPS. Existing tools and related work make it challenging to

implement extensions or optimizations, which can limit progress in the field. Our work ad-

dresses this limitation by providing a new framework that enables researchers to develop

and test their own self-adaptive algorithms and optimizations. In Chapter 4, we extend

our investigation on DSParLib, and in Chapter 5 we present the MPR framework.



Table 3.1: Comparison between related work.

Work
Transport

Layer
Serialization Fault-tolerance Self-adaptive

Delivery

Guarantees

Stream

Parallelism
Ordering Modular

FastFlow
TCP/IP;

MPI
Built-in templates - - at-most-once Yes No No

Thrill
TCP/IP;

MPI

Built-in templates;

Cereal library
- - at-most-once Partially No No

MPI Streams MPI MPI data types - - at-most-once Partially No No

MPI Hybrid MPI MPI data types - - at-most-once No No No

MPI Light-weight MPI MPI data types - - at-most-once No No No

eSkel MPI MPI data types - - at-most-once Yes Partially No

Muesli MPI Built-in templates - - at-most-once Yes No No

Quaff MPI Boost - - at-most-once Yes No No

DSParLib MPI Built-in templates - - at-most-once Yes Yes No

MPR MPI
Programming

abstraction
-

Parallelism

adaptability
at-most-once Yes Yes Yes
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4. DSPARLIB INVESTIGATION

In this chapter, we extend our related work study and research DSParLib in further

detail as it will be the foundation of our research. We report on the DSParLib investigation

and its low-level mechanisms that enable distributed stream processing. The features we

incorporate into our runtime system are influenced by DSParLib, and even its limitations

have provided us with valuable insights to enhance our system. Additionally, we present

our findings from the experiments we conducted to parallelize a complex streaming appli-

cation using DSParLib’s API. By analyzing the flexibility and performance of DSParLib, we

were able to identify areas of improvement for our runtime system.

This chapter is organized as follows. In Section 4.1, we present an overview of

DSParLib by describing its runtime system and programming model. In Section 4.2, we in-

troduce the strategy created to parallelize a stream processing application with DSParLib.

Subsequently, in Secion 4.3 we present the experimental evaluation. Lastly, in Section 4.4,

we describe the limitations found in DSParLib and propose improvements that will be later

used to implement the new runtime system.

4.1 DSParLib Overview

DSParLib (an acronym for Distributed Stream Parallelism Library) is a parallel li-

brary for implementing distributed stream parallelism on C++ applications. DSParLib im-

plements programming abstractions on top of MPI to simplify parallel programming via a

higher-level API. DSParLib was designed taking inspiration from the structured parallel pro-

gramming paradigm. It introduces the notion of building blocks that enables programmers

to "wrap" existing code. Then, these building blocks can be interconnected to model the

application data flow. In addition, DSParLib provides some compilation time verifications

that help the programmer in determining if the interconnected building blocks are correct.

For example, DSParLib checks that a stage receiving an integer is interconnected with a

stage sending integers.

Figure 4.1 illustrates how DSParLib’s building blocks are interconnected to pro-

duce a streaming flow. The fundamental component of a building block is the sequential

wrapper (white block), which wraps a block of code containing the application’s compu-

tational logic. The other two blocks are the Input and Output communicators (yellow and

blue), which are used to serialize data through the network. They can also be seen as

blocks that wrap up the mechanisms for sending and receiving data in DSParLib.

To enable distributed stream processing with DSParLib, programmers are equipped

with two parallel patterns that can be used to "wrap" sequential code: (1) The Pipeline
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Figure 4.1: DSParLib Composable and Reusable Building Blocks [55].

pattern is a sequence of interconnected sequential stages. It can be implemented with a

Sequential Wrapper + Output communicator at the beginning and an Input communicator

+ Sequential Wrapper at the end. A pipeline stage can only be sequential and cannot be

replicated to execute in parallel. (2) The Farm parallel pattern can be seen as a particu-

lar case of the Pipeline pattern with always three stages (Emitter, Worker(s), Collector).

Sometimes stages that have intensive computational routines can be replicated to im-

prove performance. In these cases, DSParLib offers the Farm parallel pattern, where the

intensive computation is assigned to the middle stage (Worker) for replication. To main-

tain the functional correctness of the data flow, the Farm pattern requires a scheduler

(named Emitter) and gatherer to collect the parallel Workers’ results (named Collector).

The streaming data flow moves from left to right.

In addition to the ready-to-use parallel patterns (Farm and Pipeline), DSParLib

supports semi-arbitrary pattern composition. For applications that require multiple repli-

cated stages, it enables nesting Farms into Pipeline stages, as also depicted in Figure 4.1.

Other compositions are currently not supported. This is an essential feature since DSPar-

Lib enables stage parallelism only via composition with the Farm pattern. Each Pipeline

parallel stage must be implemented as a Farm, otherwise, it will be a sequential Pipeline

stage.

4.1.1 Building Blocks

In DSParLib, programmers can wrap sequential code using DSParLib’s building

blocks. The available blocks are of three types regarding their data interaction: send

only, send and receive, and receive only. We show a code example for each sequential

wrapper type in Listing 4.1. For example, let us consider an application that processes

the prime numbers from 0 to totalNum. First, Stage1 extends the Emitter template and is

responsible for generating the data (lines 1 to 6). Each new loop iteration (line 4) emits a

new data item (line 5). Then, the Stage2 is the Worker that receives the items, processes

them, and emits a boolean indicating if that number is a prime number (lines 8 to 18).
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Any C++ computation or function could replace the computation from lines 11 to 17. The

Process() method executes over each stream item received (lines 10 and 23). Finally,

Stage3 is the Collector, which accumulates all the results (lines 20 to 26). In DSParLib,

the inputs from the previous building block are received using the Process(inputs) and

the resulting outputs are scheduled using the Emit(outputs) function. This strategy is

inherited from structured parallel programming. Lower-level data communications and

message passing implementations are usually abstracted from the programmers. Other

complexities can arrive in serializing the data, but we will discuss them later.

1 class Stage1: public Emitter <int> {

2 public :

3 void Produce( ) override {

4 for ( int i=0; i<totalNum; i++){

5 Emit( i ) ;

6 } }; };

7

8 class Stage2: public Worker <int , bool> {

9 public :

10 void Process( int &i ) override {

11 bool isPrime = true ;

12 for ( int j = 2; j < i ; j++) {

13 i f ( i % j == 0) {

14 isPrime = false ;

15 break;

16 } }

17 Emit( isPrime ) ;

18 }; };

19

20 class Stage3: public Collector <bool> {

21 public :

22 int primes ;

23 void Process(double &isPrime ) override {

24 i f ( isPrime ) {

25 primes++;

26 } }; };

Listing 4.1: Example of DSParLib sequential wrappers.

▢1 ▢2▢0Pipeline

Figure 4.2: Parallel activity graph first example [55].

To understand how building blocks are assembled in DSParLib consider the par-

allel activity graph pipe(□0,□1,□2). We represent □n (square box) as a wrapped block
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of code. It represents a Pipeline with three sequential stages, as illustrated in Figure 4.2.

The Stage2 wrapper implementation in previous Listing 4.1 (line 8) can be assign only to

□1. However, it can not be assigned to □0, nor □2. The reason is that Stage2 expects

an input and an output, which is not satisfied when being the first or last stage of the

Pipeline. To introduce the last stage, for instance, programmers must first adapt the se-

quential wrapper. Note that both the Emitter and Collector have special rules. The former

cannot receive data items since it only generates data, and the latter cannot send items

(Emit()) since it only collects data.

4.1.2 Data communication

DSParLib provides two programming abstractions to simplify data communica-

tion: MPISender and MPIReceiver. It offers SendTo and Receive methods to implement

messages that are being sent or received. The programmers must call these methods in

the correct order to serialize and deserialize the data. For example, if programmers send

an int and a float message, they must receive the data in the same order. When data is

contiguously allocated in memory, DSParLib provides zero-copy operations since data is

sent as it is and thus does not involve the CPU.

DSParLib implements another programming abstraction on top of MPISender and

MPIReceiver. It is called SenderReceiver. The purpose of SenderReceiver is to provide

an abstraction to serialize and deserialize data being sent/received through the network

when using native C++ data types. In that case, the SenderReceiver becomes a commu-

nicator object that transparently deals with data serialization.

1 struct CustomType{

2 double num;

3 unsigned char * buffer ;

4 };

5 class CustomAbstraction : public SenderReceiver <CustomType> {

6 void Send(MPISender &sender ,MessageHeader &msg,CustomType &data) override {

7 sender .SendTo(msg, data .num) ;

8 sender .SendTo(msg, data . buffer , size ) ;

9 }

10 CustomType Receive(MPIReceiver &receiver ,MessageHeader &msg) override {

11 receiver .Receive(msg,num) ;

12 receiver .Receive(msg, buffer , size ) ;

13 return CustomType(num, buffer ) ;

14 }

15 }

Listing 4.2: Example of Custom Type serialization.
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Listing 4.2 showcases DSParLib’s SenderReceiver API when dealing with custom

data types. Lines 1 to 4 describe a custom data type containing two fields. To implement

data communication, programmers can implement a class extending SenderReceiver

(line 5) and overrides its functions for sending (line 6) and receiving (line 10). Then, pro-

grammers call SendTo() for the sender and Receive() for the receiver to each struct

field in the same order. DSParLib handles the communication details and serializes the

MPI communications. DSParLib’s templates can deal with up to 3-dimensional statically or

dynamically allocated arrays or other contiguously allocated data.

4.1.3 Pattern Composition

In this section, we discuss the parallel patterns available in DSParLib and their

composition. Programmers may use C++ type inference and the auto keyword to ease the

DSParLib implementation. Listing 4.3 showcases an example of how programmers can use

DSParLib’s building blocks. The example presents pattern composition using the following

schema: pipe{□0, farm[E(□1), W (□2), C(□3)],□4}. The resulting parallel activity graph

is illustrated in Figure 4.3.

C(▢3)

W(▢2)

W(▢2)

...▢0 ▢4E(▢1)

Pipeline Farm

Figure 4.3: Parallel activity graph second example [55].

1 void PipelineComposition ( ) {

2 auto comm = dspar : :SenderReceiver<double>() ;

3 auto stageBeforeFarm = dspar : :Stage(FirstStage ,comm) ;

4 auto farm = dspar : :Farm(comm, Emitter , comm, Worker, comm, Collector , comm) ;

5 farm.SetWorkerReplicas(10) ;

6 farm.SetOnDemandScheduling(true) ;

7 farm.SetCollectorIsOrdered(true) ;

8 auto stageAfterFarm = dspar : :Stage(LastStage, comm) ;

9 Pipeline pipe(&stageBeforeFarm , &farm , &stageAfterFarm) ;

10 pipe .Start ( ) ;

11 }

Listing 4.3: Example of Pipeline and Farm composition.

In this example, the processes communicate using only the double data type.

Since this is a contiguous memory type (data is placed in a single chunk of memory), the
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message passing communication is abstracted using dspar::SenderReceiver<double>()

(line 2). Pipeline stages can be implemented, as showcased in lines 3 and 8, by specifying

the wrapper and the communicator. The Farm is created as shown in line 4 by specifying

the wrappers and respective communicators. Then, the final data stream can be modeled

by building these blocks (sequential wrappers and patterns), as presented in line 9. The

final parallel activity graph connects a Stage to a Farm pattern (with multiple blocks al-

ready inter-connected internally) and to the last stage. Finally, the method Start() (line

10) computes the complete parallel activity graph and schedules the MPI ranks. Each MPI

rank will be responsible for processing a sequential wrapper.

Additionally, as show by Listing 4.3, the Farm object supports the some cus-

tomization options. Regarding Farm’s scheduling, the default option is round-robin. How-

ever DSParLib implements on-demand scheduling, which can improve load balancing if the

network is not a bottleneck, especially when Workers have a different computational load

or when data stream items have unbalanced computational complexity. The messages

are distributed on demand as soon as the Worker finishes the previous computation. In

the following, we show the customization that can be triggered:

• SetWorkerReplicas(int) to set the integer number of parallel Worker replicas;

• SetCollectorIsOrdered(bool) to enable ordering constraints in the Collector if set

to true;

• SetOnDemandScheduling(bool) to enable on-demand scheduling if set to true.

4.1.4 Planning Rank Assignment

Ahead of the stream processing execution, DSParLib must decide which Pipeline

Stage will be executed by a given MPI rank. This section describes the process of assigning

DSParLib building block wrappers to actual MPI ranks.

In a Farm pattern, by default, the Emitter and Collector are placed as neigh-

bors (Emitter on rank 0, Collector on rank 1), and parallel Workers range between 2 and

2 + degree_of _parallelism − 1. If the default MPI process allocation is used, rank 0 and 1
will be placed in the same cluster node equipped with a multi-core processor. Considering

the Emitter and Collector are network or disk I/O intensive, both processes may have de-

graded performance since they would compete for limited resources. However, the user

can change it by providing their custom hostfiles with different allocation configura-

tions. In fact, we created custom hostfiles during our experiments with DSParLib, where

we delimit that the first two nodes have only one slot each. Therefore, the Emitter and

Collector are placed on isolated nodes, while computing nodes (Workers) are placed on

the remaining nodes.
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In a Pipeline pattern, by default the stages have their rank matching their po-

sition in the Pipeline. When combining a Pipeline with Farm, each Pipeline stage will be

dislocated according to the graph topology. Each DSParLib building block has information

about the stage’s position and the number of precedent parallel processes. We define

the information used to provide processes’ ranks as input and output offsets and the total

number of processes. This information is later used to assign the MPI process ranks to

DSParLib building blocks. In this case, custom hostfiles are more challenging to provide

since Emitters and Collectors can be assigned to different MPI ranks depending on their

graph position.

C(▢4)

W(▢3)

W(▢3)

...▢1 ▢5E(▢2)▢0

Pipeline Farm

Figure 4.4: Parallel activity graph third example [55].

As example, let us define the parallel activity graph depicting a Pipeline and Farm

composition: pipe{□0,□1, farm[E(□2), W (□3), C(□4)],□5}. The activity graph example

is illustrated in Figure 4.4. By default, the Farm pattern communicates its input and output

offsets as 0 and 1, and total number of processes as 2+degree_of _parallelism. Since there

are other building blocks (stages □0 and □1) before the Farm pattern, these offsets are

used to calculate the actual ranks to which the Farm will be assigned. For example, if two

Pipeline stages precede the Farm, the input offset 0 is summed to 2. Consequently, □0

and □1 are positioned at rank 0 and 1, while the Farm has its Emitter on rank 2, Collector

is rank 3, and parallel workers from ranks 3 to 3 + degree_of _parallelism − 1. Finally, □5

is positioned at the end of the Pipeline. This means that DSParLib assigns the MPI ranks

based on the final parallel activity graph.

4.2 Application Parallelizations with DSParLib

In this section, we implement three parallelization strategies with DSParLib: a

Pipeline with three, five, and six stages. Specifically, we focus on the complex Ferret

stream processing application from the PARSEC benchmark suite [16]. The application

detects similarities between video, audio, and image files [16, 39]. The Ferret applica-

tion has an original parallelization version targeting shared-memory using the Pthreads

library [16]. In this version, the authors parallelized Ferret using a Pipeline parallel pat-

tern. There are six pipeline stages, two of which are responsible for loading and collecting
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the data, while the other four stages are for computational processing: Segmentation,

Extraction, Vectorization, and Ranking.

Our parallelization is based on the original Pthreads version. Therefore, the first

distributed version we implemented with DSParLib is a pipeline containing four computa-

tional stages, as shown in the bottom part of Figure 4.5. Note that the four computational

stages are stateless. Therefore, we can replicate them to increase the degree of paral-

lelism up to the maximum degree available on a target machine. This version was the

most difficult one to implement because communicating data in Ferret is complex. The

custom struct we implemented for communicating data has more than 20 members,

varying from integers, pointers using 1 or 2 dimensions, and custom data types such

as Ferret’s CASS types (Content-Aware Search System). Other complexities rely on non-

contiguous data and nested data structures.
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Figure 4.5: Parallel activity graph of the Ferret parallel versions [55].

To design the parallel activity graph in Ferret, the DSParLib parallel version used

the composition of Pipeline and Farm parallel patterns. We created Farms to wrap the par-

allel Workers, as represented in Listing 4.4. Note that the Farms have a different number

of parameters. The first and last Farms do not include communicators at the beginning

and end, respectively. Then, all Farms that connect with others implement extra commu-

nicators. For example, Farm 0 communicates with Farm 1. Therefore, Farm 0 adds an

extra communicator at the end, while Farm 1 adds an extra communicator at the begin-

ning. Also, all Farms implement at least one Emitter or Collector stage using an empty

stage. DSParLib leverages the structured parallel programming paradigm, which provides

different parallel patterns that programmers can use. Therefore, parallelism cannot be

designed in an ad-hoc approach. The Farm parallel pattern must consistently implement a
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scheduler and a gatherer, namely Emitter and Collector. For example, a replicated stage

cannot directly communicate with another replicated stage without a proper scheduling

protocol. An optimized strategy, like the all-to-all communication model, can be imple-

mented in the future. This means that each Worker from the previous stage has multiple

messages passing channels to each Worker from the subsequent stage. For now, DSPar-

Lib’s strategy complies with the Farm parallel pattern, clearly indicating Emitter, Worker,

and Collector. Sometimes applications have natural Emitter and Collector stages, like the

Load and Collect computations of Ferret (refer to Figure 4.5). However, when no sequen-

tial application code fits in, we use empty stages without computational processing. These

are empty stages because they do not process anything. Instead, they simply forward the

messages received from the previous stage.

1 auto comm = dspar : :SenderReceiver<.. . >() ;

2 EmptyStage <task> E, C;

3

4 auto farm_0 = dspar : :Farm(Load, comm, Seg, comm, C, comm) ;

5 auto farm_1 = dspar : :Farm(comm, E, comm, Extract , comm, C, comm) ;

6 auto farm_2 = dspar : :Farm(comm, E, comm, Vect , comm, C, comm) ;

7 auto farm_3 = dspar : :Farm(comm, E, comm, Rank, comm, Collect ) ;

8

9 Pipeline pipe ;

10 pipe .Add(&farm_0) ;

11 pipe .Add(&farm_1) ;

12 pipe .Add(&farm_2) ;

13 pipe .Add(&farm_3) ;

Listing 4.4: Example of Pipeline and Farm composition.

Alternatively, we have implemented an additional parallel and distributed version

with DSParLib. The most challenging part of the message passing we discovered is com-

municating the Vect stage results to the Rank stage. The information about the correct

memory size allocated for each data item was only found by looking deep into Ferret’s

source files. Therefore, in our second version, we combine the Vect and rank stages into

a single one. The resulting parallel activity graph can be seen on the top right-hand side

of Figure 4.5.

Finally, we developed one last version that implements the Farm parallel pattern

without composition, as illustrated in the top left-hand side of Figure 4.5. This version

contains a single computational stage (Worker) obtained by merging the Seg, Extract,

Vec, and Rank stages into a single one. The message passing in this version is significantly

more straightforward than the other DSParLib versions. We only communicate the data

items from the Emitter to the Worker and later from Worker to Collector. Intermediate

data are not sent over the network because the computation stays in the same node

and is performed locally using shared memory. As discussed by the authors from [39],

Ferret’s stages are not well balanced, which limits further scaling. If the computing stages
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are replicated using the same factor, the unbalancing problem remains, and resource

exploitation is not optimized, resulting in performance losses. This will be shown in the

next Section 4.3 when we discuss Ferret’s results.

4.3 Performance Evaluation in DSParLib

In this section, we aim to assess the DSParLib’s scalability with Ferret employing

the semi-arbitrary pattern composition of Pipeline and Farm. Ferret application exhibits

complex data communication through message passing and data flows. We implemented

three different distributed and parallel versions according to the parallel activity graphs

illustrated in Figure 4.5. The experiments were executed on a cluster using eight comput-

ing nodes. Each node was equipped with 2 Intel(R) Xeon(R) CPU E5-2620 v3 @ 2.40GHz

(totaling 12 cores and 24 threads) with 24GB of RAM memory. The nodes were connected

via Gigabit Ethernet and InfiniBand QDR 4x (32GBit/s). The operating system was Ubuntu

16.04 64 bits with kernel 4.4.0-146-generic. The MPI version was OpenMPI 1.4.5. The

applications were compiled with GCC 9.3.0 using -O3 optimizations. We conducted tests

using the round-robin and fill-node allocation strategies combined with different Emitter

and Collector configurations:

• round-robin, EC-dedicated: This configuration uses a strategy that allocates pro-

cesses in a round-robin fashion for each available node. Emitter and Collector have

dedicated nodes.

• fill-node, EC-dedicated: This configuration uses a strategy that allocates pro-

cesses in one node and only moves forward when the first node fully allocated. Emit-

ter and Collector have dedicated nodes.

• fill-node, EC-shared: This configuration uses a strategy that allocates processes

in one node and only moves forward when the first node fully allocated. Emitter and

Collector share the same node.

We tested the PARSEC Ferret benchmark with the default native workload com-

posed of 3.500 images. The performance results are shown in Figure 4.6. The x-axis

depicts the degree of parallelism, representing the number of working processes, exclud-

ing: Emitter, Collector, and empty processes. The y-axis shows the throughput in images

per second. We depict all results until they achieve a peak and begin decreasing perfor-

mance. There are two different explanations for that: (1) the workload size limits further

scaling when reaching higher degrees of parallelism, which explains the limited scalability

observed in Farm implementations; (2) both pattern composition versions (Pipeline) stop

scaling long before that since they have reached a point where they are using all available
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Figure 4.6: Ferret evaluation in DSParLib with different processes allocation [55].

cores. For example, at the degree of parallelism 2, there are actually 12 (6 + 2 ∗ 3) pro-

cesses running for the Pipeline with 3 stages and 16 (8 + 2 ∗ 4) processes for the Pipeline

with 4 stages 1.

To help understand the results from the graphs, we prepared Table 4.1 showing

the best throughput measured in each version and configuration. As expected, the Farm

version scales better than the other versions and only stops scaling when the workload

size becomes a problem. In the best-case scenario, the Farm version has up to 37% higher

throughput than the other versions. For both the Pipeline versions, we observed that the

maximum throughput is equivalent between themselves and varies less than 1%. Con-

sidering that the Pipeline (3 stages) version communicates fewer data because we have

1Refer to Figure 4.5 to understand the relation between the number of processes and the parallel activity
graphs.
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merged the last two stages avoiding a significant amount of communication, we expected

this version to be slightly faster.

Table 4.1: Best throughputs measured in Ferret application [55].

Ferret
Version

Metrics
Farm
(1 stage)

Pipeline
(3 stages)

Pipeline
(4 stages)

round-robin
EC-dedicated

Degree of Parallelism 112 60 48
Number of Processes 114 186 200
Throughput (img/sec) 395.88 288.37 288.88
Std. Dev. 17.87 7.60 6.99

fill-node
EC-dedicated

Degree of Parallelism 140 60 44
Number of Processes 142 186 184
Throughput (img/sec) 391.48 294.24 297.16
Std. Dev. 6.75 16.42 2.80

fill-node
EC-shared

Degree of Parallelism 124 60 44
Number of Processes 126 186 184
Throughput (img/sec) 384.82 294.07 294.29
Std. Dev. 16.72 2.20 4.23

Although the parallel versions differ in performance gains, the results of different

process allocation strategies are similar among the parallel versions. As can be seen

in Table 4.1, The Farm version achieved the best throughput of 395.88 in round-robin

EC-dedicated, while the worse version is fill-node EC-shared with 384.82 throughput. In

the Pipeline versions with three and four stages, the results swapped, where fill-node

EC-dedicated achieves the best throughput and round-robin EC-dedicated achieves the

lowest throughput. However, if we observe the graphical representation of the same re-

sults in Figure 4.6, we can see that round-robin EC-dedicated depicts the smoothest curve

(Figure 4.6a), while others achieve a peak and quickly start decreasing throughput (Fig-

ures 4.6b and 4.6c). These results reveal new insights about distributed stream processing

using MPI. We employ this knowledge later to prepare the experiments for this master’s

thesis.

4.4 DSParLib Limitations and Improvements

In this section, we provide a summary of our research targeting DSParLib. After

investigating DSParLib’s runtime system, studying its API, and running a set of experi-

ments, we detected some limitations and propose improvements. Our goal with this study

is to implement a runtime system with enough flexibility to enable support for dynamic

process management. Currently, DSParLib’s runtime system is almost static, and any

modification in the number of processes would break the code. In the following we de-

scribe DSParLib’s limitations while proposing optimized strategies.
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4.4.1 Process allocation strategy

Limitation: One of the lower-level components of DSParLib is the node alloca-

tion strategy. This strategy decides how every DSParLib building block (block of sequen-

tial code) is assigned to actual MPI parallel processes. The current implementation uses

a static strategy to assign building blocks to MPI processes. We have provided a precise

explanation of the node allocation strategy in Section 4.1.4. In short, each assigned MPI

rank reflects the role of the processes in the main Pipeline execution. For example, the

Farm’s Emitter and Collector nodes that perform the heavy tasks of scheduling and ac-

cumulating are always assigned at the early ranks (0 and 1). Later, in the experimental

evaluation, these ranks are allocated in two exclusive nodes so that they avoid sharing

computational resources and escape resource contention. One of the main problems of

DSParLib’s strategy is that it considers the offset to assign new ranks. Therefore, DSParLib

cannot support new added processes, as they cannot be inserted in the Pipeline execution

during execution time. DSParLib would have to stop the application, reconfigure the ranks

and then restart the execution.

Improvement: When we studied dynamic process management in MPI, we con-

cluded that ranks assignment cannot be static. In addition, the mechanisms of assigning

ranks to processes must support non-consecutive ranks. For example, in DSParLib if a

Farm is executed with four processes, Emitter is rank 0, Collector is 1, and Workers are

2 and 3. A dynamic strategy must support non-consecutive ranks, i.e., Emitter being 1,

Collector being 3, and Workers being 0 and 2. More recent versions of MPI enable program-

mers to organize processes in groups. Then, a better strategy would be to employ such

mechanisms and later create the inter-communicators based on the group ranks during

execution time.

4.4.2 Intra- and Inter-Communicators

Limitation: MPI provides two different communicator categories for usage. An

intra-communicator is a single group of local processes, and an inter-communicator refers

to a pair of groups. By default, MPI creates a large global intra-communicator called

MPI_COMM_WORLD that enables all processes of this global group to communicate. That

is not ideal for adaptability support since ranks are statically assigned to Pipeline stages.

In that case, it is best to create different intra-communicator groups, each being respon-

sible for a stage of the pipeline. Then, processes can be added and removed from this

communicator without impacting in the global Pipeline communicator. However, DSParLib

runtime system creates all processes in a single global intra-communicator. That is one
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of the main reasons it uses a static strategy to assign ranks because the global commu-

nicator rank is used to reference the process. It can never be lost or modified; otherwise,

processes can no longer communicate, and DSParLib obtains a deadlock state.

Improvement: Our investigation concluded that a better design principle to

adopt as a strategy is creating MPI groups for the pipeline stages. A group can have one

or more processes. Each group assigns local ranks to the processes. To communicate be-

tween the local groups, each stage is responsible for creating its own inter-communicators.

The first and last stages of the pipeline create a single inter-communicator to send mes-

sages to the next and previous stages, respectively. The middle stages create two inter-

communicators to communicate with the previous and subsequent stages.

4.4.3 Parallel Patterns

Limitation: DSParLib provides a high-level interface with two parallel patterns

and their semi-arbitrary composition. These patterns are the Pipeline and Farm. Dur-

ing the investigation studies in DSParLib regarding the parallelization of applications, we

found that the use of the Farm pattern shows limitations that impact the performance. For

example, a pipeline stage cannot be directly replicated to execute in parallel. The user

must implement the Farm pattern and replace the default stage with the new Farm. How-

ever, The Farm pattern requires the implementation of the Emitter and Collector. In case

we have multiple parallel stages, each one becomes a Farm, and their Emitter and Collec-

tor are introduced as extra processes. In fact, since they do not contain computation in

most cases, they only receive a message and forward it. That increases the latency and

decreases the overall throughput; also, it can become a bottleneck in network communi-

cation.

Figure 4.5 illustrated this example when we implemented the Ferret application

with DSParLib and extra empty stages must be included to be in conformance with struc-

tured parallel patterns. We implemented the Ferret application using three different graph

configurations for DSParLib. The version using a single stage achieved the best results,

while the version with 4 stages showed the worse results. Although some of the perfor-

mance degradation comes from the application having unbalanced stages, a considerable

parcel of the higher overhead is due to the extra DSParLib’s Emitter and Collector stages.

Improvement: With this work, we concluded that a better approach is to allow

the Pipeline stages to replicate their processes without having to introduce a Farm parallel

pattern. Therefore, the Farm should be removed and replaced with another strategy that

allows parallel processes to communicate between themselves. Since we introduced the

notion of multiple intra-communicators in the previous section, they can now be exploited
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to communicate in between the stages using local sources and target ranks. Ideally, the

processes of each stage should implement an all-to-all communication style.

4.4.4 Data Communication

Limitation: DSParLib provides different levels of abstraction so that data com-

munication between the processes is hidden from the developer. We previously described

the mechanisms in Section 4.1.2. We showed that data communication is abstracted by

the SenderReceiver class. Internally, DSParLib’s runtime employs this class in every com-

munication performed by the library. It works as a custom built-in serialization template. In

fact, it is deeply coupled with other mechanisms and cannot be easily rebuilt to introduce

modularity regarding serialization.

Improvement: During our studies, we observed that this design choice does not

contribute to our goals. We understand that DSParLib targeted the application developer.

Therefore, every feature of its interface aims at increasing the programmability levels. On

the other hand, we concluded that to target system developers as well, the data commu-

nication internal representation should not be in terms of a higher-level class such as the

SenderReceiver class. In fact, later when we present the parallelization studies and com-

pare DSParLib’s version with other parallel versions, we show that there are easier ways

to implement data communication than using the SenderReceiver abstraction. For in-

stance, the data communication interface can expect only the pointer of the data location

and its size.

4.5 Summary

In this section, we summarize the investigation studies in DSParLib’s runtime sys-

tem. We focused on the process management functionalities and performance capabili-

ties of DSParLib. We have investigated DSParLib internals and researched the strategies

that provide programming abstractions on top of MPI. In addition to that, we have im-

plemented different parallel versions on a complex streaming application using DSParLib

features. The results revealed that DSParLib delivers improved programmability aspects

while achieving good performance [55]. However, the investigation studies also revealed

limitations regarding dynamic process management capabilities. We described a list of

limitations in the previous Section 4.4, in which most of them prohibit adding and re-

moving processes during execution time. We concluded that the existing strategies and

programming abstractions implemented in DSParLib’s runtime system cannot be modi-

fied to support adaptability. Moreover, during the investigation, we discover a simpler
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programming model to deal with distributed stream processing. This refers to the limi-

tation described in Section 4.4.3, in which we propose to remove the Farm pattern and

enable all-to-all communication.

The initial main goal defined when we proposed this work was to investigate

DSParLib, re-design its processing engine, and provide mechanisms for supporting dy-

namic parallelism adaptability. However, the studies revealed that DSParLib’s processing

engine cannot support adaptability and its programming model shows drawbacks. Un-

fortunately, DSParLib did not satisfy the requisites for this work, and will not be used in

this thesis. Therefore, in this work, we must design a new distributed stream processing

engine from the beginning.
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5. MPR: FRAMEWORK FOR DISTRIBUTED STREAM PROCESSING

In this chapter, we introduce MPR (Message Passing Runtime), a framework de-

signed and implemented on top of MPI for self-adaptive distributed stream processing 1.

The main goal of MPR is to provide a runtime system on top of MPI to ease the implemen-

tation of self-adaptive distributed applications in C++. Moreover, in this work, we focus

on expanding the knowledge of dynamic process management on distributed stream pro-

cessing applications. Throughout the chapter, we present MPR’s details regarding its archi-

tecture, self-adaptive features, and API. Also, we discuss the optimizations we enabled in

MPR, such as transparent serialization, load-balancing mechanisms, ordering, back pres-

sure, and process coordination. This chapter is organized as follows. First, we present

MPR’s design goals and principles in Section 5.1. Then, Section 5.2 briefly presents an

overview of MPR’s architecture. From this point on, we discuss each component of its ar-

chitecture: Starting with the communication layer in Section 5.3, then MPR’s processing

engine in 5.4, adaptability support in Section 5.5, and finally its high-level API in Sec-

tion 5.6.

5.1 Design Goals

In this section, we introduce the main goals of MPR. Dynamic process manage-

ment in MPI is complex and is rarely exploited by programmers despite being available

since MPI 2.2 (2009) [44]. We did an extensive study on MPI newer specifications to de-

sign a flexible, efficient, and portable runtime system that supports adding and removing

processes during execution time. In addition, we gathered experience with the stream

processing paradigm in our past works [65, 58, 54, 55, 69], which we have applied to this

work on MPR. We draw upon this experience to address some of the relevant concerns,

which we describe in the following.

1. Pipeline pattern: A fundamental stream processing parallel pattern is the Pipeline.

Almost any computation can be expressed in terms of a multi-stage Pipeline. There-

fore, MPR should support the Pipeline pattern. We define the Pipeline stages that

should be supported in MPR, which can be of three types: Source, Compute, and

Sink. We briefly categorize them: (1) Source: Represents the computational logic

that schedules data into further Pipeline stages. A Source has no predecessor stages

and usually is the first stage of the Pipeline. Data can be fed to the Pipeline from

sensors, cameras, stored data, and other producers. (2) Compute: This stage is re-

sponsible for processing the streaming data. The computation can be any block of

1MPR is available at: https://github.com/GMAP/MPR
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valid C++ code. The computation is applied over each stream item received by this

stage. A Compute receives data from a predecessor stage (Source or Compute) and

forwards it to a subsequent stage (Sink or Compute). (3) Sink: Represents the com-

putational logic that accumulates results into any location. The results can be of any

format, such as reports for human inspection or interconnected to other devices that

will take action accordingly.

2. Data serialization: Throughout the years, many different approaches for mar-

shalling and unmarshalling data have been proposed. Some of them focus on hu-

man readability, while others target performance. MPR should allow different types

of serialization to be employed since they vary depending on the programmer’s pref-

erence. For that, default data serialization for a stream item should be described

as pair containing a reference to data and the data size. Additionally, MPR should

provide standard built-in programming abstractions for data communication that ap-

plication developers can leverage without needing third-party libraries. These pro-

gramming abstractions may support or not zero-copy serialization.

3. Portability: As computing systems evolve into heterogeneous environments, sup-

porting these different architectures and platforms becomes mandatory. Nowadays,

clusters composed of heterogeneous architectures are becoming commonplace. MPR

should leverage MPI’s portability for supporting architectures and platforms from dif-

ferent vendors. MPR should exploit the MPI’s portability to allow a program written

using a single programming model to execute on a wide range of architectures.

4. Ad-hoc parallelism: Eventually, MPI’s portability will not support an architecture or

platform, or will not be able to efficiently exploit the underlying parallel resources. In

these cases, new programming models that can improve resource exploitation may

be used along with MPI to write parallel applications. Therefore, MPR should allow

programmers to leverage different parallel programming models. For instance, it

should not prevent the programmer from spawning system threads or offloading

computational logic to heterogeneous devices such as GPUs.

5. Third-party libraries: MPR should not demand the programmer to install and

configure third-party libraries other than an MPI implementation (i.e., OpenMPI and

MPICH) in order to work properly. Libraries and frameworks are constantly changing

and their updated versions may not have backward compatibility. We consider it a

drawback when other researchers or programmers are inhibited from using a tool

because they cannot install or execute it. Sometimes, understanding the problem

becomes challenging when the tool requires multiple dependencies. For instance,

the problem may be incompatibilities between versions or a missing installation step

due to unclear documentation.
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6. Modularity: MPR should isolate the different concerns into modules. Our intent with

this design principle is to enable different programmers and researchers to focus only

on a specific part of the framework related to their domain of expertise. State-of-the-

art stream processing systems are large projects that usually compose hundreds

of thousands of code lines and where multiple mechanisms are integrated. For an

average programmer unfamiliar with the tool, implementing modifications in such

systems demands a steep learning curve that sometimes takes years for being able

to implement an algorithm in these distributed systems.

5.2 MPR Architecture Overview

In this section, we provide more details about the MPR framework. We designed

the framework to support the features we need in our distributed stream processing sys-

tem. Figure 5.1 is organized according to three abstraction levels. Note that we provide a

clear separation between the application and system developer concerns. Application pro-

grammers are those interested in implementing stream processing systems. They want to

use our framework to implement real-world streaming applications that execute efficiently

and are able to scale in distributed environments. The framework’s topmost abstraction

level provides the required mechanisms and interfaces so that application developers can

write code for streaming systems without exposing low-level architecture details. For ex-

ample, the framework provides an API close to what programmers are familiar with in

state-of-the-art DSPS.
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Processing Engine (MPR core)
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Stage ManagerPipeline Manager
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{
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Figure 5.1: MPR architecture blueprint.

In the second level, we implement the processing engine responsible for orches-

trating the computation and providing support for synchronizing all the processes during
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reconfiguration, either to spawn or remove processes. It offers lower-level programming

abstractions and interfaces that can be used by system programmers. Depending on

their expertise, they can focus on a specific research issue to provide further optimiza-

tions and features to application programmers. This framework level represents one of

the main technical contributions of our work since we want to enable other researchers

to implement, test, and compare against others their original techniques, algorithms, and

strategies. For instance, the self-adaptive strategy is implemented as an isolated mod-

ule that interacts with Json files. Then, periodically MPR runtime system reads the Json

reconfiguration file and generates updated Json files with execution statistics. This way,

although MPR runtime system is implemented in an HPC programming language, namely

C++, we allow system developers to write algorithms in any language that can interact

with Json files. Consequently, higher-level programming languages such as python and R

can be used, which give access to a wide range of libraries and packages that implement

numerous data science and machine learning algorithms for implementing better predic-

tion models. More details about the MPR’s self-adaptive module will be presented later in

this work.

Finally, the bottom-most level represents the communication and transport layer

of MPR framework. We implement the parallel processes’ communication using message

passing. Specifically, we use the MPI specification due to its performance and portability.

We use newer MPI specifications which give the dynamic capabilities MPR needs to deal

with dynamic process management. Also, we implemented a synchronization protocol to

coordinate processes into a global state during reconfigurations.

In the following sections, we describe each framework level from Figure 5.1. We

follow MPR levels in a bottom-up fashion. Therefore, in Section 5.3, we start by introducing

the communication level and explaining which are the MPI interfaces we leverage in MPR.

In Section 5.4, we introduce the MPR processing engine that supports self-adaptive dis-

tributed stream processing. Then, in Section 5.5, we present the autonomic management

API we designed to support application adaptability. Finally, in Section 5.6, we describe

how application programmers can implement distributed stream processing applications

using MPR.

5.3 Communication using Message Passing

In this section, we present the MPR communication layer technology. The Mes-

sage Passing Interface (MPI) is the leading parallel programming model for distributed

computing in HPC and scientific applications [4]. We choose MPI as our communication

layer due to its performance and portability. We introduced MPI in the Background Sec-
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tion 2.3.1, and now we extend the discussion focusing on the MPI interfaces employed by

MPR.

Initially, MPR will only support the OpenMPI implementation of the MPI speci-

fication, which is a consolidated and extensively documented MPI implementation with

a large community of programmers and researchers. However, future work will involve

testing other MPI implementations, as there may be differences between them despite

sharing the same interface. During our tests, we encountered several undesired effects

using OpenMPI, which we plan to investigate further. Fortunately, most of the errors (i.e.,

segmentation fault) occurred at the end of application execution after the correct result

was already generated. These failures were mostly internal to OpenMPI (i.e., OPAL, ORTE,

OMPI) when combined with SLURM. We noticed that many of the errors were related to

MPI_Comm_spawn and MPI_Finalize. In fact, almost all errors happen when MPR has

already finished executing the Pipeline and invokes its last line of code before exiting,

namely MPI_Finalize. Thus, it does not interfere with our experiments. Also, while in-

vestigating the spawning of new processes, we discovered some bugs that were recently

reported in OpenMPI’s Github at the time this thesis was written. We plan to address these

issues as part of our future work.

5.3.1 Data Communication

MPI exposes a wide range of communication interfaces, they can be point-to-

point, one-side, and collective communications. For MPR’s first version, we selected point-

to-point data communications and manually implement the synchronization when recon-

figuration is active in the system.

We chose not to use collective communications in our adaptive stream process-

ing approach because they can be unsuitable and even harmful in certain parts of MPR’s

protocol since they can lead to deadlocks. Collective operations are blocking and require

synchronization between all processes involved in the communication, meaning that all

processes in a given communicator must call the same collective function with the same

parameters for the operation to succeed. Although MPR already uses some blocking op-

erations, such as MPI_Comm_spawn, it does not use them for communication in the nor-

mal Pipeline execution. Problems can arrive when both MPR communications (data proto-

col and configuration protocol) use blocking operations without isolation. For example, a

deadlock could occur if some processes are blocked in a collective communication using

the data protocol while others are blocked in a collective using the configuration protocol.

To avoid such issues, we decided to use non-blocking communication operations for data

communication that allow us to maintain progress in the system while avoiding deadlocks.
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We did not use one-side communications because they are too complex to deal

with in a self-adaptive distributed stream processing system. At the beginning of MPR’s

design, we attempted to employ remote memory access (RMA) calls. However, we already

noticed that it might not suit MPR’s reconfiguration protocols. For example, depending on

the reconfiguration action, we destroy all communicators and recreate them. So, we would

have extra overhead to recreate the shared memory regions and the risk of losing data

from some of them.

To design MPR protocols, we have opted for point-to-point communications, also

known as two-sided communications. Specifically, we make use of non-blocking MPI sends

and receives, such as MPI_Isend and MPI_Irecv, which return immediately (do not block)

while MPI selects the most efficient method for message transfer. To check if the mes-

sage has been sent or received, we employ MPI_Wait. In the current version of MPR, we

implement MPI_Wait immediately after the non-blocking communication, except for re-

quest messages. The same result could have been achieved by simply using MPI_Send

and MPI_Recv. However, we have designed MPR this way, as we plan to simply shift

the MPI_Wait in a future version, allowing processes to compute something instead of

immediately being blocked. This can have a direct impact on performance. While non-

blocking optimizations are not explicitly utilized in the current version of MPR due to time

constraints, we have constructed the MPR runtime system to already accommodate such

optimizations in the future.

5.3.2 MPR Groups and Communicators

The MPI specification defines two types of communicators: intra-communicators,

which include all the local processes within a single group, and inter-communicators, which

connect two distinct groups of processes. By default, MPI programs are created within

a single large intra-communicator called MPI_COMM_WORLD, which allows all processes to

communicate with each other. While most MPI programs use the global communicator

to exchange messages, inter-communicators become more relevant when dealing with

dynamic process management in MPI. For instance, the MPI_Comm_spawn interface spawns

processes in a new intra-communicator that is different from MPI_COMM_WORLD. As a result,

each new MPI spawn function call creates a new intra-communicator that is local to the

processes spawned. To communicate between two distinct groups of remote processes

using their local intra-communicator, an inter-communicator is required.

The MPI specification also introduces the concept of groups. An MPI_Group is an

ordered set of processes that are assigned unique ranks ranging from 0 to group_size-1.

MPI groups are based on the Set Theory, which enables operations such as unions, inter-

sections, adding or excluding processes, and others. However, groups themselves cannot
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be used for communication. To enable communication among the processes, more re-

cently, MPI introduced an interface to create a communicator by passing the group as an

argument, and vice-versa. This makes groups suitable for being used to organize pro-

cesses, such as excluding specific ranks, adding new processes, intersecting two groups,

and so on. Once the processes are organized in different groups, MPR employs these

groups and creates communicators with them, which enables communication with other

processes. When dynamic process management is required in our framework, MPR con-

verts the communicators back to groups, applies the required modifications to the group,

and recreates the communicator. This approach allows MPR to leverage the flexibility of

MPI groups and communicators for process organization and communication, respectively.

An illustration of MPR’s internal organization is depicted in Figure 5.2. The run-

time has three organizational levels. At the topmost, a Pipeline Manager is in charge of

processing important decisions, broadcasting critical events, and maintaining a consistent

state of the Pipeline. Then, in the middle layer are the Stage Managers. They are essen-

tial to add scalability to the system since they intermediate the communication between

possible thousands of computational processes and the Pipeline Manager. Also, they are

responsible for processing local stage decisions. Finally, the Stage Processes are in charge

of processing the Pipeline. Each rounded square represents a local MPI group, while circles

are MPI processes.

MPR employs the notion of intra- and inter-communicators previously described

to improve the runtime system internal organization. As shown in Figure 5.2, MPR has

four types of groups: the Pipeline Manager group, a Stage Manager group, a Stage group,

and a Global Pipeline Group. Each inter-communicator (communication between a pair of

groups) is represented by a white arrow. During normal execution, processes only com-

municate via the white arrow connections. So, the Pipeline Manager communicates only

with the Stage Managers. Each Stage Manager communicates with the Stage Processes of

its corresponding stage. Also, the Stage Processes communicate via inter-communicators

with their adjacent stages. During reconfiguration, processes may use the global Pipeline

Group and its communicator for exchanging information, where arrows are not repre-

sented for simplicity. For instance, it allows the Pipeline Manager to communicate with

all processes to send updated Pipeline information.

Since we are introducing the figure, we also present the other components that

will be explained later in this thesis. Figure 5.2 depicts different Json files connected to the

Pipeline Manager and Stage Managers. In short, the MPR runtime system connects to the

real world using the parameters.json and stats.json files. In the former file, developers

can set the number of processes for each Stage. The Pipeline Manager periodically reads

this file to check if there are any modifications. We plan to add other parameters to the

file in the future. Moreover, each Stage Manager produces a distinct stats.json file

containing statistics about the stage’s execution. Currently, we report the total number
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Figure 5.2: MPR’s communication design overview.

of items consumed and produced by each stage in a given timestamp. In addition to the

number of items, we also report the average of items produced, which is computed using

the total number of items divided by the time interval.

5.3.3 Summary

In this section, we explain MPR’s communication layer built on top of MPI. We

introduced MPI concepts such as intra- and inter-communicators, MPI groups, and point-to-

point or collective communications. Moreover, we sketched MPR’s communication design

in Figure 5.2. This section introduces some MPI notions and serves as a background for

later explaining the MPR processing engine. Afterward, we refer to this Figure to explain



74

the synchronization protocol we implemented to coordinate the processes executing the

Pipeline Graph. Note that we have not entered in too much detail about the MPI interfaces

we use for spawning processes, creating groups and communicators, and others since we

will cover them in the following section.

5.4 MPR Processing Engine

In this section, we present MPR’s processing engine that orchestrates the execu-

tion of distributed stream processing applications. MPR implements different communi-

cation protocols to deal with configuration routines and normal stream data processing.

The section is organized as follows. In Section 5.4.1, we introduce MPR’s internal organiza-

tional structure. Then, Sections 5.4.2 to 5.4.6 elaborate on MPR’s runtime system internal

protocols. First, we present the configuration protocols that require distributed synchro-

nization for adding and removing processes. Then, we discuss the data protocol used

to exchange data during normal Pipeline execution. In Section 5.4.7, we introduce MPR’s

strategy to create processes and assign them to Pipeline Jobs. Subsequently, Section 5.4.8

explains the communication model and schedules adopted by MPR. Finally, Section 5.4.9

introduces the available programming abstractions to exchange data and how MPR’s pro-

cessing engine deals with the different message types flowing in the Pipeline.

Throughout this section, we include several code snippets to provide insight into

the implementation of MPR using MPI. While this may seem daunting to some readers, we

have chosen to present these code slices without many abstractions to aid others who are

implementing MPI and may be struggling with its complexities. We recognize that many

MPI interfaces are low-level and involve numerous parameters that can be challenging to

understand. Therefore, we hope that others can take inspiration from our code to develop

their own MPI implementations, as it can be difficult to find examples of less-common MPI

interfaces. Our work is the first to introduce self-adaptive distributed stream processing,

and we aim to share our implementation logic for MPR’s processing engine to assist others

in developing similar systems.

5.4.1 MPR Project Organization

This section outlines the internal structure of MPR’s code and provides a brief

overview of each MPR class, which will be elaborated on in subsequent sections. The cur-

rent version implements more than 3.500 lines of code. Figure 5.3 illustrates a simplified

representation of MPR’s class relationships, although not all relationships, class variables,

and functions are shown. This diagram is helpful for understanding the main components
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of MPR’s processing engine. The most important class is PipelineGraph, which imple-

ments the Pipeline pattern and allows programmers to construct their Pipeline graphs for

streaming applications. Application code is organized into Pipeline stages and added to

the PipelineGraph using AddPipelineStage(). Once the graph is fully assembled, in-

voking Run() starts the streaming application’s execution.

In MPR’s runtime system design, we opted for a partially object-oriented program-

ming model, using polymorphism and inheritance only when strictly necessary. Then, we

created three helper classes to encapsulate the computational logic and context-specific

information: PipelineInfo, ProcessInfo, and StageInfo. The former two classes are ini-

tialized with the PipelineGraph, while the last is initialized only with the StageProcess.

Once these objects are created, their reference is passed to all classes that need to utilize

their information. Specifically, we pass the references of PipelineInfo and ProcessInfo

to all entity classes that interact with the PipelineGraph. Likewise, we pass the reference

of StageInfo to all classes that execute application code.

This design allows for a clear separation of concerns, as each class is responsible

for its own context-specific information and logic. It also enables efficient information

sharing and avoids the need for complex inheritance relationships. Overall, this approach

simplifies the codebase and enhances maintainability.

We provide a brief overview of the three helper classes that were created for our

runtime system. The first helper class is called PipelineInfo, which contains information

about the Pipeline graph, such as stage sizes, ranks in each stage, global communica-

tor, and others. The second helper class is called ProcessInfo, which holds information

about the MPI process, like its Pipeline Job and stage identifier. Although this class does

not hold much information, it is included because we anticipate that future extensions to

MPR’s runtime system may require more information about the process itself, which can

be stored in this class. The third helper class, StageInfo, is only relevant to the Stage

Processes, as it contains information and computational logic for processes that execute

application code. This class includes information such as input and output communicators,

data buffers, ordering, and other important information.

MPR consists of three entities that are created at the beginning of Pipeline execu-

tion and remain active until the execution ends. These entities are the PipelineManager,

StageManager, and StageProcess. Processes are assigned to these classes depending on

the Pipeline Job they receive when executing SetJobs() from PipelineGraph.

The Pipeline Manager is responsible for coordinating the Pipeline execution and

its Job is assigned to a single process (usually rank 0). Periodically, this process reads

the parameters.json file and notifies all Stage Managers when reconfiguration is needed.

Note that the Pipeline Manager only notifies the Stage Managers, and it is the responsibility

of the Stage Managers to notify all Stage Processes if reconfiguration is required.
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Each Pipeline stage has its own Stage Manager. These managers receive the sta-

tus of all active Stage Processes, as well as the number of items consumed and produced

by each Stage Process. The Stage Managers accumulate this information and periodically

write it to the respective stage’s stats.json file. Also, each time all Stage Processes have

reported their status, the Stage Managers forward an outline of their results to the Pipeline

Manager.

Each Stage Process is assigned to a Pipeline stage and executes the respective

application code. Periodically, they report their status to the Stage Managers and re-

ceive a response indicating if any reconfiguration action is needed. The PipelineManager,

StageManagers, and StageProcesses classes implement their own unique responsibilities

in the Pipeline Graph execution and work together to ensure that the Pipeline functions as

intended.
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PipelineGraph

- pipeInfo: PipelineInfo
- procInfo: ProcessInfo
- stageList: vector<Operator*>
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ProcessInfo

- procJob: int
- stageID: int
- isLateSpawnProc: bool
- totalReconfigMillisec: time

ProcessInfo()
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- pipeInfo: PipelineInfo*
- procInfo: ProcessInfo*
- serialization: Serialization
- bufConfig: int*
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PipelineManager(PipelineInfo*, ProcessInfo*)
+ Init(): void

StageManager

- pipeInfo: PipelineInfo*
- procInfo: ProcessInfo*
- serialization: Serialization
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StageManager(PipelineInfo*, ProcessInfo*)
+ Init(int): void

 + GenerateJsonStats(int, double, int): void

StageProcess <TIn, Tout>

- pipeInfo: PipelineInfo*
- procInfo: ProcessInfo*
- serialization: Serialization
- stageInfo: StageInfo<Tin, Tout>

StageProcess()
StageProcess(PipelineInfo*, ProcessInfo*)
{virtual} OnInit(void*): void
{virtual} OnEnd(void*): void
{virtual} OnInput(void*): void
{virtual} OnProduce(void*): void
+ Produce(void*, void*, int): void
+ ProduceMulti(void*, vector<void*>, vector<int>): void
+ Publish(void*, void*, int): void
+ PublishMulti(void*, vector<void*>, vector<int>): void
+ EnableOrdering(): void
+ Init(int): void
+ Source(): void
+ SourceInternals(Ctx*): void
+ Compute(): void
+ Sink(): void

Serialization

+ MPI_PROCESS_STATUS: MPI_Datatype
+ MPI_STAGE_STATUS: MPI_Datatype

Serialization()

PipelineInfo

- argv: char**
- globalComm: MPI_Comm
- pipelineComm: MPI_Comm
- globalGroup: MPI_Group
- numStages: int
- stageSize: int*
- stageProcessGroupRanks: vector<int>
- stageProcessGroups: MPI_Group*
- stageManagerGroups: MPI_Group*

PipelineInfo()
+ UpdateStageRanksUsingGlobalComm(int): void
+ UpdateStageRanksUsingMPILogic(int*, int): void
+ IsRankInStageProcessGroupRanks(int, int): bool
+ SetProcessStageGroupRanks(int, int*, int): void
+ ClearAndSetProcessStageGroupRanks(int, int*, int): void
+ SetStageManagerGroups(): void
+ SetStageProcessGroups(): void
+ SelectAndRemoveHighestRanks(int, int): int*
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{virtual} SetPipelineInfo(PipelineInfo*):void
{virtual} SetProcessInfo(ProcessInfo*):void
{virtual} Init(int): void

Ctx

- targetProc: int
- sourceProc: int
- bufConfig: int*
- stageStatus: StageStatus*
- header: Header*
- msgStatus: MPI_Status*
- probeMsg: MPI_Messege

Ctx()
+ Init(int): void

StageInfo <Tin, Tout>

- pipeInfo: PipelineInfo*
- procInfo: ProcessInfo*
- stageProc: StageProcess<Tin, Tout>*
- stageManagerComm: MPI_Comm
- inputComm: MPI_Comm
- outputComm: MPI_Comm
- itemsConsumed: int
- itemsProduced: int
- orderingBuffer: priority_queue<StreamItem<Tin>*,...>
- msgID: long
- expectedMsgID: long
- orderingEnabled: bool
- stopSignalsRemaining: int
- internalDataBuffer: queue<StreamItem<Tin>*>
- importantEventsBuffer: vector<MPI_Status*>
- requestRanksBuffer: queue<int>
- requestProbeBuffer: queue<MPI_Message*>

StageInfo()
StageInfo(PipelineInfo*, ProcessInfo*, stageProcess<Tin, Tout>*)
+ IncrementItemsConsumed(): void
+ IncrementItemsProduced(): void
+ GetNextMsgID(): int
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+ ComputeBufferedMsgs(Ctx*): void
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+ header: Header*
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StageStatus
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Figure 5.3: MPR’s class relationship.
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5.4.2 MPR Configuration Protocols

MPR implements two protocols to synchronize the Pipeline processes depending

if the application is executing normally or is in reconfiguration mode. MPR’s two exist-

ing protocols are (1) A configuration protocol to communicate Actions between the pro-

cesses. This leader-based synchronization protocol ensures that processes synchronize

on the runtime system’s global state when the Pipeline enters reconfiguration mode. (2)

A data protocol to exchange stream items between the processing stages. This protocol

targets the normal execution of the Pipeline streaming application.

Foremost, in this and the following sections, we aim at presenting the configura-

tion protocol. After, in Section 5.4.6, we introduce the data protocol.

It is worth noting that the data communication protocol is permanently active.

The only reason it interrupts is that, eventually, the processes enter into a synchroniza-

tion mode in which they exchange configuration Actions. Actions are synchronization rou-

tines/protocols the processes execute that are apart from normal Pipeline execution. For

instance, an Action may tell processes to do something different such as adapting the

number of processes, monitoring a local resource, or waiting in a barrier. In the following,

we show a list of Actions currently implemented in MPR. The first three actions are used

during normal pipeline execution, while the remaining four are used to support dynamic

process management.

• Action 0: Notification to maintain the same course of action without any variations.

Sent from Pipeline Manager to all processes and from Stage Manager to Stage Pro-

cess. Requires two-sided synchronization.

• Action 1: Process alive notification. Processes also send their status containing

the number of items consumed and produced. Sent from Stage Process to Stage

Manager. Requires two-sided synchronization.

• Action 2: Process EOS (End of Stream) notification. Processes also send their status

containing the number of items consumed and produced. Sent from Stage Process

to Stage Manager. Requires two-sided synchronization.

• Action 3: Reconfiguration notification. Synchronization is required to ADD pro-

cesses to the Pipeline graph. Sent from Pipeline Manager to Stage Manager and

from Stage Manager to Stage Process. Requires global synchronization.

• Action 4: Reconfiguration notification. Synchronization is required to BAN processes

from the Pipeline graph. Sent from Pipeline Manager to Stage Manager and from

Stage Manager to Stage Process. Requires global synchronization.
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• Action 5: Reconfiguration notification complementary to Action 3. All newly spawned

processes receive information about which stages need processes and which stages

have enough processes. Sent from PipelineManager to NEW Stage Processes. Re-

quires partial synchronization.

• Action 6: Spawn notification. All SPAWNED processes receive information on how

many processes are to be spawned. Requires partial synchronization.

This study assumes strong guarantees about the properties and nature of the

distributed system, as fault-tolerance is not exploited. The focus are High-Performance

Computing (HPC) clusters equipped with reliable high-speed and low-latency network in-

terconnections. Moreover, MPR’s runtime system bases on some guarantees provided by

MPI. For instance, MPR leverages message ordering in the same communication between

pairs of processes. This ensures that the messages received in the communication from

process A to process B will match the order they were sent. Other types of ordering are

not required by MPR’s synchronization algorithm. Additionally, MPR operates without the

need for globally synchronized clocks. Each process uses its own local clock, which does

not need to be synchronized with other processes.

We implemented the configuration protocol as a heartbeat mechanism that pe-

riodically synchronizes the processes with Pipeline’s global states for achieving global

agreement. Moreover, we implemented our protocol in a bottom-up fashion. Therefore,

the ones that start the communication are the Stage Processes, and they only communi-

cate with the Stage Managers 2. Then, the Stage Manager waits until it has acknowledged

all processes and only then communicates with the Pipeline Manager. This way, MPR’s

Stage Processes can progress because the processes that fail to communicate may be

detected and eventually dropped since their communication is isolated. If we had im-

plemented the heartbeat mechanisms in a top-down fashion, every time a Pipeline Man-

ager communicates with a faulty process, it would lead to a deadlock and halt the entire

Pipeline.

When utilizing the configuration protocol for reconfiguration, specific require-

ments must be met for MPR to actively add or remove processes. Firstly, all processes

must enter reconfiguration mode, which is accomplished in MPR by having the Pipeline

Manager notify all Stage Managers, who then notify their respective Stage Processes.

Secondly, all pending communication must be completed prior to any reconfiguration. To

achieve this, any Stage Processes waiting to send a message must be matched by their re-

spective receiving processes. Stream item messages are buffered rather than processed

to minimize overhead. Finally, when a process is removed, all stream item messages

must be computed before the process is effectively removed. Therefore, messages are

2Refer to Figure 5.2 to remind the hierarchy of MPR’s Pipeline processes.
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processed and sent forward in the Pipeline to ensure proper handling of all data without

losing messages.

System programmers can leverage the configuration protocol synchronization al-

gorithm already implemented in MPR for extending to new synchronization Actions. An

example of a new feature could be supporting work-stealing. One could synchronize a

group of processes and redistribute their workload in order to improve load balancing.

Others may want to add a new feature to get additional performance metrics to debug the

Pipeline Graph execution. Note that we already implemented different scopes of synchro-

nizations. The most costly Actions are the ones for adding and removing processes since

they require global synchronization. But other synchronizations enable employing simply

point-to-point synchronizations between two processes.

5.4.3 Normal Execution Protocol

Figure 5.4 helps to illustrate the synchronization between processes in the config-

uration protocol during normal execution. The data protocol is not illustrated in the image

for simplicity. Suppose a Pipeline processing a streaming application. After a period of

time T(n), the Pipeline execution halts, and processes enter into a synchronization stage.

Then all Stage Processes (P1 in the example) send Action 1 (means the process is alive)

to their respective Stage Manager (SM1 in the example), which acknowledges and returns

Action 0 (do nothing). Once the Stage Manager acknowledges all Stage Processes of a

given Stage, he starts communication with the Pipeline Manager (PM). The Stage Manager

then sends the Report (status of all Stage Processes). Finally, the Pipeline Manager ac-

knowledges the Report and sends Action 0 to the Stage Manager. In short, the normal

execution protocol is characterized by processes communicating, after T(n), their status

and receiving Action 0 as a response. This happens periodically with a time interval n

in T(n) set by the programmer. For example, in our experiments, we configured the pro-

cesses to halt the Pipeline execution and enter into this reconfiguration protocol every 100

milliseconds.

Listing 5.1 showcases the normal execution algorithm in MPR. Throughout the

Pipeline execution, data messages are received using MPI’s probe function. We employ

this function for two reasons: to leverage non-blocking operations and to bind the probed

message to a specific message handler. Each time a message is received (condition in

line 13), MPR leaves loop from line 1 to 13 and processes it accordingly. If messages are

not received, eventually, after a period of time checkInterval (line 2), the Pipeline ex-

ecution halts and the Stage Processes synchronize with their respective Stage Manager.

Usually, this execution is fast since it represents a two-way handshake between a pair of

processes, which adds negligible overhead to the application if the checkinterval is not
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PMSM1P1

After T(n), P1 send Action 1 to SM1

SM1 ack P1 and send Action 0 to P1

T(n)

PM ack Report and send Action 0 to SM1

After SM1 ack P1, send Report

Figure 5.4: MPR configuration protocol during normal execution.

too frequent. Note that we cannot guarantee that synchronization will happen exactly at

the moment of checkInterval because the Stage Process can be executing application

code at that moment. However, once it has finished, before receiving another message,

we guarantee that it will synchronize with the Stage Manager. As shown in Figure 5.4,

Stage Processes send Action 1 and receive Action 0 when no further synchronization

is required. The Action 1 message will update information about the stage status con-

taining the total number of items consumed and produced (line 3). Then line 4 sends the

message while line 5 receives the response from the Stage Manager containing an Action

to synchronize. During normal execution, the response is always Action 0, which means

no synchronization is required and the process can resume processing the Pipeline. Dur-

ing reconfiguration, the Action code received can be Action 3 (line 6 - Action to add

processes) or Action 4 (line 8 - Action to remove processes). Currently, MPR imple-

ments these two Actions (Action 3 and 4) to support adaptability. Also, it receives only

one Action from Stage Manager at a time. In the future, this can be easily extended to

support other features in MPR.

1 do {

2 i f (waitingTime >= checkInterval ) then

3 Update the stageStatus

4 Send Action 1 & stageStatus to the Stage Manager

5 Receive an Action from the Stage Manager

6 i f ( action == 3) then

7 Add processes

8 else i f ( action == 4) then

9 Remove processes

10 Reset the local clock

11 }

12 isDataMsgReady← Probe new messages from the input or output communicators

13 } while ( isDataMsgReady fa i l s ) ;

Listing 5.1: Example of MPR normal execution in Stage Process.
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5.4.4 Adding Processes Protocol

Figure 5.5 illustrates the configuration protocol in case of adding new processes.

As can be seen, periodically, the Stage Processes will send their status. Since no runtime

system adaptation is required, the Stage Manager sends Action 0 to P1. Periodically,

the Pipeline Manager reads the parameters.json configuration file, this happens after a

period of time T(x), where x is configurable. It detects that new processes are needed via

Action 3. So, the next time a Stage Manager reports the Stage Processes’ status to the

Pipeline Manager, it returns Action 3. The Pipeline Manager waits until notifying all Stage

Managers of the new Action before entering into a configuration mode for Action 3. The

same happens to the Stage Manager, which returns Action 3 to all Stage Processes that

send their status. Only after ensuring all Stage Processes received Action 3 it enters

into a configuration mode for Action 3. This protocol is important because MPI’s spawn

function is blocking and requires that all processes call the spawn function with exactly

the same parameters for it to take effect. That is represented by the Spawn blocking call

in Figure 5.5. With Action 3, the Stage Managers also send the new amount of processes

for each stage. Then, the Stage Processes use this information to compute the number of

new processes that must be spawned. Once the new processes are spawned (only P2 in

our example), the Pipeline Manager sends Action 6 (new process spawn information) and

Action 5 (configuration of a new process) to all new processes (P2). Then, the Pipeline

Manager broadcasts the ranks that are executing in each group so that each process can

recreate its inter-communicators. The inter-communicators that will be recreated were

introduced in Figure 5.2, which depicts MPR’s communication layout. It is worth noting

that edge Stage Processes recreate two inter-communicators (with Stage Manager and

either Input or Output) while middle ones recreate three inter-communicators (with Stage

Manager and both Input and Output). In the end, a barrier ensures that all processes have

finished configuring their new communicators before returning to the Pipeline execution.

Also, our strategy puts the most computationally intensive parts of the strategy on the

side of Stage Processes to preclude Stage Managers from becoming a bottleneck.

In the following, we present the synchronization algorithm MPR implements for

the Stage Process of Compute type (middle stage) during the configuration protocol for

adding new processes. We present the implementation of the synchronization protocol

depicted in Figure 5.5. The algorithm is depicted in Listing 5.2. The algorithm implemen-

tation can differ slightly depending on the Stage Process type that executes it. For exam-

ple, in the Compute process (the one we show in our examples), MPR must probe the input

communicator checking for pending messages before recreating the inter-communicators.

Instead, the Source process can skip such verification since it is the first Pipeline stage and

does not receive input messages.
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PMSM1P1

After SM1 ack P1, send Report

T(n)

After T(x), PM read JSON

PM ack Report and send Action 3 to SM1

T(x)

T(n)

SM1 ack P1 and send Action 3 to P1

Spawn blocking call
P2

PM send Action 5 to P2

Barrier

PM broadcast the new ranks per group

After T(n), P1 send Action 1 to SM1

SM1 ack P1 and send Action 0 to P1

After T(n), P1 send Action 1 to SM1

PM send Action 6 to P2

Figure 5.5: MPR configuration protocol when adding processes.

MPR is able to reconfigure the number of processes during execution time, and

it ensures that no application data message is lost or duplicated. For example, MPR uses

a READY_MSG to achieve a consistent global Pipeline state before processes enter into re-

configuration. The READY_MSG is generated by the first Stage Process and sent to all out-

put ports. Stage Processes continue reading all input data messages until receiving the

READY_MSG. Then, they send a READY_MSG to all their output ports notifying they are ready

to reconfigure. Eventually, all processes will have received a READY_MSG from all its input

ports and reconfiguration can be performed safely.

The first part of Listing 5.2 shows the mechanisms synchronizing messages be-

tween adjacent stages before configuration protocol. In line 2, we implement a logic that

iterates an importantEvents buffer of received events to check for READY_MSG tags. MPR

only starts the configuration protocol when all Stage Processes from the prior Stage are

ready. Otherwise, MPR iterates the loop from line 3 to 15 to get all pending data messages

and finishes when the READY_MSG tag is received (line 9). In this logic, line 7 probes in-

coming data messages from the input communicator, and line 13 buffers the messages

for later processing. We do not process them at this point to avoid increasing the over-

head of reconfiguration calls. After that, MPR ensures no pending messages in the inter-

communicator. However, it is possible that there are unprocessed messages in our internal

data buffer. This is not a concern when adding new processes, but it should be considered

when removing processes.
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1 i f ( action == 3) then

2 readyMsgFound← i terate ImportantEvents buffer

3 while( true ) then

4 i f (readyMsgFound) then

5 break

6 end if

7 ( isDataMsgReady , msgTag) ← Probe new messages from the input communicator

8 i f ( isDataMsgReady) then

9 i f (msgTag == READY_MSG) then

10 Receive the configuration message

11 break

12 end if

13 Buffer the data message

14 end if

15 end while

16 for proc_id=0 to nextStageSize do

17 Send the ready signal to process proc_id

18 end for

19 for proc_rank=0 to amountNewProcesses do

20 Add 1 new process

21 end for

22 Receive and update stage l i s t of ranks

23 i f ( stageSize < newStageSize) then

24 Update stage group of ranks

25 Recreate the Stage Manager communicator

26 end if

27 Recreate the input communicator

28 Recreate the output communicator

29 Wait in Barrier

30 Update new stage sizes

31 end if

Listing 5.2: Example of MPR’s adding process protocol.

Between lines 16 and 18, MPR complements the aforementioned logic and sends

the READY_MSG tag to notify the next Stage Processes that it is ready to start configu-

ration protocol. After sending READY_MSG to all processes from the next Pipeline stage,

MPR implements a logic to calculate the number of new processes that will be spawned

(amountNewProcesses). Then, MPR adds new processes employing MPI’s Spawn routine in

line 20. Note that MPR spawns one process at a time, and the newly spawned processes

help in the spawning of the next ones. We chose this design because MPI’s spawn func-

tion creates a shared intra-communicator for each new spawn invocation. If processes

are spawned together, they share the same intra-communicator and cannot be removed

due to this dependency. Therefore, we spawn each process independently to avoid such

limitations.

Finally, the last part of Listing 5.2 finishes the logic for adding new processes. All

processes from the Pipeline receive an updated list of ranks that belong to each Pipeline
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stage (line 22). For stages that have added new processes, MPR needs to update their

inter-communicators. In a Compute Stage Process, three inter-communicators must be

recreated (lines 25, 27, and 28). In the end, all processes wait in a barrier to ensure all

inter-communicators are already recreated before using them (line 29). Line 30 finishes

updating the new stage sizes and the Pipeline restarts the normal execution.

5.4.5 Removing Processes Protocol

The beginning of MPR configuration protocol when removing processes is similar

to the one previously described, as can be seen in Figure 5.6. In a nutshell, all processes

are notified with Action 0 when in normal execution. After a period of time T(x), the

Pipeline Manager reads the parameters.json file, finds out that it was modified, and that

processes need to be removed. The synchronization between processes happens after

all of them received the configuration Action 4. Again, the Pipeline Manager and Stage

Manager only enter into the configuration mode after they have sent the new Action to

all processes that are under their responsibility. Then, the Pipeline Manager decides the

processes that will be removed and broadcasts the removed ranks. Stage Processes use

this list to compare against for checking if they can continue or are banned. Also, the

Pipeline Manager broadcasts the new list of ranks per group to all processes. With that,

the processes can update their local list of ranks per group. Finally, the ones that continue

need to recreate their inter-communicator using the updated group information and wait

in the barrier.

This protocol is challenging because MPI does not provide a function to remove

processes. Although we were able to minimize the number of messages in the proto-

col, internally the routine to remove processes requires significant coordination between

all processes. Even the removed processes are used to destroy current communicators.

Moreover, once the new communicators are recreated, the processes receive new ranks,

and the protocol needs to ensure they match the previous ranks of the Pipeline. For exam-

ple, a process from Stage 1 cannot become a process from Stage 3. Usually, the processes

have an internal state that cannot be lost. Therefore, the processes cannot simply swap

Pipeline Jobs.

In both situations, special routines are activated before recreating the new com-

municators, either because new processes entered the Pipeline execution or were re-

moved from the execution. That happens because messages could be already sent but

were not received when the Pipeline reconfiguration started. Therefore, before destroying

the communicator, the strategy checks if there are any stream items left in the buffer and

computes them.
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PMSM1P2

After SM1 ack P1 and P2, send Report

T(n)

After T(x), PM read JSON

PM ack Report and send Action 4 to SM1

T(x)

T(n)

SM1 ack P2 and send Action 4 to P2

P1

T(n)

T(n)

SM1 ack P1 and send Action 4 to P1

PM broadcast the new ranks per group

PM broadcast the removed ranks

Barrier

After T(n), P1 send Action 1 to SM1

SM1 ack P1 and send Action 0 to P1

After T(n), P2 send Action 1 to SM1

SM1 ack P2 and send Action 0 to P2

After T(n), P2 send Action 1 to SM1

After T(n), P1 send Action 1 to SM1

Figure 5.6: MPR configuration protocol when removing processes.

Listing 5.3 depicts the synchronization algorithm MPR implements during the con-

figuration protocol for removing processes. We showcase the same Compute process,

complementing the adding protocol from the previous Section 5.4.4. The first part of

Listing 5.3 is similar to the algorithm to add processes. MPR employs a synchronization

strategy to ensure that no application data message is lost or duplicated. In the begin-

ning, each Stage Process iterates the importantEvents buffer to check if READY_MSG was

already received (line 2). If not found, it enters in a loop (lines 3 to 15) to receive and

buffer all incoming data messages (line 13) until receiving READY_MSG (line 9). After that,

the Stage Process signalizes that it is ready to reconfigure by sending READY_MSG to all

processes from the next Pipeline Stage (lines 16 to 18). Then, each process receives a

list of ranks that are to be removed from their current communicators (line 19) and an

updated list of ranks that continue residing in each Pipeline stage (line 20).
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1 i f ( action == 4) then

2 readyMsgFound← i terate ImportantEvents buffer

3 while( true ) then

4 i f (readyMsgFound) then

5 break

6 end if

7 ( isDataMsgReady , msgTag) ← Probe new messages from the input communicator

8 i f ( isDataMsgReady) then

9 i f (msgTag == READY_MSG) then

10 Receive the configuration message

11 break

12 end if

13 Buffer the data message

14 end if

15 end while

16 for proc_id=0 to nextStageSize do

17 Send the ready signal to process proc_id

18 end for

19 Receive a l i s t of ranks to remove

20 Receive and update stage l i s t of ranks

21 while( true ) then

22 ( isDataMsgReady , msgTag) ← Probe new messages from the output communicator

23 i f ( isDataMsgReady) then

24 i f ( dataBuffer is empty) then

25 i f (msgTag == REQUEST_MSG) then

26 Receive the configuration message

27 Send the end_signal to the process

28 break

29 end if

30 else then

31 Process a data message from the buffer and send i t

32 end if

33 end if

34 end while

35 for ban_rank in listOfRanksToBan do

36 i f (myRank == ban_rank) then

37 Final ize the process

38 end if

39 end for

40 Update stage group of ranks

41 Recreate the Stage Manager communicator

42 Recreate the input communicator

43 Recreate the output communicator

44 Wait in Barrier

45 Update new stage sizes

46 end if

Listing 5.3: Example of MPR’s removing process protocol.
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The subsequent part of Listing 5.3 showcases MPR’s implementation to clear the

data buffer before removing the processes. In this step, all Stage Processes that will be

removed must finish executing the data items from their internal buffer before exiting.

However, since all Stage Processes must wait in this step MPR allows all of them to con-

tinue executing to minimize overhead. For example, if a single process is removed, all

other processes become idle until it finishes, so MPR allows them to process as well during

this step (line 31). Since our data protocol implements on-demand scheduling, the Stage

Processes expect to receive a REQUEST_MSG in order to process the data item and send it

to the requester. When the buffer is empty (line 24), the Stage Process receives the last

REQUEST_MSG (line 25) and replies to the requester with a END_MSG (line 27) indicating that

all buffered data was sent.

The next part of the algorithm presents the mechanisms MPR implements to final-

ize the Stage Processes that will be removed. For the removing protocol, each Stage Pro-

cess checks if it is one of the removed processes (line 36). If true, the removed processes

disconnect from the Pipeline and invoke MPI’s finalize function (line 37). For the processes

that were not removed, they start updating the Pipeline mechanisms. First, the Stage

Processes update their information about which ranks are in each Pipeline stage (line 40).

After, the new rank list is used to recreate the inter-communicators: with Stage Manager

(line 41), with prior Pipeline stage (line 42), and with next Pipeline stage (line 43). Sub-

sequently, a barrier ensures that all processes have recreated the inter-communicators

before using them (line 44). Finally, line 45 updates the stage sizes, and the Stage Process

can resume the Pipeline normal execution.

5.4.6 MPR Data Communication Protocols

In the previous sections, we presented the synchronization protocols employed

by MPR for the configuration protocol, which is one of two communication protocols used

by the framework. The second protocol, the data protocol, is used to exchange stream

data items between the Pipeline Graph processes. In the following sections, we extend the

discussion to the data protocol to complement our earlier discussion of the configuration

protocol. To explain MPR’s communication design between the Pipeline stage Processes,

we employed the concept of MPI’s intra- and inter-communicators. Please refer to Fig-

ure 5.2, which was used in the previous section to explain MPR’s low-level communication

layer implementation. As previously explained, each Pipeline Job is implemented with its

own MPI intra-communicator. The following sections cover MPR’s data communication as

follows: Section 5.4.7 presents the initialization step that creates the processes and as-

signs them to a specific Pipeline Job. Section 5.4.8 briefly introduces MPR’s data transfer
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and scheduling. Finally, Section 5.4.9 discusses MPR’s strategy to communicate stream

data items between the different Pipeline Jobs.

In the upcoming Listings, we have included multiple code snippets that offer in-

sight into the implementation of MPR using MPI. As previously mentioned, we have chosen

to present these code segments without excessive abstraction to assist those who may be

grappling with the complexities of MPI implementations. We hope that readers can draw

inspiration from our code to create their own MPI implementations, especially given the

paucity of examples showcasing less-common MPI interfaces. For those readers who are

not MPI developers, we suggest that they skim over the code snippets and focus on the

explanations provided in the text.

5.4.7 Process Creation and Job Assignment

In this section, we describe how MPR creates processes and assigns them to

Pipeline Jobs. The code logic executed by the first processes created by MPI when the

user calls mpirun is depicted in Listing 5.4. The number of processes to be spawned is

obtained in lines 1 to 4. This number equals the sum of: 1 Pipeline Manager + 1 Stage

Manager for each Pipeline stage + the number of Stage Processes specified by the user

in parameters.json. The first extra MPI process is created in lines 5 to 7. The loop from

line 8 to 17 creates the remaining processes, with each process helping to create the next

ones. MPR implements a logic to inform each new spawned process of how many pro-

cesses it must help to spawn, as described by Action 6, which is sent between lines 9
and 13. When all processes have been created, the first MPI process communicates to

all others by sending Action 0 (lines 18 to 23). We will explain the purpose of this last

message when we show MPR’s logic to set Pipeline Jobs later.

1 int n_procs = pipeInfo .GetNumStages( ) ;

2 for ( int stageID = 1; stageID <= pipeInfo .GetNumStages( ) ; stageID++) {

3 n_procs += pipeInfo . GetStageSize( stageID ) ;

4 }

5 MPI_Comm interComm;

6 MPI_Comm_spawn(argv[0] , argv+1, 1, MPI_INFO_NULL , 0, MPI_COMM_WORLD, &interComm,

MPI_ERRCODES_IGNORE) ;

7 MPI_Intercomm_merge(interComm, 0, globalComm) ;

8 for ( int processRank=1; processRank<=n_procs ; processRank++){

9 bufConfigAux[0] = 6;

10 bufConfigAux[1] = n_procs−processRank ;

11 MPI_Request requestReconfig ;

12 MPI_Isend(bufConfigAux , pipeInfo .GetNumStages( )+1, MPI_INT , processRank ,

RECONFIG_MSG, *globalComm, &requestReconfig ) ;

13 MPI_Wait(&requestReconfig , MPI_STATUS_IGNORE) ;

14 i f (processRank == n_procs ) break;
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15 MPI_Comm_spawn(argv[0] , argv+1, 1, MPI_INFO_NULL , 0, *globalComm, &interComm,

MPI_ERRCODES_IGNORE) ;

16 MPI_Intercomm_merge(interComm, 0, globalComm) ;

17 }

18 for ( int processRank=1; processRank<=n_procs ; processRank++){

19 bufConfig [0] = 0;

20 MPI_Request requestReconfig ;

21 MPI_Isend( bufConfig , pipeInfo .GetNumStages( )+1, MPI_INT , processRank ,

RECONFIG_MSG, *globalComm, &requestReconfig ) ;

22 MPI_Wait(&requestReconfig , MPI_STATUS_IGNORE) ;

23 }

Listing 5.4: First process created by MPI.

Listing 5.5 complements the previous Listing 5.4. In MPI, processes that are

spawned during execution time (child processes) hold an additional communicator that

links them with their parent processes. To obtain the parent communicator, we use the

MPI_Comm_get_parent function, as shown in line 1. This is how we differentiate the first

processes from the others, since the MPI processes created statically do not have a par-

ent, and their communicator returns MPI_COMM_NULL. Once we have obtained the parent

communicator, we merge it with the local communicator of the new processes to create a

global intra-communicator (line 2). All processes that belong to the Pipeline are part of this

global communicator. The global communicator is important because it allows the Pipeline

Manager to have a direct connection with each process of the Pipeline during execution

time. Line 3 receives the number of processes that the new process should help spawn via

Action 6. The loop from lines 6 to 8 then spawns the new processes and includes them

in the global communicator. Finally, all processes receive a configuration protocol Action

message (line 9). This message is used in MPR’s logic to set processes’ Pipeline Jobs.

1 MPI_Comm_get_parent(&parentComm) ;

2 MPI_Intercomm_merge(parentComm, 1, globalComm) ;

3 MPI_Irecv(bufConfigAux , pipeInfo .GetNumStages( )+1, MPI_INT , 0, RECONFIG_MSG, *
globalComm, &requestReconfig ) ;

4 MPI_Wait(&requestReconfig , MPI_STATUS_IGNORE) ;

5 for ( int processRank=1; processRank<=bufConfigAux [1] ; processRank++){

6 MPI_Comm_spawn(argv[0] , argv+1, 1, MPI_INFO_NULL , 0, *globalComm, &interComm,

MPI_ERRCODES_IGNORE) ;

7 MPI_Intercomm_merge(interComm, 0, globalComm) ;

8 }

9 MPI_Irecv( bufConfig , pipeInfo .GetNumStages( )+1, MPI_INT , 0, RECONFIG_MSG, *
globalComm, &requestReconfig ) ;

10 MPI_Wait(&requestReconfig , MPI_STATUS_IGNORE) ;

Listing 5.5: Processes spawned by MPI during execution time.

Listing 5.6 demonstrates MPR’s logic for assigning processes to specific Pipeline

Jobs. This logic follows the dynamic process spawning logic that we discussed in the pre-
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vious listings. For the sake of brevity, we show only a part of the code, but we summarize

the remaining strategy. The first two lines (1 and 2) abstract the implemented strategy for

creating MPI_Groups, which are used to organize the processes’ ranks.

To illustrate the process assignment to Pipeline Jobs, let us consider a Pipeline

with three stages and a configuration file parameters.json that specifies stage1:1,

stage2:3, stage3:1. In this case, the total number of spawned processes is 9. Rank

(0) is the Pipeline Manager. Ranks 1 to pipeline_size are the Stage Managers, being

ranks are (1), (2), and (3). The remaining process ranks are assigned to Stage Processes.

Although our strategy supports the arbitrary assignment of process ranks to Stage Pro-

cesses, in the current MPR version, we assign the first rank after the last Stage Manager

to the Source process and the subsequent rank to the Sink process. Therefore, Stage Pro-

cesses 1, 2, and 3 are assigned to ranks (4), (6, 7, 8), and (5), respectively. This design

choice is based on our experimental tests, where we aimed to have a fair comparison

with DSParLib and MPI’s handwritten static versions. We will discuss this topic further in

the experiments section, where we provide more details about MPI’s process allocation

strategies.

1 pipeInfo .SetStageManagerGroups ( ) ;

2 pipeInfo . SetStageProcessGroups ( ) ;

3 for ( int managerID = 0; managerID <= pipeInfo .GetNumStages( ) ; managerID++) {

4 MPI_Group * stageManagerGroup = pipeInfo .GetStageManagerGroup(managerID) ;

5 MPI_Group_rank(*stageManagerGroup, &localRank ) ;

6 i f ( localRank != MPI_UNDEFINED) {

7 procInfo . SetProcJob (managerID) ;

8 int groupTag = 2000+managerID;

9 MPI_Comm * pipelineComm = pipeInfo .GetPipelineComm() ;

10 MPI_Comm_create_group(*globalComm, *stageManagerGroup, groupTag ,pipelineComm) ;

11 break;

12 }

13 }

14 for ( int stageID = 1; stageID <= pipeInfo .GetNumStages( ) ; stageID++) {

15 MPI_Group * stageProcessGroup = pipeInfo . GetStageProcessGroup(stageID ) ;

16 MPI_Group_rank(*stageProcessGroup , &localRank ) ;

17 i f ( localRank != MPI_UNDEFINED) {

18 procInfo . SetProcJob ( pipeInfo .GetNumStages( ) + 1 + stageID − 1) ;

19 procInfo . SetStageID(stageID) ;

20 int groupTag = 2000 + pipeInfo .GetNumStages( ) + 1 + stageID ;

21 MPI_Comm * pipelineComm = pipeInfo .GetPipelineComm() ;

22 MPI_Comm_create_group(*globalComm, *stageProcessGroup , groupTag ,pipelineComm) ;

23 break;

24 }

25 }

Listing 5.6: PipelineGraph’s SetJobs() function.
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Once all available MPI process ranks are assigned to MPI_Groups, MPR uses

them to create the local intra-communicators. Each Pipeline Job has its own local com-

municator to communicate with the other Pipeline Jobs. Lines 3 to 13 create the Stage

Managers’ intra-communicators, while lines 14 to 25 create the Stage Processes’ intra-

communicators. Line 4 gets the MPI_Group reference created in Line 1, and line 5 retrieves

the local rank of the current calling process in that group. Only processes belonging to the

group receive valid ranks, and others receive MPI_UNDEFINED. If a process belongs to a

given group, it sets its Pipeline Job in line 7 and creates the intra-communicator in line 10.

To organize the communication, we use pipelineComm as the intra-communicator, and

each Pipeline process overwrites pipelineComm’s reference accordingly.

Similarly, in line 15, MPR gets the Stage Processes MPI_Group reference that was

created in Line 2. Then, in line 16 tries to get the local rank of the current calling process

in that group. If a process belongs to a given group, it sets its Pipeline Job in line 18 and

assigns the stage identifier in line 19. Finally, the process creates the pipelineComm. After

finishing Listing 5.6 each process knows its Pipeline Job and shares an intra-communicator

with all processes with the same Job. Later, this intra-communicator is used to create the

required Pipeline inter-communicators with other Pipeline Jobs. In MPR’s current version,

we implement the Pipeline pattern, which enables processes to communicate only with

adjacent Pipeline stages. However, future work can investigate MPR’s flexibility toward

the dataflow paradigm, where inter-communicators are employed for communicating non-

consecutive DAG stages.

5.4.8 Data Transfer and Scheduling

In this section, we elaborate on MPR’s data scheduling and transfer design be-

tween different Stage Processes, which optimizes load balancing and enables back pres-

sure during Pipeline execution. MPR uses an all-to-all communication model, which means

that each Stage Process from a given Pipeline stage communicates with all the Stage Pro-

cesses of its neighbors. The communication is performed using an on-demand approach.

Therefore, each Stage Process requests data from the previous Pipeline stage using the

REQUEST_MSG tag. When the previous stage receives a REQUEST_MSG, it sends the data to

the requester. The identification of the Stage Process to request or send data is straightfor-

ward in MPR. Due to our design choice, MPR uses the Pipeline stage intra-communicators

and enables using their local rank to address a target Stage Process. MPI is able to trans-

late a local process rank to its global rank. For example, if a given Pipeline stage has three

Stage Processes with global ranks {4,8,17}, then their local ranks are {0,1,2}, respec-

tively. MPR leverages this last representation since the ranks can be easily accessed using

a loop construction from 0 to pipeline_stage_size.
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In applications with unbalanced workloads, the on-demand data transfer strategy

used by MPR can effectively improve performance, despite requiring more messages to

communicate. This is because a Stage Process only requests new data when it has com-

pleted processing its previous one. However, in applications with balanced workloads, the

on-demand mechanism can potentially slow down the Pipeline execution, as a Stage Pro-

cess becomes idle from the moment it requests new data until it receives it. To minimize

this idle time, MPR includes an internal data buffer with a configurable size that can be

adjusted during execution. As a result, each Stage Process can buffer a variable amount

of input data until the internal data buffer structure is full, thus reducing idle time and

improving overall performance.

In addition to load-balancing, the on-demand mechanism also handles back pres-

sure. Back pressure is a key feature of DSPS that enables it to cope with the vary-

ing speeds of senders and receivers [49]. To prevent the system from crashing in case

of overloading, MPR Stage Processes only compute and send data when they receive a

REQUEST_MSG. However, if a Stage Process does not receive any REQUEST_MSG, it can be-

come idle, resulting in performance degradation. To optimize performance, whenever a

Stage Process receives a REQUEST_MSG, it first checks its internal data buffer for available

data to process. If data is found, it is computed and sent to the requesting Stage Pro-

cess. If the buffer is empty, the requesting Stage Process rank is stored for future use.

The next time data is received, it is immediately processed and sent to the stored ranks

without buffering. This way, both request messages and data messages can be internally

buffered, and each time a request message matches a data message, it is computed and

sent to the requester, improving overall system performance.

5.4.9 Publishing and Receiving Data

In this section, we describe MPR’s approach for exchanging data messages in the

application. Each data stream item is sent in a multi-message fashion. MPR uses a Header

message to establish communication, followed by one or more payload messages. The

Header message consists of two fields: the message ID and the number of payload mes-

sages that will follow. Listing 5.7 shows how MPR implements the Publish() interface.

In line 2, a pointer to the Ctx object is cast to access context variables needed for ex-

ecuting the Pipeline Graph. For the Publish function, MPR obtains the message header

from the application context (line 4) and updates the number of messages that will follow

the current header (line 5). The header message is then sent in line 7, and the applica-

tion payload is sent in line 9 using MPI_BYTE to simplify data management. Finally, MPR

increments the number of produced items (line 11).

1 void Publish (void * _ctx , void * dataOut , int size ){
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2 Ctx * ctx = static_cast<Ctx*>(_ctx ) ;

3 MPI_Comm * outputComm = stageInfo−>GetOutputComm() ;

4 Header * header = ctx−>GetHeader ( ) ;

5 header−>incomingMsgs = 1;

6 int targetRank = ctx−>GetTargetProc ( ) ;

7 MPI_Isend(header , sizeof (Header) , MPI_BYTE , targetRank , HEADER_MSG, *outputComm

, &requestSend) ;

8 MPI_Wait(&requestSend , MPI_STATUS_IGNORE) ;

9 MPI_Isend(dataOut , size , MPI_BYTE , targetRank , DATA_MSG, *outputComm, &

requestDataSend) ;

10 MPI_Wait(&requestDataSend , MPI_STATUS_IGNORE) ;

11 stageInfo−>IncrementItemsProduced ( ) ;

12 };

Listing 5.7: MPR’s interface for publishing data.

In addition to the Publish interface, MPR implements another interface called

PublishMulti. Note that Publish can send only static and contiguous data types. It

cannot deal with data located at different memory locations since it only accepts a single

reference to data. For that, we provide the PublishMulti interface presented in List-

ing 5.8. The abstracted code is identical to the Publish function, but instead, it iterates a

list of multiple pointers and sizes in loop from lines 4 to 8. This interface is important be-

cause it allows MPR’s runtime system to support dynamically allocated data. More details

are given in the following when we present the receiving side of these interfaces.

1 void PublishMulti (void * _ctx , vector<void *>& dataOutList , vector<int>& size ){

2 /* Abstracted code logic identical to Publish ( ) * /

3 header−>incomingMsgs = dataOutList . size ( ) ;

4 for (long unsigned int dataID=1; dataID<dataOutList . size ( ) ; dataID++){

5 int targetRank = ctx−>GetTargetProc ( ) ;

6 MPI_Isend( dataOutList [dataID ] , size [dataID ] , MPI_BYTE , targetRank , DATA_MSG, *
outputComm, &requestDataSend2) ;

7 MPI_Wait(&requestDataSend2 , MPI_STATUS_IGNORE) ;

8 }

9 stageInfo−>IncrementItemsProduced ( ) ;

10 };

Listing 5.8: MPR’s interface for publishing multiple data.

Upon receiving a message, the first step for Stage Processes is to determine

the action required. It does so by checking the tag associated with the message. List-

ing 5.9 shows the message tags available in MPR. Briefly, STOP_MSG acknowledges the

stop signal; REQUEST_MSG either buffers the requester’s rank or computes a data from

its internal buffer, as discussed before; END_MSG and READY_MSG are configuration mes-

sages unintentionally captured during application execution, so MPR buffers them in the

importantEvents buffer; finally HEADER_MSG is the function we are interested in this sec-

tion.
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1 bool ReceiveAndBufferMsg(Ctx * ctx ){

2 i f ( status−>MPI_TAG == STOP_MSG) { . . . }

3 else i f ( status−>MPI_TAG == HEADER_MSG){ . . . }

4 else i f ( status−>MPI_TAG == REQUEST_MSG) { . . . }

5 else i f ( status−>MPI_TAG == END_MSG){ . . . }

6 else i f ( status−>MPI_TAG == READY_MSG){ . . . }

7 return false ;

8 }

Listing 5.9: MPR’s interface when receiving MPI messages.

When messages containing the HEADER_MSG are received, MPR executes the un-

marshalling logic described in Listing 5.10. It starts by receiving the Header, which is the

first message each data stream item sends (line 3). Subsequently, MPR probes the next

payload message (line 7) and receives it in line 11. By default, the protocol ends after

decrementing the number of incoming messages (line 13) because it fails the verification

in the loop from line 15. However, PublishMulti enables sending multiple data from dif-

ferent memory pointers. For each extra payload, MPR probes the message (line 17), then

gets its dynamic size (line 19) and allocates a new memory space (line 20). Finally, it

receives the data in line 21 and overwrites the pointer in line 23. This last part is a low-

level C++ memory manipulation that enables manually replacing the pointer of the user’s

struct by computing its location. Note that MPR configures a static pointer size of 8 bytes

(64 bits). In the future, we plan to extend the experiments to different architectures and

compilers to assess if this strategy is generic or needs to be adapted. For example, an

alternative could be replacing the static 8 value with sizeof(void*) or using a compiler

variable to get this information.

1 MPI_Get_count( status , MPI_BYTE , &size ) ;

2 Header * header = new Header( ) ;

3 MPI_Imrecv(header , size , MPI_BYTE , probeMsg, &requestRecvData) ;

4 MPI_Wait(&requestRecvData , MPI_STATUS_IGNORE) ;

5 int incomingMsgs = header−>incomingMsgs;

6 do{

7 MPI_Improbe( status−>MPI_SOURCE, DATA_MSG, inputComm, &isDataMsgReady , &

probeDataMsg, &statusRecv ) ;

8 }while ( ! isDataMsgReady) ;

9 MPI_Get_count(&statusRecv , MPI_BYTE , &staticSize ) ;

10 char * buffer = new char[ staticSize ] ;

11 MPI_Imrecv( buffer , staticSize , MPI_BYTE , &probeDataMsg, &requestRecvData) ;

12 MPI_Wait(&requestRecvData , MPI_STATUS_IGNORE) ;

13 incomingMsgs−−;

14 TDataIn * payload = static_cast<TDataIn*>((void*) buffer ) ;

15 while( incomingMsgs > 0){

16 do{

17 MPI_Improbe( status−>MPI_SOURCE, DATA_MSG, inputComm, &isDataMsgReady , &

probeDataMsg, &statusRecv ) ;
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18 }while ( ! isDataMsgReady) ;

19 MPI_Get_count(&statusRecv , MPI_BYTE , &size ) ;

20 char * buffer = new char[ size ] ;

21 MPI_Imrecv( buffer , size , MPI_BYTE , &probeDataMsg, &requestRecvData) ;

22 MPI_Wait(&requestRecvData , MPI_STATUS_IGNORE) ;

23 *( (char**)payload+(sizeof (TDataIn ) /8)−incomingMsgs) = buffer ;

24 incomingMsgs−−;

25 }

26 /* Abstracted code logic for immediate computation */

Listing 5.10: MPR’s interface when receiving application data messages.

The data communication strategy we just described is how MPR enables zero-

copy serialization. Note that the strategy does not involve the CPU, and data is trans-

ferred from its original memory location without intermediate copies to obtain contiguous

data. This way, MPR implements communication following the data serialization design

goal described in Section 5.1. In addition, the PublishMulti is an extra abstraction we

provide for efficient data transfer. To implement communication in streaming applications,

programmers can combine their preferred serialization library with the Publish interface.

Available options include Cereal [34], Boost [19], and Protocol Buffers [33].

5.5 Adaptability Support

In this section, we describe how self-adaptive algorithms can work together with

MPR to monitor application execution and adjust the number of parallel processes as

needed. While the low-level mechanisms that enable MPR to support adaptability were

already discussed during the processing engine section, here we focus on the interfaces

that programmers can use. These interfaces are simple Json files that can be read from or

written to. This design principle makes it possible for self-adaptive algorithms to be writ-

ten in any programming language that supports Json files, thus enhancing MPR’s porta-

bility. Furthermore, this modular interface separates the concerns of programmers and

researchers from MPR’s low-level runtime system mechanisms, allowing them to focus on

the adaptability model. This section is brief, as the monitoring interface is presented in

Section 5.5.1, and the adaptation decision is explained in Section 5.5.2.

5.5.1 Monitoring

MPR provides Pipeline execution statistics in the form of Json files, which can

be used by self-adaptive programs to monitor application execution and adjust the num-

ber of processes by scaling up or down. Each Pipeline stage has its own statistics file,
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which allows parallel stages to write metrics simultaneously for a given timestamp. This

is important since the Stage Managers continuously accumulate metrics from the running

processes during execution time, and race conditions may happen if written in a single

file.

Currently, MPR monitors the number of items consumed and produced by each

Pipeline stage, and also reports a composed metric, which is the average throughput of

each Pipeline stage obtained when dividing the number of items produced by the time.

This initial set of metrics serves as a basis for self-adaptive algorithms to make informed

decisions about the system’s performance and to trigger adaptations.

MPR collects the number of items consumed and produced from all the active

Stage Processes. The Stage Processes periodically communicate with the Stage Managers

via the configuration protocol and report the updated metrics. While these metrics are

the ones used in MPR’s self-adaptive algorithm, there are many other metrics that can

be derived from the application execution, such as CPU utilization, latency, memory con-

sumption, and total bytes sent or received. To include additional metrics, programmers

can either replace or include them in MPR’s current synchronization algorithm. This flex-

ibility allows programmers to tailor their monitoring needs while abstracting them from

MPR’s runtime system.

An example of monitoring reported in a Json file is depicted in Listing 5.11. The

Stage Manager (stage2 in this example) reports the number of items consumed and pro-

duced for each Stage Process (Compute0 and Compute1). Note that for each timestamp,

MPR regulates the number of current running Stage Processes and reports accordingly. In

this example, the first timestamp (line 2) converted to a human-readable date is February

4, 2023 11:25:04. This timestamp ensures that each sample is unique in the statistics re-

port. Moreover, this report format also enables algorithms to detect load-balancing issues

in the Pipeline execution. For instance, the first timestamp (line 2) reports a single Stage

Process while the second (line 9) reports two Stage Processes. This means that in between

the first and second timestamps, MPR spawned a new Stage Processes for stage2. Note

that in the second timestamp, Compute0 processes almost 25 thousand more items than

Compute1.

1 "stage2" : {

2 "1675563904635" : {

3 "Compute0" : {

4 "ItemsConsumed" : 81347,

5 "ItemsProduced" : 81348,

6 "averageItemsProduced" : 40674.53009081341

7 }

8 },

9 "1675563909814" : {

10 "Compute0" : {

11 "ItemsConsumed" : 74916,
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12 "ItemsProduced" : 74916,

13 "averageItemsProduced" : 37459.205175008094

14 },

15 "Compute1" : {

16 "ItemsConsumed" : 50588,

17 "ItemsProduced" : 50587,

18 "averageItemsProduced" : 25294.31379395769

19 }

20 },

21 }

Listing 5.11: Example of Json format MPR uses to report application statistics.

5.5.2 Adaptation Decision

MPR decides on the number of processes in each Pipeline stage by periodically

checking the parameters.json configuration file. The Pipeline Manager is responsible

for performing the read. When the Pipeline Graph execution starts, it reads the file to

decide how many processes will be spawned. Then, during the Pipeline execution, the

Pipeline Manager regularly reads the file. For each read, it compares the number of current

processes with the new value read from the parameters.json file. An example of such

file is showcased in Listing 5.12. If the read number of processes of a given stage is higher

than the current amount, then an Action 3 takes place. Every time a Stage Manager

communicates with the Pipeline Manager it will receive Action 3 as a response. The

same happens if the read number of processes is smaller than the current amount, in

which Action 4 takes place. To summarize, each time the values differ from a previous

read, the Pipeline Manager analyzes if processes must be added or removed in order to

adapt the runtime system to the specified amount of processes. In this initial version, MPR

supports changes in one stage at a time.

1 {

2 "stage1" : 1,

3 "stage2" : 64,

4 "stage3" : 1

5 }

Listing 5.12: Example of parameters.json to set the number of processes in MPR.

MPR’s self-adaptive interface offers flexibility and portability, allowing programs

to read the parameters.json configuration file and set an arbitrary number of processes

based on the adaptation decision. This means that there are no restrictions on the pro-

gramming language used to write the self-adaptive algorithm. MPR’s API is designed to be

easy to use by programmers and researchers alike. While C++ may achieve higher perfor-

mance than other high-level programming languages, it is not as popular for data science
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and machine learning algorithms. Python, on the other hand, is well-suited for design-

ing efficient self-adaptive algorithms due to its wide range of libraries. Furthermore, the

program responsible for deciding the number of processes does not need to achieve max-

imum performance. In fact, the self-adaptive algorithm used to test MPR’s API is written in

Python, and we describe it in Section 7 during the experimental evaluation.

In future work, we aim to expand the range of configurable parameters beyond

just the number of processes. While MPR’s current implementation allows for self-adaptive

adjustments on the number of processes during execution time, there are other metrics

within the runtime system that could be dynamically configured as well. For example,

the buffer size and various time intervals are hard-wired into the current implementation

but could potentially be adjusted during runtime to improve system performance. In this

study, we explore different configurations for some of these parameters and report our

findings in the experimental section. By expanding the range of configurable parameters,

we hope to provide users with more flexibility to fine-tune the runtime system to their

specific use cases and requirements.

5.6 High-level API for Distributed Stream Processing

In this section, we introduce MPR’s high-level API designed for implementing dis-

tributed stream processing applications. This interface focuses on application program-

mers that want to use MPR for implementing streaming applications. The primary building

block of MPR’s Pipeline Graph is the Stage Process, which is responsible for executing

the Pipeline streaming application. The Managers are the processes that coordinate the

Pipeline execution. Programmers are required to "wrap" the streaming application code

in terms of Stage Processes, and append these already-implemented Stage Processes to

produce the final Pipeline Graph topology. The main benefit of this approach is that it ab-

stracts many of the parallelism complexities from the programmer. With MPR, they don’t

have to implement everything from scratch each time a new streaming application is de-

veloped, which would be the default behavior for implementing low-level MPI distributed

applications. Typically, many of the parallelism and communication complexities, such as

schedulers, message-passing protocols, and process synchronization, need to be manu-

ally implemented.

MPR’s Pipeline Stages can be implemented by extending MPR’s Stage Process.

By inheriting the functions provided within the Stage Process, programmers are equipped

with all the interfaces they need to implement communication between the Pipeline stages.

However, before using these interfaces, programmers must implement the Stage Process

virtual functions with the application code that will be executed. For this purpose, MPR

exposes four virtual interfaces:
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• OnInit: This interface is executed once at the beginning of the Stage Process’ life-

time, and programmers can write the application code for this stage here.

• OnEnd: This interface is executed once at the end of the Stage Process’ lifetime, and

programmers can write the application code for cleaning up resources and finalizing

the stage here.

• OnInput: This interface is executed each time a new input data message is received,

and programmers can write the application code that processes this data here.

• OnProduce: This interface is executed for generating new data stream items, and

programmers can write the application code that produces new data or reads from

another source here.

Programmers can write the code logic for each of these functions according to the

requirements of their application. In case nothing needs to be executed in any of these

steps, the corresponding functions can be left empty.

Listing 5.13 provides an example of MPR’s API for implementing a streaming ap-

plication. In this example, the stream processing application processes the numbers from

0 to totalNum and calculates the total number of primes in this interval.

1 class Stage1: public StageProcess <void* , int> {

2 public :

3 void OnProduce(void * ctx ) {

4 for ( int i=0; i<totalNum; i++){

5 Produce( ctx , &i , sizeof ( i ) ) ;

6 } }; };

7

8 class Stage2: public StageProcess <int , bool> {

9 public :

10 void OnInput(void * ctx , void * dataIn ) {

11 int i = Unpack( dataIn ) ;

12 bool isPrime = true ;

13 for ( int j = 2; j < i ; j++) {

14 i f ( i % j == 0) {

15 isPrime = false ;

16 break;

17 }

18 }

19 void * dataOut = Pack( isPrime ) ;

20 Publish( ctx , dataOut , sizeof ( isPrime ) ) ;

21 }; };

22

23 class Stage3: public StageProcess <bool , void*> {

24 public :

25 int primes ;



101

26 void OnInput(void * ctx , void * dataIn ) {

27 bool * isPrime = static_cast<bool*>(data) ;

28 i f (* isPrime ) {

29 primes++;

30 } }; };

Listing 5.13: Example of MPR’s API for implementing streaming applications.

The Stage1 is responsible for producing the stream data items (lines 1 to 6).

Each new number generated in the loop (line 4) is sent to the next stage via the Produce

interface, which receives as a parameter the execution context (ctx), the data reference,

and its size.

Next, the Stage2 represents the computational stage that receives the data

items, processes them, and emits a boolean indicating if the number is a prime num-

ber or not (lines 8 to 21). The OnInput function callback is activated each time a stream

item is received by the Stage Process. The data is received in a reference, which must be

cast to the original data type. MPR provides an interface to help the user with this called

Unpack (line 11). Also, MPR provides another helper interface called Pack (line 19), which

returns a pointer to the object. The results from Stage2 can be published to the next stage

using Publish. This interface also receives as a parameter the execution context (ctx),

the data reference, and its size.

Finally, the Stage3 accumulates the results (lines 23 to 30). In line 27, an alter-

native way for manually casting the input stream data item is shown. This is similar to

what is done in Unpack. More experienced programmers may prefer not to use Pack and

Unpack as they may observe a minor performance improvement.

MPR’s interface abstracts many low-level parallelism and distributed complexities

from the programmer. To send data, programmers only need to provide the correct data

reference and size, which can easily be obtained using the sizeof function in C++. When

a new stream data item arrives, the OnInput function is called, providing the execution

context and data payload. The payload is then cast to the desired data type. Currently, the

execution context is not used in MPR’s API, but we plan to provide lower-level interfaces

for experienced programmers and researchers to extend MPR’s flexibility. For instance, we

can allow programmers to manually set the target process to which the application should

send the message via the ctx parameter. This feature can be quickly implemented with

minor modifications to MPR’s code since it already uses the ctx parameter internally to

set the target Stage Process. However, we do not expose this functionality to the user.

1 mpr: :PipelineGraph pipe(&argc , &argv , 3) ;

2

3 Stage1 source ;

4 Stage2 compute;

5 Stage3 sink ;

6
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7 pipe .AddPipelineStage(&source) ;

8 pipe .AddPipelineStage(&compute) ;

9 pipe .AddPipelineStage(&sink ) ;

10

11 pipe .Run( ) ;

Listing 5.14: Example for assembling Stage Processes in a Pipeline Graph using MPR.

Once the Stage Processes are properly implemented to execute the application

code, they can be assembled in a Pipeline fashion to be executed by MPR’s runtime sys-

tem. Listing 5.14 showcases how this can be done in MPR. Initially, a PipelineGraph ob-

ject is created (line 1). The parameters expected are the application’s argc and argv, and

the pipeline size. After creating the PipelineGraph, programmers instantiate the Pipeline

stage operators (lines 3 to 5). In this example, we use the Stage Processes implemented

in the previous Listing 5.13. Each Stage Process operator becomes a Pipeline stage when

it is appended to the PipelineGraph via the AddPipelineStage function (lines 7 to 9).

Finally, MPR starts executing the Pipeline when the program calls the Run() function (line

11).

While MPR currently exclusively supports the Pipeline pattern, our plans for future

versions involve exploring support for different patterns. With the MPR runtime system

now implemented, we believe its flexibility allows for such exploration. For example, we

could implement data parallelism via the Map pattern by modifying the available Pipeline

protocol to send a single message containing all the data that needs to be processed. How-

ever, this would require extending the protocol to support resending data that is internal

to one Stage Process to other Stage Processes, in order to maintain MPR’s adaptability.

MPR also provides additional abstractions programmers can enable in their stream

applications. The abstraction we provide in this version regards the ordering of stream

data items. This feature can be enabled by calling EnableOrdering in the Stage Process

ordering is required. Since parallelism can lead to non-deterministic program execution,

some applications require re-ordering of stream data to ensure output integrity, such as

in video processing where frame ordering is crucial. MPR supports the ordering of data

after parallel Pipeline stages, using an algorithm based on the mechanisms proposed by

Griebler et al. [40]. Specifically, MPR employs a std::priority_queue to buffer stream

data items that are out of order. The decision on whether a data item is out of order is

based on the unique message ID that each item carries in its header.
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6. MPR PERFORMANCE EVALUATION

This chapter presents our evaluation of MPR’s performance and compares its

overhead against static distributed stream processing implementations using DSParLib

and handwritten MPI versions. In the next chapter (Chapter 7), we conduct additional ex-

periments to evaluate and characterize MPR’s API for supporting an autonomic manage-

ment module. MPR leverages dynamic process management, which we expect to result in

additional overhead since the runtime system needs to make extra function calls to check

the current Pipeline stage size each time it sends a new message. To better understand

this overhead, we identify the main features that we believe contribute the most to it and

present them in the following.

• MPR spawns extra processes: In additional to Stage Processes, those responsi-

ble to execute the Pipeline application code, MPR also spawns Manager Processes

for coordinating the Pipeline Graph execution. These Manager Processes are always

active and they periodically exchange messages with the Stage Processes. There-

fore, MPR cannot disable them to have a fair comparison with DSParLib and MPI.

Nonetheless, we can adjust the synchronization period to significantly reduce their

synchronization and the number of messages exchanged by them. Although, this

does not isolate them from the application since extra communication messages are

still active in the runtime system, this can help in a fairer comparison.

• MPR dynamic process management: The static DSParLib and MPI versions use

a single global intra-communicator to communicate between the Pipeline processes.

MPI relies on the MPI_COMM_WORLD creates with size equal to the number of processes

specified in the mpirun command. Differently, DSParLib creates the processes dur-

ing execution time. However, it creates them only once at the beginning via a static

number of processes and merges them in a single global intra-communicator, where

process management becomes similar to MPI. Instead, MPR uses multiple groups of

processes and inter-communicators to dynamically manage the processes. During

execution time, Stage Processes execute additional functions to receive and send

data, such as checking the current Pipeline stage sizes and which processes are as-

signed to each Pipeline Job. Also, to communicate with different Pipeline stages,

inter-communicators are created to communicate the local and remote group of pro-

cesses.

• MPR uses on-demand communication: MPR differs from DSParLib and MPI com-

munication because it uses an on-demand approach for exchanging data stream

messages between Pipeline stages. An on-demand communication can help balanc-

ing the Pipeline workload between parallel Stage Processes and enabling back pres-

sure at the same time. However, it can also introduce extra overhead when Stage
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Processes have to wait for a request message before sending data stream items to

the requester. If no request messages are received, the Stage Process can become

idle, reducing overall performance.

• MPR communicates more messages: MPR sends and receives more messages

than DSParLib and MPI. Most of these messages are due to the on-demand commu-

nication protocol between each Pipeline stage, which improves load-balancing but

each data stream item is associated with an extra request message. Other messages

are due to MPR’s runtime system coordination strategies. When network bandwidth

is sufficient to support data communication without congestion, the overhead is usu-

ally negligible. However, when the network becomes a bottleneck, sending more

messages can introduce significant overhead to a distributed computing system.

6.1 Application Parallelization

In this section, we briefly described how the stream processing applications were

parallelized using MPR, DSParLib, and MPI. We focus on implementation details that are

more relevant to understand the differences between the APIs. We selected four stream

processing applications from different domains to simulate varied computational charac-

teristics. All the streaming applications described here were implemented using a tradi-

tional stream processing Pipeline. The application generates stream items in the Source

(first Pipeline stage). Then, items are processed by a computational stage that can be

replicated to increase the degree of parallelism. Finally, the results are accumulated in

the Sink. Some applications generate an output file (i.e., an image or a video), while oth-

ers report their numeric result. The only version that does not use a Pipeline is Bzip2’s MPI

version. This is an existing Bzip2 implementation obtained from [38] that uses a master-

worker pattern.

6.1.1 Mandelbrot Set

The Mandelbrot Set application is a mathematical program that computes a frac-

tal within the complex plane, and it is known to have an unbalanced workload [35]. For

instance, the first and last stream items of the workload have almost zero computation,

while intermediate stream items require significantly more computational power to pro-

cess. We selected this application because it exhibits a cyclic workload imbalance. For

instance, the first stream items produced by the source have almost no computational

power, which starts to increase until reaching its peak in the middle. Then, the computa-
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tional intensity starts to decrease until reaching again almost no computational power at

the end.

In this section, we provide a detailed explanation of the parallel Pipeline graph

implementation for Mandelbrot Set, as the parallelism strategy is consistent among all

stream processing applications covered in this evaluation. In the subsequent sections, we

will focus only on the differences between the APIs, such as the type of data exchanged

between the processes.

Figure 6.1 depicts the Pipeline Graph utilized in the parallelizations. The first

Pipeline stage is always responsible for generating the data. Some applications have data

generators, while others read from a file. Then, the second Pipeline stage processes the

stream items. This stage can be replicated in all applications since it is stateless. Subse-

quently, the final stage accumulates the computed results. Some applications accumulate

a numeric result value while others write in files.

Source

Compute

Compute

Sink...

Pipeline

Figure 6.1: Parallel Pipeline Graph implemented in the applications.

DSParLib and MPI handwritten Mandelbrot Set implementations were obtained

from [64]. Parallelizing this traditional stream processing parallel pattern with MPI is diffi-

cult and error prone. The programmer has to deal with low-level parallelism aspects and

manually design and implement all the communication, scheduling, load-balancing, order-

ing, and others. Listing 6.1 abstract the Mandelbrot Set MPI implementation to showcase

how it is implemented in MPI. Programmers first decide on how many processes will exe-

cute, then these processes are manually assigned to the Pipeline stages. The Source and

Sink receive one process each, while the remaining processes are assigned to the Com-

pute stage. After the split, the Source process generates the stream items in the loop (line

2). New stream data items are only generated and sent ahead (line 4) when a DEMAND_MSG

is received (line 3). When there are no more data items to generate, the Source process

sends a message indicating the end of the stream (line 6). Compute processes are the

ones requesting data items from the Source (line 9). They probe each received message

to receive its metadata before effectively receiving the payload (line 10). Each message

has its tag checked (lines 11 and 12). If it is a STOP_MSG, propagate the end of the stream

and finish. Otherwise, DATA_MSG is received (line 13) and processed (line 14). The results

are sent using three messages to ship two integers and the mandelbrot set result (lines

15 to 17). Finally, the Sink process probes any incoming message (line 22). If the tag is
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STOP_MSG, acknowledge and wait until receiving all stop messages from the Compute pro-

cesses. In case of a DATA_MSG, it receives the two integers (lines 25 and 26) and the data

(line 28). Other optimizations that are required in the other applications, such as ordering,

must be manually implemented by programmers when using MPI.

1 i f ( isSource ) {

2 for ( int l ine = 0; l ine < DIM; l ine++) {

3 MPI_Recv(&demand, 1, MPI_INT , MPI_ANY_SOURCE, DEMAND_MSG, comm, &status ) ;

4 MPI_Send(&line , 1, MPI_INT , status .MPI_SOURCE, DATA_MSG, comm) ;

5 };

6 /* abstracted application logic to send EOS */

7 } else i f ( isCompute) {

8 while (true) {

9 MPI_Send(&demand, 1, MPI_INT , sourceRank , DEMAND_MSG, comm) ;

10 MPI_Probe(sourceRank , MPI_ANY_TAG, comm, &status ) ;

11 i f ( status .MPI_TAG == STOP_MSG) { . . . }

12 else i f ( status .MPI_TAG == DATA_MSG) {

13 MPI_Recv(&line , 1, MPI_INT , sourceRank , DATA_MSG, comm, &status ) ;

14 /* abstracted application logic to process the data */

15 MPI_Send(&l ine . l ine , 1, MPI_INT , rank , DATA_MSG, comm) ;

16 MPI_Send(&l ine . size , 1, MPI_INT , rank , DATA_MSG, comm) ;

17 MPI_Send(&l ine .M, l ine . size , MPI_BYTE , rank , DATA_MSG, comm) ;

18 }

19 }

20 } else i f ( isSink ) {

21 while (true) {

22 MPI_Probe(MPI_ANY_SOURCE, MPI_ANY_TAG, comm, &status ) ;

23 i f ( status .MPI_TAG == STOP_MSG) { . . . }

24 else i f ( status .MPI_TAG == DATA_MSG) {

25 MPI_Recv(&line , 1, MPI_INT , rank , DATA_MSG, comm, &status ) ;

26 MPI_Recv(&size , 1, MPI_INT , rank , DATA_MSG, comm, &status ) ;

27 char *data = new char[ size ] ;

28 MPI_Recv(data , size , MPI_BYTE , rank , DATA_MSG, comm, &status ) ;

29 }

30 }

31 }

Listing 6.1: Example of a Pipeline implementation using MPI.

In this application. the stream item message communicated between the stages

is a struct with two integers and a char pointer. The MPI version calls three consecutive

MPI_Send for sending data and three MPI_Recv for receiving. The first two messages use

MPI_INT while the last message uses MPI_BYTE for sending the data pointer by the char.

DSParLib implements programming abstractions to hide some MPI communication com-

plexities. It prevents programmers from dealing with low-level parameters such as target

ranks, tags, and data types while still providing zero-copy serialization. However, DSPar-

Lib’s implementation requires considerable code implementation because it is verbose.
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Listing 6.2 presents the implementation of SenderReceiver abstraction to send

data stream items in Mandelbrot Set with DSParLib. In this example, programmers can ex-

tend SenderReceiver (line 1) and implement both Send and Receive functions using the

correct order that messages are sent and received. For sending, DSParLib’s version first

sends the two integers (lines 3 and 4) and then sends the dynamically allocated pointer

of chars (line 6). For receiving, the same order must be respected. Then, in lines 28 to

35 we abstracted DSParLib’s code to only show how serialization is employed by the Farm

pattern. The Farm stages are initialized in lines 29 to 31, while the data communication is

initialized in line 32. Consequently, the communication object can be placed between the

Farm stages (line 33). Now, each time a Farm stage has to send data by calling Emit (line

25), it will use the template provided for Send in line 2, and for receiving, vice-versa.

1 class LineToRenderSerializer : public SenderReceiver<LineToRender> {

2 void Send(MPISender &sender , MessageHeader &msg, LineToRender &data) {

3 sender .SendTo(msg, data . l ine ) ;

4 sender .SendTo(msg, data . size ) ;

5 i f (data . size > 0) {

6 sender .SendTo(msg, data .M, data . size ) ;

7 delete [ ] data .M;

8 }

9 };

10 LineToRender Receive(MPIReceiver &receiver , MessageHeader &msg) {

11 LineToRender data ;

12 memset(&data , 0, sizeof (LineToRender) ) ;

13 receiver .Receive(msg, &data . l ine ) ;

14 receiver .Receive(msg, &data . size ) ;

15 i f (data . size > 0) {

16 data .M = new char[data . size ] ;

17 receiver .Receive(msg, data .M, data . size ) ;

18 }

19 return data ;

20 };

21 };

22 class Compute : public Wrapper<LineToRender , LineToRender> {

23 void Process(LineToRender &lineToCalculate ) override {

24 /* abstracted application code */

25 Emit( lineToCalculate ) ;

26 };

27 };

28 int main( int argc , char **argv) {

29 Source s1 ( . . . ) ;

30 Compute s2 ( . . . ) ;

31 Sink s3 ( . . . ) ;

32 LineToRenderSerializer comm;

33 auto farm = dspar : :Farm(s1 , comm, s2 , comm, s3) ;

34 farm.Start ( . . . ) ;
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35 }

Listing 6.2: Example of data serialization in Mandelbrot Set using DSParLib.

In MPR, we use different design principles to restrict the serialization step to the

scope the application is sending data. Also, MPR assumes that each data block is a pair

of data pointer + size. Listing 6.3 showcases MPR’s implementation for zero-copy data

serialization. Therefore, programmers that want to send data must create a vector of

void pointers (line 5) and a vector of sizes (line 6). Then, programmers append to these

vectors the first (lines 7 and 8) and second (lines 9 and 10) pairs of data+size. Finally,

these vectors containing the data pointers and size are passed to MPR’s runtime using

PublishMulti (line 11). The counterpart of sending is succinct in MPR since no extra code

implementation is required for receiving data. The Pipeline stage will receive a pointer to

data (line 2), which can be cast to the desired data type (line 3). This can be done using

plain C++, as shown in this example, or using MPR’s auxiliary function named Unpack.

To execute the Pipeline, programmers first instantiate a PipelineGraph (line 15). Then,

they instantiate the Pipeline stages (lines 16 to 18) and append them to the Pipeline in the

correct order (lines 19 to 21). The Pipeline will start executing when Run is called (line 22).

1 class Compute : public mpr: :StageProcess<LineToRender , LineToRender> {

2 void OnInput(void * ctx , void * data) {

3 LineToRender * dataIn = static_cast<LineToRender*>(data) ;

4 /* abstracted application code */

5 std : : vector<void *> dataOutList ;

6 std : : vector<int> sizeList ;

7 dataOutList .push_back( dataIn ) ;

8 s izeList .push_back(sizeof (LineToRender) ) ;

9 dataOutList .push_back(M) ;

10 s izeList .push_back(dataIn−>size ) ;

11 PublishMulti ( ctx , dataOutList , s izeL ist ) ;

12 };

13 };

14 int main( int argc , char **argv) {

15 mpr: :PipelineGraph pipe(&argc , &argv , 3) ;

16 Source s1 ( . . . ) ;

17 Compute s2 ( . . . ) ;

18 Sink s3 ( . . . ) ;

19 pipe .AddPipelineStage(&s1) ;

20 pipe .AddPipelineStage(&s2) ;

21 pipe .AddPipelineStage(&s3) ;

22 pipe .Run( ) ;

23 }

Listing 6.3: Example of data serialization in Mandelbrot Set using MPR.

The regulation to using MPR’s serialization abstraction is simply paying attention

when creating the data struct. Listing 6.4 shows the data struct used to exchange data
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between the processes. To use MPR’s serialization abstraction, the user must declare the

dynamic-sized objects at the end. Each time MPR receives an extra payload message, it

will append the received data to the last struct pointers.

1 struct LineToRender{

2 int size ;

3 int l ine ;

4 char *M;

5 };

Listing 6.4: Mandelbrot Set data struct.

6.1.2 Lane Detection

The Lane Detection program utilizes the OpenCV (computer vision library) to de-

tect the boundaries of road lanes in a video stream for autonomous vehicles. The pre-

existing MPI application was obtained from [77] while the DSParLib version was obtained

from [64]. These versions were based on OpenCV 2, which is relatively old at the time of

this dissertation. We have revised and reimplemented all versions of the Lane Detection

application to be compatible with OpenCV 4.

This application requires that the input video frames are kept in order when writ-

ing the output video. In MPI’s parallel version, the ordering strategy was manually imple-

mented, while in DSParLib, ordering is enabled using SetCollectorIsOrdered(true) in

the Farm pattern. In MPR, ordering is enabled using EnableOrdering() in the last Pipeline

stage.

The data communication in this application is performed through the use of the

OpenCV object, namely Mat. This data type can be confusing at first impression since

it separates the object interface reference from the data reference. In this application,

the Mat serialization is implemented by assembling the data size, then communicating

its individual parts through the network. Listing 6.5 shows how serialization is achieved

DSParLib. The strategy mixes DSParLib’s abstractions with MPI native calls. As can be

seen, each Mat is sent using two messages (lines 10 and 11). In order to later recreate

the Mat object, the application must know the number of rows, columns, and type. These

values are assigned to the MPIFrame struct between lines 5 and 8, in addition to the data

size assigned in line 9. Then, the first message sends the struct containing these meta-

data (line 10), and the second sends the actual data (line 11). The receiver obtains the

messages in the exact same order. Then it uses the metadata and the data content to

recreate the Mat object (line 19). The MPI version is similar to this strategy, except it uses

an extra message to send the data size separately while DSParLib takes advantage of the

MPIFrame struct.
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1 class MatSerializer : public dspar : :SenderReceiver<Frame> {

2 void Send(dspar : :MPISender &sender , dspar : :MessageHeader &msg, Frame &frame) {

3 Mat data = frame. image;

4 size_t size = frame. rows*frame. cols*frame. channels ( ) ;

5 MPIFrame mpiFrame;

6 mpiFrame. rows = data . rows;

7 mpiFrame. cols = data . cols ;

8 mpiFrame. type = data . type ( ) ;

9 mpiFrame. byteCount = size ;

10 MPI_Send(&mpiFrame, 1, MPI_MAT, msg. target , MPI_DSPAR_STREAM_MESSAGE, sender .

GetComm() ) ;

11 MPI_Send(data . data , size , MPI_BYTE , msg. target , MPI_DSPAR_STREAM_MESSAGE,

sender .GetComm() ) ;

12 };

13 Frame Receive(dspar : :MPIReceiver &receiver , dspar : :MessageHeader &msg) {

14 MPIFrame mpiFrame;

15 MPI_Status status ;

16 MPI_Recv(&mpiFrame, 1, MPI_MAT, msg. sender , MPI_DSPAR_STREAM_MESSAGE, receiver

.GetComm() , &status ) ;

17 unsigned char *data = new unsigned char[mpiFrame. byteCount ] ;

18 MPI_Recv(data , mpiFrame.byteCount , MPI_BYTE , msg. sender ,

MPI_DSPAR_STREAM_MESSAGE, receiver .GetComm() , &status ) ;

19 Mat mat(mpiFrame. rows , mpiFrame. cols , mpiFrame. type , data) ;

20 };

21 };

Listing 6.5: Example of data serialization in Lane Detection using DSParLib.

In MPR, the serialization step can be simplified using its programming abstrac-

tions. For sending data, first we set the metadata required to recreate the Mat object

(lines 6 to 9). Then we create vectors to append the data pointers and sizes (lines 10 and

11). The metadata is appended in lines 12 and 13, while the actual data is appended in

the following two lines. Finally, the programmer can call PublishMulti and pass the data

pointers and their sizes. Complementary, when data is received, MPR passes its pointer to

the application (dataIn in line 2), which the programmer can cast the expected data type

(line 3). Finally, the Mat object is recreated using the metadata and the real data (line 4).

1 class Compute : public mpr: :StageProcess<MatStruct , MatStruct> {

2 void OnInput(void * ctx , void * dataIn ) {

3 MatStruct * matIn = static_cast<MatStruct*>(dataIn ) ;

4 Mat image(matIn−>rows , matIn−>cols , matIn−>type , matIn−>data) ;

5 /* abstracted application logic */

6 MatStruct mat;

7 mat. rows = image. rows;

8 mat. cols = image. cols ;

9 mat. type = image. type ( ) ;

10 std : : vector<void *> dataOutList ;

11 std : : vector<int> sizeList ;
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12 dataOutList .push_back(&mat) ;

13 s izeList .push_back(sizeof (mat) ) ;

14 dataOutList .push_back(image. data) ;

15 s izeList .push_back(image. rows*image. cols*image. channels ( ) ) ;

16 PublishMulti ( ctx , dataOutList , s izeL ist ) ;

17 };

18 };

Listing 6.6: Example of data serialization in Lane Detection using MPR.

6.1.3 Prime numbers

Prime Numbers is a synthetic application that accumulates the number of primes

within a given range [36]. We selected this application due to its highly unbalanced work-

load. For example, while Mandelbrot Set slowly increases and decreases its computational

intensity, the Prime Numbers has peaks from one stream data item to another since even

numbers are much easier to process than odd numbers. The algorithm uses brute force

and assumes that a given number n is a prime number if it fails any division between 2 and

n−1. Note that even numbers will fail right at the beginning when the division by 2 is per-

formed. We obtained a pre-existing handwritten MPI version [38] and manually inspected

it to ensure that its parallelization is similar to ours. DSParlib’s version was obtained from

[64]. All versions use a Source to generate the numbers, a Compute to processes prime

numbers, and a Sink to accumulate those that return true. In this application, the mes-

sage passing is straightforward, as it only communicates integers between the Source and

Compute, and booleans between Compute and Sink.

6.1.4 Bzip2

Bzip2 is a widely used compression library in many Linux distributions. MPIBzip2

is an existing parallel version of this library that uses OpenMPI [38]. DSParLib’s version was

obtained from [64]. In this application, the parallel version we obtain is slightly different

from our parallel activity graph. The parallelism strategy of MPIBzip2 follows a master-

worker pattern, where the master task divides the input file into smaller blocks and collects

them while the workers perform the compression. The difference between ours is that

MPIBzip2 combines the Source and Sink into a single Master. In general, the strategies are

equivalent, but results could show differences if any resource used by the master becomes

a bottleneck, such as a network connection or disk.

In this application, the Source is responsible to read an input file from a dis-

tributed filesystem and split it into smaller blocks. We enable Bzip2’s maximum block
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size allowed, which is 900Kb per block. These blocks are then sent to the Compute pro-

cesses, that process bzip2’s compression algorithm. Finally, compressed blocks are sent

to the Sink, which writes them in an output file. Note that the size of compressed blocks

can vary since it depends on the type of data and how much can be compressed. Bzip2

demands that stream data items are ordered to preserve the correctness of the output

file.

Data serialization in DSParLib is similar to other applications. Programmers ex-

tend the SenderReceiver and implement its Send and Receive functions. Listing 6.7

shows such implementation. Lines 4 and 5 send the data block, while lines 8 and 10 re-

ceive the data. After implementing this serialization structure in DSParLib, it can then

be initialized in the main program and passed as a parameter to be used in the Pipeline

communication between adjacent stages. Ordering can be enabled when instantiating the

Farm parallel pattern.

1 class BlockOutputSerializer : public SenderReceiver<BZipBlockOutput> {

2 public :

3 void Send(MPISender &sender , MessageHeader &msg, BZipBlockOutput &block ) {

4 sender .SendTo(msg, block . buffSize ) ;

5 sender .SendTo(msg, block . in , block . buffSize ) ;

6 };

7 BZipBlockOutput Receive(MPIReceiver &receiver , MessageHeader &msg) {

8 receiver .Receive(msg, &buffSize ) ;

9 char *data = new char[ buffSize ] ;

10 receiver .Receive(msg, data , buffSize ) ;

11 return BZipBlockOutput (data , buffSize ) ;

12 };

13 };

Listing 6.7: Example of data serialization in Bzip2 using DSParLib.

MPR strategy for zero-copy serialization is similar to the other applications previ-

ously shown. Bzip2’s data struct is presented in Listing 6.8. In the MPR version, we append

references to Bzip2’s buffer size and buffer payload to vectors and invoke PublishMulti.

Ordering can be enabled in the Sink process, therefore, programmers do not need to im-

plement extra logic for that.

1 struct bzip2Block {

2 int bufferSize ;

3 char * buffer ;

4 };

Listing 6.8: Bzip2 data struct.
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6.2 Methodology and Environment

In this section, we describe the methodology adopted to execute the performance

experiments. Moreover, we describe the environment used in the experiments. The tests

were executed on LAD (Laboratório de Alto Desempenho) at PUCRS. We used their cluster

that has newer software installed since we need OpenMPI newer releases due to bug fixes

in MPI_Comm_spawn and in Slurm integration. The cluster name is Pantanal, and it has

four nodes. We allocated all of them for the experiments. Each node has two Intel Xeon

Gold 5118 @ 2.30GHz (12 cores, 24 threads) with 192GB of RAM memory. The nodes

are interconnected using four Gigabit-Ethernet networks. Also, each node uses a single

Gigabit-Ethernet network to access data from the distributed file system. InfiniBand is

not available in this cluster. The applications are compiled using GCC version 9.4.0 with

the optimization flag -O3 enabled. For the computer vision application, we use OpenCV

version 4.7.0. OpenMPI is version 4.1.1, and Slurm is version 19.05.5.

In our experiments, we compare parallelizations using MPR framework with re-

spect to DSParLib and MPI versions. We measured the average throughput of the four

applications described in Section 6.1. The throughput was computed via the relation

between the total number of stream data items and the total time execution, namely

num_items/time. We check the result correctness of all applications using MD5 hash and

compare them against a sequential version, except for prime numbers, which result can

be inspected since it returns the total number of primes.

The result graphs showcase the mean throughput of three execution. The stan-

dard deviation is reported using error bars and may not be visible when the value is neg-

ligible. The x-axis shows the number of Compute processes. Note that the graphs do not

depict the total number of active processes running in the cluster. For example, we do

not consider the Source and Sink to plot the graphs. This decision extends to all versions:

MPR, DSParLib, and MPI. Moreover, in MPR, we do not consider the Manager Processes to

plot the graphs.

OpenMPI enables us to configure the process allocation strategy. We tested var-

ied configurations using custom hostfiles with different mapping fashions and selected

the best one to report on the results. Therefore, we reserved two nodes out of four

from our cluster to isolate the Source and Sink processes. For MPR, we have mapped

all the Manager Processes (four processes in our experiments) within the same node as

the Source. In the remaining two nodes, we allocate all the processes that will compute

the application. We configured each node to allow only processes equal to its total number

of physical cores. This means that each node can allocate up to 24 Compute processes,

totalizing 48 Compute processes in two nodes. In addition to that, we configured OpenMPI

to map by slots and to bind processes to cores. This configuration choice was also made
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by DSParLib’s work [64], but their results show better scalability since they were able to

run in a cluster with InfiniBand. However, the OpenMPI version they used was OpenMPI

1.4.5, which release dates from 2011.

We report the results in the following order: (1) In Section 6.3, we compare MPR’s

performance against DSParLib and handwritten MPI. The goal of this experiment is to posi-

tion MPR against state-of-the-art solutions. We configured MPR to avoid many of its com-

munication messages between Stage Processes and Stage Managers. However, some of

the communications continue to be active during the Pipeline execution. We expect MPR

to introduce higher overhead because it is the only dynamic runtime, while the other two

are static. (2) In Section 6.4 we executed the same MPR version using different rates for

Stage Processes to communicate with Stage Managers. The goal is to investigate the over-

head impact of the configuration messages exchanged between Stage Processes and their

Managers. (3) Finally, in Section 6.5 we report results with different internal data buffer

size configurations. The goal is to assess the impact of the buffer size on the performance.

6.3 MPR Performance Evaluation

This section presents the results of our performance evaluation. Figure 6.2 shows

the throughput achieved by the Mandelbrot Set streaming application using MPR, DSPar-

Lib, and handwritten MPI implementations. The workload used in this application con-

sisted of 6,000 stream data items with a computational intensity of 10,000 iterations. Our

results indicate that the parallel versions of the application perform similarly across all

three implementations. Specifically, the application scales up to 48 processes, and MPR’s

performance is comparable to that of DSParLib and MPI for applications with similar char-

acteristics to the Mandelbrot Set.

Figure 6.3 showcases a different situation. As can be seen, the application scales

only up to eight Compute processes in all versions. Moreover, the MPR version performs

slightly worse, up to 6.1% less throughput, compared to the others. In Lane Detection,

the Source process read an input video and publishes in the Pipeline each frame as a

new stream data item. Due to a large amount of data being transferred through the net-

work, we attribute the lack of scaling as a consequence of network congestion. DSPar-

Lib’s work [64] did not observe such behavior in their experiments. However, their tests

were executed in a different cluster equipped with InfiniBand. The cluster we use in our

experiments does not provide an InfiniBand network. Since the network is already con-

gested, the extra messages MPR uses for communication are the reason for achieving

lower throughput compared with others. DSParLib and MPI perform similarly, although,

in some degrees of parallelism, DSParLib achieves up to 1.1% less throughput than MPI.

MPR and DSParLib use extra messages to communicate data between stages. Their com-
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Figure 6.2: Mandelbrot Set throughput comparison.

munication starts with a header message followed by the payload data messages. This

explains the reason MPI achieves better throughput in Lane Detection.

0 8 16 24 32 40 48
Number of Processes

20

30

40

50

60

70

Th
ro

ug
hp

ut
 (i

te
m

s/
se

c)

Comparison in Lane Detection

MPR
DSParLib
MPI

Figure 6.3: Lane Detection throughput comparison.

Figure 6.4 presents the performance results obtained in the Prime Numbers appli-

cation. At this point, we have already noted that the network bandwidth has a significant

impact on performance due to our cluster configuration. The same explanation we gave
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before about the number of messages applies here. In fact, Prime Numbers exhibits better

the impact of both MPR and DSParLib using an extra header message. In Prime Numbers,

the data exchanged between processes is very small (only an integer or boolean). There-

fore, adding the header message that carries extra data can increase the overhead. For

instance, MPI sends a single integer (4 bytes) while DSParLib sends an extra header (20
bytes) in addition to the data integer (4 bytes). MPR’s header uses 12 bytes in addition to

the data integer. However, MPR shows a higher overhead, which results in a throughput

10.1% lower than DSParLib and 33.4% lower than handwritten MPI at the maximum degree

of parallelism (48 Compute processes). One of the differences MPR has with respect to the

other versions is that it implements an on-demand protocol in the Sink while others do not.

Therefore, additional idle time exists between the time the Compute processes finished

their processing and a new request is sent. For instance, in Prime Numbers, some stream

data items(i.e., even numbers) process almost instantly. Therefore, the Compute process

could start processing another data item, however, since we implemented on-demand,

it must first wait for a request message. These results are interesting and give us new

insights regarding MPR optimizations. We already have two ideas that will be tested in the

future: (1) The first alternative is removing the on-demand protocol from the Sink. In our

definition, the Sink must always be available to accumulate the results. If any computa-

tional logic is needed, it must be moved from the Sink stage into an extra Compute stage

that precedes the Sink. (2) Implement a second data buffer for the output connections.

Currently, MPR implements a buffer only in the input connection in such a way that the

input raw messages are stored until request messages ask them to be computed. By in-

troducing an additional data buffer in the output connection, a Stage process can already

process a number of messages that equals the output data buffer size and keep their

results buffered until a request message arrives.

Our main focus at this stage is to assess the impact of the on-demand algorithm

and to design the mechanisms that can be applied when MPR is extended to support

multiple Pipeline stages. Our plan is to relocate the mechanism currently implemented

between the Compute and Sink stages to be utilized between two Compute stages. How-

ever, we have also noticed that the on-demand protocol could become a bottleneck when

it is employed by sequential stages. For example, since there is only one Sink process

to receive messages, Stage Processes will always send data to this single process which

does not improve load-balancing. We will take this into account for future extensions of

MPR. By doing so, we expect to enhance MPR’s capability to handle more complex Pipeline

graphs and improve the performance of various stream processing applications.

Figure 6.5 presents the results for Bzip2 compression application. In this appli-

cation, we observed the same behavior as Lane Detection and Prime Numbers, that the

network impacts the performance. In Bzip2, the Sink application code is responsible for

writing the compressed data blocks on the disk. In our cluster configuration, writing to a
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Figure 6.4: Prime Numbers throughput comparison.

distributed file system transfers data using a single Gigabit-Ethernet network. As can be

seen in the graph of Figure 6.5, some degrees of parallelism show higher values for the

standard deviation due to the variation in network congestion and disk usage. We can

observe that MPI is the version with higher variation compared to the other two versions.

Both MPI and DSParLib achieve similar performance in most parallelism degrees. MPR is

the version that achieves the worse throughput. At the maximum degree of parallelism (48
Compute processes), MPR achieves a throughput 22.4% lower than MPI and 25.4% lower

than DSParLib. These results reveal that maintaining the on-demand strategy currently

implemented for the Sink shows significant overhead in some situations. For example,

in Bzip2 the Sink stage writes the compressed blocks in the disk. Meanwhile, it cannot

send enough requests to avoid Compute processes from becoming idle. There is a gap

between the moment the Sink receives the data and the moment it sends a new request

to the Compute processes, making them becoming idle in the meantime.

6.4 MPR Management Evaluation

In addition to the comparison results between MPR and other parallelizations, we

tested some MPR mechanisms and their impact on the application execution. Figure 6.6

showcases the results for different applications when changing the communication rate

of Stage Processes. In the previous experiments, we increased the period to a value that

would make Stage Processes never communicate with their Stage Managers. In Figure 6.6,

this is represented by the Never label. Additionally, we configured the processes to com-



118

0 8 16 24 32 40 48
Number of Processes

20

40

60

80

100

120

Th
ro

ug
hp

ut
 (i

te
m

s/
se

c)

Comparison in Bzip2
MPR
DSParLib
MPI

Figure 6.5: Bzip2 throughput comparison.

municate each 0.1 seconds (Periodically (100ms)) and each 1 second (Periodically (1s)).

It is worth noting that it is not guaranteed that Stage Processes will communicate exactly

every 100 milliseconds, for example. The reason is that processing a certain stream data

item can take longer than the specified period. In that case, MPR cannot stop the ap-

plication execution at any point and synchronize with the Managers. Instead, it finishes

executing, and after that, it checks if the period between the last message exchanged

(with the Manager) and the current clock is greater than the specific period (i.e., 100ms).

MPR ensures that after a given interval period, based on the local Stage Process clock,

Stage Processes will make an effort to synchronize. However, there is no guarantee that

they will communicate at the exact same time. For example, if the period is set to 100

milliseconds, some processes will communicate at this exact moment while others com-

municate at 150 milliseconds. No process blocks another during normal execution, they

simply communicate their status and continue the Pipeline execution. If synchronization

is required (i.e., adding or removing processes), then processes are blocked until all pro-

cesses arrive.

Figure 6.6 shows that the communication rate can have a significant impact on

performance, especially when the network becomes a bottleneck. Figures 6.6a and 6.6d

are applications that showed less impact due to network congestion. To be precise, Bzip2’s

performance has deteriorated due to congestion in the single network that connects the

nodes to the distributed file system. Remember that our cluster uses four network links,

so the other three are available. In both applications, the configuration rate of 1 second

showed similar trends to the version that never communicates. This happens until the
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Figure 6.6: Evaluating the impact of different communication rates.

degree of parallelism with 16 Compute processes. After that, the throughput starts to de-

crease. For example, in Figure 6.6a the throughput at the maximum degree of parallelism

with 1-second periods is 11.1% lower than the version that never communicates. When

the rate is increased 10 times (100ms), the throughput is 18.6% slower than the version

that never communicates. In Bzip2, since most Stage Processes are idle when they do

not receive requests from the Sink, extra communications during the idle time do not de-

crease the throughput. However, when the communication becomes too frequent, we can

observe that it can impact on performance up to 29.2 lower throughput than the version

that never communicates. In the other two Figures 6.6b and 6.6c, we can observe that

the exchange message period has a higher impact since network congestion is a problem.

In Lane detection, the throughput of the most frequent version is up to 44.3% lower than

the best MPR version. In Prime Numbers, the difference is smaller but still significant,
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achieving a peak of 34.8% worse throughput compared to MPR best version that never

communicates.

6.5 MPR Buffering Evaluation

Finally, we conducted a supplementary experiment to investigate the impact of

buffer size on application execution. In the MPR version used in the comparison with

DSParLib and MPI, we configured the buffer size to be 1. In the graphs of Figure 6.7, we

added two additional buffer size configurations: buffer size 10 and buffer size 100. These

sizes stand for the number of stream items that can be buffered at a time. As can be

seen in the Lane Detection and Prime Numbers applications (Figures 6.7b and 6.7c), the

different buffer size configurations produced comparable throughput measures. In the

Prime Numbers application, we expected the higher buffer size configuration to decrease

throughput since the workload is highly unbalanced. For example, if a process fills its

100-sized buffer with computationally intensive prime numbers, the workload will become

unbalanced because all other processes must wait for this one. However, we believe that

network congestion mitigated the issue of unbalanced workload. In the Mandelbrot Set

application shown in Figure 6.7a, both buffer sizes 1 and 10 show similar performance,

while the buffer size of 100 decreases application performance. In this application, some

processes buffered too many computationally intensive stream data items, which unbal-

anced the workload. The larger the buffer size, the greater the likelihood of the application

becoming unbalanced. However, buffering items reduces idle time as data is always ready

to be processed. Finally, Figure 6.7d shows the results for Bzip2, where both buffer sizes

(10 and 100) showed comparable performance until the end, when both versions intro-

duced load-balancing issues to the application execution. The problem with MPR in Bzip2

was that requests were not sent rapidly enough by the Sink, causing Compute processes

to become idle. We selected a workload for Bzip2, an ISO file of size 704 MB, which, after

compression, becomes 658 MB. Using Bzip2’s default block size of 900 KB, we have a total

of 783 stream data items. For example, if processes are quick enough, only 8 processes of

buffer size 100 can take all the workload. This explains the behavior of Bzip2. The results

demonstrate that adding more processes does not significantly improve application per-

formance since the main bottleneck is the Sink. In fact, having fewer processes computing

makes them less idle as the Sink has fewer processes to request data for.
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Figure 6.7: Evaluating the impact when varying internal data buffer sizes.

6.6 Final Remarks

In this section, we presented a performance evaluation to position MPR with re-

spect to state-of-the-art solutions. Moreover, we evaluated two MPR features, one is the

rate at which processes synchronize, and another is the data buffer size.

First, we presented a performance evaluation of MPR by comparing its paralleliza-

tion results with equivalent DSParLib and manually implemented MPI versions. The results

showed that MPR achieves comparable throughput with respect to the others in Mandel-

brot Set. However, we observed that in the remaining applications, the network becomes

a bottleneck due to our cluster configuration. Therefore, MPR’s performance measure is

worsened due to the additional messages it uses to operate the Pipeline. In these cases,

MPR’s overhead is higher than the other versions. Furthermore, the experiments with
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Bzip2 revealed that additional application code in the Sink can introduce idle time in MPR’s

Pipeline execution due to the on-demand scheduler. These results provided new insights

that will aid in enhancing MPR in future versions. With these experiments, we can conclude

that MPR offers negligible overhead in applications that are not communication-intensive,

such as Mandelbrot Set. But it can introduce extra overhead when communication is in-

tensive, and the network bandwidth is a bottleneck. Further experiments in a cluster with

more nodes and higher network bandwidth will be conducted to refine our analysis and

obtain more accurate conclusions.

In MPR’s features evaluation, the experiments revealed that configuring differ-

ent values can impact the application’s performance. The experiments, when changing

the rate at which processes halt the Pipeline normal execution and communicate with

the managers, showed that the impact is significant. These results suggest that a self-

adaptive algorithm can exploit this feature and dynamically set the best rate on-the-fly.

For example, when the Pipeline execution is balanced and stable, the synchronization rate

can be lower. However, when the Pipeline execution is experiencing workload variation,

the rate can be increased, trading-off between throughput and responsiveness. In our ex-

periments with Mandelbrot Set, the throughput trade-off is 11% for a 1 second rate com-

pared to the version that never communicates. In other applications, since the network is

a bottleneck, we obtained throughput measures up to 44.3% lower than the version that

never communicates. In addition, the experimental evaluation using different buffer size

configurations revealed that it can impact the application execution performance. Our

experiments showed that increasing the buffer size can negatively impact throughput, as

larger buffer sizes tend to introduce load-balancing issues. In our experiments, we cannot

observe throughput gains since the source is always available to send new items as the

input is already loaded in memory. Therefore, buffering them has almost no impact on

performance. Nonetheless, in real-world applications, sources can delay sending items,

and we expect the buffer size to have a greater impact in this situation.

MPR is an ongoing project that we plan to continue contributing to in our re-

search group. Future versions of MPR will address the insights we have gained from our

experiments. Overall, our experiments have shown that MPR’s dynamic runtime system

can achieve performance comparable to a static MPI implementation. The performance

degradation we observed in our results is mostly due to extra messages MPR is sending to

coordinate the Pipeline execution. There is the possibility of reducing the number of mes-

sages sent by removing some mechanisms, such as the on-demand feature. However,

we are not convinced this is the best approach. Our experiments were conducted on a

four-node cluster with limited network bandwidth, which limits the expressiveness of our

findings. A second set of experiments in a different cluster is mandatory to improve our

understanding of MPR’s runtime system behavior. And from that point, we will take proper

actions to optimize MPR’s runtime system.
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7. MPR ADAPTABILITY EVALUATION

In this chapter, we present the evaluation of MPR’s external autonomic manage-

ment module. Our goal with this experimental implementation is to investigate if the

current MPR interface shows flexibility and portability for programmers implementing self-

adaptive algorithms. We have implemented a self-adaptive algorithm based on a Monitor-

Analysis-Planning-Executing (MAPE) feedback loop [79].

In the Monitoring stage, the prediction models are fed with the current state of

the streaming application, including the environment information and the user goals. The

analysis stage compares the gathered application statistics with the user-specified goals.

Depending on the parameters, these comparisons implement complex models; for in-

stance, the goal can be either a simple throughput measure or a quality attribute such as

maximum efficiency. Planning determines the runtime system adaptations necessary to

satisfy the goals. Creating a plan is challenging when the self-adaptive runtime system’s

parameters do not exhibit a clear output effect. For example, increasing the number of

parallel replicas executing a given application does not guarantee performance improve-

ment. Some complex models may be required for this step, such as machine learning

techniques. The execution step, finally, synchronizes with the runtime system and applies

the actions decided by the self-adaptive algorithm.

In this work, we designed MPR to ease the synchronization steps of the first and

last MAPE stage activities: Monitoring and Execution. MPR provides Pipeline execution

metrics for all stages and reads configuration metrics that automatically reconfigure the

runtime system from Json files. Any MAPE self-adaptive system implementation can inter-

act with these files to adapt the Pipeline Graph execution.

7.1 Self-adaptive Algorithm

Listings 7.1 and 7.2 present the algorithm, split into two parts. The first part,

depicted in Listing 7.1, represents the monitoring step. It reads from the output statistic

files generated by MPR. The first lines of code (lines 1 to 7) provide synchronization so

that the self-adaptive algorithm and the Pipeline execution can run concomitantly. The

implemented strategy periodically tries to open the statistics file (line 2). If an exception

is thrown, it sleeps for 1 second (line 6) and tries again. The algorithm will successfully

open the statistic file when the Pipeline Graph starts executing and MPR starts generating

output to this file.

The Pipeline statistics are organized in different output files. There is one file

for each Pipeline stage. The files are periodically updated by the Stage Managers, each
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one is responsible for its own Pipeline stage statistics file. These files contain the num-

ber of items consumed and produced in a time interval, which interval can be configured.

However, MPR does not guarantee that the files are updated exactly at the time interval

specified by the programmer. In addition to the time interval, each Stage Manager only up-

dates its statistics when all Stage Processes have reported their consumed and produced

items. Due to this characteristic, we adjusted the self-adaptive algorithm. As shown in

Listing 7.1, after MPR starts generating the statistics, the self-adaptive algorithm will start

reading them. Since statistics are not generated regularly, we designed the algorithm

to accumulate all the timestamp results between its last timestamp read and the current

timestamp. Timestamps are generated in milliseconds with the format: 1676593622000.

So, there is a chronological order between them. The first time our algorithm reads the

stats file, the lastTimestamp fails in the condition of line 9 and skips the computation,

moving to the next loop iteration.

1 while (true) do

2 try

3 f i l e I n = open( "stats_stage2 . json" )

4 break

5 exception

6 sleep (1)

7 end while

8 itemsProduced = 0

9 i f lastTimestamp then

10 startCounting = false

11 for currentTimestamp in json [ "stage2" ] do

12 i f startCounting then

13 for compute in json [ "stage2" ] [ currentTimestamp] do

14 itemsProduced += json [ "stage2" ] [ currentTimestamp ][compute] [ "ItemsProduced" ]

15 end for

16 end if

17 i f (currentTimestamp == lastTimestamp) then

18 startCounting = true

19 initTimestamp = currentTimestamp

20 end if

21 end for

22 end if

23 lastTimestamp = max( json [ "stage2" ] )

24 duration = ( lastTimestamp − initTimestamp) / 1000

25 throughputApplication = itemsProduced / duration

Listing 7.1: Implementation of MPR’s adaptability algorithm (Part 1).

In the next iteration, the execution has stored its lastTimestamp and executes

the logic between lines 9 and 22. For that, the self-adaptive algorithm iterates all times-

tamps generated by MPR. When it reaches the lastTimestamp, it enters the condition of

line 17. Then, startCounting is set to true (line 18) and initTimestamp is set. From this
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point on, we start counting/accumulating all the produced items between the initTimestamp

and the maximum timestamp generated by MPR. The counting considers all Compute pro-

cesses (line 13) since the number of active processes can change. After accumulating the

total number of items produced, it updates the lastTimestamp (line 23) and computes the

time interval between the initial and last timestamps (line 24). We use the total number

of items and the duration to compute the application throughput (line 25).

After we have processed the current application throughput in the monitoring

step, we compare this metric with the user-specified goals. Currently, our self-adaptive al-

gorithm tries to scale up or scale down the application in order to reach a throughput goal.

Listing 7.2 showcases the second part of the algorithm, which implements the analysis

and planning steps. The comparison analysis between the application and goal through-

puts is done in lines 3 and 10. For each situation, we implemented proper actions. For

example, if the application throughput is higher than the goal (line 3), then the applica-

tion has to scale down, meaning that processes should be removed. We have included a

static model to our self-adaptive algorithm, which uses four scale factors (lines 5 to 8). If

the application has a throughput 100% higher than the goal, we remove 4 processes (line

5). If the throughput is 50% or is 25% higher than the goal, we remove 2 and 1 process,

respectively. Otherwise, we keep the same amount (line 8). After, we use the values read

from the parameters.json file (lines 1 and 2) and update them accordingly (line 9).

1 f i l e I n = open( "parameters . json" )

2 json = f i l e I n . read ( )

3 i f ( throughputApplication > throughputGoal ) then

4 currentValue = json [ "stage2" ]

5 i f ( throughputApplication / throughputGoal > 2) then factor = 4

6 else i f ( throughputApplication / throughputGoal > 1.5) then factor = 2

7 else i f ( throughputApplication / throughputGoal > 1.25) then factor = 1

8 else then factor = 0

9 i f ( currentValue > factor ) then json [ "stage2" ] = currentValue − factor

10 else i f ( throughputApplication < throughputGoal ) then

11 currentValue = json [ "stage2" ]

12 i f ( throughputApplication / throughputGoal < 0.5) then factor = 4

13 else i f ( throughputApplication / throughputGoal < 0.75) then factor = 2

14 else i f ( throughputApplication / throughputGoal < 0.9375) then factor = 1

15 else then factor = 0

16 i f ( currentValue+factor < 48) then json [ "stage2" ] = currentValue + factor

17 end if

18 f i leOut = open( "parameters . json" )

19 f i leOut . write ( json )

Listing 7.2: Implementation of MPR’s adaptability algorithm (Part 2).

When the application throughput is lower than the goal, our self-adaptive algo-

rithm adds more processes (lines 10 to 17). The logic is equivalent to the previously

explained part. However, we use different configuration thresholds. If the application
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throughput is 100% lower than the goal, we add 4 processes (line 12). If the application

throughput is 25% lower, or 6.25% lower, we add 2 and 1 processes, respectively. Other-

wise, no new process is spawned by MPR (line 15). We set 48 as the maximum number

of allowed processes because it represents the number of available physical cores in our

cluster (line 16). Finally, the updated values are written back to the parameters.json

file. Eventually, it will be read by MPR, which completes the MAPE loop by executing the

adaptation modifications. Note that we use different values to decide the adaptation fac-

tor for adding or removing processes. In MPR, the synchronization required for removing

processes is heavier than the one for adding processes. Therefore, we configure the dele-

tion thresholds to be higher than the addition thresholds. Some complexities arrive when

removing processes: (1) their data buffer needs to be emptied before they can be re-

moved. In MPR’s current version, each Stage Process must empty its buffer by processing

all data. In the future, an optimization can be implemented enabling data to be sent to

another active process instead of processing it. (2) Processes must destroy all communi-

cators and recreate them with fewer processes. MPI does not offer any interface to shrink

communicators.

7.2 Methodology and Environment

In this section, we describe the methodology adopted to assess MPR’s adaptabil-

ity support. Moreover, we describe the environment used in the experiments, which is

the same as the previous performance experiments. It is a cluster with four nodes, each

node has two Intel Xeon Gold 5118 @ 2.30GHz (12 cores, 24 threads) with 192GB of RAM

memory. The nodes are interconnected using four Gigabit-Ethernet networks. Also, each

node uses a single Gigabit-Ethernet network to access data from the distributed file sys-

tem. InfiniBand is not available in this cluster. The applications are compiled using GCC

version 9.4.0 with -O3 enabled. OpenMPI is version 4.1.1, and Slurm is version 19.05.5.

OpenCV is version 4.7.0.

In our experiments, we characterize MPR’s adaptability by running the applica-

tion’s Pipeline Graph we previously presented (Mandelbrot Set, Lane Detection, Prime

Numbers, and Bzip2) along with our self-adaptive algorithm. MPR is written in C++, while

the self-adaptive algorithm is written in Python. We ran experiments for each streaming

application multiple times and selected the two most representative results. Differences

exist between the executions because distributed environments are unpredictable. There-

fore, the self-adaptive algorithm must be ready to deal with this dynamic environment and

make optimal decisions to achieve the system’s goal.

The result graphs showcase the mean throughput variation when the number of

processes is adapted. The x-axis represents the timestamps reported by MPR during the
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Pipeline execution. The number of timestamps varies depending on the application’s total

execution time. Then, the right y-axis shows the number of processes. This number refers

to the amount of active Compute processes, we do account for the Source, Sink, and Man-

agers. The number of processes is depicted using a step curve, where each point refers

to a timestamp. The left y-axis showcases three information: the mean throughput (gray

columns), and the throughput goal and its trend (lines). The mean throughput is calcu-

lated for each timestamp reported by MPR. The throughput trends are obtained using a

function that fits the data within a 4th-degree polynomial function using the least squares

method. In addition, the throughput goal is the configured value for each application in

the self-adaptive algorithm.

We configured MPR with an intrusive reconfiguration strategy that makes the run-

time system frequently adapt the number of processes only for experimental reasons. A

practical distributed application would configure less frequent self-adaptations. We used

a time interval of 100ms for the Stage Processes to communicate with their Stage Man-

agers. Then, we set each Stage Manager with a time interval of 300ms to write the statis-

tics in the Json file. In addition, we configured the Pipeline Manager to read from the

parameters.json each 500ms to check the number of processes and reconfigure the run-

time accordingly. Finally, we configured the self-adaptive algorithm to read the statistics

with a time interval of 1 second. MPR runtime systems can potentially adapt each 1 sec-

ond, which is a relatively elevated number of reconfigurations for a distributed system. For

example, each reconfiguration halts the Pipeline application execution until the number of

processes is adapted. The data internal buffer size is set to 1.

7.3 Adaptive Strategy Characterization

In this section, we report the self-adaptive strategy characterization results. We

aim to conduct a first experimental evaluation to investigate if MPR is flexible and can

self-adapt the runtime system when integrated with self-adaptive algorithms. We do not

perform analysis on performance because this is the first time a self-adaptive algorithm is

implemented on MPR. We have considered comparing with the self-adaptive mechanisms

proposed in [47], a state-of-the-art strategy for adapting the number of processes. How-

ever, it was not feasible due to the short time of the master’s studies. Therefore, we aim

to evaluate MPR’s self-adaptive interface and its capability to automatically reconfigure

the runtime system by adding and removing processes on-the-fly.
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7.3.1 Mandelbrot Set

Figure 7.1 depicts the results for two executions in Mandelbrot Set. The mandel-

brot pattern makes the first and last stream items less computationally intensive. This

explains why the throughput beginning and end tend to be high. Initially, the through-

put is not expressive because we start the application execution with a single Compute

process. When the throughput falls below a certain threshold, the self-adaptive algorithm

adds two more processes (before timestamp 10). The application scales well, as these

processes are quickly removed (after timestamp 10). Since the synchronization to remove

is heavier, the overall application throughput falls (around timestamp 15). After that, the

self-adaptive algorithm starts adding more processes until the application stabilizes. More

processes are added after timestamp 40 since the computational intensity is slowly in-

creasing. But in the end (after timestamp 70), the workload is very small, and the overall

throughput increases. The execution from Figure 7.1a catches the pattern and starts de-

creasing the number of processes, while the second execution from Figure 7.1b did not.

After that, the application execution finishes.
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Figure 7.1: Adaptive strategy characterization on Mandelbrot Set.

7.3.2 Lane Detection

Figures 7.2 depicts the two execution results for the Lane Detection applica-

tion. In this application, we present two different self-adaptive characterizations the self-

adaptive algorithm provides. In our adaptability strategy, we assume that adding new pro-

cesses always increases throughput while removing processes decreases it. However, this

is not the case in Lane Detection. The previous performance comparison results revealed
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that Lane Detection does not scale until the maximum degree of parallelism. In fact, it

stops scaling early, around 8 Compute processes. Therefore, the first execution depicted

in Figure 7.2a shows the self-adaptive algorithm stabilizing after setting 16 processes. In

the first two decisions (before timestamp 10), it adds 8 more processes to increase the

throughput. Since the reconfiguration adds extra overhead, which reduces the overall

throughput of the application, the algorithm adds more processes until 16. The second

execution results are illustrated in Figure 7.2b. As can be seen, in this case, the self-

adaptive algorithm keeps adding more processes until it reaches the maximum threshold.

First, its decision is not optimized since it considers adding more processes to increase

performance. Secondly, by making the runtime repeatedly self-adapt, it introduces con-

figuration overhead that decreases the overall application throughput. Therefore, it never

achieves its goal during adaptation. However, the application throughput stabilizes after

timestamp 110.
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Figure 7.2: Adaptive strategy characterization on Lane Detection.

7.3.3 Prime Numbers

The Prime Numbers results characterization are depicted in Figures 7.3. This

streaming application has an unbalanced workload. Moreover, the computational inten-

sity increasingly grows for each new stream item. The workload increase can be seen in

the constant parts of the execution. For example, between timestamps 10 and 40 in Fig-

ure 7.3a and between timestamps 20 and 40 in Figure 7.3b. Both executions are similar

since they attempt to follow the workload increase by adding new processes. Between

timestamps 10 and 20, the executions differ in decisions. The first maintains the number

of processes, while the second removes some processes. Each time processes are re-

moved, we see a bigger decrease in throughput, even if just a single process is removed.
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The gaps after timestamp 40 are due to Prime numbers’ unbalanced workload. Some time

periods that get more computationally intensive stream data items to process will pro-

duce fewer items. However, our self-adaptive algorithm accumulates all items produced

in between the time intervals. Therefore, the peaks’ interference is reduced during the

monitoring.
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Figure 7.3: Adaptive strategy characterization on Prime Numbers.

7.3.4 Bzip2

The final application is Bzip2, and we showcase its two execution results in Fig-

ures 7.4. As can be seen, this application also has an unbalanced workload. There is a

significant variation between the throughput MPR measures. However, the self-adaptive

algorithm follows these variations by adding and removing processes. The two execution

are similar until timestamp 20, except at the end when one execution adds another pro-

cess while another removes it. The first execution, which adds a new process (Figure 7.4a),

has a smoother transition to 16 processes around the timestamp 30. The second execu-

tion removes one process two times (Figure 7.4b) and suddenly detects it should add 4
processes at once to compensate for the throughput loss (after timestamp 30).

7.3.5 Adaptability Evaluation

In addition to the characterization graphs, we measured the time spent in the

reconfiguration phases. This is shown in Figure 7.5. We split the measured time by sep-

arately measuring the time spent adding and banning processes. As can be seen, the

time during initialization is minimal since we start the application with a single Compute
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Figure 7.4: Adaptive strategy characterization on Bzip2.

process and scale up until achieving the desired throughput goal. In the characteriza-

tions graphs previously explained, we can observe many adaptation decisions were to-

ward adding more processes. Still, the time spent in this phase is acceptable compared to

the computation time. In Prime Numbers, it represented 10.38% while in Lane Detection,

it is 7.38%. These two applications do not show expressive computational time when re-

configuring to remove processes. Lane Detection does not remove processes, while Prime

numbers rarely do so (0.33% of execution time). Still, ban time is lower than others since,

during our experiments, only small workload items (almost instant computation) were in

the buffer when reconfiguration is needed. For other applications, ban time is significantly

higher since stream items are more computationally intensive, and everyone waits for the

buffers to be empty. This can be seen in Mandelbrot Set and Bzip2, where ban time is

12.46% and 2.96%, respectively.

7.4 Final Remarks

In this section, we reported the self-adaptive algorithm characterization results.

Since we do not measure throughput for performance comparison, we configured the self-

adaptive strategy to frequently change the number of processes with the goal of stressing

MPR’s self-adaptive capabilities. Ideally, distributed systems would use a less frequent

adaptation rate to minimize reconfiguration overhead. For example, our experiments

showed that in Mandelbrot Set there was a situation in which a second reconfiguration

immediately succeeded a previous reconfiguration (stack of eight processes being added

in a single timestamp). This means that the Pipeline did not compute any stream data

item between two consecutive self-adaptations and only reconfigured.
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Figure 7.5: Evaluation on the execution time measured during adaptability.

In the experiments, we showed that our self-adaptive algorithm (based on a MAPE

feedback loop) was able to cope with MPR and read the Pipeline application execution met-

rics (Monitoring stage) while applying the decision actions (Execution stage). Internally,

the self-adaptive algorithm implements the analysis stage and adopts a static strategy

to plan the adaptations (Analysis and Planning stages). The results showed that the self-

adaptive algorithm was able to adjust the number of parallel processes without user in-

tervention. Also, the execution time evaluation revealed that the overhead for constantly

changing the number of processes represents an acceptable percentage of the applica-

tion’s total execution time. In all applications, the execution time spent reconfiguring to

add processes is near 10%, while removing processes varied between 3% and 12%. How-

ever, the characterization results from the self-adaptive algorithm showed optimization

opportunities. Our primary goal in conducting these experiments was not to implement

an optimal self-adaptive algorithm but to test the self-adaptive capabilities of MPR. Going

forward, future research could focus on developing a more sophisticated planning stage

that incorporates machine learning techniques to accurately predict workload variation

and anticipate adaptation decisions.

With these experiments, we concluded that MPR self-adaptive interface is flex-

ible, expressive, and portable among different programming languages. Moreover, al-

though our self-adaptive algorithm does not make optimal decisions, it was enough for

us to conclude that MPR’s runtime system supports self-adaptive distributed stream pro-

cessing. In this thesis, we have laid the foundation for further research by developing a

self-adaptive runtime system on top of MPI. MPR provides other researchers with the tools
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necessary to implement their own self-adaptive algorithms. The runtime system is flexi-

ble to support other monitoring metrics beyond the number of items sent and received we

implemented in this version. Also, MPR’s runtime system implements a synchronization

protocol that enables processes’ to agree on a global Pipeline state. This opens the pos-

sibility of extending MPR via additional parameter configurations to optimize the Pipeline

execution. For example, programmers can leverage the built-in synchronization to add

new functionalities other than adding or removing processes on-the-fly.
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8. CONCLUSION

In this work, we have tackled the issue of adaptability in distributed streaming

systems and introduced MPR, a new framework aimed at simplifying the development

of self-adaptive distributed stream processing applications. The framework incorporates

higher-level programming abstractions targeting application programmers. The abstrac-

tions are dynamic process management, scheduling, data communication, serialization,

load balancing, ordering, and back pressure. Thanks to these programming abstrac-

tions and an easy-to-use API, MPR becomes a viable solution for implementing distributed

streaming systems in C++. Some features we included are not unique and are already

tackled by solutions from our related work. Still, other features that MPR presents are

novel to distributed stream processing in C++, namely dynamic process management,

serialization abstractions, and back pressure. The last two features are available in MPR’s

API for application programmers, but more experiments will be conducted to conclude

and consolidate these MPR features. Dynamic process management is rarely used by

programmers to implement MPI programs, as revealed by recent surveys on MPI usabil-

ity [50, 44]. In this work, we fully employ MPI’s dynamic process creation, and in addition

to that, we also introduced a new strategy to deal with dynamic Pipelines based on recent

MPI specifications. The strategy was integrated with MPR’s runtime system to support

orchestrating and executing dynamic computations that may encounter variations during

execution time. We have designed a novel runtime system that includes algorithms to

handle dynamic process creation or removal, Pipeline job assignment, data management,

and a leader-based synchronization protocol to coordinate MPI’s processes.

To expose the self-adaptive capabilities, we have implemented a second API in

MPR that allows self-adaptive algorithms to access Pipeline metrics and configure Pipeline

execution parameters on-the-fly. Our focus was on making this interface portable, and

we achieved this by using external Json files to exploit adaptability in MPR. The MPR run-

time system can automatically reconfigure itself by reading configuration parameters from

these files, and it can also report Pipeline execution metrics on them. The use of external

Json files allows self-adaptive programs written in any programming language to commu-

nicate with MPR’s runtime system. As a result of our work, other researchers and pro-

grammers can quickly test and evaluate novel self-adaptive algorithms, strategies, and

optimizations using MPR. We believe that MPR’s runtime system on top of MPI can be a

valuable benchmark for comparing and testing new distributed optimizations and self-

adaptive algorithms.

We conducted a performance evaluation on MPR parallelizations using stream

processing applications from different domains. The performance experiment’s goal was

twofold, we aimed to compare MPR’s performance with respect to DSParLib and handwrit-

ten MPI versions and evaluate two MPR features. The results demonstrated that MPR’s
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overhead is negligible in applications that are not communication-intensive. But the re-

sults also showed that MPR can introduce extra overhead when communication is intensive

and the network bandwith becomes a bottleneck. Furthermore, the experiments evaluat-

ing MPR’s features have revealed that they can impact the application’s performance. The

results indicate that self-adaptive algorithms can exploit these parameters by changing

their values during execution time to improve the Pipeline execution performance or re-

sponsiveness.

In addition, we also conducted experiments to evaluate and characterize MPR’s

adaptability capabilities. We showed that MPR supports integration with feedback loop

autonomic management systems. For that, we implemented a self-adaptive algorithm

in Python. It decides the number of processes necessary for achieving the throughput

goal specified by the application programmer. Our designed strategy uses a dynamic

scaling factor based on how far the application throughput was from the user-specified

goal. The characterization results revealed that MPR can effectively adapt the runtime

system by adding or removing processes during execution time. Thanks to this work,

others can use and extend MPR’s runtime system to implement and test their own self-

adaptive algorithms written in any programming language.

8.1 Future Work

This thesis revealed many interesting research directions and possibilities for fu-

ture work. In addition, we plan to continue the work in this thesis by extending the ex-

periments and optimizing MPR’s runtime system. We will make MPR publicly available to

enable other researchers to use it to develop stream processing applications and evaluate

their own self-adaptive algorithms.

• Investigating fault-tolerance capabilities. While we have initiated a study on this

topic, our focus has been on adaptability due to time constraints. Previous research

works have explored fault-tolerance in MPI [41, 18, 51, 73, 72, 56]. However, these

works mainly address the static aspects of MPI, and their proposed recovery solu-

tions are not suitable for stream processing. As such, developing fault-tolerance

solutions that target the dynamic runtime of MPR or other dynamic workloads is an

open research challenge that requires further investigation.

• Extending MPR to support other parallel programming paradigms. Currently, MPR

supports stream processing via the standard Pipeline parallel pattern. In addition,

MPR could also support other programming paradigms, such as dataflow and data-

parallel. For dataflow, MPR employs groups of processes that can be leveraged

to communicate in an all-to-all fashion, enabling stages to communicate in a non-
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consecutive fashion. For example, in a Pipeline, three stages will communicate in a

stage1 to stage2 to stage 3 fashion. By extending MPR for dataflow, arbitrary com-

munications such as stage1 to (stage 2 and stage 3) should be allowed. To extend

MPR for the data-parallel paradigm, supporting batches would enable some classes

of applications to be implemented in a traditional batch-processing fashion.

• Improving the experimental evaluation. In this work, our experiments were con-

ducted in a small cluster with limited network bandwidth, which was the infrastruc-

ture we had available to execute our tests. Unfortunately, many of our explanations

targeted the experimental environment aspects rather than providing valuable in-

sights about MPR’s runtime system. To address this, we intend to acquire a new

cluster through collaborations with the university, which will enable us to extend our

experimental evaluation. Our plans involve repeating all the experiments in a sec-

ond cluster and comparing the results with the reports presented in this thesis to

gain a better understanding of the MPR runtime system. Furthermore, we plan to

implement new streaming applications with different characteristics than the ones

selected in this work. For instance, developing an application using a Pipeline with

more than three stages to demonstrate how the MPR runtime system handles more

complex applications. Lastly, we also plan to run experiments with an additional

self-adaptive algorithm implemented by an expert in self-adaptability to compare

with the one presented in this work.

• Extending MPR’s adaptability interface to support a wider range of configurable pa-

rameters. In the current MPR version, we support changing the number of processes

during execution time. However, there are other metrics within the runtime sys-

tem that could be dynamically configured as well. For example, the buffer size and

various time intervals are hard-coded in the current implementation. However, by

simply adding a new interface in the configuration Json file, MPR can enable them to

be read from the file and self-adapt the runtime system on-the-fly. In addition, other

optimizations could be included in the runtime system, such as batches, which en-

able the application to trade off latency and throughput. By expanding the range of

configurable parameters, MPR can become more flexible and expressive, which en-

ables programmers to fine-tune the runtime system to their specific use cases and

requirements.

• Extending MPR to enable expert programmers to exploit lower-level features. Cur-

rently, we provide an execution context variable that is received by input and sent

as output for each message. This variable carries some information that is used to

send the messages. A possible extension is adding some interface in this context

variable to enable manual adjust some parameters, such as setting the target pro-

cess or modifying the message header. By doing so, MPR’s flexibility is improved
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and programmers can implement new load-balancing mechanisms and replacement

ordering algorithms.

• Implementing an additional data buffer to store output messages. Currently, MPR

implements a data buffer to store incoming messages with the input stream data

items. However, experiments revealed that MPR could benefit from an output data

buffer in order to reduce idle time. By introducing an additional data buffer in the

output connection, a Stage process can already process the stream items and keep

their results buffered until a request message arrives.

• Optimizing MPR’s reconfiguration mechanisms when removing processes. In the cur-

rent version, MPR’s configuration protocol requires that all processes empty their

buffers to allow them to be effectively removed. However, some applications have

intensive computational stages, which increases the reconfiguration overhead. In-

stead of processing the data, an optimization strategy could enable the stream data

items stored in a process’ internal buffer to be dispatched to another active process,

reducing the overhead.

8.2 List of Published Papers

This section presents the published papers during the master’s studies. A partial

contribution of this thesis was published in a journal paper [55]. In addition, other papers

were published during the master’s studies. They all aim at higher-level programming

abstractions for stream processing and were inspirations in developing MPR, a C++ self-

adaptive distributed stream processing framework. Except [57], which is a paper that

originated from a work as an undergraduate and was revised and published during the

master’s studies.

• Journals

– Júnior Löff; Renato Barreto Hoffmann; Ricardo Pieper; Dalvan Griebler; Luiz Gus-

tavo Fernandes. DSParLib: A C++ Template Library for Distributed Stream Par-

allelism, International Journal of Parallel Programming, vol. 50, Oct 2022, pp.

454–485. [55]

– Júnior Löff; Renato Barreto Hoffmann; Dalvan Griebler; Luiz Gustavo Fernandes.

Combining Stream with Data Parallelism Abstractions for Multi-Cores, Journal of

Computer Languages, vol. 73, Dec 2022, pp. 1–18. [54]

– Renato Barreto Hoffmann; Júnior Löff; Dalvan Griebler; Luiz Gustavo Fernandes.

OpenMP as Runtime for Providing High-level Stream Parallelism on Multi-Cores,

The Journal of Supercomputing, vol. 78, Apr 2022, pp. 7655–7676. [43]
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– Júnior Löff; Dalvan Griebler; Gabriele Mencagli; Gabriell Araujo; Massimo Torqua-

ti; Marco Danelutto; Luiz Gustavo Fernandes. The NAS parallel benchmarks for

evaluating C++ parallel programming frameworks on shared-memory architec-

tures, Future Generation Computer Systems, vol. 125, Jul 2021, pp. 743–757.

[57]

– Ricardo Pieper; Júnior Löff; Renato Barreto Hoffmann; Dalvan Griebler; Luiz Gus-

tavo Fernandes. High-level and Efficient Structured Stream Parallelism for Rust

on Multi-cores, Journal of Computer Languages, vol. 65, Aug 2021, pp. 1–14.

[65]

• Conferences

– Dinei Rockenbach; Júnior Löff; Gabriell Araujo; Dalvan Griebler; Luiz Gustavo

Fernandes. High-Level Stream and Data Parallelism in C++ for GPUs. In: Inter-

national Conference on Programming Languages, 2022, pp. 41–49. [69]

– Júnior Löff; Renato Barreto Hoffmann; Dalvan Griebler; Luiz Gustavo Fernandes.

High-Level Stream and Data Parallelism in C++ for Multi-Cores. In: International

Conference on Programming Languages, 2021, pp. 41–48. [58]
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