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Introduction: Skilled walking is influenced by memory, stress, and anxiety. While this

is evident in cases of neurological disorders, memory, and anxiety traits may predict

skilled walking performance even in normal functioning. Here, we address whether

spatial memory and anxiety-like behavior can predict skilled walking performance

in mice.

Methods: A cohort of 60 adult mice underwent a behavioral assessment including

general exploration (open field), anxiety-like behavior (elevated plus maze), working

and spatial memory (Y-maze and Barnes maze), and skilled walking performance

(ladder walking test). Three groups were established based on their skilled walking

performance: superior (SP, percentiles ≥75), regular (RP, percentiles 74–26), and

inferior (IP, percentiles ≤25) performers.

Results: Animals from the SP and IP groups spent more time in the elevated plus

maze closed arms compared to the RP group. With every second spent in the

elevated plus maze closed arms, the probability of the animal exhibiting extreme

percentiles in the ladder walking test increased by 1.4%. Moreover, animals that spent

219 s (73% of the total time of the test) or more in those arms were 4.67 times more

likely to exhibit either higher or lower percentiles of skilled walking performance.

Discussion: We discuss and conclude anxiety traits may influence skilled walking

performance in facility-reared mice.

KEYWORDS

skilled walking, gait, motor control, anxiety-like, spatial memory, mice

1. Introduction

Skilled walking is a highly specialized behavior involving the ability to generate
steps, maintain postural balance and adjust movements to accomplish behavioral
and contextual/environmental-related demands (Balasubramanian et al., 2014; Geerse
et al., 2018). This behavior is controlled by complex sensory-cognitive-motor processes

Frontiers in Behavioral Neuroscience 01 frontiersin.org

https://www.frontiersin.org/journals/behavioral-neuroscience
https://www.frontiersin.org/journals/behavioral-neuroscience#editorial-board
https://www.frontiersin.org/journals/behavioral-neuroscience#editorial-board
https://doi.org/10.3389/fnbeh.2023.1059029
http://crossmark.crossref.org/dialog/?doi=10.3389/fnbeh.2023.1059029&domain=pdf&date_stamp=2023-02-28
https://doi.org/10.3389/fnbeh.2023.1059029
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fnbeh.2023.1059029/full
https://orcid.org/0000-0001-9837-1691
https://www.frontiersin.org/journals/behavioral-neuroscience
https://www.frontiersin.org/


fnbeh-17-1059029 February 22, 2023 Time: 15:24 # 2

Schiavo et al. 10.3389/fnbeh.2023.1059029

and requires that neural networks overcome the contextual
challenges encountered while an individual is moving
(Yogev-Seligmann et al., 2008).

The cognitive-motor interplay in humans and animal models
is well studied, particularly in stress and neurological disorders
(Silva and Frussa-Filho, 2000). For instance, attention and executive
functioning deficits are associated with a higher risk of skilled
walking impairment (Yogev-Seligmann et al., 2008). Moreover,
spatial memory deficits reduce skilled walking performance and
increase the likelihood of falls in older adults (Strekalova et al.,
2005; Brody and Holtzman, 2006; Kalueff et al., 2007; Anguera
et al., 2011) while anxiety can influence skilled movement in people
living with Parkinson’s disease (Ehgoetz Martens et al., 2018; Nodehi
et al., 2021). Chronic stress can also induce either hyperactivity or
hypoactivity in some animals (Heiderstadt et al., 2000). Interestingly,
a slight food restriction generated anxiety-like behavior and reduced
the movement accuracy in reaching and grasping tasks (Smith and
Metz, 2005). Eysenck et al. (2007) found anxiety increased attention
regarding perceived threats, but reduced attention when executing a
simultaneous task.

Evidence suggests spatial tasks influence postural control, which
is the act of maintaining, obtaining, or regaining balance throughout
any posture or activity (Pollock et al., 2000). Moreover, previous
research in a cross-species model of dual-task walking in young
and older humans and rats suggested spatial memory performance
is linked with cognitive-motor performance. The findings revealed
aged animals and humans performed worse in cognitive-motor tasks
that require spatial memory when compared to their younger peers,
as observed in dual-task combining object discrimination with the
alternation task (Hernandez et al., 2020). Within a broader cognitive-
motor interplay, spatial memory contributes to motor control by
improving the success of an intended movement in a spatial context
(Langan and Seidler, 2011). Moreover, spatial working memory is a
good predictor regarding speed of learning when a new skilled motor
task is acquired. This is particularly important in the sensorimotor
adaptation and in the sequence of a task learning (Anguera et al.,
2011).

Although there is a clear link between memory, anxiety disorders
and impaired skilled movement, this connection may also be present
under physiological conditions. For example, anxiety traits can
impact motor performance when healthy people are under pressure
to perform an important task/activity (Hutchinson and Cotten, 1973;
Wankel, 2014), e.g., when anxiety leads pianists to perform imprecise
movements (Kotani and Furuya, 2018). Thus, we hypothesize that
extreme percentiles of memory and anxiety-like behavior may be able
to predict skilled walking performance. A better understanding of this
functional relationship might help predict cognitive-motor disorders,
such as Alzheimer (Buchman and Bennett, 2011) or Parkinson-
related dementia (Tan et al., 2020). A similar situation could occur
among individuals exhibiting borderline memory functioning and
anxiety (McDonald, 2011; Gulpers et al., 2016, 2019; Fernandez-
Baizan et al., 2019).

To the best of our knowledge, no previous study has addressed
whether the spatial memory and anxiety-like behavior can predict
skilled walking performance in facility-reared mice. Using the
elevated plus maze (to test anxiety-like behavior), Y- and Barnes
mazes (to test working and spatial memory), and the ladder walking
test (to assess skilled walking performance), we hypothesize that
anxiety-like traits might play a role in fine movements, such as
those involved in skilled walking. To assess the skilled walking

performance, the quality of each paw placement is examined frame-
by-frame during the ladder walking test trials and graded using the
foot-fault score (Metz and Whishaw, 2002, 2009), thus providing a
skilled walking performance metric. Overall, by classifying animals
according to their natural skilled walking performance distribution
(percentiles ≥75, 74–26, and ≤25), we can determine whether
spatial memory or anxiety-like behavior could predict skilled walking
performance. Thereby, this research intended to provide essential
information for further investigations focused on discovering
how neurochemical and genetic factors modulate cognitive-motor
interplay in skilled walking.

2. Materials and methods

2.1. Subjects

We used 60 mice (Balb/cJ, weight, 25–35 g) male
(n = 28) and female (n = 32) acquired from our local colony
(CEMBE/PUCRS). The animals were housed in standard lab
conditions: same-sex littermates in 3–4 per cage (Tecniplast GM500:
391 mm × 199 mm × 160 mm); water and food ad libitum;
temperature 23 ± 1◦C and 12 h light/dark cycle. This study was
approved by the Ethics Committee for Animal Research at the
(PUCRS) (number 8955) and was conducted in accordance with the
Ethics Guidelines of ICSS and National Institutes of Health Guide for
the Care and Use of Laboratory Animals (Russell and Burch, 1959).

2.2. Procedure

The experiments were replicated twice, using half the sample
each time. Animals were tested during the same period of the day
(morning) in an experimental room with controlled temperature
(23 ± 1◦C) and lighting (500 lux). Before starting the behavioral
assessment, the animals underwent 7 days of acclimation with the
researchers (a daily 5-min handling session per animal). After, a
behavioral test battery was performed from post-natal day (P) P60 to
P72. Mice performed the open field (P60), elevated plus maze (P61),
Y-maze (P62), and ladder walking (P63) tests. The day after (P64),
mice began the first of the three stages of the Barnes maze test, which
ended on P72. After each trial, all the apparatus were cleaned using
a 70% alcohol solution. On each day, the behavioral battery lasted
from 4 to 6 h for the entire sample, depending on the scheduled tests.
Mice remained in their habitual housing room and were transferred
to the testing room in their home cages approximately 30 min before
being assessed (the between-room distance was ∼5 m, located on
the same floor). The order in which behavioral tests were conducted
was based on the degree of complexity of the tests, from lower to
higher in accordance with other studies (Võikar et al., 2004; Lad et al.,
2010). At P73, the rodents were euthanized by cervical dislocation.
Supplementary Figure 1 illustrates the study design.

2.3. Apparatus

The following behavioral tests were used in this study:
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2.3.1. Open field (spontaneous locomotor activity)
Animals were placed in the center of a squared Plexiglas box

(33 × 33 cm) and allowed to explore the apparatus for 5 min. Video
recordings were analyzed using the AnyMaze Software (Stoelting Co.,
Wood Dale, IL, USA), which divided the field into 16 squares (4
central and 12 peripheral). The total distance traveled, time spent
in the central and peripheral zones and number of entrances in
each zone were measured (Carola et al., 2002; Kraeuter et al., 2019b;
Wearick-Silva et al., 2019).

2.3.2. Elevated plus maze (anxiety-like behavior)
The apparatus, elevated 50 cm above the ground, comprised two

open (30 cm × 5 cm) and two closed (30 cm × 5 cm × 15 cm)
arms accessed from a central platform (5 cm × 5 cm) (Gomes et al.,
2022). Animals were placed individually in the center of the maze
facing the open arms and allowed to explore for 5 min (Komada
et al., 2008; Kraeuter et al., 2019a; Wearick-Silva et al., 2019). The
following outcome measures were analyzed using the AnyMaze
Software (Stoelting Co., Wood Dale, IL, USA): the distance traveled;
the number of entries in each arm (open and closed arms); the time
spent in the open arms, closed arms and in the center of the maze. The
avoidance index (AI) was also calculated. AI is defined as a percentage
measure of the avoidance of the open arms, calculated as previously
described (Trullas and Skolnick, 1993). Briefly, the higher the AI the
greater the avoidance behavior.

AI (%) =

100−
(% time in the open arms+% entries in the open arms)

2

2.3.3. Y-maze (working memory)
The Y-shaped apparatus has three plexiglass arms (35 cm long,

5 cm wide, and 10 cm high, at 120◦ angle from each other) (Kraeuter
et al., 2019c; Viola et al., 2019; Orso et al., 2021). Animals were placed
individually in arm B and explored arms A and B for 5 min while arm
C (the novel arm) remained closed. After, animals were individually
placed in the apparatus (arm B) for 2 min with all arms available for
exploration. The phases were separated by a 1-min interval (Morgan
et al., 2018). Two raters manually evaluated the number of entries and
recorded the exploration time in the arms (A, B, and C) (number,
time spent, and percentage). The Y-maze is considered as reliable
when the test protocols are followed (Gawel et al., 2019). In addition,
the intraclass correlation index showed the results obtained by the
two raters were reliable (data not shown). The exploration preference
was calculated, as follows:

Preference Index (s) =
time in the novel arm

120

Spontaneous alternation was considered to have occurred when
a mouse entered each of the 3 arms consecutively, not necessarily
observing any particular order (Miedel et al., 2017). The percentage
(%) of spontaneous alternation was calculated, as follows:

Spontaneous alternation (%)

=
# spontaneous alternations(

total number of arm entries− 2
) × 100

2.3.4. Ladder walking test (skilled walking
performance)

The apparatus consisted of two sidewalls made of clear Plexiglas
(1 m) and metal rungs to create a horizontal ladder (Metz and

Whishaw, 2002). While crossing the ladder, mice were filmed using
a GoPro Hero 4 (12 Mp/240 frames-per-second). The first two trials
were considered habituation and the third trial was analyzed using
the foot fault score system (Metz and Whishaw, 2002; Wearick-Silva
et al., 2019) by two independent raters. The inter and intra-rater
reliability for the ladder walking test are excellent using both rats and
mice models (Martins et al., 2022). The position of the metal rungs
across the trials (asymmetrical-only pattern) was modified, except for
the first habituation trial. The performance scores were calculated as
follows:

Normalized total score (%) =

Combined limbs performance score
Mean of the combined limbs performance score from the cohort

× 100

A normalized total score (%) lower than 100% means the animal
performed worse in the ladder walking test when compared to
the cohort mean.

2.3.5. Barnes maze (spatial memory)
The apparatus comprised a circular platform (91 cm diameter),

with 20 holes spaced uniformly around the perimeter. The Barnes
maze is raised 90 cm above the ground, with a moveable escape box
hidden under one hole. Visual cues are used to help the animals locate
the escape box. The test is divided into three stages: (a) adaptation;
(b) acquisition; and (c) testing. During adaptation, the escape box is
kept in the same position and rodents typically adopt three different
strategies to find it: random, serial, and spatial. During the 4-day
adaptation period, once a day, the mice were placed in the center of
the apparatus and given 5 min to find the escape box. On the last day
of adaptation, all the animals were allowed to remain in the escape
box for 2 min. If they failed to enter the escape box within the 5-min
period, they were gently placed there for 2 min. The acquisition stage
lasted an additional 4 days. Two trials were carried out daily at 15-
min intervals. In each trial, the animals were given 3 min to locate the
escape box and allowed to stay there for 1 min. If they failed to enter
the escape tunnel within the 3-min period, they were gently placed
there for 1 min. Primary errors, total errors, primary latency and total
latency were counted in each trial by the ratters executing the test.
In terms of reliability the Barnes maze is considered valid when the
recommended test protocols are followed (Gawel et al., 2019). In the
test stage (probe trial), the escape box was removed and the mice were
given 180 s to locate the place where the box had been. The number
of pokes in each hole, latency until finding the hole where the box had
been and errors were counted (Gawel et al., 2019).

2.4. Statistical analysis

To calculate the sample size, we used the previous study by
Wearick-Silva et al. (2019). The animals were divided into three
groups based on the percentiles of performance in the ladder walking
test: (1) superior performer (SP, percentiles≥75) (n = 25; female = 13,
male = 12), (2) regular performer (RP, percentiles 74–26) (n = 16;
female = 9, male = 7), and (3) inferior performer (IP, percentiles
≤25) (n = 19; female = 10, male = 9). Between-group comparisons
were made using the one-way ANOVA and Tukey’s post-hoc test
(for parametric data) or Kruskal–Wallis and Mann–Whitney tests
(for non-parametric data), according to the data distribution. The
potential sex-related differences in the studied sample were also
assessed using one-way ANOVA (unadjusted analysis) and by
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entering “sex” as an independent variable in the regression models
(adjusted analysis).

In this study, extreme skilled walking performance (higher or
lower performance percentiles in the ladder walking test) was defined
by collapsing the SP and IP groups (percentiles ≥75 and percentiles
≤25) (n = 44; female = 23, male = 21). The predictive accuracy of
the measurements of spatial memory and anxiety-related behavior
in determining skilled walking performance was evaluated using
the receiver operating characteristic (ROC) curve. Quantitative and
qualitative Poisson regressions were used to assess the predictive
potential of anxiety-like behavior and spatial memory in determining
skilled walking performance. This step-by-step approach allowed
us to explore the current research question. Statistical analysis was
performed using the Statistical Package for the Social Sciences (SPSS)
20.0 (IBM, NY, USA) and Prism GraphPad 6.0 software (La Jolla, CA,
USA). p ≤ 0.05 was considered significant.

3. Results

The overall mice cohort characterization is shown in
Supplementary Table 1. No statistically significant differences
were found when we tested for possible sex-related behavioral bias
using a between-group comparison (ANOVA) (Supplementary
Table 2 and Supplementary Figure 2). Nevertheless, the sex was
included as an independent variable in the regression models.

3.1. Ladder walking test

Between-group differences were observed among SP, RP, and
IP groups regarding the “combined limbs performance score”
(F(2,59) = 67.74; p = 0.0001). When the “forelimb performance score”
was analyzed (F(2,59) = 12.51; p = 0.0001), we noticed the SP and IP
(p = 0.0001) and RP and IP (p = 0.005) groups differ. In the “hindlimb
performance score” (F(2,59) = 10.39; p = 0.0001), the SP was different
from IP (p = 0.0001) and RP (p = 0.020). However, the IP group did
not differ from the RP (p = 0.366) (Figure 1). As expected, these
results suggest classifying the mice according to their “combined
limbs” skilled walking performance percentiles (≥75, 74–26, ≤25)
was statistically significant.

3.2. Open field test

No statistically significant between-group differences in the open
field test variables were found when classifying mice according to
their skilled walking performance (percentiles≥75, 74–26,≤25 in the
ladder walking test) (Supplementary Figure 3). This suggests skilled
walking performance distribution was unrelated with any exploratory
behavioral pattern in the open field test.

3.3. Elevated-plus-maze

A statistically significant overall difference for “time in the
closed arms” was found (KW(2,59) = 7.57; p = 0.023) (Figure 2E).
The SP and IP groups were different from RP (p = 0.008 and
p = 0.031, respectively). There was no difference between the SP and

IP groups (p = 0.696) (Figure 2E). All the other assessed outcomes
in the elevated plus maze did not differ among the studied groups
(Figures 2A–G). In summary, these findings suggest mice exhibiting
the higher or lower skilled walking performance percentiles, i.e.,
extreme skilled walking performance, showed higher levels of
anxiety-like behavior in facility-reared mice. Attentional overload
can offset some negative effects of anxiety, in which case a task
will be adequately performed but at a higher cognitive cost (Smith
et al., 2001; Nguyen, 2006). Conversely, anxiety can also make task-
irrelevant stimuli more distracting and reduce attentional control,
thus resulting in reduced processing efficiency when planning and
executing skilled movements (Wilson, 2012). Hence mice exhibiting
higher levels of anxiety can exhibit superior or inferior performance
in the ladder walking test, which is in line with the literature regarding
the attentional control theory. This evidence provide support to
collapse SP and IP groups for a preliminary, exploratory analysis.

3.4. Y-maze and Barnes maze

No statistically significant between-group differences were found
in the Y-maze-assessed outcomes when classifying mice according to
their skilled walking performance (percentiles≥75, 74–26,≤25 in the
ladder walking test) (Figure 3).

The Barnes maze results are shown in Supplementary Figure 4.
While we observed a within-group learning effect over time for
averaged primary latency (F(4,59) = 11.48; p = 0.0001), primary error
(F(4,59) = 7.65; p = 0.0001), total latency (F(4,59) = 16.93; p = 0.0001),
as expected, no between-group differences were found when the mice
were divided into skilled walking performance percentiles (≥75, 74–
26, ≤25 in the ladder walking test). Together, these findings revealed
spatial memory did not differ when comparing the mice in terms of
skilled walking performance.

3.5. Predictive analyses (ROC analysis and
Poisson regression)

The accuracy of spatial memory or anxiety-like behavior in
predicting regular (RP) or extreme skilled walking performance (SP
and IP groups collapsed) were tested using the ROC curve. As
mentioned above, the extreme performance category was created
because the SP and IP groups did not differ regarding spatial memory
or anxiety-like behavior (see group analyses in section “2.4. Statistical
analysis”). Moreover, we had an a priori suspicion anxiety might
play a dual-effect role in skilled walking performance, i.e., higher
levels of anxiety-like behavior can trigger different cognitive-motor
mechanisms, thus resulting in better or worse skilled movements.

When building the regression models, we tested the outcomes
exhibiting p-values ≤ 0.20 for group effects. The findings show the
elevated plus maze “time in the closed arms” and the Y-maze “entries
in arm C (%)” were able to predict the mouse performance in the
ladder walking test (p < 0.05) (Table 1).

Thereafter, the quantitative Poisson regression model was applied
(Table 2). Statistical significance was observed for the variables of
the elevated plus maze “time in the closed arms” (p = 0.0004) and
the Y-maze “entries in arm C (%)” (p = 0.002). The quantitative
regression findings showed each additional second the mouse spent
in the elevated plus maze closed arms increased 1.4% its probability to
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FIGURE 1

Walking adaptability performance in the ladder walking test. (A) Forelimb performance, (B) hindlimb performance, and (C) combined limbs performance.
Data are expressed as mean ± SD. One-way ANOVA and Tukey’s post-hoc tests were used. *Superior performers vs. inferior performers; #superior
performers vs. regular performers; †regular performers vs. inferior performers.

FIGURE 2

Anxiety-like behavior in the elevated plus maze test. (A) Distance traveled, (B) number of entries in the open arms, (C) number of entries in the closed
arms, (D) time spent in the open arms, (E) time spent in the closed arms, (F) time spent in the center, and (G) avoidance index. Data are expressed in
25–50–75 percentile and range (minimum and maximum). Kruskal–Wallis and Mann–Whitney tests were used. #Superior performers vs. regular
performers; †regular performers vs. inferior performers.

exhibit an extreme performance in the ladder walking test. Moreover,
each additional percentage of entries in Y-maze novel arm increased
4.6% the mouse probability to exhibit an extreme performance in the
ladder walking test. The most balanced cut-off points (sensitivity vs.
specificity) identified in the ROC curve (Supplementary Tables 3, 4)
were used in the qualitative Poisson regression (Table 3). The cut-
off point of 219 s (73% of the total time of the test) for the
elevated plus maze “time in the closed arms” (sensitivity of 63.6%
and specificity of 68.7%) and 42% Y-maze “entries in arm C” (novel
arm) (sensitivity 61.4% and specificity 68.7%) were adopted. In the
qualitative regression model, the animals that spent 73% of the total
time of the test or more in the elevated plus maze closed arms
increased by 4.67 times their probability of exhibiting an extreme
performance in the ladder walking test. No significant effects were
found for the Y-maze “entries in arm C.”

4. Discussion

This exploratory, preliminary study sought to assess whether
the anxiety-like behavior and spatial memory could be predictors of
skilled walking performance in mice. To the best of our knowledge,
this is the first study to explore the issue in a facility-reared mice
cohort. Studying a reared-mice cohort is an interesting strategy to
explore how spatial memory and anxiety might influence the motor
planning needed for controlling skilled walking movements.

Our exploratory, preliminary findings suggest animals exhibiting
higher levels of anxiety-like traits are more prone to show extreme
skilled walking performance (lower or higher percentiles in the ladder
walking test). Thus, the subtle variability in the skilled walking
performance in facility-reared mice may be influenced, at least in
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FIGURE 3

Spatial memory in the Y-maze test. (A) Entries in arm A, (B) entries in arm B, (C) entries in arm C, (D) time spent in arm A, (E) time spent in arm B, (F) time
spent in arm C, (G) % spontaneous alternation, (H) preference index, (I) % entries in arm A, (J) % entries in arm B, (K) % entries in arm C, (L) % time spent in
arm A, (M) % time spent in arm B, and (N) % time spent in arm C. Data are expressed in 25–50–75 percentile and range (minimum and maximum). The
Kruskal–Wallis and Mann–Whitney tests were used.

part, by anxiety-related traits. This is of importance because skilled
walking could be impaired by well-known anxiety disorders (Young
et al., 2012), but this is the first study to show the anxiety may also
influence the control of skilled movements in facility-reared mice.

Increased anxiety levels might produce a dual effect in skilled
walking performance due to the anticipatory and/or attentional
mechanisms. Some individuals overuse the anxiety-driven cognitive
anticipatory mechanism and thus generate a motor plan more likely
to fail when facing an irregular walkway/unpredictable obstacle.

TABLE 1 Receiver operating characteristic curve statistics to detect the
extreme behaviors in the ladder walking test.

Test/Variable Area SD p 95% CI

(a) Open field

Entries in the periphery (%) 0.482 0.079 0.83 0.327–0.638

(b) Elevated plus maze

Time in the closed arms (s) 0.732 0.068 0.01* 0.599–0.864

(c) Y-maze

Entries in arm C (%) 0.692 0.081 0.02* 0.532–0.851

(d) Barnes maze

Search strategy day 4 (mean) 0.434 0.086 0.43 0.265–0.603

SD, standard deviation; p, level of significance; 95% CI, 95% confidence interval.
*p ≤ 0.05.

However, others use anxiogenic inputs to improve their attentional
capacity, which results in higher performance levels (Eysenck et al.,
2007). The determinants of which individual strategy will be adopted
is still unclear.

The attentional control theory states anxiety may cause
attentional bias when judging real task-related threats and irrelevant
stimuli. As a result, the anxiety-related influences in performance
might reflect relative inefficiency in the attentional processes
(Eysenck et al., 2007). Higher levels of anxiety may change movement
control and compromise movement smoothness (Lohse et al., 2011)
as well as impair divided attention tasks in older adults (Hogan,
2003), thus changing the attentional efficiency required to deal with
targets in the walkway (Gage et al., 2003). Moreover, there is a
strong relationship between stepping inaccuracy and self-reported
anxiety. Increased anxiety levels may also influence stepping accuracy
indirectly by provoking maladaptive visual sampling strategies
(Young et al., 2012). Conversely, some anxiety levels may help
improve attention and movement accuracy. One of our most
interesting findings is that those mice that stayed 219 s or longer in
the elevated plus maze closed arms (longer than the RP group mean)
were more likely to exhibit extreme skilled walking performance. This
finding is in line with the literature, thus reinforcing that anxiety
traits could also influence motor control during skilled walking
movements.

Rodents have been used to provide insights into normal and
pathological anxiety-like behavior (Van der Staay, 2006). Anxiety
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TABLE 2 Quantitative regression model to test the relationship between
variables of interest with the extreme behaviors in the ladder walking test.

Test/Variable Exp (B) p 95% CI

(a) Open field

Entries in the periphery (%) 0.898 0.36 0.711–1.133

(b) Elevated plus maze

Time in the closed arms (s) 1.014 0.004* 1.004–1.024

(c) Y-maze

Entries in arm C (%) 1.046 0.02* 1.008–1.086

(d) Barnes maze

Search strategy day 4 (mean) 1.007 0.66 0.975–1.040

(e) Sex

Female (category of reference) 0.882 0.86 0.219–3.561

Exp (B), odds ratio; p, level of significance; 95% CI, 95% confidence interval.
*p ≤ 0.05.

TABLE 3 Qualitative regression model to test the relationship between the
variables of interest and the extreme behaviors of the ladder walking test.

Test/Variable Exp (B) p 95% CI

(a) Open field

Entries in the periphery (%) 0.899 0.28 0.741–1.091

(b) Elevated plus maze

Time in the closed arms (219 s) 4.672 0.02* 1.226–17.804

(c) Y-maze

Entries in arm C (42%) 2.451 0.19 0.649–9.258

(d) Barnes maze

Search strategy day 4 (mean) 1.007 0.64 0.978–1.036

(e) Sex

Female (category of reference) 0.885 0.86 0.234–3.351

Exp (B), odds ratio; p, level of significance; 95% CI, 95% confidence interval.
*p ≤ 0.05.

is present in both humans and rodents and plays a role in
individual defense and survival (Fraser et al., 2010). However, the
extent/intensity of anxiety behavior could be influenced by both
genetic and phenotype profiles (Smoller and Tsuang, 1998; Meier
et al., 2019). Thus, using isogenic mice models (that are genetically
identical) may be the best approach to control genetic-based
influences. Hence, because we used isogenic mice in this study, we
can assume the differences found in anxiety-like behavior are related
to the individual’s phenotype. Therefore, the current findings suggest
skilled movement is influenced by anxiety-like traits determined by
the individual’s phenotype. This also occurs in anxiety disorders, but
to a greater extent. Overall, our exploratory, preliminary findings
indicate anxiety-like behavior may contribute to determine skilled
movement performance. Notwithstanding, fluctuations in anxiety
levels may be related to the test conditions or based on intra-
individual characteristics (Ramos, 2008). The literature suggests
open field, elevated plus maze and light-dark box outcomes may
not measure the same type of anxiety-like behavior (Cryan and
Holmes, 2005). Similarly, the strain of mice and the apparatus used
in the experiments could also influence the measured outcomes
(An et al., 2011). For instance, Balb/c mice were found to behave
more “anxiously” in the elevated plus maze when compared with

the open field test (Trullas and Skolnick, 1993; Carola et al., 2002).
Hence, it is not completely unusual to find a lack of concordance
between these two tests (Trullas and Skolnick, 1993; Rogers et al.,
1999). Moreover, while the open field and elevated plus maze
tests are both valuable when assessing anxiety-like behavior, their
paradigms are quite different. While open field could be used to
assess anxiety-like behavior in general, it is designed to measure
exploratory/general locomotion. By contrast, the elevated plus maze
is specifically designed to assess anxiety-like behavior (Fraser et al.,
2010). Additionally, rearing and grooming were not analyzed in the
present study because they could be considered unspecific to identify
anxiety levels. While some studies suggest greater rearing counts are
associated with anxiety-like behavior in mice, other studies show the
opposite (Costall et al., 1989; Borta and Schwarting, 2005). A similar
lack of specificity has been reported for grooming counts (Kalueff,
2000; Kalueff and Tuohimaa, 2005).

In this study, the animals were assessed in controlled
experimental rooms dedicated to behavioral studies, in the
same period of the day, interacting with the same researchers,
in accordance with guidelines found in the international literature.
Regarding the time spent in different maze zones, the Balb/c mice
would naturally be expected to spend more time, on average, avoiding
potential risks by remaining more time in the closed arms/peripheral
zones of the of the elevated plus maze and open field, respectively
(Rodgers and Johnson, 1995; Rodgers and Dalvi, 1997). This may
explain the reduced number of crossings from the areas where
animals feel safe to areas where they feel more exposed. Different
results could have been found if anxiety/stress-induced protocols,
anxiolytic treatments, or other mice strains had been used.

The ability to cope with environmental circumstances depends
on learning and memory (Vorhees and Williams, 2014). The
retention and processing of visuospatial information involves spatial
working memory (Fenner et al., 2000). When navigating in a
new environment, visuospatial information needs to be temporarily
stored and used to locate objects or reach targets, thereby inhibiting
distracting stimuli (Flouri et al., 2019). Spatiotemporal parameters
of gait are also influenced by working memory (Eysenck et al.,
2007) and could be modified during brain aging (Ayoubi et al.,
2015). Here, working memory exhibited a subtle capacity to predict
skilled walking performance. This may be attributed to the features
of the ladder walking test that provide insufficient spatial memory
challenges compared with those observed when the rodent is inserted
in its ecological context. Although the ladder walking test provides
for an asymmetrical pattern, all the rungs have the same diameter,
shape and placement level, thus facilitating the animal’s navigation.
In addition, the fact the animals underwent three trials on the ladder
walking test might have facilitated the creation of an internal image
of the test, therefore reducing the demand on the spatial memory
(Sorrentino et al., 2019).

This study was designed to minimize biases when establishing
behavioral battery assessments, following previously published
recommendations (Saré et al., 2021). First, all the experiments
were performed in the Center for Experimental Biological Models
(Cembe), a reference in animal care and research in southern
Brazil. The Center has standard rooms designed and fully dedicated
to the study of behavior in mice. Second, all animals undergo
a familiarization protocol with the researchers prior to testing;
lighting was standardized during the tests and the same researchers
conducted all the behavioral tests. Third, a seminal paper from
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Paylor et al. (2006) using different mice strains demonstrated a 1-
day test interval is sufficient to minimize behavioral testing-related
effects in comparison with a 1-week test interval, thus supporting
the current study design. Finally, several studies have used a similar
sequence of behavioral testing (Võikar et al., 2004; Wearick-Silva
et al., 2019). Hence, an a priori suspicion regarding test interval effects
on the current behavioral protocol seems unlikely. Nevertheless, to
the best of our knowledge, no previous studies have compared 1-
day vs. longer between-test intervals using the same test sequence we
adopted.

This study has some limitations. First, skilled walking
performance, anxiety, and spatial memory were assessed using
different and non-simultaneous tasks. Thus, fluctuations in attention
and anxiety-like behavior may have occurred across the tests.
Nevertheless, to the best of our knowledge, there is no validated
behavioral apparatus capable of simultaneously assessing skilled
walking performance, spatial memory, and anxiety-like behavior
in rodents. Secondly, we have not compared facility-reared mice
with those genetically modified to exhibit anxiety-related disorders.
Although such a comparison might be interesting, the link between
pathological anxiety and cognitive-motor performance has been
well studied (Runswick et al., 2018; Nolte et al., 2019). In addition,
brain tissue-related analyses were not possible (due to limited
research funding in Brazil), thus the brain mechanisms underlying
skilled walking performance were not addressed in this study.
Nevertheless, here, our main research goal was to explore whether
subtle differences in skilled walking performance could be influenced
by anxiety traits. This research contributes to motor control theories,
particularly those that sustain personal traits influence the movement
strategies adopted to perform some tasks (Bolmont, 2005; Gatto
et al., 2011; Berret et al., 2018). Further studies properly designed
to compare normal and pathological levels of anxiety-like behavior
in mice models using anxiolytic drugs or non-pharmacological
strategies may help move the field forward. The influence of anxiety
levels on skilled walking performance might differ in physiological
and pathological conditions and should be interpreted with caution.

When looking for potential sex-related behavioral bias, we found
no changes in the statistical analyses we ran, which is partially
consistent with other mouse models (An et al., 2011; Hunsaker et al.,
2011). Despite sex (being male or female) having been included as
variable in the regression models (see Tables 2, 3), animals were
categorized without considering their hormonal status due to the
exploratory nature of the study. Nevertheless, we cannot exclude
the possibility that sex-related hormones might have influenced the
present findings. Although our regression models included “sex” as
an independent variable (which was shown not to be significant
in the regression models), we did not control the phases of the
female estrous cycle. To ensure the acquired data from the female
mice would properly represent the behavioral test/test phase under
the potential influence of a specific estrous cycle day (proestrus,
estrus, metestrus, and diestrus), considering a 13-day long behavioral
battery, a very large number of animals would be necessary.
Notwithstanding, addressing specific hormonal influences on the
different behaviors (independent factors) that may predict walking
adaptability performance (dependent factor) could be worthwhile.
Hence, our findings could be considered as a starting point to
encourage further studies covering this issue.

Additionally, the clustered analysis of males and females,
the number of animals used, and the lack of an anxiolytic
treatment without motor effects, e.g., allopregnanolone

(Hovakimyan et al., 2013; Leppä et al., 2016; Diviccaro et al.,
2022) or chrysin (Rodríguez-Landa et al., 2021) could also explain
the main results of this preliminary, exploratory study. Hence,
further studies properly designed to test the influence of the estrous
cycle and anxiolytic-related drugs on anxiety levels and skilled
walking performance are required to confirm the current exploratory
findings. Several studies have reported that the estrous cycle
influences EPM-related behavior (Mora et al., 1996; Galeeva and
Tuohimaa, 2001; Marcondes et al., 2001; An et al., 2011; Hunsaker
et al., 2011; Scholl et al., 2019). The data analysis in the present study
does not measure these cycle phases of the female in the sample,
therefore, the current results should be interpreted with caution.
In our study, when we assessed a potential between-sex difference
for the number of entries in the EPM open arms, a borderline
statistical significance was found (p = 0.06) (see Supplementary
Table 2). When designing trials on anxiety and walking adaptability,
verifying within-sex rather than between-sex differences would be
advisable (Bale and Epperson, 2017). Our findings, together with
those in the literature, suggest the need for further trials addressing
sex and hormonal influences on anxiety and skilled walking-related
outcomes.

While other behavioral tests could have been adopted in this
study, we decided to use only exploratory-based tests without any
aversive stimuli. We know from the literature that using aversive
stimuli, as seen in Sidman avoidance task or Vogel conflict task, could
potentially change mice behavior in other exploratory-based tests
(Hiew et al., 2020; Lucantonio et al., 2021). Therefore, when designing
a behavioral battery, the minimum number of tests should be used
in the same sample (Hånell and Marklund, 2014), as subjecting a
sample to an excessive number of tests has been shown to change
neurochemical and behavioral findings (Barchas et al., 1978). With
this in mind, we considered the widely used elevated plus maze
was the most appropriate to assess anxiety-like behavior in the
current study (Carola et al., 2002; Yilmazer-Hanke et al., 2003; An
et al., 2011; Medeiros et al., 2018; Kraeuter et al., 2019a). Further
trials addressing how aversive experiences influence skilled walking
performance might benefit from adopting aversive-based tests.

Finally, the lack of any between-group difference in the open
field or differences in the time spent in the center or open arms of
the elevated plus maze suggest there are subtle anxiety-like behavior
changes in facility-reared mice. On the one hand, this is expected
because we are not working with models of anxiety disorder but, on
the other hand, the lack of consistency in the adopted tests can be
considered a study limitation. Further study replication is needed to
fully clarify this issue and move the field forward.

5. Conclusion

We conclude higher anxiety traits might have a dual effect
on skilled walking performance in facility-reared mice, thus
predicting, at least in part, the individuals exhibiting superior or
inferior performance. This finding agrees with previous research
suggesting anxiety traits can modulate cognitive-motor planning
when adapting movements such as the ability to adapt walking
on an irregular footpath. This exploratory, preliminary study may
constitute an important step to encourage further research properly
designed to understand the neurobiological mechanisms of skilled
walking performance.
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