
ESCOLA POLITÉCNICA

PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO

DOUTORADO EM CIÊNCIA DA COMPUTAÇÃO

ADRIANO MARQUES GARCIA

EASING THE BENCHMARKING OF PARALLEL STREAM
PROCESSING ON MULTI-CORES

Porto Alegre

2023

PONTIFICAL CATHOLIC UNIVERSITY OF RIO GRANDE DO SUL
SCHOOL OF TECHNOLOGY

COMPUTER SCIENCE GRADUATE PROGRAM

EASING THE BENCHMARKING
OF PARALLEL STREAM

PROCESSING ON MULTI-CORES

ADRIANO MARQUES GARCIA

Doctoral Thesis submitted to the Pontifical
Catholic University of Rio Grande do Sul
in partial fulfillment of the requirements
for the degree of Ph. D. in Computer
Science.

Advisor: Prof. Ph.D. Luiz Gustavo Leão Fernandes
Co-Advisor: Prof. Ph.D. Dalvan Griebler
Co-Advisor: Prof. Ph.D. Claudio Schepke

Porto Alegre
2023

ADRIANO MARQUES GARCIA

EASING THE BENCHMARKING OF PARALLEL
STREAM PROCESSING ON MULTI-CORES

This Doctoral Thesis has been submitted in

partial fulfillment of the requirements for

the degree of Ph. D. in Computer Science,

of the Computer Science Graduate Program,

School of Technology of the Pontifical

Catholic University of Rio Grande do Sul

Sanctioned on March 31, 2023.

COMMITTEE MEMBERS:

Prof. Ph.D. Marco Aldinucci (University of Turin)

Prof. Ph.D. Claudio Fernando Resin Geyer (UFRGS)

Prof. Ph.D. César Augusto Fonticielha De Rose (PPGCC/PUCRS)

Prof. Ph.D. Dalvan Griebler (PPGCC/PUCRS- Co-Advisor)

Prof. Ph.D. Claudio Schepke (PPGCC/PUCRS- Co-Advisor)

Prof. Ph.D. Luiz Gustavo Leão Fernandes (PPGCC/PUCRS - Advisor)

“We live on an island surrounded by a sea of

ignorance. As our island of knowledge grows,

so does the shore of our ignorance.”

(John Archibald Wheeler)

ACKNOWLEDGMENTS

My deepest thanks to everyone who helped me in any way during my doctorate.

Especially to my family and friends for their help and encouragement and to my advisors

for their support and guidance during this project.

I also want to thank my PUCRS/GMAP research group colleagues, who enriched

this work through feedback and discussions.

This study was partly financed by the Coordenação de Aperfeiçoamento de Pessoal

de Nivel Superior - Brasil (CAPES) - Finance Code 001 and by SAP Labs Latin America.

Acknowledgements to the High-Performance Computing Laboratory of the Pon-

tifical Catholic University of Rio Grande do Sul (LAD-IDEIA/PUCRS, Brazil) for providing

computing resources.

FACILITANDO A AVALIAÇÃO DO PROCESSAMENTO PARALELO DE

STREAM EM ARQUITETURAS MULTI-NÚCLEO

RESUMO

No mundo de hoje impulsionado por dados e crescente expectativa por resul-

tados imediatos, há uma demanda crescente por processamento de dados em tempo

real/baixa latência. O processamento de stream é uma técnica que processa os dados à

medida que eles se tornam disponíveis, permitindo o processamento de dados quase em

tempo real. Para lidar com o processamento de grandes volumes de dados, aplicações

de processamento de stream devem recorrer a técnicas de paralelismo para acelerar o

processamento. Embora existam interfaces de programação paralela (IPPs) capazes de

adicionar várias camadas de abstração, o paralelismo no processamento de stream ainda

é uma tarefa difícil e que normalmente exige conhecimento especializado para atingir os

níveis de desempenho desejados. Isso gera um grande esforço de pesquisa em direção

à aumentar o desempenho do processamento paralelo de stream e tornar a programa-

ção paralela mais acessível. Tipicamente, benchmarks são usados para avaliar as IPPs e

novas soluções nesse contexto. No entanto, existem várias limitações nos benchmarks

existentes, incluindo a falta de benchmarks para algumas categorias de aplicações de

processamento de stream, poucas ou nenhuma opção de parametrização, dificuldade em

estender os benchmarks para outras IPPs, falta de métricas de desempenho adequadas,

falta de preocupação com usabilidade, suporte apenas para linguagens baseadas na Java

Virtual Machine (JVM), etc. Este trabalho propõe um framework chamado SPBench para

criar benchmarks personalizados e avaliar o processamento paralelo de stream. Nosso

principal objetivo é facilitar o processo de benchmarking no processamento de stream,

incluindo a criação, compilação, execução, ajuste-fino e avaliação dos benchmarks. Por-

tanto, esta tese de doutorado fornece as seguintes principais contribuições científicas: (I)

Um framework que simplifica o benchmarking de aplicações de processamento de stream,

fornecendo uma Application Programming Interface (API) e uma interface de linha de

comando para simplificar, reutilizar código, personalizar, estender e avaliar diferentes as-

pectos ou propriedades em relação ao processamento paralelo de stream. (II) Um conjunto

de benchmarks paralelos em C++ para processamento de stream que inclui aplicações

do mundo real e as IPPs mais utilizadas neste contexto. (III) Um estudo comparativo

abrangente das IPPs mais populares que usam o paralelismo de stream em C++. (IV)

Mecanismos para simulação dinâmica de frequência de stream de dados em aplicações

de processamento de stream, com um conjunto de algoritmos para gerar os padrões de

frequência de stream de dados mais comumente usados na literatura e uma análise do

impacto da frequência de dados no desempenho dessas aplicações. (V) Uma análise do

impacto do tamanho de micro-batches no desempenho de aplicações de processamento

de stream, incluindo mecanismos para controle dinâmico de batch baseado em tamanho

específico ou intervalos de tempo. Testamos o framework SPBench com cinco aplicações

do mundo real de processamento de vídeo/imagem, compressão de dados e detecção

de fraudes. Neste trabalho nós tentamos mostrar os benefícios do SPBench usando-o

em combinação com IPPs para gerar benchmarks de processamento paralelo de stream

e realizar diversas análises. No geral, os resultados mostraram que as abstrações de

alto nível das IPPs podem causar um grande impacto no desempenho quando abstraem

mecanismos de ajuste fino. Nos experimentos de frequência de dados, a IPP FastFlow

obteve mais benefícios de cenários de frequência variável do que o TBB em nossos casos

de teste. Por fim, os resultados experimentais mostraram que a potencial vantagem de

desempenho do uso de microbatches em ambientes multi-núcleo tende a aparecer apenas

em cenários muito específicos.

Palavras-Chave: Processamento de Fluxo, Framework, Benchmark, Multi-núcleo.

EASING THE BENCHMARKING OF PARALLEL STREAM PROCESSING

ON MULTI-CORES

ABSTRACT

In today’s fast-changing data-driven world, there is increasing demand for real-

time/low-latency data processing. Stream processing is a technique that envisages pro-

cessing data as it becomes available, enabling near real-time data processing. Stream

processing applications must resort to parallelism techniques to speed up processing and

to cope with processing large volumes of data. Although there are parallel programming

interfaces (PPIs) that add several abstraction layers, parallelism in stream processing is

still a difficult task, usually demanding expert knowledge to achieve desired performance

levels. This generates a lot of research effort toward boosting parallel stream processing

performance and making parallel programming more accessible. Typically, benchmarks

are used to evaluate the PPIs and new solutions in this context. However, there are a

number of limitations in existing benchmarks, including not addressing some categories of

stream processing applications, few or no parameterization options, difficulty extending

the benchmarks to other PPIs, lack of appropriate performance metrics, poor usability,

only targeting JVM-based languages, and others. This work proposes a framework called

SPBench for creating custom benchmarks and evaluating parallel stream processing. Our

main goal is to ease the benchmarking process in parallel stream processing, including the

creation, building, execution, tuning, and evaluating of the benchmarks. Therefore, this

doctoral dissertation provides the following main scientific contributions: (I) A framework

that simplifies the benchmarking of stream processing applications, providing an API and a

command-line interface to simplify, reuse code, customize, extend, and evaluate different

aspects or properties regarding parallel stream processing. (II) A parallel C++ benchmark

suite for stream processing that includes real-world applications and the most state-of-the-

art Parallel Programming Interfaces (PPIs) in this context. (III) A comprehensive comparative

study of the most popular PPIs leveraging C++ stream parallelism. (IV) Mechanisms for

dynamic data stream frequency simulation in stream processing applications with a set

of algorithms for generating the literature’s most commonly used data stream frequency

patterns and an analysis of the data frequency impact on the performance of stream

processing applications. (V) An analysis of the performance impact of micro-batch sizing on

stream processing applications, including mechanisms for real-time and dynamic batching

management, allowing users to adjust batch sizes on the fly either based on specific size

targets or time intervals. We test the SPBench framework with five real-world applications

of video/image processing, data compression, and fraud detection. We show the benefits

of SPBench by using it in combination with PPIs to generate parallel stream processing

benchmarks and conduct various analyses. Overall, the results showed that the high-level

abstractions of PPIs can cause significant performance penalties when they hide fine-tuning

mechanisms. In the data frequency experiments, the FastFlow PPI benefited more from

varying frequency scenarios than the TBB in our test cases. Finally, the experimental results

showed that the potential performance advantage of using micro-batches on multi-cores

tends to show up only in specific scenarios.

Keywords: Stream Processing, Framework, Benchmark, Multi-core.

LIST OF FIGURES

2.1 Overview of parallel patterns. 28

2.2 Stream processing applications. 31

2.3 Stream processing workloads. 32

2.4 Most common terms for stream processing applications and technologies

found in 70 surveys published between 2008 and 2020. 33

2.5 A dataflow system representation. 34

2.6 Push and pull data propagation model. 36

2.7 A data stream application to continuously count hashtags. Adapted from [HK19]. 38

2.8 Stream systems representation, from [Gri16a]. 40

2.9 Stateless and stateful stream processing operators. 41

2.10 Pipeline, task, and data parallelism in stream graphs. Adapted from [HSS+14] 42

3.1 Users’ perspective when writing stream parallel code: traditional vs. SP-

Bench way. 61

3.2 SPBench architecture. 61

3.3 SPBench framework. 62

3.4 SPBench architecture. 63

3.5 Example of a word-counter micro-benchmark generation using NAMB. 78

4.1 Bzip2 flow graph. 86

4.2 Face Recognizer workflow. 86

4.3 Face Recognizer flow graph. 86

4.4 Lane Detection workflow. 87

4.5 Lane Detection flow graph. 87

4.6 Ferret workflow. 88

4.7 Ferret flow graph. 88

4.8 Fraud Detection flow graph. 89

4.9 Farm implementation in FastFlow. 96

4.10 Structure of a Pipeline of Farms implementation with FastFlow in SPBench. 96

4.11 Structure of a farm implementation with Threading Building Blocks (TBB) in

SPBench. 98

5.1 Characterization results (specific y scales for each application). 120

5.2 Characterization results (same y scales for all applications). 121

5.3 Example of SPBench latency results from the execution of Ferret (sequential).123

5.4 Throughput results of the TBB, FastFlow, OpenMP, and ISO C++ Threads

Farm implementations in different computers. 126

5.5 Latency results of the TBB, FastFlow, OpenMP, and ISO C++ Threads Farm

implementations in different computers. 127

5.6 Latency and throughput of the Bzip2 (compress mode) benchmarks with

different GrPPI backends and PPIs. 129

5.7 Latency and throughput of the Lane Detection benchmarks with different

GrPPI backends and PPIs. 129

5.8 Latency and throughput of the Face Recognizer benchmarks with different

GrPPI backends and PPIs. 129

5.9 Latency and throughput of the Ferret (farm) benchmarks with different GrPPI

backends and PPIs. 130

5.10 Ferret with compositions of pipelines and farms. 131

5.11 Performance of SPar-FastFlow, GrPPI-FastFlow, and handwritten FastFlow

with single farm benchmarks. 133

5.12 Performance of SPar-FastFlow, GrPPI-FastFlow, and handwritten FastFlow

with a pipeline of farms benchmark. 134

5.13 Usual on-demand behavior in a pipeline of farms in FastFlow. 135

5.14 Latency and throughput for the custom pipe-farm Ferret benchmark. It de-

fined as pipe(seq(source), farm((seg,ext,vect), n1), farm(rank, n2),

seq(sink)), where n1 and n2 are the number of workers in the farms. Each

line in the graphs represents a different ratio of the parallelism degree of

the two farms. E.g., n2 = 3n1 means that every time n2 is increased by 3, n1

is increased by 1. 138

5.15 Fraud detection performance results. 140

5.16 Total memory consumption of benchmarks with a single farm. 143

5.17 Total memory consumption of Ferret benchmarks using pipeline-farm (PF)

and farm-pipeline (FP) compositions. 144

5.18 Number of lines of code, cyclomatic complexity, and estimated development

time (PHalstead [AGS+22]) of the benchmarks implemented with FastFlow,

TBB, OpenMP, ISO C++ Threads, SPar, GrPPI-static, and GrPPI-dynamic. . . . 146

6.1 Latency of Ferret TBB and FastFlow benchmarks (farm) under different data

stream frequency strategies. 161

6.2 Snapshot from Figure 6.1 of a frequency switching cycle from Ferret using

the binary pattern. 161

6.3 Wave frequency pattern with Bzip2, Lane Detection, and Ferret. 169

6.4 Binary frequency pattern with Bzip2, Lane Detection, and Ferret. 170

6.5 Increasing frequency pattern with Bzip2, Face Recognizer, and Ferret. 171

6.6 Decreasing frequency pattern with Face Recognizer, Lane Detection, and

Ferret. 173

6.7 Spike frequency pattern with Bzip2, Face Recognizer, and Ferret. 175

7.1 Micro-batching. 180

7.2 SPBench’s batch sizing flowchart. 184

7.3 Throughput and latency results of Bzip2 benchmark implemented as a farm

(40 workers) with TBB and FastFlow, increasing the batch size dynamically

from 1 to 10 along the execution. 185

7.4 Throughput and latency results of Ferret implemented as a pipeline of farms

(maximum of 40 workers per farm) with TBB and FastFlow, increasing the

batch size dynamically from 1 to 10 along the execution. 186

7.5 Latency and throughput results for Lane Detection with multiple parallelism

degrees and statically set micro-batch sizes (AMD Ryzen 5 5600X). 187

7.6 Latency and throughput results for Lane Detection with multiple parallelism

degrees and statically set micro-batch sizes (Intel Xeon Silver 4210). 188

LIST OF TABLES

3.1 List of available performance metrics in SPBench. 71

3.2 Main characteristics of the work related to the SPBench framework. 80

4.1 Related benchmark suites. 106

5.1 Summary table of related work regarding performance evaluation of PPIs

that support stream processing in C++. 117

5.2 Overview of the computer systems used in the experiments. 119

6.1 Data stream frequency patterns found in the literature. 158

LIST OF ALGORITHMS

6.1 SPBench’s algorithm for frequency management . 159

6.2 Sine wave frequency pattern . 164

6.3 Binary frequency pattern . 165

6.4 Increasing frequency pattern . 165

6.5 Spike frequency pattern . 166

LIST OF ACRONYMS

API Application Programming Interface

CEP Complex Event Processing

CLI Command-Line Interface

CPU Central Processing Unit

DAG Directed Acyclic Graph

DSL Domain-Specific Language

DSPS Distributed Stream Processing System

FF FastFlow

FIFO First In, First Out

GMAP Grupo de Modelagem de Aplicações Paralelas

GPU Graphic Processing Unit

IoT Internet of Things

JSON JavaScript Object Notation

JVM Java Virtual Machine

PPI Parallel Programming Interface

TBB Threading Building Blocks

SP Stream Processing

PF Pipeline of Farms

FP Farm of Pipelines

FLOPS Floating-point Operations Per Second

MPI Message-passing Interface

LOC Lines of Code

CCN Cyclomatic Complexity Number

CONTENTS

1 INTRODUCTION . 20

1.1 RESEARCH PROBLEM . 21

1.2 RESEARCH GOALS . 23

1.3 CONTRIBUTIONS . 23

1.4 PUBLICATIONS . 24

1.5 DOCUMENT ORGANIZATION . 25

2 BACKGROUND . 26

2.1 PARALLEL PROGRAMMING . 27

2.1.1 TYPES OF PARALLELISM . 27

2.1.2 PARALLEL PATTERNS . 27

2.1.3 PARALLEL PROGRAMMING INTERFACES . 28

2.2 STREAM PROCESSING . 30

2.2.1 STREAM PROCESSING APPLICATIONS . 31

2.2.2 STREAM PROCESSING PARADIGMS . 32

2.2.3 STREAM PROCESSING OPERATORS . 41

2.2.4 TYPES OF PARALLELISM FOR STREAM PROCESSING . 42

2.2.5 STREAM PROCESSING ON PARALLEL ARCHITECTURES . 44

2.2.6 PARALLEL PROGRAMMING INTERFACES FOR STREAM PROCESSING 46

2.3 BENCHMARKS . 49

2.3.1 TYPES OF BENCHMARKS . 49

2.3.2 PROPERTIES OF BENCHMARKS . 50

2.3.3 PARALLEL BENCHMARKS . 52

3 SPBENCH BENCHMARKING FRAMEWORK . 55

3.1 MOTIVATION . 56

3.2 SPBENCH FRAMEWORK . 60

3.2.1 FRAMEWORK API . 64

3.2.2 SPBENCH SEQUENTIAL BENCHMARKS . 67

3.2.3 SPBENCH PARALLEL BENCHMARKS . 68

3.2.4 PERFORMANCE METRICS . 70

3.2.5 BENCHMARK PARAMETERIZATION . 72

3.2.6 COMMAND-LINE INTERFACE . 72

3.3 RELATED WORK . 77

3.3.1 DISCUSSION . 79

3.4 CHAPTER SUMMARY . 82

4 SPBENCH APPLICATIONS AND PARALLEL BENCHMARK SUITE 83

4.1 CONTEXT . 84

4.2 SPBENCH APPLICATIONS . 85

4.2.1 BZIP2 . 85

4.2.2 FACE RECOGNITION . 86

4.2.3 LANE DETECTION . 87

4.2.4 FERRET . 88

4.2.5 FRAUD DETECTION . 89

4.3 WORKLOAD CLASSES . 91

4.3.1 INPUT WORKLOADS . 91

4.3.2 USING CUSTOM INPUT WORKLOADS . 93

4.3.3 CORRECTNESS TESTING . 94

4.4 BUILDING THE PARALLEL BENCHMARKS . 94

4.4.1 FASTFLOW . 95

4.4.2 THREADING BUILDING BLOCKS . 96

4.4.3 SPAR . 99

4.4.4 OPENMP AND ISO C++ THREADS . 99

4.4.5 GRPPI . 101

4.4.6 WINDFLOW . 103

4.5 RELATED BENCHMARK SUITES . 104

4.5.1 DISCUSSION . 105

4.6 CHAPTER SUMMARY . 107

5 PARALLELISM AND PERFORMANCE EVALUATION 109

5.1 CONTEXT . 111

5.2 RELATED WORK . 112

5.2.1 DISCUSSION OF RELATED WORK . 116

5.3 EXPERIMENTAL SETUP . 119

5.4 WORKLOAD CHARACTERIZATION . 120

5.5 LATENCY AND THROUGHPUT PERFORMANCE . 122

5.5.1 EXPERIMENTAL METHODOLOGY . 124

5.5.2 TBB, FASTFLOW, OPENMP, AND ISO C++ THREADS RESULTS 125

5.5.3 GRPPI RESULTS . 128

5.5.4 COMPARING HANDWRITTEN FASTFLOW, SPAR-FASTFLOW, AND GRPPI-FASTFLOW132

5.5.5 CUSTOM PARALLEL COMPOSITIONS RESULTS . 136

5.5.6 DATA STREAM PERFORMANCE . 139

5.6 MEMORY USAGE . 142

5.7 PROGRAMMABILITY EVALUATION . 145

5.8 OVERVIEW OF THE RESULTS . 148

5.9 CHAPTER SUMMARY . 150

6 DATA STREAM FREQUENCY . 153

6.1 MOTIVATION . 155

6.2 RELATED WORK . 156

6.3 DATA STREAM FREQUENCY MANAGER . 159

6.4 FREQUENCY PATTERNS . 160

6.4.1 FIRST PROPOSED SOLUTION . 160

6.4.2 CURRENT SOLUTION . 163

6.5 EXPERIMENTAL EVALUATION . 167

6.5.1 EXPERIMENTAL METHODOLOGY . 167

6.5.2 EXPERIMENTAL RESULTS . 168

6.5.3 DISCUSSION OF THE RESULTS . 176

6.6 CHAPTER SUMMARY . 177

7 MICRO-BATCHING . 179

7.1 MOTIVATION . 180

7.2 RELATED WORK . 181

7.3 PROPOSED SOLUTION . 183

7.4 EXPERIMENTAL EVALUATION . 183

7.4.1 EXPERIMENTAL METHODOLOGY . 183

7.4.2 EXPERIMENTAL RESULTS . 184

7.5 CHAPTER SUMMARY . 188

8 CONCLUSION . 190

8.1 LIMITATIONS AND FUTURE WORK . 193

REFERENCES . 195

20

1. INTRODUCTION

Contents

1.1 RESEARCH PROBLEM . 21

1.2 RESEARCH GOALS . 23

1.3 CONTRIBUTIONS . 23

1.4 PUBLICATIONS . 24

1.5 DOCUMENT ORGANIZATION . 25

The amount of data/information created, captured, copied, and consumed daily

by us is growing like never before. More than 220 zettabytes (220 trillion gigabytes) of data

will need to be processed and analyzed by 2026, as estimated by the International Data

Corporation (IDC) [Ryd22]. Every day Google processes over 3.5 billion search records,

NASA satellites produce about 4 Terabyte image data, and Walmart supermarkets generate

over 20 million transaction records [ZLCH20]. However, only about 2% of this data remains

saved or retained from one year to the next [Ryd22]. Most of this data only exists for

time enough to extract relevant information and be consumed, as in many multimedia

streaming applications. The consequence is that the demand for real-time data processing

has grown in recent years. Traditional batch-oriented data processing is known to be

insufficient to keep up with this demand [AGT14]. This way, organizations increasingly

adopt stream processing systems, which can process data in nearly real-time. Many sectors

use stream processing applications, such as surveillance, transaction processing, radio

astronomy, signal processing, stock market, healthcare, traffic control, multimedia, and

others [BGM+20, SRG+20].

Stream processing applications require parallelism exploitation to accelerate the

computation and promptly process large volumes of data. The parallelism can be applied

through different Parallel Programming Interfaces (PPIs) such as libraries, frameworks, and

Domain-Specific Languages (DSLs). As the stream processing domain grows, so is the

development of new PPIs. Besides, there is much research towards adding new features to

existing PPIs and developing new technologies for stream processing through these PPIs.

Despite the growth of this area, there is a lack of stream processing benchmarks

for developers and researchers to test and evaluate PPIs, techniques, and parallelism

strategies [GAA+20, TSR20, Gri16a]. Even with the few existing solutions, evaluating these

new technologies with different stream processing applications or benchmarks is a time-

consuming task that shifts the programmer’s focus away from the technology itself. This

doctoral thesis proposes a framework for developing customizable benchmarks targeting

21

stream parallelism in C++. We expect to allow programmers and researchers to easily

evaluate PPIs and new solutions for stream processing in real-world applications.

1.1 Research Problem

The research problem that this thesis addresses can be broken down into five

parts:

1. It is not easy to explore parallelism in stream processing applications.

Many of the PPIs for stream processing applications provide abstractions to make the

parallelization process easier. Some are based on structured parallel programming to

provide parallel structures ready-to-use for programmers [MRR12, AGT14, HSS+14].

Others go beyond and try to avoid code rewriting through compilation directives and

code annotations [Gri16a, DM98]. However, stream processing applications have

unique characteristics that make them difficult to parallelize by those who are not

experts in this area. It is necessary to identify the application operators, which are

stateless or stateful, which data is consumed or produced by each of them, etc.

For instance, this problem significantly scales when a researcher needs to test a

new solution in several applications. Herefore, it is helpful to have benchmarks that

prevent programmers from spending time with these particularities of the applications

and allow them to go direct to the point.

2. There are no representative benchmark suites for traditional stream processing.

Representative benchmarks should be able to capture the key features and workloads

of its domain’s applications. There are many sub-domains of stream processing,

such as data stream processing, reactive programming, and complex event pro-

cessing (CEP). Also, there are some recent initiatives to build benchmark suites for

these sub-domains [BGM+20, PHUK20, SCS17, LWXH14, Wan16, ABD+16]. However,

for a particular type of stream processing applications such as data compression,

DNA sequencing, and multimedia processing, representative benchmarks are still

missing [GAA+20, TSR20, Gri16a]. The consequence is that researchers have to

develop their specific-purpose solutions, often synthetic, or use outdated bench-

marks [MVGF19, MTG+19, ADKT17a, ZHD+17, Gri16a]. Hence, according to our knowl-

edge, there is a demand for initiatives that fill this gap.

3. Benchmarks for C++ stream processing are limited.

Traditional stream processing generally relies on centralized architectures. In con-

trast, most data stream applications run under Distributed Stream Processing Sys-

tems (DSPSs), such as Apache Flink, Apache Storm, and Apache Spark [BGM+20,

22

NQA+20, GPRD19, ASAP17]. These Distributed Stream Processing Systems (DSPSs)

are designed to run in the cloud or large clusters, so they use the Java Virtual

Machine (JVM) to provide hardware abstractions. Therefore, applications in this sub-

domain are generally implemented in JVM languages, such as Java and Scala [ZHD+17,

ZGQB17, GPRD19]. For this scenario, recent studies are already proposing benchmark

suites [BGM+20, PHUK20, SCS17, LWXH14, Wan16, ABD+16]. However, studies have

already shown the performance efficiency limitations of these Java-based systems due

to the sub-optimal data serialization, memory accesses, and garbage collection. The

consequence is that there is research effort towards exploring these applications in

centralized single-node architectures [KWCF+16, MPJ+17, ZHD+17, ZHZH19, ZWZH20]

and many of them using C++ [TKPP20, CBP+17, DMM17, MJP+19, MTG+19, RTMD20,

TKPP22].

4. There is a lack of solutions targeting to ease the evaluation process of stream pro-

cessing.

Many PPIs provide high-level abstractions to improve the productivity of stream paral-

lelism exploration by application developers. However, virtually no similar initiatives

allow programmers or researchers developing these PPIs and new technologies to eval-

uate their solutions more easily. There are many recent studies focused on evaluating

PPIs [MTG+19, GHDF18a, GHDF17, RSG+19] or developing techniques to improve dif-

ferent aspects of them, such as self-adaptive parallelism [VGF21, VGDF19, VGDF22],

add new features [GHDF18b], and support for new parallel abstractions [HGDF20,

GHDF17] and architectures [SRG+20, RTMD20, RGDF19, RSG+19, RLA+22].

5. Performance analysis of PPIs for C++ stream processing is usually incomplete

Properly evaluating the performance of stream processing applications and PPIs can

be challenging [KRK+18]. Many works in the literature consider only speedup or

throughput as a performance metric when evaluating PPIs in the traditional stream

processing domain. However, SP applications can be tuned to achieve different

goals, such as reduced latency, increased throughput, or efficient resource us-

age [KRK+18, ZMK+19, SRG+20]. Latency can be a critical factor for applications

such as lane detection, object tracking, high-frequency trading, augmented reality,

anomaly detection, online games servers, etc. [DDMMT15, NXC19, LLG19, YLL+22].

Also, this scenario of possible endless data streams can significantly impact the

memory usage of different applications and PPIs [TKPP20, MJP+19]. When comparing

PPIs, analyzing their usability/programmability is also an important factor often over-

looked [AGSF23]. Nevertheless, all these aspects are often neglected in the literature

concerning evaluating C++ stream processing PPIs.

23

1.2 Research Goals

In this doctoral thesis, we go into the performance analysis of stream processing

systems. We found unfilled gaps in this area regarding representative benchmarks, es-

pecially for lower-level abstraction programming languages such as C++. This way, we

aim to provide a means for developers and researchers to more easily test, validate, and

address the performance of systems, techniques, and technologies for stream processing.

Therefore, we conduct our research in this direction, and the main research goals can be

summarized as follows:

• Ease the benchmarking of C++ parallel stream processing.

• Speedup and simplify the research for parallel stream processing by providing highly

parameterizable benchmarks with self-built representative mechanisms, such as

batching, data stream frequency management, and real-time performance metrics.

• Conduct a comprehensive evaluation and comparison of the state-of-art PPIs that

support parallel stream processing in C++.

1.3 Contributions

Based on the research challenges and goals discussed above, we provide the

following main scientific contributions in this doctoral thesis:

• A user-friendly framework designed to facilitate the benchmarking of stream process-

ing applications. With its intuitive API and command-line interface, this framework

streamlines the process of customizing, extending, and evaluating various aspects of

parallel programming and architectures relevant to stream processing. By reusing

code, users can easily compare and optimize different parallelism strategies, enhanc-

ing their ability to achieve optimal performance (Chapter 3).

• A parallel C++ benchmark suite for stream processing. This suite encompasses

real-world applications and incorporates most of the state-of-art PPIs available in

this context, making it a valuable resource for the industry and scientific community

(Chapter 4).

• A comprehensive comparison and analysis of parallel programming interfaces that

harness stream parallelism, which includes Intel TBB, FastFlow, GrPPI, SPar, OpenMP,

ISO C++ threads, and WindFlow. Through our thorough analysis, we aim to provide

researchers and developers with insights into the relative strengths and weaknesses

of each interface in the context of stream processing (Chapter 5).

24

• Mechanisms for data stream frequency simulation in stream processing applications.

We provide a set of algorithms for generating the literature’s most commonly used

data stream frequency patterns. These mechanisms are fully integrated into our

framework and can be dynamically reconfigured at runtime, allowing for flexible

evaluation of the impact of data frequency on stream processing applications. Using

these algorithms, we conduct a comprehensive study of the effects of data frequency

on stream processing applications (Chapter 6).

• An analysis of the performance impact of micro-batch sizing on stream processing

applications. Additionally, we introduce mechanisms for real-time and dynamic

batching management, allowing users to adjust batch sizes on-the-fly either based

on specific size targets or time intervals. By providing this flexibility in micro-batch

sizing, our framework enables users to optimize their stream processing applications

for varying workloads and use cases (Chapter 7).

1.4 Publications

Most of these contributions have already been presented and published in inter-

national conferences and journals. The followings are the research papers and articles

accepted during the doctorate period that are directly related to this study:

Journal articles:

• Garcia, A. M.; Griebler, D.; Schepke, C.; Fernandes, L. G. “SPBench: A Frame-

work for Creating Benchmarks of Stream Processing Applications”, Comput-

ing [GGSF22b].

• Garcia, A. M.; Griebler, D.; Schepke, C.; Fernandes, L. G. “Micro-batch and Data

Frequency for Stream Processing on Multi-cores”. The Journal of Supercomput-

ing [GGSF23].

Conference papers:

• Garcia, A. M.; Griebler, D.; Schepke, C.; Fernandes, L. G. “Introducing a Stream

Processing Framework for Assessing Parallel Programming Interfaces”. In:

29th Euromicro International Conference on Parallel, Distributed, and Network-Based

Processing (PDP) [GGSF21].

• Garcia, A. M.; Griebler, D.; Schepke, C.; Fernandes, L. G. “Evaluating Micro-batch

and Data Frequency for Stream Processing Applications on Multi-cores”. In:

25

30th Euromicro International Conference on Parallel, Distributed and Network-Based

Processing (PDP) [GGSF22a].

• Garcia, A. M.; Griebler, D.; Schepke, C.; Santos, A. S.; García, J. D.; Muñoz, J. F.;

Fernandes, L. G. “A Latency, Throughput, and Programmability Perspective of

GrPPI for Streaming on Multi-cores”. In: 31st Euromicro International Conference

on Parallel, Distributed, and Network-Based Processing (PDP).

Moreover, here is the work published during the Ph.D. course that is not directly

connected to this thesis:

• Title: The Impact of CPU Frequency Scaling on Power Consumption of Com-

puting Infrastructures. Reference [GSG+20b].

1.5 Document Organization

The remainder of this proposal is organized as follows: Chapter 2 describes

the background of this study. Chapter 3 introduces the motivation, presents SPBench

benchmarking framework, and discusses our related work. Then, Chapter 4 shows the set

of applications supported by SPBench and how to use the SPBench framework with different

parallel programming interfaces. Chapter 5, Chapter 6, and Chapter 7 present performance

and parallelism evaluation, tests with distinct data stream frequency patterns, and the

impact of micro-batching size in throughput and latency performance. The conclusion is in

Chapter 8.

26

2. BACKGROUND

In the last decades, parallel architectures have evolved significantly, leveraging

the increased popularity of parallel programming. The focus of parallelism is to enhance

the performance of applications. On the other hand, stream processing offers a solution

for processing data streams continuously without requiring knowledge of the stream’s

size or end. The high demand for real-time processing and the increased volume of data

motivates the need to improve the parallelism capabilities of stream processing systems.

This incurs a lot of research and development of new solutions and technologies in this

direction. Whether in stream processing or any other domain, benchmarks are crucial for

the academic field and industry to evaluate and validate such technologies. Section 2.1

discusses the most common ways to explore parallelism through parallel programming

techniques. In Section 2.2, we give a detailed background on stream processing. Finally,

Section 2.3 presents some concepts and challenges regarding benchmarks.

Contents

2.1 PARALLEL PROGRAMMING . 27

2.1.1 TYPES OF PARALLELISM . 27

2.1.2 PARALLEL PATTERNS . 27

2.1.3 PARALLEL PROGRAMMING INTERFACES . 28

2.2 STREAM PROCESSING . 30

2.2.1 STREAM PROCESSING APPLICATIONS . 31

2.2.2 STREAM PROCESSING PARADIGMS . 32

2.2.3 STREAM PROCESSING OPERATORS . 41

2.2.4 TYPES OF PARALLELISM FOR STREAM PROCESSING 42

2.2.5 STREAM PROCESSING ON PARALLEL ARCHITECTURES 44

2.2.6 PARALLEL PROGRAMMING INTERFACES FOR STREAM PROCESSING 46

2.3 BENCHMARKS . 49

2.3.1 TYPES OF BENCHMARKS . 49

2.3.2 PROPERTIES OF BENCHMARKS . 50

2.3.3 PARALLEL BENCHMARKS . 52

27

2.1 Parallel Programming

Parallel architectures have been around for a long time, but they alone cannot

meet performance needs. Traditionally, computer programs are written to run serially.

Algorithms are built as a sequence of instructions. Then, a computer’s processor executes

these instructions one at a time. Despite the ubiquity of parallel architectures, most

computer applications are still sequential [Gri16a]. With these architectures, it is possible

to use parallel programming to make sets of instructions run concurrently. This is done by

separating a problem into smaller, independent parts that can execute simultaneously.

2.1.1 Types of Parallelism

Several types of parallelism are generic and universal in parallel programming.

The two main ones are data parallelism and task parallelism [Tor19]. The former consists of

the replication of code blocks so that the workload is partitioned between these blocks, and

these blocks are processed concurrently. Task parallelism consists of executing different

concurrently independent blocks of code in parallel and is usually defined through task-

dependency graphs. However, the exact definition of task parallelism is nebulous, and

its meaning may vary. According to [MRR12], while some programmers use it to mean

(unscalable) functional decomposition, others use it to mean (scalable) recursive fork-join,

and some even mean any parallelism with distinct tasks in control flow. In addition, if we

consider that the input of an application can be a flow of data items, and depending on

how the graph is designed, this model can be considered stream parallelism [ATM09]. We

present this type of parallelism in more detail in Section 2.2.4.

2.1.2 Parallel Patterns

The idea of structured parallel programming comes from design patterns. It

transforms recurrent ways of solving computational problems into well-established patterns

to simplify programming. However, defining patterns to facilitate programming is not a

recent idea. This has already been considered with other names, such as algorithmic

skeletons [Col89, Col04] and parallel patterns [MRR12]. This kind of design patterns

approach is widely discussed and used in software engineering. It has been imported

from other domains, such as architecture and city planning [MSM04]. In computing, it has

become prominent mainly in object-oriented programming [Gam95].

28

Figure 2.1: Overview of parallel patterns.

Source: [MRR12]

This approach that follows the design patterns path is handy for programmers

who aim for parallel systems. Among the benefits we can list [Col89]: (a) simplified

programming; (b) increased portability and reuse; (c) improved performance; and (d)

allowing more automatic optimizations. Figure 2.1 shows an overview of the main parallel

patterns, like map, farm, pipeline, and fork-join. We discuss the relevant patterns for this

thesis in Section 2.2.4.

2.1.3 Parallel Programming Interfaces

With all the performance potential of parallel architectures, parallel programming

was expected to be more popular among application developers. However, using parallelism

to extract all this potential requires a deep understanding of micro-structural aspects of

the architecture [MRR12]. Although there are mechanisms of automatic parallelism, such

as vectorization (an extension of data width parallelism), it has not been universally

successful [MRR12]. This automatic hardware parallelism has low portability because the

performance relies on a specific architecture. Thus, it is still necessary that programmers

use explicit parallelism to explore the hardware. However, the cost of higher portability

and performance is a higher programming complexity, which implies that it is necessary to

have a balance to make it worthwhile.

29

None of the most widely used programming languages are designated for parallel

programming [MRR12]. In addition, a lot of legacy code is serially implemented in these

languages. Therefore parallel programming interfaces (also known as parallel programming

models) must provide support and tools to explore parallelism more independently. Their

goal is to provide abstractions for hardware, system, and languages. These PPIs can take

many forms, such as domain-specific languages, libraries, and language extensions. Some

examples are OpenMP, Message-passing Interface (MPI), TBB, CUDA, and FastFlow. Each

PPI has a target, which can be a specific architecture, a language, application classes,

and types of problems. However, despite assuming so many different forms, [MRR12]

and [Tor19] say that these PPIs should balance 3 parallelism properties:

Programmability/Productivity: this property concerns the programming com-

plexity of reaching a solution. Two main aspects are considered: the time spent by program-

mers and the effort required to write the code. In the ideal scenario, parallelism adds no

programming cost, and programmers should face the same complexity of writing sequen-

tial code. However, it is challenging to achieve this because programming overheads are

added by the management of synchronization, communication, and task scheduling [Tor19].

The extra code these mechanisms add for concurrency and parallelism control keeps PPIs

away from the ideal scenario. In addition, programmability also refers to the ability to

reuse code. Many sequential codes result from years of improvements and tuning, where

rewriting code would be out of the question. Therefore PPIs need to have the ability to

apply parallelism using this same highly optimized code with as little rewriting as possible.

Additionally, [MRR12] says that a PPI should be: “Expressive, composable, debuggable,

and maintainable”. Addressing these issues regarding programmability/productivity can

bring parallelism to application developers.

Portability: This refers fundamentally to the ability of the code to run on different

platforms. This can be done using standard libraries that will ensure this higher level of

compatibility. However, even if a parallel program can run on another architecture without

rewriting code, this does not guarantee so-called “performance portability”. In reality, it

means the ability of a parallel application to maintain a performance level considering

the relative peak performance on different architectures. An application tuned to run

at 80% performance on one machine should not run at only 30% on another [MRR12].

However, this has many challenges, such as other parallel applications running on the

new system. While [Tor19] argues that code rewriting is still a necessity for performance

portability, [VGF21] and [DSTD16] argue that this portability can be improved through the

use of self-adaptivity to autonomously managing parallelism aspects. In addition, [MRR12]

says performance portability is usually only achievable with high abstraction parallel inter-

faces, as there are fewer manual parallelism inserts. These PPIs could identify hardware

and adapt better.

30

Performance: according to [MRR12] the performance of a PPI should be “achiev-

able, scalable, predictable, and tunable”. It means it should allow performance to be

achieved in a predictive and scalable way in large systems. It is usually the primary target

of any PPI, where performance improvement Uis expected to be proportional to the sys-

tem’s processing power. However, this improvement is challenging to scale optimally for

large systems, as there is a limit to how much an application can be parallelized. Amdahl’s

law [Amd67] describes this limit, which refers to the non-parallelizable parts of a program.

Even in highly parallelizable applications, intrinsically serial parts will be impossible to

avoid. For example, programs with high data dependency usually have several sequential

snippets. On the other hand, Gustafson’s law [Gus88] says that parallel regions grow faster

than sequential ones when you scale up the problem. It means that the limit defined by

Amdahl’s law may vary according to the scale of the problem. We add to these aspects that

it is also important for the parallel code to be written dynamically to scale and exploit the

resources of different systems. Furthermore, self-adaptive techniques can be employed to

help in this regard [VGF21].

2.2 Stream Processing

We are living in a data-oriented world. The Big data within the expansion of

Internet of Things (IoT) technologies and the emergence of Edge Computing have made

stream processing applications widely used in many areas and industries. This type of

application needs to handle large volumes of user and sensor data. Stream processing

contrasts with traditional batch processing because there is no need for data storage here,

and processing is done in near real time [AGT14]. In batch processing, data are collected

over some time. This data is eventually processed and sent to an analysis system that runs

periodically. In stream processing, data is processed continuously as new data becomes

available for analysis, applying a series of small computations as stages in a pipeline, doing

this processing incrementally [AGT14, SHGW15].

According to [HSS+14], stream processing systems allow the execution of the

stages of an application in parallel, making the communication of data items between them

through FIFO queues. Each item in the stream is an atomic piece of data, which can be

consumed or produced by the stages [SHGW15, AGT14]. Therefore, stream processing also

has three advantages [AGT14]: 1) for programmers to develop parallel programs, they do

not need to think parallel because they can implement individual blocks (stages/operators),

keeping the sequential programming logic. 2) a streaming run-time can reason about

each stage individually while potentially optimizing globally. 3) it enables an application to

process a constant stream of data over time, optimizing the use of hardware resources.

31

2.2.1 Stream Processing Applications

Different sectors present stream processing applications. Figure 2.2 presents

some of them, such as surveillance systems, financial transactions, radio astronomy, signal

processing, fraud detection, stock market, healthcare monitoring systems, and traffic

control [AGT14]. Although most recent literature uses the term “stream processing” to

refer to applications that process infinite streams of real-time data, this is a more specific

feature of “data stream” applications. Conversely, some applications do not necessarily

process unbounded real-time data streams within the stream processing domain, and

latency is often not a critical factor. This class of application, such as data compression,

industrial simulation, DNA sequencing, data deduplication, general video, audio and image

processing, etc [TA10, TZ14, MVGF19] most target a high-throughput rate instead.

Figure 2.2: Stream processing applications.

Source: [AGT14]

Stream processing applications also need to work with different types of workloads,

which impacts the applications’ characteristics. Data streams can contain data of different

types from different sources. This data can constantly arrive, irregularly, or sporadically.

Data items can be small as a single numeric attribute or be sets of information with

thousands of bytes. Although stream processing targets real-time processing, this data

does not necessarily arrive in real-time, as with a file compression application. Figure 2.3

shows examples of data types processed by applications in this domain. As we will see in

32

the following sections, some applications need to process combined workloads to find more

complex solutions.

Text

Mining in Microseconds

Simple & Advanced Text

Predictive

Geospatial

Image & video

Statistics Advanced

Mathematical

Models

Acoustic

Figure 2.3: Stream processing workloads.

Source: Adapted from [BBD+14]

2.2.2 Stream Processing Paradigms

There are, therefore, many definitions of “stream processing”. Back in 1997

[Ste97] said that stream processing could refer to dataflow systems, reactive systems,

synchronous concurrent algorithms, signal processing systems, and certain classes of real-

time systems. We have analyzed 70 surveys of this domain published in the last decade

and extracted the terms used to designate applications, tools, and technologies for stream

processing. Figure 2.4 presents a word cloud based on the frequency that these terms

appeared in these works. Most terms refer to data stream processing. Although “stream

processing” has a high frequency, we have found that in most cases, it also designates

data stream processing.

Some scientists and experts say that many of these variations are just attempts

by the industry to sell a new product and that they are equivalent in many ways [AGT14,

MDAT17, Car14]. It is true partly because this area has grown very recently, which can be

somewhat confusing even for scientists and experts. Thus, a broad taxonomic study to unify

knowledge and set some boundaries in this area would be interesting. However, although

33

Figure 2.4: Most common terms for stream processing applications and technologies found
in 70 surveys published between 2008 and 2020.

paradigms share some aspects, some specific characteristics make some definitions differ

from each other, such as the structure of the workload and individual data items, the data

propagation strategy, the goals, the architecture, and others. Since, in the scope of this

work, we address certain well-defined types of applications, we believe it is valuable to

discuss the main paradigm definitions and how they differ. In the following sections, we

categorize the paradigms according to our understanding.

Dataflow Paradigm

Dataflow is a broad concept in Computer Science that can have different meanings.

A broad description could be “information in motion”. Some scientists say that any system

where the data moves between operators and triggers their execution could be called

dataflow [Car14]. Here we will approach the concept of dataflow programming, a software

architecture, in contrast to dataflow hardware architecture. This programming model can

be easily represented by a high-level abstraction acting on different layers, ranging from the

definition of the basic structure of an application to the detailed execution model [MDAT17].

It can describe how data flows through a program’s operations, represented by a Directed

Acyclic Graph (DAG). In these graphs, the nodes are the computing part and are called

operators, while the edges represent the data dependencies. Therefore, the functional

part of this representation is the operators, which consume input data, process it, and

generate output data. Operators without input or output ports are called “source” and

“sink”, respectively. This way, dataflow can be seen as a way to program, and it is not tied

to a specific language or technology. It does not guarantee parallelism but makes it much

more straightforward.

34

The dataflow models independent (therefore parallelizable) operators starting

from a graph of true data dependencies, and each operator has its execution triggered by

data availability [MDAT17]. Figure 2.5 shows a representative illustration of this paradigm,

where the spheres are operators and arrows are dependencies [Gri16a]. This means an

operator will only be executed when the input data is available. Similarly, an output

dependency defines where the following operators will get the data from. Therefore, these

input and output dependencies represent and ensure the connections and synchronizations

between operators [Gri16a].

Figure 2.5: A dataflow system representation.

Source: [Gri16a]

The operators of a dataflow program can be executed in two different ways

[MDAT17]. The first way is called process-based and is a straightforward model where each

operator is assigned to a thread/process, and communication occurs through FIFO queues

(First In, First Out). The second way is the scheduling-based model, where a scheduler tracks

when a data item satisfies an operator’s dependency and then schedules that operator

to be executed. Besides, data items can also be propagated in different ways through

operators using the synchronous or asynchronous model [Tec01]. The asynchronous model

is most commonly used in stream processing and was the model we have addressed so

far, where data consumption/production by the operators occurs dynamically. On the

other hand, in the synchronous model, the number of items that will be consumed and

produced in each operator, and the instant of time they may consume/produce items, is

done synchronously [LM87]. It means that it is implemented statically and is known at

compiling time. This model is suitable for synchronous signal processing systems and does

not allow flow control based on data dependency.

Although the dataflow concept first appeared in the 60’s [KLV61, Sut66, Den74],

it has evolved in a way that can still represent current programming models. [MDAT17]

analyzed modern data stream processing PPIs within a dataflow perspective. They built a

layered model to show how the dataflow paradigm can present itself at different levels of

abstraction in these PPIs. Three layers of dataflow abstraction were identified: 1) Semantics

of the application in terms of dataflow graphs; 2) Instantiation of semantic dataflow that

explicitly expresses parallelism; 3) How the program is effectively deployed and executed

35

onto the platform (e.g., using a Master-Workers pattern). Thus, the dataflow paradigm can

still represent the streaming models used for stream processing [MDAT17]. However, as

we discussed next, so many other specific variations of this model have emerged that we

believe it should now be seen more like a feature or optimization rather than a programming

paradigm.

Reactive Programming

The high interactivity of modern applications, including with the surrounding

environment, opens space for solutions that react to these stimuli quickly and efficiently.

These interactions are usually linked to user interfaces and can be mouse clicks, keyboard

button presses, multitouch gestures, etc. [BCC+13, Ell09, KBDM13]. An interaction of this

type can generate an event that triggers a series of operations, such as updating the state

of an application with new information or generating some alert. Ideally, this processing

should be done in real-time, or at least appear real-time according to the context of the

application environment [BCC+13]. For this type of application, reactive programming may

be the most appropriate paradigm.

Although reactive programming is a relatively new term, it is a new name for old

concepts. Its origin stretches back to at least 1985 [HP85]. It has gained popularity in recent

decades as a way to simplify the creation of interactive user interface animations in real-

time systems. This paradigm emerged around the asynchronous dataflow model and has

the principle of “propagation of change” [BCC+13]. That is, it is an event-driven paradigm,

unlike dataflow, which is data-driven. Therefore, reactive programming allows the user

to express what the program should do, using static or dynamic flows. Thus, instead of

waiting for data to arrive, programmers can implement callbacks (event handlers) that only

activate execution when a specific event occurs.

The reactive programming model, therefore, can be represented in the same way

as a dataflow, through a graph with its operators and dependencies. A reaction to an

event causes an automatic propagation of change through all the dependent nodes in the

graph [Ell09]. Consequently, any computing affected by this change becomes outdated

and needs to be flagged for re-execution. This change can spread through the entire graph

to a sink operator.

Different strategies can be used to implement a propagation system with reactive

programming, such as “pull”, “push”, or “push-pull”, as illustrated in Figure 2.6. In the

pull strategy, the operators must be proactive and constantly check status changes in the

data stream. As soon as an event is identified, a reaction occurs. This strategy does not

fit very well with most reactive systems, as it can increase latency, a critical factor in this

paradigm [Ell09, BCC+13]. In the other strategy, named pull, the operators are passive

and wait for the data to arrive. It automatically triggers its execution. This model is more

36

suited to most reactive programs because these programs receive events only at discrete

points of time instead of a continuous flow [NCP02, Ell09]. So it is a waste of resources to

recompute values even when they do not change. In addition, with the push strategy, the

reaction is practically instantaneous.

Figure 2.6: Push and pull data propagation model.

Source: [BCC+13].

A third propagation strategy called push-pull is a combination of the last two. Here,

the operators receive only a small change of state notification along with a short description

of the event (this is the push part). If the operator recognizes a data dependency, he

needs to go to the source of the notification to get all the data (this is the pull part). This

last strategy is suitable for reactive systems that need to deal with large volumes of data

because notifications are light elements, and only interested consumer operators will make

a data request [BCC+13].

Applications implemented with the reactive programming paradigm exist in sev-

eral sectors. However, they are more common among applications that need to respond to

requests, such as network request events for exchanging data with background services,

or interactions, such as a user interface, which needs to be highly responsive to clicks

and other interactions, coordinating such events originated from a user with internal ap-

plication state changes. The classic example of reactive programming in our daily lives is

spreadsheets. [BCC+13] states that reactive programming is essentially about embedding

the spreadsheet-like model in programming languages. According to [GJ21], spreadsheet

languages like Excel are the most used programming languages in the world. In a spread-

sheet, cells can contain literal values or formulas calculated using values from other cells. A

formula can be =B1+C3, for example, in which case the cell containing that formula depends

on the values of cells B1 and C3. Therefore, when any of these cells has its value updated,

it triggers the execution, and the program recalculates the formulas and automatically

updates all the values dependent on these cells.

37

The need for processing can significantly escalate when using large data sets and

more complex spreadsheet formulas. In addition, this complexity tends to increase as new

technologies emerge. Until then, spreadsheets only allowed the use of pre-programmed

functions. However, spreadsheet languages are now becoming full-fledged programming

languages, allowing users to create custom functions, such as LAMBDA for Excel [GJ21].

Therefore, reactive programming is essential for evolving this type of technology. Other

day-to-day applications that use this paradigm are search engines, text translation tools,

social media subscription systems, etc. [KBDM13, BCC+13].

Data Stream Processing (Event Processing)

In the previous section, we discussed the concept of reactive programming, which

processes events that occur at discrete points in time. However, to process continuous flow

events, other paradigms, such as event processing or data stream processing (they can be

seen as equivalent) are necessary. While in reactive programming, stream processing is

only enabled when a specific event is identified, Data Stream Processing Systems (DSPSs)

need to handle events that arrive continuously, usually carrying meaningful information to

be processed. The data items can be called “events” because they arrive as tuples of data,

which often carry temporal and spatial data together with the main information [ZGQB17].

Although this is not true for every kind of data tuple, the structure of these data items

is quite similar. Applications of this paradigm are implemented using an asynchronous

dataflow model and can also include reactive programming.

The data stream has emerged as a solution to process tremendous volumes of data

arriving at high velocity and avoid the need for higher storage capacity [AGT14]. The goal

is to extract relevant information from these data uninterruptedly as soon as they arrive.

Data stream applications, therefore, need to operate mostly infinitely, because the end of a

stream is usually not predictable [YT13]. A data stream is basically defined by the structure

of its tuples. A tuple is a list of attributes of different types, which usually encapsulates the

main information along with the time it was generated, where it was generated, and any

additional information. Therefore, we can say that data streams are temporally ordered,

fast-changing, massive, and potentially infinite sequences of data [YT13].

A typical data stream system consists of a set of data/events producers and a

set of consumers [GPRD19, HK19]. The data produced can be clicks on social networks,

financial transactions, stock market feeds, medical systems, traffic reports, sensor data,

etc. [AGT14, NNG18, GPRD19]. Consumers in a data stream application can handle this

data and take some action. Such actions can include aggregations (e.g., calculations such

as sum, mean, standard deviation), transformations (e.g., changing a number into a date

format), enrichment (e.g., combining the data point with other data sources to create more

context and meaning), data analytics (e.g., predicting a future event based on patterns in

38

the data), or simple ingestion (e.g., inserting the data into a database). In Figure 2.7 we

present a classic example of a data stream application, which receives a tweets stream,

processes the text to extract hashtags, counts the most relevant items, and uses the result

to update the trending topics list [HK19].

Figure 2.7: A data stream application to continuously count hashtags. Adapted from [HK19].

The domain has grown a lot toward Data Stream, especially with the world

becoming data-driven, with IoT and new advances in distributed computing, including

broader access to cloud computing [NQA+20]. Data stream applications are becoming

more and more present in everyday life as they are used to process events generated by

all kinds of sources, such as sensors, surveillance systems, and social media [DBL+19].

There are applications to classify audio information and identify specific events, such

as gunshots, cheering (to create indexed records in sports), music, speech recognition,

etc. [NQA+20, DBL+19, AGT14]. In monitoring systems, they can act as anomaly detectors,

such as anomalies in a security area, congestion in highways, anomalies in an industrial

production line, etc. [DBL+19, AGT14]. In social media, it can recognize and classify events,

people, and objects in images, run recommendation systems, check for rule violations in

posts, etc. [NQA+20, HK19]. Therefore, the list of applications that are implemented with

this paradigm is endless, here we just scratch the surface.

Complex Event Processing

Complex Event Processing (CEP) can be seen as a composition or extension of

simple event processing that we discussed in the previous subsection. CEP applications,

besides processing and identifying events, interpret and combine information or different

events to derive conclusions from them. Usually, these applications receive events from

multiple data sources, often containing data streams of different types, and search for

patterns and data dependencies [HK19]. The aim of this paradigm is to identify a meaningful

event (such as an opportunity or threat) from several basic events [TMM+16, THR+18].

CEP applications interpret information and events and see these as events in

the physical world [TMM+16]. Here events are filtered, combined, and transformed into

higher-level events, trying to make information understandable for computers but also for

humans [THR+18]. CEP can interpret and draw relationships between different data, such

as audio, text, image, video, weather, location, and sensor data [HZEF16]. In contrast to

event processing, CEP analyzes an entire context to identify an event.

39

As well as event processing, CEP applications have become quite popular with

the advent of IoT [NQA+20]. Applications that produce events, such as sensors in a smart

home or smart city, can generate a large volume of events that need to be processed with

low latency [NNG18]. A CEP application, for example, can monitor temperature sensors

and smoke detectors to identify a complex event, such as “fire”, and automatically trigger

a fire alarm, call the fire department, and notify residents or the homeowner [NNG18]. In

larger environments, such as a factory or even a forest, such an application could also add

geospatial information to facilitate the identification of the fire outbreak [HZEF16, NNG18].

Complex event processing has applicability in many domains [TMM+16, ASAP17,

THR+18, NQA+20, ICDV15]. An application can monitor audio and video to identify suspi-

cious movements, objects (such as a gun), and sounds (such as shouting, shooting, or

breaking into sound) to identify a crime [TMM+16]. In healthcare, it can analyze audio,

video, and wearable devices to monitor elderly activities, identify anomalies, such as a

fall or heart attack, and automatically trigger notifications and call the healthcare sys-

tem [ASAP17]. In social media, a CEP application can use geospatial text and data to

identify crises, environmental catastrophes, epidemics, terrorist attacks, etc. [ICDV15]. It

could also identify patterns in user images to automatically label photo albums, such as

“wedding” or “birthday party” [ASAP17]. In online video platforms, this type of application

can recognize events and place tags and labels or recognize speech for automatic subtitles,

or even check audio and video patterns to identify copyright issues [THR+18]. In agriculture,

it is possible to analyze sensors in the field that check soil moisture and compare it with

weather forecast events to make an efficient irrigation control. Therefore, this type of

application has great potential in this data-driven world.

Traditional Stream Processing

Although the term “stream processing” is also valid to refer to the paradigms

described in the previous subsections, it has a broader meaning. However, there is a type

of application that is strictly related to the stream processing paradigm, which inherits

some characteristics of the previous paradigms but does not fully fit into any of them.

These applications are not data-driven, so the dependency between operators is not

defined by input or output data specifications [Gri16a], as opposed to Dataflow. They

are also neither event-driven nor reactive, as they process simpler items of data that

arrive continuously and in large volumes, usually from a single data stream source. These

applications also tend to process bounded or unbounded data streams. Here the data items

are not necessarily generated in real-time, like the events generated by sensors that we

discussed in the previous paradigms. However, we have not found in the literature an

adequate nomenclature to differentiate this type of application from the other paradigms.

Therefore, in this work, we use the term “traditional stream processing” to designate it.

40

In traditional stream processing, the sequence of operators is structured as a

pipeline model so that the dependencies are explicit. Therefore, the data flow in the

execution graph is static, and each operator’s input and output data only describe what will

be produced and consumed. Figure 2.8 illustrates the model of this pipeline graph, where a

kernel contains one or more operators that will compute each data item of the stream. An

operator comprises an operation or set of operations, which must be performed sequentially

and locally within each kernel during program execution. These local operations avoid global

data manipulation and can increase memory performance through data locality [Gri16a].

Figure 2.8: Stream systems representation, from [Gri16a].

Communication between operators is often made through FIFO queues. Therefore,

output data items are pushed into this queue and operators need to pull them when they

are ready to do the computation. The characteristic of these queues is very important for

the application’s performance. Queues larger or smaller than necessary impact memory

consumption and can increase application latency. Also, the policy for accessing these

queues can vary, so it needs to be well-balanced. Because this type of application has a

deterministic behavior defined at compile-time, it facilitates the implementation of a task

scheduler to execute the kernels. In Dataflow, for instance, the sequence of operators is

defined by data dependencies, so the flow graph is non-deterministic and makes it more

complex to develop a task scheduler [Tec01, Gri16a].

The characteristics of the data stream also differentiate traditional processing from

other paradigms. Streams with an undefined end are difficult for DataFlow systems [Gri16a],

for instance. On the other hand, although reactive systems can handle these unbounded

streams, events arrive elastically at discrete points of time [NCP02]. This occurs similarly

in data stream processing and CEP, where the sources of the data and event streams often

produce events at irregular frequencies [GPRD19, ZGQB17]. However, in traditional stream

processing, data arrives in large volumes at high speed, and the stream is potentially

infinite. Instead of event-driven data tuples, here applications usually process raw data,

and a data item can be an image, a video frame, a string, a block of bytes, etc. Moreover,

often this data does not arrive in real time. In astronomy, for instance, an application can

use stream processing to increase the performance of pattern search on telescope images

collected over decades.

Therefore, the basic structure of a traditional stream processing application com-

prises a source operator, n intermediate operators, and a sink operator. Many real-world

applications have these characteristics and belong to this paradigm. Among them, we

41

can mention network packet routing, face tracking, image processing, video streaming,

person recognition, lane detection, data compression, signal processing, etc. [TA10, TZ14,

MVGF19, Gri16a]. Although these applications represent a large part of the stream pro-

cessing domain, they are not much discussed in the literature, as evidenced in Figure 2.4.

Therefore, in our work, while we address other paradigms, such as data stream/event

processing, we are mainly contributing to the traditional stream processing domain.

2.2.3 Stream Processing Operators

Operators are the most basic functional units of a stream application. They may

have other names in literature, such as filters, threads, kernels, bolts, stages, etc. [AGT14].

An operator receives a data item, applies an arbitrary function to it, and outputs the item

to outgoing streams. The exceptions are the source and sink operators, which only produce

or ingest streams, respectively. A source operator does not have an input port like the

others because it usually receives raw data from external sources and turns it into data

items downstream operators can consume. The reverse logic can be applied to the sink

operator. [AGT14] says that a sequence of operators organized in graphs sharing data

items via streams is the backbone of any stream processing application.

In stream processing, there are two main types of operators: stateless and stateful.

Their basic behavior is represented in Figure 2.9. Stateless operators do not need to keep

information (history) from previous items. They usually apply some filter or transformation

and pass the item forward. In the trending topics application’s graph in Figure 2.7, the

operator that extracts the hashtags is an example of a stateless operator because this type

of operation does not depend on previous information. It only extracts the hashtags from

the tweet, discards the unnecessary text, and sends them individually in the output stream.

Figure 2.9: Stateless and stateful stream processing operators.

Stateful operators maintain a state based on historical information of items seen so

far, which is more complicated to handle. Virtually all non-trivial event stream processing

applications require stateful stream processing. In the example of the trending topics

42

application in Figure 2.7, the “Count” operator is stateful because it needs to maintain

the partial sum of the different hashtags and update these values for each new item. The

output stream of this operator is a tuple containing the hashtag and partial sum, which the

sink will use to update the trending topics list. [AGT14] also discusses partitioned stateful

operators, which is a particular case of stateful operators.

Operators can be defined from any stretch of the application’s sequential code.

No rule defines the complexity or size of an operator, it can execute a single line of code up

to thousands. Ideally, an operator should perform a single, well-defined task, as this allows

a stream processing runtime to better exploit a multi-tasking environment and combine or

merge small operators if necessary [AGT14]. However, many applications do not allow you

to split main computing into smaller, individual operators, plus source and sink. In these

cases, it is important to combine other parallelism strategies, as we discuss in the next

subsection.

2.2.4 Types of Parallelism for Stream Processing

In this section, we will discuss aspects of parallelism from the perspective of

traditional stream processing, the domain we most focused on in this work. The parallelism

in stream processing can be exploited simply by arranging operators in the application’s

flow graph, disregarding data dependency [AGT14]. These arrangements can define three

main types of parallelism that can be applied to stream processing applications, as shown

in Figure 2.10: a) pipeline parallelism; b) data parallelism; and c) task parallelism.

Figure 2.10: Pipeline, task, and data parallelism in stream graphs. Adapted from [HSS+14]

Pipeline Parallelism

For an application to explore pipeline parallelism (Figure 2.10.a), it must be able to

express computing as a sequence of individual stages, so this parallelism occurs naturally

in stream processing applications [AGT14]. Here operators can be scheduled to run on

different processing units of a parallel architecture while maintaining the logical sequence

43

of operations of the flow graph [HSS+14]. This way, when an operator is computing an item,

an earlier operator can process a subsequent upstream item in parallel.

However, just running such operators in parallel does not guarantee performance.

For pipeline computing to be efficient it is essential to have a load balance so that different

operators are not overloaded or idle [AGT14]. This balancing is achieved when all operators

have a similar throughput. To perform this balancing, it may be necessary to merge idle

operators in sequence or replicate overloaded operators to increase throughput. One sign

of bottleneck and imbalance is the excess data queued at some operator’s input port.

Data Parallelism

In data parallelism, the same computation is performed on different items con-

currently. From a stream processing perspective, this is achieved through the replication

of non-data dependent (stateless) operators (Figure 2.10.c). These operators can run

in parallel and consume different items in a queue. Thus, multiple items are processed

simultaneously by the replicas, and an operator in the sequence merges these items into

the output stream. Therefore, to apply this kind of parallelism it is necessary to have a

better understanding of the application because, besides problems with data dependency,

it may be necessary to ensure the order of the items in the stream [AGT14].

The data parallelism, therefore, when used within the pipeline, allows implement-

ing the Task-Farm, or simply Farm, which is the most common parallel pattern in stream

processing applications [HSS+14]. This pattern comprises at least one operator, usually

called “Emitter”, which distributes the data items to subsequent operators (workers), which

are replicated n times. In shared-memory systems, it is common for operators to have item

queues to process. Therefore, Emitter can distribute items in different ways depending on

the characteristic of the queue. If workers share the same queue, Emitter pushes items

into that queue, and workers pull those items on demand [DMM17]. However, each worker

can have their own queue, in which case the Emitter needs to use some scheduling policy

to distribute the data. Also, some PPIs, such as FastFLow, can use unbounded lock-free

queues in each stage for efficient parallelism [ADKT17a]. There is still a third operator,

usually called “Collector”, that gathers the result of the workers within the output stream.

However, data parallelism occurs in different ways in stateful and stateless opera-

tors. On the one hand, stateless operators can be replicated freely and consume any data

item from the incoming stream. On the other hand, stateful operators are more complicated

to replicate because, in a multithreaded context, data races can occur during concurrent

reads and writes. In such cases, synchronization directives must be used. Some PPIs, such

as TBB, support data parallelism with stateful operators but require the programmer to

manually implement synchronization control.

44

Task Parallelism

In Stream Parallelism, task parallelism is a form of parallelism where indepen-

dent processing operators are executed concurrently on the same or distinct data item

(Figure 2.10.b) [SHGW15, AGT14]. A practical example is a multi-core processor, which

can execute different tasks from different threads concurrently. Therefore, this kind of

parallelism also occurs in a natural way, just like the pipeline, in a flow graph. The dif-

ference is that here the operators do not need to execute all the data items in a single

sequential arrangement. The problem with this is that to ensure good load balancing,

parallel operators need to have a similar processing time. However, traditional stream

processing applications hardly have operators with these characteristics, so pipeline and

data parallelism are the two predominant models.

2.2.5 Stream Processing on Parallel Architectures

As discussed in the last section, parallelism in stream processing can be explored

by running the operators of an application concurrently in parallel. There are different

ways to implement these strategies in parallel architectures, which depend on how the

application graph is structured. Fundamentally, it consists of running different operators in

different processing units [AGT14]. However, parallel architectures can take many forms,

such as multi-core shared-memory machines, clusters, and cloud [RM19].

Multi-core Shared-Memory Stream Processing

Parallel architectures can take many forms, such as multi-core shared-memory

machines, clusters, and cloud [RM19]. Stream processing systems running on a multi-core

machine have scalability limited by machine size. To replicate operators and run in parallel,

more threads are added until the architecture limit is reached. Nevertheless, this scalability

limit for stream processing in multi-core systems is no longer a major concern.

Nowadays, most streaming workloads can be efficiently handled in a single multi-

core machine without having to distribute it over a cluster of machines [PRR19]. Modern

multi-core systems are already being developed with hundreds of cores [Mar20]. The

parallelism offered by a single machine today is often sufficient to deploy pipelines with a

large number of operators [PRR19]. The advantage of using these systems is that commu-

nication through shared memory is much faster than sending messages over the network,

as in a distributed system. Therefore, real-time processing applications can achieve very

low latency, highly improving performance [ZMK+19]. In addition, multi-core systems

can also combine with accelerators, such as GPUs, to form heterogeneous architectures,

significantly increasing scalability potential [RM19]. In a CPU+GPU architecture, operators

45

with high data parallelism potential can run on the GPU while the CPU manages sources,

sinks, and other non-data-parallel stages, for instance.

Besides the existing advantages of doing stream processing in a shared-memory

environment, there are new technologies that further increase these advantages. There

are many stream systems focused on processing with absolutely no data storage [AHN+20].

These systems need to rely on the capacity of the memory to store the workload temporarily

during computing. In distributed systems, this capacity is increased because each node has

its independent memory system, which is not the case with multi-core systems. However,

this scenario has changed rapidly. In addition to the increasingly low cost of memory, there

are now specialized systems for fully in-memory multi-core stream processing for large

workloads [Haz20].

In-memory processing has become an increasing trend within stream processing,

especially in systems that need to process data stored in large databases (as opposed to

systems that process data that arrives in real-time) [AHN+20]. These databases, if stored

in conventional storage systems, could present a huge I/O performance bottleneck during

processing. Conventional solutions are no longer able to efficiently handle the large volume

of data generated by IoT devices, for instance [AHN+20]. Thus, multi-core systems are

increasingly adopting persistent memory technologies, such as Intel® OptaneTM [Int20], to

meet these demands.

Besides general-purpose computing, there are also embedded multi-core proces-

sors, which can open an opportunity for the stream processing sub-domains to intersect

with the emergence of Edge Computing. On the one hand are applications that would need

to do stream processing in the cloud and that are limited by bandwidth and high latency.

This was a challenge in implementing applications for virtual and augmented reality, and

self-driven cars, for instance. These applications are needed to process data and make de-

cisions in near real-time. However, on the other hand, are multi-core processors, which are

on most user devices and embedded systems today. So these systems could do on-premise

stream processing and send the non-critical parts to be processed in the cloud.

Distributed Stream Processing

Distributed systems can take many forms, such as clusters, cloud, fog computing,

etc. These systems have different limitations. Clusters, for instance, have a fixed amount

of computing nodes. Therefore, the scalability of stream processing applications in these

systems is determined by the number of available nodes and processing units within each

node [RM19]. These nodes in current clusters have multi-core processors. Thus, if a

small cluster is assembled using the latest high-end multi-core processor technologies, as

discussed in the subsection above, it can achieve a high scalability power.

46

Another type of distributed system is cloud computing. Most event processing

applications run on this type of shared-nothing systems [ZMK+19]. Each node runs different

operators, and, as in clusters, communication among them is done through message

passing. These systems have much fewer limitations in terms of scalability than previ-

ous architectures because here, applications can simply allocate more computing nodes

“unlimitedly” [RM19].

Another advantage of stream processing in decentralized distributed environ-

ments, such as cloud systems, is the fault tolerance they enable. Stream processing

frameworks, such as Apache Kafka or Apache Flink, often incorporate features such as

data replication, automatic data partitioning, and distributed processing, which allow for

fault tolerance in the face of hardware failures, network issues, or software glitches. When

a failure occurs, the stream processing system can automatically re-route data streams

to healthy processing nodes, ensuring continuous data processing and minimizing down-

time. Additionally, stream processing frameworks often provide robust error-handling

mechanisms, such as event time-based windowing or time-based triggers, that enable the

processing of out-of-order data or late-arriving events, thereby improving fault tolerance in

handling data anomalies or delays. Fault tolerance in stream processing enables distributed

computing systems to operate reliably and continuously, ensuring high availability and

consistent results, even in the presence of failures.

But this type of cloud computing has its drawbacks as well. These systems

have almost unlimited scalability but at the expense of performance. Stream processing

applications that run on these systems have a higher processing latency because the

communication between the data sources and the operators introduces a higher time

delay than on the other architectures, being a critical factor for real-time processing

applications [RM19]. Recent studies show that the platforms used to implement stream

processing systems in this type of architecture, such as Apache Flink, Spark, and Storm, can

perform better in multi-core systems [ZMK+19]. On the other hand, multi-core parallelism

within each node can also be explored, considering stateless operators. In addition, these

systems can also provide hardware accelerators, which can greatly increase performance

gains [RM19].

2.2.6 Parallel Programming Interfaces for Stream Processing

The largest portion of the stream processing domain is represented by data

stream processing applications, which are implemented in DSPS PPIs, as discussed earlier

in Section 2.2.2. These DSPSs generally apply a distributed parallel producer-consumer

model [ZMK+19, RM19]. The most common are Apache Flink [FT16], Apache Storm [Jai17],

and Apache Spark [Nab16]). Most current DSPSs are implemented on top of clusters

47

or clouds. These systems generally rely on Java Virtual Machine (JVM) to abstract the

underlying hardware and streamline the development process of these commercial systems.

However, these systems cannot exploit high-speed networks or emerging hardware trends

regarding multi-core systems [ZMK+19]. Although the JVM can abstract hardware for

developers, it cannot easily provide efficient data access due to processing overheads

induced by data serialization (and deserialization), objects scattering in main memory,

virtual functions, and garbage collection [ZMK+19].

[MTG+19] says that these DSPS platforms, despite being able to achieve perfor-

mance using powerful scale-up servers equipped with tens of colors and terabytes of

memory, still need a lot of advancement in terms of high-level abstractions. Other au-

thors have shown that the most common DSPSs in the industry are not able to extract

the full potential of modern multi-core architectures [ZMK+19]. Based on these two prob-

lems, [MTC+21] proposed a high-level C++ PPI, called WindFlow, for data stream processing

targeting multi-core and heterogeneous systems.

In addition to this growing trend of using multi-core systems for data stream

processing, there are many PPIs specifically built targeting this architecture and which can

support stream parallelism. Some of these PPIs are: TBB [VAR19], FastFlow [ADKT17b],

SPar [Gri16a], OpenMP [DM98], ISO C++ Threads [Fou20], and GrPPI [dRADFG17]. Most

of them are based on C++ and address programming abstractions at different levels

for programmers, usually implementing common parallel programming patterns such as

pipelining, task, and data parallelism [MRR12].

These PPIs offer several ways to explore parallelism, some of them primarily

target stream processing, like FastFlow, SPar, and WindFlow. Others, such as TBB and GrPPI,

are multi-paradigms, encompassing the stream processing domain by offering structured

parallel patterns in this respect. It is also possible to explore stream parallelism using

OpenMP and ISO C++ threads, but it requires a significant programming effort to implement

synchronization, communication, and parallelism mechanisms in such PPIs. In this doctoral

thesis, we implement parallelism and perform experiments with TBB, FastFlow, OpenMP,

ISO C++ threads, SPar, GrPPI, and WindFlow.

Intel Threading Building Blocks (TBB) [VAR19] is a C++ template-based library for

parallel programming from the industry. It provides a task-based parallelism model that

can use multiple CPU cores to execute tasks in parallel. Stream processing with TBB can

be explored using a pipeline of stages, each of which can be executed in parallel. TBB

automatically distributes the work among the available cores to maximize performance.

TBB also provides support for dynamic load balancing, which ensures that tasks are evenly

distributed among the available cores, even if the workload changes dynamically during

execution. This can help avoid situations where some cores are idle while others are

overloaded.

48

FastFlow [ADKT17a] is a programming library implemented in modern C++ tar-

geting multi/many-cores and, more recently, distributed systems [TTMD22]. It offers

programmers a set of high-level ready-to-use parallel patterns and a set of mechanisms

and composable components (called building blocks) to support dataflow streaming net-

works. In contrast to TBB, in FastFlow, tasks are statically executed by dedicated threads.

While it allows for more flexibility in building custom graphs, it delegates most of the

load-balancing task to the users. The communication among operators is done through

Single-Producer Single-Consumer unidirectional and asynchronous lock-free FIFO queues

carrying memory pointers.

OpenMP [DM98] is a popular programming model that enables parallelism in

shared-memory environments. Its approach is unstructured, meaning it does not require

a strict code organization or specific programming paradigm. Instead, OpenMP provides

pre-compiler directives and library functions that allow developers to specify which parts of

the code should be executed in parallel. This flexibility makes OpenMP a powerful tool for

optimizing the performance of computational applications across a wide range of hardware

platforms. However, for stream processing applications, which involve a continuous flow

of data, OpenMP must be used with additional mechanisms to ensure that the data is

processed correctly and efficiently. These mechanisms can be shared with the ISO C++

Threads stream parallelism. However, Threads require the programmer to define every

aspect of the parallelism algorithm using a set of functions that interact with the operational

system.

SPar [Gri16a] is a Domain-Specific Language (DSL) to express stream parallelism.

This PPI allows programmers to use C++ attributes to implement parallelism. Its purpose is

to prevent the programmer from rewriting the original application code. Therefore, it offers

high-level abstractions inserted through annotations in the sequential code and uses its

own compiler. This compiler parses the annotations and then generates FastFlow parallel

code. Although experimental versions of SPar can also generate TBB and OpenMP parallel

code, these versions are not publicly available.

GrPPI [dRADFG17] is an open-source generic and reusable parallel pattern pro-

gramming interface. It accommodates a layer between developers and existing PPIs

targeted to multi-core processors. It proposes to act as a switch between different PPIs,

providing a compact and generic parallel interface that seeks to hide the complexity of

concurrency mechanisms. It is also highly modular, allowing easy composition of parallel

patterns. Its goal is to make applications independent of the parallel programming frame-

work used underneath, thus providing portable and readable codes [GdRA+20]. In its latest

release, GrPPI allows running applications with four backends: ISO C++ threads, FastFlow,

OpenMP, and Intel TBB.

WindFlow [MTC+21] is a C++17 header-only library for parallel data stream pro-

cessing targeting heterogeneous shared-memory architectures. The library provides data

49

stream processing operators like map, flatmap, filter, fold/reduce, as well as sliding-window

operators. Compared to traditional data stream JVM-based PPIs, WindFlow proposes to be a

more effective alternative to exploit, at best, the potential of scale-up architectures such

as single machines equipped with several multi-core CPUs and co-processors like GPUs and

FPGAs.

2.3 Benchmarks

With the evolution of computer architectures, comparing the performance of

different computing systems by looking at their specifications has become a problematic

task [Gra92]. Historically, researchers used to rank performances using a variety of

different metrics. This lack of standards was confusing, and often this information was

unreliable. Gradually, comparative studies between systems converged and adopted

standard benchmarks.

Benchmarks are standardized tests that are used to evaluate the performance of a

system. They can be used to compare the performance of different hardware components,

such as processors, graphics cards, and storage devices, as well as the performance of

different software applications or configurations. By running benchmarks, it is possible to

identify bottlenecks or weaknesses in a system and track improvements in performance

over time. In addition, benchmarks can be used to assess the performance of a system

under different workloads or conditions. Overall, the use of benchmarks is crucial for

understanding and optimizing the performance of computers and computer systems. They

are also helpful for researchers to evaluate and validate research results against state-of-

the-art solutions.

2.3.1 Types of Benchmarks

[vKAH+15] define a benchmark as a “Standard tool for the competitive evaluation

and comparison of competing systems or components according to specific characteristics,

such as performance, dependability, or security”. According to them, there are three major

types of computer benchmarks: specification-based, kit-based, and a hybrid of the two.

Specification-based benchmarks describe the desired functions, input parameters, and

expected outcomes but leave the implementation up to the person running the benchmark.

Kit-based benchmarks provide the implementation and do not allow for alterations to the

execution path. Hybrid benchmarks combine elements of both specification- and kit-based

benchmarks.

50

2.3.2 Properties of Benchmarks

[vKAH+15] analyzed several studies and benchmarks used in the industry and

identified a group of desired benchmark characteristics.

Relevance

Relevance concerns how closely the behavior of a benchmark relates to the behav-

ior of the scenarios of interest to users. Therefore, the relevance of a benchmark can be

determined by its applicability and the degree of relevance within a specific area. Bench-

marks designed to be highly relevant within an area naturally have narrow applicability. On

the other hand, benchmarks designed for a broader spectrum tend to be less meaningful

for any particular scenario [Hup09]. For example, a video processing benchmark for face

recognition may be highly relevant for representing face recognition applications, some-

what relevant for representing video processing applications, and not at all relevant for

representing fraud detection applications.

In addition to considering the application domain, the relevance can also be

determined by how the user intends to use this benchmark. Suppose the goal is to evaluate

HPC platforms and tools. In that case, the benchmark needs to be well scalable and allow

multi-threaded or multi-process execution. It is not easy to achieve since HPC architectures

significantly differ in available resources. Another factor that can determine the relevance

of a benchmark is the type and quality of the metrics it provides. Metrics need to be

transparent and representative for the expected scenarios of the benchmark’s applicability.

Reproducibility

Reproducibility is the ability of a benchmark to produce consistent results in an

equivalent execution environment. It concerns the results between consecutive runs and

the ability of another user to achieve the same results in the same environment [vKAH+15].

Ideally, the result of a deterministic benchmark should be given only by the combination of

hardware and software configuration. However, today’s computers have a complexity that

can introduce variability in the results. This variability can be introduced by conditions such

as thread scheduling, physical disk layout, the interaction between background processes,

and dynamic compilation [Hup09]. Benchmarks should be able to mitigate these variations

in some way, such as running for long periods to dilute their impact. Another option is to

run several times and see if the results are close and consistent.

The ability to reproduce tests in another test environment is also tied to the ability

to build an equivalent environment [IT18]. It is often impossible because of a lack of

descriptive details from previous runs. The hardware needs to be detailed so that another

51

user can reproduce it. So do the software versions and configurations, such as compiler,

CPU governor policy, libraries, and operating system. Despite efforts to provide a sufficient

description of the test environments, many scientists cannot even reproduce their own

experiments after one year [DL15]. Therefore, benchmarks must look for ways to mitigate

such problems, both with respect to variations during execution and the replication of the

test environment.

Fairness

Fairness, or equity, ensures that the systems under test can be evaluated fairly

without the benchmark artificially favoring one of them. Ideally, benchmarks should be

built into an agreement between different developers and users. If multiple interested

parties participate in the process of designing a benchmark, this helps to ensure greater

fairness. A benchmark designed specifically to exploit a feature of a hardware component

from one vendor but that does not address similar components from other vendors would

not be a fair benchmark to compare those systems, for example. When evaluating software

components, such as comparing the performance of different PPIs, fairness can be attested

to by testing the components on multiple benchmarks and test beds.

Verifiability

Verifiability is the capability to verify that the result of a benchmark is correct. It is

important that a benchmark allows itself to be verifiable so that users can trust its results.

Often this verifiability is based only on comparing the user’s results with previous results

published by the benchmark’s developers or other relevant academic papers. This practice

is generally not ideal, as inconsistencies in the original results can potentially lead to more

significant errors in derived works.

To mitigate such problems, good benchmarks should be able to perform some

amount of self-validation [vKAH+15]. The goal is to ensure that the workload performs as

expected and that all rules are followed. However, since benchmarks can take on many

different configurations, complete verifiability can take much work to achieve. Verifiability

features in benchmarks can be limited to specific configurations in such cases. Functional

verification can also be adopted, which tests whether the benchmark’s output is correct.

One way to improve verifiability is to include more detail in the published results, using

different settings and performance metrics. It gives users more room to find inconsistencies

in their runs.

52

Usability

Benchmark users tend to have a sophisticated level of technical knowledge,

making the usability of benchmarks a secondary factor to be considered by their devel-

opers [vKAH+15]. However, there are strong reasons that favor a greater concern with

usability. Reproducibility and verifiability, for example, are properties tied to usability.

Benchmarks that perform self-validation of results can prevent non-expert users from

having to understand in-depth details of the workload and the result to confirm the cor-

rectness of the execution. Benchmarks that provide ways to facilitate their reproducibility

also contribute to better usability. For example, a benchmark can provide its main library

dependencies and an interface allowing users to make a standardized installation of them.

It can also provide mechanisms to mitigate or highlight variations in the results. Good code

and usage documentation, use cases, manuals, description of applications and workloads,

and code organization are also key things regarding the usability of benchmarks.

2.3.3 Parallel Benchmarks

Parallel benchmarks are tests designed to evaluate the performance of parallel

computing systems. These systems, which include parallel computers, clusters, and super-

computers, use multiple processors or computing nodes to perform tasks simultaneously in

order to achieve faster performance than what is possible with a single processor.

There are many types of parallel benchmarks designed to test different aspects

of parallel system performance. Some examples include benchmarks that test the speed

of communication between processors, the efficiency of load-balancing algorithms, the

scalability of applications, and the ability of a system to handle different types of workloads.

In order to be effective, parallel benchmarks must be carefully designed to reflect the

characteristics of real-world parallel computing applications’ characteristics and isolate the

factors being tested.

There are several reasons why parallel benchmarks are important in the field of

parallel computing:

1. They provide a way to measure different parallel systems’ performance and compare

their relative strengths and weaknesses. It can be useful for choosing the best system

for a particular application or workload.

2. Parallel benchmarks can help identify bottlenecks or weaknesses in a parallel system

and guide efforts to optimize its performance.

53

3. Parallel benchmarks can be used to track the evolution of parallel computing technol-

ogy and to measure the impact of new hardware, software, and programming models

on performance.

Overall, parallel benchmarks are an essential tool for evaluating and improving

the performance of parallel computing systems and comparing their relative strengths and

weaknesses. Therefore, they play an important role in advancing the state of the art in

parallel computing and enabling the development of more powerful and efficient systems.

There are many parallel benchmarks that are commonly used in the field of parallel

computing to evaluate the performance of parallel systems. Most of them were developed

to evaluate the hardware performance of computing systems. Some of the most well-known

and widely used parallel benchmarks include:

• LINPACK [DLP03]: This benchmark measures the floating-point performance of a

parallel system by solving a dense system of linear equations. It is commonly used to

rank the world’s most powerful supercomputers. It has been a standard benchmark

for over four decades.

• HPL [Pet04]: The High-Performance Linpack (HPL) benchmark is an update to LINPACK

that is specifically designed to test the performance of distributed-memory parallel

systems, such as clusters and supercomputers. It measures the performance of a

system using the same dense linear algebra algorithms as LINPACK but with additional

features to support large-scale distributed-memory systems.

• STREAM [McC95]: This benchmark measures a parallel system’s memory bandwidth

and sustainable memory throughput. It uses a set of simple vector kernels to test the

system’s ability to transfer data between the processor and memory.

• NPB [BBB+91]: The NAS Parallel Benchmarks (NPB) are a suite of parallel benchmarks

developed by the NASA Advanced Supercomputing Division to test the performance of

supercomputers. The NPB suite consists of a range of scientific and engineering appli-

cations, and they include a range of problem sizes to test the scalability and different

aspects of parallel system performance, including floating-point, communication, and

I/O performance.

• PARSEC [BKSL08]: The PARSEC benchmark suite is a collection of parallel benchmarks

that test the performance of a parallel system on a range of applications, including

image processing, machine learning, and molecular dynamics. It is designed to

reflect the characteristics of real-world parallel computing applications and to test

the scalability of a system across a wide range of problem sizes.

Although these benchmarks target hardware performance evaluation, in 1971, it

was already understood that benchmarks should not only be used to evaluate the perfor-

54

mance of architectures but also to test aspects of the software, such as the performance of

multiprogramming and multiprocessing techniques [Luc71]. Therefore, benchmarks are

used today to evaluate a diversity of aspects of both hardware and software.

In this work, we propose a framework to facilitate the creation of benchmarks to

evaluate stream processing systems, PPIs, parallelism strategies, and related techniques

for performance improvement. Other studies have already been concerned specifically

with evaluating and comparing PPIs performance [GSG20a], but they have not entered

the stream processing domain. This evaluation of PPIs is important to help developers

and researchers to predict the performance of these tools under certain circumstances,

such as parallelism technique, workload characteristics, hardware architecture, etc. Other

benchmark suites that include stream processing benchmarks are either unrepresentative,

challenging to use (e.g. by the lack of documentation), or target only specific categories

of Stream Processing (SP) applications, such as data stream. Chapter 4 discusses more

deeply related benchmark suites.

55

3. SPBENCH BENCHMARKING FRAMEWORK

In this chapter, we present the SPBench benchmarking framework. First, we

discuss our motivations. Here we also review most of the research problems discussed in

the Introduction chapter and how we address each of them. Then we discuss in detail all

aspects of the conceptual framework and its architecture.

Contents

3.1 MOTIVATION . 56

3.2 SPBENCH FRAMEWORK . 60

3.2.1 FRAMEWORK API . 64

3.2.2 SPBENCH SEQUENTIAL BENCHMARKS . 67

3.2.3 SPBENCH PARALLEL BENCHMARKS . 68

3.2.4 PERFORMANCE METRICS . 70

3.2.5 BENCHMARK PARAMETERIZATION . 72

3.2.6 COMMAND-LINE INTERFACE . 72

3.3 RELATED WORK . 77

3.3.1 DISCUSSION . 79

3.4 CHAPTER SUMMARY . 82

56

3.1 Motivation

In [Gri16a], the author proposed a DSL called SPar [GDTF17] for expressing high-

level stream parallelism. The “high-level” term in that context is for parallelism abstractions

that prevent the user from dealing with details concerning to parallel architecture optimiza-

tions, avoid code rewriting, and reduce the programming effort to support parallelism. SPar

requires the programmer to only annotate the parallelism without having to rewrite the

original code. Programmers identify the operators and their respective input and output

data. There are stream processing applications with thousands of lines of code, where it

can still be very difficult to identify the beginning and end of each operator and also identify

all the data dependencies.

Listing 1 Mandelbrot function.
1 void mandelbrot(double init_a, double init_b, double range, long dim, long niter) {
2 double step = range/((double) dim);
3 unsigned char *M = new unsigned char[dim];
4 for(unsigned long i = 0; i < dim; i++) {
5 double im=init_b+(step*i);
6 for (unsigned long j = 0; j < dim; j++) {
7 double cr;
8 double a=cr=init_a+step*j;
9 double b=im;

10 unsigned long k = 0;
11 for (k = 0; k < niter; k++) {
12 double a2=a*a;
13 double b2=b*b;
14 if ((a2+b2)>4.0) break;
15 b=2*a*b+im;
16 a=a2-b2+cr;
17 }
18 M[j] = (unsigned char)(255-((k*255/niter)));
19 }
20 ShowLine(M,dim,i);
21 }
22 delete[] M;
23 }

The difficulty of applying stream parallelism can appear even in shorter code.

Mandelbrot, for example, is a classic application from other domains. However, it is

often used as a benchmark for stream processing due to the lack of appropriate and

representative benchmarks. A quick look at the kernel of this application, presented in

Listing 1, may be enough to show how difficult it can be to identify what can be split into

different pipeline stages, which stages can be replicated, and what data dependencies are

involved. Therefore, exploring stream parallelism can be difficult, even using high-level

abstractions and PPIs that provide structured parallel patterns. It is a complex task usually

reserved for specialists.

57

Most PPIs for stream processing, such as FastFLow and TBB, provide parallel

pattern abstractions for programmers, as discussed in Section 2.2.6. Besides the complexity

of stream parallelism, abstraction strategies are still a way to bring more application

developers closer to the stream processing domain. Our work contributes to this aspect

and tries to add another layer of abstraction for stream parallelism. However, instead of

developing abstractions for parallelism extraction, here we target application abstractions,

considering the whole context of it, which goes from the definition of operators, data

flow, and workload settings. We also target the surrounding environment of a stream

parallel application, facilitating its installation, compilation, configuration, execution, and

evaluation. The idea is to make it easier for users to parallelize and execute stream

processing applications using our framework with some PPI.

Only applying basic stream parallelism is often not enough to meet performance

requirements. There are different features and parallelism strategies that may be fine-

tuned and customized to achieve better performance or improved efficiency of a parallel

application. Not only concerning the parallel code implementation but also regarding

how these PPIs and applications interact with specific architectures. We can mention the

organization of operators, parallelism degree, task scheduling and queues access policies

between operators, thread-to-core affinity, etc. Therefore, we argue that it is important

to have tools that aim to assist programmers in this type of evaluation and comparison

between PPIs, parallelism strategies, and technologies for stream processing. It can be

helpful for researchers who develop these PPIs and programmers who seek fine-tuning

parallelism to achieve maximum performance in a given architecture.

Choosing the most appropriate PPIs, settings, and parameters for specific scenar-

ios can be challenging. While good PPIs should ideally balance the properties discussed

in Section 2.1.3, it is common for some properties to be prioritized more than others. To

provide a simple interface for better programmability, a PPI may forego fine-tuning, for

instance. Programmers in industry and academia may spend significant time evaluating

such properties when choosing a PPI for a given application. It is important to have a suite

that provides a collection of benchmarks implemented in various PPIs for stream processing

and a tool that allows easy and fast prototyping of benchmarks in this context.

We discussed the complexity of exploring stream parallelism from the perspective

of a non-expert application programmer, where abstractions from PPIs can be not enough,

given the complexity of SP applications. Then, we discussed it from the perspective of

system programmers and researchers who develop solutions for this domain and have

limited tools for evaluating their solutions. Our work aims to help these two types of

programmers and go beyond a framework to ease parallelism exploration or a benchmark

suite. One of our goals is to enable programmers to create their own benchmarks for

stream parallelism. Through the framework API, programmers can easily create custom

parallel benchmarks using different PPIs and parallelism approaches. These benchmarks

58

automatically include workload configuration mechanisms and representative performance

metrics.

Therefore, the SPBench framework offers two main benefits for programmers

and researchers: first, it adds abstraction layers in stream processing applications to

make it easier for application developers to use parallel programming interfaces to explore

parallelism in this domain; second, it gives the opportunity for researchers and developers

to use real-world C++ stream processing applications to compare and evaluate their

solutions easily.

The SPBench is presented in Chapters 3 and 4 of this thesis. We have separated it

into two chapters to improve the readability and organization of the text. These chapters

address the Research Problem 1, 2, 3, and 4 that were introduced in Chapter 1. Here, we

review these research problems and discuss how this paper addresses each of them. Below

we list each of them, followed by a summary of our solutions:

1. It is not easy to explore parallelism in stream processing applications.

It is necessary to have a good understanding of the application to be able to apply

stream parallelism. The programmer needs to recognize all operators individually,

identify what the data dependencies are between them, understand what data each

operator consumes and produces, etc. Along with this, achieving performance in

these applications may require using combinations of parallelism strategies and

specific configurations to achieve good load balancing.

Listing 2 Example of Mandelbrot function if implemented with the SPBench framework
API.

1 void mandelbrot() {
2 while(1) {
3 spb::Item item;
4 if(!spb::Source::op(item)) break;
5 spb::Mandelbrot::op(item);
6 spb::Sink::op(item);
7 }
8 }

To assist programmers in these aspects, our framework provides a set of applications

implemented with an API (Section 3.2.1) that delivers individual operators as simple

function calls. The API can eliminate the problem of manipulating the operators’ data

consumed and produced by encapsulating it in a generic item. These optimizations

can help programmers quickly understand the application design and allow different

parallelism strategies to be easily restructured. For instance, if Mandelbrot were an

application included in SPBench, the code from Listing 1 would look like the code from

Listing 2 after we rebuild it using the SPBench framework API. The resulting code

becomes more readable and the main elements are evidenced.

59

2. There are no representative benchmark suites for traditional stream pro-

cessing.

Most benchmark suites for stream processing include only data stream applications

with frameworks targeting distributed platforms. Benchmark suites that include

traditional stream processing applications are outdated or are limited in terms of

programming language, parallelism exploration, and usability. In this thesis, we

gather a set of applications for traditional stream processing and through SPBench,

we make available the sequential versions of them so that they can be parallelized

with different PPIs. Then, we use these applications to build a parallel benchmark suite

for stream processing in C++, including traditional stream processing benchmarks.

Although we target multi-cores within the scope of this thesis, the SPBench framework

concept may be extended to other architectures.

3. Benchmarks for C++ stream processing are limited.

Even considering all stream processing paradigms, there are still no widespread

C++ benchmark solutions. In Section 1.1 and Section 2.2, we address initiatives

toward the exploration of data stream processing in multi-core architectures using

C++ [BAJ+16, MTG+19, dDFG18, LHP+22]. However, to evaluate these technologies,

researchers usually need to convert benchmarks initially implemented in JVM-based

programming languages to C++. Although some of these researchers make their C++

benchmarks available, they often lack proper documentation or parameterization.

Also, only parallel versions of the benchmarks are provided. The absence of sequential

versions can make it more challenging to port it to other PPIs. This highlights the

need for benchmarks that meet these demands. SPBench is extensible and modular,

being able to incorporate applications from other SP paradigms. Therefore, besides a

set of C++ applications for traditional stream processing, it also includes data stream

processing applications.

4. There is a lack of solutions targeting to ease the evaluation process of

stream processing.

This research problem involves the previous three we described and goes beyond.

The problems we have exposed so far have concerned programmers and researchers

who want to evaluate and explore parallelism in stream applications. Therefore, our

proposed solutions have involved providing benchmarks and abstractions to make

it easier. However, the great contribution of this work benefits a more specialized

audience, which is the programmers that actually develop the PPIs and other technolo-

gies for stream processing. As we discussed in Section 1.1, these programmers face

many challenges in developing new features, optimizing PPIs by adding support for

architectures, languages, programming models, parallel patterns, and other function-

alities, such as self-adaptive parallelism techniques and automatic code generation,

60

etc. These programmers must test their work with different parameters, types of

applications, and evaluate different metrics to validate their solutions.

One of the goals of this work is to offer an easy solution for programmers who

need realistic customized benchmarks to evaluate different technologies for stream

processing in C++. Here, our framework can help programmers to focus specifically

on the technology under evaluation and eliminate concerns regarding the application

code, such as operator definition and input/output data. Besides the abstractions

provided within each application, the framework’s API is expected to use the same

implementation standard across all applications, keeping a similar base structure (see

Section 3.2.1). So once the solution is implemented in one application, it can be easily

extended to the whole set. Therefore, the solutions under test can be fully portable

among applications.

Besides applications and code abstractions, the framework offers different workload

configurations. Here the programmer can define different workload classes, adjust

batch size settings, choose data source and sink from disk, memory, or network (in the

future), and also adjust the item arrival rate (frequency) in the stream (Section 3.2.1).

Implementing performance metrics in stream processing benchmarks is also difficult

and error-prone. This complexity increases when trying to simulate scenarios of un-

bounded streams, which require sampling measurements. The SPBench automatically

provides the most commonly used performance metrics for stream processing in liter-

ature, such as latency, throughput, and CPU and memory usage (Section 3.2.4). These

metrics and other parameters can be adjusted through the framework’s command-line

interface or source-code routines on-the-fly (Section 3.2.6). This way, users can easily

and rapidly prototype customized benchmarks, test them with specific configurations,

and gather different metrics.

3.2 SPBench Framework

In this section, we introduce the SPBench framework. The main goal of SPBench is

to enable users to easily prototype custom benchmarks from real-world stream processing

applications and evaluate multiple parallel programming interfaces. As discussed in Sec-

tion 3.1, applying stream parallelism to applications in this domain can be very challenging.

Commonly users are faced with applications like the example in Listing 1, where operator

boundaries and data dependencies are difficult to recognize. One of the primary purposes

of the SPBench framework is to extract the difficult and laborious task of dealing with the

application from the users’ side and leave them to deal only with parallelism.

Figure 3.1 illustrates what was discussed above. In the SPBench way, applications

are recoded beforehand to fit the SPBench API, which we will discuss in more detail later. It

61

void mandelbrot(double init_a, double init_b,
double range, long dim, long niter) {
 double step = range/((double) dim);
 unsigned char *M = new unsigned char[dim];
 for(unsigned long i = 0; i < dim; i++) {
 double im=init_b+(step*i);
 for (unsigned long j = 0; j < dim; j++) {
 double cr;
 double a=cr=init_a+step*j;
 double b=im;
 unsigned long k = 0;
 for (k = 0; k < niter; k++) {
 double a2=a*a;
 double b2=b*b;
 if ((a2+b2)>4.0) break;
 b=2*a*b+im;
 a=a2-b2+cr;
 }
 M[j] = (unsigned char)(255-((k*255/niter)));
 }
 ShowLine(M,dim,i);
 }
 delete[] M;
}

Stream
parallel
code

Difficult
Easier

void mandelbrot() {
 while(1) {
 spb::Item item;
 if(!spb::Source::op(item)) break;
 spb::Mandelbrot::op(item);
 spb::Sink::op(item);
 }
}SPBench

devs and
contributors

Stream
parallel
code

Users

Users

Difficult

Sequential code with the
SPBench API

Original sequential code

Traditional way

SPBench way

Figure 3.1: Users’ perspective when writing stream parallel code: traditional vs. SPBench
way.

is important to note that the difficulty extracted from the user side does not disappear. Part

of it is transferred to the developers and other contributors who have added the application

to the SPBench. They must encapsulate and adapt the original sequential code to fit in a

specific structure. This structure put in evidence only the more relevant stream elements.

Therefore, it becomes easier to work with rather than implementing parallelism from the

original code, mainly in more complex applications. Of course, even if starting from the

SPBench implementation of the sequential code, it can still be challenging for users to

implement stream parallelism, especially beginners in this area.

Other benchmarks

Parallel

programming

interfaces

Parallel

benchmark

suite

User's

custom

benchmarks

Workload

classes

Performance

Metrics

Main library

dependecies

Figure 3.2: SPBench architecture.

Besides the sequential source code simplification, another of the main features

of SPBench is the way users interact with the benchmarks. Figure 3.2 illustrates how

this interaction usually occurs in other benchmarks/benchmark suites. In these cases,

the interaction is usually direct and manual. A common interaction is: users select a

benchmark, compile, and run it with a given workload, gathering some performance metric.

However, it usually is not a smooth process. Benchmarks normally require different library

62

dependencies and leave the users with the task of finding, configuring, building, and linking

them for compiling the benchmark. Sometimes they require specific library versions or

configurations and add poor or no documentation about it. Thus, setting up and compiling

a benchmark can by itself be a tough task. In addition, benchmarks often require input

workloads that were not made available within it, and not rarely are they difficult to find.

Regarding performance metrics, many benchmarks provide only basic metrics or none.

In stream processing, parameterization is also an essential factor. Achieving

desired performance levels often relies on fine-tuning the application and workload settings.

For more sensitive analysis, the option to turn specific performance metrics on or off can be

used to avoid unwanted overhead. Related benchmarks often fall short in these respects.

In parallel benchmark suites, to add a new parallel implementation of a given

benchmark, users need to do the integration manually as well. Also, most parallel bench-

mark suites do not even provide a sequential version of the parallel benchmarks for users

to start a fresh implementation. In many cases, it can be more difficult to implement

a parallel application starting from another parallel implementation due to the complex

parallelism syntax that there may be. Therefore, one important advantage of SPBench is

that it provides a sequential implementation of all benchmarks. In fact, providing highly

readable, parameterizable, and customizable sequential benchmarks is one of the key fea-

tures of SPBench. Adds to it a user interface and a management system to ease benchmark

usability.

Not provided by SPBench_

Benchmarks

database

Framework

Command

line

Interface

Main library

dependencies

Parallel

programming

interfaces

Sequential

applications

Parallel

benchmark

suite

Source

and sink

Performance

metrics

Workload

classes

Batching

Data

Frequency
User's

custom

benchmarks

New parallel

programming

interfacesNew

Features

Benchmark suite

API

Figure 3.3: SPBench framework.

Figure 3.3 presents the SPBench Framework. In contrast with the other bench-

marks, in SPBench, the user interaction occurs through a command-line interface (CLI).

SPBench maintains a database containing all benchmarks added to its suite. With the

CLI, users can access these benchmarks, modify them, and add new custom benchmarks

63

based on the supported applications. The CLI allows for easily integrating and configuring

new benchmarks. Other secondary parameters can also be tuned via the CLI with simple

commands, allowing users to select different data sources, workloads, performance metrics,

and other settings. It also allows for automatically downloading and installing the main

library dependencies and input workloads of the benchmarks. Therefore, it facilitates the

installation, compilation, and execution process of the benchmarks.

The kernel of SPBench framework is an API that offers three main advantages to

users:

1. It allows the implementation of stream processing applications in a modular, reconfig-

urable, and standardized way;

2. It automatically and transparently adds all the main benchmarking metrics used in

this domain, enabling performance evaluation in many depth levels;

3. It offers a sort of workload customization, such as data input rate, batch size, different

and multiple data sources, etc.

Command-Line Interface

SPBench benchmark suite
Custom implementations

from users

API/Middleware

Stream processing application

New benchmarks

Source Sink

Disk

Memory

Network

Disk

Memory

Network

Operator

1

Operator

2

Operator

n

Compile ExecuteNew

1 int main(int argc, char *argv[]){

2 ...

3 while(1) {

4 Item item;

5 if(!Source::op(item)) break;

6 Operator::op(item);

7 Sink::op(item);}

9 ... }

Configure

SPBench sequential benchmarks

Performance metrics and workload management tools

$ spbench new -bench my_new_bench -app <id of a supported application> -ppi <any PPI identifier>

$ spbench configure -bench my_new_bench

$ spbench compile -bench my_new_bench

$ spbench exec -bench my_new_bench -input <input file> ... <additional parameters>

SPBench parallel benchmarks

Figure 3.4: SPBench architecture.

64

Figure 3.4 presents a high-level representation of the SPBench architecture. It

consists of three main parts: the API (at the top of the figure), the set of benchmarks

implemented using the API (in the middle), and the command-line interface (at the bottom).

In the next sections, we describe each of these parts in detail.

3.2.1 Framework API

The main functionality of the SPBench framework is an API that allows the imple-

mentation of applications in a modular, reconfigurable, and standardized way. Benchmark

implementations using this API present the core of each application in a standard way and

with few lines of code (such as the example of Listing 2). The original source code of such

applications can be thousands of lines long. However, in SPBench, the low-level details

of the applications are abstracted away and become transparent to the users. Therefore,

SPBench allows users to focus entirely on writing and tuning the parallelism rather than

spending time with potentially non-relevant aspects of each application.

To build this API, we have to disassemble all operators from the original application

and restructure them to fit the API standards. Benchmarks can access the operators by

including the header file of an application supported by SPBench. Besides the operator ab-

stractions, the API also needs to encapsulate the data communicated among the operators,

the parser for command-line arguments, the initialization routines for the application or

the benchmarking metrics, the workload management routines, the metrics computation,

and the final routines for memory management, output writing, or some other application

requirement. All these elements are transparent for users in all SPBench benchmarks.

Operators

In the SPBench API, all operators of an application are encapsulated individually,

from source to sink. For this, we first need to optimize and restructure the application code

so that the different operators are highlighted and data dependencies are identified. Then

these operators are separated into individual C++ classes that implement a static method

containing the sequential code of the respective operator. These methods also implement

time measurements for performance metrics. The Listing 3 shows what can look like the

basic structure of an operator.

Within the benchmark, on the user side, this operator can be executed by calling

Operator::op() and passing a data item object as a parameter. All applications have

at least one source and one sink operator (Source::op() and Sink::op()). Therefore,

in the sequential SPBench benchmarks, the intermediate operators are usually the only

part that varies when changing the base application. The time measurements inside

65

Listing 3 Operator Class inside the API.
1 class Operator{
2 public:
3 static void op(spb::Item &item);
4 Operator(spb::Item &item){ op(item); }
5 Operator(){}
6 virtual ~Operator(){}
7 };
8

9 void Operator::op(spb::Item &item){
10 // Time measurements
11 ...
12 // Batching mechanisms
13 ...
14 // Operator's sequential code
15 ...
16 // Time measurements
17 }

the Operator::op() consist of timestamps attributed to the data items if latency-related

metrics are enabled. Each item is, in practice, a batch, so batching mechanisms are

required to process each item individually when batching is enabled. We discuss more

about batching in SPBench in Chapter 7.

Data Items

We encapsulate the data dependencies into a class called Item. Each application

implements its own Item class, which implies that the item structures vary across appli-

cations. In the SPBench benchmarks, these items can be passed as an argument to the

operators, such as Operator::op(item).

The Listing 4 shows a basic item structure example. The data on these items

is optimized to avoid oversizing since items carrying unnecessary data can increase

memory consumption. In an application with more than one execution mode, such as

data compression or decompression, these items are optimized to support both modes.

This example shows an item class from an application that supports batching, which is

implemented with vectors.

In some applications, the data item does not necessarily traverse all operators

and can be dropped midway. An example is a fraud detection application, which discards

the non-fraudulent data and keeps the potential frauds. This type of application has a filter

operator that can drop an item if a given condition is true or false. In such cases, the Item

class also defines an operator overload to allow it to be used as a boolean type.

66

Listing 4 Structure of a generic data item inside the API.
1

2 struct item_data {
3 int integerData; // some data
4 char *charData; // some data
5 /* ... */
6 item_data(){}
7 };
8

9 class Item {
10 public:
11 std::vector<item_data> item_batch; // batches are implemented with vectors
12

13 Item(){}; // item constructor
14 ~Item(){} // item destructor
15 };
16

Source and Sink

The source operator receives the task of initializing the data item with the data

received from external sources. The sink works similarly but in reverse. It receives a

processed item and generates an output result. The source also implements a frequency

manager that allows for generating items at a specific rate. Users can also instantiate

multiple sources. Source operators return false when there is no more data to process.

The SPBench framework ideally should support three alternatives for source or sink: disk,

memory, and network. Its current version supports disk and memory options.

Reading from disk is the simplest option to implement. The application can receive

a pointer to a file stored on the disk and the source operator reads micro-batches of this

file, which can be a video frame, a set of frames, a block of bytes, etc. In other scenarios,

the data can be artificially generated in the source itself, not requiring an external file. The

items are processed and then received by the sink, which builds the resulting file on disk if

desired.

The “memory” option for the source consists basically of an in-memory execution.

As we discussed in Section 2.2.5, specialized in-memory stream processing architectures

are emerging and our framework also needs to serve this audience. With the in-memory

execution enabled, the input file is loaded into memory before being sent to the source

operator. This operator then receives only a pointer to the data and makes the assignment

of the memory blocks to each item. The item can simply contain a pointer to a video frame

stored in a vector or a pointer + the size of the data in the memory in order to read a

variable-sized block of bytes.

The third external source/sink option is “network”. It is still a conceptual idea

for future work since we did not implement it in the current version of SPBench. This

option is important to represent more realistic scenarios. For instance, a person-recognition

67

application could receive video frames from a monitoring camera over the network in real

time. This is a more complex functionality to implement in the framework. It must work in

an independent system to be more realistic, simulating real external sources. This system

will need to run in a parallel thread alongside the application and use communication

protocols. In addition, it needs to be a generic system to meet all data requirements of the

applications and be easily reconfigurable.

3.2.2 SPBench Sequential Benchmarks

We previously discussed how the API implements the main elements of the bench-

marks that are transparent to the user. Here, we describe how those parts can be used to

build a benchmark/application (sequential version). This process represents the middle

part of the SPBench architecture in Figure 3.4. The middle part is divided into three dis-

tinct sets of applications. On the left are the sequential applications, which represent the

starting point of all SPBench benchmarks. We present each of the supported applications

in Chapter 4. In the center are the parallel benchmark implementations, which we discuss

in detail in Chapter 4. And on the right are the custom benchmark implementations added

by users, which, of course, are not provided by SPBench, as illustrated in Figure 3.3.

Listing 5 Structure of a benchmark built with the framework API.
1 int main (int argc, char* argv[]){
2 spb::init_bench(argc, argv); //Initialization procedures
3 spb::Metrics::init(); //Global metrics initialization
4 /*beginning of the stream region*/
5 while(1){
6 spb::Item item;
7 if (!spb::Source::op(item)) break; //Take an item from the source
8 spb::Operator1::op(item); //First internal operator
9 spb::Operator2::op(item); //Second internal operator

10 ...
11 spb::OperatorN::op(item); //Last internal operator
12 spb::Sink::op(item); //Write the result
13 }
14 /*end of the stream region*/
15 spb::Metrics::stop(); //Performance computation
16 spb::end_bench(); //Memory deallocation and other final procedures
17 return 0;
18 }

The sequential code example in the figure was presented in a simpler way to

facilitate understanding. In practice, some more elements make up the benchmarks.

Listing 5 presents an example of a complete implementation of a sequential benchmark

using the API. All sequential benchmarks of the framework have a similar structure. Usually,

the only part that changes in the benchmarks when changing the base application is the

68

internal operators, which in this example of the Listing are in lines 8 to 11. Therefore, the

number of internal operators and their names vary from benchmark to benchmark.

Such standardization of code structure seeks to facilitate the understanding of

the benchmark applications. Once the structure of a single benchmark is understood

by users, they automatically understand the structure of all of them. Thus, keeping a

similar structure across the sequential benchmarks is important to increase parallel code

portability, as we discuss in Section 3.2.3. It is important to highlight that the kernel of

SPBench is these sequential benchmark applications. All the SPBench parallel benchmarks

were developed on top of these sequential benchmarks. Therefore, SPBench has nothing to

do with parallelism itself. Its goal is to provide application and benchmarking abstractions

to make it easier for users to use some parallel programming interface to implement stream

parallelism and create benchmarks from it. In the next section, we discuss how users can

do this.

3.2.3 SPBench Parallel Benchmarks

Besides the sequential benchmark applications, SPBench provides parallel bench-

marks using several PPIs. Users can use these benchmarks to evaluate the PPIs and adapt

them to evaluate other technologies or different parameters as their need. Also, inexpe-

rienced users can take these benchmarks to understand better how stream parallelism

works. We added the parallel benchmarks the same way any user would do. The only

difference is that we are making these benchmarks available within SPBench. They are

also self-contained, i.e. the SPBench provides all the necessary library dependencies for

them. Thus, what we discuss in this section applies to the “SPBench parallel benchmarks”

and “New benchmarks” parts from Figure 3.4.

Listing 6 presents an example of a parallel benchmark application. The application

in this example has three intermediate operators plus source and sink. Here, we use the

SPar [Gri16a] PPI to apply parallelism. We parallelize it into four pipeline stages and the two

intermediate stages can be replicated. As discussed earlier, except for the stream region,

the rest of the code is mostly identical in all applications. Therefore, this code snippet

shows only the stream region.

SPar is a DSL that adds annotations to the code to implement parallelism. Thus,

rewriting the original source code is not needed. This example in Listing 6 shows two

situations of using the intermediate stages. The second stage of the pipeline runs operator

A, while the third stage combines OperatorB and OperatorC. We put them in a single

pipeline stage to show how composable operators can be. The framework API allows these

combinations to be easily arranged, and users can build different compositions for better

load balancing.

69

Listing 6 Example of parallel benchmark implemented with SPar in SPBench (only the
stream region).

1 /*beginning of the stream region*/
2 [[spar::ToStream]] while(1){
3 Item item;
4 if (!spb:Source::op(item)) break; //Read a piece of data from a external source
5 [[spar::Stage, spar::Input(item), spar::Output(item), spar::Replicate()]]
6 {
7 spb::OperatorA::op(item); //A single operator in the pipeline stage
8 }
9 [[spar::Stage, spar::Input(item), spar::Output(item), spar::Replicate()]]

10 {
11 spb::OperatorB::op(item); // Example of two operators combined
12 spb::OperatorC::op(item); // in the same pipeline stage
13 }
14 [[spar::Stage, spar::Input(item)]]
15 {
16 spb:Sink::op(item); //Write the result
17 }
18 }
19 /*end of the stream region*/

Listing 7 Customized benchmark implemented with FastFlow (stream region).
1 struct Emitter: ff_node_t<spb::Item>{ // First stage
2 spb::Item * svc(spb::Item * task){
3 while (1){
4 spb::Item * item = new spb::Item();
5 if (!spb::Source::op(*item)) break; // Get an item from the source
6 ff_send_out(item);
7 } return EOS;
8 }
9 };

10 struct Worker: ff_node_t<spb::Item>{ // Second stage
11 spb::Item * svc(spb::Item * item){
12 spb::Operator::op(*item); // Some operation
13 return item;
14 }
15 };
16 struct Collector: ff_node_t<spb::Item>{ // Third stage
17 spb::Item * svc(spb::Item * item){
18 spb::Sink::op(*item); // Write the result
19 delete item;
20 return GO_ON;
21 }
22 }Collector;

Listing 7 shows another example of parallel implementation, now using the Fast-

Flow [ADKT17a] PPI. With this PPI, it is necessary to make a minimum change in the original

code, which consists only in using a pointer to the data item, as we can see in line 4 of the

Listing. Besides, it is necessary to rearrange the stream region to fit the FastFlow require-

ments. In this example, we used a single intermediate stage that runs a single operator.

An example using Intel TBB, for instance, would follow a similar structure. Therefore, both

70

Listing 6 and 7 can exemplify what most parallel benchmarks look like within SPBench. We

present the parallel benchmarks in detail in Chapter 4.

3.2.4 Performance Metrics

So far, we have discussed how the SPBench API works, how sequential applications

are implemented from it, and how parallelism can be added. But the goals of this work go

beyond giving users an application interface to facilitate writing parallel code. We aim to

allow such implementations to be used as benchmarks for stream processing. A crucial

aspect of turning these implementations into benchmarks is the addition of performance

metrics. The Listing 3 shows in lines 10 and 16 where the measurement operations inside

each operator are inserted. The Listing 5 shows in lines 3 and 15 where the metrics are

initialized and finalized.

Benchmarks need to provide performance metrics that are representative for their

domain. Several metrics can be used to evaluate the performance of stream processing.

Bordin et. al [BGM+20] conducted a survey in this respect and identified the metrics that

are more frequently found in stream processing benchmarks. These metrics are latency,

throughput, and resource usage, such as CPU and memory. Therefore, SPBench also offers

such metrics1.

The SPBench benchmarks natively implement the most common metrics for

performance evaluation. That is, parallel implementations in SPBench have these metrics

automatically available and users can enable or disable them at execution time. The

benchmarks can be evaluated under these metrics at different levels of accuracy and detail.

Regarding accuracy, it consists of the granularity of the measurement (sample interval).

Here users are able to choose a more course- or fine-grain granularity dynamically.

Regarding detailing, SPBench can actuate in 3 levels. The first level provides the

user with a global average of the result of the selected metrics, considering the execution as

a whole and measuring latency and throughput from end to end of the pipeline, for instance.

This level is important for the user to evaluate the global performance of the application.

The second level is able to present such results also as an average per operator individually

(only latency in the current version). This is important for the user to evaluate aspects

such as bottlenecks and load balancing between operators, allowing the optimization of

the parallelism strategy, for instance.

The third level is the monitoring metrics. It can measure the metrics at specific

instants of time and also compute instant latency or throughput, which is the average of

it in short time intervals. After execution, the benchmarks generate log files containing

all the results. This type of evaluation is more intrusive and may cause overheads, so it is

1https://spbench-doc.rtfd.io/en/latest/metrics.html

71

important to take this into account. The raw results are stored in memory, and only after

the end of the execution are they computed and presented to the users.

Metric Granularity Usage

Latency

Global average (end-to-end)
Global average (per-operator)
Per time window
Per item

Dynamic and static

Throughput
Global average
Per time window

Dynamic and static

CPU and Memory Usage
Global average
Per time interval

Static

Table 3.1: List of available performance metrics in SPBench.

Therefore, the metrics can be collected at different levels, such as per time unit,

per operator, per source (when using multiple source operators), or global average. Some

of them can be combined as well. There are two ways of operating these metrics: static or

dynamic. The metrics with the available granularity and modes of operation are shown in

Table 3.1.

Statically selected metrics are the metrics that are selected as an argument

through the CLI before running the benchmark. It includes monitoring metrics, average

latency and throughput, and resource usage. Dynamically selected metrics are the metrics

that can be collected at execution time, such as throughput and latency. They can be

measured at any point during the benchmark execution through function calls inside the

source code. These metrics are available in two modes. The first one returns the global

average results from the beginning of the execution to the current moment. The second

mode is the instantaneous one, where the metrics are computed over a short period (time

window). For instance, to get the average throughput of the last 5 seconds, a user could

add spb::Metrics::getInstantThroughput(5) to the source code. This type of metric is

relevant for testing self-adaptive systems, for example, since it can provide feedback on

performance on the fly [VGDF22].

In addition to the performance metrics provided by SPBench, users are completely

free to implement their own metrics in the user-side code. For example, they can en-

capsulate the Item class within another structure/class and add additional data for this

purpose. Of course, it would not be available for the other benchmarks. However, users

could then write a single header file with these new metrics and include it only once in a

global configuration file that SPBench provides. It applies not only to new metrics but to

any other users’ custom mechanisms.

72

3.2.5 Benchmark Parameterization

In addition to performance metrics, the SPBench benchmarks accept other param-

eters2. These arguments allow users to modify the behaviour of the workload and the input

stream. They can be statically set using specific arguments in the command-line interface

when running the benchmarks. Here are some examples:

• -in-memory: enable in-memory execution.

• -batch: sets a fixed size for batches.

• -batch-interval: fills batches based on a time interval.

• -frequency: set a target number of generated items per second in the source.

• -freq-pattern: set a pattern of variation in data stream frequency.

With the exception of -in-memory, the other commands can be executed dy-

namically by inserting specific SPBench commands in the source code. The method

spb::SPBench::setFrequency(), for example, can be executed at any time. We discuss

the batching system in more detail in Chapter 7 and data stream frequency in Chapter 6.

3.2.6 Command-Line Interface

SPBench benchmarks offer a variety of configurations, metrics, and workload

management options, as discussed in Sections 3.2.4 and 3.2.5. All these parameters (and

many others) are intrinsically part of the benchmarks. That is, users can directly run the

binaries of the benchmarks and use these parameters. Therefore, combining these metrics

and other parameters with the API allows users to implement stream parallelism more

easily and, as a result, obtain highly parameterizable benchmarks. However, to get to this

point, users must first install dependencies for the application and only then be able to

compile it. Building real-world applications with PPIs may not be a trivial task. In addition,

in some cases, it is necessary to find and prepare the input workload of the application

before you can run it. While this may not be a challenge for experienced users, repeating

these processes over several benchmarks can be time-consuming and error-prone. Thus,

as SPBench seeks to facilitate stream processing benchmarking in a comprehensive way,

the framework also provides a user interface that facilitates and automates many of these

aspects.

2https://spbench-doc.rtfd.io/en/latest/management_options.html

73

The SPBench command line interface (CLI) is implemented in Python. Its goal is

to speed up organizing, programming, configuring, running, and analyzing the SPBench

benchmarks. It acts as an abstraction layer between users and the whole SPBench sys-

tem. The CLI is illustrated at the bottom of the SPBench architecture representation in

Figure 3.4. Below are some of the main commands users can use with the SPBench CLI.

These commands can be used as ./spbench [command].

• ‘install’ - Install SPBench. This command downloads the application dependencies,

the PPIs, and the input workloads and builds everything. Specific applications can be

selected.

• ‘new’ - Creates and adds a new benchmark to the SPBench suite. It requires the user

to select which application will run under it. It needs to be one of the applications

supported by SPBench. Users can choose whether to create a benchmark from scratch

or to make a copy of an existing benchmark in the suite.

• ‘edit’ - Open the source code of a benchmark for the user to edit the source code

and add parallelism.

• ‘edit-op’ - Open the source code of a specific operator from a given benchmark for

the user to edit the source code and add parallelism.

• ‘configure’ - Open for editing a JSON file that allows the user to insert specific

compilation commands for a given benchmark.

• ‘global-config’ - The same as the above, but the commands added to this JSON file

are applied for all benchmarks in SPBench. It can overwrite the local configurations of

each benchmark or add to them.

• ‘compile’ - Compile a benchmark or a set of benchmarks. SPBench automatically

generates makefiles for each benchmark, applies users’ custom settings, and compiles

the benchmarks.

• ‘execute’ - Execute a benchmark or a set of benchmarks. Here users can select

workload classes, execution metrics, and other configurations and options, such as

changing the benchmark executor or enabling output correctness testing.

Besides the commands that have been mentioned, several others are available.

For example, users can use ‘rename’ to rename a benchmark, ‘new-input’ to add a custom

workload class, and ‘list’ to list the available benchmarks. Listing 8 shows an example

JSON configuration file of a benchmark. The global configuration JSON is similar but with

a few extra keys. SPBench reads these JSON files and generates custom Makefiles from

them. The user can select a specific compiler to compile only the benchmark, which is

74

Listing 8 Example of JSON file with compiling settings.
1 {
2 "CXX" : "<compiler for the base applications and SPBench infrastructure>",
3 "CXX_FLAGS" : "<compiling flags for the compiler above>",
4 "BENCH_CXX" : "<specific compiler for the user code, if any>",
5 "BENCH_CXX_FLAGS": "<flags for the specific compiler>",
6 "MACROS" : "-DMY_MACRO",
7 "PKG-CONFIG": {
8 "myPKG_1" : "pkg-config --cflags --libs mypkg-config",
9 "myPKG_2" : "",

10 "myPKG_N" : ""
11 },
12 "INCLUDES": {
13 "myINC_1" : "-I $SPB_HOME/path/to/include/",
14 "myINC_2" : "-I /another/path/to/include/",
15 "myINC_N" : ""
16 },
17 "LIBS": {
18 "myLIB_1" : "-L my/lib/path",
19 "myLIB_2" : "-L $SPB_HOME/another/lib/path",
20 "myLIB_N" : ""
21 },
22 "LDFLAGS" : "-mylib1 -mylib2 -mylibn"
23 }

useful when working with a PPI DSL like SPar, for example, which has its own compiler. The

‘$SPB_HOME’ is not a real variable. It is just a keyword recognized by the CLI that users can

use inside these files to refer to the root path of the SPBench.

CLI Features to Increase User Productivity in SPBench

The most basic CLI commands already help make using benchmarks faster and

easier. The commands for downloading and installing library dependencies and input

workloads and for generating build files for each benchmark contribute a lot in this regard.

However, the SPBench CLI has other features and usage modes that make it even easier

and faster to create and use the benchmarks.

1. Creating new benchmarks from existing benchmarks in the suite.

This feature is useful for quickly prototyping variations of existing benchmarks in the

suite. This can be done using the ‘./spbench new’ command and adding the ‘-from

<benchmark name>’ argument. For example:

./spbench new -bench ferret_tbb_farm

-from ferret_tbb_pipe-farm

-app ferret -ppi tbb

The above command will create a benchmark called ferret_tbb_farm, which will be

an exact copy of the ferret_tbb_pipe-farm benchmark. The new benchmark will

75

now be ready to compile and run. All the user has to do is edit the source code as

desired. This could be an example of a user who wants to create a version using a

single farm of a benchmark that implements a pipeline of farms. The need for the

user to manually copy files, adjust paths, modify makefiles, etc., is eliminated. The

new benchmark will inherit the same settings and any code changes applied within

the operators of the source application.

2. Moving the SPBench benchmarks to other systems.

A common situation: a user has created new benchmarks or modified existing bench-

marks locally in SPBench and wants to move these benchmarks to run on a remote

machine. For these scenarios, there is a simple solution. Users can simply move the

/benchmarks directory and replace it in the SPBench root on the other machine. All

benchmarks will be ready to run.

3. Selecting sets of benchmarks.

Several CLI commands allow it to run over multiple benchmarks. The ‘-bench’, ‘-app’,

and ‘-ppi’ arguments can be used individually or combined to select subsets of

the benchmarks. The ‘-bench <benchmark name>’ argument, if used alone, will

apply the respective command to a single benchmark. But ‘-bench all’ applies the

command to all benchmarks. The ‘-app <application name>’ command applies the

command to all benchmarks that implement the selected application. Finally, ‘-ppi

<PPI name>’ executes the command on all benchmarks implemented with a given

PPI. The command below, for example, can be used to compile all benchmarks that

use the FastFlow PPI:

./spbench compile -ppi fastflow

As mentioned, these arguments can also be used in combination. The example below

can be used to run all Lane Detection benchmarks, but only those implemented with

TBB:

./spbench compile -app lane_detection -ppi fastflow

4. Running benchmarks with multiple parallelism degrees.

Running experiments with parallel benchmarks using multiple degrees of parallelism

is very common in this area. The most common way to run a parallel benchmark

in SPBench with a given number of threads or degree of parallelism is to use the

‘-nthreads <n>’ argument in the ‘exec’ command. In other benchmarks, this can

often be done in a similar way. However, to do multiple executions varying the number

of threads, the traditional way is to add the execution command inside a loop that

76

will iterate over the value of n. This usually involves creating execution scripts to

automate the experiments.

In SPBench, the user can select multiple degrees of parallelism directly in the run

command. For example, the argument ‘-nthreads 4’ will execute a benchmark with

parallelism degree 4. However, ‘-nthreads 1:4’ will execute the benchmark four

times with parallelism degrees 1, 2, 3, and 4, respectively. ‘-nthreads 4:1’ executes

the benchmark in the opposite way. It is also possible to add the iteration step size.

For example, ‘-nthreads 1:2:8’ runs a benchmark with nthreads = 1, 2, 4, 6, and 8.

5. Running a benchmark multiple times.

Another common practice using benchmarks is to perform multiple runs to average

results and compute the error. Doing this in the traditional way is similar to the

previous item. Users will typically create execution scripts with loops that repeat the

execution. But here, there is additional complexity involved in storing all the data and

computing the results correctly.

The SPBench also has a feature that facilitates this aspect. The user simply adds

the ‘-repeat <n>’ argument to the ‘exec’ command. This will make the CLI run the

benchmark n times and, in the end, will present the averages of the selected metrics

along with their standard deviation.

6. Combining the features of the above items 3, 4, and 5.

Sometimes users want to perform a combination of what was described in items 3,

4, and 5. That is, run multiple benchmarks, varying the degree of parallelism, and

run each one multiple times to get the average results. All this can be done with a

single command in SPBench. For example, if users select a range for the degree of

parallelism in the exec command (e.g. -nthreads 2:16) AND add the -repeat <n>
argument, SPBench will automatically generate a performance log containing the

average results for each metric along with the standard deviation. Each line of the

log represents a degree of parallelism. If, in addition to this, the user selects multiple

benchmarks, SPBench will generate a logo for each of them. Here is an example:

./spbench exec -ppi fastflow ... -nthreads 2:16 -repeat 10

The above command will run all benchmarks that use FastFlow as PPI, varying the

degree of parallelism from 2 to 16, and calculate the average performance results

over 10 runs. This eliminates the need to build execution scripts in similar situations,

saving the user time and effort. Also, the resulting log files organize the data as a

table. Therefore, from them, it is very easy for users to extract information, analyze

the data, and build performance graphs.

77

3.3 Related Work

The previous section of this chapter introduced the SPBench framework. While

there are initiatives aimed at adding abstraction layers for writing parallel code [GDTF17,

DDMMT18] or for other aspects of parallelism in stream processing [GVS+19, HH21b,

LZS+22, VGDF22], few works aim to parameterize and add abstractions for the bench-

mark applications in this area. SPBench try to do that and be helpful for researchers to test

and evaluate their parallelism solutions and technologies for stream processing. Now that

we discussed what the SPBench is about, we can discuss our related work.

The discussion of related work in this thesis is not centralized in one chapter,

it is divided between the chapters instead. Therefore most chapters will have a shorter

discussion section on related work according to the subject matter of each one. It is

essential to clarify that the work discussed here is specifically related to the framework

itself. This way, we have searched the literature for frameworks that ease in some way the

creation or use of parallel benchmarks for stream processing.

RSPLab [TDVMB17] is a cloud-ready open-source test driver framework to support

empirical research for Semantic Web (RSP) and Stream Reasoning (SR). It has been designed

to meet the requirements for an RSP test driver, as elicited from existing research on

benchmarking RSP systems. The requirements include: (1) allowing integration of any

benchmark, (2) engine independence, (3) minimal yet extensible performance metrics

set, (4) continuous monitoring, (5) error minimization, (6) ease of deployment, (7) ease of

execution, (8) repeatability, (9) data analysis, and (10) data publishing. The architecture

of RSPLab comprises four independent elements: Streamer, Consumer, Collector, and

Controller. The Streamer provides RDF streams, the Consumer exposes the RSP engines via

REST APIs, the Collector continuously monitors performance statistics, and the Controller

enables programmatic design and execution of experiments. The implementation of RSPLab

uses Docker, InfluxDB, and other custom APIs.

NAMB (Not only A Micro-Benchmark) is a platform for the generation of prototype

applications based on their high-level description [PHUK20]. It consists of a framework

based on fundamental data stream characteristics that supports a configurable topology

description. The aim is to avoid the user having to edit the application code. It can generate

a set of synthetic/micro-benchmarks as well as prototypes of Java applications for Apache

Flink, Storm, and Heron platforms. The framework also allows users to change input data

frequency, parallelism degree, tuple size, etc. Figure 3.5 shows a case-use example for

modeling a three-stage micro-benchmark. The authors tested the framework using a data

stream benchmark application.

DSPBench is a suite of benchmark applications for distributed data stream pro-

cessing systems. Besides the benchmark suite, the first version of DSPBench [BGM+20]

78

Figure 3.5: Example of a word-counter micro-benchmark generation using NAMB.

Source: [PHUK20]

proposed a framework that had a similar proposal to ours. The goal of their framework

was to provide an API for stream processing applications while ensuring that they are

executed in the same way (respecting the system’s limitations) across the DSPSs. The API

aimed to provide the programmer with adapters that allowed translating the application

code to a specific version of the DSPSs included in the suite (Apache Flink, Apache Storm,

and Apache Spark). Other adapters allowed programmers to add probes within these

versions to get performance metrics. The framework could also validate the results to

ensure correctness. They also implemented standardized input/output control through a

Kafka system for providing the input streams for the applications of the benchmark suite,

using a Cassandra storage system for the output. However, the DSPBench API, which was

the part that shared common goals with our work, has been discontinued and is no longer

available in the latest version of DSPBench3 (v2.0.0). It moved from single API applications

to platform-specific applications.

In [HH21b], the authors developed a framework called Theodolite for evaluating

the scalability of DSPS platforms. This framework comprises a seven-dimension workload

generator derived from industrial IoT for microservice architectures. The middleware is an

3https://github.com/GMAP/DSPBench/releases

79

Apache Kafka system that allows changing the characteristics of the stream, such as item

frequency, and adding multiple sources. It includes four benchmarks with Apache Flink and

Apache Kafka Streams.

Similar to [HH21b], there are several other frameworks focused on generating

input workloads to test different aspects of DSPSs. In [KRK+18], their framework gener-

ates realistic workloads to evaluate the latency and throughput of windowing operations.

[vTLv16] generates network security monitoring data streams to test the ability of the most

common DSPS platforms to process this type of data. [LPDTP+12] proposes a framework to

generate representative input workloads for social network applications to evaluate DSPSs.

[MBDTE17] go in a similar line, but they created a feature test framework for distributed

stream reasoning benchmarking. Instead of evaluating performance, the goal is to compare

and evaluate different engines to see if they support specific data stream operations, such

as aggregation, union, filter, sorting, etc. The two main components are a data generator

that generates query streams and a collector that checks the correctness of the output.

SpinStreams [MDT18] is a framework for predicting the performance of a given

stream application and statically restructuring its data flow topology to improve perfor-

mance. The framework must receive as input a topology description in XML and java

functions describing the workload of each task. Then, it tries to apply operations such as

join and fission to pipeline stages to correct backpressure and bottleneck issues. It supports

Java applications and generates parallelism for the Akka Streams engine [Dav18].

3.3.1 Discussion

Regarding related frameworks to SPBench, there are some interesting solutions.

NAMB [PHUK20] was the only work we found that proposes to generate stream processing

benchmarks from scratch from a high-level description. However, this framework only

generates micro-benchmarks that exclusively target frameworks for DSPSs. Nevertheless,

the authors point out the need for benchmarks with a clear workflow description, which

can be easily and quickly customized and adapted to different data stream processing

contexts. We add to this observation that the lack of such benchmarks for traditional

stream applications is even greater, and this is one of the motivations of this work.

RSPLab [TDVMB17] is a framework that focuses on input workload generation.

They surveyed from the literature a number of requirements that should be implemented

in the framework. Although SPBench is in a slightly different context, it implements most

of these requirements as well. RSPLab, however, is very limited in terms of workload

parameterization, performance metrics, and benchmark applications.

The remaining related frameworks share some objectives with our work. Most of

them try to bring abstractions to data stream workloads. [BGM+20] focuses on standardizing

80

the workload source with a Kafka system to serve all the benchmarks of the suite. [HH21b]

focuses on varying input stream characteristics, such as frequency and complexity of items.

In addition to these, [KRK+18, vTLv16, LPDTP+12] generate workloads for specific scenarios,

such as window operations, social networks, and security networks. Finally, [MDT18] shares

a similar goal as NAMB, but in contrast, it focuses on automatically generating optimizations

for applications using parallel patterns from a high-level description.

Table 3.2: Main characteristics of the work related to the SPBench framework.

R.W.
Target

applications
Platform

Stream
modifiers

Provided
metrics

Goal
PPI

extensibility

[PHUK20] Data stream Distributed
- Data frequency*
- Tuple size

–

- Application
generation

- Automatic
parallelism

- Synthetic data
generation

Difficult

[MDT18] Data stream Distributed - Data frequency - Throughput

- Automatic
parallelism

- Performance
optimization

- Performance
analysis

Difficult

[HH21b]
Data stream

(microservices)
Distributed

- Data frequency
- Multiple sources
- Mixed batches

- Scalabillity

- Synthetic
benchmark suite

- Synthetic data
generation

- Performance
analysis

Not easy

[LPDTP+12]
Data stream
(linked data)

Multicore
- Data frequency
- Dataset size
- Multiple sources

- Throughput

- Input data
generation

- Performance
analysis

Not easy

[vTLv16]
NetFlow

processing
Distributed - Multiple sources - Throughput

- Micro-benchmark
suite

- Performance
analysis

Not easy

[TDVMB17] Data stream Distributed - Data frequency - CPU/Mem. usage
- Input workload
generation

Not easy

[MBDTE17] Data stream Distributed – - Correctness
- Input workload
generation

Not easy

[KRK+18]
Data stream

(social media)
Distributed

- Data frequency
- Multiple sources

- Throughput
- Event-time
latency

- Synthetic data
generation

- Performance
analysis

Easy

SPBench

Traditional
and Data
Stream

Processing

Multicore
(currently)

- In-memory
processing

- Data frequency
- Freq. patterns
- Batching
- Multiple Sources

- Throughput
- Average
- Instantaneous

- CPU/Mem. usage
- Latency:
- Processing-time
- Per-operator
- Average
- Instantaneous

- Benchmark suite
- Benchmark
generation

- Performance
analysis

- Ease of use
- Self contained

Easy

* It can not set data frequencies above one thousand tuples per second.

Table 3.2 summarizes and compares the main features of each related framework,

including SPBench in the last row. Most related frameworks focus on distributed platforms

and only target data stream applications, as shown in the second column of the table. All

of them use JVM languages for hardware abstraction. SPBench targets traditional and data

81

stream processing in C++. It primarily tries to meet the growing trend of stream processing

on multicore systems but also looks at supporting distributed architectures in the future.

The fourth column of Table 3.2 lists any modifications to the input stream that

the frameworks support. The most common modification allows the user to change the

data arrival frequency, use multiple data sources, or select tuple/batch/dataset size. For

now, SPBench supports in-memory processing, data frequency generation (microsecond

precision), frequency patterns, multiple sources, and dynamic batch size control.

Regarding metrics (fifth column), throughput is the most common. [HH21b] is

the only framework that supports a specific composite metric called scalability. Latency

can be evaluated in at least three dimensions: event-time, processing-time, and per-

operator [KRK+18]. SPBench can also evaluate latency in these three dimensions and more.

In addition, SPBench also evaluates memory and CPU usage. Our framework can evaluate

and monitor these metrics in different dimensions, as discussed in Section 3.2.4. Hence,

SPBench allows users to evaluate benchmarks comprehensively at different layers.

The second-to-last column of Table 3.2 tries to summarize the goals of each

framework. Most of them include small benchmark suites with performance evaluation.

Other goals revolve around the generation of applications/benchmarks, input data, or

parallel code. However, this code/data generation part is usually tied to specific PPIs,

which limits their extensibility. The goal of the SPBench is to enable the creation of stream

processing benchmarks, provide a suite of benchmarks, facilitate performance analysis, be

easy to use, and be self-contained, i.e., it provides all the dependencies specific to each

benchmark.

Frameworks marked as difficult to extend (in the last column of the table) are

those that require a lot of programming effort to support a new PPI. When it is a task

most reserved for the framework’s developers. By “Not easy” to extend, we mean that the

framework’s code still requires some modification, but experienced users can do this. And

easy to extend means that no change is required on the framework’s source code to add

an implementation with a new PPI. SPBench is in this category, where the user only needs

to write the parallelism and describe the building dependencies.

To conclude, in our work, we focus on benchmarks for traditional and data stream

processing targeting the C++ community. This way, we also target real-world repre-

sentative stream applications similar to those found in PARSEC. We did not find related

frameworks that support this type of application. SPBench is highly extensible and is able

to incorporate C++ stream applications from different domains. Our work also includes

most metrics identified as important by related work and more. The most used metrics in

these frameworks and benchmarks are latency, throughput, and resource usage (CPU and

memory) [ABD+16, BGM+20].

The SPBench framework also provides input workload abstractions. It allows users

not only to select different workload classes but also to vary item frequency, batch settings,

82

and data sources. All this is transparent to the programmer, who only needs to set these

options in the Command-Line Interface (CLI) at execution time. Furthermore, our framework

also focuses on being extensive and is not limited by specific PPIs. So we have not found

any other framework that targets the same kind of application as the SPBench, or that is as

highly parameterizable as it is, or that provides comprehensive metrics, or that shares the

same goals, or that targets ease of use to the same extent.

3.4 Chapter Summary

In this chapter, we introduce the SPBench benchmarking framework. It has

as its core element an API that allows you to implement real-world stream processing

applications in a simplified, readable, and standardized way. While simplifying the code,

it adds workload management mechanisms and performance metrics. It also provides

a command-line interface that improves the usability of benchmarks and implements

mechanisms that potentially increase the productivity of users. In our literature review, we

did not find a framework that proposes and implements something similar to SPBench.

In the next chapters, we will go into more detail about the SPBench benchmarks

and the data frequency and batching management system. Chapter 4 presents the set

of applications that are currently supported by the framework. From these applications,

parallel benchmarks can be generated. Chapter 4 shows how we use SPBench to create

the parallel benchmarks that make up the suite. In Chapter 5, Chapter 6, and Chapter 7,

we perform performance analysis and evaluate the benchmarks under several parameters.

83

4. SPBENCH APPLICATIONS AND PARALLEL BENCHMARK SUITE

This chapter first presents the set of applications supported by SPBench. That is,

the benchmarking applications that are available for users to use or create new benchmarks

from. The second part of this chapter shows how we used the SPBench framework with

different parallel programming interfaces to build a parallel benchmark suite.

This chapter is organized as follows. Section 4.1 gives some context about the

SPBench and its applications and the scope of our work in this aspect. Section 4.2 presents

each application in detail. Section 4.3 discusses the input workloads, how they can be used,

and how they are organized into classes in SPBench. In Section 4.4, we describe how we

used the PPIs FastFlow, Intel TBB, SPar, OpenMP, ISO C++ threads, GrPPI, and WindFlow to

implement parallelism in the SPBench applications. We discuss the related work regarding

benchmark suites for stream processing in Section 4.5.

Contents

4.1 CONTEXT . 84

4.2 SPBENCH APPLICATIONS . 85

4.2.1 BZIP2 . 85

4.2.2 FACE RECOGNITION . 86

4.2.3 LANE DETECTION . 87

4.2.4 FERRET . 88

4.2.5 FRAUD DETECTION. 89

4.3 WORKLOAD CLASSES . 91

4.3.1 INPUT WORKLOADS . 91

4.3.2 USING CUSTOM INPUT WORKLOADS . 93

4.3.3 CORRECTNESS TESTING . 94

4.4 BUILDING THE PARALLEL BENCHMARKS . 94

4.4.1 FASTFLOW . 95

4.4.2 THREADING BUILDING BLOCKS . 96

4.4.3 SPAR . 99

4.4.4 OPENMP AND ISO C++ THREADS . 99

4.4.5 GRPPI . 101

4.4.6 WINDFLOW . 103

4.5 RELATED BENCHMARK SUITES . 104

4.5.1 DISCUSSION . 105

4.6 CHAPTER SUMMARY . 107

84

4.1 Context

Ideally, benchmark applications should represent, to some extent, the target

scenario they are intended to evaluate, as discussed in Session 2.3. They should provide

a means to assess the performance of a system on a range of tasks and workloads. It

is important because the performance of a system can vary depending on the specific

application or workload it is running. In addition, the applications included in a benchmark

suite should be designed to test the system’s scalability by providing a range of problem

sizes. It allows testing the system’s ability to handle larger and more complex workloads,

which is an essential aspect of a system’s performance. Overall, the applications included in

a benchmark suite are important because they provide a way to evaluate the performance

of a system on a range of real-world tasks and workloads. It helps to identify the object’s

strengths and weaknesses under analysis and guide efforts to optimize its performance.

Currently, the SPBench suite comprises five real-world applications. Four are used

in traditional stream processing, and one is used in data stream processing. While the

type and number of applications provided are important to a benchmark suite, SPBench

is not a typical benchmark suite. Thus, we decided to prioritize other aspects during its

development. We believe that focusing the initial work on developing the framework,

the API, and other features would result in more relevant contributions. Adding more

applications is manual work that becomes easier as the API and its documentation are

improved. Therefore, adding a large number of applications to the SPBench at the beginning

of its development would result in a significant development cost for the framework.

Extensive updates to the API, frequent in the design phase, would imply a lot of application

code rewriting work. This development cost would have hindered the implementation of

more outstanding features and contributions to users.

However, the SPBench framework has reached a more mature level concerning

documentation1, API, CLI, parameterization, and other features. Moreover, these aspects

have already been extensively tested and evaluated. Therefore adding new applications

should be an important way to go in future work. There is a recent initiative by other

researchers to implement sequential C++ versions of the DSPBench benchmarks [BGM+20].

It highlights the demand for such benchmarks and the need for sequential versions of

parallel benchmarks. Fraud Detection was the first such application, and we have recently

added it to the SPBench. Besides these, we should also look for new applications that

exploit traditional stream processing.

All the parallel benchmarks of SPBench were developed on top of these sequential

applications it provides. However, the main goal of the SPBench framework itself is to

provide sequentially implemented applications with an API that makes it simple for users to

1https://spbench-doc.rtfd.io

85

create benchmarks for stream processing. In other words, it is the role of users to create

benchmarks using SPBench. On the other hand, one of the research goals of this work

is to expand the area of benchmarks for stream processing. Naturally, this involves the

development of benchmarks in this context since there is a lack of C++ stream processing

benchmarks. Therefore, to achieve this research goal, we did as any other user would do

and used SPBench to build such benchmarks.

Some of the parallel benchmarks provided by SPBench are simply the result of the

use of the framework during its development to create benchmarks to test and validate its

features. The difference is that we already make these benchmarks available in SPBench,

while users would have their custom benchmarks only available locally. In addition, some of

the benchmarks were developed by other researchers and contributors that use SPBench.

Thus, we encourage new users to contribute and submit their benchmarks to the SPBench

suite.

4.2 SPBench Applications

The current application set of SPBench comprises five real-world applications:

Bzip2, Lane Detection, Face Recognition, Ferret (PARSEC [BKSL08]), and Fraud Detec-

tion. These applications have already been studied and used as benchmarks in prior

work [GHDF18a, Víl20, GHDF17, HLGF22, BKSL08, GHDF18b, PLH+21]. However, most of

them were not even available in a public repository. Part of the problem was the lack of

documentation and software licenses. In SPBench, we have solved such problems, rebuilt

the applications to fit the API structure, and made them publicly available.

4.2.1 Bzip2

Bzip2 [Sew17] is a lossless data compression algorithm developed by Julian Seward

in 1996. It is a free and open-source software tool widely used for compressing files and

has become a popular choice for file compression due to its high compression ratio and

fast decompression speed. Bzip2 combines Burrows-Wheeler transform, Huffman coding,

and run-length encoding to compress data. It is often used to compress large files, such

as database backups and log files, and is supported by various operating systems and

software applications. Overall, Bzip2 is a reliable and efficient compression algorithm that

has proven to be an important tool for data storage and transmission.

Although Bzip2 compresses data more effectively than the older LZW (.Z) and

Deflate (.zip and .gz) algorithms, it is considerably slower. Therefore, parallel implementa-

tions that increase compression speed are helpful. This application can be divided into a

86

Figure 4.1: Bzip2 flow graph.

Source: [GGSF23] ©2023 Springer Nature.

three-stage Pipeline (source, compress/decompress, sink), as shown in Figure 4.1, and has

two operation modes: compress and decompress.

4.2.2 Face Recognition

Face recognition is a computer application that seeks to identify and verify indi-

viduals based on their facial features. This technology has a wide range of potential uses,

including security and surveillance, law enforcement, and social media. In the field of

security and surveillance, face recognition can be used to identify and track individuals as

they move through a public space, such as an airport or shopping mall. In law enforcement,

face recognition can be used to match a suspect’s face to a database of mugshots. In the

social media industry, face recognition can be used to automatically tag people in photos

or to suggest friends to users based on their facial features.

Figure 4.2: Face Recognizer workflow.

Source: [GHDF17]

Source SinkDetect Recognize

Figure 4.3: Face Recognizer flow graph.

Source: [GGSF23] ©20XX Springer Nature.

In SPBench, the Face Recognizer [Aru13] application tries to match human faces

from a video frame against a database of faces. For each video frame, it applies a detection

algorithm to detect all the faces in it. Then, it uses a set of face images and compares each

87

detected face in the frame with the faces on that set. The recognized faces are marked

with a circle, and then the frames are written to the output file. This process is illustrated in

Figure 4.2. Therefore, this application can be divided into a four-stage Pipeline, represented

by Figure 4.3. This application is described with details in Reference [GHDF17].

4.2.3 Lane Detection

Lane detection is a computer application that aims to detect and track the lanes

of a road. This technology has a wide range of potential uses, including improving driver

safety, reducing traffic accidents, and helping self-driving vehicles navigate roads. In the

field of driver safety, lane detection systems can alert drivers if they drift out of their lane.

Regarding self-driving vehicles, lane detection is a crucial component for enabling the

vehicle to navigate roads safely and avoid collisions. Lane detection systems typically

use sensors, such as cameras, to gather data about the surrounding environment and to

identify the location and position of lanes on the road.

Figure 4.4: Lane Detection workflow.

Source: [GHDF17]

Figure 4.5: Lane Detection flow graph.

Source: [GGSF23] ©20XX Springer Nature.

In SPBench, the Lane Detection application captures each frame of an input video

file and applies three computer vision algorithms. It is based on the Lane Detection

benchmark used by Griebler et al. [GHDF17]. It can be divided into a nine-stage Pipeline,

as shown in Figure 4.5. Through these stages, the detected lanes are marked with straight

88

lines in a new frame. This new frame with the marked lanes is then overlaid on the original,

and the resulting frame is written to the output file. This process is illustrated in Figure 4.4.

4.2.4 Ferret

Ferret is a PARSEC (Princeton Application Repository for Shared-Memory Comput-

ers) [BKSL08] application intended for a content similarity search in data such as video,

audio, and images. It basically simulates the process of searching and filtering through a

large dataset of document records, similar to how a search engine might work. In PARSEC,

Ferret was configured for image similarity search [BKSL08], so it uses a dataset of images

and a search engine that processes queries and returns results from the dataset. This bench-

mark is designed to stress the memory hierarchy and interconnect of a shared-memory

system and to evaluate its performance under different workloads and configurations. It is

often used as a benchmark to compare the performance of different systems or to evaluate

the impact of hardware or software changes on the performance of a system.

Figure 4.6: Ferret workflow.

Source: [BKSL08]

Figure 4.7: Ferret flow graph.

Source: [GGSF23] ©20XX Springer Nature.

In PARSEC, the parallelism is implemented with POSIX Threads using a six-stage

Pipeline. In SPBench, we keep the same structure, as represented in Figure 4.7. The first

and last ones are source and sink. The second stage performs segmentation, a process that

organizes the regions of each image into sets. The third stage computes a 14-dimension

feature vector for each of the segmented regions of each frame. The computing process

89

of the second and third stages is illustrated in Figure 4.6. The fourth stage (vectorization)

applies an indexing method, which selects possible similar images. The fifth stage (rank)

performs a refined search of the images selected in the fourth stage, ranking the most

similar images.

4.2.5 Fraud Detection

Fraud detection is an application that uses Markov chains to predict the probability

of a transaction being fraudulent. A Markov chain is a mathematical system that undergoes

transitions from one state to another according to certain probabilistic rules [CN06]. In the

context of fraud detection, a Markov chain can be used to model the sequence of events

that occur during a fraudulent transaction or activity.

The basic idea behind using a Markov chain for fraud detection is to identify

patterns in the sequence of events that are indicative of fraudulent activity. These patterns

can be represented as transitions between different states in the Markov chain. For

example, one state might represent a legitimate transaction, while another might represent

a fraudulent transaction. The probability of transitioning from one state to another can be

used to calculate the likelihood that a given transaction is fraudulent.

To use a Markov chain for fraud detection, data about past transactions is used

to build a model of the chain. This can be done by analyzing the sequence of events that

occurred in each transaction and identifying patterns that are indicative of fraud. The

model can then be used to evaluate new transactions as they occur in real-time and flag

those likely to be fraudulent based on their probability of transitioning between different

states in the chain [SKSM08].

Source SinkPredictor

Figure 4.8: Fraud Detection flow graph.

Source: [GGSF23] ©2023 Springer Nature.

This SPBench application was built based on the Fraud Detection benchmark from

the DSPBench suite [BGM+20]. It has three processing operators, as shown in Figure 4.8.

The first operator reads a database of transactions and keys and generates tuples from

that data. The second operator, the Predictor, filters out non-fraudulent transactions and

forwards only the fraudulent ones to the third stage. This way, the Predictor operator acts

as a filter. The final operator, the sink, receives the fraudulent transactions and may write

them to a file if required.

90

Until recently SPBench did not support any data stream applications, only tradi-

tional stream processing applications. Fraud Detection was the last to be added to the suite

and it is an application that represents the data stream domain. Its implementation within

SPBench is presented in Listing 9.

Listing 9 Sequential Fraud Detection implementation in SPBench.
1 #include <fraud_detection.hpp>
2

3 // Predictor state
4 // It is modified at each iteration by the predictor operator
5 Markov_Model_Predictor predictor;
6

7 int main (int argc, char* argv[]){
8 spb::init_bench(argc, argv);
9 spb::Metrics::init();

10 while(1){
11 spb::Item item;
12 if(!spb::Source::op(item)) break;
13 spb::Predictor::op(item, predictor); // State given as argument
14 if(item) spb::Sink::op(item); // Only fraudulent items proceed (filter)
15 }
16 spb::Metrics::stop();
17 spb::end_bench();
18 return 0;
19 }

This application posed new challenges to the SPBench API for the following rea-

sons:

1. It has a stateful operator.

The other SPBench benchmarks only have stateless operators. Keeping states had

not been a concern until now. The solution, in this case, was to add the attribute that

requires keeping the state in the sequential code and make it evident to users. This

way, it is up to the users to find the best way to deal with it. In the sequential version,

we handle this by allowing the state to be passed as an argument to the stateful

operator, as per line 13 of Listing 9.

2. It has a filter operator.

While a filter operator is natural in the parallel scenario, we had to add extra control

structures to implement this sequentially. Previously the SPBench didn’t foresee that

items could be dropped along the way. To solve this problem we overloaded the

operator in the Item class and now it can be used as a boolean type. This way, it can

be filtered with a simple syntax in the sequential version, as line 14 of Listing 9 shows.

3. It requires Source and Sink parallelism to scale performance.

91

This involved creating new mechanisms to keep performance metrics consistent. Until

then, a single item counter within the Source or Sink was enough to measure through-

put. But with parallel sources, it was necessary to synchronize the counting of these

items. So we created the SPBench Metrics class attribute called “my_items_counter”.

It can be used when users intend to run parallel sources and sinks. It basically over-

writes the original item counters with this custom counter that can be manipulated on

the user’s side.

4. The parallel Fraud Detection requires key-by partitioning of data.

A key, in the SPBench case, is an attribute of the class Item. However, SPBench

implements batches natively and does not support partitioning data by key within

batches. Therefore, we had to disable the batching system to implement key-based

data partitioning in parallel versions. Anyway, some PPIs like WindFlow are able to

run themselves with batches if required, not relying on SPBench for this.

4.3 Workload Classes

SPBench provides different classes of input workloads for each application2. In the

current version, all applications have the classes named test, small, medium, large, and

huge. Before using it, users need to download these input files from a remote repository.

This can be done through the ‘./spbench download-inputs’ command.

./spbench download-inputs

-app <application_name> (optional)

-class <class_id> (optional)

This command will download all required files and generate the input workload

classes for all applications. Users can download the inputs for a single application using

the ‘-app’ argument. Similarly, the argument ‘-class’ can be used to download a single

class. This is useful to avoid downloading large files if they will not be required. Users

must provide an input workload class when running the ‘./spbench exec’ command. This

command has an ‘-input <input_class>’ argument for this purpose.

4.3.1 Input Workloads

Here we describe what the input workload classes are for each of the SPBench

applications. Some of these benchmarks that are now part of the SPBench were used by

2https://spbench-doc.rtfd.io/en/latest/workloads.html

92

other authors in past work without a clear definition of the input workloads. Some of these

inputs were already outdated, and the workload needed to be increased to test newer and

larger systems better. We added new inputs for Bzip2 and Lane Detection and restructured

those for Face Recognizer and Fraud Detection. The definition of the workload classes is

based on a simple methodology. We started by defining a class called ‘huge’. It should take

at least 100 seconds to process sequentially on a 1GHz processor. The lower classes are

derived from this.

• Bzip2

The input workloads for Bzip2 are dump files from the Wikipedia database3. The input

workload classes for it in SPBench are organized as follows:

– Test class: enwiki-20211120-pages-articles-multistream-index9.txt (16.8 MB)

– Small class: enwiki-20220601-pages-articles-multistream15.xml (129.7 MB)

– Medium class: enwiki-20211120-all-titles-in-ns0 (349.1 MB)

– Large class: enwiki-20211120-pages-articles-multistream9 (2.1 GB)

– Huge class: enwiki-20211120-pages-articles-multistream9-2x.xml (4.2 GB)

Users can use the class names with the ‘_d’ suffix (e.g., large_d) to access the

compressed file versions (.bz2) for running the benchmarks in decompress mode.

• Lane Detection

The input workload for the Lane Detection application is a single video file. The video

was recorded from a vehicle driving on the road. It is an mp4 video with 640×360 or

1280×720 resolution with 30 frames per second (H.264 codec). This same video is

used for all workload classes but at different lengths.

– Test class: 3-second video (LQ = 0.57 MB and HQ = 2 MB)

– Small class: 15-second video (LQ = 5.5 MB and HQ = 14.8 MB)

– Medium class: 30-second video (LQ = 12 MB and HQ = 32.1 MB)

– Large class: 60-second video (LQ = 25.4 MB and HQ = 66.1 MB)

– Huge class: 120-second video (LQ = 50 MB and HQ = 130 MB)

The default video resolution is 360p. However, SPBench also provides the same

videos in 720p resolution. To access it, users can add a ‘-HQ’ suffix (e.g., large-HQ).

3https://dumps.wikimedia.org/enwiki/

93

• Face Recognizer

The Person Recognition input files consist of a set of pictures of former US president

Barack Obama’s face plus a video recorded during a public talk that contains images

of his face and also the faces of other people in the audience at some points. The set

of pictures is used for training the application. The video (360p resolution) is used to

try to recognize the face of the former president.

All workload classes use the same video but at different lengths, as described below:

– Test class: 0.3-second video

– Small class: 1-second video

– Medium class: 3-second video

– Large class: 15-second video

– Huge class: 30-second video

• Ferret

For Ferret, the original workloads available on the PARSEC website4 are used. In

SPBench, the ‘native’ workload class of PARSEC is available under the ‘huge’ alias. It

consists of 3.500 image queries, a database with 59.695 images, and finding the top

50 images [BKSL08].

• Fraud Detection

This application receives as input a file with the chain model and a dataset of transac-

tions and keys. Since this is an application from the DSPbench suite [BGM+20], we

use the same dataset they provide5. In this application, we use a different logic to

build the workload classes inside the SPBench. Instead of being tied to the size of the

input file, here, the classes are defined as execution time. So in the ‘huge’ class, the

application will process transactions for 60 seconds. This execution time is reduced to

30, 10, 5, and 1 second for the large, medium, small, and test classes, respectively.

4.3.2 Using Custom Input Workloads

To run a benchmark, users must choose an input workload class. However, users

can also run a benchmark with custom workload classes. For instance, a user may want

to use a different input video file for the Lane Detection benchmarks or change some

parameters. To do that, this new input must first be registered in SPBench to enable the

new class. This process can be done using the ‘new-input’ command in the CLI.

4https://parsec.cs.princeton.edu/download.htm
5https://github.com/GMAP/DSPBench/wiki/Workloads

94

4.3.3 Correctness Testing

Some SPBench benchmark applications allow the result to be checked at the end

of the execution. This is done by comparing the md5 hash value of the benchmark output

against an expected md5 value, which is a pre-computed md5 hash stored in the input

database of SPBench. The expected md5 results from running the respective input with

the sequential benchmark. Users can add correctness testing for a custom input using the

‘-md5’ argument with the ‘new-input’ command.

Of course, this md5-comparison method only works when the benchmark produces

an output file and is deterministic. This is true for Lane Detection, Person Recognition, and

Bzip2. These applications have ordering constraints and the correct output is always the

same. However, this is not true for Ferret, which processes out-of-order items, or Fraud

Detection, which processes an arbitrary number of items every time. In the future, we may

look for better and new methods to address such cases.

4.4 Building the Parallel Benchmarks

The SPBench is a framework that provides applications that support stream par-

allelism in a readable, simplified, highly parameterized, and metrics-driven way. But to

reiterate, SPBench alone does not provide the means to implement parallelism. To imple-

ment stream parallelism in the SPBench benchmarks, some external parallel programming

interface (PPI) must be used. However, some of the most relevant state-of-the-art PPIs

have been used to create parallel benchmarks in SPBench and these benchmarks come

with the framework.

SPBench provides benchmarks using the PPIs OpenMP, ISO C++ Threads, Intel TBB,

FastFlow, SPar, WindFlow, and SPar. We believe that “all-inclusive” is a way to improve the

framework’s usability and benchmarks. Therefore, the different PPIs used in the benchmark

suite are also provided by SPBench. The exceptions are C++ threads and OpenMP. The C++

threaded implementations use only the standard C++ library. In the case of OpenMP, this

is a classic parallelism library that is easy to install and is usually already present in most

HPC systems. So for these two PPIs, the SPBench provides only one library that implements

a shared queue that can be used to communicate between the stages of the pipeline. Of

course, users can implement their own mechanisms for this.

The easiest way to create a benchmark with one of the PPIs included in the

SPBench is to create a new benchmark from a copy of a similar benchmark implemented

with the same PPI. That way, the new benchmark will already have a ready-made JSON

configuration file, and the user can reuse some of the parallel code from the original

95

benchmark. Even if the new benchmark requires some modification to the configuration

file, this would still be the easiest way to go. In Section 3.2.6, we show an example of how

this works.

Creating a new benchmark using a PPI not available in the SPBench is also simple.

Users only have to create a new benchmark in SPBench and add the corresponding infor-

mation, such as the PPI path, to the configuration file. In this case, users need to be aware

that when moving benchmarks to another system, they will also need to install the PPI in

the new location. They will not be able to rely on SPBench for this task. For example, this

may mean editing the configuration file and updating the paths.

Below we briefly discuss how parallelism is exploited with each PPI in SPBench. All

source codes we discuss are publicly available in the SPBench repository6.

4.4.1 FastFlow

Listing 10 Example of a SPBench benchmark implemented with FastFlow.
1 struct Emitter: ff::ff_node_t<spb::Item>{
2 spb::Item * svc(spb::Item * task){ /* Emitter code */ }
3 };
4 struct Worker: ff::ff_node_t<spb::Item>{
5 spb::Item * svc(spb::Item * item){
6 spb::Operator::op(*item);
7 return item;
8 }
9 };

10 struct Collector: ff::ff_node_t<spb::Item>{
11 spb::Item * svc(spb::Item * item){ /* Collector code */ }
12 } Collector;
13 int main (int argc, char* argv[]){
14 ... // SPBench starting routines
15 std::vector<std::unique_ptr<ff::ff_node>> workers;
16 for(int i=0; i<spb::nthreads; i++){ workers.push_back(ff::make_unique<Worker>()); }
17 ff::ff_OFarm<spb::Item> farm(move(workers));
18 Emitter E;
19 farm.add_emitter(E);
20 farm.add_collector(Collector);
21 farm.run_and_wait_end();
22 ... // SPBench stopping routines
23 }

Listing 10 presents an example of how parallelism has been exploited in bench-

marks with FastFlow. This example shows a parallel implementation with a single farm.

FastFlow is a header-only, pattern-based library and already provides a built-in Farm struc-

ture. In the case of the example, an ordered farm is created, defined as ff::ff_OFarm in

FastFlow.

6https://github.com/GMAP/SPBench

96

Emitter

ff::ff_node_t

ff::ff_OFarm

ff::ff_node_t

Collector

ff::ff_node_t

add_emitter(...) add_collector(...)move(workers)

Figure 4.9: Farm implementation in FastFlow.

Source: [GGSF23] ©2023 Springer Nature.

The Emitter, the Workers, and the Collector are structures that extend the FastFlow

class ff::ff_node_t. In line 15 of the listing, a vector of smart ff::ff_node pointers

is created. On line 16, this vector is filled with a respective number of workers given

by spb::nthreads. This variable spb::nthreads has the value set by the -nthreads

argument when running the benchmark. The farm object of type ff::ff_OFarm is created

from this vector of workers. In this farm, the add_emitter and add_collector methods are

used to finish building the Farm. Thus, we can see the resulting structure as a three-stage

pipeline with replicated middle stage. Figure 4.9 illustrates this structure.

W 1

W n

W 1

W n

W 1

W n

W 1

W n

Farm 2 Farm 3 Farm 4Farm 1

E E C E C E C E C C

Figure 4.10: Structure of a Pipeline of Farms implementation with FastFlow in SPBench.

Source: [GGSF23] ©20XX Springer Nature.

The pipeline of farms composition in FastFlow is more complex and demands many

more lines of code. Its complexity increases when trying to build an optimized version of it

that uses fewer nodes and, consequently, fewer threads. The lack of documentation does

not help in this respect. We present an example of our pipeline of farms implementation in

the Listing 11. To build it, we set up a farm for each intermediate stage of the application

and then add these farms to their respective positions in an ff::ff_pipeline. Figure 4.10

illustrates the structure of a pipeline of farms in SPBench. Notice that Emitter and Collector

nodes were merged into a single node to optimize the use of threads.

4.4.2 Threading Building Blocks

The single farm implementations of TBB benchmarks are not that different from

FastFlow implementation. The difference is that TBB does not provide a built-in farm

structure. Therefore it is necessary to simulate this structure using a pipeline. Here

we separate the application operators into three classes that extend tbb::filter, as

97

Listing 11 Pipeline of farms implemented with FastFlow in SPBench (Ferret benchmark).
1 struct Source: ff::ff_node_t<spb::Item>{...};
2 struct Segmentation: ff::ff_node_t<spb::Item>{...};
3 struct Extract: ff::ff_node_t<spb::Item>{...};
4 struct Vectorization: ff::ff_node_t<spb::Item>{...};
5 struct Rank: ff::ff_node_t<spb::Item>{...};
6 struct Sink: ff::ff_minode_t<spb::Item>{...};
7 int main(int argc, char *argv[]) {
8 spb::init_bench(argc, argv);
9

10 /* Segmentation stage */
11 ff::ff_pipeline *pipeSeg = new ff::ff_pipeline;
12 ff::ff_farm farmSeg;
13 std::vector<ff::ff_node *> segWorkers;
14 for(int i=0;i<spb::nthreads;++i) {
15 segWorkers.push_back(new Segmentation());
16 }
17 farmSeg.add_workers(segWorkers);
18 Source *source = new Source();
19 farmSeg.add_emitter(source);
20 pipeSeg->add_stage(&farmSeg);
21

22 /* Extract stage */
23 ff::ff_pipeline *pipeExt = new ff::ff_pipeline;
24 ff::ff_farm farmExt;
25 std::vector<ff::ff_node *> extWorkers;
26 for(int i=0;i<spb::nthreads;++i) {
27 extWorkers.push_back(new Extract());
28 }
29 farmExt.add_workers(extWorkers);
30 pipeExt->add_stage(&farmExt);
31

32 /* Vectorization stage */
33 ...
34 /* Rank stage */
35 ...
36 Sink *sink = new Sink();
37

38 ff::ff_pipeline pipe;
39 pipe.add_stage(pipeSeg);
40 ...
41 pipe.add_stage(sink);
42

43 spb::Metrics::init();
44 pipe.run();
45 pipe.wait();
46 spb::Metrics::stop();
47 spb::end_bench();
48 return 0;
49 }

presented in Listing 12. Then a tbb::pipeline object is created and the stages are placed

in their respective order within the pipeline: Source -> Worker -> Sink. Source and Sink

are sequential (serial) stages, and this example implements an ordered farm. Therefore

98

Listing 12 Example of a SPBench benchmark implemented with Intel TBB.
1 class Source : public tbb::filter{
2 Source() : tbb::filter(tbb::filter::serial_in_order) {}
3 void* operator() (void*){ /* Source code */ }
4 };
5 class Worker : public tbb::filter{
6 public:
7 Worker() : tbb::filter(tbb::filter::parallel) {}
8 void* operator() (void* new_item){
9 spb::Item * item = static_cast <spb::Item*> (new_item);

10 spb::Operator::op(*item);
11 return item;
12 }
13 };
14 class Sink : public tbb::filter{
15 Sink() : tbb::filter(tbb::filter::serial_in_order) {}
16 void* operator() (void* new_item){ /* Sink code */ }
17 };
18 int main (int argc, char* argv[]){
19 ... // SPBench starting routines
20 tbb::task_scheduler_init init_parallel(spb::nthreads);
21 tbb::pipeline pipeline;
22 Source source;
23 pipeline.add_filter(source);
24 Worker worker;
25 pipeline.add_filter(worker);
26 Sink sink;
27 pipeline.add_filter(sink);
28 pipeline.run(spb::nthreads * 10); // number of tokens
29 ... // SPBench stopping routines
30 }

Serial_in_order Parallel Serial_in_order

tbb::filter tbb::filter tbb::filter

Figure 4.11: Structure of a farm implementation with TBB in SPBench.

Source: [GGSF23] ©2023 Springer Nature.

both are defined as serial_in_order filters. The Worker stage is the stage that can be

replicated, so it is a parallel filter. This structure is illustrated in Figure 4.11.

Unlike in FastFlow, where each node is statically assigned to a thread, in TBB, this

is dynamic. This is because TBB uses a different task scheduling policy [VAR19] based on a

work-stealing strategy. Here the maximum parallelism is set by the task_scheduler_init

init_parallel() command, and parallelism occurs more dynamically. Implementing a

pipeline of farms in TBB just involves creating more parallel filter stages and adding them

to the pipeline.

99

4.4.3 SPar

TBB and FastFlow require the sequential application to be somewhat reorganized

into classes/structures. The PPI SPar, however, is a DSL based on C++ code annotations

and aims to apply parallelism with minimal change to the original code. In Listing 6 of

Chapter 3, we have shown an example implementation with the SPar in the SPBench. It

basically consists of adding the [[spar::ToStream]] annotation to denote the stream

region and [[spar::Stage]] to denote the stages of the pipeline. A Farm can be built from

this by adding spar::Replicate() to the middle-stage annotation. Building a pipeline of

farms consists of just adding more stage annotations.

4.4.4 OpenMP and ISO C++ Threads

Listing 13 Example of operator and queue structures used to implement a farm with
OpenMP and ISO C++ threads in SPBench.

1 class SharedQueue { /* Shared queue code */ }
2

3 void emitter(SharedQueue<spb::Item> * outputQueue){ /* Emitter code */ }
4 void worker(SharedQueue<spb::Item> * inputQueue, SharedQueue<spb::Item> * outputQueue){
5 /* Worker code */
6 }
7 void collector(SParSharedQueue<spb::Item> * inputQueue){ /* Collector code */ }
8

9 int main (int argc, char* argv[]){
10 ... // SPBench starting routines
11 SharedQueue<spb::Item> * queueA = new SharedQueue<spb::Item>(spb::nthreads);
12 SharedQueue<spb::Item> * queueB = new SharedQueue<spb::Item>(spb::nthreads);
13

14 /* OpenMP or C++ threads specific code */
15

16 ... // SPBench stopping routines
17 }

The implementations using ISO C++ threads and OpenMP share some aspects.

Both use the same classes for the stages and the shared queue for communication among

the stages. This is exemplified in Listing 13. SPBench provides a header file with the

SharedQueue class if users want to use it when creating new benchmarks. This class

implements a priority queue. The construction of the pipeline and parallelism occurs in

different ways, of course.

Listing 14 shows how this is done with C++ threads. A thread is created to run

the Emitter, another to run the Collector, and a thread vector to run the n Workers, similar

to how it is built in FastFlow. But here, the input and output queues of each stage must

100

Listing 14 Example of a C++ threads farm implementation in SPBench (parallel region).
1 ...
2 std::thread firstStage(emitter, queueA);
3 std::vector<std::thread> secondStage;
4 for(int i = 0; i < spb::nthreads; i++)
5 secondStage.push_back(std::thread(worker, queueA, queueB));
6 std::thread thirdStage(collector, queueB);
7

8 firstStage.join();
9 for (auto& t : secondStage) t.join();

10 thirdStage.join();
11 ...

be defined manually. Also, it is necessary to synchronize the threads at the end of the

execution (lines 8-10 of the listing).

Listing 15 Example of an OpenMP farm implementation in SPBench (parallel region).
1 ...
2 omp_set_num_threads(spb::nthreads + 2);
3 #pragma omp parallel shared(queueA, queueB)
4 #pragma omp single nowait
5 #pragma omp taskgroup
6 {
7 #pragma omp task
8 {
9 emitter(queueA);

10 }
11 for(int i = 0; i < spb::nthreads; i++){
12 #pragma omp task
13 {
14 worker(queueA, queueB);
15 }
16 }
17 #pragma omp task
18 {
19 collector(queueB);
20 }
21 }
22 ...

The specific code implementation with OpenMP is in Listing 15. Note that at the

beginning, the omp_set_num_threads is set to spb::nthreads + 2. This “+2” represents

the two extra threads needed to run the Emitter and the Collector. The implementation

of the pipeline stages in OpenMP uses the #pragma omp task directive. For both C++

threads and OpenMP, implementing a farm pipeline consists of adding more parallel stages

to the pipeline and creating extra queues for the new stages.

101

4.4.5 GrPPI

GrPPI (generic and reusable parallel pattern programming interface) is another

PPI that provides structured parallel patterns for stream processing. It is highly modular,

allowing easy composition of parallel patterns. It proposes to act as a switch between differ-

ent parallel programming interfaces. In its latest release, GrPPI allows running applications

with four backends: ISO C++ threads, FastFlow, OpenMP, and Intel TBB.

Listing 16 Example of a Bzip2 benchmark in SPBench using GrPPI with a single farm.
1 void farm_func(grppi::dynamic_execution & ex) {
2 tbb::task_scheduler_init init(spb::nthreads);
3 grppi::pipeline(ex,
4 []() std::mutable -> optional<spb::Item> {
5 spb::Item item;
6 if(!spb::Source::op(item)) {
7 return {};
8 } else { return item; }},
9 grppi::farm(spb::nthreads,

10 [](spb::Item item) {
11 spb::Compress::op(item);
12 return item;
13 }),
14 [](spb::Item item){ spb::Sink::op(item); }
15);
16 }
17 grppi::dynamic_execution execution_mode(){
18 std::string backend = spb::SPBench::getArg(0);
19 bool ordering = true;
20 int queue_size = 1;
21 if (backend == "tbb"){
22 int tbb_tokens = spb::nthreads*10;
23 auto tbb_exec = grppi::parallel_execution_tbb(spb::nthreads, ordering);
24 tbb_exec.set_queue_attributes(queue_size, grppi::queue_mode::blocking, tbb_tokens);
25 return tbb_exec;
26 } else if ...
27 }
28 int main (int argc, char* argv[]){
29 spb::init_bench(argc, argv);
30 spb::Metrics::init();
31 auto ex = execution_mode();
32 farm_func(ex);
33 spb::Metrics::stop();
34 spb::end_bench();
35 return 0;
36 }

Listing 16 shows what a SPBench benchmark with GrPPI looks like. It represents

almost a complete implementation of a Bzip2 benchmark using a GrPPI farm. To implement

the farm_func function, we rely on the code examples that GrPPI provides. The Bzip2

application has three stages: Source, Compress/Decompress, and Sink. Therefore we

implemented a farm where the Source operator acts as an Emitter, Compress are the

102

workers (which are replicated), and Sink is the Collector. It was necessary to use the

tbb::task_scheduler_init() (line 2) since we could not control the number of TBB

threads directly through GrPPI.

The function execution_mode is used to dynamically select and configure a

backend. We enable item sorting to ensure the correctness of the output file, use

queues of size 1 to reduce latency, and enable blocking mode to improve resource uti-

lization. We omit the rest of this function because it is basically the same code used for

parallel_execution_tbb but replicated to the other backends.

Backends are dynamically selected at runtime. The command SPBench::getArg()

gets a custom execution argument from the user. Thus, to run this benchmark with the

GrPPI-TBB backend in SPBench, varying from 1 to 40 threads, repeating the execution 3

times, and getting performance metrics, the following command can be used:

./spbench exec -bench bzip2_grppi_farm -input huge -nthreads 1:40

-repeat 3 -latency -throughput -memory-usage -user-arg tbb

Listing 17 Pipeline of farms implementation with GrPPI.
1 grppi::pipeline(ex,
2 []()std::mutable->optional<spb::Item item>{/* first stage */},
3 grppi::farm(nthreads, [](spb::Item item) {/* second stage */}),
4 ...
5 grppi::farm(nthreads, [](spb::Item item) {/* second last stage */}),
6 [](spb::Item item){/* last stage */}
7);

The pipeline farm pattern we used with GrPPI is described in Listing 17. It is similar

to the single farm in Listing 16, but we add more farms in sequence.

Listing 18 Pipeline-Farm-Pipeline implementation with GrPPI (we call it “farm of pipelines”
or “farm-pipeline” to simplify).

1 grppi::pipeline(ex,
2 []()std::mutable->optional<spb::Item item>{/* first stage */},
3 grppi::farm(spb::nthreads,
4 grppi::pipeline(
5 [](spb::Item item) {/* second stage */},
6 ...
7 [](spb::Item item) {/* second last stage */}
8)
9),

10 [](spb::Item item) {/* last stage */}
11);

To better show the ability to build composite patterns in GrPPI, we also imple-

mented another composition called farm of pipelines/farm-pipeline. This second version has

a pipeline with a single farm inside, and each farm worker runs another pipeline. Listing 18

shows how we built this implementation in GrPPI.

103

4.4.6 WindFlow

Listing 19 Fraud Detection pipeline stages with WindFlow.
1 // Source_Functor class
2 class Source_Functor{
3 private:
4 long generated_tuples; // each source have its item counter
5 public:
6 Source_Functor() { generated_tuples = 0; }
7 void operator()(wf::Source_Shipper<spb::Item> &shipper){
8 while (1){ // generation loop
9 spb::Item item;

10 if(!spb::Source::op(item)) break;
11 shipper.push(std::move(item));
12 generated_tuples++;
13 }
14 spb::Metrics::my_items_counter.fetch_add(generated_tuples);
15 }
16 ~Source_Functor(){}
17 };
18

19 // Predictor_Functor class
20 class Predictor_Functor{
21 private:
22 Markov_Model_Predictor predictor; // predictor state
23 public:
24 Predictor_Functor(){}
25 bool operator()(spb::Item &item){
26 spb::Predictor::op(item, predictor);
27 if(item) return true;
28 return false;
29 }
30 ~Predictor_Functor(){}
31 };
32

33 class Sink_Functor{ /* Sink code */};

WindFlow [MTG+19] is a PPI for data stream parallelism in shared-memory archi-

tectures. So far SPBench includes only one application from this domain (Fraud Detection)

and it has only been parallelized with WindFlow. To write the parallel code we have relied

entirely on the implementation made available by the author of WindFlow in a repository

called StreamBenchmarks7. The authors implement some DSPBench benchmarks in this

repository using WindFlow, including the Fraud Detection benchmark. Listing 19 presents

how the stages of this application are implemented with WindFLow inside SPBench.

Listing 20 presents the parallelism construct with WindFlow in Fraud Detection.

We create a wf::MultiPipe object and add its respective stages. Notice on line 15 that

the item has a key that can be used to partition the data appropriately. The degree of

7https://github.com/ParaGroup/StreamBenchmarks

104

Listing 20 Parallel Region of WindFlow Fraud Detection.
1 int main (int argc, char* argv[]){
2 ... // SPBench starting routines
3 wf::PipeGraph topology("FraudDetection",
4 wf::Execution_Mode_t::DEFAULT,
5 wf::Time_Policy_t::INGRESS_TIME);
6 Source_Functor source_functor;
7 wf::Source source = wf::Source_Builder(source_functor)
8 .withParallelism(stoi(spb::SPBench::getArg(0)))
9 .withName("Source")

10 .build();
11 Predictor_Functor predictor_functor;
12 wf::Filter predictor = wf::Filter_Builder(predictor_functor)
13 .withParallelism(spb::nthreads)
14 .withName("Predictor")
15 .withKeyBy([](const spb::Item &item)->size_t {return item.key;})
16 .build();
17 Sink_Functor sink_functor;
18 wf::Sink sink = wf::Sink_Builder(sink_functor)
19 .withParallelism(stoi(spb::SPBench::getArg(1)))
20 .withName("Sink")
21 .build();
22 wf::MultiPipe &mp = topology.add_source(source);
23 mp.add(predictor);
24 mp.add_sink(sink);
25 topology.run();
26 ... // SPBench stoping routines
27 }

parallelism of the Source and Sink is captured and set through SPBench::getArg(), which

takes command-line arguments from the users.

4.5 Related Benchmark Suites

In [SCS17], the authors analyze the main characteristics and the behavior of IoT

applications, describing common task patterns used in streaming applications for IoT. From

this study, they create RIoTBench, a micro-benchmark suite that regroups a set of 27 IoT

tasks that cover different patterns. Then, they use these tasks to build the graphs of four

data stream benchmark applications. The authors executed the benchmarks using Apache

Storm and evaluated throughput, latency, resource usage, and a metric called jitter, which

calculates the variation between the expected and actual output throughput.

StreamBench [LWXH14] provides a benchmark suite with the goal of evaluating

DSPSs. It comprises 7 micro-benchmarks based on Weblogs and network traffic processing

applications. These micro-benchmarks are organized into four workloads to test a system’s

performance, fault toleration, and durability. For performance evaluation, they measure

throughput and latency. The benchmark covers different dataflow composition patterns

and common tasks like grep and WordCount and compares Storm and Spark Streaming.

105

There is another benchmark called StreamBench [Wan16] that also specifically

targets DSPSs. Its suite comprises three micro-benchmarks: AdvClick, WordCount, and

K-Means. They provide implementations using Apache Flink, Apache Storm, and Apache

Spark. In their experiments, they evaluated the latency and throughput performance of the

DSPSs.

SparkBench [ABD+16] is a framework-specific benchmark suite for Apache Spark.

It includes four categories of applications like graph computation and SQL queries. The

benchmarks evaluate CPU, memory, disk, and network IO, intending to identify the best

configurations to improve Spark’s performance

Bordin [BGM+20] proposed a benchmark suite to provide a common reference

for DSPS evaluation. It includes 16 benchmark applications from several domains. The

benchmark suite comprises parallel implementations using Apache Flink, Apache Storm,

and Apache Spark. It also provides Java Threads implementations for single-node execution.

The authors identified the most frequently used metrics in related work and used them

to evaluate the benchmarks regarding latency, throughput, scalability, tuple loss, and

resource usage.

StreamIt [TA10] is a compiler and programming language focused on stream pro-

cessing applications. The compiler provides performance optimizations, while the language

can provide programming abstractions. Although it comes within a benchmark suite, it

only supports the StreamIt language and architecture. Moreover, StreamIt benchmarks are

limited only to the dataflow and data stream processing domain.

The Princeton Application Repository for Shared-Memory Computers (PARSEC)

[BKSL08] is a benchmark suite that comprises computationally intensive multi-threaded

programs developed to test multi-core architectures. Although it includes 13 representative

real-world applications, only 3 are from the traditional stream processing domain (Dedup,

Ferret, and x264). The parallelism is explored using POSIX Threads, Intel TBB, and OpenMP.

4.5.1 Discussion

Although some benchmark suites for stream processing are available, there are

still gaps to fill. We summarize the related work in Table 4.1 and compare them with our

work. Most of the related work targets only data stream processing applications [SCS17,

LWXH14, Wan16, ABD+16, BGM+20]. These applications intersect the domains of Big Data

and IoT and are developed using frameworks for DSPSs targeting distributed platforms.

Besides, they use only JVM languages, such as Java and Scala. Also, none provide sequential

versions of the benchmarks, making it more difficult to port the benchmarks to other

platforms. The only benchmark suite for data stream processing that provides more

106

Table 4.1: Related benchmark suites.

RW
Num. of SP
applications

Type of
benchmarks

PPIs
Provide Seq.

implementations
SP Domain

Program.
Language

Goal

[SCS17] 4 Synthetic Storm No Data-stream Java
Evaluate DSPSs

for IoT

[LWXH14] 7 Micro-benchmark Storm and Spark No Data-stream Scala
Evaluate PPIs

for DSPSs

[Wan16] 3 Micro-benchmark
Flink, Storm
and Spark

No Data-stream Java
Evaluate PPIs

for DSPSs

[ABD+16] 8
Syntethic/

Micro-benchmark
Spark No Data-stream Scala

Evaluate Spark
configurations

[BGM+20] 16
Micro-benchmark

and real-world
Flink, Storm, Spark,
and Java Threads

No Data-stream Java
Evaluate PPIs

for DSPSs

[TA10] 9
Micro-benchmark

and real-world
StreamIt Yes Traditional SP C

Evaluate the
performance

of the language
and compiler

[BKSL08] 3 Real-world
PThreads, TBB,
and OpenMP

Yes Traditional SP C
Evaluate multi-core

Architectures

SPBench
Benchmark

Suite
5 Real-world

OpenMP, FastFlow,
TBB, SPar, GrPPI,
ISO C++ threads,

and WindFlow

Yes Any C++
Evaluate PPIs

for C++ stream
processing

realistic benchmarks is [BGM+20]. The others comprise small tasks and combine those

tasks to build synthetic and micro-benchmarks.

On the other hand, are the benchmark suites like StreamIt [TA10] and PARSEC

[BKSL08]. Both include traditional stream processing applications. However, both are pretty

limited in terms of programming language, parallelism exploitation, execution metrics,

and parametric options. [DSDMT+17] realized the limitations of PARSEC and the need

for benchmarks that explore structured parallel programming and extended the suite by

adding some versions implemented with FastFlow, SkePU2, and C++ Actor Framework

(CAF). There is also an initiative towards translating the DSPBench benchmarks to WindFlow

with C++8. Such efforts further highlight the need for C++ stream processing benchmarks.

In SPBench, we first added applications similar to those found in PARSEC to fill

the major lack of benchmarks we found, which concerns traditional stream processing

applications. However, the framework is not bounded by that. Recently we have added

a data stream processing to show that the framework can be elastic and support applica-

tions from different SP subdomains. SPBench also provides the most relevant metrics for

stream processing, as identified by [ABD+16] and [BGM+20]. In addition, it implements the

benchmarks through an API that makes them more readable, easy to use, and highly param-

eterizable. It also comprises a framework that makes it easy and fast to port benchmarks

to other PPIs. In this way, SPBench differs from other benchmarks by offering real-world

SP benchmarks, including traditional stream processing, with representative metrics, and

bringing a strong concern with usability to the table.

8https://github.com/ParaGroup/StreamBenchmarks

107

4.6 Chapter Summary

In this chapter, we first presented the currently supported applications by SPBench.

It comprises 5 applications that users can use to create custom benchmarks. Some of

these applications are from other benchmark suites, such as Ferret from PARSEC [BKSL08]

and Fraud Detection from DSPBench [BGM+20]. The other ones have been used for bench-

marking stream processing by different studies in this area. In SPBench, we have rewritten

these applications into a modular and more readable form, adding performance metrics

and parameterization options to fit them into the framework’s API. SPBench also manages

the downloading and installation of these applications’ main library dependencies.

In the second part of this chapter (Section 4.3), we present the input workloads of

the applications. In SPBench, these inputs are organized into workload classes. They range

from small workloads for debugging purposes (test class) to larger loads for evaluating

the scalability of benchmarks (huge class). SPBench also allows users to use custom

input workloads and easily create new workload classes from them. As well as application

dependencies, the SPBench interface also manages the download and installation of inputs.

Section 4.4 presented how parallelism is implemented in the SPBench benchmarks.

The suite includes benchmarks implemented using everything from high-level abstraction

PPIs, such as SPar and GrPPI, to PPIs that do not provide structured parallel patterns, such

as C++ threads and OpenMP. Additionally, SPBench includes benchmarks using FastFlow,

Intel TBB, and WindFlow. The benchmarks also explore different compositions of parallel

patterns for stream processing, such as pipeline, farm, pipeline of farms, and farm of

pipelines.

Since all benchmarks are built using a similar and very simple structure, with

single generic examples, we were able to show how all benchmarks were parallelized in

the SPBench. It shows its ability to implement a generic API that allows for high code reuse

and rapid prototyping of benchmarks. This characteristic is further evidenced by the pro-

grammability evaluation of the PPIs in Section 5.7 of the next chapter. Therefore, practically

every new application added to the SPBench in the future can easily be parallelized using

the supported PPIs.

Finally, in Section 4.5, we present the related benchmark suites. We have identified

that no other benchmark suite targets the evaluation of PPIs for C++ stream processing.

Those that come closest to this, such as PARSEC and StreamIt, have many limitations. The

most current and comprehensive benchmark suites target distributed platforms and JVM-

based languages. Recent initiatives to improve the PARSEC benchmarks and to translate

the DSPBench benchmarks into C++ show that there is demand for stream processing

benchmarks in C++. The SPBench goes beyond providing a suite of benchmarks and also

provides a framework that facilitates the creation and use of benchmarks in this context. In

108

the next chapter, we characterize the workloads and evaluate the benchmarks regarding

performance, resource usage, and programmability/productivity.

109

5. PARALLELISM AND PERFORMANCE EVALUATION

Processing streaming data in real time is a challenging task in the field of computer

science. To handle this kind of workload, parallel programming interfaces (PPIs) for stream

processing are commonly used. Such PPIs may provide high-level abstractions to simplify

the process of writing and executing parallel programs. However, with the proliferation

of PPIs, it is not always clear which is the best choice for a particular task. Each PPI has

its own strengths and weaknesses and choosing the wrong one can lead to suboptimal

performance. Therefore, evaluating and comparing the performance of PPIs is important.

In this chapter, we evaluate the performance of the following PPIs: OpenMP, TBB,

FastFlow, and C++ threads, SPar, GrPPI, and WindFlow. OpenMP is a widely used framework

for shared-memory parallel programming. TBB is a task-based parallel programming

library that provides a high-level interface for parallelism. FastFlow is a streaming parallel

programming framework specializing in high-speed and low-latency parallelism. C++

threads provide a low-level interface for parallel programming. SPar is a C++11 domain-

specific language for expressing stream parallelism through code annotations. GrPPI

parallel library that adds an abstraction layer between developers and different PPIs, acting

as a switch among the PPIs. For the last, WindFlow is a C++17 header-only library for data

stream processing targeting shared-memory architectures.

The structure of this chapter is as follows. Section 5.1 further contextualizes the

research problem we are addressing in this chapter. Section 5.2 discusses related work. We

do a workload characterization of the SPBench applications in Section 5.4. This analysis is

important to better understand the experimental results, not only of this chapter, but also

of Chapters 6 and 7. In Section 5.5, we present the experimental results of the benchmarks

with respect to throughput and latency. In Section 5.6, we address the memory usage of

the PPIs. The programmability/productivity results are discussed in Section 5.7. Finally, in

Section 5.9, we summarize the analysis done in this chapter and outline some conclusions.

Contents

5.1 CONTEXT . 111

5.2 RELATED WORK . 112

5.2.1 DISCUSSION OF RELATED WORK . 116

5.3 EXPERIMENTAL SETUP . 119

5.4 WORKLOAD CHARACTERIZATION . 120

5.5 LATENCY AND THROUGHPUT PERFORMANCE 122

5.5.1 EXPERIMENTAL METHODOLOGY . 124

5.5.2 TBB, FASTFLOW, OPENMP, AND ISO C++ THREADS RESULTS 125

110

5.5.3 GRPPI RESULTS . 128

5.5.4 COMPARING HANDWRITTEN FASTFLOW, SPAR-FASTFLOW, AND GRPPI-

FASTFLOW . 132

5.5.5 CUSTOM PARALLEL COMPOSITIONS RESULTS . 136

5.5.6 DATA STREAM PERFORMANCE . 139

5.6 MEMORY USAGE . 142

5.7 PROGRAMMABILITY EVALUATION . 145

5.8 OVERVIEW OF THE RESULTS . 148

5.9 CHAPTER SUMMARY . 150

111

5.1 Context

In Chapter 3, we discussed how this thesis addresses each of the research prob-

lems 1, 2, 3, and 4 that were introduced in Chapter 1. Here in this chapter, we address

research problem 5, which is: Performance analysis of PPIs for C++ stream process-

ing is usually incomplete.

Speedup or execution time are the state-of-the-art metrics to evaluate the perfor-

mance of parallel applications. However, in stream processing, with potentially endless

data streams, throughput (data processed per time unit) is a more representative metric

than execution time since its computation is not always linked to the ending of the execu-

tion [vDVdP20]. Besides, SP applications can be tuned to achieve different performance

goals, such as reduced latency, increased throughput, or efficient resource usage.

Throughput is commonly a more relevant performance metric for many traditional

SP applications, such as data compression and a variety of multimedia processing. However,

metrics such as latency are essential for stream processing applications that need to

respond quickly to real-time data inputs [HJHF14]. Many applications have low-latency

requirements, such as lane detection, object tracking, high-frequency trading, augmented

reality, anomaly detection, online gaming servers, etc [DDMMT15, NXC19, LLG19, YLL+22].

In these cases, the desirable latency should often be less than a few milliseconds or even

sub-milliseconds. Delays in processing can lead to traffic collisions, missed opportunities,

poor user experience, or financial losses. In any case, achieving low latency in C++

stream processing applications typically requires careful attention to software design and

performance optimization techniques, such as using specialized lock-free data structures

and cache-efficient algorithms, minimizing memory allocations, reducing context switching,

and leveraging parallel processing techniques [DDMMT15].

When it comes to resource usage, since these applications deal with possibly

infinite data streams, memory usage can also be a critical factor to evaluate [TKPP20,

MJP+19]. Also, the increased stream processing in embedded devices requires managing

the device resources, especially memory and power consumption. These devices can

benefit from programming languages like C++ because of their high performance and

low-level memory management.

Therefore, properly evaluating the performance of stream processing applications

and PPIs can be challenging since performance can be tuned to achieve multiple goals. In

addition, it is also important to evaluate PPIs with regard to their usability since a slight

performance gain may not be worth a significant increase in programming effort. This

way, usability/programmability/productivity should not be disregarded when evaluating

and comparing PPIs or other technologies in this context.

112

Regarding traditional SP, most works in the literature only address speedup, exe-

cution time, or throughput. There is a lack of comprehensive analysis comparing multiple

PPIs with multiple performance metrics. Part of it may be related to the lack of stream

processing benchmarks for C++, possibly aggravated by the difficulty of implementing

or finding appropriate metrics. Properly implementing performance metrics in SP can be

pretty complex, especially for beginners and in situations of unbounded streams, where

metrics need to be computed by sampling.

We address this research problem in this chapter and partially in Chapter 6 and

Chapter 7. We use SPBench to comprehensively analyze state-of-art PPIs that support

stream processing in C++. In this chapter, we evaluate and compare the throughput and

latency performance of Intel TBB, FastFlow, OpenMP, ISO C++ threads, SPar, GrPPI, and

WindFlow. We also evaluate most of these PPIs regarding memory usage and programma-

bility/productivity. In Chapter 6, we evaluate the impact of data stream frequency on

FastFlow and TBB applications. Chapter 7 analyses how these two PPIs behave when using

micro-batches on multi-cores. Most results and analyses here have already been published

in relevant Journals and Conferences [GGSF22b, GGSF23, GGSF21, GGSF22a].

5.2 Related Work

In this chapter, we evaluate and compare the PPIs used to create the parallel

SPBench benchmarks in different aspects. The PPIs are OpenMP, ISO C++ Threads, TBB,

FastFlow, GrPPI, and SPar. Therefore, as related work, we consider studies that have also

evaluated and compared the stream parallelism performance of these PPIs. We did not

include studies that evaluated the performance of a single specific PPI, as our goal is

to compare performance across multiple PPIs. Also, we did not include papers that only

evaluate PPIs in a heterogeneous or distributed context since it is the scope of this thesis.

In this work, we also evaluate WindFlow’s performance. However, since it was

the last PPI added to SPBench and data stream support is in the early development stage

in SPBench, we did not conduct a comprehensive analysis of it in this work. Nor did we

compare it to any other data stream PPIs. We use it more as a proof of concept to show

that SPBench can assess data stream applications. Thus, we are not including related work

regarding WindFlow.

In [KHAL+14], the authors proposed a task-based runtime system called HPX. It

extends the C++11/14 standard to facilitate distributed parallel processing in a global

address space. They compared the HPX performance against the PPIs OpenMP, MPI, TBB,

and QThreads. They evaluated these PPIs using two benchmarks (MiniGhost and N-Body)

and evaluated Floating-point Operations Per Second (FLOPS) and throughput. However,

only task parallelism is addressed since HPX is a task-based system.

113

The authors in [HLLL22] proposed Taskflow: a lightweight parallel and heteroge-

neous task graph computing system. They have evaluated and compared the performance,

resource usage, and programmability of Taskflow against the OneTBB, OpenMP, HPX, and

StarPU PPIs. Both micro-benchmarks and real applications were used in the experiments.

Performance was evaluated regarding throughput, speedup, and execution time. Resource

usage analysis addressed memory and CPU usage. To evaluate programmability/produc-

tivity, they hired 5 PhD-level C++ developers and measured the time they required to

apply TaskFlow in the benchmarks. The amount of time spent implementing the real-world

benchmark was about 3.9 hours for Taskflow, 6.1 hours for oneTBB, and 4.3 hours for

StarPU. Programmability was also evaluated using code-based metrics, such as Lines of

Code (LOC), Cyclomatic Complexity Number (CCN), and the number of tokens.

Pipeflow [CHGL22] is a task-parallel pipeline programming model for users to

create a pipeline scheduling framework without data abstractions. It runs on top of Task-

Flow [HLLL22]. The authors evaluated the throughput, execution time, and memory usage

of Pipeflow vs. OneTBB, using two Computer-Aided Design (CAD) benchmarks. In their

experiments, Pipeflow presented better performance than OneTBB. However, since Pipeflow

is a task-based PPI it only addresses task parallelism.

In [LLS+15], authors proposed Cilk-P, a system that extends the Cilk parallel-

programming model to support on-the-fly pipeline parallelism. They evaluated the perfor-

mance of Cilk-P regarding speedup, execution time, and scalability and compared it with

PThreads and TBB. The benchmarks used in the experiments were Ferret, Dedup, and

x264, the streaming benchmarks from PARSEC. The stream parallelism was explored using

compositions of farms and pipelines. Cilk-P performed better or equivalent to PThread and

TBB in most evaluated cases.

MHPM (Multi-Scale Hybrid Programming Model) is an interface that targets easy

expression of task, data, and pipeline parallelism in C++ [KLLDS12]. It is implemented as

a C++ framework named XPU. In [KLLDS12], the authors evaluate its performance using

a synthetic multimedia application and compare it against the PPIs OpenMP, TBB, and

PThreads. They evaluated the execution time under different problem sizes and throughput

under different parallelism degrees. Also, the authors compare LOC of TBB and XPU with a

sequential benchmark, where results showed that TBB required 14x more LOC than XPU.

In [ATM09], authors aimed to show that FastFlow was more efficient than the

other state-of-the-art PPIs. They compared FastFlow’s speedup to TBB, OpenMP, and Cilk.

These PPIs were used to implement a synthetic micro-benchmark and Smith-Waterman

benchmark using a farm parallel pattern. FastFlow presented better performance using

different computational grains in the tested scenarios.

In its Ph.D. thesis, Griebler developed a Domain-Specific Language (DSL) called

SPar [Gri16b], which provides parallel abstractions for stream processing applications

through the use of standard C++ code annotations. It basically generates FastFlow stream

114

parallel code using high-level abstractions. The author compared SPar performance against

the PPIs TBB, OpenMP, and handwritten FastFlow. The experiments addressed execution

time, throughput, speedup, latency, efficiency, energy consumption, and memory usage.

The PPIs were used to implement benchmarks from Mandelbrot, Prime Numbers, K-Means,

Sobel Filter + Gaussian Blur applications. However, these applications can be adapted to

express stream parallelism, they are not traditionally from the stream processing domain.

The author pointed out the lack of traditional stream processing benchmarks to better

evaluate his work, which is one of the motivations for our work. The PPIs were also

evaluated regarding LOC, where SPar presented the best results in all scenarios.

In [GHDF18a], the authors evaluated and compared the performance and pro-

grammability of the PPIs FastFlow, TBB, SPar, and PThreads. The experiments addressed

execution time and speedup, and Dedup, Ferret, and Bzip2 were used as benchmarks. All

benchmarks implemented the farm parallel pattern. SPar presented around 10% perfor-

mance degradation w.r.t PThreads and FastFlow in the worst cases. Regarding programma-

bility, SPar presented the lowest LOC and CCN.

The paper [GHDF18b] evaluates stream parallelism with ordered data constraints

on multi-core systems. The authors proposed a new data-ordering technique for streaming

applications that must process data in order. They apply their solution to FastFlow, SPar,

and TBB and compare the throughput performance of these PPIs using benchmarks with

ordering constraints, such as Lane Detection, Face Recognizer, Denoiser, Dedup, and Bzip2.

The results showed that their solution could be integrated into the PPIs, introducing low

overheads and opportunities to increase the application’s throughput.

In [HGDF20], the authors extend the SPar DSL to generate TBB code. They

compare the performance of their SPar-TBB solution to SPar-FastFlow, TBB, FastFlow, and

PThreads. Similarly, in [HLGF22], the authors proposed OpenMP as a SPar backend. They

compare the performance of their SPar-OpenMP solution to handwritten OpenMP and also

to the same PPIs evaluated in [HGDF20]. For that, both works implemented benchmarks

from the applications Lane Detection, Face Recognizer, Bzip2, and Ferret. In general,

they observed that all SPar-generated code performed only 2.49% less when compared to

the respective handwritten solution. The authors also compared programmability, where

SPar, at the highest amount of LOC, introduced 9.85% extra LOC compared to sequential

benchmarks.

RPL (Refactoring Pattern Language) is a DSL for designing and implementing

parallel C++ applications [JBM+16]. It is a refactoring tool-support to offer semi-automatic

parallelism via skeleton libraries. The authors apply their solution to the PPIs TBB, OpenMP,

and FastFlow and compare their performance. The experiments involve Image Convolution

and Ant Colony benchmarks implemented as a pipeline of farms. Results showed that RPL

could be used to derive efficient parallelism in the tested scenarios.

115

In [dRADFG17], the authors propose GrPPI, a generic and reusable parallel pattern

programming interface. It can run parallel applications with different backends, such

as Intel TBB, ISO C++ threads, and OpenMP. They evaluated GrPPI-TBB, GrPPI-THR (ISO

C++ threads), GrPPI-OMP (OpenMP) against a handwritten benchmark using these PPIs.

Although the authors explore various parallelism compositions with pipeline, farm, and

stencil, only one application was used as a benchmark in the experiments. The authors

also did not investigate how performance scales for different parallelism degrees. They did

use different problem sizes, however.

In [dDFG18], the authors extend GrPPI to support parallel patterns for data stream

applications. They evaluated their work with applications from domains that typically

require low latency, such as signal and sensor data processing. However, they used only

speedup as a performance metric. Muñoz et al. [MnDdRA+18] added MPI as a GrPPI backend,

allowing GrPPI applications to run on distributed platforms. They evaluated the speedup of

their proposal against GrPPI-THR. The experiments varied the number of distributed nodes

and the degree of parallelism within each node. In [LGFd+19], the authors extend the work

from [MnDdRA+18] and compare their proposal against a natively implemented version

using Boost-MPI. They also compare it against an implementation in Spark, a distributed

data stream processing framework. GrPPI-MPI achieved significantly higher speedups than

Spark, highlighting the performance benefits of C++ over JVM-based frameworks.

The authors from [GBdRAGC19] have implemented parallelism with GrPPI in a

real-world MRI application. They exploited the pipeline-farm pattern, where GrPPI-THR and

GrPPI-OMP achieved the best speedup results. They also evaluated memory usage, where

TBB was the parallel backend of GrPPI that used the least memory and FastFlow used the

most. However, no backend used less memory than the handwritten OpenMP application.

In [GdRA+20], the authors have extended GrPPI to support FastFlow as a parallel backend

framework. They tested their solution using four synthetic benchmarks for each parallel

pattern ported from FastFlow. They evaluated the execution time of the GrPPI backends

against implementations of the benchmarks using native FastFlow. They also evaluated

programmability regarding lines of code (LOC) and McCabe’s cyclomatic complexity number

(CCN), where GrPPI presented similar results to handwritten FastFlow. Although FastFlow

benchmarks achieved better or equivalent performance results on most of the parallel

patterns evaluated, the GrPPI-TBB backend performed better with the Farm pattern.

[Víl20] evaluated the performance of GrPPI-THR and GrPPI-OMP using four bench-

marks from the PARSEC suite. They compared performance against versions of the bench-

marks originally implemented in Pthreads and OpenMP. In most cases, GrPPI showed

performance equivalent to the original versions regarding execution time. In [BJB+20], the

authors propose software refactoring techniques to semi-automatically introduce instances

of GrPPI patterns into sequential C++ code. It supports pipeline and Farm parallelism, and

they tested it with GrPPI-THR and GrPPI-OMP. Four benchmarks were used to compare the

116

speedup of their solution against manually written versions in ISO C++ threads. They were

able to achieve performance equivalent to the baseline benchmark.

[AGSF23] assessed the programmability/productivity of PPIs for C++ stream pro-

cessing on multicores. They asked a group of developers of distinct knowledge levels to

implement stream parallelism with FastFlow, TBB, and SPar. Participants of the experiment

have to implement it on an RGB Channel Selection benchmark. Although participants

achieved the best speedups with FastFlow, the methodology used in the experiments

favored it. To assess the programmability/productivity, the authors measured the develop-

ment time. SPar demanded the lowest development time overall.

5.2.1 Discussion of Related Work

To contextualize our evaluations in this chapter, we reviewed related work that

evaluated and compared the performance of PPIs for stream parallelism in C++. We focused

on studies evaluating and comparing performance, resource usage, or programmability

multiple PPIs rather than single specific ones. Table 5.1 summarizes and compares key

attributes of related work.

Regarding PPIs, several studies evaluated and compared the same PPIs we target

in this thesis. The motivation of most related work is to validate a new PPI solution by

evaluating and comparing it against the state-of-the-art PPIs. Considering all the works we

found, the most used PPIs to compare performance against were TBB (13 times), OpenMP

(10 times), FastFlow (8 times), and PThreads (6 times). Other PPIs were used at most

twice, such as MPI and ISO C++ Threads, or were the object under validation, such as SPar

and GrPPI. High-level abstraction PPIs that allow users to run or generate parallel code to

several lower-level backends are naturally more present in related work since every new

backend they support requires performance validation. That is the case with SPar and GrPPI.

In this work, we evaluate and compare the performance of the PPIs TBB, OpenMP, ISO C++

Threads, FastFlow, GrPPI-(FF, THR, OMP, TBB), and SPar-FF. Though SPar can generate TBB

and OpenMP code, we found no publicly available version of it. We also evaluated WindFlow

PPI, but it is a preliminary study and we do not compare it with other related PPIs.

The third column of Table 5.1 shows the parallel patterns used in related work.

Although [KHAL+14, HLLL22, CHGL22, KLLDS12] target task parallelism, they also explore

pipeline parallelism in some cases. Thus, we included these works. Most of the remaining

related work evaluates parallel patterns commonly used in traditional stream processing,

such as pipeline, farm, and compositions of pipelines and farms. The exception is [dDFG18],

which proposes a GrPPI extension to data stream processing and evaluates stream opera-

tions from this domain.

117

Table 5.1: Summary table of related work regarding performance evaluation of PPIs that
support stream processing in C++.

Rel. work PPIs
Stream

par. pattern
Performance

metrics
Program.
metrics

Benchmark
applications

[KHAL+14]
OpenMP, HPX, MPI,
TBB, QThreads

Task-pipeline
FLOPS,
Throughput

–
MiniGhost,

N-Body

[HLLL22]
OneTBB, HPX,
TaskFlow,
StarPU, OpenMP

Task-pipeline

Throughput,
Speedup,
Exec. time,
Memory and
CPU usage

Dev. time
LOC, CCN,
Num. tokens

Micro-benchmarks
CAD application,

Sparse Deep Neural Net.

[CHGL22]
Pipeflow,
TBB

Task-pipeline
Throughput,
Exec. time
Mem. usage

–
Two CAD,

benchmarks

[LLS+15]
Cilk-P,
PThreads,
TBB

Farm,
Pipeline-farm

Speedup,
Exec. time,
Scalability

– Ferret, Dedup, and x264

[KLLDS12]
XPU, OpenMP,
TBB, PThreads

Task-pipeline
Exec. time
Throughput

LOC
Synthetic multimedia

application

[ATM09]
FastFlow, TBB,
OpenMP, Cilk

Farm Speedup –
Micro-benchmark,
Smith-Waterman

[Gri16b]

Spar-FF,
TBB,
FastFlow,
OpenMP

Farm

Exec. time,
Throughput,
Speedup,
Latency,
Efficiency,
Energy and
Mem. usage

LOC
Mandelbrot, K-Means,

Prime numbers,
Sobel filter + Gaussian blur

[GHDF18a]
SPar-FF, TBB,
FastFlow, PThreads

Farm
Exec. time,
Speedup

LOC, CCN Dedup, Ferret, Bzip2

[GHDF18b]
FastFlow,
SPar-FF, TBB

Farm Throughput –
Lane Detection,
Face Recognizer,

Denoiser, Dedup, Bzip2

[HGDF20]
SPar-(TBB, FF),
TBB, FastFLow, PThreads

Farm Exec. time LOC
Lane Detection, Ferret
Face Recognizer, Bzip2

[HLGF22]
SPar-(OMP, TBB, FF),
OpenMP, TBB,
FastFLow, PThreads

Farm Exec. time LOC
Lane Detection,
Face Recognizer,

Bzip2, Ferret
[AGSF23] SPar-FF, TBB, FastFlow Farm Speedup Dev. time RGB Channel Selection

[JBM+16]
TBB, OpenMP,
FastFlow

Pipeline-farm Speedup –
Image Convolution,

Ant Colony

[dRADFG17]
GrPPI-(TBB, THR, OMP),
TBB, OpenMP, CUDA,
ISO C++ Threads

Pipeline-farm Throughput –
Gaussian blur + Sobel filter

benchmark

[dDFG18] GrPPI-(TBB, THR, OMP)
Stream-Pool,
Window-Farm,
Stream-Iterator

Speedup LOC, CCN

FM-Radio and 3
synthetic benchmarks:

Traveling salesman,
“Sensor” and “Image”

[MnDdRA+18] GrPPI-(THR, MPI) Pipeline-Farm Speedup LOC, CCN Mandelbrot + Gaussian Blur

[LGFd+19]
GrPPI-(THR, MPI),
Boost-MPI, Spark

Pipeline-farm Speedup –
Gaussian blur + Sobel filter,
Mandelbrot + Gaussian Blur

[GBdRAGC19]
GrPPI-(TBB, OMP, THR, FF),
OpenMP

Pipeline-farm
Exec. time
Mem. usage,
hardware metrics

– pHARDI

[GdRA+20]
GrPPI-(TBB, OMP, THR, FF),
FastFlow

Farm Exec. time LOC, CCN
Four synthetic

benchmarks with simple
math and vector operations

[Víl20]
GrPPI-(THR, OMP),
PThreads,
OpenMP

Pipeline-farm Exec. time LOC
From PARSEC:

Swaptions, Blacksholes,
Streamcluster, and Ferret

[BJB+20]
ISO C++ thr.,
GrPPI-(THR, TBB)

Pipeline-farm Speedup –
Ant colony optimization,

Mandelbrot, Matrix multi.,
and Image convolution

This
work

GrPPI-(TBB, OMP, THR, FF),
FastFlow, OpenMP, SPar-FF,
TBB, ISO C++ Threads

Farm,
Pipeline-farm,
Farm-pipeline

Throughput,
Latency,
Memory
usage

LOC,
CCN,
PHalstead

Lane Detection,
Bzip2,

Face Recognizer,
and Ferret (PARSEC)

118

With respect to performance metrics, the most used ones are execution time

and speedup. These are two metrics commonly used to evaluate parallelism performance.

However, stream processing applications can also be evaluated using a more representative

metric like throughput. One of the characteristics of stream processing is that the end

of the data stream is often undefined. Throughput can address such never-ending data

stream scenarios.

Regarding hardware resource usage, memory was the most concerning attribute

in related work. This is as expected since stream processing applications may use many

buffers and receive an undefined amount of data to process in a continuous flow. We

also evaluate the memory usage of the SPBench benchmarks in this work. [Gri16b] also

evaluated energy consumption. Besides, it is the only related work we found that evaluates

latency. The evaluated PPIs presented distinct latency behavior with different benchmarks

in their experiments. In addition, their benchmarking workloads presented poor scalability.

Also, most of them are not representative applications from the stream processing domain.

The programmability/productivity is often a secondary aspect when assessing

PPIs in the literature. Most related work relied on code-based metrics to measure it, such

as LOC, CCN, and the number of tokens of code. The PPIs that target providing high-level

abstractions, such as SPar, GrPPI, and TaskFlow, presented the best programmability results.

Since code-based metrics may present some inaccuracy [AGS+22], [HLLL22] and [AGSF23]

also evaluated the PPIs concerning development time. The results helped to ensure

that high-level abstractions can reduce the programming effort of parallel systems with a

minimal performance penalty. In our work, in addition to LOC and CCN, we also evaluate the

PPIs by applying the Halstead method. For that, we used a tool called PHaltead [AGS+22],

which we further discuss in Section 5.7.

The last column of Table 5.1 includes the benchmark applications used in related

work. Most benchmarks represent video and image processing applications. Around half

of the studies used more realistic applications. Often the same or similar to the ones we

use in our work. The other half uses micro-benchmarks and image filters to build synthetic

benchmarking workloads or use applications commonly used for data parallelism, such as

Mandelbrot, matrix multiplication, and prime numbers. Here, we evaluate the PPIs using

the benchmark applications Lane Detection, Face Recognizer, Bzip2, and Ferret. We also

evaluate, to a less extent, the WindFlow PPI using the Fraud Detection benchmark from

SPBench.

Overall, most related works evaluated performance regarding execution time

or speedup only. Only [Gri16b] evaluated PPIs’ latency, an increasingly relevant metric

for real-time processing, which is one of the goals of stream processing. Memory usage

evaluations were also quite limited, not considering different strategies and degrees of

parallelism or different stream processing applications. Regarding programmability, in

addition to LOC and CCN, we use Halstead’s method for parallel applications (PHalstead)

119

from [AGS+22]. We perform our experiments using four real-world application benchmarks,

varying parallelism degrees, and different compositions of stream parallel patterns. We also

use larger input workloads than the studies that evaluated PPIs using the same benchmark

applications and run experiments on a newer and more robust multi-core architecture than

most related work. Thus, our analyses differ from related work mainly by comparing the

performance of a larger number of PPIs, using more representative metrics for SP, including

latency analysis, using real-world benchmarks, comparing different parallelism patterns,

and using a new metric to evaluate the usability/programmability of PPIs.

5.3 Experimental Setup

All experiments in this thesis were done on three different computers. In this

section, we will describe the main architectural and system components of these computers.

To simplify the identification of each computer in our discussions, we will refer to each one

by its processor model. We used two computers with Intel processors and a computer with

an AMD processor.

Table 5.2: Overview of the computer systems used in the experiments.

OPERATING SYSTEM INFORMATION

OS 20.04.4 LTS 18.04.5 LTS 20.04.4 LTS
Kernel Linux 5.4.0-105-generic Linux 4.15.0-156-generic Linux 5.4.0-109-generic

Architecture x86-64 x86-64 x86-64

CPUs INFORMATION

Model name Intel® Xeon® Silver 4210 Intel® Xeon® CPU E5-2620 v3 AMD Ryzen 5 5600X
Clock Frequency 2.20GHz 2.40GHz 3.70GHz

Number physical cores 20 (2x10) 12 (2x6) 6
Number of threads 40 (2x20) 24 (2x12) 12

L1d cache 640 KiB 32K 192 KiB
L1i cache 640 KiB 32K 192 KiB
L2 cache 20 MiB 256K 3 MiB
L3 cache 27.5 MiB 15360K 32 MiB
Governor Performance Performance Performance

MEMORY INFORMATION

Total RAM 144 GB 32 GB 16 GB

Table 5.2 presents an overview of the computer we used in the experiments.

The first Intel one has 144 GB of RAM and two Intel® Xeon® Silver 4210 CPU @ 2.20GHz

processors (a total of 20 cores and 40 threads). The other Intel computer has two Intel®

Xeon® E5-2620 v3 @ 2.40 GHz processors (total of 12 cores and 24 threads) and 32 GB of

RAM. The AMD one has 16 GB of RAM and an AMD Ryzen™ 5 5600X CPU @ 3.70GHz (a total

of 6 cores and 12 threads).

We used GCC 9.4.0 with -O3 flag, and performance governor was enabled in all

of them. The Xeon E5-2620 has Ubuntu 18.04.5 LTS operating system with Linux kernel

120

4.15.0-156-generic, and the others have Ubuntu 20.04.4 LTS, with Linux kernel 5.4.0-105-

generic. The video processing benchmarks OpenCV 2.4.13.6. Handwritten TBB benchmarks

and GrPPI-TBB used Intel TBB 2020 Update 2 (TBB_INTERFACE_VERSION 11102). SPar used

FastFlow 3.0, while handwritten FastFlow benchmarks used version 3.0.1, the last available.

GrPPI-FastFlow used FastFlow 2.2.0, the current version it supports.

5.4 Workload Characterization

 80

 90

 100

C
P

U
 u

s
a
g
e
 (

%
)

Bzip2 (Compress)

 80

 90

 100

Lane Detection

 80

 90

 100

Face Recognizer

 80

 90

 100

Ferret

 11

 12

 13

M
e
m

o
ry

 (
M

B
)

 58

 60

 62

 66

 70

 74

 98.4

 99.7

 101

 9.4

 9.6

 9.8

In
s
t.
 t
h
ro

u
g
h
p
u
t

 6

 8

 10

 1.3

 1.6

 1.9

 5

 8

 11

 104

 106

 108

 0 250 500

In
s
t.
 l
a
te

n
c
y
 (

m
s
)

 95

 135

 175

 0 250 500

Execution time (seconds)

 570

 750

 930

 0 400 800

 90

 150

 210

 0 250 500

Figure 5.1: Characterization results (specific y scales for each application).

The SPBench workloads are quite diverse and allow the representation of different

scenarios. In Figure 5.1 and Figure 5.2, we present performance results from sequential

benchmarks of each SPBench application (except Fraud Detection). Both figures show the

same results, but in Figure 5.1, we use individual y scales for each application to better

visualize the workload behavior within itself. On the other hand, Figure 5.2 shows the

121

data using the same y scale for all applications. This helps visualize how the application

workloads compare to each other. The metrics were obtained using the SPBench monitoring

mode and five-second samples during the execution of the benchmarks. All experimental

results can be obtained in SPBench by simply executing the following command once:

./spbench exec -ppi sequential -input huge -monitor 5000

 70

 80

 90

 100

C
P

U
 u

s
a
g
e
 (

%
)

Bzip2 (Compress) Lane Detection Face Recognizer Ferret

 10

 40

 70

 100

M
e
m

o
ry

 (
M

B
)

 1

 4

 7

 10

In
s
t.
 t
h
ro

u
g
h
p
u
t

 0

 300

 600

 900

 100 250 400

In
s
t.
 l
a
te

n
c
y
 (

m
s
e
c
)

 100 250 400

Execution time (seconds)

 100 400 700 100 250 400

Figure 5.2: Characterization results (same y scales for all applications).

Source: [GGSF23] ©20XX Springer Nature.

The above command runs all sequential applications with the Huge workload

class and monitors performance every 5000 milliseconds. Each column in Figure 5.1 and

Figure 5.2 represents one of the applications. In the first row of graphs, we evaluate CPU

usage. All benchmarks show high CPU usage, quickly reaching 100%, indicating great

potential for improving performance through parallelism.

122

The second row of graphs in the figures presents memory usage. The benchmarks

show relatively diverse behavior in this respect. Bzip2, for example, is the SPBench

application that uses the least memory, and Ferret is the one that uses the most. Lane

Detection and Face Recognizer have quite similar memory usage. Although there is an

increase in memory consumption throughout the execution of these applications, this

increase is relatively low.

The third metric is instantaneous throughput, i.e., average throughput measured

over a short time interval. In these cases, where we are testing the sequential applications

that take longer to execute, the time interval we used was 5 seconds (the same for latency).

Although the Bzip2 throughput seems to present a high oscillation in Figure 5.1, when

comparing it with the other applications, in Figure 5.2, we can see that the Bzip2 throughput

varies the least. It varies less than 0.4 items per second throughout the execution, a steady

workload. The one that varies the most is Ferret, with up to 6 items per second variation,

similar behavior for Lane Detection.

The last row of graphs in both figures shows the instantaneous latency (5-second

average). As expected, latency pretty much mirrors throughput. Latency spikes indicate

regions of the input stream that demand more computation and vice versa. For example,

in Lane Detection, when a car changes lanes or during intersections on the road, there will

be more lanes to detect. In Face Recognizer, there are moments in the input where several

faces are in the frame, creating latency spikes, and moments with no faces at all, which is

the case of that big drop in latency in the graph. Therefore, the workloads used are pretty

diverse and represent multiple scenarios.

5.5 Latency and Throughput Performance

In this section, we present performance results of TBB, FastFlow, OpenMP, ISO

C++ Threads, GrPPI, SPar, and WindFlow regarding latency and throughput. We divide

the experimental results discussion into different sections. In Section 5.5.2, we evaluate

the performance of TBB, FastFlow, OpenMP, and ISO C++ Threads. We run the bench-

marks on three different computers. Section 5.5.3 evaluates and compares GrPPI and

its four backends against the handwritten implementations. Section 5.5.4 compares the

performance of SPar and GrPPI with FastFlow backend against the handwritten benchmark

using FastFlow. We test the Ferret benchmark using distinct combinations of parallelism

degrees in a custom pipeline-farm implementation with FastFlow in Section 5.5.5. For last,

in Section 5.5.6, we evaluate the performance of a data stream processing application

(Fraud Detection) in SPBench using WindFlow.

Comparing PPIs performance is not easy since each may implement distinct mech-

anisms for concurrency, data communication, task scheduling, data ordering, etc. Taking as

123

an example the TBB’s dynamic task scheduler based on the work-stealing model [VAR19],

it differs significantly from the other PPIs. That is, in TBB, tasks are dynamically as-

signed to the threads. The parallelism degree we define in tbb::task_scheduler_init

init_parallel() will be the maximum number of threads simultaneously running. On

the other hand, in FastFlow, we define parallelism degree as the number of workers on

the farms. It means that FastFlow single farm benchmarks create two extra threads to run

Emitter (Source) and Collector (Sink) pipeline stages. The same is true for the other PPIs

we use in SPBench, except GrPPI running with TBB backend and WindFlow.

--------------- AVERAGE LATENCY ---------------
Operator Source = 1.063938
Operator Segmentation = 2.748891
Operator Extract = 0.318422
Operator Vectorization = 3.945016
Operator Rank = 10.126422
Operator Sink = 0.014719

End-to-end latency (ms) = 18.222

Figure 5.3: Example of SPBench latency results from the execution of Ferret (sequential).

Figure 5.3 shows part of the SPBench latency results from the execution of the

sequential Ferret benchmark. SPBench can measure the average internal latency of the

operators, i.e., how long data items take to be processed inside the operator. It helps to

see the computational load in each operator and identify performance bottlenecks. In the

SPBench benchmarks, the workload is unbalanced among the pipeline stages, as can be

seen in Figure 5.3. Emitter and Collector stages often are less computing intensive than

the farm workers. In the other PPIs, the threads running both stages are idle during most

of the execution, while in TBB, idle threads can run any other ready-to-run task [VAR19].

Therefore, it is challenging to find ways to fairly compare PPIs’ performance. In addition,

SP applications can be tuned to reach different performance goals, such as throughput,

latency, and efficient resource usage.

Regarding the pipeline of farms implementations, a fair performance comparison

among these PPIs is even worse to achieve. In our benchmarks, TBB sees a single farm

implementation the same way it sees a pipeline of farms. There is virtually no difference.

That does not happen with the FastFlow-like static task-scheduler model used by the other

PPIs. There is no way to run a Ferret with a six-stage parallel pipeline creating less than

6 threads in these cases. If this six-stage pipeline has four farms as middle stages and is

unbalanced, as in Ferret’s case, the ideal scenario would be to set different parallelism

degrees to match the load of each stage. However, finding the best configurations by hand

is a really complex task with many parallel stages. There are initiatives toward finding the

124

best configuration through self-adaptive parallelism [VGDF22]. However, few PPIs provide

mechanisms that enable such technologies and using them is out of the scope of this work.

5.5.1 Experimental Methodology

In our experiments, we target tuning applications to balance three performance

goals: throughput, latency, and efficient resource usage. For instance, by reducing the

size of communication queues among the stages of a pipeline, the application can present

reduced latency and lower memory usage. Although it can add some performance penalty

on throughput, the impact is minimal on our test cases. We also try to use simple parallelism

strategies and configurations that make a more fairly performance comparison of the PPIs.

By enabling a blocking behavior, threads that otherwise would be in a busy waiting state can

free up computational resources. Therefore, FastFlow and SPar, we enabled an on-demand

+ blocking configuration [ADKT17a], as recommended by [GHDF17]. In GrPPI, OpenMP,

and ISO C++ Threads, we simulate an on-demand behavior by setting queue sizes to 1.

For the pipeline of farms experiments with the Ferret benchmarks, we choose

an over-subscription methodology. Ferret implements a six-stage pipeline, with the four

middle stages being a farm each one. We set the same parallelism degree for all the

farms. It means that if we add 10 workers to each of the four farms of Ferret pipe-farm, the

application will use 40 threads only to run those worker stages. Since Ferret stages are

highly unbalanced, as can be seen in Figure 5.3, most threads would be idle most of the time.

If running the application in a 40-core processor without any additional configuration, there

would not be available resources to efficiently run 40 workers threads plus Emitters and

Collectors. However, enabling a blocking behavior in the threads makes it use computing

resources more efficiently and dynamically. Therefore, in a highly unbalanced pipeline

of farms, we could run each farm with many more threads than the number of available

processor cores and still potentially achieve performance improvement. We call this

strategy “over-subscription” and use it to run the pipeline of farms implementations with

FastFlow, SPar, and GrPPI in the next sections.

All performance results represent an average of at least five executions of the

benchmarks. The standard deviation is presented as error bars in all the performance

graphs. For these applications (except Fraud Detection), making an in-memory execution

did not show any significant performance advantage. Therefore, we run the benchmarks

reading data directly from disk, which is the default configuration in SPBench. Also, we did

not use any kind of custom thread affinity mechanism.

125

5.5.2 TBB, FastFlow, OpenMP, and ISO C++ Threads Results

In this subsection, we compare the latency and throughput performance of TBB,

FastFlow, OpenMP, and ISO C++ Threads. Figure 5.4 and 5.5 present throughput and

latency results, respectively. Each column of charts in these figures represents experiments

on a different computer where we ran the benchmarks. Each line of charts shows the

results of a specific benchmark running on the three computers. The lines are the PPIs. The

x-axis shows the maximum number of workers on the farm. Notice that the y-axis uses the

same scale for the executions on the three computers, which makes it easier to compare

the results.

Regarding throughput, in Figure 5.4, higher is better. The PPIs presented equivalent

throughput performance in most cases when not using hyper-threading. However, all the

benchmarks presented a reduced performance increase when using hyper-threading. In

some cases, it also leads to a slight throughput decrease, as we can observe with the Face

Recognizer benchmark in the AMD processor.

Although the AMD computer has half the number of cores of the Xeon E5-2620

v3, the AMD Ryzen 5 5600X is a newer processor model with a higher clock frequency. As

such, it can deliver higher throughput than the Xeon E5-2620 computer. However, although

the Xeon Silver 4210 has an even lower clock frequency (2.2 GHz), its high number of

processing cores allows it to achieve a higher throughput performance.

Regarding latency, in Figure 5.5, lower is better. The benchmarks achieved the

best latency results when running on the AMD computer, followed by the Xeon E5-2620

computer and then by the Xeon Silver computer. Here, the clock frequency of the processors

again plays a major role since it can process individual data items faster.

TBB is the PPI that presents the best latency results in all our test cases. Its

latency is about half of the others PPIs’ latency. TBB uses a dynamic task scheduler with a

work-stealing policy [VAR19] that benefits from the type of applications we use in these

experiments. Each thread created in the other PPIs runs the same computation over

different data items, i.e., they statically run a single stage of the pipeline. Items move from

one stage to the next through queues, which adds extra waiting time, increasing latency. In

TBB, a single thread can basically run a data item through the pipeline until it faces some

barrier, such as an ordering constraint. However, this TBB model tends to reduce item

clutter and items stay a shorter time in the buffers, presenting reduced average latency.

The throughput decrease and latency increase when increasing the parallelism of

the Lane Detection benchmark with OpenMP and C++ Threads may be caused by different

factors. The first factor, and probably the one with the most impact, is data contention

caused by locking mechanisms. OpenMP and C++ Threads benchmarks use the same

communication queues. The shared queue they use has a locking system to avoid data

126

 0

 70

 140

 210

T
h
ro

p
u
g
h
p
u
t
(I

te
m

s
 p

e
r

s
e
c
o
n
d
)

Xeon Silver 4210

TBB FastFlow OpenMP C++ Threads

Xeon E5−2620 v3

B
z
ip

2
 (

c
o
m

p
.)

Ryzen 5 5600X

 0

 70

 140

 210

L
a
n
e
 D

e
te

c
ti
o
n

 0

 9

 18

 27

F
a
c
e
 R

e
c
o
g
.

 0

 70

 140

 210

 0 10 20 30 40 0 6 12 18 24 0 3 6 9 12

F
e
rr

e
t
(f

a
rm

)

Maximum number of workers in the farm

Figure 5.4: Throughput results of the TBB, FastFlow, OpenMP, and ISO C++ Threads Farm
implementations in different computers.

racing. This way, when using a high number of parallel workers, the average time they have

to wait to access the queues increases. Consequently, items take longer to be processed,

increasing the latency and reducing throughput. FastFlow, on the other hand, uses lock-free

queues. TBB also uses different mechanisms to synchronize access to the buffers.

127

 0

 0.1

 0.2

 0.3

 0.4

 0.5

A
v
e
ra

g
e
 l
a
te

n
c
y
 (

s
e
c
o
n
d
s
)

Xeon Silver 4210

TBB FastFlow OpenMP C++ Threads

Xeon E5−2620 v3

B
z
ip

2
 (

c
o
m

p
.)

Ryzen 5 5600X

 0

 0.2

 0.4

 0.6

 0.8

L
a
n
e
 D

e
te

c
ti
o
n

 0

 1

 2

 3

 4

F
a
c
e
 R

e
c
o
g
.

 0

 0.1

 0.2

 0.3

 0.4

 0 10 20 30 40 0 6 12 18 24 0 3 6 9 12

F
e
rr

e
t
(f

a
rm

)

Maximum number of workers in the farm

Figure 5.5: Latency results of the TBB, FastFlow, OpenMP, and ISO C++ Threads Farm
implementations in different computers.

Another factor may be related to data ordering. OpenMP and C++ Threads also

use the exact same ordering algorithm. It uses different structures and may not be as

optimized as those used by FastFlow and TBB. in this case, the application characteristic is

probably playing an important role in this respect. Lane Detection processes as many items

per second as Ferret and Bzip2. However, while Ferret has no ordering constraints, Bzip2

128

has a balanced input load. Thus, Lane Detection put together the disadvantage imposed

by data ordering requirements with an unbalanced load. This combination incurs highly

disordered data items in the stream. This way, any slight difference in the implementation

of the queuing and ordering mechanisms can lead to processing time overheads, impacting

latency and throughput.

The SPBench workloads showed scalable performance up to more than 40 parallel

threads. In all cases, the benchmarks present a reduction in throughput performance

and increased latency when using hyper-threading, which is an expected behavior. These

results will be used as a baseline to help evaluate the performance of the higher-level PPIs,

such as GrPPI (Section 5.5.3) and SPar (Section 5.5.4).

5.5.3 GrPPI Results

GrPPI is PPI that provides structured parallel programming patterns for stream

processing. It allows, from a single parallel implementation, to run the application with

the backends OpenMP, TBB, FastFlow, and ISO C++ Threads. In this section, we evaluate

GrPPI with all its backends and compare their performance against the handwritten parallel

implementations presented in Section 5.5.2. Here, we run the experiments only in the

Xeon Silver 4210 computer since the PPIs presented similar behavior across architectures

in Section 5.5.2. Thus, we measure latency and throughput by varying the degree of

parallelism in each farm stage from 1 to 40.

As discussed in Section 5.5.1, we enabled blocking mode on the PPIs as this allows

more efficient use of resources and can improve performance when using hyper-threading,

especially in applications that implement a pipeline farm [GGSF22b]. Figures 5.6, 5.7, 5.8,

5.9, and 5.10 present each application’s latency (left chart) and throughput/items per

second (right chart) results.

All four applications were implemented with a single farm. In the case of Ferret-

farm, we unified the internal operators of the application into a single pipeline stage.

However, one of the goals here is to check whether GrPPI is flexible enough to build

different compositions for all the backends from a single generic code or not. This way,

we also implemented Ferret benchmarks using a pipeline of farms and a farm of pipelines

compositions. The pipeline of farms is the original parallel structure of Ferret in the PARSEC

suite [BKSL08].

The x-axis of the graphs represents the maximum number of workers on each

farm. It is fundamental to point out that the actual degree of parallelism of the farms and

the number of threads varies according to how each PPI implements it. In fact, one may

notice that GrPPI-OpenMP backend is not run up to 40 parallel workers but only up to 38

instead. This is a matter of internal implementation logic within GrPPI. In FastFlow, for

129

 1

 4

 16

 64

 256

 0 5 10 15 20 25 30 35 40

L
a

te
n

c
y
 (

s
e

c
o

n
d

s
)

Maximum number of workers in the farm

0

50

100

150

200

250

 0 5 10 15 20 25 30 35 40

It
e

m
s
 p

e
r

s
e

c
o

n
d

Maximum number of workers in the farm

FF
GrPPI−FF

TBB
GrPPI−TBB

OMP
GrPPI−OMP

THR
GrPPI−THR

Figure 5.6: Latency and throughput of the Bzip2 (compress mode) benchmarks with
different GrPPI backends and PPIs.

 1

 4

 16

 64

 256

 0 5 10 15 20 25 30 35 40

L
a

te
n

c
y
 (

s
e

c
o

n
d

s
)

Maximum number of workers in the farm

0

20

40

60

80

100

120

140

160

180

 0 5 10 15 20 25 30 35 40

It
e

m
s
 p

e
r

s
e

c
o

n
d

Maximum number of workers in the farm

FF
GrPPI−FF

TBB
GrPPI−TBB

OMP
GrPPI−OMP

THR
GrPPI−THR

Figure 5.7: Latency and throughput of the Lane Detection benchmarks with different GrPPI
backends and PPIs.

 1

 4

 16

 64

 256

 0 5 10 15 20 25 30 35 40

L
a

te
n

c
y
 (

s
e

c
o

n
d

s
)

Maximum number of workers in the farm

0

5

10

15

20

25

 0 5 10 15 20 25 30 35 40

It
e

m
s
 p

e
r

s
e

c
o

n
d

Maximum number of workers in the farm

FF
GrPPI−FF

TBB
GrPPI−TBB

OMP
GrPPI−OMP

THR
GrPPI−THR

Figure 5.8: Latency and throughput of the Face Recognizer benchmarks with different GrPPI
backends and PPIs.

130

 1

 4

 16

 64

 256

 1024

 0 5 10 15 20 25 30 35 40

L
a

te
n

c
y
 (

s
e

c
o

n
d

s
)

Maximum number of workers in the farm

0

10

20

30

40

50

60

70

80

90

 0 5 10 15 20 25 30 35 40

It
e

m
s
 p

e
r

s
e

c
o

n
d

Maximum number of workers in the farm

FF
GrPPI−FF

TBB
GrPPI−TBB

OMP
GrPPI−OMP

THR
GrPPI−THR

Figure 5.9: Latency and throughput of the Ferret (farm) benchmarks with different GrPPI
backends and PPIs.

instance, if the user builds a single farm with two workers, it will run four threads. Two

threads for the workers plus two threads to run the Emitter and Collector stages. It works

the same way with GrPPI-FastFlow and GrPPI-Threads. For the OpenMP backend, however,

GrPPI does not behave the same way. For the two-work farm in GrPPI-OpenMP, users must

explicitly set to four the farm parallelism degree attribute. Therefore, in a single farm, for

the same farm parallelism degree, GrPPI-OpenMP runs with two fewer workers than the

FastFlow and C++ threads backends. This way, to make the results more comparable, we

have shifted GrPPI-OpenMP results by two. It is not a concern with TBB, however, because

of its work-stealing task scheduler that behaves entirely differently.

Overall, GrPPI’s throughput with the TBB, OpenMP, and ISO C++ threads back-

ends is equivalent to that of the benchmarks with handwritten code in the single farm

benchmarks. In the Lane Detection application (Figure 5.7), GrPPI-THR and GrPPI-OMP even

achieve better performance using hyper-threading. A similar behavior occurs in Figure 5.6

with the Bzip2 benchmark, where GrPPI backends (not including GrPPI-FF) perform better

than handwritten OpenMP and C++ Threads. With Face Recognizer and Ferret (farm)

benchmarks, in Figures 5.8 and 5.9, the throughput performance of GrPPI is equivalent or

better than the handwritten benchmarks. In the case of GrPPI-FF, it achieves throughput

comparable to the other PPIs with lower degrees of parallelism. Still, the inability to enable

blocking mode in GrPPI’s FastFlow knocks down performance when using hyper-threading

above 20 workers.

Regarding latency, the performance of the PPIs varies widely among the appli-

cations. In addition to the inability to enable blocking mode in GrPPI-FF, it is also not

possible to enable on-demand mode or set the queues to size 1, which would have a similar

effect. Therefore, GrPPI-FF has an unlimited buffer between stages that stores many items

simultaneously. These items wait a long in the buffers/queues until the other stages can

process them. It incurs a significant increase in latency for all applications.

131

 0.25

 1

 4

 16

 64

 256

 1024

 0 5 10 15 20 25 30 35 40

L
a

te
n

c
y
 (

s
e

c
o

n
d

s
)

Maximum number of workers in each farm

0

10

20

30

40

50

60

70

80

90

 0 5 10 15 20 25 30 35 40

It
e

m
s
 p

e
r

s
e

c
o

n
d

Maximum number of workers in each farm

TBB−PF
THR−PF

FF−PF
FF−FP

G−FF−PF
G−FF−FP

G−TBB−PF
G−TBB−FP

G−THR−PF
G−THR−FP

Figure 5.10: Ferret with compositions of pipelines and farms.

Although GrPPI-THR has the best throughput performance, it has the second-worst

latency performance overall. However, it has similar latency to the TBB benchmarks in Lane

Detection and Ferret when using hyper-threading. GrPPI-TBB has comparable latency to the

handwritten TBB in all applications, except in the Ferret (Figure 5.9). In this case, it presents

an increasing latency from the beginning, an unexpected behavior. Ferret differs from the

other applications because it does not require item order, and how GrPPI implements it in

TBB may explain this difference. GrPPI-OMP presented a similar and even better latency

than handwritten OpenMP and C++ Threads in Lane Detection over 20 workers.

Figure 5.10 presents the performance results for the pipeline with multiple farms

(PF) and farm with pipelines (FP) compositions. We could not run these versions with the

OpenMP backend in GrPPI, so it is not present in the graph. For this reason, we also did not

include the results of handwritten OpenMP. In addition, after we ran the experiments, we

noticed that we omitted the -O3 compiler optimization flag when building this benchmark

with all PPIs. Since all PPIs still are under the same parameters in this regard, it should not

affect the performance comparison discussion.

The highest throughput was achieved by ISO C++ Threads (THR-PF) and GrPPI-

THR-PF, at all degrees of parallelism, followed closely by the handwritten version of FastFlow.

A pipeline of farms in TBB behaves very similarly to a single farm in an application with no

ordering requirement (this case) since a TBB thread can avoid buffering and process an

item from the beginning to the end of the pipeline if resources are available.

In a pipeline of farms, the inability to optimize FastFlow code in GrPPI is a critical

factor for both throughput and latency. If on-demand mode is not enabled, this adds

multiple unlimited queues/buffers in the pipeline, further increasing latency. Without

enabling blocking mode, idle workers are in a busy wait state and do not free up resources.

This combination causes a large load unbalance in this application. Since Ferret-PF has

a pipeline with four farms and the architecture has 40 threads, it is expected that the

132

pipeline of farms in non-blocking mode will have a significant drop in performance above

ten workers per farm. On the other hand, the farm-pipeline pattern avoids the additional

collectors/emitters between stages that there would be in a pipeline farm. This performance

difference is due to the fact that a lower number of queues is required for a pipe of farms,

where all works in a farm share a single queue. Consequently, the number of queues is

independent of the farm multiplicity. So it requires fewer threads and has fewer shared

queues, leading to better load balancing and mitigating the performance impact.

Except for the TBB benchmarks, all the PPIs considerably increased latency with

pipeline-farm implementations. The difference between TBB and FastFlow in these situa-

tions has been extensively discussed in Section 5.5.2. Despite the difference in throughput

between GrPPI-FF-FP and GrPPI-FF-PF, in terms of latency, the two strategies behaved

somewhat similarly, showing the highest latencies. With GrPPI-THR, however, the pipeline

of farms (PF) composition presented far better results than the FP composition. After all, it

achieved the best throughputs and reduced latency to the same level as GrPPI-TBB with 40

workers.

5.5.4 Comparing handwritten FastFlow, SPar-FastFlow, and GrPPI-FastFlow

In this subsection, we compare the performance of the handwritten FastFlow

benchmarks against FastFlow-generated code from SPar and GrPPI with the FastFlow

backend. The goal is to observe what impact high-level abstractions can have on the

performance of PPIs and also what their limitations are with respect to tuning performance.

Since the public release of SPar only supports the FastFlow runtime, we compare its

performance only against the other FastFlow benchmarks in SPBench.

Figure 5.11 presents the results of the benchmarks that exploit a single farm

as the parallel pattern. In most cases, SPar matches its performance perfectly with the

handwritten FastFlow code, both regarding latency and throughput (average processed

items per second). SPar’s throughput doesn’t show that drop above 18 workers, which

is when the system starts using hyper-threading. This indicates that SPar is able to

activate FastFlow’s blocking mode. With the blocking mode active, idle threads free up

computational resources for the others. This way, the system prioritizes the thread that

runs the farm’s Emitter and blocks idle workers. When Emitter and Collector need to

compete with idle Workers, a bottleneck occurs and this results in the behavior observed in

GrPPI-FF as soon the number of created threads reaches the number of physical processing

cores of the computer (20).

In Lane Detection benchmarks, however, SPar performs worse than the handwrit-

ten FastFlow when using hyper-threading. The difference among the PPIs is more prominent

regarding latency in this case. The FastFlow source code generated by SPar followed the

133

 0.25

 1

 4

 16

 64

 256

 0 5 10 15 20 25 30 35 40

L
a

te
n

c
y
 (

s
e

c
o

n
d

s
)

Bzip2

0

40

80

120

160

200

 0 5 10 15 20 25 30 35 40

T
h

ro
u

g
h

p
u

t

Bzip2

0.25

1

4

16

64

256

 0 5 10 15 20 25 30 35 40

L
a

te
n

c
y
 (

s
e

c
o

n
d

s
)

Lane Detection

0

40

80

120

160

200

 0 5 10 15 20 25 30 35 40

T
h

ro
u

g
h

p
u

t

Lane Detection

1
2
4
8

16
32
64

128
256
512

 0 5 10 15 20 25 30 35 40

L
a

te
n

c
y
 (

s
e

c
o

n
d

s
)

Face Recognizer

0

6

12

18

24

30

 0 5 10 15 20 25 30 35 40

T
h

ro
u

g
h

p
u

t

Face Recognizer

1

4

16

64

256

1024

 0 5 10 15 20 25 30 35 40

L
a

te
n

c
y
 (

s
e

c
o

n
d

s
)

Max. number of workers in the farm

Ferret (farm)

0

20

40

60

80

100

 0 5 10 15 20 25 30 35 40

T
h

ro
u

g
h

p
u

t

Max. number of workers in the farm

Ferret (farm)

GrPPI−FF SPar−FF Handwritten−FF

Figure 5.11: Performance of SPar-FastFlow, GrPPI-FastFlow, and handwritten FastFlow with
single farm benchmarks.

134

 1

 4

 16

 64

 256

 0 5 10 15 20 25 30 35 40

L
a

te
n

c
y
 (

s
e

c
o

n
d

s
)

Maximum number of workers in the farm

0

20

40

60

80

100

120

140

160

180

200

 0 5 10 15 20 25 30 35 40

It
e

m
s
 p

e
r

s
e

c
o

n
d

Maximum number of workers in the farm

GrPPI−FF SPar−FF Handwritten−FF

Figure 5.12: Performance of SPar-FastFlow, GrPPI-FastFlow, and handwritten FastFlow with
a pipeline of farms benchmark.

exact structure of the handwritten FastFlow benchmark. Also, both use the same settings.

However, while SPar uses FastFlow 3.0, the handwritten code uses the 3.0.1 version. Since

FastFlow does not include any release notes on this, we are not sure if there are any

improvements that may impact this specific case.

The results of the experiments with the pipeline of farms are presented in Fig-

ure 5.12. Here, as done in the GrPPI experiments in Section 5.5.3, we use the over-

subscription methodology. That is, the pipeline of farms in Ferret has four farms. When 10

workers are assigned to each of them, the application will already be using more than 40

threads, which is higher than the number of threads of the architecture. Also, in a pipeline

of farms, FastFlow adds several auxiliary stages between the farms. These stages will also

run on dedicated threads.

For the over-subscription method to be worthwhile and the application to continue

improving performance when all threads in the architecture are used, two main things

should happen: 1) the application workload has to be highly unbalanced, and 2) threads

should be in blocking mode. In FastFlow, it is also important to use mechanisms that reduce

the number of auxiliary stages in the pipeline. This results in the farm pipeline illustrated in

Figure 4.10, which is how handwritten FastFlow benchmarks are constructed in SPBench.

In the pipeline of farms benchmark, in Figure 5.12, the latency performance of

SPar was more similar to the GrPPI-FF than to the handwritten FastFlow. Much different from

what was observed in the single-farm results. We have a hypothesis about what is causing

this behavior and it is related to SPar and FastFlow limitations. First of all, SPar is not

generating an optimized FastFlow implementation. We extracted the FastFlow-generated

code from SPar and observed that the code is not as optimized as our handwritten imple-

mentation. The pipe-farm Ferret-FastFlow handwritten benchmark available in SPBench

required massive investigation, experimental analysis, and discussion to be implemented.

It required the composition of multiple small and large pipelines and farms and manually

135

Figure 5.13: Usual on-demand behavior in a pipeline of farms in FastFlow.

removing unnecessary stages to get the structure presented in Figure 4.10. The Listing 11

shows an example of this implementation.

SPar generates a much more simple and more generic FastFlow code that has many

additional stages. It would not be a problem for SPar if the set_scheduling_ondemand()

method of the ff::ff_Farm FastFlow class worked adequately. This method enables an

on-demand behavior only inside the farms but does not do the same to the inter-farm

space, as shown in Figure 5.13. It means that between each pair of farms, there is at least

one 512-sized queue, which is the default queue size in FastFlow. In the Ferret application,

the most computationally costly operator is the Rank one (see Figure 5.3), which is at the

end of the pipeline. Thus, in a pipeline of farms, the stages that precede the Rank process

load all the data to these queues at a much faster rate than the Rank can consume them.

Therefore, data items wait longer in queues in the first stages of the pipeline, increasing

the average latency.

In our handwritten implementation, in addition to eliminating this inter-farm space,

we compile the benchmark with the macro “-DFF_BOUNDED_BUFFER” to create bounded

buffers and “-DDEFAULT_BUFFER_CAPACITY=1” to reduce their capacity size to one. These

macros reduce the size of all FastFlow queues to 1 and simulate an on-demand behavior.

Therefore, the SPar’s inability to use such macros and generate such optimized code as

the handwritten FastFlow implementation adds to the inability of FastFlow to apply a global

on-demand policy through the set_scheduling_ondemand(), resulting in a poor latency

performance of SPar-FF.

All the limitations that incur high latency do not affect the throughput, although.

On the opposite, it shows how the strategy we used to reduce latency in the handwritten

benchmark impacts throughput. With 20 workers per farm, the throughput of SPar is about

10% higher than the handwritten FastFlow. SPar also manages to achieve a lower latency

when using 40 workers per farm.

In this over-subscription case, however, what most affects throughput is the

inability to set a blocking policy for the FastFlow threads. SPar can enable the FastFlow

block mode using the “-spar_blocking” compiler flag. However, this is still a limitation for

136

GrPPI-FF, as discussed in Section 5.5.3, leading to a throughput decrease when running

more than 40 concurrent threads, which is the limit of the Xeon Silver 4210 computer. In

this case, 8-worker farms already require over 40 threads because of the auxiliary stages

created since GrPPI-FF also does not run an optimized FastFlow implementation. GrPPI

throughput decreases precisely at this point.

5.5.5 Custom Parallel Compositions Results

In Subsection 5.5.3 and 5.5.4, we discussed the pipeline of farms’ performance

using the Ferret application. Experimental results, presented in Figure 5.12, showed that

GrPPI and SPar struggle to achieve performance similar to the handwritten implementation

in FastFlow. Besides, for FastFlow to achieve competitive performance with TBB in a pipeline

of farms, it demanded a significantly higher programming effort. Ferret’s unbalanced

workload plays against static execution models like FastFlow’s one. It is an even worse

scenario for latency performance when computational lighter stages are at the beginning

of the pipeline and heavier ones are at the end, as in Ferret’s case. This makes date items

pile up at the first nodes of the pipeline. Also, these stages process all the data first and

may be in a busy waiting state after that, competing for computational resources that

the heavier stages could use. To get around this, we apply the strategy of on-demand,

so items don’t pile up, plus blocking mode for idle threads to free up resources, plus an

over-subscription strategy, so that threads that perform heavier tasks can actually use

the maximum available resources. This strategy has been discussed at length previously

throughout Section 5.5.

Another way to achieve more efficient hardware utilization and improve the

performance of an unbalanced pipeline of farms is to assign a different number of workers

to each farm. The more computationally costly a pipeline stage is, the more parallelism

it gets. However, as the number of pipeline stages increases it gets more complex to

find the optimal parallelism configuration. A possible approach in these cases could be

to adapt the parallelism on the fly, and there is in the literature a research effort in this

direction [VGS+18, VGDF22, VGF21]. Another approach could be to merge the pipeline

stages. The ideal scenario is often to merge all intermediate stages into a single one. We

already did that when evaluating Ferret’s performance using a single farm in Section 5.5.2.

In this subsection, we will investigate an approach that consists in merging the

first three lighter intermediate stages of Ferret, resulting in a pipeline with two middle

farms, and applying different parallelism degrees to each farm. The goal is to achieve

performance competitive with the previous strategies we used without using the over-

subscription method. Also, we aim to investigate what the trade-offs are between latency

and throughput with varying parallelism configurations. With this reduced number of farms,

137

the complexity of finding optimal parallel configurations is also reduced. This way, we used

an approach of scaling the parallelism of the farms based on specific factors, manually

changing each farm’s parallel degree. This investigation only makes sense regarding PPIs

that do not use a dynamic execution model. FastFlow is one of the most used PPIs in

this context and provides structured parallel patterns as well as on-demand and blocking

mechanisms. Therefore, we use only FastFlow for the experiments in this section.

The Ferret application in PARSEC is originally parallelized using a similar pipeline of

farms structure we used in SPBench. There, the four middle stages are thread pools that can

run in parallel [BKSL08]. We can define this structure as pipe(seq(source), Farm(seg,

n), Farm(extract, n), Farm(vect, n), Farm(rank, n), seq(sink)), where n is the

number of workers in the farms. Here, we merge the farms that run the Seg., Extract.,

and Vect. operators, which, even combined, are less computing intensive than the

Rank one, as shown in Figure 5.3. Thus, the resulting pipeline of farms can be rep-

resented as pipe(seq(source), Farm((seg, extract, vect), n1), Farm(rank, n2),

seq(sink)). Building this custom pipeline of farms composition in SPBench is very simple

and quick since it is just a matter of moving two lines of code from the operators into one

of the farms and removing the code from two of the other farms.

Figure 5.14 shows the results of the custom pipe-farm benchmark. The x-axis

in the graphs presents the sum of n1 and n2, which are the number the workers used in

each Farm. We enabled the blocking mode and the on-demand policy in FastFlow. The

experiments were performed on the Xeon Silver 4210 and Xeon E5-2620 v3 computers.

The custom pipeline-farm implementation consists of a four-stage pipeline with a

farm in the second and a farm in the third stage. We implemented five variations, each

representing a different ratio between n1 (first Farm) and n2 (second Farm): 1 : 1, 1 : 2, 1 : 3,

1 : 4, and 1 : 5. For instance, for the 1 : 3 ratio, when n1 + n2 equals 40, it means 10 replicas

for the first farm plus 30 replicas for the second farm. Another example, considering the

1 : 2 ratio, when n1 + n2 equals 24, it means 8 worker replicas in the first farm plus 16

workers in the second farm. We choose ratios only from 1 : 1 to 1 : 5 because for higher

values of n1, n2 becomes a performance bottleneck, and vice-versa.

Although the results are somewhat different between the two tested computers,

the conclusions we can draw from these results are the same for both scenarios. The 1 : 1
parallel ratio presented the worst latency and throughput. Although 1 : 2 and 1 : 3 achieved

good throughput, they did not achieve low latency. It means that for 1 : 1, 1 : 2, and 1 : 3
ratios, n2 value is still a bottleneck. in this case, the parallelism degree of the first farm is

too high if compared to the second farm. So the first farm produces data faster than the

second one can consume, which incurs items waiting longer in the queues, increasing the

latency.

The 1 : 5 ratio presented the lowest latency. However, with this ratio, the n1 value

becomes a bottleneck, where the first farm produces data slower than the second farm can

138

 0.125

 0.25

 0.5

 1

 2

 4

 8

 16

 32

 0 5 10 15 20 25 30 35 40

L
a

te
n

c
y
 (

s
e

c
o

n
d

s
)

Number of replicas (n1 + n2).

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 0 5 10 15 20 25 30 35 40

It
e

n
s
 p

e
r

s
e

c
o

n
d

Number of replicas (n1 + n2).

FF n1 = n2 FF n2 = 2n1 FF n2 = 3n1 FF n2 = 4n1 FF n2 = 5n1

(a) Xeon Silver 4210

 0.125

 0.25

 0.5

 1

 2

 4

 8

 16

 32

 0 5 10 15 20 25

L
a

te
n

c
y
 (

s
e

c
o

n
d

s
)

Number of replicas (n1 + n2).

 0

 20

 40

 60

 80

 100

 120

 140

 0 5 10 15 20 25

It
e

n
s
 p

e
r

s
e

c
o

n
d

Number of replicas (n1 + n2).

(b) Xeon E5-2620 v3

Figure 5.14: Latency and throughput for the custom pipe-farm Ferret bench-
mark. It defined as pipe(seq(source), farm((seg,ext,vect), n1), farm(rank, n2),
seq(sink)), where n1 and n2 are the number of workers in the farms. Each line in the
graphs represents a different ratio of the parallelism degree of the two farms. E.g., n2 = 3n1

means that every time n2 is increased by 3, n1 is increased by 1.

Source: [GGSF22b] ©20XX Springer Nature.

consume, decreasing the throughput. Therefore, we can observe that the 1 : 4 ratio is the

most balanced for this custom Ferret implementation. This custom 1 : 4 ratio pipe-farm

achieved a throughput close to the single farm and pipeline of farms implementations.

However, the latency is about 10 times lower than the traditional four-farm pipeline and

equivalent to the single-farm FastFlow implementation.

Therefore, we found a more balanced parallel configuration while still using a

pipeline of farms and without over-subscribing tasks to the system. However, even reduc-

ing the number of parallel stages of the pipeline to achieve such a configuration was a

burdening task. Finding a balanced configuration in the original Ferret’s four-farm pipeline

structure would require huge efforts. These experiments and results help to highlight

139

the importance of parallelism dynamicity in execution models and strategies that aim to

alleviate this task from users, such as self-adaptive parallelism.

5.5.6 Data Stream Performance

Fraud Detection (FD) was the latest application added to the SPBench. For this rea-

son, we have not yet investigated it in any other work prior to this thesis. So it still requires

further analysis and polishing to achieve a more optimal implementation. However, we still

decided to include an analysis of this application in this thesis because it can show that

SPBench can be flexible to incorporate applications from other SP subdomains besides tra-

ditional stream processing, such as data stream processing. In Section 4.2.5, we discussed

the challenges that FD posed to the SPBench and how we addressed them. However, an

analysis of this application can help in another aspect: showing the performance impact

after reprogramming the application to fit the SPBench API.

As discussed in Section 2.2.2, data stream applications usually process smaller

data items than traditional stream processing applications. Classically, data stream appli-

cations process streams of string tuples, while traditional SP processes unstructured data,

such as video frames, images, large blocks of bytes, etc. Each FD tuple totals 27 bytes

in size, for instance, while this value is 900KB in Bzip2. Therefore, the time required to

process these small tuplets is usually much shorter. So these data stream applications like

Fraud Detection are capable of processing more than a million tuples per second. This is

throughput thousands of times higher than we achieve with the other applications in the

SPBench. This much faster throughput of these applications means that small overheads in

processing a single item have a big impact on the average performance of the application.

The SPBench Fraud Detection application was built based on an existing imple-

mentation with WindFlow [MTG+19]. It is part of StreamBenchmarks1, an extended version

from the DSPBench benchmark suite [BGM+20] that includes WindFlow benchmarks. We

first wrote a sequential version of FD-WindFlow and, from that, translated the sequential

application code to SPBench style, as presented in Listing 9. After that, we used WindFlow

to create a Fraud Detection benchmark in SPBench. We based our parallel implementation

on the original FD-WindFlow available in the StreamBenchmarks repository.

In this section, we run Fraud Detection with WindFlow from SPBench and compare

the performance with the original implementation, which also uses WindFlow PPI. The goal

is to evaluate the impact of the SPBench API on the performance of this application and

how the performance compares to a pure implementation with WindFlow. This application

implements a three-stage pipeline, as illustrated in Figure 4.8. However, since the middle

stage is not very computationally expensive, it processes items very fast, so as parallelism

1https://github.com/ParaGroup/StreamBenchmarks

140

increases, the Source and Sink operators become performance bottlenecks. Thus, achieving

higher throughputs involves a balance of parallelism among the three stages. Therefore,

we perform experiments varying the parallelism of the three stages.

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 0 5 10 15 20 25 30 35 40

It
e

m
s
 p

e
r

s
e

c
o

n
d

 (
m

ill
io

n
s
)

Number of workers in the middle stage (x)

Par. deg.: source(1), worker(x), sink(1)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0 5 10 15 20 25 30 35
Number of workers in the middle stage (x)

Par. deg.: source(5), worker(x), sink(1)

 0

 1

 2

 3

 4

 5

 6

 0 5 10 15 20 25 30

It
e

m
s
 p

e
r

s
e

c
o

n
d

 (
m

ill
io

n
s
)

Number of workers in the middle stage (x)

Par. deg.: source(5), worker(x), sink(5)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0 5 10 15 20 25 30
Number of workers in the middle stage (x)

Par. deg.: source(10), worker(x), sink(1)

 0

 1

 2

 3

 4

 5

 6

 7

 0 5 10 15 20 25

It
e

m
s
 p

e
r

s
e

c
o

n
d

 (
m

ill
io

n
s
)

Number of workers in the middle stage (x)

Par. deg.: source(10), worker(x), sink(5)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 0 2 4 6 8 10 12 14 16 18 20
Number of workers in the middle stage (x)

Par. deg.: source(10), worker(x), sink(10)

StreamBenchmarks SPBench

Figure 5.15: Fraud detection performance results.

141

Figure 5.15 shows the performance of the Fraud Detection benchmark using

WindFlow. Each of the six graphs represents a different parallelism strategy we used for

the experiments. In each strategy, we use a static parallelism degree for the Source and

Sink operators and vary the parallelism degree of the middle stage. These strategies are

described at the top of each graph, where the x value from “worker(x)” is the x-axis value.

Thus, the parallelism degree of the workers is the only attribute that varies in each graph.

The middle stage of Fraud Detection implements a filter operator. Only transactions that

are potentially fraudulent go through it and are received by the Sink operator. This way,

the Sink processes fewer items than the Source, and, in addition, it is less computationally

intensive. Therefore, in all of our test cases, the parallelism of the Source operator is equal

to or higher than the Sink one. In addition, as described in Section 4.2.5, in this application,

we enabled the SPBench custom user item counter in the Source operator, which implies

that throughput is computed over the items sent by the sources rather than received by

the sink.

The graphs in Figure 5.15 show the throughput performance in millions of trans-

actions processed per second. We compare the throughput of the StreamBenchmarks-FD

benchmark against the SPBench-FD benchmark. We can notice that the first strategy (1,x,1)

resulted in the lowest performance. It is a consequence of Source and Sink bottlenecks.

The biggest performance difference between StreamBenchmarks and SPBench is with the

(5,x,5) strategy, where StreamBenchmarks-FD almost doubled SPBench-FD performance

with more threads. On the other hand, in the (10,x,1) strategy, SPBench achieved higher

performance results than StreamBenchmarks. Our hypothesis, based on these two results,

is that the SPBench Source operator is heavier than and the Sink is a lighter task than the

ones in StreamBenchmarks. Therefore, SPBench benefits from more Source parallelism

and require less Sink parallelism, while Streambenchmarks-FD benefits from more bal-

anced configurations. The results of the strategies (10,x,5) and (10,x,10) help to confirm

this hypothesis. StreamBenchmarks-FD achieved the highest throughput with (10,25,5)

parallelism, increasing it almost linearly. SPBench, on the other hand, only presents such a

linear throughput increase when up to 20 parallel workers are used in the middle stage,

plus higher source parallelism.

The last strategy (10,x,10) was the one where SPBench-FD and StreamBenchmarks-

FD performed the most similarly. In this case, SPBench throughput performance is around

0.5 million lower than StreamBenchmarks for higher values of x . In this strategy, the paral-

lelism degree used for Source and Sink eliminates possible bottlenecks of these operators.

Thus, it better shows how the original WindFlow Fraud Detection benchmark outperforms

the SPBench benchmark.

It is expected for SPBench applications to present some performance overhead

since it includes several additional workload management mechanisms, abstraction lay-

ers, and performance metrics. All of it adds many more conditional structures, memory

142

allocations, and extra instructions that can impact performance. However, as previously dis-

cussed, Fraud Detection was the last application added, and only recently, to the SPBench

suite. Its structure is a lot different from the traditional stream processing applications. Also,

it did not undergo extensive evaluation and polishing as the other SPBench benchmarks.

Therefore, improved implementation regarding the application and parallelism exploration

may reduce the performance overhead in the future.

The experiments and results presented in this section showed that we successfully

incorporated Fraud Detection, a data stream application, into the SPBench suite. For that,

in SPBench, we had to implement support for Source and Sink parallelism, allow key-by

data partitioning, and handle stateful and filter operators. Also, we successfully added

support for creating WindFlow benchmarks with SPBench. Besides the SPBench framework

infrastructure, another thing that differentiates SPBench from Streambenchmarks is that

we offer sequential implementations of the applications, which increases the portability of

the benchmarks to other PPIs.

5.6 Memory Usage

The evaluation of memory usage is a crucial aspect of developing and optimizing

stream processing applications. To meet real-time processing demands, SP applications

typically require handling large amounts of data and running tasks concurrently in parallel to

achieve high throughput and lower latency. By evaluating memory consumption, developers

can identify potential bottlenecks and optimize their code for better performance. It is also

a relevant factor when it comes to the scalability of stream processing applications. As the

amount of data being processed increases, so does the memory required to handle that

data. By evaluating memory consumption, developers can ensure that their code can scale

effectively as the size of the input data increases.

In this section, we use the SPBench benchmarks to evaluate the memory usage

of TBB, FastFlow, OpenMP, ISO C++ threads, SPar, and GrPPI in the context of stream

parallelism. We get the memory usage from the SPBench memory-usage metric. This

metric returns the total memory used by a benchmark during its execution. We ran

the benchmarks with a parallelism degree of 10, 20, 30, and 40. The results of the

benchmarks that implement a single farm are shown in Figure 5.16. Note that the y-axis is

in a logarithmic scale for better data visualization. In most cases, PPIs demanded similar

amounts of memory in each application. The apparent exception was GrPPI-FF, where its

unlimited queues/buffers loaded all data into memory at once. It occurs due to the inability

of GrPPI to adjust the size of FastFLow queues and the FastFlow developers’ decision not to

set a lower default boundary. Another contribution to this effect is derived from the strategy

143

 64
 128
 256
 512

 1024
 2048
 4096
 8192

x
la

b
e
l

ylabel

Bzip2

TBB
FF

OMP

THR
SPar

GrPPI−TBB

GrPPI−OMP
GrPPI−FF

GrPPI−THR

 64
 128
 256
 512

 1024
 2048
 4096
 8192

x
la

b
e
l

ylabel

Lane Detection

 128

 256

 512

 1024

x
la

b
e
l

ylabel

Face Recognizer

 64

 128

 256

 512

x
la

b
e
l

ylabel

Ferret (farm)

 64
 128
 256
 512

 1024
 2048
 4096
 8192

x
la

b
e
l

ylabel

Bzip2

TBB
FF

OMP

THR
SPar

GrPPI−TBB

GrPPI−OMP
GrPPI−FF

GrPPI−THR

 64
 128
 256
 512

 1024
 2048
 4096
 8192

x
la

b
e
l

ylabel

Lane Detection

 128

 256

 512

 1024

x
la

b
e
l

ylabel

Face Recognizer

 64

 128

 256

 512

10 20 30 40

M
e
m

o
ry

 u
s
a
g
e
 (

M
B

)

Maximum number of workers in the farm

Ferret (farm)

Figure 5.16: Total memory consumption of benchmarks with a single farm.

144

 120
 140
 160
 180
 200
 220
 240
 260
 280

x
la

b
e
l

ylabel

Bzip2

TBB
FF

OMP

THR
SPar

GrPPI−TBB

GrPPI−FF
GrPPI−THR

 120
 140
 160
 180
 200
 220
 240
 260
 280

10 20 30 40

M
e
m

o
ry

 u
s
a
g
e
 (

M
B

)

Maximum number of workers in each farm

Ferret (pipe−farm and farm−pipe)

TBB
FF

OMP

THR
SPar

GrPPI−TBB

GrPPI−FF
GrPPI−THR

Figure 5.17: Total memory consumption of Ferret benchmarks using pipeline-farm (PF) and
farm-pipeline (FP) compositions.

of GrPPI, which uses value-oriented bounded queues instead of pointer-oriented ones. This

avoids excessive allocation/deallocation at the price of preallocating more memory.

GrPPI-THR (ISO C++ threads backend) was the second case that most used mem-

ory in all applications except Lane Detection. The difference from the other PPIs is more

prominent when using fewer parallel workers on the farm. However, we can see that this

result is directly linked to the high latencies that this backend presented in the perfor-

mance evaluation, as discussed in Section 5.5.3. It may indicate the presence of lousy

optimizations in GrPPI or the inability to enable the on-demand mode for this backend,

as occurs with GrPPI-FastFlow. The PPI that used the least memory in the big picture was

GrPPI-OpenMP. The other PPIs performed similarly in most cases.

The memory usage of the pipeline of farms composition is shown in Figure 5.17.

GrPPI-FF again shows high memory usage. Again the GrPPI favors a higher memory usage

due to the increased queue sizes and their strategy of avoiding extra allocation/deallocation.

However, comparing GrPPI-FF to the other PPIs, the memory usage difference here is lower

than that with a single farm. We believe this is because resources are tightly contested with

blocking mode disabled, and more intensive stages (the last ones) get more processing

priority. Thus, such a lack of resources can lead to the inability of the first stage (emitter) to

send enough items to fill the queues. This is because the bottleneck produced by the more

costly task is reduced, and therefore the bottleneck at the emitter is increased. Therefore,

to explain this would require further investigation to understand how GrPPI implements the

communication mechanisms between the stages using ISO C++ threads.

The lowest memory usage with a pipeline of farms was achieved by handwritten

FastFlow and GrPPI-TBB. In the single farm benchmarks, handwritten TBB and GrPPI-TBB

got similar results. This is true not only for memory usage but for latency and throughput

performance as well (Section 5.5.3). However, GrPPI-TBB presented such an unexpected

145

behavior regarding latency when using a pipeline of farms composition. We are unsure

about what may cause that behavior, but we believe it also impacts the memory usage of

this benchmark. On the other hand, our highly optimized handwritten FastFlow managed to

use over 10% less memory than the handwritten TBB benchmark. The benefits of TBB’s

work-stealing execution model add some costs. Whenever a thread operates on an item,

it creates a new object for the next stage, including its instance variables. Instantiating

objects in a multi-thread environment can be slow and cause contention for the heap and

the memory allocator data structures [Rei07]. We believe this contention may explain the

extra memory TBB demanded compared to FastFlow.

In this section, we evaluated the memory usage of the PPIs with varying parallel

compositions and parallelism degrees. The results helped to confirm some hypotheses

from the previous sections, where we were able to draw connections between memory

usage and latency in some cases. In addition, in patterns when using more complex parallel

patterns, such as a pipeline of farms, FastFlow showed memory usage almost equivalent

to its single farm implementation and less than TBB. This is only possible because of the

low-level configuration and flexibility to compose parallel patterns that FastFlow provides.

However, when such flexibility is limited, this static execution model pays the price, as we

can observe in the SPar and GrPPI-FF results, the two PPIs that use FastFlow as backend.

5.7 Programmability Evaluation

Parallel programming is usually evaluated in terms of execution time and speedup.

Other metrics in the stream processing domain are also considered, such as latency

and throughput. [MRR12] says that a PPI should balance three properties: performance,

portability, and programmability/productivity. However, programmer productivity is a

critical factor that is not usually addressed in parallel programming. It is directly related

to the lack of methods and tools that support parallel programming and the difficulty of

performing experiments on humans [AGSF23, AGS+21]. Thus, most productivity evaluations

of parallel programming are tied to code metrics such as lines of code (LOC) or cyclomatic

complexity. Most related works use such metrics, as discussed in Section 5.2. However,

these metrics may be inaccurate and lead users to wrong assumptions [AGS+22].

If disregarding parallel programming, there are in the literature well-known code-

based methods for evaluating the programmability cost of applications. One of the most

known is Halstead’s method, a code-based metric used to measure the complexity of a

program [Hal77]. Maurice Howard Halstead proposed it in 1977. The method is based

on the observation that the complexity of a program is related to the number of unique

operators and operands used in it. The Halstead method can be used to predict the effort

required to develop or maintain a software program, as well as to estimate the number of

146

 16

 32

 64

 128

 256

x
la

b
e

l

ylabel

TBB
FastFlow
OpenMP

ISO−C++
SPar

GrPPI−static

GrPPI−dynamic
Sequential

 2

 4

 8

 16

 32

 64

x
la

b
e

l

ylabel

 0.25
 0.5

 1
 2
 4
 8

 16
 32

x
la

b
e

l

ylabel

 16

 32

 64

 128

 256

Bzip2 Lane Face Ferret−F Ferret−PF

L
in

e
s
 o

f
C

o
d

e

ylabel

TBB
FastFlow
OpenMP

ISO−C++
SPar

GrPPI−static

GrPPI−dynamic
Sequential

 2

 4

 8

 16

 32

 64

Bzip2 Lane Face Ferret−F Ferret−PF

C
y
c
lo

m
a

ti
c

c
o

m
p

le
x
it
y

ylabel

 0.25
 0.5

 1
 2
 4
 8

 16
 32

Bzip2 Lane Face Ferret−Farm Ferret−PF

E
s
ti
m

a
te

d
 d

e
v
e

lo
p

m
e

n
t

ti
m

e
 i
n

 h
o

u
rs

 (
P

H
a

ls
te

a
d

)

Benchmark

Figure 5.18: Number of lines of code, cyclomatic complexity, and estimated development
time (PHalstead [AGS+22]) of the benchmarks implemented with FastFlow, TBB, OpenMP,
ISO C++ Threads, SPar, GrPPI-static, and GrPPI-dynamic.

bugs that may be present in the program [AGS+22]. It can also be used to compare the

complexity of different programs and to identify sections of code that may be particularly

difficult to understand or maintain.

Halstead’s method, however, does not correctly address parallel programming

since it can not recognize specific code tokens from most of the PPIs. Andrade et al. [AGS+22]

overcame this problem and adapted Halstead’s method to support some PPIs, including

the ones used in this work. This method is based on tokens of code, classified as operators

or operands, and proposes a series of measures, including estimated development time.

[AGS+22] added specific tokens from different PPIs and developed a tool called PHalstead2

from this.

In this section, we evaluate the programmability/productivity of the PPIs using

the most common metrics found in the literature and Halstead’s method leveraged by

the PHaltead tool. We measured LOC and CCN using the Lizard 1.17.10 tool3. Figure 5.18

shows the results of the single farm plus pipeline of farms (PF) implementations. For the

2https://github.com/GMAP/phalstead
3https://github.com/terryyin/lizard

147

LOC and cyclomatic complexity, we also added the results of the sequential applications

for baseline comparison.

Regarding GrPPI, we consider two versions: “GrPPI-static” is a more straightforward

implementation that invokes the executor of a specific backend statically within the code;

“GrPPI-dynamic” is an implementation that allows switching between the four backends

dynamically at execution time. This second version requires the addition of the backend

selection mechanism represented in Listing 16. We consider these two versions because,

although dynamic backend selection is a valuable feature of GrPPI, its use is a user option

and not a requirement.

We can see in Figure 5.18 that SPar achieved the best results in all cases, followed

by GrPPI-static. The SPar performed as expected since it uses code annotations that do not

require code-refactoring and low-level implementation. It typically requires a few lines to

enable parallelism.

In parallel implementations with a single farm, GrPPI-dynamic is similar to TBB

and FastFlow. However, we can see that GrPPI shows better results in pipe-farm (PF) imple-

mentations, where the complexity of programming with FastFlow increases considerably.

Concerning cyclomatic complexity, SPar and GrPPI-static presented equivalent results to the

sequential application. On the other hand, PHalstead estimated a longer development time

for GrPPI-dynamic with Lane Detection, Face Recognizer, and Ferret-Farm. The addition of

the backend switching mechanism gives this extra cost. In Bzip2, which has two execution

modes (compress and decompress), this cost is diluted, and GrPPI-dynamic can maintain a

lower development time than TBB and FastFlow. In Ferret-PF, this is due to the significant

increase in implementation complexity with TBB and FastFlow.

The two PPIs that showed the worst programmability results were OpenMP and

ISO C++ Threads (THR). These PPIs do not provide structured parallel patterns, nor do they

abstract away the concurrency control mechanisms. Therefore, they require much more

programming effort. Since both PPIs share some structures in the SPBench benchmarks,

such as communication queues, they have similar results in all three programmability

metrics.

Regarding the use of Halstead’s method, it brought interesting insights. If we look

only at LOCs and CCNs, we might be misled into thinking that SPar and GrPPI-static have

the same programming complexity. However, the Halstead method estimated a much

lower development time for SPar. If we look at the implementation examples with SPar and

GrPPI presented in Listings 6 and 16, it is somewhat noticeable that SPar presents a simpler

and cleaner high-level abstraction interface. SPar does this while giving up on parallelism

customizations. Therefore, we argue that metrics traditionally used in the literature, such

as LOC and CCN, can be inaccurate and lead to erroneous conclusions. PHalstead is a metric

that can be used to complement these analyses. It addresses specific aspects of PPIs and

148

proposes to be a more reliable and accurate alternative for programmability/productivity

evaluation than traditional metrics.

5.8 Overview of the Results

Here we make an overview of the results from Section 5.5, Section 5.6, and

Section 5.7. SPar presented the best programmability results and competitive throughput

performance using a single farm. Although it can reach higher throughputs than handwritten

FastFlow in a pipeline of farms, it is the consequence of its inability to enable on-demand

mode in such a parallel composition. Therefore, it eliminates the on-demand overhead but

pays a high price in latency for this. Also, in general, it cannot achieve latencies as low

as TBB because it uses FastFlow as runtime, which in turn implements a static execution

model. Besides the ease of programming, SPar is easy to use and configure. It already

includes FastFlow and does not require users to install any other specific dependencies.

While the DSL SPar only generates FastFlow code, the GrPPI library allows users to

run the benchmarks with four backends: FastFlow, TBB, OpenMP, and ISO C++ Threads.

Unlike SPar, GrPPI does not follow the “all-inclusive” style and does not provide TBB and

FastFlow within it. Thus, it is up to the users to build and configure the backend PPIs before

installing GrPPI. Installing them and setting up the system environment so GrPPI can see

TBB and FastFlow can be tricky for less experienced users who do not have admin access

to the system.

The performance results of GrPPI varied significantly among the four backends.

Since it provides no mechanism to configure FastFlow queues and scheduling policies, this

greatly limited the performance of this backend. In addition, it only supports an older

version of the FastFlow library (2.2.0), which also limits the users’ option to use newer

features of FastFlow, such as the BOUNDED_BUFFER compiling macros. The second worst

latency, in general, was achieved by GrPPI-THR (ISO C++ Threads). However, it did not

present the throughput performance issue faced by the FastFlow backend.

GrPPI-TBB performed as well as the handwritten TBB in most cases. However, it

presented unexpected increased latency when running Ferret benchmarks. Due to GrPPI’s

internal implementations and lack of documentation, we could not find why it shows this

behavior. For last, GrPPI-OMP presented a surprisingly good performance. In most cases, it

achieved lower latency than handwritten OpenMP, FastFLow, and ISO C++ threads. In the

Lane Detection benchmark, GrPPI-OMP was the PPI that presented the lowest latency when

using hyper-threading. With the Ferret (farm) benchmark, it presented equivalent latency

to handwritten TBB at high parallelism degrees.

Although GrPPI-OMP shows up as a good alternative, we could not run it with the

pipeline of farms composition. In our experiments, we observe that it creates much more

149

and an arbitrary number of threads than what would be expected. For instance, it creates

around 17 threads to run the Ferret pipe-farm with two workers per farm. Thus, with little

parallelism, it already used all the available threads of the architecture it was running.

We could find most of the GrPPI limitations because this work is the first to evaluate

it under a latency perspective, as we showed in the related work Section 5.2. All its backends

presented performance or behavior issues in some of our experiments. The main issues

are higher latency for GrPPI-FF and GrPPI-THR, throughput drop for GrPPI-FF, unexpected

high latency for GrPPI-TBB in Ferret benchmarks, limited parallelism scaling with GrPPI-OMP

in more complex compositions, and poor throughput performance and high memory usage

of GrPPI-FF with a pipeline of farms implementation. Therefore, while GrPPI-THR can deliver

high throughput and does not require installing additional libraries, it delivers poor latency

performance. While GrPPI-OMP delivers decent latency and good throughput performance,

it presents unpredictable behavior in complex parallel compositions. While GrPPI-TBB

presents good latency and throughput performance, it presents unexpected performance

behavior in some cases and may demand more effort to install. GrPPI-FF does not stand

out from the other backends at any point in our evaluation.

TBB, FastFlow, OpenMP, and PThreads (or C++ threads) are the PPIs most used

to validate other solutions in related work, as presented in Section 5.2. The handwritten

benchmarks we implemented using these PPIs presented similar throughput and latency

performance in most cases. Also, they showed equivalent resource usage in single-farm

benchmarks. In the pipeline of farms parallel composition, TBB used slightly more memory

than OpenMP and ISO C++, while FastFlow used over 10% less than the others.

Regarding programmability, OpenMP and ISO C++ threads demand the most

programming effort, as expected, since they do not provide structured parallel patterns or

abstract concurrency control mechanisms. In single-farm benchmarks, TBB and FastFlow

require similar programming effort in our results. For the pipeline of farms composition, the

three programmability metrics we used pointed out that FastFlow required less than twice

the programming effort of TBB. While the productivity/programmability evaluation can

somewhat address the effort of writing parallel code, it cannot address the difficulty it is to

find parallelism configurations that perform decently. In the pipe-farm case, we argue that

the effort required to implement a FastFlow version that achieves performance competitive

with TBB demands much more effort than the metrics point out. And this goes beyond

the complexity of the code itself but also encompasses the parallelism settings required

to achieve the desired performance levels. In addition, code-based metrics also fail to

address other aspects, such as the lack of documentation of PPIs, which would increase

development time. In any case, we believe that the code-based metrics could at least point

in the right direction when evaluating PPIs in our test cases. However, they may fail with

respect to proportionality in more specific cases.

150

5.9 Chapter Summary

In this chapter, we evaluated parallel programming interfaces that support stream

parallelism in C++ regarding performance, memory usage, and programmability/produc-

tivity. We first discussed the related work in Section 5.2. We looked for works that have

similarly evaluated any of the currently supported PPIs in SPBench. The literature review

showed that most related works evaluated performance regarding execution time/speedup

only. Only [Gri16b] evaluated PPIs’ latency, an increasingly relevant metric for real-time

processing. Regarding memory usage, most studies do not consider different parallelism

strategies and degrees of parallelism or different stream processing applications. We

performed our experiments using four real-world application benchmarks, varying par-

allelism degrees, and different compositions of stream parallel patterns. Our work also

differentiated from the others because we used larger input workloads than the studies that

evaluated the same benchmark applications using the same PPIs Also, we run experiments

on a newer and more robust multi-core architecture than most related work. With respect

to programmability, the most used method to evaluate PPIs is through LOC and CCN.

In Section 5.4, we characterized the benchmarks’ workload. It showed that

SPBench applications have varying loads, which allows for representing multiple scenarios.

The characterization results also help with the understanding of specific performance

results. It will still be essential to explain some performance behaviors from the experiments

in Chapters 6 and 7.

In Section 5.5, we evaluate the PPIs TBB, FastFlow, OpenMP, ISO C++ threads,

SPar, GrPPI, and WindFlow. Section 5.5.2 evaluated the throughput and latency performance

of handwritten TBB, FastFlow, OpenMP, and ISO C++ threads. The evaluation was carried

out on three different computers. We used these four PPIs to create benchmarks based on

the Lane Detection, Bzip2, Face Recognizer, and Bzip2 applications from SPBench. Besides

the lower latency achieved by TBB, all these four PPIs performed similarly across different

computers and applications.

The GrPPI performance evaluation was presented in Section 5.5.3. We compared

GrPPI’s backends (TBB, FastFlow, OpenMP, and ISO C++ threads backends) latency and

throughput performance against the handwritten benchmarks. Our experiments showed

that the abstraction layer that GrPPI applies on top of the PPIs results in several limitations

that affect all PPIs’ performance in some way in our test cases. Similarly, in Section 5.5.4,

we evaluated SPar performance. Since SPar generates FastFlow code, we compared

its performance against handwritten FastFlow and GrPPI-FF. SPar presented equivalent

performance to the handwritten benchmark in most cases. However, its abstraction

layer also presented some limitations that prevent users from using specific FastFlow

configurations for better latency performance.

151

Regarding memory usage, we evaluated the performance of PPIs with single-farm

and pipeline of farms parallel compositions. PPIs performed similarly in most cases when

implementing a single-farm structure. The most prominent exception was GrPPI-FF, which

demanded more memory than all the other PPIs combined in some situations. We observed

a strong bond between high latency and high memory usage. Besides GrPPI-FF, this bond is

noticeably present in TBB and FastFlow using hyperthreading in Lane Detection benchmarks

and in SPar at lower parallelism degrees when it implements a pipe-farm pattern.

We finished the evaluation of the PPIs in this chapter by analyzing how they per-

form concerning programmability/productivity. Half of the related work does not address the

programmability aspect of PPIs. Of course, carrying on such an evaluation depends on the

context of the study. The other half mostly considers lines of code or cyclomatic complexity.

[HLLL22] and [AGSF23] are the ones who went beyond and performed programmability

experiments using humans. However, while [HLLL22] evaluated only task parallelism

and with a small group of five Ph.D. level C++ developers, [AGSF23] adopted a biased

methodology that favored some PPIs over others. This highlights the difficulty of adequately

evaluating programmability in parallel computing. On the one hand, experiments with

humans are costly and require a lot of planning. If well-planned and using a representative

group of users it can lead to more accurate results. On the other hand, code-based metrics

are cheap and easy to do but can lead to wrong perceptions. In this work, we contributed in

this respect by evaluating the programmability of the PPIs using Halstead’s method [Hal77],

a widespread method for evaluating applications programming efforts from outside the

parallel programming scope. This method was adapted by [AGS+22] to support stream

parallelism, enabling the evaluation of the PPIs we used in this work. Although it is also a

code-based metric with several limitations, it better emphasizes the differences between

the high-level abstraction interfaces of GrPPI and SPar.

In this chapter, we addressed the following research problem: “Performance

analysis of PPIs for C++ stream processing is usually incomplete”. The literature

review showed that studies comparing PPIs in the stream parallelism context most evaluate

it regarding performance, resource usage, and programmability/productivity. However, the

related work presented several limitations in terms of representative metrics, parallelism

exploration, evaluation methodology, and adequate benchmarks. Our work presents a

latency and throughput analysis of PPIs, the two most important performance metrics

in stream processing. However, if compared to throughput, latency is more susceptible

to optimization problems and requires fine-tuning to keep it low without incurring large

throughput losses. Since latency evaluation is the most lacking analysis in related work, our

extensive analysis in this regard brought a new perspective on these PPIs. The programma-

bility evaluation helped to highlight the benefits of using PPIs that offer structured parallel

patterns since some of them can offer similar or better performance with less programming

effort.

152

In general, the experimental results presented in this chapter helped show the

impact that the limitations imposed by high-level parallelism abstractions can have on the

performance of stream processing applications. In Chapter 6 and 7, we continue addressing

the same research problem we investigated in this chapter. There, we analyze TBB and Fast-

Flow under specific circumstances, such as the impact of varying data stream frequencies

and micro-batching on the performance of traditional stream processing applications.

153

6. DATA STREAM FREQUENCY

Stream processing aims to process data as it arrives, in near real-time. Therefore,

applications in this domain are susceptible to unexpected spikes, bursty phases, and other

abrupt changes in the input streams. It can cause undesirable effects that negatively

impact the throughput and latency or even lead to a system failure or data loss [HSS+14].

Therefore, testing stream processing systems under varying data stream arrival frequency

can help to evaluate the system’s performance and behavior under different load conditions.

It can help to identify bottlenecks or limitations in the system that may affect its ability to

handle high volumes of data or sudden bursts of activity.

In this chapter, we propose a series of algorithms to generate the literature’s most

used data stream frequency patterns for evaluating stream processing. We implemented

these algorithms in SPBench together with mechanisms that allow users dynamically

change the frequency of the input streams and combine different frequency patterns. Then,

we use it to evaluate the impact of data stream frequency on the performance of stream

processing benchmarks implemented with TBB and FastFlow. This chapter includes part of

the study published in the papers [GGSF22a, GGSF23] and has been reproduced here in

accordance with the signed copyright agreement and the copyright holder.

Section 6.1 shows the motivational scenario. Then, Section 6.2 presents this

chapter’s related work. In previous work [GGSF22a], we designed some preliminary strate-

gies for generating data stream frequency patterns and then evaluated the performance

of FastFlow and TBB in this scenario. We briefly present this first design and analysis

in Section 6.4.1. In a more recent work [GGSF23], we redesigned the old strategy by

implementing algorithms and mechanisms that allow for generating frequency patterns

more precisely, predictably, controllably, and dynamically. Section 6.4.2 presents this

new design with the current algorithms and mechanisms that enables it in SPBench. In

Section 6.5, we use this SPBench feature to evaluate the impact of data stream frequency

on stream processing PPIs and applications.

154

Contents

6.1 MOTIVATION . 155

6.2 RELATED WORK . 156

6.3 DATA STREAM FREQUENCY MANAGER . 159

6.4 FREQUENCY PATTERNS . 160

6.4.1 FIRST PROPOSED SOLUTION . 160

6.4.2 CURRENT SOLUTION . 163

6.5 EXPERIMENTAL EVALUATION . 167

6.5.1 EXPERIMENTAL METHODOLOGY . 167

6.5.2 EXPERIMENTAL RESULTS . 168

6.5.3 DISCUSSION OF THE RESULTS . 176

6.6 CHAPTER SUMMARY . 177

155

6.1 Motivation

It is pretty standard for data not to arrive at constant speeds throughout the

execution of a stream processing application. Fluctuations can occur due to workload char-

acteristics, transient network issues, garbage collection in JVM-based engines, etc [KRK+18].

However, when the data frequency is significantly higher than the system’s processing

capacity, it can cause a buffer overflow or memory exhaustion, leading to crashes and

data loss. Examples of loads that can present huge and often predicted fluctuations are

data from network monitoring, traffic control, GPS, social media, etc. These fluctuations

link to the times people use these services the most throughout the day and draw a wave-

form. However, many works in the literature need to do tests with abrupt fluctuations and

shorter periods [BTO13, KRK+18, SCS17, PHUK20, AMDA20]. The result is input streams

that present spikes and binary frequency patterns.

Sometimes, when the data frequency exceeds the sustainable throughput [IPV17,

KRK+18] of the application, this can result in an increased allocation of computational

resources and trigger amortization techniques such as batching or back pressure mech-

anisms [HSS+14, KRK+18]. These mechanisms are activated to avoid data loss (e.g.,

load shedding), and frameworks may require several minutes of resource reconfigu-

ration to increase data throughput. There is significant research and development ef-

fort toward mitigating the impact of these fluctuations in input streams and increasing

fault tolerance. Scientists are constantly developing solutions for applications in the

SP domain, both for design applications using new technologies and for adaptive sys-

tems [ZSRS16, TCN+16, AMDA20, SRG+20, APTE21, LZS+22, VGDF22]. Therefore, it is

important to have benchmarks that help simulate specific data overload scenarios so

that these research solutions and SP systems can be properly evaluated. For example, a

benchmark that simulates increasing frequency variations to analyze if the system can

sustain a target throughput or latency.

Data frequency can have different meanings in stream processing. It can mean the

frequency with which the application receives items of the same type. The literature uses

several synonyms, such as data arrival/item/stream rate or frequency, stream pressure,

input frequency, etc. Here, we define data stream frequency as the number of items

available for the source operators to read per unit of time. In practice, in this work, we add

a time delay at the beginning of the source’s main loop. Decreasing the time delay entails

increasing the data frequency and vice versa.

In some cases, data stream frequency merges with the concept of data intensity

or complexity [HH21a]. In these cases, the workload defines its behavior by the size or

computational cost of the items. In [DSTD16], for example, the authors use an image

processing application and cut the resolution of the input images at specific points by half.

156

They used it to simulate a binary pattern. [SRG+20] used real and custom workloads for

data compression with stretches of higher and lower processing costs. In this work, we do

not artificially modify the input workloads because they naturally exhibit intensity patterns

similar to a wave, binary, and other patterns (Section 5.4).

To our knowledge, no one has compared Threading Building Blocks [VAR19] with

FastFlow [ADKT17a] in stream processing applications concerning throughput and latency

under these circumstances. Works from the literature that assess these PPIs mainly

use fixed data frequency. Analyzing data frequency in stream processing with multiple

applications is complex and challenging. In the related work (Section 6.2), we have not

found available support tools or frameworks that allow users to create custom stream

processing benchmarks with native support for latency and throughput analysis under

dynamic data frequency and frequency patterns.

6.2 Related Work

In this chapter, we propose a series of algorithms for generating the most used

data frequency strategies for SP evaluation in the literature. We integrate them into the

SPBench benchmarking framework, which already includes mechanisms for dynamically

changing the data frequency on its benchmarks. Then, we use SPBench to investigate

the impact of data stream frequency on the performance of traditional stream processing

applications. Therefore, as related work, we considered tools and techniques for generating

data streams with manageable frequency and research works that deliberately evaluated

SP systems under specific data frequencies.

Das et al. [DZSS14] propose a self-adaptive algorithm to reduce the latency of

distributed batched streaming systems through dynamic batching resizing. They used

Apache Spark and tested the algorithm by varying the input data rate with waveform

and binary (sudden low-high frequency changes) strategies. [ZSRS16] targeted the same

problem with a different approach, but they also tested their algorithm using a binary

strategy for data stream frequency. [SRG+20] also have the same goal, but they target

compression algorithms and graphics processing units (GPUs). Here the authors tested

the algorithm with four workloads presenting different complexity patterns across the

dataset to vary the data intensity. Abdelhamid et al. [AMDA20] introduce an algorithm for

self-adaptive parallelism for micro-batch stream processing and test it with several data

stream frequency strategies.

In [DSTD16] the authors propose a reconfiguration algorithm for power-aware

parallel applications. They implemented the algorithm in the PARSEC [BKSL08] suite using

FastFlow and tested it by changing the size of the items to simulate drops and rises in data

intensity. In [HH21b], the authors evaluated the scalability of benchmarks implemented

157

with Apache Flink and Apache Kafka Streams by varying the data stream frequency. The

strategy they used to increase data frequency was to increase the number of data sources

rather than increase the rate of item generation. ESPBench [HMP+21] is a benchmark for

the enterprise stream processing domain. It implements an abstraction layer using Apache

Bean, which allows running the benchmark using different DSPSs. It has a configuration file

where users can adjust the input stream frequency via Apache Kafka, which is the message

broker used by ESPBench. Although it is a benchmark that aims to make it simple and easy

to evaluate and compare different stream processing systems, it is still limited in terms of

workload, metrics (it only measures latency), and supported architecture.

RIoTBench [SCS17] is a benchmark suite for IoT stream processing. They evalu-

ated Storm’s performance under real workloads exhibiting increasing, decreasing, wave,

and binary data stream frequency strategies. [vDVdP20] evaluated the performance of

micro-batching DSPSs using two data intensity strategies: workload with a burst at startup

and workload with periodic burst spikes. Wang et al. [WFM+19] presented a Storm-based

framework for auto-elasticity and tested it using data size and complexity to tune the data

intensity. In [LPDTP+12] is proposed a framework for generating data to evaluate different

engines for Linked Stream Data (LSD). This framework allows different parameters to be

adjusted, such as data size, the number of sources, and data stream frequency. Karimov

et al. [KRK+18] propose a benchmarking framework that generates data at a configurable

rate and acts as a distributed in-memory data generator for evaluating DSPSs. The authors

evaluated Apache Flink, Apache Storm, and Apache Spark with different workloads. They

first ran these systems at maximum intensity and then decreased it until they found the

point of sustainable throughput (no back-pressure) for each. Based on this point, They

varied the data frequency with a binary strategy to see how well these DSPSs could handle

and adapt to spikes and rapid changes in stream speed.

NAMB [PHUK20] is a framework that automatically generates micro-benchmarks

to evaluate DSPSs. It includes a Kafka synthetic workload generator that can be configured

to generate data streams at different frequencies. They evaluated the micro-benchmarks

using a binary strategy for data stream frequency. Balkesen et al [BTO13] proposed a

framework for adaptive input admission and data management in distributed stream

processing. The authors used the distributed engine Borealis and modeled synthetic

and real GPS data to meet several specific data stream frequency strategies to test the

framework. In [DMM16], some strategies are presented for proactive elasticity and energy

awareness in data stream processing. This work targets multi-core architectures and uses

FastFlow [ADKT17a] to perform the experiments. In addition to the original workload, it

implements a strategy where the data frequency increases or decreases in small random

steps.

BenchBase (formerly OLTP-Bench) [DPCCM13] is an open-source multi-threaded

streaming load generator for benchmarking parallel database management systems

158

(DBMSs). It is able to generate streams with variable data frequency. The authors evaluated

several DBMS benchmarks using BenchBase for generating streams with binary, spike, and

increasing data frequency patterns. [TCN+16] proposed a self-adaptive batch-based stream-

ing middleware for efficient transfers of events between cloud data centers. They test the

performance and adaptability of their solution using a binary data stream frequency.

Although many of these works evaluated different stream processing PPIs under

different data stream frequencies, most aim for distributed engines [LPDTP+12, DPCCM13,

TCN+16, PHUK20]. Other works have evaluated PPIs that support multi-core architectures,

but either the focus was on stream processing on GPUs [SRG+20], or they did not compare

different PPIs [DMM16, DSTD16]. Regarding performance evaluation, they are commonly ei-

ther latency-, or throughput-aware [LPDTP+12, DZSS14, ZSRS16, SRG+20, AMDA20]. Those

that allow modifying the frequency of the input stream, usually through Apache Kafka,

only allow static configurations or do not provide simplified ways for the users to manage

it and create specific frequency patterns. Therefore, none of the related work we found

compares the impact of data stream frequency on the performance of different PPIs for

stream processing on multi-cores. To our knowledge, there are no similar approaches for

benchmarking stream processing with data frequency configurations as SPBench does.

Data frequency pattern Related work

Increasing
[LPDTP+12, DPCCM13, IPV17, IPV18, SCS17]

[AMDA20, HH21b, CYH21, PGMPG21, SCW+22]

Wave
[BTO13, DZSS14, GSHW14, IPV17, RNCLP18]

[IPV18, AMDA20, SCS17, APTE21]

Binary
[BTO13, DPCCM13, DZSS14, ZSRS16, TCN+16, KRK+18]

[PHUK20, AMDA20, SCS17, vDVdP20]

Spike
[DPCCM13, HJHF14, IPV18]

[RNCLP18, MCT+20, vDVdP20, LALC+22]

Table 6.1: Data stream frequency patterns found in the literature.

This literature review helped us identify the most used stream frequency patterns

and strategies for evaluating stream processing in the literature. Table 6.1 presents the

data stream frequency (or data intensity) patterns that have been used at least twice in

related work. It shows that wave, binary, increasing, and spike are the most commonly

used patterns. Therefore, we developed algorithms to generate data streams at such

frequency patterns. Then, we extended SPBench by supporting dynamic data frequency

selection and custom frequency patterns. Therefore, through SPBench, users can create

custom benchmarks, run tests with specific data frequency configurations, use pre-defined

data frequency patterns, or create custom strategies.

159

6.3 Data Stream Frequency Manager

SPBench does not yet support external data generators. All the input workload

data is stored on the disk, and the Source operators are responsible for reading this data

and generating the data streams. Therefore, the sources have complete control over the

incoming data because all the data is already there. Data frequency can be as fast as it

takes for the sources to read it from disk or memory (when running in-memory). In this

model, there are three main factors that limit the maximum frequency in which sources

can generate data items: (1) the cost of composing a data item, which involves adding

timestamps and other auxiliary data; (2) delays introduced in the stream by subsequent

stages, such as the unavailability of free workers to send the data; and (3) the lack of

computing resources in an over-subscription scenario.

The data stream frequency in SPBench is controlled by adding a time delay at

the beginning of the source operator. A longer time delay implies a lower data frequency

and vice versa. For example, a frequency of 100 means that at most 100 items will be

available to be consumed by the source per second. It does not imply that the source

will generate and send 100 items per second to the workers because the source of each

application has its own delay, which can be mainly caused by some of the three factors we

discussed earlier or others. We used a strategy to attenuate the impact of these delays on

the precision of the resulting data frequency.

Algorithm 6.1 SPBench’s algorithm for frequency management

1: function freqManager(lastItemTimestamp)
2: frequency ← frequencyPatternGenerator()
3: expectedDelay ← 1000000/frequency ▷ In microseconds
4: ProcTimeOfLastItem← currentTime() - lastItemTimestamp
5: actualDelay ← expectedDelay − ProcTimeOfLastItem
6: if actualDelay > 0 then
7: usleep(actualDelay)
8: end if
9: end function

Algorithm 6.1 presents the methodology used to manage the frequency and

compute the inter-item delay. The function freqManager is called at the beginning of the

source operator. It takes the source’s last processed item’s timestamp as an argument.

The timestamp of each item is also assigned at the beginning of the source. The first thing

freqManager does is adjust the frequency according to the set frequency pattern. If no

pattern has been set, frequencyPatternGenerator returns the frequency itself. Then, on

line 3, the expected time delay in microseconds is computed according to the predefined

frequency. Next, it computes the time elapsed since the source received the last item.

This elapsed time is then subtracted from the expected delay (line 5). If the result of

160

the subtraction is higher than zero, the source still has to wait to receive the next item.

Otherwise, the item is released immediately. So, for example, if the user has set the

frequency to 2 items per second (500 ms delay), and the source took 150 ms to process

and send the last item, then freqManager will add a delay of 350 ms to release the next

item.

Users can statically or dynamically change the data stream frequency of a bench-

mark in SPBench. To dynamically change it, users can use the SPBench::setFrequency()

method in the benchmark’s source code at any time during the execution. To set a static

frequency throughout the execution, users can simply use the -frequency parameter in

the exec command, as below:

./spbench exec ... -frequency <number of items per second>

6.4 Frequency Patterns

The frequency patterns we refer to here are simply strategies for generating an x-

value to be used with the SPBench::setFrequency() method. The strategy must compute

the value of x so that the frequency data generated by SPBench::setFrequency(x) follows

a specific pattern, like linear increasing or smoothly increasing/decreasing like a sine wave,

spikes, etc. At first, we followed a simpler, static strategy to create these patterns. Analysis

has been published using these strategies in [GGSF22a]. After that, we improved our

methodology and developed better algorithms to generate the patterns. This second stage,

published in [GGSF23], is the current strategy included in SPBench, and the performance

analyses presented in Section 6.5 use these new strategies. Next, in Subsection 6.4.1, we

briefly discuss the first strategy and some results. In Subsection 6.4.2, we present the

current strategies for generating data frequency patterns.

6.4.1 First Proposed Solution

In the first version of the frequency manager, instead of the user selecting a target

source throughput, as it is now, the user explicitly indicated the inter-item time delay. Also,

computing this time delay was done statically and required prior knowledge about the

stream size. The input workload was then sliced into 20 slices, and each slice was executed

with a certain frequency. Since 20 slices is a very high granularity, the result of a linear

increasing pattern, for example, looked much more like a staircase than a line. The same

applies to the other frequency patterns.

Thus, in each application, the amount of data items these slices contained varied.

1/20 part of Ferret’s huge input workload class, for example, represents 225 items against

161

 0

 700

 1400

Decreasing Increasing

 0

 700

 1400

Wave

 0

 700

 1400

0 100 200 300 400 500 600

L
a

te
n

c
y
 (

m
s
)

Execution time (seconds)

Binary

(a) Threading Building Blocks

 0

 700

 1400

Decreasing Increasing

 0

 700

 1400

Wave

 0

 700

 1400

0 100 200 300 400 500 600

L
a

te
n

c
y
 (

m
s
)

Execution time (seconds)

Binary

(b) FastFlow

Figure 6.1: Latency of Ferret TBB and FastFlow benchmarks (farm) under different data
stream frequency strategies.

Source: [GGSF22a] ©2022 IEEE.

 0

 250

 500

 214 215 216 217 218

L
a
te

n
c
y
 (

m
s
)

Execution time (seconds)

Binary

Figure 6.2: Snapshot from Figure 6.1 of a frequency switching cycle from Ferret using the
binary pattern.

Source: [GGSF22a] ©2022 IEEE.

162

22 items in Person Recognition. Besides the problem of having to know the size of the

stream in advance to compute the size of the slices, running slices at high frequency and

others at low frequency mischaracterized the resulting frequency pattern. For example, in

a binary pattern, is expected the frequency to interchange from time to time between a low

and high-frequency state. However, if the switching of states is done over a pre-set number

of items, the high-frequency state is processed and finished in moments, looking more like

a spike pattern than a binary one. This behavior can be observed in the latency results

in Figure 6.1, taken from [GGSF22a]. Figure 6.2 shows a snapshot of a high-frequency

state of the binary pattern in Ferret. It takes less about 1.5 seconds for Ferret to process

the 225 items of the high-frequency slices and about 50 seconds for the low-frequency

ones. This way, the application under this binary pattern runs less than 15 seconds in a

high-frequency state and more than 500 seconds in a low-frequency state. Such behavior

is more a spike characteristic than a binary one. The same problem with the binary pattern

can be generalized to the other patterns in Figure 6.1. In all of them, the application stays

very little in the maximum frequency states (when the latency is low in the graphs).

Therefore the first strategy we used to draw the data frequency patterns did not

perform as intended. The output we would expect from the fluctuating frequency patterns,

such as wave and binary, is that it balances high and low-frequency states throughout the

run. This behavior is nearly impossible to achieve with unstable input workloads and the

static item-based slicing strategy we used in the first version. The frequency computation

should not vary according to the application’s behavior but according to an external factor

instead, such as the elapsed time. This way, we can imitate scenarios where the data

frequency is affected by external agents.

In addition, the performance metrics we used were not adequate for this type

of evaluation. We measured per-item latency and global average throughput. Per-item

latency makes the granularity too fine that the computing load of individual data items

makes the analysis more difficult. A global average for throughput dilutes the impact of the

frequency fluctuations and also makes it more difficult to extract any relevant conclusions

from it. We did not evaluate the throughput in [GGSF22a] because of this problem. Ideally,

we should use instant latency and throughput instead, which is computing the average of

these metrics over short periods of time. It attenuates the impact of item load in latency

and allows for visualizing the throughput changes throughout the execution.

Despite our challenges with this first solution, we extracted valuable analyses

from the experiments. However, many conclusions are shared with the results obtained in

the improved version, currently used in SPBench and which we will present in Section 6.4.2

below. Therefore, we will not present and discuss the results obtained with this first solution

in this chapter. The paper with the complete analyses based on this first strategy is

available in the reference [GGSF22a].

163

6.4.2 Current Solution

In the first proposed solution, we implemented the frequency patterns in a static

way. It was item-oriented, which means that building up the frequency patterns required

previous knowledge about the number of items to be processed. Then it sliced this number

into twenty steps, and the frequency would increase or decrease according to the chosen

frequency pattern at each step. It led to unwanted behaviors, such as the inability to keep

the input at a high-frequency state for more than a small fraction of time in high-throughput

applications.

To solve the issues from the first proposed solution, we have changed our strategy

and improved the frequency pattern generation algorithms. In this second and current

solution, the computation is time-based rather than based on the number of input data

items. This way, we can draw much more predictable and accurate frequency waveforms.

We recently published the strategy we present in this section in [GGSF23].

The frequency patterns currently supported by the SPBench are sine wave, binary,

increasing, decreasing, and spike. All these patterns can be set via four parameters: pattern

type, cycle period, minimum frequency, and maximum frequency. The exception is the

spike pattern that can also get an additional parameter to define the spike duration interval

as a percentage of the period (default is 10%). Users can use the frequency patterns

through the -freq-patt exec parameter:

./spbench exec ... -freq-patt <pattern,period,minFreq,maxFreq>

Another alternative is to use the SPBench::setFrequencyPattern() function

available for use inside the benchmark. This function can change the patterns and their

behavior anytime during the run. Therefore, the data frequency in the input stream is

highly configurable in SPBench. The following subsections describe how we implemented

these frequency patterns within SPBench.

Sine Wave Frequency Pattern

The SPBench implements the wave pattern based on a sine wave given by Equa-

tion 6.1 [FK15].

A · sin(2πft + φ) + k (6.1)

Where:

164

• A is the amplitude, the peak deviation of the function from zero.

• f is the ordinary frequency, the number of cycles that occur each second of time.

• t is the elapsed time.

• φ is the phase shift, where in its cycle the wave is at t = 0.

• k is the vertical shift from zero.

Algorithm 6.2 Sine wave frequency pattern

1: A← (maxFrequency −minFrequency)/2
2: f ← 1/period
3: k ← A + minFrequency
4: function setPattern(A, f , k)
5: newFrequency ← A× sin(2× π × f× elapsedTime()) + k
6: setFrequency(newFrequency)
7: end function

So, based on the input parameters and the sine wave equation, we implement the

input frequency as described in Algorithm 6.2. In this algorithm, lines 1-3 represent the

computation of some presets for the sine wave function. These variables are computed

only once, or every time the pattern is modified since users can dynamically change the

parameters or select a different pattern during the execution. The wavePatternGenerator

function receives these parameters and uses them and the application’s execution time to

compute the sine, updating the frequency.

Binary Frequency Pattern

The binary frequency pattern interchanges between the maximum and minimum

frequency set by users with an instantaneous transition, unlike the sine wave, where the

transition is smooth. Therefore, the frequency under this pattern draws a kind of square

wave. This pattern can simulate scenarios where sudden changes occur and remain for

some time in the input stream.

The frequency in the binary pattern has two possible states: minimum or max-

imum. These states alternate once in a period (it changes from minimum to maximum

frequency) and then repeat this pattern cyclically. Algorithm 6.3 shows the methodology

we used to implement it. It uses a variable to store the current state (lines 2, 10, and 13)

and changes between the states each half cycle (line 6).

Increasing and Decreasing Frequency Patterns

The increasing and decreasing patterns are not cyclic. Here, the frequency in-

creases or decreases linearly and once, from minimum to maximum, or vice versa, over

165

Algorithm 6.3 Binary frequency pattern

1: halfCycle← period/2
2: isAtMaxState← false
3: halfCycleStartTime← getCurrentTime()
4: function binaryPatternGenerator(spikeInterval)
5: halfCycleElapsedTime← getCurrentTime() - halfCycleStartTime
6: if halfCycleElapsedTime > halfCycle then
7: halfCycleStartTime← getCurrentTime()
8: if isAtMaxState == false then
9: setFrequency(maxFrequency)

10: isAtMaxState← true
11: else
12: setFrequency(minFrequency)
13: isAtMaxState← false
14: end if
15: end if
16: end function

the user-defined period. After the period, the frequency no longer changes and remains

constant at the user-defined maximum frequency (increasing case) or minimum frequency

(decreasing case). These frequency patterns can help test adaptive resource provision

scenarios over long intervals, for example.

Algorithm 6.4 Increasing frequency pattern

1: incrementStep ← (maxFrequency −minFrequency)/period
2: setFrequency(minFrequency)
3: stepStartTime← getCurrentTime()
4: function increasingPatternGenerator()
5: if getFrequency() < maxFrequency then
6: stepElapsedTime← getCurrentTime() - stepStartTime
7: newFrequency ← getFrequency() + (stepElapsedTime × incrementStep)
8: setFrequency(newFrequency)
9: stepStartTime← getCurrentTime()

10: end if
11: end function

Algorithm 6.4 presents our strategy to implement the increasing pattern in SP-

Bench. Generating this pattern is not as simple as it may seem. First, we divide the range

between maximum and minimum frequency by the period (line 1). This value represents

how much we need to increase the frequency per second to draw a linear increase over

the period. However, this algorithm does not run independently, in a separate thread, for

example. It runs every time an item arrives at the source. However, items may arrive at

irregular intervals because of the workload’s intrinsic characteristics, among other factors.

Therefore, SPBench always needs to recalculate the step size on an increasing frequency.

To do this, we take the elapsed time in seconds from the last step and multiply the step

166

size that should be taken per second (incrementStep) by this value. After recalculating the

step size, the algorithm adds this value to the current frequency (line 7 of the algorithm).

Thus, if the source operator took three seconds to process an item, the SPBench will take

three steps in incrementing the frequency for the next item. Similarly, if an item took 500

ms, the algorithm will only take half an increasing step for the following item. The strategy

that generates the decreasing pattern is exactly the opposite logic.

Spike Frequency Pattern

The spike frequency pattern is cyclical and creates one spike per period. This

pattern can represent scenarios where the frequency changes abruptly for short intervals.

Here, in addition to the maximum and minimum frequency and the period, users can modify

the spike’s duration. This duration is defined as a percentage of the period, and the default

value is 10%. In 10 seconds, during the last second, the SPBench would incrementally

increase the frequency to the maximum and drop it to the minimum frequency again,

creating a one-second spike with a sawtooth shape, for example.

Algorithm 6.5 Spike frequency pattern

1: setFrequency(minFreq)
2: spikeInterval ← period × (spikeSize/100) ▷ Spike size is given as percentage of period
3: spikeIncreFactor ← (maxFreq −minFreq)/spikeInterval
4: lowFreqInterval ← period − spikeInterval
5: periodStartTime← currentTime()
6: function spikePatternGenerator()
7: periodElapsedTime← currentTime() - periodStartTime
8: if periodElapsedTime > lowInterval then
9: step ← (periodElapsedTime − lowFreqInterval)× spikeIncreFactor

10: newFrequency ← minFreq + step
11: setFrequency(newFrequency)
12: if periodElapsedTime > period then
13: setFrequency(minFreq)
14: periodStartTime← currentTime()
15: end if
16: end if
17: end function

The strategy used to create this pattern is in the Algorithm 6.5. Like the other

algorithms, there is an initialization phase that runs only once. First, we set the frequency

to the minimum. Then we compute the duration of the spike based on the percentage of

the period the user has chosen. With this value, on line 3, we calculate the spike factor,

which is how much we need to increase the frequency per second during the spike phase.

Here we also calculate how long the low-frequency phase, the off-spike phase in each cycle,

should last (line 4). Therefore, whenever the elapsed time of the cycle is longer than the

low phase (line 8), the algorithm creates a spike. The logic we use to increase the frequency

167

in the spike in lines 9 and 10 is the same in the increasing pattern. For the last, every time

the elapsed time of the cycle is greater than the user-defined period (line 12), the spike

ends, and the cycle starts again.

6.5 Experimental Evaluation

In this section, we investigate the impact of data stream frequency on the per-

formance of parallel programming interfaces. We run experiments with four benchmarks

under five frequency patterns and evaluate two performance metrics (latency and through-

put). Therefore, we are only evaluating and comparing two PPIs in this chapter: FastFlow

and Threading Building Blocks (TBB). We chose TBB and FastFlow because they are the two

most popular PPIs that provide structured parallel patterns for C++ stream parallelism in

our related work (Section 5.2). Also, these two PPIs present several differences, mainly

regarding low-level implementation and task-scheduling strategies.

6.5.1 Experimental Methodology

To model the frequency patterns through SPBench, we adopted the same criteria

for all benchmarks. We first run the benchmark with the same parameters but without

setting a specific frequency, i.e., we run it at maximum frequency, which is delimited by the

underneath hardware. Then we measure this sample’s average throughput and execution

time and use this data to model the frequency patterns and re-run the benchmarks. We

run all the benchmarks using the in-memory mode in SPBench, which allows for achieving

higher frequencies since reading data from memory is faster than reading it from disk.

For all the patterns, we set the minimum frequency to be 10% of the average

throughput of the sample. The maximum frequency was equal to 110% of the average

throughput. For the periodic patterns (wave, binary, and spike), the size of each period was

set to 1/3 of the sample execution time for at least three cycles to occur. The period was

equal to the execution time for the non-cyclical patterns (increasing and decreasing). We

also set each spike duration as 10% of the period for the spike pattern.

We measured performance by monitoring each benchmark throughout its exe-

cution. We used the routines of the SPBench, which allows for performance monitoring

with microsecond precision. We measure the instantaneous latency and the instantaneous

throughput, which is the average of these metrics over a short time interval. These are the

same metrics we used for the workload characterization, presented in Section 5.4. There,

we used a 5-second average interval since fewer items are processed per second in the

sequential applications. However, the parallel benchmarks we evaluate here have higher

168

throughputs. Therefore, we have reduced the average interval to 250 ms. We did not use

an interval lower than that to avoid interfering with the results.

The experiments in this section were conducted on the Xeon Silver 4210 computer,

described in Section 5.3. It is a 40-threads multicore computer. We run TBB with 40 threads

and FastFlow with 40 farm workers, following the oversubscription strategy discussed in

Section 5.5.1.

6.5.2 Experimental Results

This section presents the experimental results using data stream frequency pat-

terns. We use frequency patterns widely used in related work, such as: increasing, wave,

binary, and spike. We also run the benchmarks with the decreasing pattern provided by

SPBench.

The combinations of frequency patterns and applications we tested resulted in

many data. Therefore, we present the most representative results for each frequency

pattern. The graphs show the frequency set for the input stream as dashed lines. Since

the frequency patterns were built based on data given by pre-runs of the benchmarks,

the resulting frequency patterns for TBB and FastFlow may vary. Although the throughput

performance of these interfaces is very similar, minor differences can accumulate and

change the target frequency as the run progresses. For this reason, graphs show the

frequency set for each of the PPIs along the execution. The top graph of each figure

presents the instantaneous throughput, and the bottom graph shows the instantaneous

latency.

Figure 6.3 shows the latency and throughput of Bzip2, Lane Detection, and Ferret

benchmarks running under a wave frequency pattern. In Bzip2 and Lane Detection, TBB

benchmarks take a little longer to execute than FastFlow. Based on that, we can assume

that the throughput with FastFlow is slightly higher on average since it processes the same

number of items in a shorter time. On the other hand, at high frequencies, FastFlow could

not sustain a low latency, presenting high latency spikes in Bzip2 and Lane Detection. If we

look at Ferret’s results in Figure 6.3c, however, we can see that the difference in latency

between TBB and FastFlow decreases. Also, FastFlow’s execution time is longer in these

cases, which implies lower throughput. It was expected that FastFlow would not perform as

well as TBB in this case. After all, Ferret implements the pipeline-farm parallel pattern, and

load unbalancing is a big issue for Ferret. So FastFlow is at a considerable disadvantage in

these scenarios. On the other hand, in applications that do not require ordering, as with

Ferret, as long as there is computational resource available, a TBB task can process an

item from the beginning to the end of the pipeline without interruption. So this scenario is

where TBB has a significant advantage, as opposed to FastFlow.

169

 0

 88

 176

 264

FF freq. TBB freq. FF TBB

77

154

231

308

385

0 5 10 15 20 25 30 35 40 45

T
h

ro
u

g
h

p
u

t
L

a
te

n
c
y
 (

m
s
)

Execution time (seconds)

(a) Bzip2 (farm)

 0

 134

 268

 402

FF freq. TBB freq. FF TBB

141

282

423

564

0 5 10 15 20 25 30 35

T
h

ro
u

g
h

p
u

t
L

a
te

n
c
y
 (

m
s
)

Execution time (seconds)

(b) Lane Detection (farm)

 0

 77

 154

 231

FF freq. TBB freq. FF TBB

0

224

448

672

0 5 10 15 20 25 30 35

T
h

ro
u

g
h

p
u

t
L

a
te

n
c
y
 (

m
s
)

Execution time (seconds)

(c) Ferret (pipeline of farms)

Figure 6.3: Wave frequency pattern with Bzip2, Lane Detection, and Ferret.

Source: [GGSF23] ©20XX Springer Nature.

Figure 6.4 presents the results for the binary pattern. For example, a binary

pattern in a Lane Detection application can represent scenarios where there are sensor

cameras with dynamic FPS, and the frame rate rapidly decreases or increases if the vehicle

stops or starts moving. Comparing the results for Bzip2 with the wave pattern, it is possible

to observe that the latency is higher at the maximum state in the binary case. It is an

expected difference since the frequency stays at a high state in a sinusoidal wave for a

smaller time interval. In Lane Detection, the latency results with wave and binary are

170

 0

 85

 170

 255

FF freq. TBB freq. FF TBB

105

210

315

420

0 5 10 15 20 25 30 35 40 45

T
h

ro
u

g
h

p
u

t
L

a
te

n
c
y
 (

m
s
)

Execution time (seconds)

(a) Bzip2 (farm)

 0

 81

 162

 243

FF freq. TBB freq. FF TBB

0

199

398

597

796

0 5 10 15 20 25 30 35 40

T
h

ro
u

g
h

p
u

t
L

a
te

n
c
y
 (

m
s
)

Execution time (seconds)

(b) Lane Detection (farm)

 0

 78

 156

 234

FF freq. TBB freq. FF TBB

0

265

530

795

0 5 10 15 20 25 30 35 40

T
h

ro
u

g
h

p
u

t
L

a
te

n
c
y
 (

m
s
)

Execution time (seconds)

(c) Ferret (pipeline of farms)

Figure 6.4: Binary frequency pattern with Bzip2, Lane Detection, and Ferret.

Source: [GGSF23] ©20XX Springer Nature.

a bit different. With the wave pattern, FastFlow reduces the latency in the latter part of

the execution, even at high-frequency times. However, this behavior is not observed in

the binary pattern. We hypothesize that this is related to the natural frequency of the

workload in this application. In Figure 5.2, we can see that the latency already shows a

kind of wave pattern itself in the final part. So we assume that this wave pattern from the

workload matches the wave pattern generated by the SPBench. It probably occurs in the

binary pattern as well. After all, the latency peaks are also smaller in the final part of the

171

execution, but the effects are less noticeable due to the sudden state changes. Besides

the higher latency presented by FastFlow, in Lane Detection, its execution time was almost

5% lower than TBB. Regarding Ferret with binary frequency pattern, the behavior was very

similar to the wave pattern, and the same considerations apply here.

 0

 83

 166

 249

FF freq. TBB freq. FF TBB

107

214

321

428

0 5 10 15 20 25 30 35

T
h

ro
u

g
h

p
u

t
L

a
te

n
c
y
 (

m
s
)

Execution time (seconds)

(a) Bzip2 (farm)

 0

 21

 42

 63

FF freq. TBB freq. FF TBB

725

1450

2175

2900

0 10 20 30 40 50 60

T
h

ro
u

g
h

p
u

t
L

a
te

n
c
y
 (

m
s
)

Execution time (seconds)

(b) Face Recognizer (farm)

 0

 78

 156

 234

FF freq. TBB freq. FF TBB

0

431

862

1293

0 5 10 15 20 25 30

T
h

ro
u

g
h

p
u

t
L

a
te

n
c
y
 (

m
s
)

Execution time (seconds)

(c) Ferret (pipeline of farms)

Figure 6.5: Increasing frequency pattern with Bzip2, Face Recognizer, and Ferret.

Source: [GGSF23] ©20XX Springer Nature.

The results for the increasing frequency pattern are in Figure 6.5. Here we

evaluate the benchmarks for Bzip2, Face Recognizer, and Ferret applications. Bzip2 and

Face Recognizer presented a distinct behavior. As previously discussed, the maximum

172

target frequency in this experiment is 110% of the average throughput the application can

sustain at maximum frequency. Since Bzip2 has a more stable input, presenting minor

fluctuations along with the execution (see Section 5.4), once the target frequency reaches

the threshold given by the sustainable frequency, the throughput stabilizes, and there is a

latency jump with FastFlow (Figure 6.5a). We believe that the main reason for this is that, in

FastFlow, the source reads an item from the input stream even if there is no free worker to

process it or free space in their queues [ADKT17a]. So, this item remains enqueued, waiting

to be processed, increasing its processing time, thus the latency. In the TBB state-based

pipeline, when an item (token) is assigned to a thread, this thread can run this item through

all the stages of the pipeline until it is no more possible (when it encounters an ordered

stage and the item is not in the correct order, for instance) [MSS04]. However, cluttering is

less present in more stable workloads, mainly when items are more computationally costly

(Bzip’s case). Therefore, this method can avoid queuing items between stages, implying

reduced latency. The steady throughput increase of TBB can confirm it.

On the other hand, the natural latency of the Face Recognizer workload is not as

stable as that of Bzip2. Therefore, items are processed at different speeds by each worker.

So as we increase the frequency, the item clutter gets worse. It dramatically impacts

FastFlow, increasing latency before the frequency reaches the sustainable throughput level

(Figure 6.5b). However, it also impacts TBB, which shows a rapid increase in latency at the

moment of maximum frequency. In this scenario, a single TBB thread cannot process an

item from end to end of the pipeline. If the item arrives in a disordered state at the last

stage, the thread puts that item in a buffer and takes another task to execute, increasing

the latency for that item.

Regarding Ferret (Figure 6.5c), FastFlow’s latency is almost equal to TBB when

the frequency is slightly below the maximum sustainable throughput. So, in scenarios like

increasing, where most of the time the frequency is below this limit, FastFlow can keep

the latency closer to TBB for longer. That is because, under low frequencies, there are

more chances of having resources to process the items that the source takes from the

input stream. With TBB and its task scheduler [VAR19], in our experiments, there will be

resources to keep processing further an item taken from the input stream most of the time.

It contributes to keeping the latency low. However, like in the other frequency patterns,

Ferret has this throughput drop and latency spike in the last few seconds, which occurs

in both FastFlow and TBB. We do not precisely know what causes this behavior, but we

suspect it is a consequence of load unbalancing.

Figure 6.6 shows the behavior of Face Recognizer, Lane Detection, and Ferret

applications when run under the decreasing frequency pattern. Unlike the increasing

pattern, at the end of the down-ramp, the decreasing pattern remains at the minimum

frequency (10% of maximum sustainable throughput), so it is expected that the applications

would take longer to run after the ramp. It could be different if we set a more extended

173

 0

 13

 26

 39

FF freq. TBB freq. FF TBB

654

981

1308

1635

0 20 40 60 80 100 120 140 160 180 200

T
h

ro
u

g
h

p
u

t
L

a
te

n
c
y
 (

m
s
)

Execution time (seconds)

(a) Face Recognizer (farm)

 0

 98

 196

 294

FF freq. TBB freq. FF TBB

0

143

286

429

572

0 20 40 60 80 100 120

T
h

ro
u

g
h

p
u

t
L

a
te

n
c
y
 (

m
s
)

Execution time (seconds)

(b) Lane Detection (farm)

 0

 76

 152

 228

FF freq. TBB freq. FF TBB

0

115

230

345

0 10 20 30 40 50 60 70 80 90 100

T
h

ro
u

g
h

p
u

t
L

a
te

n
c
y
 (

m
s
)

Execution time (seconds)

(c) Ferret (pipeline of farms)

Figure 6.6: Decreasing frequency pattern with Face Recognizer, Lane Detection, and Ferret.

Source: [GGSF23] ©20XX Springer Nature.

ramp period, but we prefer to use the same period we used in the increasing pattern for

comparison purposes. Even though the throughput remains stable at the minimum, in

Face Recognizer, there is still a low latency moment after 100 seconds that represents the

same pattern seen in Figure 5.2. Since the frequency manager only limits the maximum

throughput and discounts the processing time of the item at the source from the added

delay, it is expected that it will not affect the native low-latency moments of the workload.

174

In this decreasing pattern, the TBB Face Recognizer exhibits the opposite behavior

of FastFlow in the increasing pattern with Bzip2 (Figure 6.5a). Here the TBB can bring

down the latency as soon as the frequency falls below sustainable throughput. Regarding

FastFlow, Face Recognizer has a pretty steady throughput, and the hump present in the

workload (Figure 5.2) makes the average throughput of this application higher. Therefore,

our frequency strategy overestimated a little the sustainable throughput of this application.

According to the previous experiments, FastFlow latency seems more sensitive concerning

sustainable throughput. Maybe this is why it takes longer to keep up with the TBB latency.

A similar effect occurs with Lane Detection, where the natural throughput of the workload

at the beginning of the execution is lower than the average. So it is another scenario of

overestimated sustainable throughput, but here it occurs only during a short interval. This

way, we believe this can contribute to FastFlow reducing latency to a minimum before the

end of the decreasing ramp.

In Ferret, TBB and FastFlow showed similar behavior, although FastFlow has a

longer execution time. In this application, the workload varies a lot and quite frequently. So

overestimation of sustainable throughput is not a problem in this case. Regarding Ferret’s

large latency fluctuation (Figure 6.6c), Figure 5.2 shows that Ferret is the application that

has the most extensive variation in latency caused by the input workload itself. This

behavior has a direct impact on the results presented here.

Figure 6.7 displays the experimental results using the spike pattern. As expected,

applications take longer to run with the spike frequency strategy. After all, in spike, the

frequency is at a minimum most of the time. It explains the increase in the number

of cycles that occur (one spike per cycle) compared to the other cyclic patterns. In

Figure 6.7a are the results of the Bzip2 benchmark. TBB and FastFlow showed similar

values regarding throughput, latency, and execution time. It is noticeable from the results

with the other frequency patterns that FastFlow increases latency over TBB when the

frequency approaches the maximum. However, if we look at Figure 6.4a, we can see that it

takes a while after the frequency increase for the FastFlow’s latency to rise if compared

to TBB. This way, with the spike pattern, it does not happen in Bzip2, probably because of

the short spike duration (about 0.8 seconds). Also, FastFlow has higher throughput spikes

than TBB since it ran faster, as in most cases implementing the farm pattern as expected.

Although the latency spikes of the TBB are somewhat smaller, it is possible to observe

some moments of higher latency in the off-spike intervals.

Face Recognizer does not have as stable a workload in terms of latency and

throughput as Bzip2, as seen in Figure 5.2. Therefore, in this application, the spikes in

the graphics (Figure 6.7b) appear more shapeless than in Bzip2. Moreover, its sequential

throughput is almost ten times lower, just over 1 item per second in the sequential version

in our experiments. In addition, the application takes longer to execute, implying more

extended periods and, consequently, slightly longer spikes. Although the application

175

 0

 64

 128

 192

FF freq. TBB freq. FF TBB

110

132

154

176

0 20 40 60 80 100 120 140 160

T
h

ro
u

g
h

p
u

t
L

a
te

n
c
y
 (

m
s
)

Execution time (seconds)

(a) Bzip2 (farm)

 0

 15

 30

 45

FF freq. TBB freq. FF TBB

525

700

875

1050

1225

0 50 100 150 200 250 300

T
h

ro
u

g
h

p
u

t
L

a
te

n
c
y
 (

m
s
)

Execution time (seconds)

(b) Face Recognizer (farm)

 0

 68

 136

 204

FF freq. TBB freq. FF TBB

0

159

318

477

0 20 40 60 80 100 120 140

T
h

ro
u

g
h

p
u

t
L

a
te

n
c
y
 (

m
s
)

Execution time (seconds)

(c) Ferret (pipeline of farms)

Figure 6.7: Spike frequency pattern with Bzip2, Face Recognizer, and Ferret.

Source: [GGSF23] ©20XX Springer Nature.

behaves similarly to Bzip2 in throughput, the latency results change quite a bit. Since the

latency changes a lot in this application and many items are processed during spikes, a

slight shift in execution time causes the TBB and FastFlow to end up processing distinct

parts during the spikes of the input stream. This way, its natural load-induced latency mixes

with the latency caused by the spike pattern, causing large latency spikes sometimes with

TBB and others with FastFlow. A similar effect occurs with Ferret (Figure 6.7c), where spikes

176

occur more erratically because of the input stream’s significant variations in throughput

and latency.

6.5.3 Discussion of the Results

In this section, we evaluated the impact of data frequency on the FastFlow and

TBB benchmarks. FastFlow showed more erratic behavior than TBB in all cases during

high-frequency states. We believe that the differences in the implementation of the

buffers/queues may cause this behavior. In FastFlow, even using queues of size one (on-

demand policy), each worker has its input and output queue. So even with short queues,

many items are in the pipeline throughout the execution. Each 40-worker farm can hold up

to 80 items in FastFlow (40 queued plus 40 with the workers). Therefore, those items already

in the pipeline are no longer under frequency constraint, and performance fluctuates more.

In TBB, this could also occur in specific highly cluttered input scenarios.

On the other hand, FastFlow showed slightly higher throughput in most farm-

parallel benchmarks. Some factors may prevent TBB from running faster than FastFlow in

most farm implementations we tested. The benefits of TBB’s work-stealing scheduler add

some costs. Whenever a thread operates on an item, it creates a new object for the next

stage, including its instance variables. Instantiating objects in a multi-thread environment

can be slow and cause contention for the heap and the memory allocator data structures,

inhibiting concurrency [Rei07, VAR19]. Also, we used the same value to set the number of

replicas of FastFlow workers and the maximum degree of parallelism in the TBB parallel

stages. However, in TBB’s task model, this degree of parallelism means the maximum

number of threads that will execute. The TBB “workers” must share the work with the

source (emitter) and sink (collector) stages. In FastFlow, the workers each run in their

dedicated thread. Therefore, the number of threads used in a FastFlow farm is always

greater than the number of worker replicas because it creates one more thread for the

source and one more for the sink. Still, these two stages in our benchmarks consume fewer

resources than the worker stages. So, if running FastFlow in blocking mode (the case in

this paper), these two extra threads that FastFlow creates may give it a short performance

advantage over TBB in the parallel farm pattern.

FastFlow’s performance is inferior to TBB in the Ferret application with varying

data stream frequencies. Part of this can be explained by the maximum frequency of

FastFlow being significantly lower than that of TBB in the experiments. However, this is the

methodology that was chosen and that we explain in Section 6.5.1. besides, in FastFlow,

we could exploit pipeline and stream parallelism in several other ways. For example, with

FastFlow on Ferret, we could implement combined nodes or a farm of pipelines, possibly

resulting in better performance, as we show in Chapter 5. But we preferred to keep the

177

original Ferret structure which is a pipeline of farms. The other benchmarks we used already

address a similar structure to the combined nodes in FastFlow. Also, reducing the degree of

parallelism of the less intensive stages would use fewer resources, which could be allocated

to the more intensive ones. Fewer queues would be available to hold items, implying lower

latency in this case. However, optimal configurations in stream processing applications

take work to achieve. It depends on the type of application, the workload, the architecture,

and the available resources, among other factors [LZS+22]. Also, the optimizations can

benefit the throughput or latency more, as shown in previous work [GGSF22b]. On the other

hand, programmers have more freedom to fine-tune FastFlow applications compared to

TBB. Therefore, TBB and FastFlow have advantages and disadvantages in different aspects,

from performance to the possibility of optimization, fine-tuning, and parallelism modeling.

6.6 Chapter Summary

In this chapter, we investigate the impact of data stream frequency on the per-

formance of parallel programming interfaces. For that, we reviewed the literature and

identified the most used frequency configurations for evaluating stream processing sys-

tems. We created algorithms to generate the most used patterns and extended SPBench to

support these patterns and provide them for users dynamically. Then, we used SPBench to

create benchmarks using two of the most used PPIs that provide structured parallel patterns

for stream parallelism in C++. We focused on using structured parallel patterns to reduce

the scope of the analysis since in low-abstraction level PPIs, such as C++ threads and

OpenMP, the parallelism can be explored in more unbounded ways, and the performance

of low-level structures is in the programmers’ hands. Then, we ran the benchmarks under

the five data frequency patterns and measured their performance regarding latency and

throughput.

The experimental results showed that FastFlow and TBB perform differently under

varying frequencies. Regarding throughput, FastFlow outperformed the TBB single-farm

benchmarks by up to 5% in all of our test cases. With respect to latency, FastFlow and TBB

present similar latency when data frequency is reduced. However, TBB also manages to

keep a low latency even when using frequencies higher than the sustainable throughput

of the benchmarks. In the Ferret benchmarks with a pipeline of farms parallelism, TBB

performed better than FastFlow in all the cases. However, the initial conditions for setting

up the frequencies (Section 6.5.1) may have hindered the possible throughput gains of

FastFlow under varying frequencies in pipe-farm implementations.

Therefore, the contributions of this chapter were a series of algorithms that allow

generating data frequency patterns for stream processing applications, mechanisms that

allow users to easily benchmark stream processing using such patterns, and analysis of

178

FastFlow and TBB performance under varying frequency scenarios. We have not found in

the literature any similar analysis of FastFlow and TBB from this perspective.

179

7. MICRO-BATCHING

Micro-batch (or mini-batch) processing is a variant of traditional batch processing.

Micro-batching systems process data in small groups at a higher frequency. Stream

processing systems can use micro-batching as an optimization technique that trades

throughput for latency [HSS+14, HOL22]. It also may enable efficient resource utilization,

high throughput, fault tolerance, and data consistency. In stream processing, micro-

batching is often used to improve systems’ adaptability to fluctuations in input streams.

The best benefits of using batching apply in heterogeneous or distributed environments,

where there is a cost of communicating data, and batching may reduce the total cost.

However, there are many possible benefits of using micro-batching in shared-memory

environments, which we will discuss in the next section. Even so, we found little related

research investigating the impact of using micro-batches on the performance stream

processing applications on multi-cores.

In this chapter, we investigate how micro-batching size impacts the throughput

and latency performance of SP applications using FastFlow and TBB PPIs. In Section 7.1,

we further discuss our motivational context. This chapter’s related work is addressed

in Section 7.2. The mechanisms we implemented in SPBench for batching support are

presented in Section 7.3 In Section 7.4, we run experiments with the TBB and FastFlow

benchmarks with varying parallelism degrees and micro-batch size. Then, Section 7.5

summarizes and adds final remarks on this chapter.

Contents

7.1 MOTIVATION . 180

7.2 RELATED WORK . 181

7.3 PROPOSED SOLUTION . 183

7.4 EXPERIMENTAL EVALUATION . 183

7.4.1 EXPERIMENTAL METHODOLOGY . 183

7.4.2 EXPERIMENTAL RESULTS . 184

7.5 CHAPTER SUMMARY . 188

180

7.1 Motivation

Batch

Micro-batch

Stream

processing

Figure 7.1: Micro-batching.

Micro batching is a middle-ground between batch processing and stream process-

ing that balances latency and throughput, as illustrated in Figure 7.1. It is a technique

that is often used to tune the performance of stream processing applications. It involves

grouping small amounts of data into batches and then processing the batches as if they

were a single stream. The size of a micro-batch may vary according to predefined criteria,

such as time intervals (e.g., each 2-second interval forms a new micro-batch), data size

(e.g., micro-batches with 5 MB of data), number of items, and others [DZSS14]. In general,

the optimal size is the one that achieves the desired trade-off between throughput and la-

tency [SRG+20]. However, this is not a static value since fluctuations in the data frequency

and processing cost of each item is very common in stream processing. Therefore, the

batch size is considered one of the most important tuning parameters in stream processing

systems [DZSS14, HOL22].

In DSPSs and heterogeneous systems, micro-batching can add clear benefits.

For example, stream processing with GPUs requires batching input elements for efficient

resource utilization [SRG+20]. Since most benefits are tied to communicating data, the

potential advantages of using it on multi-core systems are not so obvious. However,

besides the disadvantage of increased latency, micro-batches may add many advantages

to multi-core stream processing. Enabling batching support in an application implies adding

loops. Therefore, the compiler may optimize these loops with unrolling techniques using

software pipelining. It can also enable vectorization. Besides, micro-batching may improve

throughput by amortizing operator-firing and communication costs. Such amortizable

costs can include deeply nested calls, warm-up costs (e.g., for the instruction cache), and

scheduling costs, possibly involving a context switch [HSS+14]. Also, as data items tend to

be added in order inside each batch, it can potentially reduce data cluttering in applications

with ordering constraints. In Addition, micro-batching can ensure system stability and

lower latency for a wide range of auto-adaptive algorithms workloads despite significant

181

variations in data rates and operating conditions [DZSS14]. Such algorithms can achieve

performance levels without demanding extra resources or leading to data losses.

The primary control variable in micro-batching is batch size. Ideally, it may be

either statically or dynamically set [HSS+14]. StreamIt [TA10], for example, has a static

batching algorithm that aims to trade the data-cache cost of requiring larger buffers for

the benefits of using instruction-cache when processing micro-batches. However, systems

that statically set micro-batch sizes may exhibit high latency under lower loads or may

not cope with bursts in data frequency or item processing cost [DZSS14]. On the other

hand, self-adaptive methods commonly use dynamic batching for reacting to load changes

and maintaining system stability. Many works focus on developing algorithms that exploit

dynamic batching to improve performance or resource utilization [WCB01, CcR+03, DZSS14,

ZSRS16, SRG+20, AMDA20]. These works require the researcher to allocate extra time to

implement benchmarking support, diverting from the research scope. Therefore, we argue

that there is a demand for tools like SPBench with batching support, which can be helpful

for researchers in this area.

7.2 Related Work

As related work, we mainly considered research towards investigating the impact

of micro-batch sizing on the performance of stream processing applications. We also

searched for tools that share the SPBench goal of enabling easy benchmarking of stream

processing with micro-batches.

Das et al. [DZSS14] propose a self-adaptive algorithm to reduce the latency of

distributed batched streaming systems through dynamic batching resizing. They used

Apache Spark and tested the algorithm by varying the input data rate with waveform and

binary (sudden low-high frequency changes) strategies. Zhang et al. [ZSRS16] targeted

the same problem with a different approach, but they also tested their algorithm using a

binary strategy for data stream frequency. Stein et al. [SRG+20] also have the same goal,

but they target compression algorithms and graphics processing units (GPUs). Here the

authors tested the algorithm with four workloads presenting different complexity patterns

across the dataset to vary the data intensity. Abdelhamid et al. [AMDA20] introduce an

algorithm for self-adaptive parallelism for micro-batch stream processing and test it with

several data stream frequency strategies. [DSMV+20] proposed mechanisms for improving

the latency and throughput of DSPSs by automatically adjusting the size of micro-batches

using a feedback loop to collect metrics and make decisions.

TS-BatPro [YWVS17] is a framework that integrates time- and space-based batch-

ing techniques to optimize the energy consumption of latency-constrained applications in

multi-core data centers. The technique consists of batching items to keep processors in a

182

low-power state for longer. The authors evaluated the framework using different stream pro-

cessing benchmarks, including Ferret from the PARSEC suite. [TTMD22] proposes FastFlow

library extensions to execute applications in a distributed-memory environment. They eval-

uated their solution by running a word count benchmark in a distributed environment and

varying micro-bach size from 8 to 128. They manage to improve throughput performance

when increasing the micro-batch size up to 32 messages per batch.

[Poh17] shows the influence of parallelism on the instruction level with vectoriza-

tion and multithreading. They argue that SIMD effects improve performance when data

is stored in a cache-friendly way within contiguous memory. Since tuples cannot always

be processed one after another, they propose a batching mechanism with cache-friend

formation of batches. It is a good approach since, without careful reordering, any vector-

ization speedup would be lost through expensive scattered memory accesses [PRR19].

[PSTF12] also relied on combining batching and vectorization techniques to improve the

performance of stream processing applications. They achieve 40% speedup improvement

on a network checksum application, but no performance improvement FM Radio, a more

realistic and representative SP benchmark. The authors argue that the performance gains

with the first benchmark came from two strategies: (1) sending an amount of data in a

multiple of the cache line size and (2) segregating producer and consumer in different

cache lines. Therefore, they only achieved this results because they reduced the data

sharing involved in the communication and avoided excessive coherency, such as false

sharing, thus avoiding the costs associated with memory cache coherency.

Thus, most work investigating micro-batching in stream processing targets only

distributed platforms with DSPSs. In this context, the benchmarks that allow exploring

micro-batching transfer this responsibility to the DSPSs (Spark usually) [DZSS14, SCS17,

KRK+18]. While both [Poh17] and [PSTF12] have taken advantage of batching with SP

on multi-cores, they have created very specific test scenarios that are difficult to occur

naturally in the real world. In this chapter, we aim to see if any of these factors can

occasionally impact the performance of SP real-world applications. Although [TTMD22]

managed to improve FastFlow’s throughput when increasing the size of micro-batches,

they ran the experiments in a distributed platform and used a word count benchmark. This

benchmark has small messages as a data item. Therefore, aggregating this data up to

a certain point compensates for the overhead of communicating single small messages

through the network. Therefore, none of the related work we found compares the impact of

micro-batching size on the performance of different PPIs for parallel stream processing on

multi-cores.

183

7.3 Proposed Solution

To implement batch support in SPBench, instead of each item containing a single

piece of data, it contains an array of data and carries information about its batch size. We

have added loops to all the operators in the application to process these arrays. This way,

the size of the batches can be changed statically or dynamically. The following command is

an example of how to use batch statically:

./spbench exec ... -batch-size 5 -batch-interval 2

The command above will run the application creating micro-batches with 10 items

or a 2-second interval, whichever occurs first. Therefore users can set a single batch size

limiting parameter or both combined. To change batch sizes dynamically during execution,

users can use the methods SPBench::setBatchSize() or SPBench::setBatchInterval()

inside the code. All these commands will manage the size of the batches in the source

operator when generating the data items.

The strategy we defined to define the size of the batches is illustrated in Figure 7.2.

As long as there is data to be processed, the source operator will try to apply the logic of

the flowchart. The algorithm will try to decide whether to close and send the item or not

based on the closing criteria, which can be a specific size, a time interval, or both. In the

case of both, the condition that occurs first prevails. That is, the batch is closed if it fills up

with the specified maximum number of items or if the batch interval times out. When there

is no more data in the input stream, the batch is closed anyway and sent to subsequent

operators. When there is no more input data, the algorithm stops the source.

7.4 Experimental Evaluation

In this section, we run performance experiments with the SPBench benchmarks

under varying micro-batching sizes. We choose to evaluate only TBB and FastFlow PPIs

because they are the two most popular PPIs in the literature that provide structured parallel

patterns for stream processing in C++.

7.4.1 Experimental Methodology

For micro-batch experiments, we first evaluate it under multiple parallelism de-

grees. Thus, we used static micro-batch sizes for these experiments. We also evaluate it

by dynamically changing the size of the batches during the execution of the benchmarks.

184

Yes No

No

Yes

Yes

No

Yes

No

No

Yes

Yes

No

Yes

No

Is there a target time interval

for batch sizing?

Is the batch elapsed time higher than

or equal to the target interval?

Is there a target batch size

higher than one?

Is there a target batch size?

Close the batch

Add a data item to the batch

Is the current batch size higher than

or equal to the target batch size?

Is there still data items in the input stream?

Start

Stop

Is there a data item in the input stream?

Figure 7.2: SPBench’s batch sizing flowchart.

We increased the batch size from 1 to 10 in this case. SPBench also supports limiting the

size of batches by the number of items or time windows. But analyzing micro-batches by

time window adds too many other variables and would open up the scope of this work.

Therefore, we use micro-batches limited by the number of items.

7.4.2 Experimental Results

In [GGSF22a], we evaluated the impact of micro-batch size on the performance of

stream processing applications on multi-core systems. In the experiments we performed in

185

that work, increasing the batch size could incur throughput increases, besides the expected

increase in latency. However, we later identified inconsistencies between the SPBench

metrics system and the new batching features that were added to that work. This problem

was causing the throughput to be overestimated. Later, in [GGSF23], we fixed the metrics

problem for batching. Therefore, we performed more experiments to check to what extent

the advantages of batching discussed in this Chapter’s motivation apply to real-world C++

SP applications on multi-core systems.

 0
 50

 100
 150
 200
 250

T
h

ro
u

g
h

p
u

t

FF TBB

0
1
2
3
4
5

L
a

te
n

c
y
 (

s
e

c
)

0
2
4
6
8

10

0 5 10 15 20 25

B
a

tc
h

 s
iz

e

Execution time (seconds)

Figure 7.3: Throughput and latency results of Bzip2 benchmark implemented as a farm (40
workers) with TBB and FastFlow, increasing the batch size dynamically from 1 to 10 along
the execution.

In the micro-batch experiments, we used two strategies. In the first one, we vary

the batch size dynamically at execution time from 1 to 10. The goal was to validate this

feature we added to SPBench and observe the impact of the batch size on the performance

of the benchmarks at execution time. Figure 7.3 shows the throughput and latency results

of the Bzip2 application on Intel Xeon Silver 4210. We can see that the FastFlow imple-

mentation took longer to run. Also, FastFlow has a less stable instantaneous throughput

than TBB, and the increase in batch size expels the latency difference between PPIs. The

increase in batch size apparently did not influence the application’s throughput.

Figure 7.4 presents the results of the Ferret benchmark. The same discussion

made in the case of Bzip2 applies here. FastFlow has a more unstable throughput and

increases latency at a higher rate than TBB as the batch size increases. In the third graph

in Figure 7.4, regarding batch size, there is a difference from Bzip2. Ferret is an application

that does not require item sorting. The batch size monitoring in SPBench is performed in

the last stage of the pipeline. Therefore, the batch size spikes represent items arriving

186

 0
 50

 100
 150
 200
 250

T
h

ro
u

g
h

p
u

t
FF TBB

0

1

2

3

L
a

te
n

c
y
 (

s
e

c
)

0
2
4
6
8

10

0 2 4 6 8 10 12 14 16 18 20

B
a

tc
h

 s
iz

e

Execution time (seconds)

Figure 7.4: Throughput and latency results of Ferret implemented as a pipeline of farms
(maximum of 40 workers per farm) with TBB and FastFlow, increasing the batch size
dynamically from 1 to 10 along the execution.

out of order in the sink. It shows that our FastFlow implementation causes more items to

arrive unordered at the sink than TBB. This factor can also impact the latency of FastFlow

in applications that require sorting.

We also investigate how batch size impacts application performance when varying

degrees of parallelism. Here, instead of changing the batch size dynamically, we set it

statically at the beginning of the execution. Therefore, besides the number of farm workers,

we also vary the micro-batch size from 1 (no batch) to 16 items per batch. One of our goals

with these experiments is to see if using batches could alleviate the cost of item ordering

in applications with ordering constraints. After all, it is known that this cost can impact

latency and throughput [GHDF18b, PRR19]. Therefore, if we decrease the number of items

in the stream using batches of ordered items, there may be some performance gain in

applications with issues with item cluttering.

Figure 7.5 presents the results of the micro-batch experiments varying the degree

of parallelism in the Lane Detection benchmarks using the AMD computer. Lane Detection

is a good test case for us to evaluate since it has a high throughput (more chances of items

arriving at sink out of order), and the computational cost of each frame varies greater than

Bzip2 or Face Recognizer, as seen in Figure 5.2. This further increases the clutter of items

in the stream, and this application requires the frames to be ordered in the output video.

The results show that for both TBB and FastFlow, the latency increases proportionally to

187

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0 2 4 6 8 10 12

L
a

te
n

c
y
 (

s
e

c
o

n
d

s
)

Number of replicas.

 20

 40

 60

 80

 100

 120

 140

 0 2 4 6 8 10 12

It
e

n
s
 p

e
r

s
e

c
o

n
d

Number of replicas.

1 2 4 8 16

(a) Threading Building Blocks

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 2 4 6 8 10 12

L
a

te
n

c
y
 (

s
e

c
o

n
d

s
)

Number of replicas.

 0

 20

 40

 60

 80

 100

 120

 140

 0 2 4 6 8 10 12

It
e

n
s
 p

e
r

s
e

c
o

n
d

Number of replicas.

1 2 4 8 16

(b) FastFlow

Figure 7.5: Latency and throughput results for Lane Detection with multiple parallelism
degrees and statically set micro-batch sizes (AMD Ryzen 5 5600X).

the batch size. However, there is no significant throughput gain at all. We can conclude

that batch played no role here.

We repeated the experiment as shown in Figure 7.5, but we used the computer

with the Intel Xeon Silver 4210 this time. This computer has a total of 40 cores, and we

can use more workers. The increase in workers causes more items to clutter because more

concurrent threads are writing to the output queue. These results are shown in Figure 7.6.

The latency behavior remained the same in this case. However, the throughput got worse

when increasing the batch size at a higher degree of parallelism. The time required to fill

each batch may prevent the source from meeting the demand of the subsequent stages.

There is a minimal increase in FastFlow throughput with batch size 2, but it is minimal and

should be disregarded. We performed the same experiments with the other benchmarks.

However, the results were similar and did not lead to different conclusions, so we omitted

them. So we can conclude that despite the possible advantages of using micro-batch

in multi-core (Section 7.1), we could not identify this in our experiments. In the future,

188

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 5 10 15 20 25 30 35 40

L
a

te
n

c
y
 (

s
e

c
o

n
d

s
)

Number of replicas.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 5 10 15 20 25 30 35 40

It
e

n
s
 p

e
r

s
e

c
o

n
d

Number of replicas.

1 2 4 8 16

(a) Threading Building Blocks

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 5 10 15 20 25 30 35 40

L
a

te
n

c
y
 (

s
e

c
o

n
d

s
)

Number of replicas.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 0 5 10 15 20 25 30 35 40

It
e

n
s
 p

e
r

s
e

c
o

n
d

Number of replicas.

1 2 4 8 16

(b) FastFlow

Figure 7.6: Latency and throughput results for Lane Detection with multiple parallelism
degrees and statically set micro-batch sizes (Intel Xeon Silver 4210).

we intend to test the SPBench in scenarios where batching is more impactful, such as

distributed and heterogeneous systems or with specific benchmark applications.

7.5 Chapter Summary

In this chapter, we extended the SPBench benchmarking framework to support

micro-batching. With the help of the extended framework, we analyzed the impact of

micro-batch on real-world stream processing applications with different PPIs. We were

able to create several workloads with some strategies that could change dynamically at

execution time. We also tested micro-batching configurations under different levels of

parallelism.

The micro-batching has the potential to improve performance in multi-cores by

enabling software pipelining, vectorization, and amortizing costs such as operator-firing,

189

communication, data sorting, warm-up (e.g., for the instruction cache), data scheduling,

and others. As discussed in Section 7.2, some related work managed to extract perfor-

mance improvement in very specific scenarios, with synthetic benchmarks However, our

experiments showed no benefit from micro-batches on the performance of the real-world

benchmarks we used. Latency increased as expected, but it had no positive impact on

throughput. In future work, we may assess the impact of micro-batching in the resource

usage of SP applications. Also, another future work goes towards extending SPBench with

support for heterogeneous and distributed architectures, where batching mechanisms may

be more advantageous.

190

8. CONCLUSION

This work discusses the challenges and limitations of benchmarking C++ stream

processing and analyzing parallel programming interfaces (PPIs) that leverage stream

parallelism. Therefore, we provide a framework to ease the benchmark creation and

benchmarking process in stream processing and a comprehensive analysis of the PPIs in

this context.

We understand that benchmarking in C++ stream processing is a relevant re-

search area. C++ stream processing is expanding due to the growing demand for low-

latency applications and the increasing prevalence of powerful multi-core processors. This

growth is also being driven by the Internet of Things (IoT), where Java-based languages and

frameworks used in the industry add performance and resource usage overheads due to

the JVM. New solutions and technologies are being developed to improve the available PPIs

for exploring stream parallelism. These solutions aim to make PPIs more user-friendly, dy-

namic, domain-comprehensive, extensible, and portable. However, designing, evaluating,

and validating such solutions is often complex.

To address these challenges, we developed SPBench, a framework that addresses

the entire benchmarking process. Instead of following the classical approach of implement-

ing a benchmark suite, we developed SPBench, a framework to facilitate the creation of

benchmarks for stream processing. Using SPBench, we built a parallel benchmark suite

using the leading state-of-the-art PPIs in this context. We identified that a more com-

prehensive analysis of these PPIs was lacking in the literature, considering more modern

requirements such as latency, resource usage, and programmability. Thus, we evaluated

all SPBench benchmarks considering these and other aspects, such as performing the PPIs

under different data frequency levels and using micro-batching size.

Although SPBench mainly concerns C++ stream processing applications and PPIs

that leverage stream parallelism, the framework concept is not limited by programming

language or specific application domain. Below, we summarize the research goals of this

thesis, discuss how we addressed them, and discuss the resulting technical and scientific

contributions to the community.

The first research goal of this work involves easing the benchmarking of C++

parallel stream processing. As discussed in Section 3.2, we argue that only putting together

a set of parallel stream processing applications, which would be the classical approach,

is insufficient to achieve this goal. As we showed in Sections 3.3 and 5.2, most research

in this area uses benchmarks that tend to be poorly parameterizable, hard to use and to

extend to new PPIs, and often not publicly available.

In our work, we use another approach for building benchmarks. We created an

API (Subsection 3.2.1) that establishes a way of developing stream processing applications

191

in a standard, synthesized, modular, reconfigurable, and assessable way. Then, we take

a set of SP applications already used for benchmarking purposes in the literature and

integrate them into this API. After this, we developed a command-line interface (CLI)

(Subsection 3.2.6) to enhance the usability of the benchmarks. What we described to this

point represents the SPBench framework’s kernel: a set of sequential benchmarks from the

stream processing domain implemented with a high-level abstraction API and a CLI. While

the framework does not provide means to explore parallelism, it is designed to be used

with PPIs enabling stream parallelism. This way, we selected some of the most popular PPIs

that support C++ stream parallelism and used them to create a benchmark suite.

Pursuing the first research goal resulted in technical and scientific contributions

to the community. As a technical contribution is the SPBench benchmarking framework,

a tool that facilitates the creation of benchmarks for stream processing plus a parallel

benchmark suite. SPBench benefits the scientific community by offering a range of highly

parameterizable and reconfigurable real-world C++ parallel stream processing bench-

marks. The scientific contribution is the framework conceptual idea, which adds a new

perspective on building SP benchmarks in a more user-friendly way (Figure 3.3) if compared

to the traditional benchmarks (Figure 3.2). This new perspective may help leverage the

development of more accessible benchmarks in the future.

Our second research goal was to speed up and simplify the research for parallel

stream processing by providing highly parameterizable benchmarks with self-built rep-

resentative mechanisms, such as batching, data stream frequency management, and

real-time performance metrics. This research goal is more specific than the first one.

This one involves helping to speed up research in parallel stream processing by providing

benchmarks with mechanisms and metrics that can be difficult to implement, error-prone,

and time-consuming for users. It resulted in several technical contributions. Below we

summarize the main ones:

• The API that standardizes the source code of the benchmarks and makes the parallel

code highly portable among them, helping to speed up the creation of benchmarks

with different parallelism strategies and other solutions.

• A CLI that provides several key features which allow users to manipulate and ex-

ecute multiple benchmarks and commands that can be combined to enable extra

functionality, dispensing the need to run scripts and parse the results.

• A time-window-based metrics system to measure average latency and throughput

over short intervals. These metrics can be dynamically obtained from within the code,

a valuable feature for self-adaptive performance algorithms that require accurate

real-time performance feedback.

192

• Benchmarks with mechanisms that allow users to control the frequency of the data

stream and algorithms that allow it to be changed according to the frequency patterns

most commonly used for benchmarking SP systems in the literature.

• SP benchmarks with native batching support. While not advantageous in our experi-

ments with multi-cores, it can be better leveraged on heterogeneous and distributed

architectures in future work.

• A thorough user documentation with detailed information about the benchmarks,

workloads, and tips on how to get the best out of SPBench.

As a scientific contribution, one could mention the algorithms behind the mech-

anisms, such as those that generate frequency patterns. However, the most important

scientific contribution was to enable the analyses presented in Chapters 5, 6, and 7. It

brings us to the third research goal: Conduct a comprehensive evaluation and comparison

of the state-of-art PPIs that support parallel stream processing in C++.

The lack of comprehensive evaluation of C++ stream processing PPIs motivated

this third research goal. Despite the increasing use of C++ for SP, given mainly by the

demand for low-latency and resource-optimizing applications, we observed that most of

the analysis in the literature did not address these aspects. Therefore, we did a more

comprehensive analysis encompassing throughput, latency, memory usage, and pro-

grammability/productivity of the main PPIs that leverage C++ stream parallelism. Pursuing

this research goal also motivated developing and improving the mechanisms listed above.

The main technical contribution was the suite of parallel benchmarks, including low ab-

straction PPIs such as ISO C++ threads and OpenMP, structured parallel programming PPIs

such as FastFlow and TBB, and high abstraction PPIs such as SPar and GrPPI.

The main scientific contribution of the third research goal was the analysis itself,

which brought new insights over the PPIs. Overall, TBB showed similar throughput as

FastFlow when using a single farm. Nevertheless, TBB’s more dynamic task scheduler fits

very well with the kind of applications we tested, so it was able to show better latency in

most cases. Regarding a pipeline of farms with the Ferret benchmark, although FastFlow

can slightly outperform TBB throughput with our over-subscription strategy, its latency

was about ten times higher than TBB. However, FastFlow allows for specific parallelism

configurations that deliver latency similar to TBB with low impact on throughput and without

oversubscribing threads to the system, as presented in Subsection 5.5.5.

In GrPPI, all backends underperformed at some point in the test scenarios. Al-

though GrPPI has a policy of not prioritizing fine-tuning to improve programmability

[dRADFG17], some poor performance resulted from GrPPI’s internal implementation rather

than a lack of fine-tuning mechanisms. The memory usage results showed the impact of the

lack of fine-tuning on system resource utilization and that high memory usage is commonly

associated with high latency. The exception is TBB, which, despite low latency, exhibited a

193

memory usage overhead in some cases, likely due to the larger number of object allocations

that its dynamic execution model can cause. The performance Programmability results

showed that high-level parallelism abstractions come at the expense of performance in

more complex parallel patterns, leading to limitations in addressing specific fine-tuning

mechanisms. The data frequency results showed that FastFlow outperformed TBB through-

put in frequency-varying scenarios and simpler parallelism compositions like single farms.

Our analysis with micro-batching showed no performance benefit of using it in multicore

with the kind of workloads we tested.

In this way, we achieve our research goals of improving the C++ parallel stream

processing benchmarking space, providing a means to facilitate and accelerate research

in this area, and conducting a comprehensive evaluation of PPIs in this context. We hope

the results and our analysis can guide improvements and future development for the PPIs

we evaluated. Especially FastFlow, GrPPI, and SPar, which are still relatively new PPIs used

most in academia, unlike TBB and OpenMP, which are already widely used in industry.

8.1 Limitations and Future Work

Our work focused more on the framework design and development and less on

developing the application set. We argue that investing our effort in the framework brought

more relevant contributions to this work than a large application set would have since

adding new applications is manual programming work that would result mainly in technical

contributions. However, now that the framework has reached a certain maturity, it would

be important to invest time in supporting new applications in the future. New applications

in the suite could bring new insights. For instance, although Fraud Detection has a stateful

operator, we did not include any traditional stream processing application with stateful

operators. It would be valuable to evaluate how each PPI handles states and how this would

impact their performance, resource usage, and programmability.

Although the main goal of our work is to facilitate the whole process of bench-

marking in parallel stream processing, we have yet to be able to evaluate this aspect

directly. It would be necessary to perform experiments with programmers to evaluate how

much easier it is to use SPBench compared to traditional benchmarking methods. Although

challenging, this aspect can be better investigated in the future.

We have not done a detailed study of the performance impact caused by the API,

the workload management mechanisms, and the use of performance metrics. Such evalua-

tion is challenging, as it is expected that the use of mechanisms such as batching and data

frequency will indeed perform differently. To evaluate the impact of API abstractions, one

would need to implement the applications without using SPBench and add similar metrics

for a fair comparison and evaluate the difference in performance. Of course, using very

194

fine-grained monitoring metrics will cause some overhead. Future work may investigate

these issues, which may be related to the difference in performance between SPBench

Fraud Detection and StreamBenchmarks Fraud Detection, as discussed in Subsection 5.5.6.

As discussed in Subsection 2.1.3, [MRR12, Tor19] claim that PPIs ideally should

balance three properties: programmability/productivity, portability, and performance. Al-

though SPBench has as one of its primary goals to evaluate PPIs, we were not able to

thoroughly evaluate the portability of PPIs because we have not yet evaluated SPBench’s

ability to address heterogeneous and distributed architectures. Also, in these architec-

tures, the use of micro-batches could add performance advantages by decreasing the data

communication overhead [TTMD22]. Moreover, disregarding the experiments in Subsec-

tion 5.5.2, where we evaluated the most popular PPIs on three architectures, all other

experiments were performed on the same computer. We also do not address embedded

architectures, where there is great motivation for using C++ for parallel stream processing.

We created very detailed documentation for the users1. However, we still need

to improve the documentation for developers who want to collaborate with the SPBench,

like an API manual and a guide on adding support for new applications. Although SPBench

allows instantiating multiple sources in the benchmarks, this feature was not evaluated.

We need to find use cases worth exploring in the current framework configuration. Use

cases may arise with the addition of new applications in future work.

This work has focused on C++, where we found the most significant need for

benchmarking solutions. The framework concept, however, can be extended to other

languages. For that, it would be necessary to translate the mechanisms to a new language,

implement the apps in the new language according to the SPBench API, and make minor

adjustments in the CLI. Although we have designed the framework to have the possibility of

sending/receiving data streams over the network, we did not implement this feature due to

its complexity and the scope of this work. We envisioned it as an independent system that

could run on another thread or a different computer. This system would have to incorporate

data frequency mechanisms, and communication could be done using sockets in C++.

Regarding running SPBench on heterogeneous or distributed architectures, al-

though some functionality becomes limited, adding support for these architectures is

possible. One of the biggest problems with distributed processing is data serialization.

Since the SPBench adds more complex structures on top of the data in the stream, it is

challenging to serialize this data optimally, such as using MPI-specific serialization methods.

However, SPBench could provide ready-made serialization/deserialization methods for

users. It could be done using libraries like Cereal [GV13], as suggested in a study that

proposes a FastFlow extension for distributed architectures [TTMD22]. It would also be

interesting to evaluate stream processing on emergent ARM architectures for HPC and also

on RISC-V architectures.

1https://spbench-doc.rtfd.io/

195

REFERENCES

[ABD+16] Agrawal, D.; Butt, A.; Doshi, K.; Larriba-Pey, J.-L.; Li, M.; Reiss, F. R.; Raab, F.;

Schiefer, B.; Suzumura, T.; Xia, Y. “Sparkbench – a spark performance testing

suite”. In: Proceedings of the International Conference on Performance

Evaluation and Benchmarking: Traditional to Big Data to Internet of Things,

Nambiar, R.; Poess, M. (Editors), 2016, pp. 26–44.

[ADKT17a] Aldinucci, M.; Danelutto, M.; Kilpatrick, P.; Torquati, M. “Fastflow: high-level

and efficient streaming on multicore”. Hoboken, USA: John Wiley & Sons, Ltd,

2017, chap. 13, pp. 261–280.

[ADKT17b] Aldinucci, M.; Danelutto, M.; Kilpatrick, P.; Torquati, M.

“Fastflow: high-level and efficient streaming on multicore”.

John Wiley & Sons, Ltd, 2017, chap. 13, pp. 261–280,

https://onlinelibrary.wiley.com/doi/pdf/10.1002/9781119332015.ch13.

[AGS+21] Andrade, G.; Griebler, D.; Santos, R.; Danelutto, M.; Fernandes, L. G.

“Assessing coding metrics for parallel programming of stream processing

programs on multi-cores”. In: Proceedings of the International Conference

on Software Engineering and Advanced Applications, 2021, pp. 291–295.

[AGS+22] Andrade, G.; Griebler, D.; Santos, R.; Kessler, C.; Ernstsson, A.; Fernandes,

L. G. “Analyzing programming effort model accuracy of high-level parallel

programs for stream processing”. In: Proceedings of the International

Conference on Software Engineering and Advanced Applications, 2022, pp.

229–232.

[AGSF23] Andrade, G.; Griebler, D.; Santos, R.; Fernandes, L. G. “A parallel

programming assessment for stream processing applications on multi-core

systems”, Computer Standards & Interfaces, vol. 84, mar 2023, pp. 103691.

[AGT14] Andrade, H. C.; Gedik, B.; Turaga, D. S. “Fundamentals of stream processing:

application design, systems, and analytics”. Cambridge University Press,

2014, 558p.

[AHN+20] Amanullah, M. A.; Habeeb, R. A. A.; Nasaruddin, F. H.; Gani, A.; Ahmed,

E.; Nainar, A. S. M.; Akim, N. M.; Imran, M. “Deep learning and big

data technologies for IoT security”, Computer Communications, vol. 151,

feb 2020, pp. 495–517.

196

[Amd67] Amdahl, G. M. “Validity of the single processor approach to achieving large

scale computing capabilities”. In: Proceedings of the International Spring

Joint Computer Conference, 1967, pp. 483–485.

[AMDA20] Abdelhamid, A. S.; Mahmood, A. R.; Daghistani, A.; Aref, W. G. “Prompt:

Dynamic data-partitioning for distributed micro-batch stream processing

systems”. In: Proceedings of the International Conference on Management

of Data, 2020, pp. 2455–2469.

[APTE21] Arkian, H.; Pierre, G.; Tordsson, J.; Elmroth, E. “Model-based stream

processing auto-scaling in geo-distributed environments”. In: Proceedings of

the International Conference on Computer Communications and Networks

(ICCCN), 2021, pp. 1–10.

[Aru13] Arubas, E. “Face detection and recognition (theory and practice)”. Source:

http://eyalarubas.com/face-detection-and-recognition.html, May 2021.

[ASAP17] Alevizos, E.; Skarlatidis, A.; Artikis, A.; Paliouras, G. “Probabilistic complex

event recognition: A survey”, ACM Comput. Surv., vol. 50–5, Sep. 2017.

[ATM09] Aldinucci, M.; Torquati, M.; Meneghin, M. “Fastflow: Efficient parallel

streaming applications on multi-core”, Technical Report, Universita di Pisa,

Dipartimento di Informatica, 2009, 25p.

[BAJ+16] Bingmann, T.; Axtmann, M.; Jöbstl, E.; Lamm, S.; Nguyen, H. C.; Noe, A.;

Schlag, S.; Stumpp, M.; Sturm, T.; Sanders, P. “Thrill: High-performance

algorithmic distributed batch data processing with C++”. In: Proceedings of

the International Conference on Big Data, 2016, pp. 172–183.

[BBB+91] Bailey, D. H.; Barszcz, E.; Barton, J. T.; Browning, D. S.; Carter, R. L.; Dagum,

L.; Fatoohi, R. A.; Frederickson, P. O.; Lasinski, T. A.; Schreiber, R. S.; et al..

“The NAS Parallel Benchmarks”, International Journal of High Performance

Computing Applications, vol. 5–3, sep 1991, pp. 63–73.

[BBD+14] Ballard, C.; Brandt, O.; Devaraju, B.; Farrell, D.; Foster, K.; Howard, C.;

Nicholls, P.; Pasricha, A.; Rea, R.; Schulz, N.; et al.. “IBM infosphere streams:

accelerating deployments with analytic accelerators”. IBM Redbooks, 2014,

556p.

[BCC+13] Bainomugisha, E.; Carreton, A. L.; Cutsem, T. v.; Mostinckx, S.; Meuter,

W. d. “A survey on reactive programming”, ACM Comput. Surv., vol. 45–4,

Aug. 2013.

http://eyalarubas.com/face-detection-and-recognition.html

197

[BGM+20] Bordin, M. V.; Griebler, D.; Mencagli, G.; Geyer, C. F. R.; Fernandes, L. G.

“DSPBench: a suite of benchmark applications for distributed data stream

processing systems”, IEEE Access, vol. 8–na, dec 2020, pp. 222900–222917.

[BJB+20] Brown, C.; Janjic, V.; Barwell, A. D.; Garcia, J. D.; MacKenzie, K. “Refactoring

GrPPI: generic refactoring for generic parallelism in C++”, International

Journal of Parallel Programming, vol. 48–4, jul 2020, pp. 603–625.

[BKSL08] Bienia, C.; Kumar, S.; Singh, J. P.; Li, K. “The PARSEC benchmark

suite: Characterization and architectural implications”. In: Proceedings

of the International Conference on Parallel Architectures and Compilation

Techniques, 2008, pp. 72–81.

[BTO13] Balkesen, C.; Tatbul, N.; Özsu, M. T. “Adaptive input admission and

management for parallel stream processing”. In: Proceedings of the

International Conference on Distributed Event-Based Systems, 2013, pp.

15–26.

[Car14] Carkci, M. “Dataflow and reactive programming systems: a practical guide”.

CreateSpace Independent Publishing Platform, 2014, 150p.

[CBP+17] Cranmer, M. D.; Barsdell, B. R.; Price, D. C.; Dowell, J.; Garsden, H.; Dike,

V.; Eftekhari, T.; Hegedus, A. M.; Malins, J.; Obenberger, K. S.; et al..

“Bifrost: A python/C++ framework for high-throughput stream processing in

astronomy”, Journal of Astronomical Instrumentation, vol. 6–04, jan 2017,

pp. 1750007.

[CcR+03] Carney, D.; Çetintemel, U.; Rasin, A.; Zdonik, S.; Cherniack, M.; Stonebraker,

M. “Operator scheduling in a data stream manager”. In: Proceedings of

the International Conference on Very Large Data Bases, Freytag, J.-C.;

Lockemann, P.; Abiteboul, S.; Carey, M.; Selinger, P.; Heuer, A. (Editors),

2003, pp. 838–849.

[CHGL22] Chiu, C.-H.; Huang, T.-W.; Guo, Z.; Lin, Y. “Pipeflow: An efficient task-parallel

pipeline programming framework using modern C++”. Preprint, Source:

https://arxiv.org/abs/2202.00717, 2022.

[CN06] Ching, W.-K.; Ng, M. K. “Markov chains”. Springer, 2006, 400p.

[Col89] Cole, M. I. “Algorithmic skeletons: structured management of parallel

computation”. Pitman London, 1989, 137p.

[Col04] Cole, M. “Bringing skeletons out of the closet: a pragmatic manifesto for

skeletal parallel programming”, Parallel computing, vol. 30–3, mar 2004, pp.

389–406.

https://arxiv.org/abs/2202.00717

198

[CYH21] Chu, Z.; Yu, J.; Hamdulla, A. “Throughput prediction based on extratree

for stream processing tasks”, Computer Science and Information Systems,

vol. 18–1, jan 2021, pp. 1–22.

[Dav18] Davis, A. L. “Reactive streams in Java: concurrency with RxJava, Reactor,

and Akka Streams”. USA: Apress, 2018, 1st ed., 159p.

[DBL+19] Djenouri, Y.; Belhadi, A.; Lin, J. C.; Djenouri, D.; Cano, A. “A survey on

urban traffic anomalies detection algorithms”, IEEE Access, vol. 7, 2019, pp.

12192–12205.

[dDFG18] del Rio Astorga, D.; Dolz, M. F.; Fernández, J.; García, J. D. “Paving the way

towards high-level parallel pattern interfaces for data stream processing”,

Future Generation Computer Systems, vol. 87, aug 2018, pp. 228–241.

[DDMMT15] Danelutto, M.; De Matteis, T.; Mencagli, G.; Torquati, M. “Parallelizing high-

frequency trading applications by using C++11 attributes”. In: Proceedings

of the International Conference on Trust, Security and Privacy in Computing

and Communications, 2015, pp. 140–147.

[DDMMT18] Danelutto, M.; De Matteis, T.; Mencagli, G.; Torquati, M. “Data stream

processing via code annotations”, The Journal of Supercomputing, vol. 74–11,

jun 2018, pp. 5659–5673.

[Den74] Dennis, J. B. “First version of a data flow procedure language”. In:

Proceedings of the International Programming Symposium, 1974, pp. 362–

376.

[DL15] Dietrich, C.; Lohmann, D. “The dataref versuchung: Saving time through

better internal repeatability”, SIGOPS Oper. Syst. Rev., vol. 49–1, jan 2015,

pp. 51–60.

[DLP03] Dongarra, J. J.; Luszczek, P.; Petitet, A. “The linpack benchmark: past, present

and future”, Concurrency and Computation: practice and experience, vol. 15–

9, mar 2003, pp. 803–820.

[DM98] Dagum, L.; Menon, R. “OpenMP: an industry standard api for shared-memory

programming”, IEEE Computational Science and Engineering, vol. 5–1,

mar 1998, pp. 46–55.

[DMM16] De Matteis, T.; Mencagli, G. “Keep calm and react with foresight: Strategies

for low-latency and energy-efficient elastic data stream processing”,

SIGPLAN Not., vol. 51–8, Feb. 2016.

199

[DMM17] De Matteis, T.; Mencagli, G. “Parallel patterns for window-based stateful

operators on data streams: an algorithmic skeleton approach”, International

Journal of Parallel Programming, vol. 45–2, mar 2017, pp. 382–401.

[DPCCM13] Difallah, D. E.; Pavlo, A.; Curino, C.; Cudre-Mauroux, P. “OLTP-Bench: An

extensible testbed for benchmarking relational databases”, Proc. VLDB

Endow., vol. 7–4, dec 2013, pp. 277–288.

[dRADFG17] del Rio Astorga, D.; Dolz, M. F.; Fernández, J.; García, J. D. “A generic

parallel pattern interface for stream and data processing”, Concurrency and

Computation: Practice and Experience, vol. 29–24, may 2017, pp. e4175.

[DSDMT+17] De Sensi, D.; De Matteis, T.; Torquati, M.; Mencagli, G.; Danelutto, M.

“Bringing parallel patterns out of the corner: The p3arsec benchmark suite”,

ACM Trans. Archit. Code Optim., vol. 14–4, Oct. 2017.

[DSMV+20] De Souza, P. R. R.; Matteussi, K. J.; Veith, A. D. S.; Zanchetta, B. F.; Leithardt,

V. R. Q.; Murciego, A. L.; De Freitas, E. P.; Anjos, J. C. S. D.; Geyer, C. F. R.

“Boosting big data streaming applications in clouds with burstflow”, IEEE

Access, vol. 8, dec 2020, pp. 219124–219136.

[DSTD16] De Sensi, D.; Torquati, M.; Danelutto, M. “A reconfiguration algorithm for

power-aware parallel applications”, ACM Trans. Archit. Code Optim., vol. 13–

4, Dec. 2016.

[DZSS14] Das, T.; Zhong, Y.; Stoica, I.; Shenker, S. “Adaptive stream processing using

dynamic batch sizing”. In: Proceedings of the International Symposium on

Cloud Computing, 2014, pp. 1–13.

[Ell09] Elliott, C. M. “Push-pull functional reactive programming”. In: Proceedings of

the International Symposium on Haskell, 2009, pp. 25–36.

[FK15] Fleisch, D.; Kinnaman, L. “A student’s guide to waves”. Cambridge, UK:

Cambridge University Press, 2015, 230p.

[Fou20] Foundation, S. C. “C++11 standard library extensions”. Source: https:

//isocpp.org/wiki/faq/cpp11-library-concurrency, Jan 2021.

[FT16] Friedman, E.; Tzoumas, K. “Introduction to Apache Flink: stream processing

for real time and beyond”. " O’Reilly Media, Inc.", 2016, 109p.

[GAA+20] Giatrakos, N.; Alevizos, E.; Artikis, A.; Deligiannakis, A.; Garofalakis, M.

“Complex event recognition in the big data era: a survey”, The VLDB Journal,

vol. 29–1, jul 2020, pp. 313–352.

https://isocpp.org/wiki/faq/cpp11-library-concurrency
https://isocpp.org/wiki/faq/cpp11-library-concurrency

200

[Gam95] Gamma, E. “Design patterns: elements of reusable object-oriented software”.

Pearson Education India, 1995, 417p.

[GBdRAGC19] Garcia-Blas, J.; del Rio Astorga, D.; García, J. D.; Carretero, J. “Exploiting

stream parallelism of mri reconstruction using GrPPI over multiple back-

ends”. In: Proceedings of the International Symposium on Cluster, Cloud and

Grid Computing (CCGRID), 2019, pp. 631–637.

[GdRA+20] Garcia, J. D.; del Rio, D.; Aldinucci, M.; Tordini, F.; Danelutto, M.; Mencagli,

G.; Torquati, M. “Challenging the abstraction penalty in parallel patterns

libraries”, The Journal of Supercomputing, vol. 76–7, jul 2020, pp. 5139–

5159.

[GDTF17] Griebler, D.; Danelutto, M.; Torquati, M.; Fernandes, L. G. “SPar: A DSL for

high-level and productive stream parallelism”, Parallel Processing Letters,

vol. 27–01, mar 2017, pp. 17.

[GGSF21] Garcia, A. M.; Griebler, D.; Schepke, C.; Fernandes, L. G. “Introducing

a stream processing framework for assessing parallel programming

interfaces”. In: Proceedings of the International Conference on Parallel,

Distributed and Network-Based Processing, 2021, pp. 84–88.

[GGSF22a] Garcia, A. M.; Griebler, D.; Schepke, C.; Fernandes, L. G. “Evaluating micro-

batch and data frequency for stream processing applications on multi-cores”.

In: Proceedings of the International Conference on Parallel, Distributed and

Network-Based Processing, 2022, pp. 10–17.

[GGSF22b] Garcia, A. M.; Griebler, D.; Schepke, C.; Fernandes, L. G. “SPBench: a

framework for creating benchmarks of stream processing applications”,

Computing, vol. 1, jan 2022.

[GGSF23] Garcia, A. M.; Griebler, D.; Schepke, C.; Fernandes, L. G. “Micro-batch

and data frequency for stream processing on multi-cores”, The Journal of

Supercomputing, vol. In press–In press, jan 2023, pp. 1–39.

[GHDF17] Griebler, D.; Hoffmann, R. B.; Danelutto, M.; Fernandes, L. G. “Higher-level

parallelism abstractions for video applications with SPar”. In: Proceedings of

the International Conference on Parallel Computing, 2017, pp. 698–707.

[GHDF18a] Griebler, D.; Hoffmann, R. B.; Danelutto, M.; Fernandes, L. G. “High-level and

productive stream parallelism for dedup, ferret, and bzip2”, International

Journal of Parallel Programming, vol. 47–1, feb 2018, pp. 253–271.

201

[GHDF18b] Griebler, D.; Hoffmann, R. B.; Danelutto, M.; Fernandes, L. G. “Stream

parallelism with ordered data constraints on multi-core systems”, Journal of

Supercomputing, vol. 75–8, jul 2018, pp. 4042–4061.

[GJ21] Gordon, A.; Jones, S. P. “Lambda: The ultimate excel worksheet

function”. Source: https://www.microsoft.com/en-us/research/blog/

lambda-the-ultimatae-excel-worksheet-function/, Jan 2021.

[GPRD19] Gomes, E. H.; Plentz, P. D.; Rolt, C. R. D.; Dantas, M. A. “A survey on data

stream, big data and real-time”, International Journal of Networking and

Virtual Organisations, vol. 20–2, 2019, pp. 143–167.

[Gra92] Gray, J. “Benchmark handbook: for database and transaction processing

systems”. Morgan Kaufmann Publishers Inc., 1992, 334p.

[Gri16a] Griebler, D. “Domain-specific language & support tool for high-level stream

parallelism”, Ph.D. Thesis, Faculdade de Informática - PPGCC - PUCRS, Porto

Alegre, Brazil, 2016, 243p.

[Gri16b] Griebler, D. “Domain-specific language & support tool for high-level stream

parallelism”, Ph.D. Thesis, Computer Science Department - University of

Pisa, Pisa, Italy, 2016, 244p.

[GSG20a] Garcia, A. M.; Schepke, C.; Girardi, A. “PAMPAR: A new parallel benchmark

for performance and energy consumption evaluation”, Concurrency and

Computation: Practice and Experience, vol. 32–20, oct 2020, pp. e5504,

https://onlinelibrary.wiley.com/doi/pdf/10.1002/cpe.5504.

[GSG+20b] Garcia, A. M.; Serpa, M.; Griebler, D.; Schepke, C.; Fernandes, L.

G. L.; Navaux, P. O. A. “The impact of CPU frequency scaling on power

consumption of computing infrastructures”. In: International Conference on

Computational Science and its Applications, 2020, pp. 142–157.

[GSHW14] Gedik, B.; Schneider, S.; Hirzel, M.; Wu, K.-L. “Elastic scaling for data stream

processing”, IEEE Transactions on Parallel and Distributed Systems, vol. 25–6,

dec 2014, pp. 1447–1463.

[Gus88] Gustafson, J. L. “Reevaluating Amdahl’s law”, Commun. ACM, vol. 31–5,

May. 1988, pp. 532–533.

[GV13] Grant, W.; Voorhies, R. “Cereal: A C++11 library for serialization”. Source:

https://uscilab.github.io/cereal, 2013.

[GVS+19] Griebler, D.; Vogel, A.; Sensi, D. D.; Danelutto, M.; Fernandes, L. G.

“Simplifying and implementing service level objectives for stream

parallelism”, Journal of Supercomputing, vol. 76, jun 2019, pp. 4603–4628.

https://www.microsoft.com/en-us/research/blog/lambda-the-ultimatae-excel-worksheet-function/
https://www.microsoft.com/en-us/research/blog/lambda-the-ultimatae-excel-worksheet-function/
https://uscilab.github.io/cereal

202

[Hal77] Halstead, M. H. “Elements of software science”, Elsevier, vol. 36–1,

may 1977, pp. 4–41.

[Haz20] Hazelcast, I. “Hazelcast in-memory computing platform”. Source:

https://hazelcast.com/products/in-memory-computing-platform/

#in-memory-solutions, Jan 2021.

[HGDF20] Hoffmann, R. B.; Griebler, D.; Danelutto, M.; Fernandes, L. G. “Stream

parallelism annotations for multi-core frameworks”. In: Proceedings of the

Brazilian Symposium on Programming Languages (SBLP), 2020, pp. 48–55.

[HH21a] Henning, S.; Hasselbring, W. “How to measure scalability of distributed

stream processing engines?” In: Proceedings of the International Conference

on Performance Engineering, 2021, pp. 85–88.

[HH21b] Henning, S.; Hasselbring, W. “Theodolite: Scalability benchmarking of

distributed stream processing engines in microservice architectures”, Big

Data Research, vol. 25, jul 2021, pp. 100209.

[HJHF14] Heinze, T.; Jerzak, Z.; Hackenbroich, G.; Fetzer, C. “Latency-aware elastic

scaling for distributed data stream processing systems”. In: Proceedings of

the International Conference on Distributed Event-Based Systems, 2014, pp.

13–22.

[HK19] Hueske, F.; Kalavri, V. “Stream processing with Apache Flink: fundamentals,

implementation, and operation of streaming applications”. O’Reilly Media,

2019, 310p.

[HLGF22] Hoffmann, R. B.; Löff, J.; Griebler, D.; Fernandes, L. G. “OpenMP as runtime

for providing high-level stream parallelism on multi-cores”, The Journal of

Supercomputing, vol. 1–1, jan 2022, pp. 7655–7676.

[HLLL22] Huang, T.-W.; Lin, D.-L.; Lin, C.-X.; Lin, Y. “Taskflow: A lightweight parallel and

heterogeneous task graph computing system”, IEEE Transactions on Parallel

and Distributed Systems, vol. 33–6, jun 2022, pp. 1303–1320.

[HMP+21] Hesse, G.; Matthies, C.; Perscheid, M.; Uflacker, M.; Plattner, H. “ESPBench:

The enterprise stream processing benchmark”. In: Proceedings of the

International Conference on Performance Engineering, 2021, pp. 201–212.

[HOL22] Herodotou, H.; Odysseos, L.; Lu, J. “Automatic performance tuning for

distributed data stream processing systems”. In: Proceedings of the

International Conference on Data Engineering, 2022, pp. 1–4.

https://hazelcast.com/products/in-memory-computing-platform/#in-memory-solutions
https://hazelcast.com/products/in-memory-computing-platform/#in-memory-solutions

203

[HP85] Harel, D.; Pnueli, A. “On the development of reactive systems”. In:

Proceedings of the International Conference on Logics and Models of

Concurrent Systems, Apt, K. R. (Editor), 1985, pp. 477–498.

[HSS+14] Hirzel, M.; Soulé, R.; Schneider, S.; Gedik, B.; Grimm, R. “A catalog of stream

processing optimizations”, ACM Comput. Surv., vol. 46–4, Mar. 2014.

[Hup09] Huppler, K. “The art of building a good benchmark”. In: Proceedings of the

International Conference on Performance Evaluation and Benchmarking,

Nambiar, R.; Poess, M. (Editors), 2009, pp. 18–30.

[HZEF16] Hughes, J. N.; Zimmerman, M. D.; Eichelberger, C. N.; Fox, A. D. “A survey of

techniques and open-source tools for processing streams of spatio-temporal

events”. In: Proceedings of the International Workshop on GeoStreaming,

2016, pp. 1–4.

[ICDV15] Imran, M.; Castillo, C.; Diaz, F.; Vieweg, S. “Processing social media

messages in mass emergency: A survey”, ACM Computing Surveys, vol. 47–

4, Jun. 2015.

[Int20] Intel, C. “Breakthrough memory optimized for data-centric

workloads”. Source: https://www.intel.com.br/content/www/br/pt/

architecture-and-technology/optane-dc-persistent-memory.html, Jan 2021.

[IPV17] Imai, S.; Patterson, S.; Varela, C. A. “Maximum sustainable throughput

prediction for data stream processing over public clouds”. In: Proceedings

of the International Symposium on Cluster, Cloud and Grid Computing

(CCGRID), 2017, pp. 504–513.

[IPV18] Imai, S.; Patterson, S.; Varela, C. A. “Uncertainty-aware elastic virtual

machine scheduling for stream processing systems”. In: Proceedings

International Symposium on Cluster, Cloud and Grid Computing (CCGRID),

2018, pp. 62–71.

[IT18] Ivie, P.; Thain, D. “Reproducibility in scientific computing”, ACM Comput.

Surv., vol. 51–3, jul 2018.

[Jai17] Jain, A. “Mastering apache storm: Real-time big data streaming using kafka,

hbase and redis”. Packt Publishing Ltd, 2017, 552p.

[JBM+16] Janjic, V.; Brown, C.; Mackenzie, K.; Hammond, K.; Danelutto, M.; Aldinucci,

M.; Garcia, J. D. “RPL: A domain-specific language for designing and

implementing parallel C++ applications”. In: Proceedings of the International

Conference on Parallel, Distributed, and Network-Based Processing, 2016,

pp. 288–295.

https://www.intel.com.br/content/www/br/pt/architecture-and-technology/optane-dc-persistent-memory.html
https://www.intel.com.br/content/www/br/pt/architecture-and-technology/optane-dc-persistent-memory.html

204

[KBDM13] Kambona, K.; Boix, E. G.; De Meuter, W. “An evaluation of reactive

programming and promises for structuring collaborative web applications”.

In: Proceedings of the International Workshop on Dynamic Languages and

Applications, 2013, pp. 1–9.

[KHAL+14] Kaiser, H.; Heller, T.; Adelstein-Lelbach, B.; Serio, A.; Fey, D. “HPX: A task

based programming model in a global address space”. In: Proceedings of the

International Conference on Partitioned Global Address Space Programming

Models, 2014, pp. 1–11.

[KLLDS12] Khammassi, N.; Le Lann, J.-C.; Diguet, J.-P.; Skrzyniarz, A. “MHPM: Multi-

scale hybrid programming model: A flexible parallelization methodology”. In:

Proceedings of the International Conference on High Performance Computing

and Communication, 2012, pp. 71–80.

[KLV61] Kelly, J. L.; Lochbaum, C.; Vyssotsky, V. A. “A block diagram compiler”, The

Bell System Technical Journal, vol. 40–3, 1961, pp. 669–678.

[KRK+18] Karimov, J.; Rabl, T.; Katsifodimos, A.; Samarev, R.; Heiskanen, H.; Markl, V.

“Benchmarking distributed stream data processing systems”. In: Proceedings

of the International Conference on Data Engineering, 2018, pp. 1507–1518.

[KWCF+16] Koliousis, A.; Weidlich, M.; Castro Fernandez, R.; Wolf, A. L.; Costa,

P.; Pietzuch, P. “SABER: Window-based hybrid stream processing for

heterogeneous architectures”. In: Proceedings of the International

Conference on Management of Data, 2016, pp. 555–569.

[LALC+22] Lobato, A. G. P.; Andreoni Lopez, M.; Cardenas, A. A.; Duarte, O. C. M. B.;

Pujolle, G. “A fast and accurate threat detection and prevention architecture

using stream processing”, Concurrency and Computation: Practice and

Experience, vol. 34–3, 2022, pp. e6561.

[LGFd+19] López-Gómez, J.; Fernández Muñoz, J.; del Rio Astorga, D.; Dolz, M. F.; Garcia,

J. D. “Exploring stream parallel patterns in distributed MPI environments”,

Parallel Computing, vol. 84, may 2019, pp. 24–36.

[LHP+22] Löff, J.; Hoffmann, R. B.; Pieper, R.; Griebler, D.; Fernandes, L. G. “DSParLib:

A C++ template library for distributed stream parallelism”, International

Journal of Parallel Programming, vol. 50–50, oct 2022, pp. 1–32.

[LLG19] Liu, L.; Li, H.; Gruteser, M. “Edge assisted real-time object detection for

mobile augmented reality”. In: Proceedings of the International Conference

on Mobile Computing and Networking, 2019, pp. 1–16.

205

[LLS+15] Lee, I.-T. A.; Leiserson, C. E.; Schardl, T. B.; Zhang, Z.; Sukha, J. “On-the-fly

pipeline parallelism”, ACM Trans. Parallel Comput., vol. 2–3, sep 2015.

[LM87] Lee, E. A.; Messerschmitt, D. G. “Synchronous data flow”, Proceedings of the

IEEE, vol. 75–9, sep 1987, pp. 1235–1245.

[LPDTP+12] Le-Phuoc, D.; Dao-Tran, M.; Pham, M.-D.; Boncz, P.; Eiter, T.; Fink, M. “Linked

stream data processing engines: Facts and figures”. In: Proceedings of the

International Conference on The Semantic Web, 2012, pp. 300–312.

[Luc71] Lucas, H. “Performance evaluation and monitoring”, ACM Comput. Surv.,

vol. 3–3, Sep. 1971, pp. 79–91.

[LWXH14] Lu, R.; Wu, G.; Xie, B.; Hu, J. “Stream bench: Towards benchmarking

modern distributed stream computing frameworks”. In: Proceedings of the

International Conference on Utility and Cloud Computing, 2014, pp. 69–78.

[LZS+22] Li, W.; Zhang, Z.; Shu, Y.; Liu, H.; Liu, T. “Toward optimal operator parallelism

for stream processing topology with limited buffers”, J. Supercomput.,

vol. 78–11, jul 2022, pp. 13276–13297.

[Mar20] Martin, D. “Ampere’s new 128-core altra CPU targets intel, AMD in

the cloud”. Source: https://www.crn.com/news/components-peripherals/

ampere-s-new-128-core-altra-cpu-targets-intel-amd-in-the-cloud, Jan 2021.

[MBDTE17] Moßburger, A.; Beck, H.; Dao-Tran, M.; Eiter, T. “A benchmarking framework

for stream processors”. In: Proceedings of the International Conference on

Knowledge Engineering and Knowledge Management, Ciancarini, P.; Poggi,

F.; Horridge, M.; Zhao, J.; Groza, T.; Suarez-Figueroa, M. C.; d’Aquin, M.;

Presutti, V. (Editors), 2017, pp. 153–157.

[McC95] McCalpin, J. D. “Memory bandwidth and machine balance in current high

performance computers”, IEEE Computer Society Technical Committee on

Computer Architecture (TCCA) Newsletter, vol. 1–1, Dec. 1995, pp. 19–25.

[MCT+20] Mei, Y.; Cheng, L.; Talwar, V.; Levin, M. Y.; Jacques-Silva, G.; Simha, N.;

Banerjee, A.; Smith, B.; Williamson, T.; Yilmaz, S.; Chen, W.; Chen, G. J.

“Turbine: Facebook’s service management platform for stream processing”.

In: Proceedings of the International Conference on Data Engineering, 2020,

pp. 1591–1602.

[MDAT17] Misale, C.; Drocco, M.; Aldinucci, M.; Tremblay, G. “A comparison of big

data frameworks on a layered dataflow model”, Parallel Processing Letters,

vol. 27–01, apr 2017, pp. 1740003.

https://www.crn.com/news/components-peripherals/ampere-s-new-128-core-altra-cpu-targets-intel-amd-in-the-cloud
https://www.crn.com/news/components-peripherals/ampere-s-new-128-core-altra-cpu-targets-intel-amd-in-the-cloud

206

[MDT18] Mencagli, G.; Dazzi, P.; Tonci, N. “Spinstreams: A static optimization tool for

data stream processing applications”. In: Proceedings of the International

Middleware Conference, 2018, pp. 66–79.

[MJP+19] Miao, H.; Jeon, M.; Pekhimenko, G.; McKinley, K. S.; Lin, F. X. “StreamBox-

HBM: Stream analytics on high bandwidth hybrid memory”. In: Proceedings

of the International Conference on Architectural Support for Programming

Languages and Operating Systems, 2019, pp. 167–181.

[MnDdRA+18] Muñoz, J. F.; Dolz, M. F.; del Rio Astorga, D.; Cepeda, J. P.; García,

J. D. “Supporting MPI-distributed stream parallel patterns in GrPPI”. In:

Proceedings of the International European MPI Users’ Group Meeting, 2018,

pp. 1–10.

[MPJ+17] Miao, H.; Park, H.; Jeon, M.; Pekhimenko, G.; McKinley, K. S.; Lin, F. X.

“Streambox: Modern stream processing on a multicore machine”. In:

Proceedings of the International Conference on Usenix Annual Technical

Conference, 2017, pp. 617–629.

[MRR12] McCool, M.; Reinders, J.; Robison, A. “Structured parallel programming:

patterns for efficient computation”. Elsevier, 2012, 446p.

[MSM04] Mattson, T. G.; Sanders, B.; Massingill, B. “Patterns for parallel programming”.

Pearson Education, 2004, 118p.

[MSS04] MacDonald, S.; Szafron, D.; Schaeffer, J. “Rethinking the pipeline as object-

oriented states with transformations”. In: Proceedings of the International

Workshop on High-Level Parallel Programming Models and Supportive

Environments, 2004, pp. 12–21.

[MTC+21] Mencagli, G.; Torquati, M.; Cardaci, A.; Fais, A.; Rinaldi, L.; Danelutto, M.

“Windflow: High-speed continuous stream processing with parallel building

blocks”, IEEE Transactions on Parallel and Distributed Systems, vol. 32–11,

apr 2021, pp. 2748–2763.

[MTG+19] Mencagli, G.; Torquati, M.; Griebler, D.; Danelutto, M.; Fernandes, L. G. L.

“Raising the parallel abstraction level for streaming analytics applications”,

IEEE Access, vol. 7, sep 2019, pp. 131944–131961.

[MVGF19] Maron, C. A. F.; Vogel, A.; Griebler, D.; Fernandes, L. G. “Should PARSEC

benchmarks be more parametric? a case study with dedup”. In: Proceedings

of the International Conference on Parallel, Distributed and Network-Based

Processing, 2019, pp. 217–221.

207

[Nab16] Nabi, Z. “Pro Spark Streaming: the zen of real-time analytics Using Apache

Spark”. Apress, 2016, 249p.

[NCP02] Nilsson, H.; Courtney, A.; Peterson, J. “Functional reactive programming,

continued”. In: Proceedings of the International Workshop on Haskell, 2002,

pp. 51–64.

[NNG18] Nasiri, H.; Nasehi, S.; Goudarzi, M. “A survey of distributed stream processing

systems for smart city data analytics”. In: Proceedings of the International

Conference on Smart Cities and Internet of Things, 2018, pp. 1–7.

[NQA+20] Nauman, A.; Qadri, Y. A.; Amjad, M.; Zikria, Y. B.; Afzal, M. K.; Kim, S. W.

“Multimedia internet of things: A comprehensive survey”, IEEE Access, vol. 8,

2020, pp. 8202–8250.

[NXC19] Nikouei, S. Y.; Xu, R.; Chen, Y. “Smart surveillance video

stream processing at the edge for real-time human objects

tracking”. John Wiley & Sons, Ltd, 2019, chap. 13, pp. 319–346,

https://onlinelibrary.wiley.com/doi/pdf/10.1002/9781119525080.ch13.

[Pet04] Petitet, A. “HPL-a portable implementation of the high-performance Linpack

benchmark for distributed-memory computers”. Source: www.netlib.org/

benchmark, Jan 2021.

[PGMPG21] Palyvos-Giannas, D.; Mencagli, G.; Papatriantafilou, M.; Gulisano, V.

“Lachesis: A middleware for customizing os scheduling of stream processing

queries”. In: Proceedings of the International Middleware Conference, 2021,

pp. 365–378.

[PHUK20] Pagliari, A.; Huet, F.; Urvoy-Keller, G. “NAMB: A quick and flexible

stream processing application prototype generator”. In: Proceedings of

the International Symposium on Cluster, Cloud and Internet Computing,

2020, pp. 61–70.

[PLH+21] Pieper, R.; Löff, J.; Hoffmann, R. B.; Griebler, D.; Fernandes, L. G. “High-level

and efficient structured stream parallelism for rust on multi-cores”, Journal

of Computer Languages, vol. 65, jan 2021, pp. 101054.

[Poh17] Pohl, C. “A hardware-oblivious optimizer for data stream processing”. In:

Proceedings of the International Conference on Very Large Databases,

Christen, P.; Kemme, B.; Rahm, E. (Editors), 2017, pp. 1–4.

[PRR19] Prasaad, G.; Ramalingam, G.; Rajan, K. “Scaling ordered stream processing

on shared-memory multicores”. In: Proceedings of International Conference

on Real-Time Business Intelligence and Analytics, 2019, pp. 1–10.

www.netlib.org/benchmark
www.netlib.org/benchmark

208

[PSTF12] Preud’Homme, T.; Sopena, J.; Thomas, G.; Folliot, B. “An improvement

of OpenMP pipeline parallelism with the batchqueue algorithm”. In:

Proceedings of the International Conference on Parallel and Distributed

Systems, 2012, pp. 348–355.

[Rei07] Reinders, J. “Intel threading building blocks: outfitting C++ for multi-core

processor parallelism”. Sebastopol, CA, USA: O’Reilly Media, Inc., 2007,

336p.

[RGDF19] Rockenbach, D. A.; Griebler, D.; Danelutto, M.; Fernandes, L. G. “High-level

stream parallelism abstractions with spar targeting GPUs”. In: Proceedings

of the International Conference on Parallel Computing, 2019, pp. 543–552.

[RLA+22] Rockenbach, D. A.; Löff, J.; Araujo, G.; Griebler, D.; Fernandes, L. G. “High-

level stream and data parallelism in C++ for GPUs”. In: Proceedings of the

XXVI Brazilian Symposium on Programming Languages, 2022, pp. 41–49.

[RM19] Röger, H.; Mayer, R. “A comprehensive survey on parallelization and elasticity

in stream processing”, ACM Comput. Surv., vol. 52–2, Apr. 2019.

[RNCLP18] Russo, G.; Nardelli, M.; Cardellini, V.; Lo Presti, F. “Multi-level elasticity for

wide-area data streaming systems: A reinforcement learning approach”,

Algorithms, vol. 11, Sep 2018.

[RSG+19] Rockenbach, D. A.; Stein, C. M.; Griebler, D.; Mencagli, G.; Torquati, M.;

Danelutto, M.; Fernandes, L. G. “Stream processing on multi-cores with

GPUs: Parallel programming models’ challenges”. In: Proceedings of the

International Parallel and Distributed Processing Symposium Workshops,

2019, pp. 834–841.

[RTMD20] Rinaldi, L.; Torquati, M.; Mencagli, G.; Danelutto, M. “High-throughput stream

processing with actors”. In: Proceedings of the International Workshop on

Programming Based on Actors, Agents, and Decentralized Control, 2020, pp.

1–10.

[Ryd22] Rydning, J. “Worldwide global datasphere and global storagesphere

structured and unstructured data forecast, 2022–2026”, Technical Report,

International Data Corporation (IDC), Needham, MA, USA, 2022, 978p.

[SCS17] Shukla, A.; Chaturvedi, S.; Simmhan, Y. “Riotbench: An IoT benchmark for

distributed stream processing systems”, Concurrency and Computation:

Practice and Experience, vol. 29–21, 2017, pp. e4257.

209

[SCW+22] Sun, D.; Cui, Y.; Wu, M.; Gao, S.; Buyya, R. “An energy efficient and runtime-

aware framework for distributed stream computing systems”, Future Gener.

Comput. Syst., vol. 136–C, nov 2022, pp. 252–269.

[Sew17] Seward, Julian. “A program and library for data compression”. Source:

http://www.bzip.org/1.0.5/bzip2-manual-1.0.5.html, Oct 2020.

[SHGW15] Schneider, S.; Hirzel, M.; Gedik, B.; Wu, K. “Safe data parallelism for general

streaming”, IEEE Transactions on Computers, vol. 64–2, nov 2015, pp. 504–

517.

[SKSM08] Srivastava, A.; Kundu, A.; Sural, S.; Majumdar, A. “Credit card fraud detection

using hidden markov model”, IEEE Transactions on Dependable and Secure

Computing, vol. 5–1, 2008, pp. 37–48.

[SRG+20] Stein, C. M.; Rockenbach, D. A.; Griebler, D.; Torquati, M.; Mencagli, G.;

Danelutto, M.; Fernandes, L. G. “Latency-aware adaptive micro-batching

techniques for streamed data compression on graphics processing units”,

Concurrency and Computation: Practice and Experience, may 2020, pp.

e5786.

[Ste97] Stephens, R. “A survey of stream processing”, Acta Informatica, vol. 34–7,

jul 1997, pp. 491–541.

[Sut66] Sutherland, W. R. “The on-line graphical specification of computer

procedures.”, Ph.D. Thesis, Massachusetts Institute of Technology, 1966,

127p.

[TA10] Thies, W.; Amarasinghe, S. “An empirical characterization of stream

programs and its implications for language and compiler design”. In:

Proceedings of the International Conference on Parallel Architectures and

Compilation Techniques, 2010, pp. 365–376.

[TCN+16] Tudoran, R.; Costan, A.; Nano, O.; Santos, I.; Soncu, H.; Antoniu, G.

“Jetstream: Enabling high throughput live event streaming on multi-site

clouds”, Future Generation Computer Systems, vol. 54, jan 2016, pp. 274–

291.

[TDVMB17] Tommasini, R.; Della Valle, E.; Mauri, A.; Brambilla, M. “RSPLab: RDF stream

processing benchmarking made easy”. In: Proceedings of the International

Semantic Web Conference, 2017, pp. 202–209.

[Tec01] Technologies, A. “Advanced design system 1.5, agilent ptolemy simulation”.

Source: http://literature.cdn.keysight.com/litweb/pdf/ads15/ptolemy/pt093.

html, Jan 2021.

http://www.bzip.org/1.0.5/bzip2-manual-1.0.5.html
http://literature.cdn.keysight.com/litweb/pdf/ads15/ptolemy/pt093.html
http://literature.cdn.keysight.com/litweb/pdf/ads15/ptolemy/pt093.html

210

[THR+18] Tawsif, K.; Hossen, J.; Raja, J. E.; Jesmeen, M. Z. H.; Arif, E. M. H. “A

review on complex event processing systems for big data”. In: Proceedings

of the International Conference on Information Retrieval and Knowledge

Management, 2018, pp. 1–6.

[TKPP20] Theodorakis, G.; Koliousis, A.; Pietzuch, P.; Pirk, H. “Lightsaber: Efficient

window aggregation on multi-core processors”. In: Proceedings of the

International Conference on Management of Data, 2020, pp. 2505–2521.

[TKPP22] Theodorakis, G.; Kounelis, F.; Pietzuch, P.; Pirk, H. “Scabbard: Single-node

fault-tolerant stream processing”, Proc. VLDB Endow., vol. 15–2, feb 2022,

pp. 361–374.

[TMM+16] Tzelepis, C.; Ma, Z.; Mezaris, V.; Ionescu, B.; Kompatsiaris, I.; Boato, G.;

Sebe, N.; Yan, S. “Event-based media processing and analysis: A survey of

the literature”, Image and Vision Computing, vol. 53, sep 2016, pp. 3–19,

event-based Media Processing and Analysis.

[Tor19] Torquati, M. “Harnessing parallelism in multi/many-cores with streams and

parallel patterns”, Ph.D. Thesis, Computer Science Department - University

of Pisa, Pisa, Italy, 2019, 378p.

[TSR20] Tantalaki, N.; Souravlas, S.; Roumeliotis, M. “A review on big data real-time

stream processing and its scheduling techniques”, International Journal

of Parallel, Emergent and Distributed Systems, vol. 35–5, mar 2020, pp.

571–601, 10.1080/17445760.2019.1585848.

[TTMD22] Tonci, N.; Torquati, M.; Mencagli, G.; Danelutto, M. “Distributed-memory

fastflow building blocks”, Int. J. Parallel Program., vol. 51–1, dec 2022, pp.

1–21.

[TZ14] Tian, W. D.; Zhao, Y. D. “Optimized cloud resource management and

scheduling: theories and practices”. Morgan Kaufmann, 2014, 284p.

[VAR19] Voss, M.; Asenjo, R.; Reinders, J. “Pro TBB: C++ parallel programming with

threading building blocks”. New York, NY, USA: Apress, 2019, 754p.

[vDVdP20] van Dongen, G.; Van den Poel, D. “Evaluation of stream processing

frameworks”, IEEE Transactions on Parallel and Distributed Systems, vol. 31–

8, mar 2020, pp. 1845–1858.

[VGDF19] Vogel, A.; Griebler, D.; Danelutto, M.; Fernandes, L. G. “Minimizing self-

adaptation overhead in parallel stream processing for multi-cores”. In:

Proceedings of the International Parallel Processing Workshops, 2019, pp. 12.

211

[VGDF22] Vogel, A.; Griebler, D.; Danelutto, M.; Fernandes, L. G. “Self-adaptation

on parallel stream processing: A systematic review”, Concurrency and

Computation: Practice and Experience, vol. 34–6, mar 2022, pp. e6759.

[VGF21] Vogel, A.; Griebler, D.; Fernandes, L. G. “Providing high-level self-adaptive

abstractions for stream parallelism on multicores”, Software: Practice and

Experience, jan 2021.

[VGS+18] Vogel, A.; Griebler, D.; Sensi, D. D.; Danelutto, M.; Fernandes, L. G.

“Autonomic and latency-aware degree of parallelism management in SPar”.

In: Proceedings of the International Parallel Processing Workshops, 2018, pp.

28–39.

[Víl20] Vílchez Moya, C. “Application parallelization and debugging using pattern-

based programming”, Technical Report, Undergraduate Thesis of Double

Degree in Computer Engineering and Mathematics, Faculty of Informatics

UCM, Department of Computer Architecture and Automation, 2020, 50p.

[vKAH+15] v. Kistowski, J.; Arnold, J. A.; Huppler, K.; Lange, K.-D.; Henning, J. L.; Cao, P.

“How to build a benchmark”. In: Proceedings of the International Conference

on Performance Engineering, 2015, pp. 333–336.

[vTLv16] Čermák, M.; Tovarňák, D.; Laštovička, M.; Čeleda, P. “A performance

benchmark for netflow data analysis on distributed stream processing

systems”. In: Proceedings of the International Conference Network

Operations and Management Symposium, 2016, pp. 919–924.

[Wan16] Wang, Y. “Stream processing systems benchmark: Streambench”, Master’s

Thesis, Aalto University, 2016, 66p.

[WCB01] Welsh, M.; Culler, D.; Brewer, E. “SEDA: An architecture for well-conditioned,

scalable internet services”. In: Proceedings of the International Symposium

on Operating Systems Principles, 2001, pp. 230–243.

[WFM+19] Wang, L.; Fu, T. Z. J.; Ma, R. T. B.; Winslett, M.; Zhang, Z. “Elasticutor: Rapid

elasticity for realtime stateful stream processing”. In: Proceedings of the

International Conference on Management of Data, 2019, pp. 573–588.

[YLL+22] Yang, J.; Liu, S.; Li, Z.; Li, X.; Sun, J. “Real-time object detection for streaming

perception”. In: Proceedings of the International Conference on Computer

Vision and Pattern Recognition (CVPR), 2022, pp. 5375–5385.

[YT13] Yogita; Toshniwal, D. “Clustering techniques for streaming data-a survey”.

In: Proceedings of the International Advance Computing Conference, 2013,

pp. 951–956.

212

[YWVS17] Yao, F.; Wu, J.; Venkataramani, G.; Subramaniam, S. “TS-Bat: Leveraging

temporal-spatial batching for data center energy optimization”. In:

Proceedings of the International Global Communications Conference, 2017,

pp. 1–6.

[ZGQB17] Zhao, X.; Garg, S.; Queiroz, C.; Buyya, R. “A taxonomy and survey of stream

processing systems”. In: Software Architecture for Big Data and the Cloud,

Mistrik, I.; Bahsoon, R.; Ali, N.; Heisel, M.; Maxim, B. (Editors), Boston:

Morgan Kaufmann, 2017, chap. 11, pp. 183–206.

[ZHD+17] Zhang, S.; He, B.; Dahlmeier, D.; Zhou, A. C.; Heinze, T. “Revisiting the

design of data stream processing systems on multi-core processors”. In:

Proceedings of the International Conference on Data Engineering, 2017, pp.

659–670.

[ZHZH19] Zhang, S.; He, J.; Zhou, A. C.; He, B. “Briskstream: Scaling data stream

processing on shared-memory multicore architectures”. In: Proceedings of

the International Conference on Management of Data, 2019, pp. 705–722.

[ZLCH20] Zheng, X.; Li, P.; Chu, Z.; Hu, X. “A survey on multi-label data stream

classification”, IEEE Access, vol. 8, dec 2020, pp. 1249–1275.

[ZMK+19] Zeuch, S.; Monte, B. D.; Karimov, J.; Lutz, C.; Renz, M.; Traub, J.; Breß,

S.; Rabl, T.; Markl, V. “Analyzing efficient stream processing on modern

hardware”, Proc. VLDB Endow., vol. 12–5, Jan. 2019, pp. 516–530.

[ZSRS16] Zhang, Q.; Song, Y.; Routray, R. R.; Shi, W. “Adaptive block and batch sizing

for batched stream processing system”. In: Proceedings of the International

Conference on Autonomic Computing, 2016, pp. 35–44.

[ZWZH20] Zhang, S.; Wu, Y.; Zhang, F.; He, B. “Towards concurrent stateful stream

processing on multicore processors”. In: Proceedings of International

Conference on Data Engineering, 2020, pp. 1537–1548.

	Introduction
	Research Problem
	Research Goals
	Contributions
	Publications
	Document Organization

	Background
	Parallel Programming
	Types of Parallelism
	Parallel Patterns
	Parallel Programming Interfaces

	Stream Processing
	Stream Processing Applications
	Stream Processing Paradigms
	Stream Processing Operators
	Types of Parallelism for Stream Processing
	Stream Processing on Parallel Architectures
	Parallel Programming Interfaces for Stream Processing

	Benchmarks
	Types of Benchmarks
	Properties of Benchmarks
	Parallel Benchmarks

	SPBench Benchmarking Framework
	Motivation
	SPBench Framework
	Framework API
	SPBench Sequential Benchmarks
	SPBench Parallel Benchmarks
	Performance Metrics
	Benchmark Parameterization
	Command-Line Interface

	Related Work
	Discussion

	Chapter Summary

	SPBench Applications and Parallel Benchmark Suite
	Context
	SPBench Applications
	Bzip2
	Face Recognition
	Lane Detection
	Ferret
	Fraud Detection

	Workload Classes
	Input Workloads
	Using Custom Input Workloads
	Correctness Testing

	Building the Parallel Benchmarks
	FastFlow
	Threading Building Blocks
	SPar
	OpenMP and ISO C++ Threads
	GrPPI
	WindFlow

	Related Benchmark Suites
	Discussion

	Chapter Summary

	Parallelism and Performance Evaluation
	Context
	Related Work
	Discussion of Related Work

	Experimental Setup
	Workload Characterization
	Latency and Throughput Performance
	Experimental Methodology
	TBB, FastFlow, OpenMP, and ISO C++ Threads Results
	GrPPI Results
	Comparing handwritten FastFlow, SPar-FastFlow, and GrPPI-FastFlow
	Custom Parallel Compositions Results
	Data Stream Performance

	Memory Usage
	Programmability Evaluation
	Overview of the Results
	Chapter Summary

	Data Stream Frequency
	Motivation
	Related Work
	Data Stream Frequency Manager
	Frequency Patterns
	First Proposed Solution
	Current Solution

	Experimental Evaluation
	Experimental Methodology
	Experimental Results
	Discussion of the Results

	Chapter Summary

	Micro-Batching
	Motivation
	Related Work
	Proposed Solution
	Experimental Evaluation
	Experimental Methodology
	Experimental Results

	Chapter Summary

	Conclusion
	Limitations and Future Work

	References

