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Abstract—Benchmark frameworks and datasets allow us to
analyze and understand the knowledge that NLP models capture
about the world they were trained on. Several Transformer
models have recently been adapted to code-related tasks such
as code search, in which the goal is to find the most semantically
relevant code given a query written in natural language. To
achieve satisfactory performance, the retrieval models heavily
rely on the quality of the query. In this paper, we introduce the
Natural Language Code Search Robustness Benchmark (COBE),
which provides a more holistic evaluation of the state-of-the-
art models considering several aspects of the retrieval models,
such as: (i) retrieval capabilities measured in multiple ranking
metrics; (ii) robustness to a plethora of input perturbations;
(iii) efficiency in terms of training and retrieval times; and (iv)
stability across fine-tuning runs. We shed a light over important
questions showing that simply computing performance-based
retrieval metrics does not suffice to evaluate this kind of model.
The proposed benchmark introduces novel metrics and mea-
surement strategies that allow a rigorous quantitative analysis
of input-query robustness while providing an understanding of
model generalization behavior. We perform an extensive set
of experiments using state-of-the-art models such as CodeBert,
GraphCodeBert, and CodeT5. Those models are fine-tuned over
many different scenarios in six programming languages. Several
models trained in this study outperform their state-of-the-art
counterparts, which provides evidence that the standard fine-
tuning approach used in code search related work is sub-optimal.
The proposed benchmark is a powerful tool to evaluate code
search models, providing insights on how they behave during
fine-tuning and how they are interpreting the input queries.

Index Terms—natural language code search, robustness,
benchmark

I. INTRODUCTION

Most of the state-of-the-art models in Artificial Intelligence
(AI) nowadays are trained on broad data at scale to be later
adapted to any particular downstream task, a paradigm that
has recently been called Foundation Models (FMs) [9]. FMs
leverage from well-established techniques such as transfer
learning [25], and enjoy the benefits of a parallel neural
network architecture like the Transformer [26] to be trained
self-supervisedly over massive amounts of data. Well-known
examples of foundation models include BERT [4], CLIP [17],
GPT-3 [2], and GPT-3 derived Codex [8].

Foundation models are now being designed to deal with
all kinds of data, be it natural language text [4], [18], [19],
images [3], [6], audio and speech [15], protein and molecular
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data [20], [21], or tabular data in general [31]. More recently,
the research community has focused on designing FMs to
source-code tasks [10], [11], [28], and the initial results have
shown to be very promising. A partnership between OpenAl
and Microsoft have led to the development of GitHub Copilot,
an Al-based code completion tool whose inner workings are
based on the Codex foundation model [8].

Code completion is but one of the many possible tasks
that we can address when building machine learning models
that learn from source code. Examples include natural lan-
guage code search [10], which is the task of searching for
code snippets through queries written in natural language;
documentation generation (also known as code summariza-
tion) [14], which is basically generating natural language
semantic descriptions to an input code snippet; unit test
case generation [5], another generation task but this time
focused on generating test cases to verify the correctness of
functions and/or methods; and several others like program
synthesis [13], refactoring [1], and vulnerability analysis [23].

The focus of this paper will be on natural language code
search (NLCS), a task that has gain popularity considering the
gains in productivity it can bring when done properly [22],
[24], [27]. Typically, NLCS is performed by software engi-
neers with the help of Q&A sites such as StackOverflow,
which rely on qualified answers from other software engineers.
The goal of machine learning based NLCS is to automate that
task by retrieving source-code snippets from a data repository
after semantically aligning both natural language descriptions
and code snippets into a common latent semantic space.

NLCS is often evaluated as a typical retrieval task, making
use of evaluation measures that are computed over rankings,
such as the Mean Reciprocal Rank (MRR), the recall at k
(RQK), or the average ranking position (meanR). However,
most of the research community overlooks important aspects
that should be taken into account when evaluating and de-
ploying such models into real-world applications. For instance,
little is known in terms of how the current foundation models
for source-code tasks behave when dealing with insignificant
input perturbations. For equally-performing models in the
benchmark validation sets, are there differences across random
initializations, fine-tune runs, or zero-shot performance in
distinct programming languages?



To answer some of those questions and shed a light over
the real robustness of NLCS models, we introduce the Natural
Language Code Search Robustness Benchmark (COBE). We
argue that COBE allows us to analyze the current state-of-
the-art approaches for NLCS in a more holistic fashion. The
proposed benchmark introduces novel metrics and measure-
ment strategies that allow a rigorous quantitative analysis of
input-query robustness, while also providing a much better
understanding of the actual generalization behavior of some
of the main FMs that are pretrained on source code data.

We make use of COBE to perform an extensive set
of experiments with state-of-the-art models CodeBert [10],
GraphCodeBert [11], and CodeT5 [28], which are then fine-
tuned in six distinct programming languages, spanning many
different scenarios. With the help of COBE , we show that the
standard fine-tuning approach used in NLCS is sub-optimal,
and we provide novel state-of-the-art models that outperform
their original published versions.

II. THE COBE BENCHMARK

The Natural Language Code Search Robustness Benchmark
(COBE) comprises data, data transformations, and evaluation
measures. We describe them in detail next.

A. Dataset

In COBE, we make use of a cleaned version of Code-
SearchNet [12] (Table I), a dataset that comprises pairs of
natural language descriptions and corresponding code snippets.
Originally, the data was collected from open-source projects in
GitHub, and the number of instances can be seen in Table II.
We choose this particular dataset due to its relevance for
NLCS, since it was primarily released as a challenge for the
task and widely used after that in many important studies.

B. Transformations

To explore different robustness aspects of the models, our
benchmark supports a group of different transformations, each
one modifying the natural language query in either character
or word-level. To implement most of these transformations,
we use the open-source library NLPAug [16], which makes
available several NLP augmentations.

We divide the transformations into two main categories:

1) Character-Based: these transformations apply character-
level changes in the inputs by replacing, modifying, or adding
a specific character. In this category, we implement four
transformations and except by the case transformation, all have
similar functionality of changing n% of the characters in 30%
of the words, where n% is user-defined.

o Case: changes a specific percentage of the case of the
characters (from upper to lower and vice-versa).

o Replace: randomly replaces a group of characters.

« Noise: adds to the text new characters, polluting the text.

o Typo: similar to replace, but replacing the random be-
havior by a keyboard proximity weight.

2) Word-Based: while character-based modifications focus
on syntactic robustness, word-based transformations focus
on semantic-level robustness, by analyzing how changes in
the order or the meaning of the words affect the model.
Differently from previous transformations, these are modified
proportionally to n%, also user-defined.

« Synonym: replaces up to n% of the words in the sentence
by synonyms.

e Swap: swaps the order of n% of the words in the
sentence.

Slightly distinct from previous transformations, we also
implement one that changes the description into a question
by adding prefix "How to” and a question mark at the end.
Table III shows examples of the proposed data transformations.

C. Evaluation Measures

We divide the proposed evaluation measures in COBE into
two groups: retrieval quality and robustness.

Retrieval quality: following [12], for evaluating retrieval
results we use Mean Reciprocal Ranking (MRR) as the
main measure. In addition, we employ other ranking-related
measures such as RQK (reads “Recall at K), which is the
percentage of queries in which the ground-truth is one of the
first K retrieved results; and the ground truth average ranking
position (meanR).

Robustness: micro and macro averages of areas under the
noise curves. For every transformation, we compute the MRR
with different noise ratios, ranging from 0% to 50% in steps
of 5%. Hence, we can compute a robustness curve, where the
y-axis is the MRR value and the x-axis the noise ratio that is
applied in the transformation.

III. MODELS

With our proposed benchmark, in this paper we evaluate
three state-of-the-art models for code-related tasks, all of
them pre-trained in large programming and natural language
corpora. CodeBert [10] was introduced as the first attempt to
use a BERT-like model with both modalities of data, natural
and programming language, to perform tasks that require pro-
found understanding of source code. Besides masked language
modeling, it also makes use of a task to detect replaced tokens
to help in learning bimodal representations.

GraphCodeBert [11] is an optimized version of CodeBert,
with the major improvement being the addition of code-
specific information during the pre-training by encoding the
relationship between the variables. The authors use two
structure-aware tasks: one that identifies from where the value
of a variable comes from and the other that identifies which
identifiers are edges in the AST representation.

Differently from previous BERT-like architectures,
CodeT5 [28] is an encoder-decoder transformer adapted to
a multi-task learning framework. During pre-training, this
model also uses tasks that leverage code-specific information
originated from the AST representation together with a more
common denoising task such as mask prediction. Considering
that for NLCS we only need the encoded deep representation
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TABLE I
LENGTH OF THE CODE SNIPPETS FOR TRAINING AND CODEBASE SPLITS BEFORE AND AFTER REMOVAL OF DOCSTRINGS AND CODE COMMENTS.

Training Split Codebase Split
Language Raw Filtered Reduction (%) Raw Filtered Reduction (%)
go 411.0 £ 479.6 372.6 + 412.8 0.07 3549 + 393.7 328.3 + 3349 0.09
java 610.2 £ 613.5 559.0 £ 512.0 0.08 557.9 + 566.3 512.1 + 481.3 0.08
javascript 643.8 + 1674.0 555.4 + 1256.4 0.15 687.1 + 2984.6 581.6 + 2282.9 0.14
php 584.1 £ 515.3 539.5 + 446.8 0.07 593.7 £ 523.5 553.8 + 466.8 0.08
python 885.6 + 811.7 547.0 £ 511.6 0.41 953.6 £ 920.7 559.7 £ 539.9 0.38
ruby 430.7 £ 421.5 430.7 + 421.5 0.00 465.3 £ 479.4 465.3 £ 479.4 0.00
TABLE II an n X t x d tensor that comprises a collection of n C' matrices.

NUMBER OF INSTANCES IN THE DATASET FOR EACH AVAILABLE
PROGRAMMING LANGUAGE.

train val test  codebase
go 167,288 7,325 8,122 28,120
java 164,923 5,183 10,955 40,347
javascript 58,025 3,885 3,291 13,981
php 241,241 12,982 14,014 52,660
python 251,820 13914 14918 43,827
ruby 24,927 1,400 1,261 4,360
Full dataset 908,224 44,689 52,561 183,295

TABLE III

EXAMPLE OF THE TRANSFORMATIONS IN A TOY SENTENCE FOR
DIFFERENT VALUES OF n.

Noise ratio (n%)

Transformation 0.1 0.5

original a simple function a simple function
case a simPle fUnction a sIMPLe FUnctloN

synonym a round eyed function a simple part

replace a siRple function a simple fudVMiok
swap a function simple function simple a
noise a simploe function a sCiom@ple function
typo a gimple function a simple fulcY&On

question How to a simple function?  How to a simple function?

of the input, we can get rid of the CodeT5 decoder, which
was originally designed to be fine-tuned in tasks where the
output can be treated as a sentence.

We use the pre-trained version of those models and fine-tune
them on the CodeSearchNet dataset for retrieval. CodeBert and
GraphCodeBert are pre-trained for masked token prediction
using the CodeSearchNet dataset, while CodeTS5 is trained for
multiple tasks and uses additional data.

In order to allow such models to perform code search (code
retrieval), we add a linear layer on top of the output of the
[CLS] token vector and use it as a global representation for
both code snippets and natural language docstrings, which
are used as textual queries. Let 7(C) = € be the backbone
transformer with the additional fully-connected layer that
projects code embeddings ¢ x d onto a latent space d € R.
Given that such transformer was pre-trained in both code and
docstrings, we reuse the same model to encode both code and
comments into vectors € and q.

In summary, for training we encode a batch of aligned pairs
of codes 7(C) = C and batch of comments 7(Q) = Q. C is

The pairwise similarity matrix is then computed as s(Q,C),
and code snippets are ranked accordingly. We can use several
distinct similarity functions to define s(-,-), though following
recent work we simply use the natural inner product of query
and code vectors, or the cosine similarity (inner product but
with vectors normalized to have unit norm). We explore such
differences in some experiments in later sections. Following,
we discuss the loss function options that we consider for
training such models.

A. Loss functions

Retrieval models have to be optimized in order to make
related code-docstring pairs to present high similarity between
each other. Loss functions designed for retrieval tasks often use
the remaining not-aligned pairs from the batches as contrastive
examples to push unrelated pairs apart in the latent space.

There are two main loss functions used for retrieval models:
(1) cross-entropy loss; and (ii) contrastive hinge-loss. Fol-
lowing we discuss both options as well as some hypotheses
regarding each of them.

Cross-entropy: it is the standard choice for training classi-
fication models, and recently self-supervised models as well.
It is straightforward to be used for retrieval systems, since
instead of using class logits as input for the softmax operator,
we use the similarity matrix S as prediction scores:

Jcr(€,q); = —log ( (D

s(€,9);
> S(E?a)iﬂ')

where we compute the entropy value for the i*" query w.r.t
the n. code snippet vectors from the batch. Note that 7 is a
temperature hyperparameter used to sharpen or soften the data
distribution of the similarity matrix.

Contrastive loss: the contrastive hinge loss is a margin
triplet-based optimizer. Its main goal is to make similarity
s(q, ©) of similar pairs larger than s(q, ¢’) of contrastive pairs
(denoted with ) by a margin «. It usually comes in either of
two main versions: sum of all hinges Jsyas and sum of hard
contrastive hinges Jprax. The first one is the sum of the
contrastive hinge values, which is defined in Equation 2.
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Jsum (S, q) = Z[Oé —5(€,q) + s(c,q')]

5/

q

+) Ja—s@e) +s@e)] @

Such formulation is very stable and rarely diverges, although
it optimizes the average case and often gets trapped into local
minima, and thus can be considered a sub-optimal choice. It
is often more useful when training models from scratch rather
than for fine-tuning. Its counterpart is the Jjsax that uses
only hinge values of the hard-contrastive samples, as seen in
Equation 3.

Tmax(€,q) = I%a}x[a —5(¢,q) + 5(¢,q)]
+ IYL%X[CV - S(q, 6) + S(qa E)} (3)

By calculating gradients from the larger hinge value in the
training batch, the network is being optimized to handle and
improve upon the hardest case. That yields far better results,
though sometimes the training will diverge or suffer from
stability issues given that it is more sensitive to noise and
may generate large gradients based on unwanted samples.

Recently, we have seen the introduction of an exponentially
weighted loss [29], [30] that smoothly combines both func-
tions, namely Jw g:

A=1-7n° (5)

Jwe uses all hinge-loss values in the beginning of the
training, and gives more weight to the hard cases as the
training progresses. It takes the n hyperparameter, which is
the exponential growth resistance: the larger its value (e.g.,
0.999, 0.9999) more iterations are required to use only hard-
contrastive samples. For lower values (e.g., 0.5, 0.9, 0.95)
such migration will happen in fewer iterations. For fine-tuning,
it may be helpful given that we add a linear layer that is
initialized randomly.

Recall that margin-based triplet losses such as the con-
trastive options we described (i.e., Jarax, Jsunm, Jwe) will
not propagate gradients when the hinge value is below the
margin. Therefore, there is an infinite set of possible weight
matrices configurations that minimizes the loss function, which
may end up generating underspecification issues [7]. The
cross-entropy loss (Jog) will not propagate gradients when
the likelihood prediction of the correctly aligned pair is 1 (and
the rest are all zeros). In that case, it is also possible that
multiple settings of weights allow for the minimal loss value,
although arguably in practice that is much harder to happen.

Finally, both types of functions are contrastive given that
they compare related pairs to unrelated ones, and therefore
the optimization path took by the gradient descent algorithm
will depend on the order of the sampled batches. That being

said, it is possible that by simply using different initialization
seeds, the features that are learned end up differing greatly
and present large variability in retrieval quality, generalization
capability, and robustness performance. We perform several
experiments to help clarifying that hypothesis.

IV. METHODOLOGY
A. Hyper-parameters

All models generated in this paper were trained using the
same evaluation protocol and hyper-parameter optimization
procedures. We use Adam as our main optimization strategy.
All models are trained for 20 epochs, and evaluation results
are computed 3 times per epoch. We early-stop training if
validation MRR plateaus and does not increase during six con-
secutive validation runs. Our standard regime for controlling
the learning rate is starting it at 2 x 10~° and decreasing it
tenfold every 3 epochs. We select the best models to compute
test metrics using the validation MRR value as criterion. Batch
sizes are defined to fulfill the available GPU memory. In most
experiments, we used batches of 85 for CodeBERT models,
and 70 for CodeT5, requiring ~ 24GB of GPU memory.

Those settings differ from CodeBERT and GraphCodeBERT
papers in the following aspects: they used batches of 32 and
linear learning rate decay schedule applied in all iterations.
CodeBERT used initial learning rate of 10~°. Such models
are considered our main baselines and we adopt the reported
metrics from the respective papers.

For the contrastive loss experiments, we set the margin to
0.2, and the exponential grow resistance to 0 (using hard-
contrastives only). We follow CodeBERT experiments and set
the default softmax temperature 7 to 1. We present the impact
of several of those hyper-parameter in ablation studies depicted
in Sections V.

V. EXPERIMENTAL ANALYSIS

The main results are obtained after running all architectures
for all the different languages available on the dataset. Due to
time and computational cost constraints, the ablation studies
were performed with fewer programming languages. As it will
be discussed in the robustness results, the patterns found do
not suffer significant changes over different scenarios.

A. Results

Table IV depicts results for all baseline models in 6 different
programming languages. Note that the models we trained
consistently outperform the results reported in the original
papers. That is evidence that those models were trained sub-
optimally. We were able to achieve far better results simply by
properly adjusting the batch size, learning rate scheduler, and
loss function settings. For the CodeBERT model trained with
the cross-entropy loss and batch of 85 instances, we achieved
an impressive absolute overall improvement of almost 10%,
which is far superior to the gains generated by GraphCodeBert.
Also note that we provide code search results for CodeT5 that
were not presented in their paper. Those settings seem to be
rather important for languages such as Java and PHP, where
the newly-trained models provide the largest improvements.
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TABLE IV
CODE SEARCH RESULTS IN TERMS OF MRR.

Model Ruby Javascript Go Python Java Php Overall
NBow 0.162 0.157 0.330 0.161 0.171 0.152 0.189
CNN 0.276 0.224 0.680 0.242 0.263 0.260 0.324
BiRNN 0.213 0.193 0.688 0.290 0.304 0.338 0.338
selfAtt 0.275 0.287 0.723 0.398 0.404 0.426 0.419
RoBERTa 0.587 0.517 0.850 0.587 0.599 0.560 0.617
RoBERTa(code) 0.628 0.562 0.859 0.610 0.620 0.579 0.643
CodeBERT 0.679 0.620 0.882 0.672 0.676 0.628 0.693
GraphCodeBERT 0.703 0.644 0.897 0.692 0.691 0.649 0.713
CodeTS5 [Ours] 0.676 0.679 0.879 0.734 0.761 0.835 0.761
CodeBERT-Contrastive[Ours] 0.727 0.700 0.878 0.675 0.768 0.817 0.761
CodeBERT [Ours] 0.726 0.704 0.892 0.743 0.782 0.834 0.780
GraphCodeBERT [Ours] 0.757 0.728 0.901 0.763 0.781 0.848 0.796
10 IR-Curve for CodeBert (JavaScript) 10 IR-Curve for GraphCodeBert (JavaScript) 10 IR-Curve for CodeT5 (JavaScript)
. —e— case . —e— case . —e— case
0.8 —=— synonym 0.8 —=— synonym 0.8 —=— synonym
I R B —— replace §i: T replace —— replace
" N £ N T N
=04 —_— — o RV >§\ 5 =04 \\ T S
S — e T S .
.\ =t e \ i \,\”\\ ——
0.2 2 0.2 .. 0.2 \
S S I
el \.\.\ \.\‘
0.0 —— 0.0 —— 0.0 e
0.0 0.1 0.2 0.3 0.4 0.5 0.0 0.1 0.2 0.3 0.4 0.5 0.0 0.1 0.2 0.3 0.4 0.5
Noise ratio Noise ratio Noise ratio

Fig. 1. Input Robustness curves.

B. Robustness Results

Next, we evaluate the models following the input query
transformations proposed in the COBE benchmark. By an-
alyzing the results demonstrated in Figure 1, it is possible
to see that changes in the case of the input characters have
the most drastic impact in the performance for all cases. That
phenomenon tells us about how code-retrieval models struggle
to understand the semantics of the words and the context where
the case is relevant or not. Surprisingly, case is a much more
complex noise factor to the model than transformations that
effectively add or change characters.

Differently from the case transformation, we observe that
word-based transformations are those that cause the smallest
impact in terms of MRR. We can see that word order has
no relevant impact in query understanding by all models since
swap barely affects performance. On the other hand, synonym
is responsible for a small but relevant decay in the results.
That happens because even though we are replacing words
with others that contain the same semantic function, in many
contexts the synonym may not fit, leading the query to a
slightly different meaning.

All the character-based transformations have a more signifi-
cant impact on the quality of the retrieved values. Noise, typo,
and replace show similar behavior, causing first an abrupt
decrease of performance for small values of noise ratio and
then a linear decrease. The small difference between noise
and the other two is mainly due to the policy followed by
each: noise adds a character while replacing and typo replace

already existent characters, making it more likely that words
will not be completely corrupted for small values of noise ratio
in the noise transformation.

Despite the differences in MRR, looking only at the behav-
ior from each transformation and their effect in performance,
we can see that there is no language or transformer architecture
that can increase robustness against modifications over input
queries. The patterns also do not change much when modi-
fying the seeds, even with strong differences in the similarity
matrices as will be shown in the following ablation studies.
Table V shows the IR-AUC results for all transformations in
the benchmark.

C. Impact of the loss function

An interesting effect that we discover during the experi-
ments is that cross entropy seems to perform poorly when
vectors are normalized. In fact, all models underperformed
in that scenario. This same effect did not repeat when using
contrastive loss, which performed well in both scenarios, either
normalizing vectors or not. Such an effect happens due to
the fact that applying a softmax normalization in vectors
constrained to (—1, 1) — cosine similarity interval — is redun-
dant. Both operators normalize vectors, and by constraining
the input range before softmax, the re-normalization is less
effective and will operate in a far more constrained range.
This effect can be alleviated by tuning the temperature to
sharpen the similarity matrix values differences. Nonetheless,
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TABLE V
COBE IR-AUC BENCHMARK RESULTS.

Model Case Noise Question Replace Swap Synonym Typo Overall
CodeBERT 0.266 0.415 0.784 0.387 0.765 0.672 0.382 0.524
CodeT5 0.235 0.379 0.756 0.358 0.733 0.630 0.352 0.492
GraphCodeBert 0.279 0.437 0.782 0.408 0.776 0.684 0.402 0.538
contrastive loss seems to be more robust to that, and works for o
. . . Impact of batch size in CodeBert

out-of-the-shelf hyper-parameters and normalization regimes. .

. . [o]

We observe that each loss function generates very different
first order statistics as presented in Figure 2. Interestingly, both Java
presented similar cyclic patterns, which seem to be frequent for Javascript
contrastive search models. We have found that such effect is Php
most likely to happen in larger datasets, although cross entropy Python
usually tends to converge to lower similarity values. Ruby
Overall
Similarity matrix mean value (lang=Python) 0 2 4 6 8

60
2
8 50
E —e— Contrastive
g —+— Cross entropy
3 40
=

30

Relative Time (hours)

Fig. 2. Mean of the elements in the similarity matrix during training. Values
for cross entropy and contrastive loss (JarAx)-

D. Batch size importance

Figure 3 shows that the batch size is rather important for
achieving top results when using contrastive loss functions.
The baseline is a CodeBert model trained with a batch of
32 instances. We compare it to a model trained with 85
instances. The average relative gain in MRR is 2%, though
for Python such improvement was near 9%. The average gain
is larger than the one obtained by using AST (Asymmetric
Syntactic Tree) in GraphCodeBert when compared to the
vanilla CodeBert.

Such results are not totally unexpected, given that with
larger batch sizes during training there is a larger probability of
sampling harder samples that may generate more informative
gradients. Indeed, with larger batch sizes it is far more likely
that the global hard contrastive instance be sampled.

E. Different seeds, different rankings

Considering the fact that all models are trained with some-
what contrastive loss functions, we hypothesized that the
order of contrastive samples could largely affect the resulting
features — and by consequence the ranked code visible by the
future user of the system. We then execute several experiments

Relative MRR variation

Fig. 3. Relative MRR improvement when training CodeBert with a batch
size of 85 over a batch size of 32.

to show how different seeds could affect the learning process,
not only in generalization performance and robustness aspects
but also in the generated rankings. To test the impact of
using different random initialization, we select a contrastive
GraphCodeBert and execute the very same architecture on
Ruby data ten times only varying the random seed. After
training, we execute our COBE benchmark and also compare
the rankings generated by each model.

Regarding MRR results, we see in Figure 4 that the models
have a certain variability but follow a similar global pattern.
During some iterations, the deviation can be as high as
5% in absolute MRR values. When analyzing the robustness
scores (IR-AUC) for the different seeds, we start to see some
troublesome results. Figure 4 also shows the relative IR-AUC
variation of all seeds per transformation type in COBE. With
word-based transformations, the distinction across seeds is
notably smaller when compared with character-based trans-
formations, where the difference across seeds can reach 14%.
This analysis shows that code search models are greatly
affected by underspecification, and it is not possible to detect
that lack of robustness when only using the standard test set
values, showcasing the importance of the proposed benchmark.

In Figure 5 we show that the same models trained with
different seeds end up generating very different rankings.
To generate that image, we computed all queries in test set
considering the top-20 code instances retrieved sorted by
similarity. It shows that the Spearman Ranking correlation
matrix among all provided rankings vary between 0.14 and
0.16, which indicates a very weak correlation among models.
In addition, when we compute the ratio of items that were
retrieved together (discarding ranking order), we observe that
often only half of the instances are the same, while all the
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GraphCodeBert with 10 Different Seeds (Ruby)

Relative IR-AUC for 10 differnet seeds
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Fig. 4. Left: Validation set MRR values during training. Right: Robustness performance for all runs considering the best model.
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Fig. 5. Ranking correlation between different seed runs.

remaining ones are different. That particular result lead us to
the conclusion that even though the models were guided to
the same objective, using the same hyper-parameters and con-
figurations, the initialization and order of the sampled batches
have a drastic impact over the learning process. This kind
of effect imposes credibility challenges for deploying code-
retrieval systems in real-world scenarios, and we believe that
novel mitigation strategies should be studied for addressing
this problem.

VI. QUALITATIVE ANALYSIS

To have a richer understanding of the benchmark behavior,
we perform a simple qualitative analysis, which allows us to
verify the changes caused by the benchmark transformations
over a single instance. For this analysis, we create a toy
instance where the code is a simple Python method that reads
a json file and the comment is a straightforward description
of the function, both presented in Listing 1.

I # Source-Code

> def read_json(filepath) :
with open(filepath,

4 json_list =

"r’) as json_file:
json.load (json_file)

6 return Jjson_list

8 # Description
9 # read a json file from a filepath

Listing 1. Toy example for the qualitative analysis.

We encode both source code and its respective description
with the Python GraphCodeBert model, and we then calculate
the similarity between both resulting vectors. Our intention
here is to bring a more clear interpretation of the model when
functioning over different transformations, i.e., to verify their
impact in the computed similarity. We present the similarity
between code and descriptions for different ratios of the noise
transformation in Tables VI.

We can clearly see the overall trend of similarity decreasing
as the noise ratio increases. With this particular example,
we can notice the lack of robustness of the current state-
of-the-art code-retrieval systems, in which simple addition
of character noise or case modifications strongly affect the
computed similarity between source code and descriptions.

VII. CONCLUSION

In this paper, we introduced the COBE Benchmark, a com-
plete framework to evaluate the robustness of code retrieval
models when dealing with modifications and noise addition in

TABLE VI
EXAMPLE OF COBE IN A TOY INSTANCE FOR NOISE TRANSFORMATION.

Noise Ratio Text Similarity
0.0 read a json file from a filepath 81.60
0.1 riead a json fpile from a filepath 72.00
0.2 yread a json file fGrom a filepath 72.99
0.3 r#tead a json ofile from a filepath 71.52
0.4 read a json gfile 2from a filepath 69.43
0.5 #rea6d a j$soan file from a filepath 57.39
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the input queries. We performed a thorough set of experiments
to evaluate the current state-of-the-art approaches for the
task of Natural Language Code Search (NLCS), under the
assumption that the current results do not realistically convey
their lack of robustness. Our experiments shows that all models
struggle with small character changes, and can suffer from
extremely poor performance when dealing with higher ratios
of noise, even if the semantic meaning of the code description
remains unchanged.

After several ablation studies we confirmed that the current
models severely lack in terms of robustness. In fact, we show
that the SOTA models for NLCS suffer from underspecifica-
tion, which means that changes in the random initialization
can generate vastly different models, whose snippet rankings
are uncorrelated to each other.

Finally, we also show that very simple modifications when
training NLCS models can drastically improve results, such
as using different loss functions or increasing the batch sizes.
We intend to continue investigating the robustness of retrieval
models, and in future work we will focus on image-text
alignment, in order to verify whether the underspecification
problem also affects multimodal foundation models that align
images with textual descriptions.
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