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Both reverse transcription-PCR (RT-PCR) and chest X-rays are used for the diagnosis

of the coronavirus disease-2019 (COVID-19). However, COVID-19 pneumonia does

not have a defined set of radiological findings. Our work aims to investigate radiomic

features and classification models to differentiate chest X-ray images of COVID-19-based

pneumonia and other types of lung patterns. The goal is to provide grounds for

understanding the distinctive COVID-19 radiographic texture features using supervised

ensemble machine learning methods based on trees through the interpretable Shapley

Additive Explanations (SHAP) approach. We use 2,611 COVID-19 chest X-ray images

and 2,611 non-COVID-19 chest X-rays. After segmenting the lung in three zones and

laterally, a histogram normalization is applied, and radiomic features are extracted.

SHAP recursive feature elimination with cross-validation is used to select features.

Hyperparameter optimization of XGBoost and Random Forest ensemble tree models

is applied using random search. The best classification model was XGBoost, with an

accuracy of 0.82 and a sensitivity of 0.82. The explainable model showed the importance

of the middle left and superior right lung zones in classifying COVID-19 pneumonia from

other lung patterns.

Keywords: coronavirus, radiomics, radiological findings, X-rays, machine learning, explainable models, SHAP

INTRODUCTION

The coronavirus disease-2019 (COVID-19) is a viral respiratory disease with high rates of
human-to-human contagious and transmission and was first reported in 27 patients with
pneumonia of unknown etiology on December 31st, 2019, in Wuhan, China. The causative
agent, a beta coronavirus 2b lineage (1) named severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2), was identified on January 7, 2020, by throat swab samples (2, 3). In December 2020,
1 year after the outbreak, the WHO reported 66,243,918 confirmed cases and 1,528,984 deaths by
COVID-19 (4). On January 30, 2021, 1 year after WHO declared COVID-19 as an international
public health emergency, confirmed cases achieved 101,406,059 and 2,191,898 deaths (4). August
2021, the mark of 198,778,175 confirmed cases was achieved, with 4,235,559 deaths related to
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COVID-19 worldwide (4). In August 2020, at least five SARS-
CoV-2 virus clademutations were reported, which have increased
the infectivity and viral loads in the population (5). One year
later (August 2021), with more than 3,886,112,928 COVID-19
vaccines applied, the third wave of COVID-19 is being noticed
in Europe due to the quick virus adaptations increasing the
transmissibility and viral load, with four variants of concern and
more than ten others identified (6).

The clinical aspects of COVID-19 are highly variable between
individuals, varying in different levels of involvement from
asymptomatic to lethal conditions. The incubation period goes
from 2 to 14 days. A mildly symptomatic condition usually
presents fever, dry cough, fatigue, muscle pain, and taste and
smell changes, with few patients showing neurological and
digestive symptoms (7). Severe symptomatic patients can develop
dyspnea, acute respiratory distress syndrome, septic shock, and
metabolic acidosis (1). In the United States of America (USA),
the younger population, between 18 and 29 years old, are part
of the group age with more cases of COVID-19, followed by
people between 50 and 64 years (8). However, the number of
deaths is higher in the elderly population. Over 30% of deaths
are concentrated in 85+ years population, ∼60% between 50
and 84 years, and only 0.5% in youngers (18–29 years) (8).
COVID-19 incidence is also higher in women (52% of cases),
while men show to be more at risk of death (∼54%) (8). A
study published in August 2020 (1), with 121 Chinese patients
with COVID-19, showed that the risk of adverse outcomes in
individuals with more than 65 years is 2.28 times higher, and
initial clinical manifestation does not differ between non-severe
and severe cases, as in survivors and non-survivors. The risk
factors for predicting COVID-19 severity were cardiovascular
and cerebrovascular diseases (1). Higher lactate dehydrogenase
(LDH) and coagulation dysfunction also contribute to the
severity of the disease and progression to death (1).

The diagnosis of COVID-19 uses two approaches: reverse
transcription-PCR (RT-PCR) (7) and chest X-rays (CXRs)
(9). However, with the possibility of RT-PCR false-negative
results, clinical and laboratory tests have usually been added to
the patient diagnosis investigation and imaging findings. The
imaging techniques are typically CXR or CT, and the findings
have been compared with those of typical pneumonia. COVID-
19 pneumonia does not have a defined set of imaging findings
resulting in heterogeneous positivity definitions. The diagnosis
sensitivity ranges for chest CT and CXR are from 57.4 to 100%
and 59.9 to 89.0%, specificity from 0 to 96.0 and 11.1 to 88.9%,
respectively (10). Automatic methods of prediction of COVID-
19 in CT have been evaluated in several articles, as described
by Chatzitofis et al. (11) and Ning et al. (12). Even CT provides
higher image resolution, CXR images are less costly, available in

Abbreviations: 1st order, First-order features; AP, anteroposterior; AUC,

area under the curve; COVID-19, Coronavirus SARS-CoV-2 diseases; CNN,

Convolutional Neural Networks; CXR, Chest X-ray; GLCM, Gray-level co-

occurrence matrix; GLRLM, Gray-level Run Length Matrix; GLSZM, Gray-level

Size Zone Matrix; GLDM, Gray-level Dependence Matrix; PA, posteroanterior;

PCR, Protein C-reactive; ROC, receiver operating characteristic; SHAP, Shapley

Additive Explanations; SHAP-RFECV, Shapley Additive Explanations with

Recursive Feature Elimination with Cross-validation.

clinics and hospitals, implies a lower radiation dose, and have
a smaller risk of contamination of the imaging equipment and
interruption of radiologic services to decontamination (13, 14).
Also, abnormality findings on CT are mirrored in CXR images
(14, 15).

The interpretation of radiological lung patterns can reveal
differences in lung diseases. For COVID-19-related pneumonia,
the characteristic pattern in CXR includes a pleuropulmonary
abnormality with the presence of bilateral irregular, confluent, or
bandlike ground-glass opacity or consolidation in a peripheral
and mid-to-lower lung zones distribution with less likely
pleural effusion (14, 16). For other lung diseases, like typical
pneumonia, radiological patterns are related to the disease
origin: bacterial, viral, or another etiology. In general, CXR
findings show segmental or lobar consolidation and interstitial
lung disease (17). Specifically, for viral pneumonia caused
by adenovirus, the radiological pattern is characterized by
multifocal consolidation or ground-glass opacity. In addition,
there are bilateral reticulonodular areas of opacity, irregular or
nodular regions of consolidation for pneumonia by influenza
virus (18). For bacterial pneumonia, there are three main
classifications due to the affected region: lobar pneumonia, with
confluent areas of focal airspace disease usually in just one
lobe, bronchopneumonia, with a multifocal distribution with
nodules and consolidation in both lobes, and acute interstitial
pneumonia that involves the bronchial and bronchiolar wall, and
the pulmonary interstitium (19).

Apart from typical visual interpretation, the lung disease
patterns can be studied through texture-feature analysis and
radiomic techniques. However, due to radiologists’ unfamiliarity
with COVID-19 patterns, computer-aided diagnosis (CAD)
systems help to differentiate COVID-19-related and other
lung patterns.

Radiomics is a natural extension of CAD that converts the
medical images into mineable high-dimensional data, allowing
hypothesis generation, testing, or both (20). Computer-based
texture analysis can be present in radiomics and reflects the tissue
changes quantitatively from a healthy state to a pathological
one. The extracted features can feed a classification model. The
process has been widely explored to help radiologists achieve a
better and faster diagnosis and is being applied to analyze and
classify medical images to detect several diseases such as skin
cancer (21), neurological disorders (22), and pulmonary diseases,
like cancer (23) or pneumonia (24). For example, COVID-19-
related pneumonia studies have been using various methods
to differentiate the disease from typical pneumonia healthy
individuals or even several lung diseases. Many approaches use
deep learning (DL) framework, basing the feature extraction
and classification in convolutional neural networks (CNN)
models (25–28). However, DL models are not inherently
interpretable and cannot explain their predictions intuitively
and understandably. Hand-crafted feature extraction yet has
mathematical definitions and can be associated with known
radiological patterns.

The interpretability of results using medical images has been
highly required. Therefore, explainable AI (Artificial Intelligence)
predictions have been developed, such as the Shapley Additive
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FIGURE 1 | Examples of CXR images from COVID-19 and non-COVID-19 datasets.

Explanations (SHAP) framework (29). Our goal is to investigate
the radiomic features and classification models to differentiate
chest X-ray images of COVID-19-based pneumonia and diverse
types of lung pathologies. We aim to provide grounds for
understanding the distinctive radiographic features of COVID-
19 using supervised ensemble machine learning methods based
on trees in an interpretable way using the SHAP approach to
explain themeaning of themost important features in prediction.
Our study analyzes the lung in three zones in both lobes,
showing the middle left and superior right zones’ importance in
identifying COVID-19.

MATERIALS AND METHODS

We retrospectively used a public dataset of CXR images of
COVID-19-related pneumonia and lung images of patients
with no COVID-19 to investigate the radiomic features that
can discriminate COVID-19 from other lung radiographic
findings. We extracted first- and second-order radiomic features
and divided our analysis into two main steps. First, we
performed k-folds cross-validation to select the algorithm with
the best performance classifying COVID-19 pneumonia and
non-COVID-19. Second, we performed an explanatory approach
to select the best set of radiomic features that characterize
COVID-19 pneumonia.

Image Dataset
We used two public multi-institutional databases related to
COVID-19 and non-COVID-19 to train and evaluate our
model. BIMCV (Valencian Region Medical ImageBank) is a
large dataset, with annotated anonymized X-ray and CT images
along with their radiographic findings, PCR, immunoglobulin
G (IgG), and immunoglobulin M (IgM), with radiographic
reports from Medical Imaging Databank in Valencian Region

Medical Image Bank. BIMCV-COVID+ (30) comprises 7,377
computed radiography (CR), 9,463 digital radiography (DX),
and 6,687 CT studies, acquired from consecutive studies with
at least one positive PCR or positive immunological test for
SARS-Cov-2. BIMCV-COVID- (31) has 2,947 CR, 2,880 DX, and
3,769 CT studies of patients with negative PCR and negative
immunological tests for SARS-Cov-2. Both databases have all
X-ray images stored in 16-bit PNG images in their original
high-resolution scale, with sizes varying between 1,745 × 1,465
pixels and 4,248 × 3,480 pixels for patients with COVID-19 and
between 1,387 × 1,140 pixels and 4,891 × 4,020 pixels for non-
COVID-19. Figure 1 shows an example of CXR images of both
datasets (BIMCV-COVID+ and BIMCV-COVID–).

We used only CXR images of anteroposterior (AP) and
posteroanterior (PA) projections of adult patients (≥18 years
old). Some images from the dataset do not have information
regarding projection (AP, PA, or lateral) in the DICOM tag, and
some projection tags are mislabeled. All images with missing the
projection DICOM tag were discarded and, from the selected
AP or PA projections, they were visually inspected and discarded
if mislabeled.

For COVID-19 positive patients, we selected only the first
two images between the first and last positive PCRs. For non-
COVID-19 participants with more than two X-ray acquisitions,
only the first two images were selected. Therefore, we have 2,611
images from patients with COVID-19, and we randomly chose
2,611 images from non-COVID-19 to ensure a balanced dataset.
Demographic information regarding selected patients is shown
in Table 1. In addition, since some CXR images were stored with
an inverted lookup table, images with photometric interpretation
equal to “monochrome1” were multiplied by minus one and
summed with their maximum value to harmonize the dataset.

Previous studies already used the BIMCV-COVID dataset to
evaluate lung segmentation (32), data imbalance corrections (33),
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TABLE 1 | Demographic data of our study.

COVID-19 Non-COVID-19

Age 62 ± 16 64 ± 19

Sex (male) 1,358 1,268

Sex (female) 1,253 1,343

DL classification models (34–36), and other imaging challenges
(37, 38).

Lung Segmentation
We applied a histogram equalization in each CXR image (39,
40) to normalize the intensity values and reduce the dataset’s
features variability. Pixel values were normalized to 8-bits per
pixel and resampled to 256 × 256 pixels. We segment lungs
using an open-source pretrained U-Net-inspired architecture
segmentation model to generate lung masks1. The model was
trained in two different open CXR databases: JSRT (Japanese
Society of Radiological Technology) (41) and Montgomery
County (42). The databases used for training came from patients
with tuberculosis, so they are not specific for COVID-19-based
pneumonia lung segmentation.

We applied the opening morphological operator in each mask
to remove background clusters and fill holes of the resulting
lung mask, using a square structuring element, 8-connected
neighborhood. The opening morphological operation smooths
an object’s contour, breaks narrow isthmuses, and eliminates thin
protrusions. The mathematical details of opening morphological
operation can be found in Gonzalez and Woods (43).

We removed all clusters with <5 pixels and all connected
regions with <75 pixels. The lung mask is stretched back
to the original image size and applied to the original image
before processing. We normalized all segmented lung images
considering only pixels inside the lung mask, between 0 and 255.

We split the image between the left and right side using the
centroid of two areas; if the centroid is located within the first half
of thematrix size (from left to right), it is considered as part of the
right lung (the radiological image in CXR ismirrored). Next, each
lung’s height is divided into upper, middle, and bottom zones,
determined by the extremities’ distance, divided into thirds. The
segmentation workflow is shown in Figure 2.

Radiomic Features
We used the PyRadiomics library to extract the first and second-
order statistical texture-based features for each lung mask. The
mathematical formulation of the features can be found in
Zwanenburg, Leger, and Vallières (44). The radiomic features are
divided into five classes (45):

First-order features (18 features): These are based on the first-
order histogram and related to the pixel intensity distribution.

Gray-level co-occurrence matrix or GLCM (24 features): This
gives information about the gray-level spatial distribution,

1https://github.com/imlab-uiip/lung-segmentation-2D.

considering the relationship between pixel pairs and the
frequency of each intensity within an 8-connected neighborhood.

Gray-level run length matrix or GLRLM (16 features): This is
like GLCM; it is defined as the number of contiguous pixels with
the same gray level considering a 4-connected neighborhood,
indicating the pixel value homogeneity.

Gray-level size zone matrix or GLSZM (16 features): This
is used for texture characterization; it provides statistical
representation by estimating a bivariate conditional probability
density function of the image distribution values and
is rotation-invariant.

Gray-level dependence matrix or GLDM (14 features): This
quantifies the dependence of gray image level by calculating the
connectivity at a certain distance when its difference in pixel
intensity is <1.

Model Selection
We performed 10-folds cross-validation after radiomic feature
extraction to guarantee unbiased metrics results and error
generalization. We realized that a normalization between 0 and
1 and used SHAP- Recursive Feature Elimination with Cross-
Validation (RFECV) feature selection in 9-folds of the dataset.
Each machine learning model was trained using the selected
features with the hyperparameter optimization method, and
randomized search with cross-validation from the sci-kit learn
library (46, 47). The method uses a range of values for each
parameter in the model. It tests a given number of times with
different combinations and splits of training data, measuring the
model performance in the validation set. We chose to run 1,000
iterations for each model, using an intern 5-folds stratified cross-
validation. The parameter values explored in each model are
shown inTable 2. We chose the best parameters based on the best
performance of recall in cross-validation. After hyperparameter
optimization, model evaluation is performed in the last fold.

Feature Selection
Feature selection is the process of selecting the most relevant
features for a given task. The process reduces the computational
cost regarding the training and evaluation of the machine
learning model and improves the generalization (48). Moreover,
some features may be irrelevant or redundant, negatively
impacting themodeling, adding biases (49). To avoid these issues,
we decided to make a feature selection before our modeling.

We used the SHAP-RFECV from the Probatus python library
to perform the feature selection. Further information about the
SHAP-RFECV algorithm and its applications can be found on
the Probatus webpage2. The method uses a backward feature
elimination based on the SHAP value of feature importance.
The designed model is trained with all features initially and
uses cross-validation (10-fold) to estimate each feature’s SHAP
importance value. At the end of each round, the features with
the lowest importance are excluded. Then, the training is done
again until the number of features chosen by the user is reached.
We decided to remove 20% of the lowest importance features in
each iteration for faster reduction of features in early iterations

2https://ing-bank.github.io/probatus/.
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FIGURE 2 | Workflow of the segmentation process.

TABLE 2 | Parameter values explored by random search in XGBoost and Random Forest Classifier models.

XGBoost Random Forest Classifier

min_child_weight 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 n_estimators 10, 50, 100, 200

max_depth 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 max_depth None, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10

lambda* 0–1 criterion gini, entropy

gamma* 0–1 min_sample_split 1, 2, 3, 4, 5, 6, 7, 8, 9, 10

eta* 0–1 min_sample_leaf 1, 2, 3, 4, 5

objective binary:logistic

tree_method gpu_hist

*10 random values in the range.

and more precise results in the later ones until it reaches the
minimum value of 20 features.

Machine Learning Models
We trained two ensemble classification models based on
tree-based models using the scikit-learn (47) library and
XGBoost (XGB) (50) on Python version 3.6.5. The classification
methods used in our article are the XGB and the Random
Forest (RF).

XGBoost is a scalable ensemble model based on an extreme
gradient for tree boosting. It is based on regression trees, which in
contrast to decision trees, contains a continuous score on each of
the leaves. The input data is sorted into blocks of columns that are
categorized by the corresponding feature value. The split search
algorithm runs in the block seeking the split candidates’ statistics
in all leaf branches. It uses decision rules into trees to determine
for each leaf the example will be placed. The final prediction is
calculated by summing up the score in the corresponding leaves

(51). The proper algorithm and mathematical formulation are
addressed in Chen (50).

Random Forest is a tree-based ensemble learning algorithm
that induces a pre-specified number of decision trees to solve a
classification problem. Each tree is built using a subsample of
the training data, and each node searches for the best feature
in a subset of the original features. The assumption is that by
combining the results of several weak classifiers (each tree) via
majority voting, one can achieve a robust classifier with enhanced
generalization ability. The mathematical formulation of RF is
described in Breiman (52).

Performance Evaluation
Accuracy, sensitivity, precision, F1-Score, and the area under the
curve (AUC) of the receiver operating characteristic (ROC) were
used for model evaluation. The final model was selected based on
the best sensitivity achieved in the cross-validation. Each metric
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is calculated as follows (53):

Accuracy =
TP + TN

TP + TN + FP + FN

Sensitivity =
TP

TP + FN

Precision =
TP

TP + FP

F1 Score = 2×
precision× sensitivity

precision+ sensitivity

where: TP = true positive, TN = true negative, FP = false
positive, and FN= false negative.

Explanatory Approach
Despite their complexity, approaches to making AI models
“interpretable” have gained attention to enhance the
understanding of machine learning algorithms. Explaining
tree models is particularly significant because the pattern that
the model uncovers can be more important than the model’s
prediction itself. The SHAP approach is an additive feature
attribution method that assigns an “importance value” to each
feature for a particular prediction (29, 54). The SHAP approach
satisfies three important properties for model explanation: (i)
local accuracy because the explanation model and the original
one has to match, at least, the output for a specific input;
(ii) consistency, because if the model changes, it is because a
feature’s contribution increases or stay the same regardless of
other inputs, so the input’s attribution should not decrease; and
(iii) missingness, meaning the missing values of features in the
original input have no impact.

In our work, we chose the SHAP approach with tree models
because it is calculated in each tree leaf and gives interpretability
for local explanations, which reveals the most informative
features for each subset of samples. Local explanations allow the
identification of global patterns on data and verify how the model
depends on its input features. It also increases the signal-to-noise
ratio to detect problematic data distribution shifts, making it
possible to analyze the behavior of the entire dataset, which is
composed of medical images from different databases (54).

The SHAP approach uses an extension of Shapley values from
the game theory to calculate the feature importance. The SHAP
values are calculated based on the prediction difference when
using all features and when using just a few ones. It addresses how
the addition of one feature improves or not the prediction (55).
In tree-based models, the SHAP values are also weighted by the
node sizes, meaning the number of training samples in the node.
Finally, the feature importance assumes that the features with
large absolute SHAP values have more importance than others
with smaller absolute values. To access the global importance, we
average the feature importance across all data (56).

We use the SHAP-RFECV approach on the final model to
evaluate the most important features and how they affect the
model’s prediction.

RESULTS

We extracted 88 features for each lung zone. Next, we applied RF
and XGB models to analyze the performance with 10-fold cross-
validation. Table 2 shows the parameters used for both models,
and Table 3 has the performance metrics.

The XGBoost model was selected for hyperparameters
optimization and feature selection using SHAP due to its higher
classification performance. Table 4 shows the hyperparameters,
and Table 5 shows the selected features.

The SHAP feature importance values are shown in Figure 3

for the 20 selected features. Figure 4 shows the effect of each
feature in the model prediction.

Figures 5, 6 show the decision’s plot of one COVID-19
pneumonia case and one non-COVID-19 pneumonia case,
respectively. The plot shows the SHAP values related to each
feature’s importance and how they predict the classification for
two random individuals. For example, the positive SHAP value
in Figure 5, f (x) = 2.207, is related to the model prediction
identifying the CXR as a COVID-19. Similarly, the negative
SHAP value in Figure 6, f (x) = −1.052, is related to the model
prediction identifying the CRX as a patient with non-COVID-19.

DISCUSSIONS

In the latest year, numerous studies have been developed applying
different computer-aidedmethods to aid in diagnosing and in the
prognosis COVID-19 (11, 12, 14, 15, 25–28, 57–75). However,
most studies do not use explainable methods (57). Our approach
uses the hand-crafted radiomics features approach and ensemble
tree-based machine learning classification models to differentiate
COVID-19-induced pneumonia from other lung pathologies
and healthy lungs in CXR images. We use ensemble tree-
based models since they are more accurate than artificial neural
networks in many applications (54). Looking for explainability,
we use the SHAP approach to unveil why specific features
with low or high SHAP values are associated with the disease.

TABLE 3 | Mean cross-validation metrics of XGBoost and Random Forest models.

Model Accuracy F1-Score Sensitivity Precision

XGB 0.82 0.82 0.82 0.82

RF 0.77 0.78 0.81 0.75

TABLE 4 | Hyperparameters for XGBoost.

XGBoost

min_child_weight 6

max_depth 3

lambda 1

gamma 0.50230907476997

eta 0.50515969241175

objective binary:logistic

tree_method hist
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TABLE 5 | Chosen features by XGBoost model.

XGBoost Abbreviation

Bottom Left - First Order - Maximum BL-1st-M

Bottom Right - First Order - Energy BR-1st-E

Bottom Right - First Order - Kurtosis BR-1st-K

Bottom Right - GLCM - Cluster

Prominence

BR-GLCM-CP

Bottom Right - GLCM - Difference

Variance

BR-GLCM-DV

Middle Left - First Order - Kurtosis ML-1st-K

Upper Left - First Order - Range UL-1st-R

Upper Left - GLCM - Idmn UL-GLCM-LDMN

Upper Left - GLRLM - Run Entropy UL-GLRLM-RE

Upper Right - First Order - Robust Mean

Absolute Deviation

UR-1st-RMAD

Upper Right - GLCM - Cluster Prominence UR-GLCM-CP

Upper Right - GLCM - Cluster Shade UR-GLCM-CS

Upper Right - GLCM - MCC UR-GLCM-MCC

Upper Right - GLRLM - Gray Level

Non-Uniformity

UR-GLRLM-GLNU

Upper Right - GLRLM - High Gray Level

Run Emphasis

UR-GLRLM-HGLRE

Upper Right - GLSZM - Gray Level

Non-Uniformity Normalized

UR-GLSZM-GLNUN

Upper Right - GLSZM - Gray Level

Variance

UR-GLSZM-GLV

Upper Right - GLSZM - Large Area High

Gray Level Emphasis

UR-GLSZM-LAHGLE

Upper Right - GLSZM - Size Zone

Non-Uniformity

UR-GLSZM-SZNU

Upper Right - GLSZM - Small Area High

Gray Level Emphasis

UR-GLSZM-SAHGLE

Moreover, we choose to analyze different lung zones, previously
segmented, looking for regions of interest in the disease.

The computer-aided methods using non-segmented images
may lead to biases (58, 59) since the models may associate
elements from outside the lungs, such as bones and muscles, not
related to the disease, with the presence of COVID-19. Restricting
the region of interest ensures that the features extracted are
associated with the radiological information present in the lung
zone. Our study uses automatic lung segmentation and divides
the lung into six zones, which are independently analyzed. The
approach allows small structures in the analysis, which could be
suppressed by analyzing the entire lung at once.

Nowadays, COVID-l9 radiological studies are focused on
CT findings, which have better sensitivity than CXR. However,
CT is more expensive and scarcer than conventional X-rays,
requiring complicated decontamination after scanning patients
with COVID-19. Therefore, the American College of Radiology
(60) recommends CT to be used sparingly and reserved
for hospitalized patients with COVID-l9 symptomatic with
specific clinical indications. A portable chest X-ray equipment
is suggested as a viable option to minimize the risk of cross-
infection and avoid overload and disruption of radiological

departments. Moreover, studies have shown that CXR COVID-
19 findings mirror the CT findings (14, 15), with less radiation
dose and higher availability in clinics and hospitals.

The use of feature importance techniques can improve clinical
practice in different medical fields. Hussain et al. (76) showed
the benefits of multimodal features extracted from congestive
heart failure and normal sinus rhythm signals. The application
of feature importance ranking techniques was beneficial to
distinguish healthy subjects from those with heart failure. The
same group also found that the use of the synthetic minority
oversampling technique can improve the model performance
when dealing with imbalanced datasets (77).

Meaningful Texture-Based Features in
COVID-19 Pneumonia
The main contribution of this study is the findings of a group of
meaningful radiomic features in differentiating COVID-19 from
other lung diseases using CXR using an explainable machine
learning approach. The most relevant features are presented in
Figure 3. In addition, SHAP values summary plots can be used
to try and explain how each feature is increasing or decreasing
the model output, meaning the probability of classifying a CXR
image as COVID-19 pneumonia or not.

As seen in Figure 3, the first-order kurtosis on the middle-
left lung was, by far, the feature with the highest importance
for classification. Kurtosis is, in general, a measure of the
“peakedness” of the distribution of the values (78). Since it is
a first-order feature, it is directly related to the pixel values on
the CXR image. COVID-19 induces consolidation and ground-
glass opacification, which increases these pixel values in the lung
region and may induce a distribution with lighter tails and a
flatter peak, resulting in lower kurtosis values (78). These lower
values were associated with the disease, as can be seen in Figure 4.

In CXR images, the heart partially overlaps with the lungs in
the left middle region, influencing feature importance. Despite
being the most important feature, kurtosis was the only feature
selected from this region. The second and third most important
features are both related to gray-level homogeneity. Higher
values of Run Entropy in GLRLM, which were associated with
COVID-19 in the upper left region, indicate more heterogeneity
in the texture patterns. Higher values of gray-level non-
uniformity in GLRLM in the upper right region, also associated
with the disease, indicate lesser similarity between intensity
values, corroborating the previous feature findings. COVID-19-
induced consolidations tend to be diffuse or patchy, which may
explain these features associations (70).

We won’t go over other features individually due to their
decreasing and similar importance. However, it is important to
note that from the 20 selected features, half are extracted from
the upper right zone. Our previous study (61) showed similar
results, where the twomost important features were also from the
upper right lung region. Moreover, no middle right zone features
were selected.

Comparison With Related Work
Saha et al. (62) created EMCNet, an automated method to
diagnose COVID-19 and healthy cases from CXR images. Their
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FIGURE 3 | Feature importance for each radiomic feature with the XGBoost model.

FIGURE 4 | Impact of important features in the XGBoost model output.

method uses a simple CNN to extract 64 features from each
image and then classify binary with an ensemble of classifiers
composed of Decision Tree, Random Forest, Support Vector

FIGURE 5 | Example of SHAP values affecting XGBoost model output for a

single COVID-19 CXR image.

Machines, and AdaBoost models. They used 4,600 images (2,300
COVID-19 and 2,300 healthy) from different public datasets
(38, 79–81) and applied resizing and data normalization. As
a result, they achieved 0.989 for accuracy, 1.00 for precision,
0.9782 for sensibility, and 0.989 in F1-score. In comparison
with our study, we both use almost the same number of CXR
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FIGURE 6 | Example of SHAP values affecting XGBoost model output for a

single non-COVID-19 CXR image.

images, but we only use two databases, mostly from the same
facilities. However, the authors’ data included pediatrics patients,
leading to biases due to age-related characteristics. Duran-Lopez
et al. (34) proposed COVID-XNet, a DL-based system that uses
pre-processing algorithms to feed a custom CNN to extract
relevant features and classify between COVID-19 and normal
cases. Its system achieved 92.53% sensitivity, 96.33% specificity,
93.76% precision, 93.14% F1-score, 94.43% balanced accuracy,
and an AUC value of 0.988. Class Activation Maps were used to
highlight the main findings in COVID-19 X-ray images and were
compared and verified with their corresponding ground truth
by radiologists.

Cavallo et al. (63) made a texture analysis to evaluate COVID-
19 in CXR images. They used a public database selecting 110
COVID-19-related and 110 non-COVID-19-related interstitial
pneumonia, avoiding the presence of wires, electrodes, catheters,
and other devices. Two radiologists manually segmented all the
images. After normalization, 308 textures were extracted. An
ensemble made by Partial Least Square Discriminant Analysis,
Naive Bayes, Generalized Linear Model, DL, Gradient Boosted
Trees, and Artificial Neural Networks models achieved the
best results. The ensemble model performance was 0.93 of
sensitivity, 0.90 of specificity, and 0.92 of accuracy. We have
not attained these high metrics. However, we used much
more images (5,222 vs. 220), and like in the previous study,
they used mixed-age data, where COVID-19 images were
retrieved from adult patients and non-COVID-19 images from
pediatric ones.

Rasheed et al. (64) proposed a machine learning-based
framework to diagnose COVID-19 using CXR. They used
two publicly available databases with a total of 198 COVID-
19 and 210 healthy individuals, using Generative Adversarial
Network data augmentation to get 250 samples of each group.

Features were extracted from 2D CXR with principal component
analysis (PCA). Training and optimization were done with CNN
and logistic regression. The PCA with CNN gave an overall
accuracy of 1.0. Using just 500 CXR images from COVID-
19 and non-COVID-19 individuals from two different datasets
and training the model with data augmentation techniques may
suggest the possibility of overfitting or that classification can be
differentiating the two datasets and not the disease itself.

Brunese et al. (65) developed a three-phase DL approach
to aid in COVID-19 detection in CXR: detect the presence of
pneumonia, discern between COVID-19 induced and typical
pneumonia, and localize CXR areas related to COVID-19
presence. Different datasets for different pathologies were used,
two datasets of patients with COVID-19 and one of the other
pathologies. In total, 6253 CXR images were used, but only 250
were from patients with COVID-19. Accuracy for pneumonia
detection and COVID-19 discrimination was 0.96 and 0.98,
respectively. Activation maps were used to verify which parts of
the image were used by the model for classification. They showed
a high probability of prediction in the middle left and upper right
lungs, agreeing with our findings.

Kikkisetti et al. (66) used portable CXR from public databases
with CNN and transfer learning to classify the images between
healthy, COVID-19, non-COVID-19 viral pneumonia, and
bacterial pneumonia. They used two approaches, using all CXR
and only segmented lungs. CNN heatmaps showed that with the
whole CXR, the model used outside the lungs information to
classify. It is a tangible example of the importance of segmenting
the CXR images, especially when using data from different
locations, to avoid biases created by the annotations in X-rays.
They achieved an overall sensitivity, specificity, accuracy, and
AUC of 0.91, 0.93, 0.88, and 0.89, respectively, with segmented
lungs. However, they used pediatric data mixed with adults. It
is interesting to note that in their CNN heatmaps, the lower
and middle portion of the left lung showed a high importance
in their classification, in agreement with our results. We have
three features from these locations, which are essential in the
COVID-19 classification, and two were selected from these
regions. However, one feature is, by far, the most important for
classification. Moreover, our database is almost five times larger.

Yousefi et al. (67) proposed a computer-aided detection of
COVID-19 with CXR imaging using deep and conventional
radiomic features. A 2D U-net model was used to segment the
lung lobes. They evaluated three different unsupervised feature
selection approaches. The models were trained using 704 CXR
images and independently validated using a study cohort of 1,597
cases. The resulting accuracy was 72.6% for multiclass and 89.6%
for binary-class classification. Since unsupervised models were
used, it is impossible to check if the most important features
are like ours. Unfortunately, the lobes were not investigated
separately for further comparisons.

Casiraghi et al. (82) developed an explainable prediction
model to process the data of 300 patients with COVID-
19 to predict their risk of severe outcomes. They collected
clinical data and laboratory values. The radiological scores
were retrospectively evaluated from CXR by either pooling
radiologists’ scores or applying a deep neural network. Boruta
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and RF were combined in a 10-fold cross-validation scheme to
produce a variable importance estimate. The most important
variables were selected to train an associative tree classifier,
with AUC 0.81–0.76, sensitivity 0.72–0.66, F1 score 0.62–0.55,
and accuracy from 0.74 to 0.68. The PCR achieved the highest
relative relevance, together with the patient’s age and laboratory
variables. They noted that the radiological features extracted
from radiologists’ scores and deep network were positively
correlated, as expected.Moreover, their radiological features were
also correlated with PCR and have an inverse correlation with
the saturation values. However, they did not evaluate radiomic
features extracted from CXR for comparison with our work.

Even though the image characteristics are different in CT
and CXR, they share the same physical interaction with
tissues using X-rays. Caruso et al. study (68) used CT texture
analysis to differentiate patients with positive COVID-19 and
negative ones. Sensitivity and specificity were 0.6 and 0.8,
respectively. The feature with the highest correlation with
patients with positive COVID-19 compared with negative ones
was kurtosis, with lower values associated with the disease. In our
work, the most important classification feature was first-order
kurtosis with the same lower values behavior associated with
the disease.

Similarly, Lin et al. (69) developed a CT-based radiomic score
to diagnose COVID-19 and achieve a sensibility of 0.89. They also
found that the GLCM MCC feature was important during the
classification. In our study, we also found the same feature in the
upper right lung. Finally, Liu et al. (70) analyzed the classification
performance in CT images using two approaches (only clinical
features and clinical with texture features), increasing their
sensitivity to 0.93. Their results show the importance of clinical
information, if available. They also found cluster prominence
features as important, but their analysis was made using a
wavelet filter.

Shiri et al. (71) made an analysis using CT images and clinical
data to develop a prediction model of patients with COVID-19.
The model with the highest performance achieves a sensibility
and accuracy of 0.88. Interestingly, one of the radiomic features
used in their work, GLSZM – SAHGLE, was also selected in our
model in the upper right lung zone.

Limitations
One of themain limitations of AI studies is the currently available
COVID-19 and non-COVID-19 CXR databases (72). Even
though databases have many data, most have several missing
andmislabeled data.Moreover, most COVID-19 public databases
do not include non-COVID images from the same medical
center, requiring other databases from different facilities. Medical
centers use various scanners and protocols, leading to different
image patterns if no previous harmonization is executed.
In studies using multiple databases with other pathologies,
computer-aided methods may learn to differentiate the database
pattern rather than the lung pathologies (73). Finally, a limitation
of the databases used in this work is they do not include clinical
data from patients.

The most important concern about some studies is that
some databases of typical pneumonia CXR have images from

pediatric and adult patients. They are primarily used due to the
differentiation between viral and bacterial pneumonia. However,
this may increase biases due to age-related characteristics (71).
Usually, imaging acquisition protocols for pediatric patients are
made with less radiation due to radiological protection.

Our model reached an accuracy of 0.82, a sensitivity of 0.82, a
precision of 0.82, and F1-score metrics of 0.82 using CXR images
and SHAP RFECV. Other COVID-19 studies using CXR images
andmachine learning models reached accuracy between 0.92 and
0.99, and sensibility between 0.91 and 0.99 (62, 63). However,
the limitations of the studies with higher scores discussed in
the previous section should be considered; some studies used
non-segmented images (62–64, 66), and other studies used data
from pediatric patients (62, 64, 65) (1–5 years old) mixed with
adult data.

The main limitations of our study are the absence of clinical
data to improve our models and the lack of statistical analysis
to have more confidence about the importance of the features.
Moreover, we limited the features extraction and other features
that could be included, like the neighboring gray-tone difference
matrix. Finally, we did not evaluate the effect of features’
extraction applying different pre-processing filters.

Future Directions
The sudden onset of COVID-19 generated a global task force to
differentiate it from other lung diseases.With themain symptoms
related to atypical pneumonia, the number of CXR and chest
CT datasets has rapidly increased. More than 1 year and a
half from the COVID-19 onset, the available datasets of chest
images are more extensive, so it is possible to have confidence in
classifying the disease from other pulmonary findings. However,
before the 2020 pandemic, most lung radiomic signature analysis
studies focused on identifying and classifying nodules and
adenocarcinomas. Therefore, pneumonia radiomic signature is
not well-established, even for typical pneumonia.

We still do not know how COVID-19 affects the immune
system and the lungs, but some cases do not have any CXR
alterations, they have only parenchymal abnormalities (75). For
further studies, PCR positive COVID-19 individuals without
visible CXR modifications should be analyzed using radiomic
features to evaluate small regions looking for pulmonary tissue
texture variations. In addition, when available, further studies
should include clinical information to allow the evaluation
of the benefits in diagnosis when using both radiomics and
clinical data.

A big challenge in using large CXR image databases is
maintaining label information such as projection (i.e., lateral, AP,
PA). The further effort in global data curation could confirm
projection without the need for visual confirmation.

Conclusions
This article presents the SHAP approach to explain machine
learning classification models based on hand-crafted radiomics
texture features to provide grounds for understanding the
characteristic radiographic findings on CXR images of patients
with COVID-19. The XGB ML model is the best discriminant
method between COVID-19 pneumonia and healthy and
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other lung pathologies using radiomic features extracted from
lung CXR images divided into six zones. The explainable
model shows the importance of the middle left and superior
right lung zone in classifying COVID-19 pneumonia from
other lung patterns. The method can potentially be clinically
applied as a first-line triage tool for suspected individuals
with COVID-19.

The rapid increase of COVID-19 pneumonia cases
shows the necessity of urgent solutions to differentiate
individuals with and without COVID-19 due to its high
spreadability and necessity of prompt management of ill
individuals. Furthermore, the lack of knowledge about the
disease made it necessary to find explainable radiological
features to correlate with the biological mechanisms
of COVID-19.
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