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A B S T R A C T   

The chemical transformation of carbon dioxide (CO2) into valuable chemicals is a fascinating way to reduce CO2 
concentration in the atmosphere. Dimethyl carbonate (DMC) exhibits low toxicity, biodegradability, and ver-
satile reactivity. DMC production by direct synthesis using CO2 and methanol (CH3OH) may be one of the ever 
most promising green routes. On the other hand, direct synthesis of DMC shows some drawbacks including 
unfavorable thermochemistry and quick deactivation of catalysts. The development of new catalytic systems 
currently represents an urgent agenda to overcome these disadvantages. This study investigates the catalytic 
activity of iron (Fe) and copper (Cu) catalysts supported on alumina (AL), silica (SI), and eggshells (ES) during 
the course of DMC production by direct synthesis. The supported catalysts were synthesized using the impreg-
nation method and characterized by TGA, BET, DTP-NH3, XRD, and FESEM/EDS. The contents of the impreg-
nated iron in the matrices are ES-Fe (13%) > AL-Fe (6%) > SI-Fe (4%). The contents of the impregnated copper 
are ES-Cu (7%) > AL-Cu (3%) = SI-Cu (3%). The DMC conversions equal 8.9 (AL-Cu), 6.2 (SI-Cu), 11.3% (ES-Cu), 
6.1 (AL-Fe), 7.2 (SI-Fe), and 12.7% (ES-Fe). The ES-Fe recycle demonstrated stability of the catalytic action in the 
first and second reuse, maintaining high conversion and selectivity of DMC. All tests reveal a DMC selectivity of 
over 99%. The reported results suggest that the catalytic DMC production depends both on the nature of D-metal 
and support, whereas the ES-Fe system exhibits the best performance.   

1. Introduction 

The use of captured carbon dioxide (CO2) as a raw material in the 
chemical industries represents a great value when considering the 
environmental benefits. However, due to the large amount of energy 
required for its transformation, industrial processes using CO2 as a 
starting material are still scarce [28]. Substantial research and devel-
opment efforts are being carried out to use CO2 to produce chemicals 
contributing to CO2 emissions reduction [60,80,91]. 

Focusing on CO2 emissions mitigation, the development of innova-
tive CO2 separation, sequestration, and utilization processes is vital [20, 
35]. For CO2 transformation reactions, catalyst choice, temperature, and 
pressure are very important for reaction optimization allowing sus-
tainable production of different organic compounds [75]. 

Among the organic compounds that can be produced from the CO2 
chemical transformation, carbonates are worth mentioning. These 
molecules can selectively and efficiently replace hazardous reagents in 
some organic processes [14,78,89]. Organic carbonates can be divided 
into two groups: linear carbonates: dimethyl carbonate (DMC) and 
diethyl carbonate (DEC); and cyclic carbonates: ethylene carbonate 
(CE), propylene carbonate (CP), butylene carbonate (CB), and glycerol 
carbonate (GC) [13,53,54,71,76]. 

DMC, methanol, and methane were named the most interesting 
products from CO2 transformation [58]. DMC is an important chemical 
intermediate of easy degradability, high polarity, low viscosity, and 
toxicity, used in a wide range of applications [11,26,64,76]. DMC is used 
as an intermediate in polycarbonate synthesis, a widely used polymer in 
the construction, automobile, and medical device industries, as an 
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electrolyte solvent for lithium batteries due to its high dielectric con-
stant, and environmentally friendly reagent for methylation and 
carbonylation [17,26]. 

Several routes have been proposed to synthesize DMC, such as the 
phosgene route, transesterification, urea alcoholysis, methanol oxida-
tive carbonylation, and – naturally – the direct synthesis route from 
methanol and CO2 [21,64]. Among these routes, phosgenation, meth-
anol oxidative carbonylation (oxy-carbonylation) in a liquid phase, and 
transesterification reached the stage of industrialization. However, the 
phosgenation route was discontinued due to the raw material’s (phos-
gene) high toxicity. In turn, the oxy-carbonylation and trans-
esterification routes continue to be intensively used in DMC industrial 
production, although they have some disadvantages, such as reagents’ 
high toxicity and corrosion [21,90]. 

To overcome these disadvantages, DMC direct synthesis is being 
widely studied to improve DMC yield using nontoxic non-corrosive re-
agents [5,11,13,31,33,46,53,73,83]. Fig. 1 presents the chemical route 
of the DMC direct synthesis. 

The production of DMC through direct synthesis offers a straight-
forward and eco-friendly approach, utilizing a minimal number of re-
agents. CO2, a key component with environmental concerns, serves as 
one of the primary starting materials. However, the application of this 
method is hindered by the equilibrium dynamics of the reaction. Under 
mild temperatures and pressures, the spontaneous formation of DMC is 
impeded as it possesses positive Gibbs energy, resulting in low yields. 
Consequently, more intricate conditions involving higher pressures and 
temperatures are necessary, adding complexity to the process. One of 
the significant obstacles involves the generation of water during syn-
thesis, causing a shift in the reaction equilibrium towards the reactants 
and diminishing the conversion of methanol into DMC. Hence, to 
overcome this challenge, optimizing parameters such as temperature, 
pressure, dehydrating agents, and selective and reusable heterogeneous 
catalysts emerge as viable alternatives [81]. 

Several homogeneous catalysts were used in DMC production by 
direct synthesis, thallium (I) hydroxide, tin (IV), tetralkoxides, dialkytin 
dialkoxides, bases, C, N-chelated organotin (IV) trifluoromethane sul-
fonates and titanium (IV) tetralkoxides [19,27,34,43,72,84,92,94]. 
However, catalyst separation from the reaction medium is difficult when 
using homogeneous catalysts. The use of heterogeneous catalysts, such 
as CeO2, ZrO2 [48,74], Ce0.5Zr0.5O2 [100], Ce0.4Zr0.6O2 [46], and 
Cu-CeO2 [88], can overcome this problem by facilitating the catalyst 
separation from products. 

In addition to the use of conventional catalysts, metals supported in 
different solids, such as silica, activated carbon, alumina, and food waste 
as eggshells, appear as a good choice presenting comparable activity 
with homogeneous catalysts and the easy separation of heterogeneous 
ones [1,23,32,37,39,42,87]. The eggshell presents high thermal stabil-
ity, low density, and a highly porous structure similar to activated car-
bon, providing a higher specific surface area. The eggshell is around 
10% of the egg corresponding to around 5.92 million tons of this waste 
per year worldwide [16]. The composition of eggshells is approximately 
98% Ca and 2% Mg/Fe/Nit 

Solid supports impregnated with metals can be active catalysts in the 
DMC direct synthesis increasing product yield and selectivity. Yet, a 
heterogeneous catalyst can be reused without losing its catalytic activ-
ity, making the industrial process more efficient, cheaper, and gener-
ating less waste [7,23]. Supports structural, mechanical, chemical, and 
thermal properties should be explored to increase the DMC yield by 

assisting the catalytic system [2,7,23,37,49]. 
The high porosity of activated carbon fosters metal anchoring facil-

itating impregnation and making it an extremely efficient heterogeneous 
catalyst. Our group evaluated the use of activated carbon impregnated 
with iron, copper, nickel, and magnesium in DMC direct synthesis 
obtaining a yield of 23.5% with 100% selectivity [23]. 

Here we report the evaluation of the catalytic activity of metals (iron 
and copper) supported in different solids (silica, alumina, and eggshell 
waste) in the DMC direct synthesis and also the characterization of the 
pristine and metal-impregnated supports by TGA, BET, SEM-FEG, EDS 
mapping, XRD and DTP-NH3 analysis. 

2. Methodology 

2.1. Materials 

Methanol (>99.9% - EMSURE®), CH3OK (>95% - ALDRICH), iodo-
methane (>99.5% - ALDRICH), diethyl ether (>99.9% - EMSURE®), 
dimethylcarbonate - DMC (> 99.5% - ALDRICH), iron (III) nitrate 
nonahydrate (> 98.5% - ALDRICH), copper (II) nitrate trihydrate (>
99.0% - ALDRICH), alumina-AL (AL-Corp), sílica-SI (SI-Corp), eggshell- 
ES waste, pearl-shaped molecular sieves (3A – ALDRICH), and CO2 
(99,8% - White Martins). 

2.2. Synthesis of metallic catalysts by the impregnation method in 
substrates 

The evaporative impregnation method is a straightforward tech-
nique used to enhance the impregnation yield of metallic catalysts by 
effectively adsorbing metals into the structure of porous materials. This 
method is particularly useful due to its simplicity in keeping metals 
within the porous matrix, allowing for efficient synthesis of metallic 
catalysts [23]. A solution containing 10 g of the support material 
(SI/AL/ES) and 1.7 g of different metal nitrates (iron and copper) in 250 
mL of distilled water was prepared. The solution was kept under con-
stant agitation at a temperature of 60 ◦C for 24 h, then placed in an oven 
at 100 ◦C overnight and, finally, calcined at 600 ◦C for 3 h. To use the 
eggshell as a support for the metals, a previous preparation was carried 
out using an oven at 100 ◦C for 24 h for drying and subsequent macer-
ation and calcination (3 h at 600 ◦C) of the material to facilitate 
impregnation. 

2.3. Characterization of supported metal ions 

2.3.1. Thermogravimetric analysis (TGA) 
TA Instruments model Q600 equipment was used to perform the 

thermogravimetric analysis (TGA). A range of temperature from room to 
1000 ◦C, with a heating rate of 20 ◦C/min under a synthetic air atmo-
sphere was used. The actual metal impregnation (%) in the support was 
calculated according to Eq. (1), where the percentage of impregnation is 
given by the difference between the metal impregnated support (X-Y) 
sample weight and the weight of the pure support (X) sample in the 
temperature range of 25–1000 ◦C. 

% = (wt%XY25 − 1000∘C) − (wt%X25 − 1000∘C) (1)  

2.3.2. Scanning electron microscopy with field emission (SEM-FEG) 
FEI Inspect F50 equipment in the mode of secondary electrons (SE) 

Fig. 1. DMC direct synthesis.  
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was used to perform the Scanning Electron Microscopy with Field 
Emission (SEM-FEG) analysis. Films were placed in a stub and covered 
with a thin layer of gold. 

2.3.3. BET 
The specific surface area was determined using the Brunauer-Emmet- 

Teller (BET) method, while the pore size and pore volume were calcu-
lated using the Barret-Joyner-Halenda method. The QUANTACHROME 
INSTRUMENTS model N42–28E with S/W code version 11.04 was uti-
lized for these measurements. Before analysis, all samples were sub-
jected to degassing at 150 ◦C for a minimum of 3 h. 

2.3.4. FTIR-UATR 
Infrared spectroscopy technique using a Perkin - Elmer 100 Spectrum 

at wavenumber range 4000–650cm− 1 equipped with UATR (universal 
attenuated total reflectance) accessory was used to assess the chemical 
structure of supported catalysts and pristine supports. All samples were 
analyzed in the form of powder. 

2.3.5. XRD 
Shimadzu model XRD 7000 (X-Ray Powder Diffraction) equipment 

was used to perform the XRD analysis. Samples were placed in the 
equipment sample holder and analyzed between 2 and 70◦ (the region 
where the most intense peaks can appear). Parallel geometry support 
was used for the surface analysis. Copper k alpha radiation was used for 
analysis. 

2.3.6. TPD-NH3 
To determine the acid site distribution on synthesized catalysts, 

temperature-programmed desorption of NH3 (NH3-TPD) was performed 
using Chemisorption Analyzer, Nanos ORD made by Sensiran Co., Iran. 
Catalyst (0.05 g) was placed in the measurement cell and degassed at 
300 ◦C at a heat rate of 10 ◦C.min− 1 for 30 min, under 10 cm3.min− 1 

helium gas flow. After that, the catalyst was cooled down to 110 ◦C and 
stabilized for 10 min. To begin the process, a stream of 5 wt% NH3 with 
high-purity Helium as carrier gas with a flow rate of 10 mL.min− 1 was 
introduced for 30 min. To remove the physically adsorbed NH3, the 
carrier gas was switched to Helium and held for 1 h. The temperature 
was programmed to 800 ◦C with a heat rate of 10 ◦C.min− 1 for the 
desorption process. 

2.4. DMC synthesis 

A titanium alloy reactor (120 ml) with constant magnetic stirring 
was used to perform the experiments. A thermocouple connected to a 
temperature controller was used to keep the temperature steady using a 
resistive thermal band. Molecular sieves were placed in metallic 
compartment support in the gas phase [23,24]. For a typical reaction, 
213 mmol of methanol, 0.7 g metal-impregnated ES/SI/AL, 20 mmol of 
CH3I, 2.0 g of molecular sieves, and 40 bar of CO2 were used. The reactor 
was pressurized with CO2 at 40 bar and heated at 80 ◦C. At the end of the 
reaction, the reactor was cooled to room temperature and then placed in 
an ice bath and slowly depressurized to collect DMC samples. Finally, an 
analysis of 3 recycles was performed using the best catalyst supported on 
the eggshell. After each reaction, the catalyst was washed several times 
in methanol and dried in an oven overnight. Catalyst reuse evaluation 
was performed using 213 mmol of methanol, 0.7 g metal-impregnated 
activated carbon, 20 mmol of CH3I, 2.0 g of molecular sieves (drying 
agent), 40 bar of CO2 and 80 ◦C of temperature. 

Gas Chromatograph (GC) Shimadzu GC-2014 with SH-Rtx-5 column 
and the programming of 31 ◦C for 0.5 min, rate of 10 ◦C / min to 50 ◦C 
for one minute, rate of 20 ◦C / min to 100 ◦C for 2 min and rate of 50 ◦C / 
min to 220 ◦C for 2 min was used to determine yield, conversion, and 
selectivity. All reaction tests were performed in triplicate. For the 
analysis, the samples were diluted with a concentration of 4% (v/v) in 
ethyl ether and injected into the GC to determine the DMC peak area 

(2.4–2.7 min). Conversion, selectivity, and yield were calculated ac-
cording to Faria et al. [24]. 

Methanol conversion was calculated using Eq. (2): 

conversion(%) = ((reacted) / (total)) × 100 (2) 

DMC selectivity was obtained by Eq. (3): 

selectivity(%) = ((DMC) / (DMC +(by − products))) × 100 (3) 

DMC yield was determined using Eq. (4): 

yield(%) = ((conversion(%))× (selectivity(%)))/100 (4)  

2.5. Statistical analysis 

Statistical analyses were performed using Minitab 18 Statistical 
Software-ANOVA aiming to assess the test’s standard deviations (per-
formed in triplicate) and analyze the Tukey test with 95% reliability. 
Equal letters show statistical equality between the sample averages. 

2.6. Ab initio computer modeling 

The electronic-structure calculations were carried out using plane- 
wave Kohn-Sham density functional theory (PW-KSDFT). The pure 
exchange-correlation functional proposed by Perdew, Burke, and Ern-
zerhof (PBE) [65] was used. The dispersion forces were added after each 
converged self-consistent field procedure. The molecular mechanics 
damped set of parameters known as D3 provided by Grimme and co-
workers was used [70]. 

The non-valence electrons of all atoms were simulated utilizing the 
projector augmented3-wave method [8,18]. The application of periodic 
conditions to the atomic nuclei and electronic wave functions allows the 
simulation of virtually infinite systems. Such a setup eliminates unde-
sirable boundary effects when describing the surface of the support. In 
all reported calculations, the adiabatic approximation applies. 

The sizes of the simulation boxes were dictated by the sizes of the 
supercells of each support. The most energetically favorable arrange-
ments of atoms were used based on the energy above the convex hull 
[36]. The chosen crystal system of Al2O3 was trigonal, the crystal system 
of SiO2 was tetragonal, the crystal system of CaO was cubic, and the 
crystal system of CaCO3 was monoclinic. The constructed periodic 
(infinite) supercells including the surface, the D-metal atoms, and the 
adsorbed methanol molecule contained 68 atoms in the case of Al2O3 
support, 48 atoms in the case of SiO2 support, 68 atoms in the case of 
CaO support, and 68 atoms in the case of CaCO3 support. The k-point 
meshes of 2 × 2 × 1 were used to obtain more accurate electronic 
structures of the simulated surfaces. 

The reaction barrier heights, transition states, and reaction thermo-
chemistry were evaluated through the climbing image nudged elastic 
band approach (CI-NEB). The sixteen images were used to sample every 
chemical transformation including the first (reactants) and last (prod-
ucts) stationary points. All geometries were unrestricted during the 
simulations. The climbing image was identified on the fly at every 
iteration of the NEB algorithm. The harmonic force constants were set to 
equal numbers, 0.5 a.u., irrespective of the simulated system and normal 
forces induced by atoms [30,36]. 

The plane energy cut-off for the periodic wave functions was set to 
700 eV in all systems for ease of comparison. The charge density energy 
cut-off was set to 2 800 eV. The wave function convergence threshold 
equaled 10-6 Hartree. The geometry convergence threshold equaled 10-3 

a.u. The elastic band convergence threshold equaled 1.0 eV nm-1. The 
Quantum Espresso (version 6.5) PWSCF package6 was used to locate the 
stationary points and step-wise propagate the coordinates of the nudged 
elastic band [30]. 
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3. Results 

3.1. Characterization of pristine and metal-impregnated supports 

3.1.1. TGA 
Fig. 2 presents non-impregnated and metal-impregnated supports 

TGA analysis. For pristine SI and iron and copper-impregnated SI (SI-Fe 
and SI-Cu) (Fig. 2a), a single degradation step occurred related to silica 
structure moisture loss (temperatures below 150 ◦C) [38,68]. Pristine SI 
evidenced a total mass loss of ~7% and SI-Fe and SI-Cu of ~ 2%. Thus, 
one can infer the impregnated metal in SI-Fe of ~4% and SI-Cu of ~ 3%. 

For alumina (AL) (Fig. 2b), two degradation steps were observed, the 
first at 100 ◦C (moisture loss), and the second near 400 ◦C attributed to 

boehmite to y-alumina phase change.50,51 Metal impregnation is ~6% 
for AL-Fe and ~3% for AL-Cu. 

For pristine ES and metal-impregnated ES (Fig. 2c), a single degra-
dation step occurred at ~700 ◦C. It attributes to carbon dioxide loss. A 
slight mass loss was observed between 38 ◦C and 600 ◦C attributed to 
water and organic compounds present in the eggshell. Metal impreg-
nation was ~13% for ES-Fe and ~7% for ES-Cu [29]. 

All supports presented metals impregnated in their structure, how-
ever, the support with greater impregnation of both metals was the 
eggshell residue (ES). The impregnation of iron in the supports was in 
the following order: ES-Fe (13%) > AL-Fe (6%) > SI-Fe (4%), and copper 
ES-Cu (7%) > AL-Cu (3%) = SI-Cu (3%). 

3.1.2. EDS e mapping 
The chemical composition of pristine supports and metal- 

impregnated supports was obtained by EDS. Metal distribution was 
inferred by metal mapping (Figs. S1–S8 Supplementary Material). 

AL, SI, and ES presented aluminum/oxygen, silica/oxygen, and cal-
cium/oxygen, respectively. EDS analysis is semi-quantitative being 
possible to corroborate metal presence. AL, SI, and ES porosity is inho-
mogeneous over the entire surface interfering in metals dispersion and 
consequently in EDS analysis53–55. Yet, the eggshell has a greater num-
ber of mesopores. The metals are distributed on the surface and also 
inside pore structures [16,29,45]. 

3.1.3. SEM-FEG 
Fig. 3 shows SEM images of pristine and metal-impregnated SI, AL, 

and ES. As seen SI, AL, and ES present porosity, important for metal 
impregnation. 

In Fig. 3- A, B and C we have the structure of SI, SI-Fe and SI-Cu, 
respectively, we can see in B and C the presence of metallic particles 
from the impregnation process. Silica may have channels in its structure 
that accommodate metals and provide greater catalytic activity due to 
easy diffusion between reactants and products [4,62,77,79]. 

In samples D, E and F, we have alumina, which is composed of leaf 
particles containing y-Al2O3 crystals, which with increasing tempera-
ture can undergo a transition to Θ-Al2O3 and form α-Al2O3 crystals 
containing metals anchored in their surface [9,37]. 

SEM image of pristine ES (Fig. 3G) presents a porous structure. The 
fact that it has a more porous structure affects the amount of micropores 
and mesosopores existing in its morphology, creating channels that 
allow the passage of CO2 and facilitate the synthesis of DMC. 

When iron or copper nitrate was added (Fig. 3H and I) the metal 
anchoring was performed in the elevations and porous regions as well as 
inside the channels changing surface morphology [16,45]. 

3.1.4. BET 
Specific surface area, pore volume, and pore radius are important to 

determine the material’s ability to impregnate metal ions used as cata-
lysts in the direct synthesis of DMC [50,79]. Table 1 presents the specific 
surface area, pore volume, and pore radius of samples. 

Pristine ES presents a specific surface area of approximately 631 m2/ 
g, pore volume of 0.27 cm3/g, and pore radius of 4.4 nm. SI shows a 
similar specific surface area of 603 m2/g, pore volume of 0.83 cm3/g, 
and pore radius of 2.7 nm. Unlike ES and SI, AL showed an inferior 
surface area of 152 m2/g, pore volume of 0.30 cm3/g, and pore radius of 
3.4 nm. 

When impregnated with iron ES increases its specific surface area, 
pore volume, and pore radius (780 m2/g, 0.31 cm3/g, and 4.6 nm). The 
same behavior was observed with copper (743 m2/g, 0.32 cm3/g, and 
4.5 nm). The important increase in the specific surface area may be 
related to the larger pore radius compared to SI and AL. These values 
indicate that no pore blocking is occurring by metal ions instead a metal 
impregnation inside the pore structure occurred [7,86]. 

SI suffered a slight structural change with metal impregnation with 
both copper nitrate and iron nitrate (SI-Cu: 600 m2/g, 0.82 cm3/g e and 

Fig. 2. TGA of samples: (a) SI/SI-Fe/SI-Cu; (b) AL/AL-Fe/AL-Cu; (c) ES/ES-Fe/ 
ES-Cu. 
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2.7 nm; SI-Fe: 567 m2/g, 0.79 cm3/g e and 2.8 nm). The same behavior 
was observed for AL (AL-Cu: 228 m2/g, 0.42 cm3/g e and 3.7 nm; AL-Fe: 
201 m2/g, 0.32 cm3/g e and 3.2 nm). 

Material calcination temperature is a very important factor affecting 
its specific surface area. Copper impregnation on silica at temperatures 
above 600 ◦C could cause a large decrease in surface area [57], affecting 
the porosity and, consequently, impairing metal impregnation in its 
structure, resulting in a decrease in catalytic activity. 

Several studies analyzed the use of different supports to impregnate 
metal ions, concluding that the support porosity increases the catalytic 
activity and allows the reuse of supported catalysts [52,96]. Some 

studies ranked metal impregnation efficiency in different supports as a 
function of their porosity, reaching the following order: activated carbon 
> alumina > zeolite > silica [40,74]. In this study, we noticed that the 
more porous the material the greater the metal impregnation. 

The use of residues such as eggshells has drawn attention due to their 
high porosity and ability to impregnate metal ions. According to Gao 
and Xu [29], the eggshell calcium carbonate is decomposed into calcium 
oxide during calcination and this change in composition leads to a 
structure homogenization, increasing the BET area and allowing greater 
metal ions impregnation. 

The impregnation of metals in highly porous materials presents a 
multitude of advantages. Firstly, it promotes a more uniform distribu-
tion of metallic particles within the support’s pores, leading to improved 
catalytic activity. Furthermore, this process enhances the mechanical 
properties of the materials, ensuring durability and an extended useful 
life. However, it is worth noting that when metals are impregnated into 
supports such as silica and alumina, the occurrence of surface com-
pounds is possible. This phenomenon is commonly observed in situa-
tions where the materials experience cracking, resulting in the formation 
of highly acidic surface complexes [82]. 

Heat treatments applied to supports for metal impregnation induce 
significant structural transformations in solids. Generally, these treat-
ments result in the growth of small crystals into larger ones, the trans-
formation of amorphous solids into crystalline structures, and the 
agglomeration of small amorphous particles into larger ones. These 

Fig. 3. SEM of supports impregnated with iron or copper: A: SI; B: SI-Fe; C: SI-Cu; D: AL; E: AL-Fe; F: AL-Cu; G: ES; H: ES-Fe; I: ES-Cu.  

Table 1 
BET surface areas, volume, pore radius of pristine support, and copper and iron- 
impregnated samples.  

Sample BET (m2/g) Pore Volume (cm3/g) Average pore radius (nm) 

SI 603 0.83 2.7 
SI-Fe 567 0.79 2.8 
SI-Cu 600 0.82 2.7 
AL 152 0.30 3.4 
AL-Fe 201 0.32 3.2 
AL-Cu 228 0.42 3.7 
ES 631 0.27 4.4 
ES-Fe 780 0.31 4.6 
ES-Cu 743 0.32 4.5  
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transformations play a crucial role in facilitating the impregnation of 
metals throughout the surface and pores of the supports. During thermal 
processes, if the solid’s structure remains unchanged, it tends to evolve 
towards a state of lower surface free energy. Conversely, if modifications 
occur, a strongly exothermic transformation is necessary to counter-
balance the substantial decrease in entropy resulting from the structural 
reorganization. The calcination step, involving higher temperatures, 
introduces porosity and enhances the mechanical strength of the mate-
rial. It also triggers chemical reactions such as thermal decomposition of 
active agents, leading to the release of gasses. This gas evolution con-
tributes to the development of greater porosity within the support. 
However, it’s important to note that sintering, which involves the fusion 
of smaller particles into larger ones, can occur during the heat treatment 
process. This phenomenon can lead to a reduction in pore volume. 
Overall, by carefully considering the heat treatment conditions and 
balancing the competing factors of surface energy, entropy, and struc-
tural changes, it is possible to optimize the impregnation process and 
achieve desired properties in the final material [3,63]. 

The choice of calcination temperature significantly influences the 
texture and basicity properties of eggshell-based supports. Increasing 
the calcination temperature leads to the enlargement of support pores, 
resulting in a larger surface area and facilitating enhanced metal 
impregnation. Moreover, calcination at higher temperatures, typically 
around 900 ◦C, promotes the decomposition of CaCO3 into CaO and 
CO2, thereby increasing the catalyst’s basicity. However, it is crucial to 
optimize the calcination temperature to avoid potential drawbacks. 
Extreme temperatures can lead to the collapse of formed pores, 

adversely affecting the overall support structure and, consequently, 
diminishing the catalytic activity’s efficiency. Therefore, finding the 
balance in calcination temperature is vital to ensure the desired prop-
erties of the eggshell-based support without compromising its structural 
integrity. By carefully controlling the calcination temperature, it is 
possible to achieve the desired textural characteristics, such as pore size 
and surface area, as well as enhance the basicity of the catalyst. This 
optimization process ensures the effectiveness of the support for metal 
impregnation and subsequent catalytic applications [98]. 

3.1.5. FTIR 
The FTIR analyses referring to the pristine and impregnated samples 

are shown in Fig. 4. 
SI and AL showed bands around 3500cm− 1 attributed to the OH 

(hydroxyl) groups being less intense in pristine samples [23]. SI, SI-Fe, 
SI-Cu, AL, AL-Fe, and AL-Cu presented a band between 1000–1250 
cm− 1 indicating C–O bonds present in sample structures [9,47,61,86, 
91]. In the silica supports SI, SI-Fe, AL-Fe, and SI-Cu a band between 
1500–1600 cm− 1 attributed to C = C bonds is evidenced [10,47,57]. 

ES, ES-Fe, and ES-Cu presented similar bands at 1400, 900, 550, and 
450 cm− 1. The band around 1400 cm− 1 indicates the presence of 
Fe3O4.42 The band at 1000 cm− 1 corresponds to CaO from CaCO3 
transformation at high temperatures. The bands at 500cm− 1 and 
450cm− 1 reflect the presence of iron oxide in the support structure [16, 
45]. 

Fig. 4. FTIR spectra for pure and metal-impregnated supports.  
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3.1.6. XRD 
For ES, ES-Fe, and ES-Cu a peak around 30◦ refers to the calcium 

carbonate contained in the samples (JCPDS 85–1108). Iron has char-
acteristic peaks close to 30◦, 35◦, 45◦, and 65◦ (JCPDS 82–1533 and 
87–0121), whereas copper peaks appear around 42◦, 50◦, and 75◦

(JCPDS 003–1018) (see Fig S9, S10 and S11) 
SI, SI-Fe, and SI-Cu show no difference in the XRD analysis (See Fig 

S12) presenting only one peak around 22.0◦, which may refer to the 
tetrahedral units SiO4 randomly distributed and joined by siloxane 
bridges (Si-O-Si), in addition to vicinal (Si-OH) and geminal (HO-Si-OH) 
silanol groups, all dispersed on the surface and sensitive to reactions that 
enable structural chemical changes [6,77]. 

For alumina, the sample peaks at 15, 30, 40, 50, and 65 ◦C appeared. 
All of them are characteristic of alumina (JCPDS 10–0425). For samples 
containing iron/copper, a peak around 45 ◦C appeared. It refers to iron 
nitrate (JCPDS 44–0520) and copper nitrate (JCPDS 85–1326). 

3.1.7. DTP-NH3 
The analysis of DTP-NH3 allows inferring acidic sites present in the 

material structure. The number of acid sites present on the catalyst 
surface is proportional to the number of NH3 adsorbed during the 
analysis. 

Fig. 5 shows the DTP-NH3 for all samples analyzed. 
ES-Fe and ES-Cu present a desorbed NH3 band around 700–750 ◦C 

indicating the presence of strong acid sites due to the elevated temper-
ature needed for the desorption to occur [56]. For pristine ES the 
desorption band is undefined indicating the need of higher 
temperatures. 

SI, SI-Fe and SI-Cu present a well-defined band at 100 ◦C, indicating 
the presence of a weak acid site. SI presents an intermediate acid site at 
400 ◦C and, SI-Fe and SI-Cu at 450 ◦C, indicating a slight increase in 
temperature. The increase in the area of the band for samples impreg-
nated with metals indicates the increase in the acid sites number [15,44, 
56,97]. 

AL presents a different NH3 desorption band profile when compared 
to samples impregnated with metals. For Al a desorption band at 500 ◦C 
is seen while metal-impregnated samples present well-defined bands at 
200 ◦C indicating weaker acid sites [15,44]. AL-Fe presents a desorption 
band at 600 ◦C indicating the present of a strong acid site. 

The formation of DMC increases in the presence of catalysts with 
acidic and basic sites in their structure [41,55,59,85,99]. Both basicity 
and acidity enhance catalytic action, causing a synergistic effect on the 
catalytic and DMC formation process [25,32,41,69]. Literature describes 
strong basic sites in eggshell-containing catalysts, as shown by TPD-CO2 
analyses [25]. 

3.2. Application of catalysts (X-Y) in the direct synthesis of dimethyl 
carbonate (DMC) 

The conversions, yields, selectivities, and water content of the re-
actions using the supported catalysts are presented in Table 2. 

For pristine SI, AL, and ES (Entry 1, Entry 4, and Entry 7) only 
product traces were evidenced with >99% selectivity. Low conversion 
using pure supports may indicate a low concentration of metals already 
present in the supports before iron and copper impregnation. 

Regarding the copper/support as a catalyst, we noticed that ES 

Fig. 5. DPT-NH3 of pristine supports (X) and samples X-Y.  
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proved to be the most active, reaching a yield of approximately 11.3% 
(Entry 9), followed by AL with 8.9% (Entry 6) and SI with 6.2% (Entry 
3). The best performance of ES can be attributed to the presence of a 
more acid sites and porous structure with larger porous facilitating 
copper impregnation and the conversion to DMC. 

Gao and Xu [29] studied the transesterification of propylene car-
bonate and methanol using eggshells as catalysts. The propylene car-
bonate conversion and the DMC yield reached maximum values after 1 h 
(80 and 75%, respectively) under the optimal conditions (meth-
anol/propylene carbonate molar ratio 10:1, 0.8% by weight of the 
eggshell catalyst, room temperature, and 1 atm pressure). In addition, 
the eggshell catalyst can be reused in four cycles with light deactivation. 
The eggshell showed catalytic behavior similar to pure CaO. Calcium 
carbonate from the eggshell is decomposed into calcium oxide during 
calcination and this change in composition leads to a homogenization of 
the structure increasing the BET area and producing an effective solid 
renewable catalyst. 

When comparing the iron/support as a catalyst, ES also proved to be 
more efficient, reaching around 12.7% conversion and >99% selectivity 
(Entry 8). SI-Fe showed a yield of 7.2% and AL-Fe 6.1% both with >99% 
selectivity. Li et al. [51] evaluated the combination of iron with zirconia 
in the direct synthesis of DMC (110 ◦C, 5Mpa, and 4 h of reaction time) 
in different proportions and concluded that the increase in the number 
of iron particles results in higher conversion and yield. The use of 
Fe0.7Zr0.3Oy as a catalyst provided a yield of approximately 4% and a 
selectivity of 100%. The combination of zirconia with iron was funda-
mental to increasing yield and selectivity since the pristine support 
showed no catalytic activity. 

For AL and SI, the supports act differently depending on the 
impregnated metal. Regarding Fe impregnation, AL and SI showed the 
same catalytic efficiency as a function of Tukey’s test and standard de-
viation interval (Entry 3 and 6) and SI was superior to AL when 
impregnated with iron (Entry 2 and 5). On the other hand, ES was su-
perior to other supports, both ES-Fe and ES-Cu. However, ES-Fe ach-
ieved a conversion of approximately 10% higher than ES-Cu in the DMC 
direct synthesis. Tukey test proved that the samples with the best results 
(ES-Fe and ES-Cu) are statistically different from each other. In turn, SI- 
Fe and SI-Cu are similar. 

Finally, we noticed that in both reactions, the water content in the 
product was small indicating the efficiency of the dehydrating agent, 
being the minimum for SI-Fe (0.5%) and the maximum for SI-Cu (1.4%). 
Small amounts of water produced during the reaction lead to an increase 
in the DMC yield, shifting reaction equilibrium to products. An efficient 
catalyst allied to a good dehydrating system improves the DMC direct 
synthesis, even if such synthesis presents unfavorable thermodynamics 
for the direct reaction. 

The use of ES-Fe as catalyst for DMC direct synthesis showed the best 
conversion result (40 bar, 80 ◦C and 24 h). To compare our findings with 

the literature, Table 3 presents results concerning the DMC yield, reac-
tion parameters, catalyst synthesis methods, and specific surface area of 
catalysts in the direct synthesis of DMC. 

Table 3 shows that different techniques can be used for the prepa-
ration of the catalysts for DMC obtainment resulting in different specific 
surface area properties and impregnation of metals on the surface. Xuan 
et al. [93] evaluated that the use of impregnation may have affected the 
dispersion of metals on the sample surface, influencing the available 
specific surface area due to the agglomeration of metals. The encapsu-
lation technique was revisited aiming to improve the availability of 
porosity and the presence of metals homogeneously distributed in the 
catalyst surface. The vacancies and availability of acidic and basic sites 
are also important, since both have a great influence on the direct syn-
thesis of DMC, accelerating the interactions between reagents and 
catalyst, increasing the yield, and, consequently, the selectivity of the 
product. 

Faria et al. [23] conducted an evaluation on the utilization of acti-
vated carbon in conjunction with metals impregnated via the evapora-
tive impregnation method. Their findings demonstrated that employing 
this technique resulted in an excellent yield of metals adsorbed onto the 
surface. The surface area of the pure support was initially measured at 
approximately 985 m2/g, but after impregnation, it decreased to 620 
m2/g. This decrease in surface area indicated that the metals were 
effectively adsorbed onto the support structure. Additionally, the ach-
ieved results for DMC yield surpassed those of previous studies, reaching 
approximately 23.5% with a selectivity of 100%. 

Superior or statistically equal results for DMC direct synthesis using 
ES-Fe, as described in this work, were obtained when compared with the 
results presented in Table 3. In addition, the synthesis is performed in 
milder conditions, reducing the energy spent on the entire system. The 
ES-Fe catalyst presented a balance between acidic and basic sites, which 
proved to be extremely important for achieving high yield. Since the 
matrix used is waste from the food industry, we still have the environ-
mental issue, since the work values the use of waste for the synthesis of a 
product with high added value. Therefore, based on the best result, the 
catalyst was reused to assess whether the catalytic action would remain 
constant during 4 cycles. 

3.2.1. Reuse of the catalyst ES-Fe 
Fig. 6 shows the selectivity and conversion of ES-Fe catalyst in the 

direct synthesis of DMC. 
Recycle number 0 represents the first use of ES-Fe as catalyst 

achieving 12.7% of conversion. Number 1 is the first reuse with a slight 
decrease in conversion reaching 11.3%. In the next reuses (numbers 2 
and 3) the catalytic activity remained to decrease (9.3% and 5.2% of 
conversion, respectively) losing about 60% of the catalytic activity. 
Regarding the selectivities, no change was observed. 

Eggshell-impregnated metal (TiO2) was used as catalyst in the syn-
thesis of carbonates, such as glycerol carbonate, achieving high con-
versions and selectivities. Regarding reuse, the catalytic activity showed 
a great decrease from the 4th recycle, however, the selectivity remained 
stable during all reactions [66]. Eggshell was also tested as catalyst in 
the synthesis of carbonate from glycerol via transesterification of glyc-
erol and DMC, with yields of up to 90% with 100% selectivity. The reuse 
evidenced an important decrease in the catalytic activity from the 3rd 
cycle when there was no calcination pre-treatment in the catalyst. When 
the catalyst was submitted to calcination carried out at 900 ◦C a 
continuous and stable catalytic activity was observed for 3 reuses [67]. 

The use of eggshell impregnated with iron presented an efficient 
catalytic activity in cycles 1 and 2, however, reuse number 3 indicates a 
drastic decrease in the catalytic activity of ES-Fe with a conversion of 
5.2%. This behavior could be associated with the calcination process. 
Performing a calcination process at higher temperatures (~750–800 ◦C) 
could improve the catalytic activity but a higher energy expenditure for 
catalyst synthesis will be necessary. 

Table 2 
Conversion, yield, selectivity, and water content of reactions with catalysts (X- 
Y).  

Entry Catalyst Selectivity 
(%) 

Conversion (%) Yield(%) Water (%) 

1 SI >99 TRACES TRACES TRACES 
2 SI-Fe >99 7.2 ± 1.7 7.2 ± 1.7a 0.5 ± 0.1 
3 SI-Cu >99 6.2 ± 1.2 6.2 ± 1.1a 1.4 ± 0.9 
4 AL >99 TRACES TRACES TRACES 
5 AL-Fe >99 7.0 ± 0.9 7.0 ± 0.9ab 1.7 ± 1.0 
6 AL-Cu >99 4.8 ± 0.8 4.8 ± 0.8ac 1.9 ± 0.9 
7 ES >99 TRACES TRACES TRACES 
8 ES-Fe >99 12.7 ± 0.5 12.7 ± 0.5c 0.9 ± 0.5 
9 ES-Cu >99 11.3 ± 0.7 11.3 ± 0.7d 1.1 ± 0.2 

*The letters present next to the yield refer to the Tukey test performed to define 
statistical equality between the samples. **Pressure: 40 bar; Temperature: 80 ◦C; 
Time: 24 h; 0.7 g of X-Y; 2.0 g of molecular sieve; 213 mmol methanol;20 mmol 
of CH3I. 
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3.3. Deprotonation of methanol by means of various catalysts and 
supports: Ab initio reaction paths 

The considered synthesis of DMC begins with the adsorption of the 
methanol molecule on the catalytic surface. The oxygen atom of meth-
anol coordinates D-metals and, therefore, becomes more polarized. The 
polarized oxygen-hydrogen covalent bond of methanol breaks apart as 
that of acid. The split-off proton joins one of the oxygen atoms belonging 
to the support surface nearby. The hydroxyl group appears on the sup-
port surface. Next, the CO2 molecule attacks the CH3-O* moiety which 
remains electrostatically attracted by the D-metal atom. The methyl 
carbonate group, CH3-O-C(O)–O* emerges. Eventually, the methyl 
radical of the CH3I attaches, and the DMC molecule forms. The iodide 
anion takes the proton from the surface of the support and produces HI. 
The catalytic cycle then repeats. 

The characterization indicates the presence of hydroxyl groups in the 
system. In turn, the identification of the reaction products reveals a 
formation of non-negligible fractions of water. It is, therefore, a 
reasonable hypothesis that in certain cases the methanol’s proton joins 
the hydroxyl group and gives rise to a water molecule. Due to the kinetic 
and thermodynamic stability of the water molecule, it does not undergo 
further chemical transformations. The drying agents were used to pre-
vent this water from hydrolyzing DMC. 

The most hindered stage of the DMC synthesis is the deprotonation of 
methanol (Fig. 7) which represents a very weak acid and fully blocks the 
reaction in the absence of the D-metal catalysts (Table 2). To unveil the 
activation barriers, we investigated the potential energy surface be-
tween the protonated and deprotonated forms of methanol by the NEB 

method. NEB finds a minimum energy path and saddle points between 
the reactants and the products provided that both are known. 

The reaction paths are given in Fig. 8 providing respective activation 
barriers and energy effects of the considered reaction stage. The NEB 
method optimizes the virtual band (minimum reaction path) by simul-
taneously calculating forces acting on all atomic nuclei in all interme-
diate molecular configurations (so-called images). There are two types 
of forces in the systems, viz., the interatomic forces and the spring 
forces. Relative to the reaction path band, only the parallel components 
of the spring forces and the perpendicular components of the inter-
atomic forces are accounted for. Note that the artificial spring forces are 
needed to adjust the spacing of the optimized images along the reaction 
path band. The resulting energetics of the simulated process reflects the 
true energy expenses of the system that undergoes alterations. 

The methanol deprotonation reactions occur similarly in all eight 
considered samples. The transition states occur at the hydrogen-oxygen 
distances ranging between 0.123–0.130 nm and D-metal-oxygen dis-
tances ranging between 0.18 and 2.0 nm. The elongation of a covalent 
bond by approximately 30% during the course of the bond breaking 
event is a conventional physical behavior. As a result of deprotonation, 
the metal-oxygen distances shrink substantially. For instance, the iron 
(catalyst)-oxygen(methanol) distance equals 0.192 nm before the reac-
tion and 0.175 nm after the reaction as adsorbed on the CaO support. 
Compare to the case of copper. The copper(catalyst)-oxygen(methanol) 
distance equals 0.204 nm before the reaction and 0.186 nm in the 
deprotonated state. 

The simulated energetics appears to be in quite a decent agreement 
with the experimental conversions and yields (Table 2). We interpret 
such a good correlation of the obtained data as a paramount role of 
methanol deprotonation during the course of the methanol conversion 
into DMC. In all samples, the iron catalyst performs better compared to 
the copper catalyst. This trend should have been expected because iron 
is a more active metal. Iron polarizes the electron cloud of the oxygen 
atom of methanol to a larger extent than copper. Hence, the breakage of 
the oxygen-hydrogen covalent bond occurs easier. Both the energetic 

Table 3 
Results concerning the DMC yield, reaction parameters, catalyst synthesis methods, and specific surface area of catalysts in the direct synthesis of DMC.  

Catalyst Parameters to DMC synthesis Preparation method of 
catalyst 

Surface area 
(m2⋅g − 1) 

DMC yield Refs. 

CeO2 5 h, 4.0 MPa, 140 ◦C Simple hydrothermal 
method 

137 ~13.0% with 92.3% 
selectivity 

[95] 

ZrO2 170 ◦C, 70 h, 15 MPa, molecular 
sieves 3A (5.0 g) 

Calcination and 
impregnation 

110 1.0% with 100% 
selectivity 

[101] 

Ce/ZrO2 21 14.3 ± 2.3% with 100% 
selectivity 

HPW@MOF-808 (Encapsulating phosphotungstic acid 
within metal-organic framework) 

140 ◦C, 4 h, 12 MPa Simple encapsulation 285 4.65% with 100% 
selectivity 

[93] 

Activated carbon impregnated with iron (AC-Fe) 80 ◦C, 40 bar, 24 h, molecular 
sieves 3A (2.0 g) 

Evaporation 
impregnation method 

620 23.5 ± 0.8 with 100% 
selectivity 

[23]  

Fig. 6. Conversion and selectivity of DMC synthesis using Es-Fe catalyst. 
*Pressure: 40 bar; Temperature: 80 ◦C; Time: 24 h; 0.7 g of ES-Fe; 2.0 g of 
molecular sieve; 213 mmol methanol;20 mmol of CH3I. 

Fig. 7. (Right) The methanol molecule adsorbed at the infinite silica surface. 
(Left) Deprotonated methanol molecule passivated by the copper atom. Silicon 
is pale pink; oxygen is red; hydrogen is white; carbon is gray; copper is orange. 
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effect of the reaction and the activation barrier height are smaller in the 
case of the iron catalyst than in the case of the copper catalyst. In 
practical applications, the iron catalyst must be preferred. 

The support plays an essential role in the deprotonation of methanol. 
Indeed, the support directly interacts with the catalyst particle (iron or 
copper) and accepts the detached proton. Note that the recorded heights 
of the activation barriers are more essential parameters than the energy 
effects since the latter is largely compensated by subsequent stages. 
According to Hess’s law, the energy effect does not depend on the re-
action mechanism. In turn, the activation barrier determined the per-
centage of successful elementary reaction events and directly limits the 
conversions and yields. 

The SI and AL supports exhibit similar performance in line with the 
recorded experimental descriptors of the corresponding chemical re-
actions. While the atoms in their structures possess high formal elec-
trostatic charges (+4 on Si in SiO2 and +3 on Al in Al2O3), an actual 
electronic density is strongly delocalized largely due to the small size of 
these formal ions. As a result, the SI and AL supports perform even worse 
than the ES support with a less delocalized positive electrostatic charge 
on Ca. In this respect, minimum reaction path simulations and experi-
mental reaction studies confirm and supplement one another. 

The CaO and CaCO3 surfaces constitute the ES support. A certain 
fraction of CaO is expected to form after the performed annealing to 
impregnate Fe and Cu catalysts. We anticipate that the precise ratio of 
the considered moieties depends on the conditions of annealing. In 
simulations, we considered CaO and CaCO3 independently to separate 
their effects within the experimental results. Interestingly, the CaO 
support performs somewhat better. Compare the barriers of 160 and 
180 kJ/mol for Fe on CaCO3 and Cu on CaCO3 to the barriers of 130 and 
150 kJ/mol CaO and Cu on CaO. The observed difference can be ratio-
nalized, as above, by a slightly more electron-deficient Ca2+ particle in 
CaO. 

To recapitulate, the minimum reaction path simulations confirm a 
more efficient performance of more chemically active oxide-forming 
chemical elements. We hereby hypothesize that barium oxide and 
even barium superoxide can enhance the DMC yields and allow one to 
use milder reaction conditions. Recently, it was shown [12,22] that 

potassium being even more active than Ca and Ba enhance methanol 
conversion into DMC a fewfold. 

4. Conclusions 

The synthesis of DMC using a compound reaction presents significant 
challenges due to unfavorable thermochemistry and a high activation 
barrier. Catalysts, particularly D-metal oxide moieties, can enhance the 
reaction yield, but their effectiveness depends on the specific D-metal 
and support used. This study contributes to understanding the catalytic 
transformation of methanol and CO2 into DMC, as well as identifying 
more efficient reaction pathways. Comprehensive chemical character-
ization analyses confirm the successful impregnation of D-metal into the 
support structures, with eggshell waste demonstrating the highest per-
centage of D-metal and greater catalytic activity. The best results were 
achieved with the ES-Fe sample, which exhibited a methanol conversion 
of 12.7% and 100% selectivity, followed by the ES-Cu sample with a 
yield of 11.3% and 100% selectivity. The support material directly in-
fluences the catalytic performance, and the ES-Fe catalyst showed sta-
bility and high conversion and selectivity even after multiple reuses. 
This work contributes to the sustainable utilization of excessive CO2 by 
providing a methodology for producing DMC from CO2 and methanol 
using supported D-metal oxide catalysts. The insights gained from this 
study can guide the development of more robust catalytic systems and 
the binding of higher CO2 percentages. 

5. Future perspectives 

The direct synthesis of DMC faces several challenges that require 
attention to improve the process. These challenges include unfavorable 
reaction thermodynamics, water production, and the search for catalysts 
to enhance yield and selectivity. The high temperatures required for the 
calcination process of the support pose an energy-demanding issue, 
which needs to be addressed for a low-carbon process. In our future 
perspectives, we aim to explore new low-energy processes for support 
production. Additionally, considering the influence of the support on 
reaction activity and selectivity, we plan to investigate the use of 

Fig. 8. The minimum reaction paths for the methanol deprotonation in various systems. Note that the depicted reaction coordinates represent collective variables 
reflecting all changes in the systems during the course of the reaction. The so-defined reaction coordinates cannot be linked to any specific components of the 
simulated Z-matrices. Based on their definition, the reaction coordinates are unique in all systems and cannot be directly compared. 
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lignocellulosic residues, such as rice husks and coffee husks, as potential 
supports for metal impregnation. This approach would provide a valu-
able application for these otherwise discarded residues in DMC syn-
thesis, creating a high-value product. Another crucial aspect to be 
studied is the optimization of the process in larger-capacity reactors to 
evaluate reproducibility and assess the potential for industrial 
implementation. 
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