
848 IEEE COMMUNICATIONS LETTERS, VOL. 26, NO. 4, APRIL 2022

Location-Aware Maintenance Strategies for Edge Computing Infrastructures

Paulo S. Souza , Tiago C. Ferreto , Member, IEEE, Fábio D. Rossi ,

and Rodrigo N. Calheiros , Senior Member, IEEE

Abstract— Efficient server maintenance and update is essential
to prevent performance and security issues in edge computing
environments. Despite many initiatives in maintenance planning,
state-of-the-art approaches concentrate on carrying out updates
in cloud data centers, ignoring aspects of the problem that
are specific to the edge computing paradigm, such as user-
location awareness. In this letter, we present two maintenance
strategies, called Lamp and Laxus, that consider users’ locations
when performing migration decisions to avoid delay bottlenecks
during edge servers maintenance. Results show that the proposed
strategies can reduce maintenance time by 44.27% compared to
existing strategies while effectively avoiding delay bottlenecks.

Index Terms— Edge computing, update, maintenance.

I. INTRODUCTION

EDGE COMPUTING infrastructure operators have the
responsibility of keeping the edge infrastructure up and

running, which is not trivial as resources are scarce, and the
network infrastructure is less robust than its cloud counter-
part. Worse still, attacks targeting the edge are becoming
increasingly frequent [1]. For instance, the Mirai virus [2]
orchestrated a Distributed Denial of Service attack against
edge servers that led to downtime in over 178000 domains.

During maintenance in cloud data centers, operators can
evacuate servers by relocating hosted applications to other
servers typically by observing if the demand of applications
could be met, regardless of the new server location within
the data center [3]. However, edge servers may have hetero-
geneous hardware configurations, meaning that some hosts in
the edge infrastructure may not deliver analogous performance
for applications. In addition, applications executed on edge
environments usually have tight locality and delay constraints,
narrowing the candidate hosts that could accommodate them
while delivering acceptable response times.

There has been considerable prior work regarding mainte-
nance in cloud environments [4] [3] [5]. While some strategies
could be adapted to edge computing, they overlook users’
locations when relocating applications. Although this charac-
teristic does not significantly impact cloud data centers, it can
generate a significant increase in application delay in edge

Manuscript received January 20, 2022; accepted February 6, 2022. Date of
publication February 8, 2022; date of current version April 11, 2022. This
work was supported by the PDTI Program, funded by Dell Computadores do
Brasil Ltda (Law 8.248 / 91). The associate editor coordinating the review of
this letter and approving it for publication was Y. Liu. (Corresponding author:
Paulo S. Souza.)

Paulo S. Souza and Tiago C. Ferreto are with the School of Technology,
Pontifical Catholic University of Rio Grande do Sul, Porto Alegre 90619-900,
Brazil (e-mail: paulo.severo@edu.pucrs.br; tiago.ferreto@pucrs.br).

Fábio D. Rossi is with the Federal Institute Farroupilha, Alegrete 97555-000,
Brazil (e-mail: fabio.rossi@iffarroupilha.edu.br).

Rodrigo N. Calheiros is with the School of Computer, Data and Mathemat-
ical Sciences, Western Sydney University, Parramatta, NSW 2000, Australia
(e-mail: r.calheiros@westernsydney.edu.au).

Digital Object Identifier 10.1109/LCOMM.2022.3150243

TABLE I

SUMMARY OF MAIN NOTATIONS USED IN THIS LETTER

environments. Therefore, migration techniques that consider
users’ location [6] can be adapted to maintenance scenarios,
ensuring that the impact of maintenance on applications’
performance remains as low as possible.

This letter presents two maintenance strategies (Lamp and
Laxus) that update edge infrastructures while avoiding Service
Level Agreement (SLA) violations, which occur when the
delay of applications exceeds a threshold agreed between
infrastructure providers and users. To the best of our knowl-
edge, this is the first attempt to tackle the challenge of
conducting infrastructure maintenance on edge infrastructures
considering users’ location when performing migration deci-
sions. Results show that the proposed strategies can update the
edge infrastructure 44.27% faster than existing solutions while
effectively mitigating SLA violations during maintenance.

II. SYSTEM MODEL

This section describes the edge maintenance scenario
approached in this work. First, we describe the elements of the
edge infrastructure. Then, we formulate the steps that comprise
the maintenance process. Table I summarizes the notations.

We represent the environment as in Aral et al. [7], dividing
the map into several hexagonal cells. The edge infrastructure
comprises a set of interconnected base stations B equipped
with edge servers S, positioned at each map cell. While base
stations provide wireless connectivity to a set of users U ,
edge servers host the user applications A. We represent a base
station as Bf ← {bf}, where bf is the base station’s wireless
delay, and a network link as Lu ← {ξu,ℵu}, where attributes
ξu and ℵu represent the link delay and bandwidth, respectively.

We model an edge server as Si = {οi, ηi, μi, ℘i, ∂i}.
Attributes οi and ηi represent the capacity and demand of
server Si, respectively. More specifically, ηi is the sum of the
demand of all applications hosted by Si. The update status of
Si is denoted by μi, which is set to 1 when Si is updated
and to 0 otherwise. Patching Si takes ℘i units of time. After
patching Si, we execute sanity checks that validate its integrity
after the update, which takes ∂i units of time.

1558-2558 © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on August 11,2023 at 12:23:22 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-4945-3329
https://orcid.org/0000-0002-2450-1024
https://orcid.org/0000-0001-7435-2445
https://orcid.org/0000-0001-8485-529X

SOUZA et al.: LOCATION-AWARE MAINTENANCE STRATEGIES FOR EDGE COMPUTING INFRASTRUCTURES 849

An application has the following properties Aj =
{λj , ωj, �j}. Here, λj represents the application’s capacity
demand, which is considered when choosing which server
will host it. The delay ωj of application Aj is calculated
as in Equation 1, considering the wireless delay of the base
station used by Aj’s user (denoted as Bf) summed to the
aggregated delay of network links used to communicate Aj

to its user. As Aj’s user moves around the map, a handoff
process switches him from one base station to another. In such
a scenario, if Aj ’s user is not connected to the same base
station whose server hosts Aj , the connection between them
is made by routing Aj ’s data through a set of network links
called θ. We define the set of links θ through the Dijkstra
shortest path algorithm [8] using the link delays as weight.
An SLA violation occurs when the application’s delay ωj

exceeds its delay threshold �j . The application placement is
given by a binary matrix x, where xi,j receives 1 if Si hosts
Aj and 0 otherwise.

ωj ← bf +
|θ|∑

v=1

ξv (1)

The maintenance scenario considered in this work focuses
on the update of each server Si ∈ S, where the main-
tenance process is divided into a set of batches Q =
{Q1,Q2, . . . ,Q|Q|} as in the model by Zheng et al. [4].
The maintenance continues over a number of batches until∑|S|

i=1 μi = |S|, meaning that all servers have been updated.
Our goal is to update servers as soon as possible while
performing as few migrations as possible and avoiding SLA
violations.

In our modeling, servers need to be rebooted for patches
to take effect. Therefore, only servers hosting no applications
can be updated as a means to avoid application downtime.
At each maintenance batch Qe ∈ Q, all outdated edge servers
hosting no applications are updated. Then, migrations take
place, relocating applications out of the remaining outdated
servers so they can be updated in the next batch (this migration
process is called “server draining” as the goal of migrations
is “emptying” the outdated servers).1 This process is repeated
for a number of iterations (i.e., maintenance batches) until all
servers are updated.

We assume that no shared storage exists in the infrastruc-
ture. Therefore, migrating an application Aj to an edge server
Si implies in transferring Aj’s capacity demand λj from its
current host to Si through a set of links Υ(Aj ,Si) ⊆ L
that interconnect the edge servers’ base stations. We define
Υ(Aj ,Si) through the Dijkstra shortest path algorithm (link
bandwidths are used as weight) [8]. In this context, the time
it takes to migrate Aj to Si is given by the ratio between
Aj’s capacity demand λj and the bandwidth available for the
migration, as depicted in Equation 2. As the edge network
infrastructure may be heterogeneous, the set of links Υ(Aj ,Si)
may have different bandwidth capacities. Accordingly, the
lowest available bandwidth between the links in Υ(Aj ,Si)
is considered the actual bandwidth for the migration.

κ(Aj ,Si) =
λj

min{ℵu | u ∈ Υ(Aj ,Si)} (2)

1Migrations are performed sequentially as in Zheng et al. [4].

III. PROPOSED STRATEGIES

A. Lamp

At the beginning of each maintenance batch, Lamp updates
all outdated servers that are not hosting applications (Alg. 1,
lines 3–6). Then, if there are still outdated servers in the
infrastructure, it starts to migrate applications to drain the
servers that still need to be updated (Alg. 1, lines 8–20).

Algorithm 1: Lamp Maintenance Heuristic.

1 while There are outdated servers in S do

2 F ← Outdated servers in S
3 foreach Fi ∈ F do

4 if Fi hosts no application then
5 Update Fi

6 Remove Fi from F

7 if F is not empty then

8 Sort the elements of F by Eq. 3 (asc.)

9 T ← {}
10 foreach server Fi ∈ F do
11 N ← Applications in Fi sorted by demand (desc.)

12 Y ← S − {T ∪ Fi}
13 if checkCapacity(Y , N) = |N | then

14 foreach application Nj ∈ N do
15 Y ← Servers in Y sorted by Eq. 4 (asc.)

16 foreach server Yi ∈ Y do
17 if ρi − ηi ≥ θj then

18 Migrate Nj to Yi

19 break

20 T ← T ∪ {Fi}

To select the order in which servers are drained, Lamp sorts
outdated servers according to a cost function � (Equation 3),
which considers the normalized capacity, demand, and time
required to update the outdated servers (we normalize variables
that have different scales with Min-Max Normalization [9]
to ensure that equations are not unbalanced). While patching
larger servers means being able to accommodate a larger
number of applications on updated servers early, prioritizing
less occupied servers with shorter patching time ensures the
infrastructure has up-to-date resources early.

�(Si)← norm

(
1
οi

)
+ norm (ηi) + norm (℘i + ∂i) (3)

Before performing any migration to drain a given server Si,
Lamp calls a method described in Algorithm 2 to check if the
other servers that are not being drained in the current batch
have enough capacity to host all the applications hosted by Si

(Alg. 1, line 13). In this way, it avoids migrations that will not
result in servers being drained in the current batch, shortening
the duration of maintenance batches, which leads to servers
being updated early.

After ensuring that a server Si can be drained in the
current maintenance batch, Lamp uses a cost function φ
(Equation 4) to sort the servers that can accommodate each
of the applications hosted by Si according to their update
status, occupation, and delay to the user that accesses the
application being migrated, represented by � (Alg. 1, line 15).
In this way, Lamp tries to guarantee that applications are

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on August 11,2023 at 12:23:22 UTC from IEEE Xplore. Restrictions apply.

850 IEEE COMMUNICATIONS LETTERS, VOL. 26, NO. 4, APRIL 2022

Algorithm 2: Lamp’s Server Capacity Checking Method.

1 Function checkCapacity(Y , N):
2 Y ′ ← List of servers in Y

3 N ′ ← List of applications in N

4 κ← 0

5 foreach N ′
j ∈ N ′ do

6 foreach Y ′
i ∈ Y ′ do

7 if ρi − ηi ≥ θj then
8 Host application N ′

j on edge server Y ′
i

9 κ← κ + 1

10 break
11 return κ

placed on up-to-date servers close enough to users to avoid
SLA violations. Finally, Lamp goes through the ordered list
of candidate servers, migrating applications to the first server
found with enough capacity to host them (Alg. 1, lines 14–19).

φ(Si)← (1− μi) + norm (οi − ηi) + norm(�) (4)

B. Laxus
Laxus starts each maintenance batch by updating out-

dated edge servers that are not hosting applications (Alg. 3,
lines 3–6). After that, if the infrastructure still has out-
dated edge servers, Laxus performs migrations in an attempt
to drain those servers (Alg. 3, lines 8–12). Laxus makes
migration decisions through a function called NSGAII ,
consisting of a metaheuristic called Non-Dominated Sorting
Genetic Algorithm II (NSGA-II) [10]. We use NSGA-II as
it can be more effective than other algorithms when finding
Pareto-optimal solutions for multi-objective problems with an
O(MN2) time complexity, where M represents the number of
objectives the algorithm has and N is the population size [10].

Algorithm 3: Laxus Maintenance Heuristic.

1 while There are outdated servers in S do
2 F ← Outdated servers in S
3 foreach server Fi ∈ F do
4 if Fi hosts no application then
5 Update Fi

6 Remove Fi from F

7 if F is not empty then
8 W ← NSGAII(S,V)

9 υ ← Placement ∈ W w/ the lowest � (Equation 10)
10 for k ← 1 to |υ| do
11 if edge server υk does not host application Vk then
12 Migrate Vk to υk

1) Genetic Encoding: 2 The NSGA-II algorithm used by
Laxus creates and evolves chromosomes representing migra-
tion plans to drain outdated servers. Each chromosome Pv of
population P is a vector of size |V|, where V denotes the set
of applications hosted by the outdated servers. Each index j
of Pv represents one of the applications in V , and the value of
each index represents the suggested edge server to host these
applications. Thus, Pv,j ← Si indicates that Vj should be
migrated to Si. No migration is made if Si already hosts Vj .

2At the beginning of the NSGA-II’s execution, P is generated randomly.

2) Constraints and Fitness Functions: In our modeling,
a solution is only considered valid if

∑|S|
i=1 [ηi > οi] = 0,

meaning that the demand of none of the edge servers exceeds
its capacity. We use three fitness functions α, β, and γ that
aim at minimizing: (i) the number of outdated servers hosting
applications; (ii) the migration cost; and (iii) the number of
SLA violations, respectively.

The first fitness function α (Equation 5) quantifies the effec-
tiveness of a solution Pv in draining outdated servers. As the
maintenance continues until all edge servers are up to date,
solutions that manage to drain a larger number of outdated
edge servers per batch tend to finish the maintenance early.
Besides, in many maintenance scenarios, updating servers as
soon as possible is essential. For instance, when servers must
get security patches, draining more of them sooner implies
these can be updated early, reducing the attack surface on the
infrastructure [5]. Therefore, α accounts for the number of
outdated edge servers hosting applications.

α(Pv)←
|Pv|∑
j=1

1− μPv,j (5)

The second fitness function β (Equation 6) quantifies the
migration cost imposed by a solution Pv . First, β considers
the average migration time (given by the function τ(Pv),
in Equation 7) so that solutions that perform long migrations
are penalized. In addition, β also considers the function ζ(Pv)
(Equation 8), which penalizes solutions that make undesired
migrations. More specifically, function ζ(Pv) treats as unde-
sired those migrations that meet at least one of the following
criteria: (i) the current server of the application being migrated
hosts other applications that will not be relocated (meaning
that, despite the migration, that server will not be drained in
that maintenance batch); (ii) the application is being migrated
to an outdated server.

β(Pv) ← τ(Pv) ·max(1, ζ(Pv)) (6)

τ(Pv) ← 1
|Pv|

|Pv|∑
j=1

κ(Vj ,Pv,j) (7)

ζ(Pv) ←
|Pv|∑
j=1

[
xPv,j ,j = 0

] · ([{Si ∈ S|xi,j = 1} ⊂ Pv]

+ 1− μPv,j

)
(8)

The third fitness function γ (Equation 9) quantifies the
number of SLA violations produced by allocation deci-
sions made by a solution Pv . Thus, solutions that overlook
users’ location and migrate applications to servers too distant
from users so that the access delay exceeds the application
SLAs are penalized for sacrificing the delivered quality of
service.

γ(Pv)←
|Pv |∑
j=1

[ωj > �j] (9)

3) Non-Dominated Sorting: After assigning fitness scores
to the population, individuals are arranged on different fronts
based on their dominance over other individuals in the popu-
lation. In addition, each individual receives a score called
crowding distance [10], which corresponds to the distance

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on August 11,2023 at 12:23:22 UTC from IEEE Xplore. Restrictions apply.

SOUZA et al.: LOCATION-AWARE MAINTENANCE STRATEGIES FOR EDGE COMPUTING INFRASTRUCTURES 851

of the individual to its neighboring solutions on the Pareto
front. Once the population is arranged on different fronts
and the crowding distance of each individual is calculated,
the population for the next generation is chosen based on
the fronts structure (individuals on the first fronts and with
larger crowding distances are prioritized). After this sorting
process, only the |P| best individuals are selected to be part
of population P . We define a fixed number of generations η as
the stopping criterion for the NSGA-II algorithm. Therefore,
the evolution process is repeated until the maximum number
of generations η is reached.

4) Pareto-Optimal Selection: Instead of looking for a single
optimal solution in the search space, NSGA-II returns a
Pareto Set W comprising non-dominated solutions in the
Pareto Front. Accordingly, as soon as the algorithm’s stopping
criterion is reached, we must choose which Pareto-Optimal
solution will be employed in the maintenance process. For
this, we evaluate each solution Wv ∈ W according to a cost
function � (Equation 10), selecting the solution with the lowest
� (Alg. 3, line 9).

�(Wv)← norm(α(Wv)) + norm(β(Wv)) + norm(γ(Wv))
(10)

IV. PERFORMANCE EVALUATION

A. Experiments Description
1) Dataset: 3 We consider an edge computing infrastructure

with 40 edge servers interconnected by a Barabási-Albert
network topology [11] with links containing delays = {5,
10} and bandwidths = {5, 10}. We assume that servers have
heterogeneous capacities = {200, 250}. We update the edge
servers with two patches with duration = {250, 350}. Each
patch type has sanity checks with duration = {300, 400}.
We consider a set of 90 users distributed randomly across
the environment and 90 applications with demands = {20,
40, 60} and delay SLAs = {45, 90}. The initial placement
of applications is defined according to a Closest-Fit heuristic
described in Algorithm 4.

Algorithm 4: Initial Application Placement Heuristic.

1 A′ ← List of applications in A arranged randomly
2 foreach A′

j ∈ A′ do
3 Ur ← User that accesses application A′

j

4 S′ ← List of edge servers in S sorted by delay from Ur (asc.)
5 foreach edge server S′i ∈ S′ do
6 if ρi − ηi ≥ θj then
7 Host application A′

j on edge server S′i
8 break

2) Baseline: To the best of our knowledge, we are the
first to propose maintenance strategies considering the require-
ments of edge computing infrastructures. Thus, we compare
Lamp and Laxus against two maintenance strategies designed
to update servers in cloud data centers. The first baseline
strategy, called Greedy Least Batch (GLB) [4], aims to reduce
the number of maintenance batches needed to update a group
of servers. The second baseline strategy, called Salus [5],
focuses on security patch scenarios, where the main goal

3Network, edge server, and application parameters are assigned uniformly.

Fig. 1. Sensitivity analysis of Laxus parameters.

is to reduce the period that servers remain outdated (i.e.,
vulnerable to attacks) during maintenance. We chose these
baseline strategies because they also model the maintenance
process in batches while considering most of the performance
metrics we evaluate.

3) Metrics: We compare the analyzed strategies in terms of
maintenance time, number of migrations, Vulnerability Surface
(VS) [5] (which quantifies how long servers remain outdated
during maintenance), and number of SLA violations. While
the first three metrics assess specific maintenance goals, the
number of SLA violations measures the impact of migrations
on the quality of service delivered to end-users.

4) Testbed and Reproducibility: We conducted our experi-
ments on a virtual machine with Ubuntu 20.04.1 LTS contain-
ing 8 CPU cores and 32GB of RAM. The virtual machine was
configured with Python 3.7.10 (PyPy 7.3.5 with GCC 7.3.1
20180303). We strive to follow the reproducible research and
open science principles in our investigation. The companion
material hosted in a public GitHub repository4 contains the
source code, dataset, and instructions to reproduce our results.

B. Sensitivity Analysis
Among the compared strategies, Laxus is the only one

containing configurable parameters. Without loss of generality,
we define the population size |P| = 120 and mutation
probability to 1

|V| . We conduct a sensitivity analysis to deter-
mine the best settings between different number of generations
η = {100, 200, 300, …, 1000} and crossover probabilities =
{25%, 50%, 75%, 100%}. After testing each combination σ
among these parameters, we choose the best configuration
based on a score function δ(σ) (Equation 11), which considers
the normalized sum of each evaluated metric.

δ(σ)← norm
(
σtime

)
+ norm

(
σmigr

)
+ norm (σvs)

+norm
(
σviol

)
(11)

Figure 1 presents the δ score for each number of generations
η considering the best crossover probability among the tested
configurations. The configurations that obtained the best (i.e.,
lowest) δ score were η = {800, 900} with crossover probabil-
ity = 100%. We used η = 800 with crossover probability =
100% when comparing Laxus against the other strategies.

C. Comparison With Baseline Heuristics
1) Maintenance Time: Figure 2(a) shows the results in terms

of maintenance time. We can observe that Laxus updates
servers faster than other strategies, followed by Lamp, Salus,
and GLB, respectively. The total time spent on migrations
during maintenance was the factor that most influenced the
maintenance time during the experiments. While Salus and

4Experiment assets: https://github.com/paulosevero/lamp_laxus

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on August 11,2023 at 12:23:22 UTC from IEEE Xplore. Restrictions apply.

852 IEEE COMMUNICATIONS LETTERS, VOL. 26, NO. 4, APRIL 2022

Fig. 2. Experiments results comparing the proposed heuristics (Lamp and Laxus) against strategies from the literature.

GLB spent 4556 and 5954 units of time with migrations, Laxus
and Lamp completed all their migrations in only 2322 and
2930 units of time, respectively.

The reduction in the total time spent on migrations results
from Laxus and Lamp’s location awareness. As these strategies
avoid placing applications far away from their users, they
perform fewer long migrations than the other strategies. This
characteristic is reflected in the average migration time of
Laxus and Lamp (8.18 and 9.61 respectively) compared to
GLB and Salus (14.91 and 15.29 respectively).

2) Migrations: Figure 2(b) shows the number of migrations
performed by the strategies during the tests. As we can see,
GLB is the one that performs the most migrations during
maintenance. This behavior occurs because GLB is the only
strategy that does not take into account the demand of appli-
cations when performing migrations, which opens room for
potential waste of resources compared to other strategies that
prioritize migrating larger applications. Although Laxus does
not order applications by demand directly, its ability to evolve
over a number of generations allows it to find the best packing
of applications to drain servers with the lowest migration cost.

3) SLA Violations: Figure 2(c) shows the number of SLA
violations that occurred while executing the compared strate-
gies. We can observe that the baseline strategies (GLB and
Salus) obtained similar results regarding the number of SLA
violations (72 and 78, respectively), as they are both designed
to perform maintenance on cloud data centers, performing
migrations regardless of users’ locations.

Unlike cloud data centers, the edge infrastructure is dis-
tributed so that migrations between edge servers distant from
one another can significantly affect the application’s delay.
As Lamp considers the distance between servers and users
when performing migrations, it reduces the number of SLA
violations by 27.78% and 33.33% compared to GLB and
Salus, respectively. Still, Laxus achieves the best results,
completing the maintenance without any SLA violation. Such
gains come from Laxus’ ability to test several placement
alternatives as it evolves to ultimately select the configuration
that achieves the best results.

4) Vulnerability Surface: Figure 2(d) presents the results
regarding Vulnerability Surface, which assesses the time
required by maintenance strategies to update servers. As we
can see, GLB shows the worst results by overlooking servers’
exposure during maintenance. Salus, which strives to avoid
unnecessary migrations and update servers as soon as possi-
ble, manages to reduce the Vulnerability Surface by 19.72%
compared to GLB.

The proposed strategies minimize the Vulnerability Surface
by 23.46% on average compared to Salus. This shows the
importance of performing short migrations when carrying out
security patches on edge computing infrastructures, allowing

servers to be updated early. Laxus achieves the best results
among the evaluated strategies, updating 30 out of the 40 edge
servers in the infrastructure 39.65% faster than Lamp, 49.38%
faster than Salus, and 61.91% faster than GLB. These gains
are primarily because of the reduced migration time.

V. CONCLUSION

In this letter, we present two maintenance strategies called
Lamp and Laxus, representing the first steps toward per-
forming maintenance in edge computing infrastructures while
observing users’ location to avoid SLA violations due to
excessive delay increase in applications. While Lamp uses
a cost-based heuristic procedure that reduces the application
delay bottlenecks during maintenance by 31% while per-
forming 23% fewer migrations than existing strategies, Laxus
adopts a genetic algorithm that updates the edge infrastructure
while causing no application delay bottleneck, performing only
5% more migrations than Lamp. As future work, we intend to
consider: (i) the update of components with distinct mainte-
nance priorities and (ii) the execution of migrations in parallel
to reduce the maintenance time.

ACKNOWLEDGMENT

The authors would like to thank the High-Performance
Computing Laboratory of the Pontifical Catholic University
of Rio Grande do Sul (LAD-IDEIA/PUCRS) for providing
support and technological resources for this project.

REFERENCES
[1] Y. Xiao et al., “Edge computing security: State of the art and challenges,”

Proc. IEEE, vol. 107, no. 8, pp. 1608–1631, Aug. 2019.
[2] M. Antonakakis et al., “Understanding the Mirai BotNet,” in Proc.

USENIX Secur. Symp., 2017, pp. 1093–1110.
[3] C. Ying, B. Li, X. Ke, and L. Guo, “Scheduling virtual machine

migration during datacenter upgrades with reinforcement learning,” in
Proc. Int. Conf. Heterogeneous Netw. Qual., Rel., Secur. Robustness.
Springer, 2019, pp. 102–117. [Online]. Available: https://link.springer.
com/chapter/10.1007/978-3-030-38819-5_7

[4] Z. Zheng et al., “Least maintenance batch scheduling in cloud data
center networks,” IEEE Commun. Lett., vol. 18, no. 6, pp. 901–904,
Jun. 2014.

[5] P. Souza and T. Ferreto, “A heuristic algorithm for minimizing server
maintenance time and vulnerability surface on data centers,” M.S. thesis,
School Technol., Graduate Program Comput. Sci., Porto Alegre, Brazil,
2020. [Online]. Available: http://tede2.pucrs.br/tede2/handle/tede/9522

[6] Z. Liang et al., “Multi-cell mobile edge computing: Joint service
migration and resource allocation,” IEEE Trans. Wireless Commun.,
vol. 20, no. 9, pp. 5898–5912, Sep. 2021.

[7] A. Aral et al., “ARES: Reliable and sustainable edge provisioning for
wireless sensor networks,” IEEE Trans. Sustain. Comput., early access,
Jan. 8, 2021, doi: 10.1109/TSUSC.2021.3049850.

[8] E. W. Dijkstra, “A note on two problems in connexion with graphs,”
Numer. Math., vol. 1, no. 1, pp. 269–271, Dec. 1959.

[9] J. Han et al., Data Mining: Concepts and Techniques. Amsterdam, The
Netherlands: Elsevier, 2011.

[10] K. Deb et al., “A fast and elitist multiobjective genetic algorithm: NSGA-
II,” IEEE Trans. Evol. Comput., vol. 6, no. 2, pp. 182–197, Apr. 2002.

[11] A. L. Barabási and R. Albert, “Emergence of scaling in random
networks,” Science, vol. 286, pp. 509–512, Sep. 1999.

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on August 11,2023 at 12:23:22 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1109/TSUSC.2021.3049850

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Black & White)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /ArborText
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /EstrangeloEdessa
 /EuroSig
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Impact
 /KozGoPr6N-Medium
 /KozGoProVI-Medium
 /KozMinPr6N-Regular
 /KozMinProVI-Regular
 /Latha
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LucidaConsole
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /MVBoli
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Webdings
 /Wingdings-Regular
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 900
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

