
Integradora IV - A brief introduction to Multi-Agent Path Finding
Systems and a Proposal For a Simple and Distributed MAPF
Algorithm
RAUL F. RODRIGUES and PEDRO G. R. PACHECO
Pontifı́cia Universidade Católica do Rio Grande do Sul

Multi-Agent Systems is a well-studied field in artificial intelligence,
robotics, logistics, and theoretical computer science. We give a brief intro-
duction to the topic, providing basic necessary knowledge on terminology
and concepts. Alongside this introductory view, we propose an implemen-
tation of a conflict avoidance algorithm that in this paper we called Naive
Conflict Avoidance and a web-based simulator that enables the user to cre-
ate agents and their goals and obstacles. In the simulator another MAPF
algorithm can be used called Conflict-Based search, that was implemented
in python by another MAPF researcher. Several environment settings are
described and tested using the simulator to compare the two algorithms.

Additional Key Words and Phrases: Artificial intelligence, autonomous sys-
tems

ACM Reference Format:
Raul F. Rodrigues, Pedro G. R. Pacheco. 2022. A brief introduction to Mul-
tiAgent Systems with a focus on MAPF. ACM Trans. Graph. XX, X, Article
XXX (April 2022), X pages.
DOI: XX

1. INTRODUCTION

Artificial intelligence is one of the most important fields of Com-
puter Science, being the driving force of profound cultural and
social changes today[Makridakis 2017]. AI is present today in
a multitude of fields and applications like recommendations sys-
tems[CHA et al. 2019], self-driving cars[Shalev-Shwartz et al.
2017], human resources management systems[Vardarlier and Zafer
2020], high frequency trading[Arifovic et al. 2019], fiscal fraud de-
tection[Dhieb et al. 2020] and a lot more[Eur 2020].

Multi-Agent Systems is a sub-field of Artificial Intelligence
[Wooldridge 2002] that is also growing and appearing more in our
lives, with things like self driving cars[Shalev-Shwartz et al. 2017],
and in the industry, with robots that manage entire distribution cen-
ters[Ma and Koenig 2017], the need for intelligence autonomous
systems to interact with one another in the real world will also keep
growing.

The use of autonomous drones in industry and other settings in
real life has been increasing steadily and is set to continue accel-
erating in the coming decades. For robots that need to move in the
real world, there is a clear necessity for path-finding and collision
avoidance with obstacles and other robots or people. The field of
Multi-Agent Pathfinding explores these problems, trying to find so-

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
© 2009 Copyright held by the owner/author(s). $15.00
DOI: XX

lutions and algorithms to efficiently and safely navigate agents in
difficult environments [Stern et al. 2019b].

In this article, we developed a system to evaluate two different
solutions to the problem of solving and avoiding collision in multi-
agent pathfinding problems. The first is a very simple, yet effective
and scalable algorithm proposed by [Savkin and Huang 2019] we
have named Naive Conflict Avoidance. The is a more advanced and
well studied conflict avoidance algorithm named Conflict-Based
Search first described in [Savkin and Huang 2019]. Both algorithms
will be used in an simulator created for the browser that has the ca-
pabilities of adding agents and their objectives, and obstacles.

We propose these algorithms as solutions to aerial drones being
used in areas of conservation. These autonomous drones must avoid
air collisions as they will sometimes fly in more congested zones.
We will demonstrate an abstracted simulator with a discrete envi-
ronment, a flexible number of agents and obstacles. In this envi-
ronment, agents will have to reach their goals while avoiding other
agents and obstacles.

2. DRONES FOR CONSERVATION

The Amazon rain forest today faces a dual threat of stress from
Climate Change and deforestation [Malhi et al. 2008]. The Brazil-
ian government has created several permanent conservation areas
and nature reserves in the Amazon rain forest area to protect it
from mining, logging, and clearing-cut ranching. However, polic-
ing these areas is extremely difficult [Fang et al. 2019], due to their
size, terrain, and the fact that the government organizations respon-
sible for the maintenance and surveillance of these areas are under-
funded and stretched quite thin over all areas.

Several technologies are currently used to monitor permanent ar-
eas of conservation (PAC), such as satellite imagery and aerial pho-
tography [iba]. Ground sensors powered by solar panels that use
satellite communication are also used. Another novel method that
is starting to get traction all over the world for the monitoring of
conservation areas is the use surveillance drones.

Aerial type autonomous vehicles, or ‘drones’, offer a flexible and
affordable solution to specific set of challenges of nature conserva-
tion monitoring [Sandbrook 2015]. Today, the use of drones for the
conservation of the natural environment is detailed and recorded
by the organization www.conservationdrones.org, with sev-
eral projects in Australia, the United States, the United Kingdom,
and Switzerland. The projects employ fixed-wing drones (essen-
tially miniature airplanes) and multirotor copters [Con]. The use
of drones to monitor very large areas started in the agricultural sec-
tor, to analyze crop yields, and to monitor growth problems such as
pests [Tripicchio et al. 2015].

One of the activities that aerial drones are suitable for is bound-
ary patrols and collection of evidence of illegal activities [Sand-
brook 2015], such as deforestation. Drones can also not only pho-
tograph and video to document the infractions but also help ground

ACM Transactions on Graphics, Vol. 28, No. 4, Article 106, Publication date: September 2009.

2 • TCC

based local law enforcement catch the perpetrators. The evidence
collected in the field can then be used to secure prosecutions.

These projects often employ more than one drone, due to the size
of the area that they need to monitor. However sometimes these
drones do encounter each other in the field and thus need to avoid
conflict with each other. Despite being much more affordable than
manned vehicles, these are still quite an expensive solution and the
organizations that run them are often run on a quite limited budget.
Therefore, reliable and fast collision avoidance is critical for the
effective use and success of these monitoring missions.

3. RELATED WORK

In this section, we will present a couple of related articles regard-
ing MAPF and Multi-Agent Systems in general, both as theoretical
basis for this article and as good extra reading on the subject. These
articles were particularly interesting in their subject related to the
goals of this article.

[Ma and Koenig 2017] gives an extremely brief and concise
overview of the academic study of Multi-Agent Pathfinding sys-
tems. It uses real-world examples to explain certain nuances re-
garding optimization and complexity class of MAPF algorithms.

It brings the case of an agent dense environment with a expo-
nentially high number vertices, such that it becomes very difficult
to find the shortest path quickly, but the authors suggest that there
are ways for improving those situations and cites 2 of them. Then
it provides two state-of-the-art solutions: the first one is treating all
conflicts in a group then repeating the process for subsequent con-
flicts; the second one is treating each conflict recursively, where the
colliding robots are not to traverse the point in which the conflict
happened, then repeating the process.

Another piece of work that was investigated points to four so-
lutions to problems of generalizations of real-world scenarios to
multi-agent pathfinding systems [Ma et al. 2017]. The proposed
scenarios cannot be easily or efficiently modeled by traditional
MAPF techniques. The first is about agents working in teams to
reach a goal. The second is about agents passing payloads to one
another to reach their goals. The third is about agents using hu-
man created paths called highways to make their behavior more
predictable. The fourth one is about agent’s planning failing more
gracefully.

[Savkin and Huang 2019] proposes several algorithm for both
avoiding conflicts in a network of aerial drones and maximizing the
coverage area for surveillance and monitoring. The system studied
is similar to the one used in this in its characteristics except for the
fact that the environment was continuous.

4. MULTI-AGENT SYSTEMS BASIC CONCEPTS

This following section will use as basis the previously mentioned
book by Michael Woolridge, An Introduction to MultiAgent Sys-
tems [Wooldridge 2002], to create an overview of the basics of
Multi-Agent Systems.

4.1 Agent

An agent is a computer system located in some environment and
capable of autonomous action in this environment to meet its de-
sign objectives. Agents gather information about the environment
throughout sensor input, and according to those inputs and the in-
puts from actions of other agents, they take actions to achieve their
goals. Thus, these actions can affect and modify the environment.
But this ability to interact with other agents are one of the defining
features of agents in the field of Multi-Agent Systems.

For some applications, agents can have the ability to learn from
their experiences, and they also can be a simple control systems,
such as a thermostat, that reacts to the change of temperature of the
environment and turns on the air conditioner to fit it‘s goal, that is
to maintain the temperature at a specific level.

Fig. 1. Agent as described in Wooldridge book.

Agents in Multi-Agent Systems do not have to be intelligent to
work effectively in their environment. It is possible to understand
the various independent processes running in a Unix-like operating
system as multiple agents where the environment is the file-system
and main memory and the way to interact with the environment is
through and system calls. As shown in Figure 2, each of the pro-
cesses running concurrently in the system would be seen as agents
and would interact with the environment through system calls and
I/O calls. Processes in Unix systems are able to communicate with
one another either through system files (magic files) or through
structures and libraries provided by the operating system; one ex-
ample would be Linux’s mq open [mqo] and which can be used to
send messages between processes securely. In this scenario as the
system’s daemons and cron jobs are viewed as independent agents.
It then becomes very clear that most of these agents aren’t actually
intelligent but the functionality they offer is incredibly important.
Often, these daemons even have the word agent in their process
name, such as bluetooth-agent found in many Linux distributions.

4.2 Intelligent Agents

Intelligent Agents are way more complex than a process running
in a Unix system. They are categorized by having three main capa-
bilities, listed and suggested by Wooldridge and Jennings, and they
are the following: Reactivity, Proactivity, and Social Ability.

Reactivy: This capability expresses that an intelligent agent can
perceive the environment and its history, and react to it.

Proactiveness: Proactiveness is the ability of the intelligent
agent to take actions in order to carry out its purpose.

Social ability: Interacting with other agents, and also with hu-
mans, in order to fulfill its goals, is also a capability of intelligent
agents.

Building a purely goal-directed systems is not hard, building
purely reactive systems is also not difficult. However, what turns
out to be difficult is building a system that achieves an effective
balance between goal-directed and reactive behavior.

4.3 Formalization

In this section we are going to formalize the basic concepts of
multi-agent systems.

ACM Transactions on Graphics, Vol. 28, No. 4, Article 106, Publication date: September 2009.

Integradora IV - A Brief Introduction to Multi-Agent Path Finding Systems and a Proposal for a Simple and Distributed MAPF Algorithm • 3

First let’s consider an environment E, composed by of a finite
number of states:

E = {e, e‘, ...}

It is not necessary that this environment be discrete, in this case it
is just a modelling decision made to ensure that easier to explain
this scenario.

An agent is capable of performing a finite number of actions Ac
that will modify the state of the environment:

Ac = {α,α‘, ...}

A run r, which is the representation of an agent in an environ-
ment, starts with an initial state e0, then the agent chooses an ac-
tion to take and that action modifies the environment, generating
another state, then the agent will react to that state, and the process
continues as follows:

r : e0
α0−→ e1

α1−→ e2
α2−→ e3

α3−→ . . .
αµ−−→ eµ−1

R can be defined as the set of all possible runs. RAc Is the subset
of the runs that end with an action. RE Is the subset of the runs that
end with an environment state.

Fig. 2. A simplified view of the architecture of a Linux system

4.4 Environment

The environment is where the agents are situated, it can be a phys-
ical environment, or a digital one. They have four basic properties
that determine the complexity of the environment and the difficulty
of the agents to adapt to the environment, and thus fulfill their goals.

Accessible vs Not Accessible: accessibility refers to the level of
access of information that the agent has about the environment in
which it is located. If the agent has full knowledge about the envi-
ronment at all times, that environment is classified as accessible. If
there are limitations to knowledge, be it in amount or time, the envi-
ronment is classified as not accessible. Of course, there are degrees
to the accessibility of an environment.

Deterministic vs Non-deterministic: a deterministic environ-
ment is one in which any action has a single guaranteed effect -
there is no uncertainty about the state that will result from perform-
ing an action. A non-deterministic one is the complete opposite,
there may be probabilistic or stochastic variable to the effect of an
action made by an agent.

Static vs Dynamic: A static environment is one that can be as-
sumed to remain unchanged except by the performance of actions
by the agents inside it. However, the dynamic environment is one
that has other processes operating on it and hence changes in ways
beyond the agents control.

Discrete vs Continuous: An environment is discrete if there. are
a fixed, finite number of actions and percepts in it. The continuous
is the exact opposite.

Fig. 3. An agent in a discrete environment, the agent can only move to a
finite number of states from the current state.

5. MULTI-AGENT PATHFINDING

Multi-agent Pathfinding is a sub-field of Multi-Agent Systems fo-
cused on optimized pathfinding for multiple agents from their
current locations to their target locations without colliding with
each other [Ma and Koenig 2017]. Being a generalization of the
pathfinding and shortest-path problem, it inherits the complexity
of the pathfinding and adds collision and conflict solving and con-
sensus on top of it. The optimization may focus on path cost of each
individual agent or on the total sum of the path costs of all agents.

Being a generalization of pathfinding, many multi-agent
pathfinding algorithms are constructed using traditional pathfinding
algorithms such as A*, or based on reduction to other well-studied

ACM Transactions on Graphics, Vol. 28, No. 4, Article 106, Publication date: September 2009.

4 • TCC

Fig. 4. caption

problems. However, such algorithms are typically incomplete or
too costly;

In 2012 Amazon, one of the major multinational technology
companies today focused on e-Commerce, cloud computing, dig-
ital streaming and artificial intelligence, acquired Kiva Systems.
Founded on 2003, Kiva Systems had developed robots used in ware
houses and distribution centers to automate the fetching of goods.

5.1 Pathfinding

Pathfinding is the key problem that Multi-Agent Pathfinding tries
to tackle. Pathfinding can be generalized as the task of routing the
shortest path between two points [Nakagaki et al. 2001]. In Graph
Theory, pathfinding is directly mapped to shortest path problem,
which examines the shortest path between two vertices in a graph
[Russell and Norvig 2010]. Under the generalized circumstances
that accept negative edge weights of this article and as with most
real-world pathfinding problems, shortest path problem is an NP-
complete problem [Zeitz 2023].

The two most fundamental pathfinding algorithms are the
breadth-first search and the depth-first search algorithms. Algo-
rithms Dijkstra’s and A* strategically eliminate possible paths us-
ing heuristics and dynamic programming techniques. This article
will use the A* algorithm to find the optimal path for each agent.

The main focus of this article is not which pathfinding algorithm
the agents are using or the performance of each individual agent,
but how well the agents deal with collisions and conflicts. In this
case, all that is necessary is that the algorithm used must be optimal
and complete, that is, the algorithm finds the optimal lowest-cost
path and finds all possible outcomes of the problem. Both the A*
algorithm and the algorithm used within the conflict-based search
collision resolution algorithm are optimal and complete [Sharon
et al. 2015a].

5.2 Utility functions

An utility function is a function that measures utility of a given state.
Utility is a numeric value that represents how ”good” the state is for
the agent to be in. An agent ”wants” (here we are using the inten-

Fig. 5. Diagram showing an agent inside a discrete environment that has
had it’s states assigned with utility. The utility of the states near he end goal,
represented by the red circle, is higher that of states far away. The utility of
the end goal is infinite so it can be the highest in the environment.

tional stance discussed earlier) to be in the state with the highest
utility. We say that the agent wants to maximize utility in the en-
vironment. A utility function can be used in the agent to calculate
the utility of it’s neighboring states or the states of the entire en-
vironment can be preset and the agents are only responsible for
navigating the environment.

Figure 5 an agent in a discrete environment with states that have
been assigned a utility value. The agent depicted as a stick figure
on the bottom left and the states near it show the gradient of utility,
with the state nearer to the end goal having a higher utility. The
goal, represented by the red circle on the top right, having infinite
utility, is just a way of making sure that the agent will not leave the
goal after it reaches the goal.

5.3 Conflict

Conflicts are the main problem that Multi-Agent Pathfinding sys-
tems try to solve or avoid. A conflict is an event an agent being an
obstacle for another agent. There are four main types of conflicts
[Stern et al. 2019a]:

(1) Vertex conflict: where two agents try to occupy the same space
at the same time;

(2) Edge conflict: where two agents that are not occupying the
same space try to occupy the same the space at the same time.
If Vertex conflicts are not allowed, then Edge conflicts are not
allowed as well.

(3) Following conflict: where at a certain time step an agent oc-
cupies a location that was occupied by another agent in the
previous step.

(4) Cycle conflict: where at least three agents form a Following
conflict cycle. Each agent occupies a space that at the previous
time step was occupied by another agent. If Following conflict
are not allowed, then Cycle conflicts are not allowed.

(5) Swapping conflict: where two agents swap spaces in a single
time step.

ACM Transactions on Graphics, Vol. 28, No. 4, Article 106, Publication date: September 2009.

Integradora IV - A Brief Introduction to Multi-Agent Path Finding Systems and a Proposal for a Simple and Distributed MAPF Algorithm • 5

5.4 Centralized vs Decentralized Algorithms

Multi-Agent Pathfinding algorithms can be separated into two dis-
tinct groups: centralized and decentralized(or distributed) meth-
ods[Sharon et al. 2015b].

5.4.1 Centralized. In this category, there is one planner for
multiple agents, so this one planner will compute and find the so-
lution for every agent in the same environment, the centralized ap-
proach assumes that all knowledge about all agent intents and their
work spaces is given to a central server in order to plan optimal
paths, with avoidance of collisions, for all agents[Long et al. 2018].
The centralized method also includes the event in which we have a
separate CPU for each of the agents, but full knowledge sharing is
assumed and a centralized planner controls all agents[Sharon et al.
2015b].

These centralized methods are often difficult to scale to large sys-
tems with many agents and their performance can decline when the
goals are reassigned too often[Long et al. 2018]. Furthermore, the
centralized methods are impossible to apply when multiple agents
are deployed in a dynamic environment[Long et al. 2018].

In a real-world scenario, decentralized methods rely mainly on a
well-founded communication network between agents and the cen-
tral server[Long et al. 2018].

5.4.2 Decentralized. In a decentralized method, each agent
has its own computer power and planner and could apply different
communication paradigms from the other agents in the same envi-
ronment[Long et al. 2018]. In order to achieve their goals, agents
communicate with each other to find a conflict-free solution[Ho
et al. 2022].

5.4.3 Differences between them. Centralized methods are rec-
ommended when the environment where the agents are inserted is
not dynamic, because the planner would have to recalculate every
time the environment suffers any changes, and in a dynamic envi-
ronment, it is really often.

When thinking about scalability to larger problems, decentral-
ized approaches, which decompose an initial problem into a series
of searches, are the best way to deal with these problems. Decom-
posing the problem into several sub-problems can significantly re-
duce the computation needed in order to solve the given problem.
[Wang et al. 2009].

The centralized approach, which incorporates a global decision
maker to plan the paths of all units simultaneously, has prohibitive
complexity and cannot be scaled to many units[Wang et al. 2009].

6. ALGORITHMS

6.1 Naive Conflict Avoidance

The Naive Conflict Avoidance was an algorithm proposed by
[Savkin and Huang 2019]. This algorithm primarily received in-
formation about each agent starting position and goal, about the
environment size and all the obstacles contained in that environ-
ment.

Every agent receives a priority value. This priority value is
unique to all agents in the environment. Then a pathfinding algo-
rithm is used to calculate the a path for each agent in order to its
goal. Because the priority value is unique to each agent, deadlock
scenarios in which each agent is waiting for another agent to move
in a circular fashion do not occur.

In our implementation, the A* pathfinding algorithm was used.
The scope of this research takes the internal pathfinding algorithm
as a black-box, whose performance or efficiency is not taken into

consideration. Our simulator and results do not take into consid-
eration the time taken to calculate the path for each agent, as the
focus of this paper is exclusive the conflict and collision solving
nature of the algorithms sitting on top of the pathfinding algorithm.
The algorithm A* was chosen because it is both optimal and com-
plete[Russell and Norvig 2020]. Any other complete and optimal
pathfinding algorithm could have been chosen to create the same
comparative results.

Each agent also has a exclusion area that represents the sensory
ability of the agent. The agent is capable of detecting if there are
other agents inside exclusion area. Our proposed implementation
uses a symmetric area around the agent of size 1. Plus an additional
4 tiles, 2 tiles away from the agent. Because this area is symmetric
around the agent, if an agent detects another agent, then that means
that the other agent detects the first agent.

Algorithm 1 Naive Conflict Avoidance(agents, graph)
1: continueF lag ← true
2: step← 0
3: while continueF lag do
4: continueF lag ← false
5:
6: for each agent ∈ agents do
7: if step < agent.path.length then
8: continueF lag ← true
9: end if

10: end for
11:
12: if !continueF lag then
13: break ▷ Simulation ends
14: end if
15:
16: agntsWthCollisions← ∅
17: agntsWthCollisions← testCollisions(agents, step)
18:
19: if agntsWthCollisions.length ̸= 0 then
20: for each agent ∈ agntsWthCollisions do
21: stop← false
22:
23: collisions← ∅ ▷ collisions are agents
24: collisions← agent.collisions
25: for each col ∈ collisions do
26: if agent.priority > col.priority then
27: stop← true
28: end if
29: end for
30:
31: if stop then
32: agent.path← bubble(agent.path, step)
33: else
34: agent.path← astar(agent, step)
35: end if
36: end for
37: end if
38: step← step+ 1
39: end while
40:
41: return agents

At each step of the simulation, each agents checks if there’s
another agent inside their exclusion area. If an agent detects an-

ACM Transactions on Graphics, Vol. 28, No. 4, Article 106, Publication date: September 2009.

6 • TCC

Fig. 6. Diagram showing the detection radius of an agent according to the
Naive Collision Avoidance algorithm.

other agent, they share their priorities, and the one with the highest
priority stops for one step of the simulation, and the other agent
will reroute their path, taking the stopped agent, the highest prior-
ity agent, as an obstacle for the pathfinding algorithm. In our im-
plementation this process of stopping the agent was achieved but
adding a bubble to their pathing step list, as shown in Figure 8.

Fig. 7. Diagram showing the detection radius of an agent with another
agent inside it.

After the agent reaches their goal, they leave the simulation and
are no longer part of any the calculations for any other agent. The

Fig. 8. Diagram showing the method used in order to make an agent stop
at a given step of the simulation.

algorithm will continue to run until all agents have no conflicts and
achieve their goals.

An important aspect of this method is that it does not deal with
actual conflicts but tries to stop them from happening, avoiding
having to deal with true pathing conflicts.

6.2 Conflict Based Search(CBS)

The Conflict-Based Search algorithm is a centralized MAPF algo-
rithm that uses recursion trees to find a solution before the agents
move.

The MAPF problem is solved by CBS by decomposing it into
many single-agent pathfinding problems, so it will reduce a lot of
the complexity of each problem, in comparison to the former prob-
lem. The CBS algorithm is based on tree recursion, so techniques to
make tree recursion more efficient, such as alpha-beta pruning, can
be used. The algorithm CBS can be implemented to be complete
and is optimal [Sharon et al. 2015a]. This implementation of CBS
also uses A* in order to find the paths for each agent.

On the first part of the CBS algorithm, the paths for each agent
are computed using a pathing algorithm. On the second part the al-
gorithm goes through every path and finds all the where two agents
are the same place at the same step of the simulation. Lastly the
algorithm branches and at each branch it adds a constraint where
at least one of the conflicting agents cannot be at that point at that
step of the simulation.

A conflict is a tuple:

(ai, aj , vmt)

, where both agents ai and aj occupy the vertex v at the same
time step t. A consistent solution can be invalid if, despite the fact
that the paths are consistent with their individual agent constraints,
these paths still have conflicts. A solution is valid if all its paths
have no conflicts[Sharon et al. 2015a].

Constraints are tuples:

(ai, v, t)

. A consistent path for an agent is a path that satisfies all its con-
straints[Sharon et al. 2015a].

This process is then repeated until a pathing set is found with the
lowest cost that does not have conflicts.

At the high level, CBS searches a tree called the constraint tree
(CT). A CT is a binary tree. Each node N in the CT consists of a
set of constraints, a solution, and the total cost. A node N in the CT
is a goal node when its solution is valid, i.e., the set of paths for all
agents has no conflicts.[Sharon et al. 2015a].

In this implementation of the CBS algorithm the only conflicts
that were considered prohibitive were the Vertex, Edge and Swap-
ping conflicts.

ACM Transactions on Graphics, Vol. 28, No. 4, Article 106, Publication date: September 2009.

Integradora IV - A Brief Introduction to Multi-Agent Path Finding Systems and a Proposal for a Simple and Distributed MAPF Algorithm • 7

Fig. 9. A CBS tree representation.

7. DIFFERENCES BETWEEN ALGORITHMS

Both Naive Conflict Avoidance and Conflict Based Search are
Multi-Agent Pathfinding algorithms, however, they have many dif-
ferences between them.

One similarity between them is the fact that both uses the A*
algorithm in order to find the best path as possible for each of the
agents in the environment. However, the Naive Conflict Avoidance
algorithm can only deal with cases where the agents do not need to
cooperate with other agents.

The most common problems that the Naive Conflict Avoidance
cannot find a solution are the ones where the agents only have a
narrow corridor and you can only fit one inside it, this corridor also
have spaces where the agents can go to let the others go through the
corridor. That case needs cooperation between the agents, where
some of them will have to go out their way and wait in these spaces
in order for the others to go through

Fig. 10. Example of a narrow corridor environment, where an agent com-
pletely blocks that path of another one.

A problem that was encountered while using the CBS to find a
solution was the time to process the data and find the best alter-
native. If the problem involved too many agents, and the solution
would have to rely on a lot of cooperation between them, the algo-
rithm would take a lot of time and memory to solve it. As Figure
11 shows an example of a problem where it took hours and 10 gi-
gabytes of RAM and CBS could not even find the solution, because
the algorithm was stopped. In the other hand, the Naive Collision
Avoidance ran all the times almost instantly.

Fig. 11. Example of a bottle neck environment where the agents must
cross the wall to their goals on the other side.

Thus, in complex cases where cooperation is not needed, the
Naive algorithm can be much faster than the CBS algorithm and
also reliable.

8. OUR PROPOSED SIMULATOR

With this article, we demonstrate a MAPF simulator that enables
the creation of a discrete, deterministic and static environment.
Two collision avoidance will be implemented, one that will con-
sider the environment as not accessible and the agents as decen-
tralized network, the other will be a centralized solution and will
consider the environment as fully accessible. The first decentral-
ized solution was proposed by [Savkin and Huang 2019] and was
not given a name, so this article will call it Naive Collision Avoid-
ance. The centralized solution is a well studied algorithm called
Conflict-Based Search. The user will be able to choose between
either algorithm before the start of the simulation.

The system will be implement in Javascript [jav] and it will
run on the browser with the help of a Python based back-end. The
graphical user interface will use the mouse to shape the environ-
ment, and place the agents and their goals. The framework used to
create the graphical user interface for the browser will be React [rea
].

ACM Transactions on Graphics, Vol. 28, No. 4, Article 106, Publication date: September 2009.

8 • TCC

8.1 The Browser Application

The browser application consisted in a React application[rea],
which contained the Naive Collision algorithm in a separate file.
This file consisted of a couple of functions that would process the
information about the simulation and return the correct paths to
each agent to follow in order to fulfill their goals and follow the
conventions proposed by [Savkin and Huang 2019].

The application could also create a HTTP request to the web
server that we created, which also contained the CBS algorithm to
process the information about the simulation and return the correct
paths to each agent to follow in order to fulfill their goals as the
response of that request.

8.1.1 React. React is a declarative web development frame-
work that facilitates the creation of responsive and dynamic appli-
cations for the browser[Banks and Porcello 2017]. Building on top
of Node Framework for package management and code infrastruc-
ture, it uses Javascript. Our browser application was separated into
different React components and constructed on a single App.js that
is then linked to the index.html file.

Using React enabled was to created a game-like interface for the
simulator where the user can create obstacles and agents by click
on the tiles of the board, the interface responsively updates itself to
show the current state if the board. Using React to create our front-
end also made it easier to program our implementation of Naive
Collision Avoidance in Javascript and use it natively, without any
translation layer, in the back-end processes of the app.

8.2 The Python server

The Python server was built from an already existing application,
developed by Ashwin Bose [Bose 2021], which implemented sev-
eral Multi-Agent Pathfinding methods, centralized or decentral-
ized. We choose to implement the server with the CBS implemen-
tation.

In order to implement the CBS server, we used a Python class
called BaseHTTPRequestHandler from the http.server module, this
class has many methods to map the URLs to capture the requests
based on the URL and the HTTP method of the request and send
them to a specific function matching the specified URL and thus,
returning a response.

The server only had one route, which receives a request con-
taining the settings from the Browser Application, like the agents
starting point, goal, the environment size and obstacles, then the
settings are processed using the Ashwin Bose CBS functions and
then the server sends the data processed with all the correct paths
for each agent as a response for the request.

8.3 Simulation

It is important to note that the system described in this paper is a
high-level abstraction of a multi-agent system, as the entire simu-
lator was written for the browser and thus runs on a single thread.
In this sense it’s not asynchronous nor concurrent, however it does
simulate the behavior of a concurrent system. However, to simulate
an asynchronous system, it would be necessary to randomize the
order the agents take their movements.

9. EXPERIMENTS

To analyze the Naive Conflict Avoidance algorithm, we created a
set of test environments to perform a comparative analysis with
the CBS algorithm. In our experiments, we created an environment

grid of size 10x10, then we separated our experiments by the num-
ber of agents. The experiments were divided into 2, 4, and 8 agents
in the environment. There is no agreed set of metrics with which
to analyze the performance of MAPF algorithms, but two popu-
lar ones are makespan and flowtime. At end of the simulation, we
took these 2 metrics to compare the performance of both algorithms
[Stern et al. 2019a].

Makespan: the number of time steps necessary to make all
agents complete their tasks.

Flowtime: the sum of the steps necessary for each agent to com-
plete their goal. This measure is obtained by adding the time steps
used by each agent to reach their target location.

This set of environments was chosen by performing a qualitative
analysis during the construction of the NCA algorithm, trying to un-
derstand its fundamental weaknesses and problems. Several gener-
ally problematic environments were envisioned, such as bottleneck
walls and narrow corridors that could require collaboration between
agents to properly navigate them. These hard environments were
used as stress tests for this comparative quantitative analysis.

9.1 2 agents experiments

The experiments with two agents were the least complex, as they
only involved two agents.

The first experiment, as shown in Figure 12, was without any
obstacles, where the agents are in the same column and their goals
are behind the other agent.

Fig. 12. First 2 agents experiment.

The second experiment was the bottleneck, as shown in Figure
13, where there was a wall dividing the environment, and only one
space to cross it, which was the size of an agent. One agent was
added in each side of the wall in a way where both of them were at
the same distance of the wall.

The final experiment was the cooperation one, as shown in figure
14, where two agents were added in a narrow corridor, one in the
start and one in the end, both of the agents goals were in the other
side of the corridor. Only one agent could fit in the space of the

ACM Transactions on Graphics, Vol. 28, No. 4, Article 106, Publication date: September 2009.

Integradora IV - A Brief Introduction to Multi-Agent Path Finding Systems and a Proposal for a Simple and Distributed MAPF Algorithm • 9

Fig. 13. Bottle neck experiment with 2 agents.

corridor, and in the middle of the corridor, where there was a space
connected to it, where only one agent could fit, so, in order for every
agent to fulfill their goal, they would have to cooperate, and one of
them would have to go to the middle space and stay there while the
other agent went to the corridor.

Fig. 14. Narrow corridor experiment with 2 agents.

9.2 4 agents experiments

The first experiment was similar to the first experiment of the two
agent experiments, as shown in figure 15, there are two agents in the

same row, both of their goals are behind the other agent; however,
now there are two more agents in the row below the first, and their
goal is behind the other agent in the same row.

Fig. 15. Simple experiment with 4 agents facing each other.

The second experiment, as shown in Figure 16, was the bottle-
neck, where there was a wall that divided the environment, and only
one space to cross it, which was the size of an agent. Two agents
were added in each side of the wall in a way where always one
agent in the top section were at the same distance of the wall as
another agent in the bottom section.

Fig. 16. Bottle neck experiment with 4 agents.

ACM Transactions on Graphics, Vol. 28, No. 4, Article 106, Publication date: September 2009.

10 • TCC

The final experiment, as shown in Figure 17, was one of coop-
eration, in which obstacles were added so that there were two cor-
ridors, both with space for a single agent, crossing each other, as a
cross. At each of the four extremes of the cross, there is one agent,
and the goal is to go to the other side of the cross. In the middle
of the cross was a space that only fitted one agent in order to the
agents to cooperate and be able to achieve their goals.

Fig. 17. Cross experiment with 4 agents.

9.3 8 agents experiments

The set of experiments that used eight agents was created to ana-
lyze how the algorithms would react to a dense agent environment.
Due to the optimal nature of the CBS algorithm, the obstacle com-
plexity of these environments is lower than that of the previous set
of experiments. Agent dense environment are one of the predicted
fundamental problem of the NCA algorithm.

The first experiment, as shown in Figure 18, was four lines of
four agents facing each other. The agents must reach the goals that
are behind the other line of agents.

The second and final experiment, as shown in Figure 19m is sim-
ilar to the first one, but there is a wall between the two lines of
agents. Agents must negotiate with other agents and avoid the wall
between them and their goals.

10. RESULTS

The four metrics collected for each algorithm on each environment
setting is the makespan, the flow time, the time to process the an-
swer and if the algorithm was able to process the answer. Addi-
tionally there was a constraints on how long the CBS could take to
find a solution. Some environment settings proved too complex for
the CBS algorithm to find a solution in a reasonable time. Another
constraint possible result was that the NCA could not successfully
navigate the environment.

Fig. 18. Experiment with 8 agents facing each other with a wall an obsta-
cle.

Fig. 19. Experiment with 8 agents facing each

10.1 2 agents results

For the experiments with two agents, four environment settings
were used. It is important to add that, in all experiments with two
agents, both algorithms processed the solution instantly, so this
metric was the same for both algorithms.

The first experiment showed that both algorithms were able to
find a solution and the both of them had the same makespan, flow
time and time to process, which was 0 seconds.

ACM Transactions on Graphics, Vol. 28, No. 4, Article 106, Publication date: September 2009.

Integradora IV - A Brief Introduction to Multi-Agent Path Finding Systems and a Proposal for a Simple and Distributed MAPF Algorithm • 11

In the second experiment, only CBS was able to find a solution,
because in this type of experiment, both agents need to cooperate
with each other. The time for CBS to process this experiment was
about 0 seconds.

The final experiment was similar to the second one, where only
CBS was able to find a solution, since, as in the second experiment,
the agents needed to cooperate in order to find the solution without
colliding. The time for CBS to process this experiment was about 0
seconds.

10.2 4 agents results

For the experiments with four agents, three experiments were de-
vised.

In the first experiment the makespan of Naive Conflict Avoidance
was 26, while CBS was 13, which is a great improvement.

In the second experiment, only CBS was able to find a solution,
since it was a cooperation experiment. The CBS time to process the
solution was 114 seconds.

In the third experiment, none of the algorithms were able to find
a solution. The CBS time to process exceeded five minutes, and
then the algorithm was stopped.

10.3 8 agents results

The experiments with 8 agents were the hardest for CBS. If the
environment contained a bottle neck, or too many obstacles, the
CBS algorithm would run for hours until it found the solution, or
the algorithm would consume the maximum RAM the experiments
permitted, which was 10 gigabytes.

The Naive Conflict Avoidance algorithm performed well in the
performance matter, but as was said before, when cooperation is
needed in order to achieve each agent goal, the test would fail and
the agents would collide. In the experiments with minimal to none
obstacles, the Naive would always perform correctly, but compar-
ing to CBS, the simulation would need have a larger makespan in
order to finish.

In the first experiment, both algorithms found a solution, the
Naiver Conflict Avoidance processed the solution instantly, and
the CBS took eleven seconds to process the solution. However, the
makespan of the Naive Conflict Avoidance was 49, when the CBS
was 13 ticks, which is a great improvement.

In the second experiment, none of them were able to find a solu-
tion, but CBS ran for five minutes and then was stopped.

11. DISCUSSION

The experiments showed a clear distinction in the strengths and
weaknesses of each algorithm, specially on how each is capable of
dealing with complex scenarios and environments. The Naive Con-
flict Avoidance algorithm, as it was implemented for this article,
lacks the ability to recover from a situation where it cannot find a
path to its goal. This becomes a problem during bottle necks where
other agents can block the only way to reach the goals.

CBS optimal and complete property was also a problem on
highly complex environments where finding such optimal pathing
for all agents proved too complex. Combined with the fact that it is
centralized and must pre-process all paths for all agents, this cre-
ates a situation where it may be unfeasible, without further mod-
ifications or optimizations, to use it on systems that require fast
response for pathing, even if it is not optimal.

12. CONCLUSION

We have created an interactive simulator that enables the user to
add agents and obstacles and then choose between two MAPF al-
gorithms: Conflict-Based Search, implemented in Python by Ash-
win Bose[Bose 2021], and Naive Conflict Avoidance, proposed by
[Savkin and Huang 2019] and implemented by us. The simulator
is a web application that runs in a browser and is created using
the React framework. To understand the characteristics of our the
Naive Conflict Avoidance algorithm a comparative analysis was
performed using the Conflict-Based Search algorithm. Several en-
vironment settings were created to analyze the performance of each
algorithm and try to understand the problems and limitations of
each one. The fundamental differences in how each algorithm func-
tions, one having a greedy approach and the other is centralized
and optimal, appeared in the experiments where in some cases they
were not able to find a solution.

13. FUTURE WORK

Firstly, the simulator could have the implementation of other cen-
tralized MAPF algorithms, such as SIPP.

Other improvements could be made as a matter of settings con-
figuration, with a system to save the environment settings and the
results. Pre-configured environment settings could also be provided
to allow the use to quickly run some tests.

An analytics system could be implemented in order to improve
the experiments, this system would inform all the information about
the result of the simulation.

Finally, there are several improvements that could be made to
the Naive Conflict Avoidance algorithm such as ensuring that even
in cases where no paths can be found some measure can be taken
so the agent can later progress towards its goal. Currently the only
information the agent has about other agents is if they are near, they
do not know their heading or if they are in the way of another agent.

REFERENCES

Monitoramento de queimadas — ibama.gov.br.
http://www.ibama.gov.br/incendios-florestais/
monitoramento-de-queimadas-em-imagens-de-satelites. (????). [Ac-
cessed 12-Sep-2022].

mqopen− openamessagequeue. . (????). Accessed: 2022-06-12.
(no title) — conservationdrones.org. https://conservationdrones.
org/. (????). [Accessed 12-Sep-2022].
React – A JavaScript library for building user interfaces — reac-
tjs.org. https://reactjs.org/. (????). [Accessed 11-Sep-2022].
The JavaScript language — javascript.info. https://javascript.info/
js. (????). [Accessed 11-Sep-2022].
2020. What is artificial intelligence and how is it used? | News
| European Parliament. (April 2020). https://www.europarl.
europa.eu/news/en/headlines/society/20200827STO85804/
what-is-artificial-intelligence-and-how-is-it-used
Jasmina Arifovic, Xuezhong He, and Lijian Wei. 2019. High Fre-
quency Trading in FinTech age: AI with Speed. Available at SSRN
2771153 (2019).
Alex Banks and Eve Porcello. 2017. Learning React: functional
web development with React and Redux. ” O’Reilly Media, Inc.”.
Ashwin Bose. 2021. Multi-Agent path planning in Python. https:
//github.com/atb033/multi agent path planning. (2021).
Namjun CHA, Hosoo CHO, Sangman LEE, and Junseok
HWANG. 2019. Effect of AI Recommendation System on

ACM Transactions on Graphics, Vol. 28, No. 4, Article 106, Publication date: September 2009.

http://www.ibama.gov.br/incendios-florestais/monitoramento-de-queimadas-em-imagens-de-satelites
http://www.ibama.gov.br/incendios-florestais/monitoramento-de-queimadas-em-imagens-de-satelites
https://man7.org/linux/man-pages/man2/mq_open.2.html
https://conservationdrones.org/
https://conservationdrones.org/
https://reactjs.org/
https://javascript.info/js
https://javascript.info/js
https://www.europarl.europa.eu/news/en/headlines/society/20200827STO85804/what-is-artificial-intelligence-and-how-is-it-used
https://www.europarl.europa.eu/news/en/headlines/society/20200827STO85804/what-is-artificial-intelligence-and-how-is-it-used
https://www.europarl.europa.eu/news/en/headlines/society/20200827STO85804/what-is-artificial-intelligence-and-how-is-it-used
https://github.com/atb033/multi_agent_path_planning
https://github.com/atb033/multi_agent_path_planning

12 • TCC

the Consumer Preference Structure in e-Commerce: Based on
Two types of Preference. In 2019 21st International Confer-
ence on Advanced Communication Technology (ICACT). 77–80.
DOI:http://dx.doi.org/10.23919/ICACT.2019.8701967
Najmeddine Dhieb, Hakim Ghazzai, Hichem Besbes, and
Yehia Massoud. 2020. A Secure AI-Driven Architecture
for Automated Insurance Systems: Fraud Detection and
Risk Measurement. IEEE Access 8 (2020), 58546–58558.
DOI:http://dx.doi.org/10.1109/ACCESS.2020.2983300
Fei Fang, Milind Tambe, Bistra Dilkina, and Andrew J Plumptre
(Eds.). 2019. Artificial Intelligence and Conservation. Cambridge
University Press, Cambridge, England.
Florence Ho, Rúben Geraldes, Artur Gonçalves, Bastien Rigault,
Benjamin Sportich, Daisuke Kubo, Marc Cavazza, and Hel-
mut Prendinger. 2022. Decentralized Multi-Agent Path Find-
ing for UAV Traffic Management. IEEE Transactions on
Intelligent Transportation Systems 23, 2 (2022), 997–1008.
DOI:http://dx.doi.org/10.1109/TITS.2020.3019397
Pinxin Long, Tingxiang Fan, Xinyi Liao, Wenxi Liu, Hao
Zhang, and Jia Pan. 2018. Towards Optimally Decen-
tralized Multi-Robot Collision Avoidance via Deep Re-
inforcement Learning. In 2018 IEEE International Con-
ference on Robotics and Automation (ICRA). 6252–6259.
DOI:http://dx.doi.org/10.1109/ICRA.2018.8461113
Hang Ma and Sven Koenig. 2017. AI Buzzwords Explained: Multi-
Agent Path Finding (MAPF). AI Matters 3, 3 (oct 2017), 15–19.
DOI:http://dx.doi.org/10.1145/3137574.3137579
Hang Ma, Sven Koenig, Nora Ayanian, Liron Cohen, Wolf-
gang Hoenig, T. K. Satish Kumar, Tansel Uras, Hong Xu,
Craig Tovey, and Guni Sharon. 2017. Overview: Generalizations
of Multi-Agent Path Finding to Real-World Scenarios. (2017).
DOI:http://dx.doi.org/10.48550/ARXIV.1702.05515
Spyros Makridakis. 2017. The forthcoming Artifi-
cial Intelligence (AI) revolution: Its impact on soci-
ety and firms. Futures 90 (2017), 46–60. 0016-3287
DOI:http://dx.doi.org/https://doi.org/10.1016/j.futures.2017.03.006
Yadvinder Malhi, J. Timmons Roberts, Richard A. Betts,
Timothy J. Killeen, Wenhong Li, and Carlos A. No-
bre. 2008. Climate Change, Deforestation, and the Fate
of the Amazon. Science 319, 5860 (2008), 169–172.
DOI:http://dx.doi.org/10.1126/science.1146961
Toshiyuki Nakagaki, Hiroyasu Yamada, and Ágota Tóth.
2001. Path finding by tube morphogenesis in an amoeboid or-
ganism. Biophysical Chemistry 92, 1 (2001), 47–52. 0301-4622
DOI:http://dx.doi.org/https://doi.org/10.1016/S0301-4622(01)00179-X
Stuart Russell and Peter Norvig. 2010. Artificial Intelligence: A
Modern Approach (3 ed.). Prentice Hall.
Stuart Russell and Peter Norvig. 2020. Artificial intelligence (4
ed.). Pearson, Upper Saddle River, NJ.
Chris Sandbrook. 2015. The social implications of us-
ing drones for biodiversity conservation. Ambio 44
Suppl 4 (November 2015), 636—647. 0044-7447
DOI:http://dx.doi.org/10.1007/s13280-015-0714-0
Andrey V. Savkin and Hailong Huang. 2019. A Method for
Optimized Deployment of a Network of Surveillance Aerial
Drones. IEEE Systems Journal 13, 4 (Dec. 2019), 4474–4477.
DOI:http://dx.doi.org/10.1109/jsyst.2019.2910080
Shai Shalev-Shwartz, Shaked Shammah, and Amnon Shashua.
2017. On a formal model of safe and scalable self-driving cars.
arXiv preprint arXiv:1708.06374 (2017).

Guni Sharon, Roni Stern, Ariel Felner, and Nathan R. Sturte-
vant. 2015a. Conflict-based search for optimal multi-agent
pathfinding. Artificial Intelligence 219 (2015), 40–66. 0004-3702
DOI:http://dx.doi.org/https://doi.org/10.1016/j.artint.2014.11.006
Guni Sharon, Roni Stern, Ariel Felner, and Nathan R Sturtevant.
2015b. Conflict-based search for optimal multi-agent pathfinding.
Artificial Intelligence 219 (2015), 40–66.
Roni Stern, Nathan R. Sturtevant, Ariel Felner, Sven Koenig, Hang
Ma, Thayne T. Walker, Jiaoyang Li, Dor Atzmon, Liron Cohen,
T. K. Satish Kumar, Eli Boyarski, and Roman Barták. 2019a. Multi-
Agent Pathfinding: Definitions, Variants, and Benchmarks. CoRR
abs/1906.08291 (2019). http://arxiv.org/abs/1906.08291
Roni Stern, Nathan R Sturtevant, Ariel Felner, Sven Koenig, Hang
Ma, Thayne T Walker, Jiaoyang Li, Dor Atzmon, Liron Cohen,
TK Satish Kumar, and others. 2019b. Multi-agent pathfinding: Def-
initions, variants, and benchmarks. In Twelfth Annual Symposium
on Combinatorial Search.
Paolo Tripicchio, Massimo Satler, Giacomo Dabisias, Emanuele
Ruffaldi, and Carlo Alberto Avizzano. 2015. Towards Smart
Farming and Sustainable Agriculture with Drones. In 2015 In-
ternational Conference on Intelligent Environments. 140–143.
DOI:http://dx.doi.org/10.1109/IE.2015.29
Pelin Vardarlier and Cem Zafer. 2020. Use of Ar-
tificial Intelligence as Business Strategy in Recruit-
ment Process and Social Perspective. Springer Interna-
tional Publishing, Cham, 355–373. 978-3-030-29739-8
DOI:http://dx.doi.org/10.1007/978-3-030-29739-8 17
Ko-Hsin Wang, Philip Kilby, and Jussi Rintanen. 2009. Bridg-
ing the Gap Between Centralised and Decentralised Multi-Agent
Pathfinding. (01 2009).
Mike Wooldridge. 2002. An Introduction to Multi-agent Systems.
John Wiley & Sons, Chichester, England.
Tim Zeitz. 2023. NP-hardness of shortest path problems
in networks with non-FIFO time-dependent travel times.
Inform. Process. Lett. 179 (2023), 106287. 0020-0190
DOI:http://dx.doi.org/https://doi.org/10.1016/j.ipl.2022.106287

ACM Transactions on Graphics, Vol. 28, No. 4, Article 106, Publication date: September 2009.

http://dx.doi.org/10.23919/ICACT.2019.8701967
http://dx.doi.org/10.1109/ACCESS.2020.2983300
http://dx.doi.org/10.1109/TITS.2020.3019397
http://dx.doi.org/10.1109/ICRA.2018.8461113
http://dx.doi.org/10.1145/3137574.3137579
http://dx.doi.org/10.48550/ARXIV.1702.05515
http://dx.doi.org/https://doi.org/10.1016/j.futures.2017.03.006
http://dx.doi.org/10.1126/science.1146961
http://dx.doi.org/https://doi.org/10.1016/S0301-4622(01)00179-X
http://dx.doi.org/10.1007/s13280-015-0714-0
http://dx.doi.org/10.1109/jsyst.2019.2910080
http://dx.doi.org/https://doi.org/10.1016/j.artint.2014.11.006
http://arxiv.org/abs/1906.08291
http://dx.doi.org/10.1109/IE.2015.29
http://dx.doi.org/10.1007/978-3-030-29739-8_17
http://dx.doi.org/https://doi.org/10.1016/j.ipl.2022.106287

	Introduction
	Drones for Conservation
	Related Work
	Multi-Agent Systems Basic Concepts
	Agent
	Intelligent Agents
	Formalization
	Environment

	Multi-Agent Pathfinding
	Pathfinding
	Utility functions
	Conflict
	Centralized vs Decentralized Algorithms
	Centralized
	Decentralized
	Differences between them

	Algorithms
	Naive Conflict Avoidance
	Conflict Based Search(CBS)

	Differences between algorithms
	Our proposed simulator
	The Browser Application
	React

	The Python server
	Simulation

	Experiments
	2 agents experiments
	4 agents experiments
	8 agents experiments

	Results
	2 agents results
	4 agents results
	8 agents results

	Discussion
	Conclusion
	Future work

