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PROPOSTA DE UMA INTERFACE DE REDE SEGURA PARA
PROTEÇÃO DE COMUNICAÇÃO DE E/S EM MANY-CORES

RESUMO

Os sistemas de múltiplos núcleos em um único chip (many-cores) são plataformas
projetadas para fornecer alto desempenho através do paralelismo, atendendo a demanda
atual de dispositivos embarcados com restrições de consumo de energia e comunicação.
Um many-core contém elementos de processamento (PEs – Processing Elements) interliga-
dos por infraestruturas de comunicação complexas, como redes intra-chip (NoC – Networks-
on-Chip). Interfaces de rede (NI – network interface) conectam PEs aos roteadores da NoC.
À medida que a adoção e a complexidade dos many-cores aumentam, a proteção de dados
aparece como um requisito de projeto. Esses sistemas lidam com informações confidenci-
ais. Assim, é necessário proteger esses dados contra acessos não autorizados. A literatura
apresenta técnicas de segurança como: criptografia, códigos de autenticação, códigos de
correção de erros, criação de um perfil da comunicação para detectar comportamentos anô-
malos. Tais mecanismos de defesa buscam proteger o many-core de algum ataque especí-
fico, carecendo de propostas que protejam o sistema contra um conjunto mais abrangente
de ataques. Zona Segura Opaca (OSZ – Opaque Secure Zone) é um mecanismo de defesa
realizado em tempo de execução que busca encontrar uma região retilínea com PEs livres
para mapear uma aplicação com restrições de segurança. A OSZ impede ataques de fon-
tes externas, como negação de serviço (DoS – Denial-of-Service), ataque de temporização,
spoofing, man-in-the-middle. Embora o método seja robusto contra ataques externos, ele
ainda apresenta vulnerabilidades quando a aplicação executado na OSZ precisa se comuni-
car com periféricos externos. Este trabalho complementa o mecanismo de segurança OSZ
através da proposta de uma Interface de Rede Segura (SNI – Secure Network Interface)
para proteger a comunicação entre aplicações e dispositivos de E/S. Impondo o modelo de
comunicação mestre-escravo e implementando um protocolo de autenticação leve, a SNI
defende o sistema de ataques spoofing e denial-of-service envolvendo periféricos.

Palavras-Chave: Sistemas multi-núcleos baseados em redes intra-chip, segurança, OSZ
(zonas seguras opacas), comunicação segura, NI (network interface), periféricos.



PROPOSAL OF A SECURE NETWORK INTERFACE FOR PROTECTING
IO COMMUNICATION IN MANY-CORES

ABSTRACT

Many-cores are platforms designed to provide high-performance through the use
of parallelism, meeting the current demand of embedded devices with power consumption
and communication constraints. A many-core contains PEs (Processing Elements) intercon-
nected by complex communication infrastructures, such as NoCs (Networks-on-Chip). Net-
work Interfaces (NI) connect PEs to the routers of the NoC. As the adoption and complexity
of many-cores increase, data protection appears as a design requirement. These systems
handle sensitive information. Thus, it is necessary to protect this data from unauthorized
access. The literature presents security techniques, such as cryptography, authentication
codes, error correction codes, creation of a communication flow profile to detect anoma-
lous behavior. These defense mechanisms seek to protect the many-core from a given
attack, lacking proposals protecting the system against the plethora of possible threats. The
Opaque Secure Zone (OSZ) is a defense mechanism executed at runtime that focuses on
finding a rectilinear region with free PEs to map an application with security constraints.
OSZ prevent attacks from outside sources, such as Denial-of-Service (DoS), timing attack,
spoofing, man-in-the-middle. Even though the method is robust against external attacks, it
still presents vulnerabilities when the application running in the OSZ needs to communicate
with external peripherals. This work complements the OSZ security mechanism by propos-
ing a Secure Network Interface (SNI) to protect the communication between applications
and IO devices. By enforcing a master-slave communication model and implementing a
lightweight authentication protocol, the SNI protects the system from spoofing and flooding
attacks involving the peripheral.

Keywords: NoC-based many-cores, security, OSZ (opaque secure zones), secure commu-
nication, NI (network interface), peripherals.
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1. INTRODUCTION

Many-cores are platforms designed to provide high-performance through the use
of parallelism, meeting the current demand of embedded devices with power consumption
and communication constraints. A many-core contains PEs (Processing Elements) inter-
connected by complex communication infrastructures, such as hierarchical buses or NoCs
(Networks-on-Chip) [Popovici et al., 2010]. PEs may be processors, 3PIP (third-party intel-
lectual property) modules, memory blocks, or dedicated hardware accelerators. Examples
of modern architectures with a large number of processors interconnected by NoCs include
the Mellanox family TILE-Gx72 (72 cores) [Tecnhlogies, 2018], Intel Knights Landing [So-
dani et al., 2016], Oracle M8 (32 cores) [Oracle, 2017], Kalray array (256 cores) [Dinechin
et al., 2014], KiloCore chip (1,000 cores) [Bohnenstiehl et al., 2016], and Esperanto (1,100
RISC-V cores) [Peckham, 2020].

An NoC consists of routers and links and is responsible for forwarding data and
controlling messages between PEs. Network Interfaces (NI) connect PEs to the routers of
the NoC. Whenever a PE sends a message, the NI transforms it into a packet and delivers it
to the router. Then, the router sends the packet to a neighbor router through a link according
to a path defined by the routing algorithm. The routers constitute the underlying communi-
cation infrastructure of the system, where multiple interconnected routers define the network
topology [Hemani et al., 2000; Benini and Micheli, 2002].

As the adoption and complexity of many-cores increase, the concern for data pro-
tection appears as a new design requirement [Baron et al., 2013]. A many-core may be em-
ployed in scenarios where availability is critical and downtimes must be minimized. These
systems may also handle sensitive information; thus, protecting this data from unauthorized
access is necessary. According to [Ramachandran, 2002], not only data protection, unau-
thorized access, and availability are concerns on the many-core design. The following seven
security principles are generally accepted as the foundation of a good security solution being
the three first principles mandatory features:

• Confidentiality: the property of non-disclosure of information to unauthorized processes,
entities, or users;

• Availability: the protection of assets from DoS (Denial-of-Service) threats that might
impact the system availability;

• Integrity: the prevention of modification or destruction of an asset by an unauthorized
entity or user;

• Authentication: the process of establishing the validity of a claimed identity;
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• Authorization: the process of determining whether a validated entity is allowed to ac-
cess a secured resource based on attributes, predicates, or context;

• Auditing: the property of logging the system activities at levels sufficient for the recon-
struction of events;

• Nonrepudiation: the prevention of any participant denying his role in the interaction
once it is completed.

A consequence of the increasing number of features and functionalities inside a
single chip is the adoption of 3PIPs to meet time-to-market constraints and reduce design
costs. Such IPs come from different vendors, raising the risk of having a Hardware Trojan
(HT) insertion [Li et al., 2016]. Assuming HTs infecting the NoC, these can perform several
attacks that threaten security principles [Ramachandran, 2002]. Such attacks may affect
confidentiality by redirecting messages to malicious agents, availability by dropping mes-
sages or blocking a communication path, and integrity by corrupting the content of a packet
traversing the NoC.

The literature presents several techniques, such as cryptography [Charles and
Mishra, 2020], authentication codes [Sharma et al., 2019], error correction codes [Gondal
et al., 2020], creation of a communication flow profile to detect anomalous behavior [Charles
et al., 2020]. Adopting these techniques makes it possible to detect violations related to se-
curity or faults in the NoC. Moreover, the authors propose spatial isolation via Secure Zones
(SZ), simultaneously protecting communication and computation. A particular case of SZ is
the Opaque Secure Zone (OSZ) [Caimi and Moraes, 2019], which is a defense mechanism
executed at runtime that focuses on finding a rectilinear region on the system with free PEs
to map an application with security constraints. The OSZ activation occurs by setting wrap-
pers at the boundaries of the rectilinear region, blocking all incoming and outgoing traffic
trying to cross the OSZ.

OSZ prevents attacks from outside sources, such as Denial-of-Service (DoS), tim-
ing attacks, spoofing, and man-in-the-middle [Caimi and Moraes, 2019; Caimi et al., 2018a].
Even though the method is robust against external attacks, it still presents vulnerabilities
when HTs infect routers inside the OSZ or when the application running in the OSZ needs
to communicate with external peripherals.

1.1 Motivation

Literature related to many-core that present methods to secure communication with
peripherals is scarce, with most of them focusing on shared memory protection [Gram-
matikakis et al., 2015; Reinbrecht et al., 2016]. On the other hand, several works present
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many-cores with peripherals but without security concerns [Lee et al., 2021; Vaas et al.,
2021; Jiang et al., 2021]. Therefore, there is a gap to fulfill: how to protect the communica-
tion of applications with peripherals?

This work focus on one of the communication endpoints: the IO device. To monitor
and control the IO communication, we propose the insertion of a Secure Network Interface
at the edge of the platform to enable IO devices to interact with secure applications.

1.2 Objectives

The strategic objective of this work is the creation of a Secure Network Interface
that enables the connection of IO devices and the secure interaction between Peripherals
and Applications. To reach the strategic objective, the following specific goals are set:

I Analyze the Authentication protocol and Threat model.
The first step is to understand the operation of the authentication protocol of the base-
line platform alongside the threats that it must protect the system from.

II Gathering Requirements.
Based on the functionalities observed on objective I, define the requirements of the
Secure Network Interface.

III NI (network interface) for peripherals.
Design and implement the Secure Network Interface, meeting the requirements from
objective II.

IV SNI validation.
Elaborate and simulate scenarios illustrating the SNI operations.

1.3 Document Organization

This work is organized as follows. Chapter 2 presents a set of works related to the
use of network interfaces as a security component. Chapter 3 presents concepts required to
follow this work, including the baseline architecture, Secure Zones, and the methods used
in the platform for protecting the execution of applications. Chapter 4 presents the main
contribution of this work, the design of the Secure Network Interface – SNI. Chapter 5 eval-
uates the SNI, including the communication protocol and the answers to attacks. Chapter 6
concludes this work and points out directions for future work.



13

2. RELATED WORKS

This Chapter discusses works related to the use of network interfaces as a security
component, aiming to protect NoC-based systems from attacks involving IO communication.

2.1 Network Adapter Architectures in Network on Chip: Comprehensive Litera-
ture Review

Aghaei et al. [Aghaei et al., 2020] present the Network Adapter (NA) as a major
component of NoC-based systems, as it directly impacts critical parameters such as power,
latency, throughput, and area. The Authors review the proposals of different NAs throughout
the literature and evaluate the parameters which have an impact on the NA architectures.

The Network Adapter is responsible for manipulating the end-to-end flow control,
encapsulating the messages or transactions generated by the cores, and relaying it to the
network. It implements two interfaces – Figure 2.1: the Core Interface (CI) is a standardized
point-to-point protocol allowing the IP to be reused across several platforms, and the Network
Interface (NI), which encapsulates the packet, contains buffers, implements synchronization
protocols and helps the router in terms of storage.

Figure 2.1 – The two interfaces implemented by the Network Adapter [Aghaei et al., 2020].

Aghaei et al. consider the security-aware design of communication architectures
such as an NoC to be an increasing necessity, as their complexity may lead to new weak-
nesses. At the same time, the NoC itself may contribute to the security of the system by pro-
viding means for monitoring system behavior and detecting specific attacks. In their opinion,
the NA is the ideal position to analyze incoming traffic and discard malicious requests.
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2.2 A Security Framework for NoC Using Authenticated Encryption and Session
Keys

Kapoor et al. [Kapoor et al., 2013] divide the PEs of a many-core system into
two categories: secure cores, that store and process secret information that should remain
uncompromised; and the non-secure cores, which may carry viruses or Hardware Trojans.
The goal of their work is to protect the communication between secure and non-secure
cores, avoiding the extraction of sensitive information.

To achieve this goal, the Authors propose an authentication method in which secure
communication is established with a session key, issued by the secure core. This key is
temporary and expires after a fixed duration of time.

The network interface of the cores, presented in Figure 2.2, has an Authenticated
Encryption (AE) block. Every communication with the other IP cores passes through this
block. On the sending side, the packet is encrypted using the session key, and a mes-
sage authentication code (MAC) is generated. On the receiving side, the AE decrypts the
message and asserts its authenticity through the MAC.

Figure 2.2 – The AE Block is embedded inside an IP core. It filters the communication with
other cores [Kapoor et al., 2013].

Despite the added security mechanisms, the use of encryption and MAC increases
communication latency and adds a significant area overhead. Storing a different key for
each communicating pair increases the silicon area as well.

2.3 Security Mechanisms to Improve the Availability of a Network-on-Chip

Baron et al. [Baron et al., 2013] analyzed the security vulnerabilities of the SoCIN
NoC-based system. They proposed a set of mechanisms to protect the Network-on-Chip
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from attacks by malicious cores. After analyzing the SoCIN system, they presented a threat
model composed of four attacks.

1. Masquerade: occurs when the malicious core sends a packet through the NoC using
the source address belonging to another core. When the message reaches its destina-
tion, the receiving element answer to another (third) core. This unexpected response
may cause a system to malfunction.

2. DoS (Invalid Target): when a packet is sent to an invalid destination, it is propagated
through the routers until it reaches the NoC boundary, and there it remains blocked.
As others packets attempt to use this path, the blockage propagates backward.

3. DoS (Flooding): the sending of multiple packets to the same destination may reduce
the availability of the NoC by consuming excessive network bandwidth.

4. DoS (Packet without Trailer): the network protocol does not impose any limit to the
packet length, thus a packet sent without a trailer properly identifying its end may result
in the blockage of the NoC infrastructure.

To tackle these attacks, they designed the Security Wrapper (SEW), a hardware
module inserted between the network interface and the NoC router. The SEW module filters
malicious packets sent by an attacking core. It is composed of two separate wrappers.

• Wrapper 1: implements a countermeasure to attacks 1 and 2 by verifying if the packet
addresses are valid. The source address has to be the same as the node address,
while the target must not be out of the network boundaries. If these conditions are not
met, the attack is detected, and the packet is discarded.

• Wrapper 2: offers solutions to the other two possible attacks. Attack 3 is solved by
limiting the maximum bandwidth per core: after injecting a packet in the NoC, the next
one is delayed for a period proportional to the allocated bandwidth. Attack 4 is dealt
with by verifying if the packet size exceeds a predefined limit. If it does, the packet is
broken, and a trailer is manually inserted. The rest of the packet is discarded.

2.4 What Can a Remote Access Hardware Trojan do to a Network-on-Chip?

Ahmed et al. [Ahmed et al., 2021] discuss a Remote Access Hardware Trojan
(RAHT) attack in which an HT works in conjunction with an external malicious device to
compromise an NoC-based system.

Figure 2.3 presents the attack model. In the proposed attack, an NoC router is
infected by a hardware Trojan having a small area footprint. The HT counts the number of
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packets traversing the router over a time window and periodically sends it to an external
attacker. The attacker then analyses the leaked traffic information using a machine-learning
algorithm. This mechanism can infer information such as architectural details or the applica-
tion details running on the system.

Figure 2.3 – Threat model of the proposed RAHT attack [Ahmed et al., 2021].

To protect the system from this RAHT attack, Ahmed et al. propose a security
mechanism that uses controlled random routing to confuse the external attacker. The idea is
that using random routing decisions reduces the correlation between the traffic information
collected and the system architecture and applications.

This work corroborates the security concerns presented in Chapter 1 by propos-
ing an attack that is enabled by both a hardware Trojan and a malicious IO device. Even
though it offers a routing solution to the RAHT attack, it does not prevent the unauthorized
communication between HT and peripherals from taking place.

2.5 Final Remarks

The reviewed works highlight the threats that peripherals can represent to system
security. The solutions protect mainly the NoC [Baron et al., 2013] or add mechanisms that
severely impact performance and the system area [Kapoor et al., 2013]. There is a gap
related to mechanisms that effectively protect the many-core against malicious peripherals.

This work aims to fill these gaps by proposing a Secure Network Interface (SNI)
with a lightweight authentication mechanism, protecting the communication between PEs
and peripherals against DoS and spoofing attacks.
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3. FUNDAMENTAL CONCEPTS

This Chapter presents concepts required to follow this work. Section 3.1 presents
the baseline architecture, including the hardware and software model. Section 3.2 intro-
duces the concepts of Secure Zones and Opaque Secure Zones (OSZ). Section 3.3 details
SeMAP, which is the communication method used in the platform with security mechanisms.

3.1 Basic platform

The many-core baseline platform used in this work is the Hermes MultiProcessor
System (HeMPS) [Carara et al., 2009]. The baseline platform and this work are both devel-
oped at the Hardware Design Support Group (GAPH) research group [GAPH, 2021]. The
main HeMPS platform features are:

• NoC-based system: the HERMES NoC [Moraes et al., 2004] allows multiple commu-
nications between PEs while ensuring scalability. The NoC adopts 2D-mesh topology,
one physical channel, flit width equal to 32 bits, input buffer, credit-based flow control,
round-robin arbitration, and XY routing algorithm.

• Homogeneous system: all PEs have the same hardware architecture with a router, a
private memory, a MIPS-like processor, and a DMNI (Direct Memory Network Interface)
module.

• Distributed memory: each PE has a true dual-port scratchpad memory for instructions
and data, while message-passing performs the communication between PEs.

• Applications are modeled as a Communication Task Graph (CTG). The CTG is a model
to represent functional parallelism, where an application is composed of parts that are
independent of each other and thus are divided into tasks [Rauber and Rünger, 2013].
A graph node represents each task in a CTG, and the graph edges represent the
communication between these tasks.

• Distributed management: the system has support to clusterization. Every cluster con-
tains a Local Manager PE (LMP), which manages the cluster, and a set of PEs that
run the applications tasks. The Global Manager PE (GMP) works as an LMP and
distributes the applications to clusters. The OS (Operating System) running on PEs
defines their role.

Works [Fochi, 2019; Caimi, 2019] extended the baseline platform to meet fault tol-
erance and security restrictions.
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3.1.1 Hardware Model

Figure 3.1 overviews the extended HeMPS many-core, with support to fault toler-
ance and security mechanisms. In Figure 3.1(b), two mesh NoCs interconnect PEs: data
and control NoC. The data NoC is a standard wormhole packet switching NoC without vir-
tual channels. It has two particular architectural features. The first one is the adoption of
two physical channels, acting as two disjoint NoCs. To minimize the area overhead, the flit
size is 16 bits (half of the word size), being the network interface (DMNI) responsible for
serializing/deserializing the flits. The reason to adopt two physical NoC is to enable fully
adaptive routing. The second feature is simultaneous support for XY (default routing algo-
rithm) and source routing (SR). Source routing is a turn-based routing algorithm in which the
packet carries in the header the turns that must be taken. The SR is required when, e.g., it
is necessary to circumvent an OSZ or avoid a path with a faulty or infected router.
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Figure 3.1 – NoC-based many-core. Wrappers (W) are added to the control signals of NoCs
links, enabling to isolate ports individually [Caimi, 2019].

The control NoC [Wachter et al., 2017], named BrNoC is a lightweight network-on-
chip, with all packets having one flit. When transmitting in broadcast (default transmission
mode), packets reach all PEs of the system. Thus, this NoC can find a path from a source
PE to a target PE if it exists, even in the presence of a fault or an HT (Hardware Trojan) in
the data NoC. This NoC may also use the unicast transmission to create a path between a
source and a target PE, using a backtracking procedure. For security reasons, only the OS
accesses the control NoC, avoiding its use by malicious applications.

Both NoCs contain test wrappers, or simply wrappers, in the control flow signals.
When activated, the wrapper enables to discard all incoming and outgoing packets of a given
port. The data NoC observes and respects the status of the wrappers. A data message
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arriving in an activated wrapper is always discarded, and the control NoC replies to the
source of the message a new broadcast reporting that the message needs retransmission.

The control NoC has two operation modes: global and restrict. The global mode
enables the control messages to pass through the wrappers, even if they are enabled. This
mode enables the PEs inside the SZ to exchange messages with manager PEs. The re-
strict mode observes the status of the wrappers, i.e., if a control message hits an activated
wrapper, the message is discarded, which is fundamental for searching paths without secure
zones.

The platform is modeled at the RTL level, part in SystemC (memory, processor,
DMNI) and part in VHDL (data and BrNoC routers).

BrNoC Control Network

Figure 3.2 details the BrNoC architecture. Its topology follows the same 2D mesh
used by HERMES, with North, South, East, West, and Local ports. The BrNoC internal mod-
ules are: (i) an Input Arbiter and Input Finite-State Machine (I-FSM); (ii) a central Content-
Addressable Memory (CAM); and (iii) an Output Arbiter and Output Finite-State Machine
(O-FSM).

The round-robin Input arbiter selects the port with data to write into the CAM. To
write a message to the CAM, the I-FSM must assert that the data is not in the memory and
it has available space, marked by the used field.

source target... used pending

... ...... ... ...

Input

Arbiter

O-FSM

I-FSM

Output 

Arbiter

CAM

North

South

East

West

Local

North

South

East

West

Local

Input

Ports

Output 

Ports

Figure 3.2 – BrNoC architecture. Source: [Wachter et al., 2017].

The BrNoC Input and Output logic are independent. A round-robin Output Arbiter
selects a CAM line to propagate to the outputs (broadcast). The O-FSM searches the pend-
ing field for messages that need to be sent. The data is propagated to all ports except to the
one where it came from.
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The most relevant BrNoC feature is that all messages fit in one flit. The payload
size is parameterizable according to the constraints of the design. The advantages of 1-flit
messages are: (i) no buffers on local ports; (ii) simplified switching mode, which enables the
broadcast; (iii) smaller router silicon area.

The BrNoC has four distinct services: (i) broadcasting to all PEs, which broadcasts
a message to all processors; (ii) broadcasting to a target, which also broadcasts a mes-
sage, but the only processor that receives the message is a defined target ; (iii) broadcasting
without a target, to send internal BrNoC control messages; and (iv ) unicast, implemented
through a backtracking mechanism.

Note that the O-FSM showed in Figure 3.2 only propagates a message to the local
output port when it is a broadcast to all or when a broadcast to the target arrives at its
destination. In this last case, the message is only sent to the local port and is not propagated
to the remaining ports.

A broadcast without a target sent by the source of each propagated message
erases each CAM line. This message releases the CAM line to receive a new broadcast.

3.1.2 Software Model

Scalability at the hardware level comes from PEs executing several tasks in paral-
lel, using the NoC to transmit multiple flows concurrently. However, large systems require
high-level management for controlling the deployment of new applications, monitoring re-
sources usage, manage task mapping and migration, and can execute self-adaptive actions
according to systems constraints. The management of HeMPS occurs in the Manager PE,
which has a different kernel from the other PEs.
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Figure 3.3 – Overview of the kernels: (a) Manager PE kernel controls the system and do not
execute users’ tasks; (b) Regular PE kernel manage users’ tasks [Ruaro et al., 2019; Caimi,
2019].



21

At the Manager PE level, the local memory is reserved to the kernel, without exe-
cuting user’s tasks. The Manager PE executes heuristics as task mapping, task migration,
monitoring, authentication and key management (Figure 3.3(a)).

At the regular PE level, a multi-task kernel acts as an Operating System. The plat-
form adopts a paged memory scheme to simplify the kernel design. Examples of actions
executed by the kernel include task scheduling, inter-task communication (message pass-
ing), interrupt handling (Figure 3.3(b)).

Both manager kernels are written in C language. Only a small part of the code is
written in assembly language, responsible for executing context saving and handling hard-
ware and software interruptions.

Applications are written in C language. They are modeled as task graphs A =<
T , P, D, S >, where T = {t1, t2, ..., tm} is the set of application tasks corresponding to the
graph vertices; P = {p1, p2, ..., pn} is the set of peripherals corresponding to the graph ver-
tices. The D set represents the application descriptor which contains the communicating
pairs {(ti , tj), (ti , pr ), (tj , ps), ..., (tm, pn)} with (ti , tj , ..., tm) ∈ T, (p1, p2, ..., pn) ∈ P. A pair (ti , tj)
denotes the communication from task ti to task tj (ti → tj), and a pair (ti , pr ) denotes the
communication from task ti to peripheral pr (ti → pr ). The S value indicates if the applica-
tions execute in normal mode (value 0) or secure mode (value 1). Figure 3.4 presents an
application following this model.

task
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task
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Send(&msg, taskC)
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taskA:
   taskB
   taskD
taskB:
   taskC
taskC:
   taskE
taskD:
   taskE
taskE:
   periph1

secure: yes

App.
Descriptor

Figure 3.4 – Application task graph example [Caimi, 2019].

Tasks communicate using message-passing (MPI-like) primitives. The API pro-
vides two primitives: a non-blocking Send() and blocking Receive(). The main advantage of
this approach is that a message is only injected into the NoC if the receiver requests data,
reducing network congestion. To implement a non-blocking Send(), a dedicated memory
space in the kernel, named pipe [Carara et al., 2009], stores each message written by tasks.
Within this work, the pipe is a memory area of the kernel reserved for message exchanging,
where messages are stored in an ordered fashion and consumed according to it. Each pipe
slot contains information about the target/source processor, task identification and the order
in which it is produced.
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At the lower level, the kernel communicates with the data NoC with data_request
and data_delivery packets. The pipe and a message buffer enable packet retransmission to
inter-task communication and inter-manager communication respectively.

3.2 Opaque Secure Zones - OSZ

Resource sharing is an essential feature of many-cores. Different applications may
execute in the same processor, share the NoC links, and shared memories. This feature,
resource sharing, is the source of issues related to security.

Security methods deployed at design time enable the adoption of sophisticated
and robust algorithms to provide solutions to the security problem since they do not have
limitations related to the execution time of the heuristics. However, design-time methods
do not apply to dynamic workload scenarios. Thus, these methods are limited to scenarios
where the workload is known beforehand without changing during the system lifetime.

Secure Zone (SZ) is a runtime approach adopted to limit resource sharing. It is
possible to classify such proposals using a set of orthogonal criteria [Caimi and Moraes,
2019]:

• Creation time: when SZ is defined, at design time or runtime.

• Shape: the SZ may be discontinuous or continuous, with a rectangular or rectilinear
shape.

• Communication sharing: the SZ may allow flows belonging to sensitive applications to
share NoC links or the flow inside the SZ is forbidden to other applications.

• Computation sharing: the SZ may allow tasks belonging to sensitive applications to
share the same processor or applies resource reservation to sensitive applications.

• Methods: the methods used by the SZs include cryptography, routing algorithms, spatial
and temporal isolation, and rerouting.

Figure 3.5 presents examples of SZs. Discontinuous SZs (SZ2) require more ef-
forts to prevent attacks (encryption or routing schemes) due to the flows’ exposure, while
continuous SZs can imply internal fragmentation when using a rectangular shape due to the
reservation of resources without effective use (SZ1). A rectilinear shape (SZ4) prevents
internal fragmentation but needs dedicated routing mechanisms to avoid flows crossing the
boundary of the region.

The use of continuous SZ (SZ1 and SZ4) still exposes the communication to at-
tackers because flows belonging to other applications can transverse the SZ allowing DoS,
HT, and timing attacks.
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Figure 3.5 – SZ1: continuous and rectangular, SZ2: discontinuous, SZ3: continuous, rect-
angular, and opaque, SZ4: continuous and rectilinear. Source: [Caimi and Moraes, 2019].

According to the previous classification, Opaque Secure Zones (OSZs) are cre-
ated at runtime, and have a rectilinear shape, without computation and communication re-
source sharing. The PEs of the OSZ are reserved for running a single secure application
(SZ3, in Figure 3.5). The only resource-sharing exception is communication with I/O de-
vices. The method that enables OSZ is the dynamic rerouting mechanism. The rerouting
mechanism ensures that the secure application traffic stays inside the OSZ and deviates the
traffic that should cross the OSZ.

The OSZ method, summarized in Figure 3.6, is a countermeasure protecting both
communication and computation. The proposed method includes: (i) OSZ shape selection;
(ii) wrapper activation; (iii) retransmission of lost packets in and out the OSZ boundaries; (iv)
start the secure application (Appsec). In Figure 3.6(a) the many-core contains one applica-
tion in execution, app1. Next, the MP (manager PE) maps an Appsec, activating the wrappers
at the boundary of the OSZ. At this moment (Figure 3.6(b)), the app1 traffic is blocked by
the OSZ. Figure 3.6(c) shows the Appsec executing in the OSZ, and the traffic of app1 cir-
cumventing the region. During the Appsec execution, all communication and computation
resources of the OSZ are reserved for the application.
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Figure 3.6 – Secure zone and dynamic reconfiguration of routing paths. Source: [Caimi
et al., 2018b].

The OSZ is configured by the Manager PE, which runs an algorithm to determine:
(i) the number of PEs to run the application; (ii) the possible OSZ shapes; (iii) the OSZ
positioning inside the cluster; (iv ) the number of task migrations needed to ensure exclusive
PE execution.
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3.3 SeMAP - IO Communication Model

As the peripherals are outside the OSZ, it is necessary to open the OSZ to enable
incoming and outgoing messages with these devices. Opening the OSZ does not contra-
dict the basic rule of the method: flows belonging to other applications must not cross the
OSZ. However, we are opening the OSZ frontier to communication flows with peripherals,
which can represent a risk to the Appsecs, and it is necessary to create a set of mechanisms
to guarantee this communication without incurring threats to the Appsecs. Basic premises,
defined in [Caimi and Moraes, 2019], include:

1. Differentiate the PE-PE communication from the PE-Peripheral. This API differentiation
prevents malicious applications from trying to inject packets into OSZs.

2. Master-slave communication. The PEs inside the secure zone must initiate all trans-
actions. Thus, the PEs of the OSZ discard all unexpected packets.

3. Packets must be signed to ensure their authenticity and ensure they come from the
correct peripheral.

4. To minimize the attack surface, each OSZ has one input access point (AP) and one
output AP.

Secure Mapping with Access Point (SeMAP) [Faccenda et al., 2022] (Appendix C)
restricts the OSZs mapping to follow the above premises. Figure 3.7 illustrates a possible
organization of the system in gray and secure areas. Gray areas run applications without
security requirements and guarantee a path between Appsecs and peripherals. In this exam-
ple, there are three Appsecs mapped in the secure areas. The mapping of Appsecs requires at
least one side juxtaposed to the gray area in such a way to have a path to the peripherals.

The SeMAP reduces complexity in choosing access points (APs), unifying the input
and output APs in the same coordinate. The application knows the coordinate of the AP, and
each PE computes the path to/from the peripheral using source routing (SR). The AP stays
opened while the application is running. For output flows, the concern will be the monitoring
of the output rate to prevent the Appsec itself from trying to carry out a DoS attack on a
peripheral. For input flows, the security verification must occur at two points: (1) at the AP,
verify if it is an IO packet; (2) at the target PE, verify the packet signature. Remember that
only IO packets enter/leave the AP. Therefore, an Appsec could try to attack peripherals but
not other PEs.
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Figure 3.7 – Gray and secure areas. Three Appsecs mapped on the secure area, each one
with an Access Point (AP) [Faccenda et al., 2022].

3.3.1 Vulnerabilities

Although the Opaque Secure Zone is a robust method for ensuring the security of
an application, there are vulnerabilities to be addressed.

• Malicious peripheral (3PIP) connected to the system;

• Hardware Trojans in NoC routers may disrupt communication between PE;

• Data packets traversing the “insecure” part of the network can be targeted;

• Malicious traffic may enter the secure zone through the AP and disrupt the application.

Therefore, it is necessary to create countermeasures to avoid attacks. The fol-
lowing Chapter details the main contribution of this work, the design of a Secure Network
Interface responsible for managing the IO traffic.
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4. SECURE NETWORK INTERFACE

The security functionalities available in the platform protect the application during
two out of three phases of its lifetime [Caimi, 2019]. Admission is secured through the use of
lightweight cryptography and authentication codes, while Execution is protected by isolating
the application inside an OSZ.

Nevertheless, the IO Access phase is still an open issue to be addressed. This
Chapter proposes a Secure Network Interface (SNI) to manage peripheral access, ensuring
secure communication between an application and IO devices.

Figure 4.1 presents the main components of the many-core architecture. The two
main system components are:

• PE: 32-bit RISC processor, a NI (Network Interface) with DMA capabilities, local scratch-
pad memory, and two NoC routers;

• Peripherals: an SNI (Secure NI) makes the interface between the NoC and IO devices.
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Figure 4.1 – Many-core partitioned on secure and gray areas (SA and GA). Three Appsecs

mapped on SZ1 to SZ3. GA is reserved for applications without security constraints.
(Source: Author.)

This Figure shows the components involved in the communication between an OSZ
and the proposed SNI. The path between OSZ and SNI (p) is subject to different attacks.

This Chapter contains five sections. Section 4.1 presents the threat model, describ-
ing a set of attacks that may harm the system security, Section 4.2 introduces the authen-
tication protocol, the main security mechanism to prevent DoS and spoofing attacks. Using
the threat model and the authentication protocol, Section 4.3 builds the set of requirements
to develop the SNI. Section 4.4 is the core of this Chapter with the SNI hardware description.
Section 4.5 concludes this Chapter by presenting the software services the SNI handles.
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4.1 Threat Model

This section discusses the harmful behaviors from which this work aims to protect
the system. These attacks can be performed by a malicious application (MalApp) and/or by
a malicious peripheral (MalPerph).

As a 3PIP, the peripheral cannot be trusted and is considered a source of vulnera-
bilities. Embedding a peripheral into the system enables the following attacks:

• Flooding: MalPerph floods the network with packets, overloading the communication
infrastructure and the system’s components. This attack aims to affect the overall
performance of the system or even bring it to a halt.

• Misrouting: MalPerph sends its messages to the wrong target, leaking sensitive infor-
mation or disrupting the execution of applications.

• Spoofing: a malicious entity accesses a peripheral without authorization, stealing or
corrupting sensitive data.

Applications must send and receive messages from outside the secure zone to
communicate with an IO device. Therefore, the secure zone boundaries must open to let
packets through. In the SeMAP method, this opening is called the Access Point (AP). This
opening of the secure zone makes possible another set of attacks:

• Spoofing of the AP: a malicious entity sends forged packets that pass through the AP,
pretending to be from a trustworthy peripheral.

• Flooding of the AP: a malicious entity floods the AP with packets, aiming to disrupt
the application execution or the AP itself.

Furthermore, a packet traversing the non-isolated region of the network might have
its information compromised by a Hardware Trojan infecting a router. This has to be taken
into consideration when designing methods to approach the aforementioned attacks.

4.2 Authentication Protocol

To handle these security threats, it is necessary to provide a method of differentiat-
ing a genuine application (or peripheral) from a malicious one, making it possible to control
which packets can safely enter the secure zone or reach the peripheral. This requirement
is achieved through the use of a lightweight authentication protocol, which is proposed in
another work (Appendix D).
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This protocol is divided into four phases: Initialization, Application Deploy, Com-
munication, and Key Renewal. It works by distributing authentication keys – {k1, k2} – to a
group of communicating entities: the secure application and each SNI it needs to access.
Every message between the application and the peripheral is sent with an authentication
field, which can only be verified by someone who knows the keys.

To better understand the role played by the SNI in this process, the authentication
protocol is disclosed briefly in the following subsections. The complete sequence diagram
of the Authentication Protocol is presented in Appendix A.

4.2.1 Initialization

During the initialization phase, the Manager PE generates and sends unique keys,
named k0, to each communicating PE or SNI in the system. Since this action is performed
before any application is admitted, there is no malicious traffic in the network. Thus the
keys can be transmitted in plaintext, exempting the use of any complex key distribution algo-
rithm. Each k0 is used in the next phase to obfuscate sensitive information before sending
it through the network.

4.2.2 Application Deploy and Authentication Keys Generation

When a new application is mapped into the system, the Manager PE must coordi-
nate the process of generating {k1, k2} for that application. To do so, it randomly generates a
tuple {appID, n, p}, where appID is the unique application identifier, and {n, p} are integers
values. This tuple must reach all the PEs and SNIs of the application but must remain secret
to other entities. This can be done by obfuscating these values using the unique k0 of each
recipient (k0x ). Thus, the packets sent through the network contain initialization flits, shown
in Equation 4.1.

i1 = appID ⊕ k0x i2 = (n & p) ⊕ k0x (4.1)

A SNI, upon receiving {i1, i2} retrieves the tuple {appID, n, p} using its k0, as shown
in Equation 4.2.

appID = i1 ⊕ k0SNI n = MSB(i2 ⊕ k0SNI) p = LSB(i2 ⊕ k0SNI) (4.2)
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The authentication keys are derived from these parameters. This process consists
in: (i) set the appID as the seed for a linear-feedback shift register (LFSR); (ii) shift the LFSR
n times to obtain k1; (iii) shift the LFSR p more times to obtain k2. By the end of this phase,
all communicating entities share the same pair of authenticating keys.

4.2.3 Communication

This phase includes the communication between the application and peripherals.
The tasks are responsible for starting the communication by sending delivery or request data
messages to/from the IO device. Any of these messages trying to access the peripheral must
contain the tuple {appID, k1, k2} encoded into its authentication flits, as in Equation 4.3.

f1 = k1PE ⊕ k2PE f2 = appID ⊕ k2PE (4.3)

When the corresponding SNI receives a packet, it must assert its authenticity by
retrieving appID using the stored value of k1 (Equation 4.4). If the packet is authentic, the
value encoded in f1 and f2 matches the original appID value, received during the application
deploy phase.

(f1 ⊕ k1SNI) ⊕ f2 == appIDSNI (4.4)

If the authentication is successful, the SNI performs the service requested, replying
with the requested data or acknowledging the data received. The outgoing response also
contains the authentication flits, and a similar verification is performed before the packet en-
ters the secure zone. Otherwise, if the authentication fails, the incoming packet is discarded,
and the SNI takes no action.

4.2.4 Key Renewal

Using the same authentication flits for a long time is a security concern, making
them more vulnerable to eavesdropping. The stealing of {f1, f2} is not a sufficient condition
for an attack. The attacker also needs to know the addresses of the devices and/or the time
window a packet is expected. Nonetheless, to increase security, the authentication keys
{k1, k2} are renewed periodically, even if there is no threat detection.

During the key renewal process, one of the application’s PEs randomly generates
a pair of integers {n, p} and sends it to all other communicating entities. In each device, the
LFSR is initialized with the previous value of k2, shifted n times to obtain the new k1, and



30

p more times to get the new k2. All IO communications are frozen during the renewal to
ensure synchronization between communicating parties.

4.3 Requirements

Based on the role played by the SNI in the authentication protocol, this subsection
defines the set of requirements for constructing a network interface to tackle the security
threats raised in Section 4.1.

Although the SNI is designed as a security module, it has the duties of a standard network
interface. This is taken into consideration in the first three requirements.

1. Enable the communication between the peripheral and other devices in the network.
This is done by implementing the system’s IO communication API.

2. Abstract the data network protocol for the peripheral. This increases the number of
compatible devices, as a simpler protocol can be implemented for interaction between
SNI and peripherals. But it also has the security advantage of hiding the inner workings
of the system, which makes attacks less likely.

3. Use the lowest amount of silicon area as possible. This module is instantiated many
times in the system, which can impose a large area overhead.

Attacks performed by a malicious peripheral can happen in two ways: the sending of unre-
quested packets, and relaying the packet to the wrong recipient. The next two requirements
are made to avoid these harmful behaviors.

4. Enforce the master-slave communication model, in which only an application can start
the exchange of messages. This makes the peripheral unable to inject unwanted pack-
ets into the network.

5. The SNI only sends messages to authorized applications through source routing paths
set by trusted entities. Thus, the peripheral cannot deliberately interact with unap-
proved parties.

Spoofing attacks, both targeting the peripheral or the application, are dealt by the authenti-
cation protocol. The next requirements regard the role of the SNI in this context.

6. Register the applications authorized to interact with the peripheral.

7. Grant the access to the peripheral only to authorized applications. Sensitive informa-
tion provided by the peripheral cannot be directly stolen by a malicious application.
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8. Be able to execute the authentication protocol procedures, such as asserting the au-
thenticity of a packet, and performing the keys derivation procedure.

The final security constraints and observations are disclosed in the last requirements.

9. Quickly discard packets that fail the authentication, avoiding flooding attacks

10. Build packets that follow the Source Routing algorithm, which obfuscates the addresses
of the communicating devices, making attacks more difficult

4.4 Hardware Architecture

The designed Secure Network Interface contains five components, presented in
Figure 4.2. Communication to and from the data-NoC is driven simultaneously through two
independent modules: Packet Handler and Packet Builder, respectively. The information
necessary to communicate with each application is stored in the Application Table by the
Packet Handler and retrieved by the Packet Builder when needed. The data received or sent
to the peripheral is kept in buffers until consumed. The following subsections present these
components in detail.

Packet
Builder

Packet
Handler

Output
Buffer

Hermes

Peripheral

response request

rr/w

Input
Buffer

Table

SNI

Figure 4.2 – Overview of the Secure Network Interface and its components. (Source: Au-
thor.)
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4.4.1 Application Table

The main function of the Application Table is to record the applications that are
allowed to access the peripheral, as well as the information needed to authenticate and an-
swer packets sent by these applications. Each line of the table corresponds to a different
communicating application. This application granularity reduces the table size (and, con-
sequently, area) compared to a table with task granularity. Figure 4.3 illustrates the fields
available in the table.

line valid ​ appID k1 k2 path_to_SZ path_size

#1

#2

Figure 4.3 – Application Table with two lines, each corresponding to a different application
allowed to interact with the peripheral. (Source: Author.)

• Valid: flag used to signal whether the table slot is being used to store an application’s
information or not.

• AppID: ID of the application allowed to access the peripheral.

• K1 and K2: keys used by the authentication protocol to assert if a given packet was
really sent by the application.

• Path_to_SZ: sequence of turns a packet has to take in the network to reach the OSZ.
This field is required to send messages to the application through source routing.

• Path_Size: contains the size of the Path_to_SZ, which may have up to 6 flits.

The SNI handles paths from one up to six flits, making the Path_to_SZ the largest
field on the table. To avoid passing large busses through the table interface, Path_to_SZ is
broken into six segments, each one corresponding to a flit in the path. Only one segment
can be read or written at a time.

The Application Table works as a Content-Addressable Memory (CAM). To access
the desired line, we must inform the appID of the application we are looking for. The table
itself searches the correct line and makes it available for reading or writing. In a CAM, the
information used to distinguish each line (here the appID) is called a tag.
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Furthermore, the table offers two separate interfaces, depicted in Figure 4.4. The
primary (read-write) interface is connected to the Packet Handler, while the secondary (read-
only) interface is connected to the Packet Builder. This separation enables the SNI to send
and receive messages simultaneously.

Application
Table

R/W Data Interface
(For Each Field)

field write value
field write enable

field read value

R/W Control Interface

tag aux

request
crypto

new line
tag

clear slot
ready

fail
full

RO Control Interface

tag (appID)
ready

RO Data Interface
(For Each Field)

field read value

Figure 4.4 – Application Table interfaces: primary (Read/Write) and secondary (Read Only).
(Source: Author.)

Using the read-only interface, the Packet Builder can access the table by simply
providing the appID of desired application. The table uses a combinational circuit to find the
matching line, outputting its fields for the Packet Builder to read. If a matching application is
indeed found, the signal ready is raised to indicate success.

The table’s primary interface is more complex. Besides being able to search for an
application using its appID, it can also allocate an empty line for usage, and perform what is
called a Crypto Search.

During the Crypto Search, the table receives not the appID, but the authentica-
tion flits f1 and f2. To find the right line, the table must perform the authentication process
(Figure 4.5) to each row of the table. The line which is successfully authenticated can be
accessed through the interface.

The three ways to search for an application using the primary interface are listed
in Table 4.1. One bit signals request , crypto, and new_line defines the search method. It
also specifies the values needed as tag for each type of search.

Implementing this interface using a purely combinational circuit would result in a
lot of hardware replication, as all the lines would be searched in parallel. To avoid this area
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(f1⊕ k1line) ⊕ f2 == appIDline

appID'

k2'

Authenticated 
(match)

f1

f2

k1line appIDline

=

Figure 4.5 – Authentication process, used to find a match during Crypto Search. (Source:
Author.)

Table 4.1 – The different ways of searching for a line in the Application Table.
Search Type Tag Tag Aux Description

New Line – – Allocates an unused line.
Regular Search appID – Find the line which contains the same appID.
Crypto Search f2 f1 Find the line for which f1 and f2 are valid.

overhead, the search process is done sequentially and is managed by the FSM depicted in
Figure 4.6.

WAIT

FETCH

READY

FETCH
CRYPTO

FAILED

SLOT
FREED

FETCH
NEW

req still up

req still up

Application Table FSM

req

req AND
crypto

req AND
new_line

no req ​

req is down

req is downreq is down

req still up

iterating slots

iterating slots match

iterating slots

no match

clear slot

Figure 4.6 – Application table FSM. (Source: Author.)

To access an application, the Packet Handler has to make a request to the Ap-
plication Table by raising the signal request and informing the desired tag. It can choose
between the different search types by using the signals crypto and new_line. The FSM,
then, moves from WAIT into the corresponding FETCH state (FETCH_CRYPTO for Crypto
Search, and FETCH_NEW for searching a new line).
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During fetching, the table iterates over all its lines looking of a matching application.
When the correct line is found, the FSM transitions to READY, making the line available for
reading/writing, and raising the signal ready . At this point, the line can also be deallocated
by raising clear_slot . If no match is found, the FSM transitions to FAILED and raises fail .
The table only returns to is waiting state once the request signal is dropped.

4.4.2 Packet Builder

For the SNI to communicate with applications, it needs to be able to answer to in-
coming messages. The Packet Builder module is responsible for assembling those answers
and sending them through the data NoC.

Once the Packet Handler decides to send a message to an application, it notifies
the Packet Builder through the Response Request Interface (Figure 4.7). It raises the signal
response_req and informs the packet parameters: service defines the type of message to
build, while appID specifies which application to send it to.

Response Request
Interface

Packet
Builder

Packet
Handler

response_req

appID

service

busy

accepted

rejected

Figure 4.7 – Interface between the packet handler and the packet builder blocks. (Source:
Author.)

The process of building the packet is managed by the FSM depicted in Figure 4.8.
Upon receiving a request and registering the parameters, the Packet Builder moves to the
CHECK_TABLE state, where it verifies if the specified application can be accessed through
the table. If the application ID is not found, the FSM transitions to the state REJECT_REQ,
raising the signal rejected and waiting for the request signal to be dropped. Otherwise,
if the application exists, the Packet Builder raises the signal accepted and proceeds to
actually building the packet.
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Figure 4.8 – Packet builder FSM. (Source: Author.)

The states HERMES_FIXED_HEADER, HERMES_PATH and HERMES_HEADER
are all responsible for transmitting different parts of the packet’s header. During this process,
the message’s flits are generated one by one, following the structure used by the data NoC.
Once one flit is successfully injected into the network, the counter is updated and the next flit
is generated. The information required to fill the flits is mostly retrieved from the Application
Table. This process goes on until the entire header has been transmitted.

If the service requested by Packet Handler does not require a payload, the trans-
mission is now over, and the FSM returns to the WAIT_REQ state.

There is also the scenario in which the SNI must send the peripheral’s data to
the application. In this case, the FSM transitions to DATA_PAYLOAD. During this state, the
Packet Builder reads the data written by the peripheral in the Input Buffer and uses it to fill the
packet’s payload. Once the desired amount of flits has been reached, the Packet Handler
returns to its idle state and awaits a new request.

4.4.3 Packet Handler

The SNI is a passive module in the sense that it waits for an incoming message
to tell it what to do. The Packet Handler is the component responsible for receiving packets
from the data network and carrying out the appropriate action. It can be considered the
most important of the SNI’s components, as it does all of the decision-making, acting as the
manager of the other components.

The handling process is divided into five distinct phases, and is controlled by the
FSM depicted in Figure 4.9. Aiming for ease of comprehension and maintainability, the FSM
was divided into blocks of states, each block corresponding to a different phase. This section
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Packet Handler FSM

unknown service

payload is data
AND
authenticated

payload is not data
OR
not authenticated

no response
necessary 

response
is necessarySTART

RECEPTION
ACCESS
TABLE

FINISH
RECEPTION RESPOND

RECEIVE
DATA

known
service

Figure 4.9 – The simplified Packet Handler’s FSM. Each blocks of states corresponds to a
handling phase. (Source: Author.)

goes through all the five handling phases, explaining them individually. Appendix B shows
the complete state diagram of the FSM, opening up all the blocks simultaneously.

The START_RECEPTION phase (Figure 4.10) is responsible for receiving the in-
coming packet header. Once the first flit arrives through the data NoC, the FSM leaves the
WAIT_REQ state and transitions to PARSE_HERMES_HEADER.

START RECEPTION

WAIT
REQ

PARSE
HERMES
HEADER

no req counter < header size

hermes req
counter ==
header size

Figure 4.10 – START_RECEPTION phase of handling. Small circle used to symbolize exit.
(Source: Author.)

During this state, a counter keeps track of the flits being received. When the in-
coming flit corresponds to a relevant information (e.g. service, appID, f1 or f2), it is saved
in the correspondent register. This flit-by-flit parsing was adopted to avoid wasting area by
buffering the whole packet header.

The Application Table’s search mechanism is also started at this state: as soon
as the packet’s service is received and the corresponding tag (e.g. appID) is written to a
register. This is done to save time, avoiding having to stop the handling flow to wait for the
table to find a match.
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Figure 4.11 – TABLE_ACCESS phase of handling. Small circle used to symbolize exit.
(Source: Author.)

After parsing the packet’s header, the FSM moves into the TABLE_ACCESS phase,
depicted in Figure 4.11. The CHECK_TABLE_SLOT state starts by verifying if the Applica-
tion Table found the line requested. This checking serves the double purpose of obtaining
access to the table, as well as authenticating a packet. If we provided an application’s cre-
dential (i.e. appID or {f1, f2}) and the table was able to find it, this means the incoming
packet is authentic.

Once we have access to the requested line, we can read and write its fields. The
packet’s service determines which fields are to be written, if any. For instance, an application
configuration service would fill out every field of the line; while key renewal might just update
the values of k1 and k2.

Almost all fields are written in the WRITE_TABLE state, using the information regis-
tered during the parsing of the packet’s header. The only exception is the Path_to_SZ field,
which is retrieved from the packet’s payload and written flit-by-flit during the SAVE_PATH
state. The value of the the Path_Size field is determined by counting how many path flits are
received.

If the incoming packet is authenticated and contains data to the peripheral, the FSM
moves to the RECEIVE_DATA phase. During this stage, each flit of the packet’s payload
is received from the data NoC and written into the Output Buffer, to be consumed by the
peripheral.

The FINISH_RECEPTION stage is simply responsible to discard the remaining of
the packet if there are still flits to be received. This is used to drop packets with unknown
services or unauthenticated applications. It also serves the purpose of making sure the
incoming packet is fully received, may any packet be sent with an unexpected payload.
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The last possible step in handling the incoming packet, is to send an answer.
The RESPONSE phase is responsible for communicating with the Packet Handler, send-
ing a response request through the interface aforementioned in Section 4.4.2. If the Packet
Builder is busy with the construction of another message, the FSM waits for it to be avail-
able in the state WAIT_TX_AVAIL. When the module becomes free, the FSM transitions to
REQ_RESPONSE. Once the acknowledge is received, the Packet Handler returns to its idle
state and awaits a new packet to arrive.

RESPOND

WAIT
TX

AVAIL

REQ
RESP

tx module 
is busy

tx module 
is available

no ack from 
tx module

tx accepted 
or rejected

Figure 4.12 – Respond stage of handling. Small circle used to symbolize end of stage.
(Source: Author.)

4.5 Services Treated by the SNI

Now that the structure of the SNI as a hardware device was presented, this section
presents how the SNI interacts with the other components of the system.

There are four different services the SNI performs: two for managing the authenti-
cation protocol parameters; and another two for communicating with applications. The first
two services correspond to the Initialization and Application Deploy phases of the authenti-
cation protocol, respectively.

IO_INIT: this service is used by the Manager PE to set the k0 value of the SNI, during the
initialization phase of the authentication protocol. This operation can only be performed
once.

IO_CONFIG: used to register a new application in the SNI table, thus granting it autho-
rization to access the peripheral. The received packet contains the appID, the pair
of authentication keys {k1,k2} and the path_to_SZ . Following the authentication pro-
tocol, appID is obfuscated using k0. By the end of handling, a new line has been
allocated in the Application Table, where all values are stored.

Remark: the LFSR is not yet integrated into the SNI. Thus, instead of sending the
tuple {appID,n,p}, the system manager sends {appID,k1,k2}.
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The SNI is accessible to the applications through the IO Communication API, dis-
cussed in Section 3.3. The packets themselves were modified to contain the information
needed for the authentication process.

IO_REQUEST: is sent by the application to request data from the peripheral. The packet
encodes the tuple {appID,k1,k2} into the authentication flits f1 and f2. When the
packet is received by the SNI, the Application Table performs a crypto search. If a
matching application is found, the packet is said to be authentic.

Only if the incoming message is successfully authenticated, the SNI answers the ap-
plication with an IO_DELIVERY packet, containing the data requested. This outgoing
packet is sent through the path configured earlier and also contains the authentication
flits, for verification on the application side.

IO_DELIVERY: carries data the application wants to convey to the peripheral. It also con-
tains the tuple {appID,k1,k2} embedded into f1 and f2. The authentication process is
the same as the performed for the IO_REQUEST service.

If the authentication succeeds, the data contained in the packet is relayed to the pe-
ripheral, and the SNI answers the application with an acknowledge message (IO_ACK
service).
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5. RESULTS

The proposed SNI was implemented using VHDL, integrated into the HeMPS sys-
tem, and validated through RTL simulations. Section 5.1 details a contribution of this work,
corresponding to the creation of a benchmark suite with IO operations. These benchmarks
are required to validate the SNI design. Next, Section 5.2 evaluates the SNI, in terms of
communication protocol and the behavior when a malicious task tries to attack the SNI.

5.1 Benchmark for IO Applications

To validate the implementation of the proposed security mechanisms, a set of ap-
plications was modified to perform IO communication. Figure 5.1 shows the cyclic task
graphs (CTGs) representing the applications used as benchmarks. The design of these
modifications takes into account the nature of the application, implementing IO transactions
coherent with the function of each task. For example, tasks with MEM or RAM have READ
and WRITE operations as it is interacting with shared memory. But it also aims to create
a collection of multiple communication profiles, making it possible to study how the system
behaves in different scenarios.

• MPEG and DTW are examples of simple communication transactions. Each task com-
municates with only one peripheral and vice versa.

• AES and Dijkstra shows the same peripheral communicating with multiple tasks.

• Fixe_base_test_16 presents a scenario in which one peripheral has to interact with a
large number of different tasks.

• MWD has one peripheral responsible for dealing with multiple tasks performing both
READ and WRITE operations.

• Synthetic contains a task accessing multiple peripherals.

• VOPD and MPEG4 are based on real case scenarios and communicate with a variety
of IO devices.

Table 5.1 evaluates the benchmarks when executing IO operations. The second
column presents the total number of IO transactions executed by the application, and the
third column the number of IO operations per task. The fourth and fifth columns present
the absolute execution time, and the remaining columns the execution time overhead. Most
applications present a small relative overhead (less than 5%), except synthetic and MWD
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Figure 5.1 – CTGs for the applications adapted to execute IO communication. (Source:
Author.)
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benchmarks. The large overhead observed in these two applications is due to the fact
that they do not execute a real computation, being both applications written only with send-
receive primitives. The main achieved result was the creation of a set of benchmarks to
validate the SNI design.

Table 5.1 – Evaluation of the applications executing IO operations.
Execution
Time (ms)

Application IO
transactions IO per task Baseline w/ IO

Variation
(ms) Percentage

AES
(11 slaves) 5 AESmaster(5) 5.13 5.36 0.23 4.43%

Dijkstra 3 Divider(2), Print(1) 6.29 6.36 0.07 1.08%
DTW

(40 iterations) 80 Bank(40), Recog(40) 4.12 4.21 0.08 1.99%

Fixe Base Test 16 10
P1(1), P2(1), RMS(1), WRMS(1),

GFC(1), XYZ1(1), XYZ2(1),
dXYZ(1), dLAB(1), dRGB(1)

5.25 5.38 0.12 2.33%

MPEG
(10 iterations) 20 Start(10), Print(10) 5.06 5.13 0.08 1.54%

MPEG4 11
SDRAM(1), SRAM2(1),

SRAM1(1), AU(1), VU(1),
RISC(2), MCPU(2), ADSP(2)

24.42 24.78 0.36 1.47%

Synthetic 50 A(1), B(1), C(1), F(2) 1.20 1.49 0.29 23.83%

VOPD 6 ARM(1), VLD(1),
STRIPEM(2), VOPME(2) 3.42 3.56 0.13 3.92%

MWD 62 IN(15), MEM1(10),
MEM2(16), MEM3(21) 2.71 3.78 1.06 39.18%

5.2 SNI Evaluation

This section shows simulations to exemplify the SNI behavior. It describes each
stage of the communication protocol and demonstrates how the SNI reacts to incoming
packets of different services. The waveforms depicted in this section were simplified for the
sake of clarity.

5.2.1 Initialization

During the Initialization phase, the Manager PE sets the value of k0 for the SNI
using the IO_INIT service. The waveform in Figure 5.2 shows the packet arriving at the SNI
and being parsed by the Packet Handler.

The packet is received through the data-NoC interface, where the rx signal indi-
cates the receiving of a flit via the data_in bus. The last flit of the packet is signaled by
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}
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Figure 5.2 – Waveform illustrating the handling of the IO_INIT service. (Source: Author.)

eop_in. The signal credit_out enables or disables incoming communication; while this
signal is down, the router will not attempt to send any flit.

The handling flow can be followed by seeing the Packet Handler’s state. Upon the
packet arrival (step 1) the FSM switches to the PARSE_HEADER state, and the incoming
flits start to be counted. During this state, relevant fields of the header are saved on their
corresponding registers.

The received packet contains two important fields: the service identifier and k0.
As k0 is received before the service is known, its value is stored in an intermediate register
until its meaning can be understood (2). Upon the reception of service (3), the k0 value is
transferred to its rightful register (4), where it remains unchanged until the system resets.

After receiving the entire header, no other action is taken, and the SNI moves to the
next states (5), converging to WAIT. When the service handling is ended, the FSM resets its
registers and counters (6), and waits for the next packet to arrive.

5.2.2 Application Configuration

The application configuration process is responsible for registering a new appli-
cation in the SNI table via IO_CONFIG service, thus granting it permission to access the
peripheral. This section details and exemplifies this process. First, let’s consider an SNI with
the Application Table shown in Figure 5.3, where one application already registered.

To configure another application, the MPE must send an IO_CONFIG packet to the
SNI. Figure 5.4 displays the handling of this packet.

Following the authentication protocol, this packet carries the pair of initialization
flits {i1,i2} used to obtain the credentials of the application. They contain, respectively, the
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line valid appID k1 k2 path_to_SZ path_size

#0 '1' 0x1234 0x62C8 0xA2D4 { 0x7113, 0x7330, 0x71EE } 3

#1 '0' -- -- -- -- --

#2 '0' -- -- -- -- --

#3 '0' -- -- -- -- --

Figure 5.3 – State of the Application Table before the IO_CONFIG service, one application
is already registered. (Source: Author.)

obfuscated values of appID and the pair {n,p} used to derive the authentication keys. The
payload of this packet is loaded with the path_to_SZ to be configured for the application.

When the packet arrives, the Packet Handler goes to the PARSE_HEADER state
(step 1). During this state, the authentication flits are received (2, 3) and decrypted using
k0, thus retrieving the values of appID and {n,p}.

When the service is received (4), the Packet Handler can make a request for the
Application Table to allocate a new line for the application. This is done by raising the req
and new_l signals in the table interface (5).

While the Packet Handler finishes receiving the header, the Application Table pro-
cesses the request for a new line. In the state FETCH_NEW, the line counter is incremented
each cycle until the table finds an unused line, and then raises the signal match. Then, the
FSM transitions to READY (6), enabling reading and writing to this line.
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  {name: tag ,     wave: 2.....6........2 , node: ................ , data: [ , appID ]},
  ],
  ['Table',
   {name: 'state',  wave: '2......7.7.....2', node: '.......M.O..Z...', data: ['WAIT', 'FETCH_NEW', 'READY']},
   {name: 'line',   wave: '2......222.....2', node: '.................', data: ['','0','1']},
   {name: 'match',  wave: '0.......10......', node: '.........N........', data: ['']},
   {name: 'ready',  wave: '0........1.....0', node: '...........X.....', data: ['']},
   ['Input',
   {name: 'w_ID',   wave: '2..........6....', node: '...........T....', data: ['','appID']},
   {name: 'w_k1',   wave: '2..........6....', node: '...........U....', data: ['','k1']},
   {name: 'w_k2',   wave: '2..........6....', node: '...........V.....', data: ['','k2']},
   {name: 'w_pth',  wave: '2...........442.', node: '............ÍÓ..', data: ['','PATH1','PATH2']},
   ],
  ],
],
   config: { hscale: 3, skin: 'narrow'},
   edge:['A~>C','A~>B STEP 1' ,'D~>G STEP 2', 'E~>H STEP 3', 'G~>J XOR k0','H~>K XOR k0', 'F~>I STEP 4', 'L~>M STEP 5', 'N~>O STEP 6', 'P~>Q STEP 7', 'R~S STEP 8', 'R~T ',
}
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Figure 5.4 – Waveform illustrating the handling of the IO_CONFIG service. (Source: Author.)
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During this interval, the process of generating {k1,k2} from appID and {n,p} should
take place, but this mechanism is not yet implemented in the current version of the SNI.

After receiving the header, the Packet Handler moves to the CHECK_TABLE state,
pausing the reception of incoming flits (7). This state verifies if the table succeeded in allo-
cating the desired line (8).

The actual configuration of the application happens in the next states. During the
WTAB state, the fields appID, k1 and k2 are written into the table (8). Then, the Packet Han-
dler moves to the WPATH state, in which it receives path_to_SZ from the packet payload,
writing it flit-by-flit into the table (9, 10). Once the EOP is received, the Handler returns to its
idle state (11), resetting the table request.

After handling this packet, the new Application Table content is the one presented
Figure 5.5.

line valid appID k1 k2 path_to_SZ path_size

#0 '1' 0x1234 0x62C8 0xA2D4 { 0x7113, 0x7330, 0x71EE } 3

#1 '1' appID k1 k2 { PATH1, PATH2 } 2

#2 '0' -- -- -- -- --

#3 '0' -- -- -- -- --

Figure 5.5 – State of the Application Table after the IO_CONFIG service, with two applica-
tions registered. (Source: Author.)

5.2.3 Successful Communication

This section provides an example of successful communication between an ap-
plication and an IO device. The application registered in the previous section sends an
IO_REQUEST message, asking for data to the peripheral. The SNI is responsible for au-
thenticating the incoming packet and answering the application with the requested data.
Figure 5.6 shows the Packet Handler receiving the IO_REQUEST message.

During the PARSE_HEADER state (step 1), the authentication flits f1 and f2 are
saved in registers (steps 2 and 3). When the service is received (4), the Packet Handler
makes a request for the Application Table to search the corresponding line (5): signals req
and crypto are raised, and the authentication flits passed through tag and tagAux .

While the Packet Handler parses the remaining flits of the header, the Applica-
tion Table process the request. It moves from its idle state to F_CRYPTO, to perform the
requested Crypto Search. Iterating over all lines, it searches for the application correspond-
ing to the specified {f1,f2}. When the table locates the matching application, it moves to
the READY state (6), raising the signal ready . Henceforth, we can say that the request is
authenticated.
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  {name: f2 ,      wave: 2....4........2 , node: .....H.......... , data: [ , f2                                          , ]},
  {name: 'service', wave: '2.....9.......2', node: '......IL..R......', data: ['','IO_REQUEST                                          ', '']},
  {name: 'req',     wave: '0.....1.......0', node: '................', data: ['']},
  {name: 'crypto',  wave: '0.....1.......0', node: '................', data: ['']},
  {name: 'tag',     wave: '2.....6.......2', node: '................', data: ['', 'f1']},
  {name: 'tagAux',  wave: '2.....6.......2', node: '................', data: ['', 'f2']},
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  ['Table',
   {name: 'state',  wave: '2......7.7....2', node: '.......M.O..Z...', data: ['WAIT', 'F_CRYPT', 'READY']},
   {name: 'line',   wave: '2......222....2', node: '.................', data: ['','0','1']},
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   {name: 'ready',  wave: '0........1....0', node: '...........X.....', data: ['']},
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],
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   config: { hscale: 3, skin: 'narrow'},
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}
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Figure 5.6 – Reception and handling of the IO_REQUEST service by the Packet Handler.
(Source: Author.)

When the header reception finishes (7), the Packet Handler moves to the TA-
BLE_CHECK state and asserts that the packet is indeed authenticated (8). It may now
proceed to request the building of a response message, this happens during RESPOND
state. Once the Packet Builder accepts the request, the Handler may return to the WAIT
state.

This process of building and transmitting a response message is performed by the
Packet Builder, and is depicted in Figure 5.7.

The requesting for the construction of an outgoing packet takes place by the Packet
Handler raising the signal req_resp (step 1), while providing the parameters appID and
service. Upon receiving a request, the Packet Builder uses the appID to access the appli-
cation’s line in the table (2). The CHECK_TABLE state verifies if the line was successfully
found. Since there was a match, the Packet Builder accepts the request by raising ack_resp
and proceeds with the packet assembly.

During the FIRST state, the Packet Builder sends the first flits of the header. Then,
the PATH state configures the source-routing path by reading the contents of path_to_SZ
from the table and injecting it into the packet header (4, 5). The HEADER state is responsible
for the rest of the header, encoding the credentials of the application {appID,k1,k2} into the
authentication flits {f1,f2} (6, 7).

After the header transmission, the last step is to build the packet payload. During
the DATA_PAYLOAD state, the Packet Builder reads the peripheral data from the Input Buffer,
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  {name: count ,   wave: 8.82................ , node: ............... , data: [ ... , hSIZ , ... , ]},
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   {name:'req_resp',wave: '0.....1....0........', node: '......B.........', data: ['','CH', 'FIRST', 'PATH', 'HEADER', 'PAYLOAD']},
   {name:'ack_resp',wave: '0.......1..........0', node: '........O........', data: ['','CH', 'FIRST', 'PATH', 'HEADER', 'PAYLOAD']},
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Figure 5.7 – The transmission of a IO_DELIVERY message by the Packet Builder. (Source:
Author.)

forwarding it to the data network. Upon finishing, it transitions back to the idle state and
awaits a new request.

5.2.4 Spoofing Attack

This example shows the reception of a malicious packet trying to steal sensitive in-
formation from the peripheral This corresponds to a spoofing attack since the malicious task
is trying to forge an application identifier. The incoming IO_REQUEST message contains
invalid authentication flits and must be ignored by the SNI. Figure 5.8 illustrates the handling
of the malicious packet.

The packet handling starts as in the previous section: the packet header is received
during PARSE_HEADER (step 1); the authentication flits f1 and f2 are saved in registers (2,
3); and, when the service is received (4), the Application Table is requested to perform a
Crypto Search (5).

In this simulation, there is no line in the Application Table matching the specified
{f1,f2} flits. After searching all lines of the Application Table, the FSM goes to the FAILED
state and raises the signal fail . When the Packet Handler reaches the TABLE_CHECK state,
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  {name: 'req',     wave: '0.....1.......0.', node: '................', data: ['']},
  {name: 'crypto',  wave: '0.....1.......0.', node: '................', data: ['']},
  {name: 'tag',     wave: '2.....6.......2.', node: '................', data: ['', 'f1']},
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Figure 5.8 – Execution of a spoofing attack. (Source: Author.)

it verifies that the application was not authenticated (6). It moves to the END state, dropping
the remainder of the packet. The handling is over, and no sensitive data was leaked.
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6. CONCLUSION

By embedding an untrusted 3PIP, an NoC-based system becomes exposed to sev-
eral security threats, such as the leakage of sensitive information. This work complements
the OSZ and SeMAP security mechanisms, tackling these vulnerabilities by proposing a
Secure Network Interface (SNI) to protect the communication between applications and IO
devices.

The set of requirements established for the SNI protects the system from spoofing
and flooding attacks performed by (or targeting) the peripheral. The lightweight authenti-
cation protocol ensures that only authorized applications can access the device, while the
master-slave communication model prevents the peripheral from inserting undesired pack-
ets into the network. The SNI module was designed and then implemented using VHDL.
The verification was performed through RTL simulations, in which the system runs the ap-
plications from the proposed benchmark.

During the development of this work, the author participated in two papers. The first
one [Faccenda et al., 2022] (Appendix C) proposes the SeMAP method for mapping OSZs
while enabling secure IO communication, which is explained in Section 3.3. The second
one (Appendix D), submitted to ISCAS’23, introduces the lightweight authentication protocol
described in Section 4.2. Furthermore, a third paper is being written for IEEE Design&Test,
detailing the SeMAP approach.

Although this work addresses some of the IO vulnerabilities presented by the base-
line platform, there are still others left open for future work. When a secure application
communicates with a peripheral, its messages must leave the OSZ, exposing them to at-
tacks that can compromise or corrupt sensitive data. A high-level protocol that monitors the
attacks and countermeasures to avoid or mitigate them is a direction to follow.
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Figure B.1 – The Packet Handler’s state diagram, comprising all states. (Source: Author.)
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Abstract—Many-core systems-on-chip (MCSoCs) contain pro-
cessing elements (PEs), peripherals attached to the system, and
an NoC connecting them. These systems have different flows
traversing the NoC: PE-PE and PE-peripheral flows. Malicious
hardware or software can hinder system security due to the
resource sharing feature, such as CPU sharing for multitasking
or sharing NoC links for flows belonging to different applications.
Methods that isolate applications with security constraints, such
as Secure Zones (SZs), protect PE-PE flows against most of
the attacks reported in the literature. Proposals with methods
to secure the communication with peripherals in the literature
are scarce, with most of them focusing on shared memory
protection. This paper presents an original approach, Secure
Mapping with Access Point - SeMAP, which creates mapping
policies for SZs, and communication strategies with IO devices,
to protect PE-peripheral flows. Results show that the application
execution time is not penalized by applying SeMAP, presenting
advantages compared to a state-of-the-art approach. In terms
of security, SeMAP successfully resisted an attack campaign,
blocking malicious packets attempting to enter the SZ.

Index Terms—Security, NoC-based Many-cores, Secure Zones,
Peripherals.

I. INTRODUCTION

Many-core systems on chip (MCSoCs) provide high com-
puting performance due to the parallelism offered by the
numerous resources inside the chip. Current applications have
increasing demands on dedicated resources, such as shared
memories, hardware accelerators (e.g., neural engines), and
communication interfaces [1]. Thus, MCSoCs should contain,
besides the set of processing elements (PEs), support for
peripherals leading to the adoption of heterogeneous architec-
tures instead of homogeneous ones (e.g., MPSoCs). Figure 1
presents a 4x4 MCSoC instance, with four peripherals attached
to the NoC borders.

A consequence of the increasing number of features and
functionalities in MCSoCs is the adoption of third-party IPs
(3PIPs) to meet time-to-market constraints and reduce design
costs. Such IPs come from different vendors, raising the risk
of having malicious hardware and/or software inserted in the
design [2]. Thus, security is a major design constraint.

Malicious hardware/software can hinder system security due
to the resource sharing feature, such as CPU sharing for
multitasking or sharing NoC links among flows belonging to
different applications. Thus, methods that isolate applications
with security constraints (Appsec) [3, 4] protect applications
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Fig. 1. MCSoC and terminology adopted in this work.

against most of the attacks reported in the literature. Secure
Zones (SZ, in Figure 1) [5, 6] is an example of a defense
mechanism based on spatial isolation. SZs reserve PEs and
links to execute an Appsec without sharing the resources inside
the SZ with other applications.

Literature related to many-core that present methods to
secure the communication with peripheral are scarce, with
most of them focusing on shared memory protection [7, 8].
On the other hand, several works present MCSoCs with
peripherals but without security concerns [9, 10]. Therefore,
there is a gap to fulfill: how to protect the communication of
applications with peripherals?

A possible solution is to encrypt data in the communication
path between the SZ and peripherals. However, cryptography
is a partial solution, only ensuring confidentiality. Other secu-
rity threats may compromise the communication path SZ↔IO
(p in Figure 1):

1) Denial of service (DOS) and side-channel attacks in the
SZ↔IO path;

2) Unauthorized access to the IO. IO devices must be aware
of applications with access rights to avoid attacks by
malicious entities;

3) Unauthorized access to the Appsec running into the SZ.
Communication with IO devices requires opening access
points (AP, in Figure 1) at the SZ border. The AP is a
vulnerability that malicious applications can explore to
access the Appsec;

4) DOS due to the lack of paths to the IO devices. A
given application or SZ may isolate IO devices. Thus,
reachability is a design concern, ensuring a path between
SZs↔IOs.978-1-6654-8128-1/22/$31.00 ©2022 IEEE
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The goal of this work is to define SZ mapping policies and
communication strategies with IO devices, addressing issues
3 (APs) and 4 above (ensure reachability to IO devices).

The original contribution is the Secure Mapping with Ac-
cess Point (SeMAP ) approach, which enables the mapping
of multiple SZs simultaneously, protecting Appsecs against
unauthorized accesses, ensuring the availability of paths to the
IO devices.

This paper is organized as follows. Section II presents the
related work regarding peripherals in many-cores. Section III
discusses the threat model assumed in this work. Section IV
presents two methods to protect the communication with
peripherals, DSZ and SeMAP , being SeMAP the original
contribution of this paper. Section V evaluates both methods
in terms of performance and security. Section VI presents the
conclusions and directions for future work.

II. RELATED WORK

Recent works present many-cores with peripherals attached
to them, addressing communication performance improvement
[9, 10] or timing predictability [11, 12, 13].

Lee et al. [10] propose a message-based system calls to
enhance the performance of storage IO for the MapReduce
application model in many-cores. In addition, the Authors
explore the intracluster locality of task allocation in the cores.
As a result, the execution time of MapReduce was reduced by
29%.

Jiang et al. [11] optimize IO operations in safety-critical
systems with Virtual Machines. The proposal is a hardware
hypervisor to shorten the overhead of the IO communication
in an application inside a VM, called IO-GUARD. The main
objective is to enhance the IO path and resource management.

Vaas et al. [12] also focus on safety-critical systems, propos-
ing the LOWIO, an interface that reduces the interference
of low-level non-deterministic IO operations on critical tasks.
Hardware units control the access to peripherals, giving prior-
ity to critical transactions.

Zhao et al. [13] propose dedicated IO co-processing units
and a scheduling model to provide predictability for hard real-
time systems. A module named IO Processing Unit (IOPU)
controls the IO tasks. The objective is to make the communi-
cations predictable.

In terms of security, Ehret et al. [14] focus on securing edge
devices against attacks on their IO ports. This approach consid-
ers that the devices are installed away, making it possible for
a malicious user to access the system from its ports manually.
Even though this work does not consider a many-core, it is
possible to apply the adopted threat model to a many-core.

Grammatikakis et al. [7] propose an NoC firewall to protect
the access of a shared memory accessed through the NoC,
avoiding sensitive data corruption or access of an unauthorized
element. The firewall isolates the NoC, only allowing an
authorized process of the MCSoC to access the memory.

Reinbrecht et. al. [8] also focus on the security of MCSoCs
with shared memories. The authors propose two new attack
types targeting shared memories, called Prime+Probe Arrow

and Prime+Probe Firework, that can affect systems with Se-
cure Zones when the application running inside it needs to
use the shared memory. The Authors propose the Gossip-NoC,
which includes a traffic monitor. When an anomalous behavior
is detected, the monitor sends an alert message to a system
manager, which changes the routing algorithm from XY to
YX, avoiding malicious traffic.

In summary, proposals [9, 10, 11, 12, 13, 15] optimize
the communication performance with peripherals, or systems
with real-time constraints. On the other hand, the concern
of [7, 8] is to protect access to shared memory. General
security methods to protect access to peripherals other than
shared memories are a gap in the literature. Actual many-
cores have a rich set of accelerators besides shared memories,
requiring the availability of security mechanisms to protect the
communication.

III. THREAT MODEL

Resource sharing in PEs and NoC links introduces vulnera-
bilities to the applications. Considering the reference MPSoC
architecture (Figure 1), the attack surface includes the access
point (AP) and the exposed path (p). Malicious entities (tasks
or peripherals) may explore this surface in attacks such as:

i Spoofing: falsification of identity – a malicious entity
could try to pass through the AP, pretending to be a
trustworthy peripheral;

ii DoS (flooding): a malicious entity could attempt to flood
the SZ by injecting packets through the AP;

iii DoS (blocking): Hardware Trojans (HTs) may block,
drop, or misroute flows to/from the peripherals;

iv Snooping: once the packet leaves the SZ, it is exposed to
malicious entities, being vulnerable to snooping attacks.

v SCA: a malicious entity could monitor the exposed flows
to execute, e.g., timing attacks [8].

Our proposal addresses threats (i) and (ii) using a key
shared by the Appsec and the IO. This key ensures that a given
packet can only enter or leave the SZ if it has the correct key.
The communication protocol mitigates the threat (iii), which
can detect when an expected answer to a transaction does not
reach the SZ. Encrypting data in the exposed path mitigates
snooping attacks. We assume in this work that packets in
the exposed path are encrypted to avoid such attacks. SCA
mitigation is out of the scope of the current work. Key
exchange between the peripheral Network Interface (NI) and
the SZ is discussed in [16].

The focus of this work is the proposal of methods to
enable secure communication of applications executing in
isolated resources (Secure Zone) with peripherals (outside the
Secure Zone), not on proposing countermeasures. Examples
of countermeasures include the dynamic changing of the AP
location when detecting an attack or using methods to locate
the attack source [17].

IV. SAFE COMMUNICATION WITH PERIPHERALS

This work adopts the opaque SZ model [18]. Once the
SZ is closed, all traffic trying to cross it is re-routed. The
opaque SZ method prevents the attacks described in the threat
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Fig. 2. Example of Dynamic SZ method, adapted from [18]

model, including timing and logical SCA [19]. However, to
allow communication between peripherals and Appsec, it is
necessary to open the SZ boundary. The controlled opening at
the boundary of the SZ is called access point (AP).

Opening the SZ does not violate the fundamental rule
governing the SZ method: flows belonging to applications
other than Appsec must not cross the SZ. Opening the SZ
to peripherals requires a set of rules to ensure the security
of Appsec. Work [18] presents a set of rules to meet security
constraints:

1) Differentiate PE↔PE from PE↔IO communication. This
differentiation prevents malicious applications from try-
ing to inject packets into SZs.

2) Master-slave communication. PEs inside the SZ initiate
all transactions with peripherals. Any unexpected packet
arriving in an AP is discarded.

3) Add a key in IO packets, ensuring their authenticity and
source.

4) Avoid unreachable resources, i.e., an SZ may not block
the access to peripherals.

We present below two methods for communicating with
peripherals: (i) Dynamic SZ, initially presented in [18]; (ii)
Secure Mapping with Access Point (SeMAP ), herein pro-
posed.

A. Dynamic SZ – DSZ

The DSZ method is flexible in terms of Appsec mapping.
SZs can be mapped at any region of the MCSoC, respecting
the restriction of not blocking paths to peripherals. Figure 2
illustrates a system with 3 SZs.

APs are established for each communication transaction,
using XY routing by default. The task that starts an IO
communication opens two unidirectional APs (AP IN and AP
OUT in Figure 2), transmitting two control packets to the SZ
border. Each AP is closed when a packet traverses it. This
method ensures that only one packet traverses the AP per
transaction, minimizing attack attempts. On the other hand,
if multiple tasks communicate with peripherals, several APs
can be opened simultaneously (SZ1 in the Figure), increasing
the attack surface. Packets to traverse the APs must meet two
conditions: (i) be IO packets; (ii) match the key shared by the
peripheral and the Appsec. The packet is discarded otherwise.
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Fig. 3. Example of gray and secure areas. Three Appsecs mapped on the
secure area, each one with an Access Point (AP).

The mapping flexibility brings the masking effect. Consider
Figure 2 having the SZ1 and SZ3 mapped and running in the
system. When SZ2 enters in the system, it blocks path p2,
from the IO device to SZ3. Thus it is necessary to compute
a new path using source routing. The PE closest to the IO
device computes the new path (p3), transmitting it to the IO
device to be used in the subsequent data transmissions. This
approach adds a security threat, as it involves a PE not related
to Appsec, allowing it to know the location of the AP and use
this information to initiate an attack.

Despite the DSZ application mapping flexibility, there is a
restriction related to the task mapping inside the SZ, named
alignment effect. The DSZ does not allow two or more tasks on
the same X or Y coordinate to communicate with peripherals
because the DSZ authorizes only one transaction per AP. If
two tasks are aligned, both activate the same AP, but only one
packet passes through it, thus blocking one of the tasks.

B. Secure Mapping with Access Point – SeMAP

Our proposal, named SeMAP , restricts the Appsec map-
ping and allows only one bidirectional AP per SZ. The goal
is to have a single aperture for all the IO transactions. Our
mechanism creates two logical regions, at system startup: Gray
areas (GA) run applications without security requirements
and guarantee a path between Appsec and peripherals, i.e.,
reachability. Secure areas only run Appsecs. Figure 3 illustrates
an example of these two regions, with three Appsec mapped
in the secure areas. The peripherals are attached to the North
side of the system for the sake of simplicity. The approach
does not restrict peripherals attached to a given system side.
The mapping of Appsecs requires at least one side juxtaposed
to a GA in such a way to have a path to the peripherals.

The process to deploy an Appsec into the secure area
requires four steps, detailed below.

1) SZ Shape and Location: The definition of the SZ shape
prioritizes shapes having the width of the secure area. This
method improves system utilization, avoiding PEs without
access to the gray areas. The SZ shape and coordinates
selection follow a Sliding Search Window (SSW) algorithm.
The starting point of the SSW is the row nearest to the
peripherals. The result of this step is a set of PEs reserved
to execute the Appsec.
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2) AP Definition: Any port of any frontier router next to
a GA may receive the AP. The default location is the top-left
or top-right router according to the gray area position. The
second case is the north port of the top-middle router if the
SZ is near to the top of the GA. Figure 3 presents both cases:
the AP of the SZ1 and SZ3 are in the middle-top position,
while the SZ2 is the default case, with the AP at the top-
left position. Since any port can become an AP, there is the
possibility to change the AP location periodically or whenever
suspicious behavior is detected.

3) Task Mapping in the Selected Shape: The system man-
ager maps tasks that communicate with peripherals near the
AP and the remaining tasks according to the hop number
between communicating pairs. After the mapping execution,
the SZ borders are “closed”, isolating the SZ. Only packets
to/from peripherals can cross the SZ through the AP.

4) Path configuration: PEs inside the SZ does not use
the XY routing algorithm to reach the peripheral. The first
communication of a given task with a peripheral fires a
path configuration heuristic. First, the OS computes the path
PE→AP, then the path AP→peripheral, according to the
gray area shape. The path from the peripheral to the PE
is generated using the opposite ports in the reverse order.
Figure 4 illustrates an example of a path computation between
“Task” and IO. There are two paths: path A, the orange arrow
from Task→IO, and B, the blue arrow from IO→Task. The
circles show each of the ports taken for each of the paths.
After computing the path to the peripheral, the next step is to
send the reverse path to the peripheral. The OS sends the path
to the peripheral, which stores the path and uses it for every
communication with that specific task.
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Fig. 4. Example of source routing paths from/to task to/from peripheral
through the AP.

SeMAP contains security mechanisms implemented in the
APs. Packets to/from a peripheral only traverse the AP if the
key embedded in the packet header matches the shared key. In
addition to key verification, the AP monitors the frequency of
incoming and outgoing packets, generating a suspicious alert
if a threshold rate is reached. Such behavior may signalize an
external peripheral (incoming packets) or Appsec is attempting
to execute an attack.

V. RESULTS

This section presents the performance of applications con-
sidering the two methods for communicating with peripherals.
The second part of the results discusses the security aspects

of the communication with peripherals. Section V-C compares
both approaches.

Experiments use as baseline system the Memphis MCSoC
[20], modeled at the RTL level (SystemC and VHDL). The
MCSoC uses two NoCs: one for data and one for control.
The data-NoC is a packet switching network with two physical
channels, supporting XY (default) and source routing (when
rerouting is necessary). The control-NoC is a broadcast NoC
with single-flit packets and a search path mechanism, which
allows path discovery for source routing [21].

A. Performance of the Communication with Peripherals
Figure 5 presents the applications mapping to evaluate

the methods of communication with peripherals. The system
receives the DTW (Dynamic Time Warping) application at
startup. At 5 ms, a new application enters the system (MPEG
decoder). Note that the DTW DSZ (Figure 5(a)) has two paths
broken by the MPEG, firing two path search computations (due
to the “masking effect”). At 9 ms, a PC (Producer-Consumer)
is mapped, also blocking two DTW paths. A second scenario
is evaluated, swapping the DTW with MPEG (the reference
application is always mapped in the bottom-left corner of the
system). In the first scenario (DTW in the left corner), the IO
communication volume (number of messages exchanged with
the peripherals) is higher.
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Fig. 5. Application mapping to evaluate the methods to communicate with
peripherals.

Figure 6 presents the iteration latency for DTW and MPEG
applications. The y-axis is the time required to execute each
application iteration (in µs), and the x-axis is the iteration
number. Graphs omit the first five iterations, considering these
as the warm-up period. Each graph has 4 curves:

• Baseline (black line): execution of the applications with-
out communication with peripherals. Input data is as-
sumed to be stored in the local memories, and results
are also stored in the local memories. Simulating the
baseline MCSoC aims to evaluate the overhead due to
the communication with peripherals.

• Single DSZ (blue line): only the reference application
(DTW or MPEG) executes in the system. The goal of
simulating the DSZ approach without other applications
is to evaluate the DSZ method in the absence of the
masking effect.

• DSZ approach (red line) using evaluation scenario pre-
sented on Figure 5(a).

• SeMAP approach (green line) using evaluation scenario
presented on Figure 5(b).
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(a) DTW iteration latency. Execution time (ms): 18.26 (baseline), 18.44
(single DSZ), 18.51 (DSZ), 18.37 (SeMAP ).
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(b) MPEG iteration latency. Execution time (ms): 13.82 (baseline), 13.91
(single DSZ), 13.94 (DSZ), 13.98 (SeMAP ).

Fig. 6. Iteration latency using the baseline MCSoC, DSZ and SeMAP .

Figure 6 shows that:
• Comparing SeMAP and Single DSZ versus Baseline,

the latency per iteration increases 1.2% (MPEG) to 7.3%
(DTW) when there is IO communication (average val-
ues). The latency increases due to the: (i) non-minimum
paths; (ii) master-slave communication protocol, i. e., all
transactions started by the Appsec; (iii) management of
APs in the DSZ method (opening and closing of APs at
each transaction).

• Total execution time has a minimal overhead - 1.3%
for DTW (Baseline versus DSZ) and 0.5% for MPEG
(Baseline versus SeMAP).

• SeMAP reduces the latency per iteration (0.33% for
MPEG and 2.7% for DTW, best cases) compared to
Single DSZ because it does not need to manage APs.
On the other hand, there is a latency per AP to start the
application execution, as it is necessary to compute the
paths for each AP (25µs@100MHz - average value per
path).

• The masking effect, observed in DSZ (red curves), in-
creases the iteration latency when a new application
enters the system, blocking the PE→Peripheral commu-
nication, requiring to reroute the broken paths. In both
scenarios, the masking effect only affects few iterations,
since this mechanism is activated once, being the alter-
native path taken for the subsequent communications.
The valley observed in the first scenario is due to the
application pipeline behavior, i.e., while a task is blocked
waiting for a new path, the other tasks continue to run.
The performance degradation increases in scenarios with
a larger number of broken paths,

• SeMAP is immune to the masking effect, presenting
a small latency increase (0.2% to 1.8%) when a new

application enters the system. The network traffic in-
creases when a new application is admitted due to the
transmission of the object code of the tasks. This increase
in network traffic explains the slight increase observed in
latency.

B. AP Security Evaluation

We executed an attack campaign with three different packet
types arriving on APs: (i) application packets (PE-PE); (ii) IO
packets with incorrect key; (iii) IO packets with a forged key.
In scenarios i and ii, the APs correctly dropped the packets
and notified the arrival of a suspicious packet to the system
manager.

The master-slave protocol adds a random sequence number
in the request packet (for read or write operations). The IO
must answer with this number. Consider scenario iii, where
the malicious peripheral forges the key and the AP address. In
both methods, the packet reaches the PE, which notifies the
system manager to isolate the malicious peripheral upon the
reception of an unexpected packet or a packet with a wrong
sequence number (it would be costly in terms of silicon area to
have registers in the AP to store a list of malicious peripherals).
Thus, it is necessary to meet four conditions to execute a suc-
cessful attack (i) correctly forge the key; (ii) send the packet
to the AP address; (iii) insert the packet into the SZ when
a task is waiting for a peripheral answer; (iv) generate the
correct sequence number. We consider that the fulfillment of
these four conditions has a minimal probability of occurring,
being sufficient to guarantee a secure communication between
Appsecs and peripherals.

C. Discussion

According to the threat model (Section III), both DZS
and SeMAP methods avoid spoofing and DoS (flooding)
by detecting malicious packets arriving at an AP, blocking
them, and notifying the address of the malicious entity (PE
ou peripheral) to the system manager. The communication
API avoids DoS (blocking) attacks when the communication
started in the SZ does not receive an answer after a given
period (watch-dog timer).

Table I compares the DSZ and SeMAP methods quali-
tatively. The DSZ is recommended for scenarios with few
SZs coexisting simultaneously (due to the masking effect) and
a few tasks communicating with IO (due to the alignment
effect). The proposed SeMAP is a generic approach to map
Appsecs, without the restrictions observed in the DSZ method.
Despite the advantages, SeMAP has limitations related to
the use of resources and possible congestion in the AP. It is
possible to mitigate the first limitation with defragmentation
techniques, and the second limitation would only occur in
cases of very intense communication with peripherals.

VI. CONCLUSION

The Introduction raised the following question: how to
protect the communication of applications with peripherals?
The answer is to use the DSZ or SeMAP methods, which
secure the SZ↔IO communication against spoofing, DoS,
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TABLE I
DSZ AND SEMAP QUALITATIVE COMPARISON.

DSZ SeMAP

PROS

Better resource utilization due to the mapping flexibility Single bidirectional AP per Appsec, reducing the attack surface

Communication with peripherals is not concentrated in a
single AP (better traffic distribution)

The AP stays opened during the Appsec execution, avoiding
configuration messages per IO transaction, reducing its
management cost
No alignment effect
No masking effect
The nearest PE to the peripheral does not need to be interrupted
to compute a path to the SZ and is unaware of the AP position

CONS
Masking effect (Section IV-A) Smaller resource utilization than DSZ due to the partition of

the system into gray and secure areas

Alignment effect (Section IV-A) Fragmentation of the secure areas at runtime. It is possible to
defragment the system using task migration

Several APs opened in SZ simultaneously, increasing the
attack surface

Peripheral traffic concentrated in a single AP may lead to NoC
congestion

and snooping attacks. DSZ is flexible in mapping the SZ at
any place of the MCSoC but presents limitations related to
the SZ↔IO paths and APs (larger attack surface). SeMAP
adopts a restrictive mapping (secure and gray areas) and one
bidirectional AP per SZ. Results show that the iteration latency
increases up to 7.3% when communicating with peripherals,
but the overhead is minimal considering the total execution
time (worst-case 1.3%).

SeMAP is the architecture to adopt due to the absence of
the limitations compromising the DSZ method.

Future work includes: (i) define a Secure NI to be inserted
between the MCSoC and an IO device; (ii) add a reservation
protocol in the IO communication API to avoid a peripheral
answering to a malicious request; (iii) study defragmentation
techniques to be deployed at runtime.
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Abstract—NoC-based many-cores, with hundreds of IPs, are
the current standard in the high-performance electronic industry.
The attack surface on these systems increases at the same
pace the complexity increases. Delegating security to software
mechanisms does not guarantee system integrity, as it leaves the
hardware exposed. Thus, adding hardware mechanisms in the
many-core design is a requirement to execute applications safely.
Proposals available in the literature include firewalls, spatial
isolation, crypto cores, and PUFs, neglecting that applications
communicate with peripherals, such as hardware accelerators
and shared memories. This work presents a method to protect
the communication between processing elements and peripherals
by using a lightweight authentication process associated with
hardware mechanisms for key generation and renewal. Our pro-
tocol protects the communication of applications with peripherals
and simultaneously detects attacks such as DoS, spoofing, and
eavesdropping. Attack campaigns show the method’s effectiveness
in blocking such attacks without impairing the application’s
performance.

Index Terms—Security, NoC-based Many-cores, Secure Zones,
Authentication, Peripherals.

I. INTRODUCTION

Many-core systems-on-chip (MCSoCs) complexity makes
security a design requirement as relevant as conventional met-
rics such as power, performance, and area. MCSoCs contain
processing elements (PEs), peripherals attached to the system,
and an NoC connecting them. These systems have different
flows traversing the NoC: PE-PE and PE-peripheral flows.
Malicious hardware or software can hinder system security
due to resource-sharing, such as multitasking (CPU sharing)
or shared NoC links between flows from different applications.

Proposals [1]–[3] optimize the communication performance
with peripherals, or systems with real-time constraints, without
considering security issues. On the other hand, the concern of
[4, 5] is to protect access to shared memory. Grammatikakis
et al. [4] propose an NoC firewall to protect a shared memory
accessed through the NoC, avoiding sensitive data corruption
or access from an unauthorized element. The firewall isolates
the NoC, only allowing an authorized process of the MCSoC
to access the memory. Reinbrecht et al. [5] also focus on
the security of MCSoCs with shared memories. The Authors
propose the Gossip-NoC, which includes a traffic monitor.
When an anomalous behavior is detected, the monitor sends an
alert message to a system manager, which changes the routing
algorithm from XY to YX, avoiding malicious traffic. General
security methods to protect access to peripherals other than
shared memories are a gap in the literature. Actual many-
cores have a rich set of accelerators besides shared memories,

requiring the availability of security mechanisms to protect the
communication.

The literature presents proposals for protecting applications
running in many-cores, such as firewalls [6, 7], encryption
[6, 8], routing obfuscation [9, 10], secure zones (SZ) [11]–
[14], among others. However, applications communicate with
peripherals, where efficient methods to secure this commu-
nication are a gap to fulfill. The objective of this work is
to present a mechanism to protect the communication with
peripherals based on a lightweight authentication process
associated with hardware mechanisms for key generation and
renewal. Application protection uses SZ mechanisms due to its
effectiveness against attacks from malicious flows and tasks.

Our original contribution is a lightweight authentication
protocol that protects the communication of applications with
peripherals and simultaneously detects attacks such as DoS,
spoofing, and eavesdropping. Attack campaigns show the
capability of the method to block such attacks with minimal
effect on the application’s performance (smaller than < 0.3%
on the application execution time).

II. SECURE ARCHITECTURE MODEL

Figure 1 presents the MCSoC architecture. The two main
system components are:

• PE: 32-bit RISC processor, a NI (Network Interface)
with DMA capabilities, local scratchpad memory, and
two NoC routers;

• Peripherals: an SNI (Secure NI) makes the interface
between the NoC and IO devices.

MPE

IO
SNI

IO
SNI

p

SZ 1

SZ 2

SZ 3

: Blocked Links
: AP - Access Points

MPE: Manager PE
Peripheral: SNI + IO
SNI: Secure Network Interface
IO: Input/Output Device
p: path SZ ⇔ peripheral, 
  passing through an AP  

Firefox file:///Users/moraes/Library/Mobile%20Documents/com~apple~Clo...

1 of 1 24/10/22 16:41

Fig. 1. MCSoC partitioned on secure and gray areas (SA and GA). Three
Appsec mapped on SZ1 to SZ3. GA is reserved for applications without
security constraints.

The MCSoC uses two NoCs: data and control NoCs. The
data NoC transmits messages from tasks running on PEs and
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data from/to IO devices (as shared memories and hardware
accelerators). The data NoC has duplicated 16-bit links, uses
wormhole packet switching, XY and source routing support.
The control NoC transmits control messages using broadcast.

Secure Zones (SZ) [15, 16] is a protection mechanism
adopted in MCSoC, which uses spatial isolation to protect
applications. We adopt the Opaque Secure Zone (OSZ)
method, proposed in [13], to protect applications with security
constraints – Appsec. OSZ is a runtime defense mechanism
that finds a region with available PEs to map an Appsec.
The secure zone activation occurs by blocking all links at the
boundaries of the secure zone.

This work extends the OSZ method by proposing a secure
communication method between Appsec and IO devices. The
two main actors involved in the communication are: Access
Point (AP) and SNI. The AP is a hardware module that
manages the traffic at the SZ boundary. Each OSZ has only
one AP to reduce the surface attack, and its location may
change at runtime when detecting suspicious behavior. The
SNI controls access to the IO device by authenticating flows.

The system has secure and gray areas (SA and GA), as
shown in Figure 1. SA receives Appsecs, and GA applications
without security requirements. The definition of the shape and
location of these areas occurs at the system startup and cannot
change at runtime. The System Manager (MPE) maps Appsecs
on secure areas. Internal flows in the SZ use XY routing. Flows
to/from peripherals use XY routing to/from the AP, and the
exposed path p is routed using source routing. The adoption
of source routing in the exposed path obfuscates the source
and target addresses [17, 18], being an important security
mechanism of the proposed approach.

III. THREAT MODEL AND SECURITY MECHANISMS

At the same time that the AP enables the communication
of Appsecs with IO devices, it introduces vulnerabilities.

Packets entering SZ through the AP can cause attacks
such as DoS (denial-of-service) [19], spoofing [20], and data
corruption. The effects of these attacks include performance
degradation up to the complete application hang.

Malicious packets to peripherals may execute DoS, spoof-
ing, eavesdropping, and data corruption. Besides modifying
the application data, with unpredictable effects, the intruder
may steal sensitive information stored in the IO device.

The exposed path peripheral-SZ is prone to Hardware
Trojans (HTs) and side-channel attacks (SCAs). The HT may
access the packet content, corrupt the original data, execute an
eavesdropping attack, misroute, or block packets [21]–[23].

Finally, the IO device may be malicious and execute DoS
attacks or transmit the application data to an intruder.

Hashing and CRC mechanisms [24] may address data
integrity, while lightweight encryption [25] provides confiden-
tiality. SCAs are out of the scope of this work. Our goal
is to prevent DoS attacks, spoofing, and eavesdropping, not
allowing malicious packets to enter SZs or SNIs, nor malicious
IO devices performing unauthorized data injection. To mitigate
these attacks, we adopt the following security mechanisms:

1) master-slave communication, where all accesses to pe-
ripheral starts by the Appsec running in the SZ;

2) differentiated communication APIs for PE-PE and PE-
peripheral communication;

3) transaction counters on the AP, with key renewal when
reaching a pre-defined number of transactions or when
suspicious behavior is detected;

4) obfuscation of packet source and destination addresses
through the use of source routing;

5) lightweight authentication mechanism, described in the
next Section.

The assumed trusty components are the MPE and the control
NoC. The control NoC is considered trusty because tasks do
not have access to it. Only the operating system (OS) of the
PEs may access the control NoC.

IV. AUTHENTICATION PROTOCOL

This Section presents the main contribution of this work:
the lightweight authentication protocol, divided in four phases:
Initialization, Application Deploy, Communication, and Key
Renewal.

A. Initialization

The initialization phase occurs at system startup. The MPE
generates unique keys, named k0, for each PE and SNI in
the system and sends them to their respective PEs and SNIs.
Since this action occurs when there is no other application or
traffic in the system, these values can be transmitted without
encryption, exempting the use of complex key distribution
mechanisms such as Diffie-Hellmann [26], which would result
in software and hardware overheads. Applications and IO de-
vices do not have access to k0, guaranteeing the confidentiality
and integrity of these keys.

B. Application Deploy

The MCSoC has a peripheral named “Application Injector”
– Appinj , responsible for deploying new applications into the
system. Only the MPE receives requests from the Appinj
(New_App messages), which executes the mapping heuristic,
and manages the SZs. Figure 2 presents the diagram of the
Application Deploy phase, fired when the Appinj requests the
execution of an Appsec.

NEW_APP

appID = rnd()
n = rnd()
p = rnd()

k1 = LFSR(appID,n)
appID = (f1) ⊕ k0

k2 = LFSR(appID,p)

PE1

TASK_ALLOCATED

[allocTasks == numTasks] 

br_SET_AP(address, port)

AP_POSITION 
(address, port)

TASK_RELEASE(i1, i2)

k1 = LFSR(appID,n)
appID = (f1) ⊕ k0

k2 = LFSR(appID,p)
path = SRpath

IO_CONFIG
(i1, i2, SRpath)

...SNI AP PEnMPE

k1
k2
Cin = Cout = 0

AP
manager
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Fig. 2. Sequence diagram of the Application Deploy phase.

The MPE maps the Appsec and transmits the mapping
result to the Appinj , which transmits the application object
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code (protected by a Message Authentication Code mechanism
[13]) to the selected PEs in the secure area. In parallel,
the MPE randomly generates the tuple {appID, n, p}, where
appID is a unique application identifier and {n, p} integer
values. The MPE transmits Task_Release messages to all
Appsec PEs with two initialization flits, i1 and i2 (Equation
1), with the tuple obfuscated by k0.

i1 = appID ⊕ k0PEx i2 = (n & p)⊕ k0PEx (1)

PEs restore {appID, n, p} upon receiving the initialization
flits: appID = i1 ⊕ k0PEx

; n = MSB(i2 ⊕ k0PEx
);

p = LSB(i2 ⊕ k0PEx
). The appID is the seed for a Linear-

feedback shift register (LFSR). The {n, p} values correspond
to the number of shifts in the LFSR to generate the authen-
tication keys {k1, k2}. The reason to use an LFSR for key
generation comes from its simple hardware implementation
and linearity. At the end of this step, all PEs have the
same {k1, k2} keys, without transmitting them through the
NoC. The PEs notify the MPE through a Task_Allocated
message the correct object code reception and keys generation.

The MPE executes four actions after receiving all
Task_Allocated messages: (i) elects a PE as “AP man-
ager”, transmitting to it the AP coordinate (br_Set_AP via
control NoC); (ii) configures the SNIs with {appID, n, p} and
the path from the SNI to the AP (IO_config); (iii) sends
through the control NoC a message to block the SZ links (not
included in the figure); (iv) sends through the control NoC a
message to start Appsec (not included in the figure).

The “AP manager” configures the AP, transmits {k1, k2} to
it, and resets the transaction counters {Cin,Cout}. The “AP
manager” also broadcasts the AP address for all PEs executing
Appsec (AP_position).

At the end of the Application Deploy phase, all PEs and
peripherals of Appsec have the authentication keys {k1, k2},
all links of the SZ boundary block the traffic, except at the
AP, as presented in Figure 1.

C. Communication
This phase corresponds to authenticated communication

between Appsec tasks and peripherals. Due to the master-
slave communication method, tasks are responsible for start-
ing the communication. Tasks may execute two services:
IO_delivery, corresponding to sending data to a periph-
eral; IO_request, corresponding to reading data from a pe-
ripheral. Both services must include the tuple {appID, k1, k2}
encoded in two flits (Equation 2).

f1 = k1PE ⊕ k2PE f2 = appID ⊕ k2PE (2)

The SNI authenticates the received packet by retrieving the
appID with the k1 value stored at the SNI, as presented in
Figure 3(a) (Equation 3).

(f1 ⊕ k1SNI)⊕ f2 == appIDSNI (3)

The SNI discards the packet if the authentication fails,
avoiding DoS and spoofing attacks.

The answer packet, SNI→SZ, has two authentication lo-
cations, at the AP and the target PE. The AP extracts k2

(a)  (f1⊕⊕ k1SNI) ⊕⊕ f2 == appIDSNI

pass

k1AP

k2'

k2AP

=f1appID'

k2'

Authentication 
OK

f1

f2

k1SNI appIDSNI

=

(b)  (f1⊕⊕ k1AP) == k2AP

Firefox file:///Users/moraes/Library/Mobile%20Documents/com~apple~Clo...

1 of 1 20/10/22 16:24

Fig. 3. Lightweight authentication modules.

from f1 (Figure 3(b)). If its equal to k2AP , the flit enters the
SZ. Otherwise, the AP discards the packet. This lightweight
verification avoids attacks such as spoofing and DoS. The
operating system (OS) extracts the AppID (f2SNI ⊕ k2PE)
when the packet arrives at the PE. Then it is valid if the
retrieved AppID matches the stored AppID.

Using flits {f1,f2} with the same values for a long time is an
attack opportunity for a malicious entity, e.g., an eavesdrop-
ping attack executed by an HT. Note that stealing {f1,f2} is
not a sufficient condition for making an attack. Due to source
routing, the attacker does not have access to the SNI and AP
addresses, and there is control related to the number of packets
received at the AP (transaction counters). To increase the
security of the method, the authentication mechanism renews
periodically {k1,k2}, even if there is no threat detection.

D. Key Renewal

The transaction counters {Cin,Cout} complement the au-
thentication process. Condition Cin < Cout must always be
satisfied to accept a packet, due to the master-slave communi-
cation protocol. Two events start the key renewal process: (i)
Cout reaches a threshold value defined at design time (64 in
our current implementation); (ii) malicious packet detection:
a packet without an IO flag, Cin indicating an unexpected
packet, or authentication fails. The AP notifies the MPE upon
receiving a malicious packet.

The key renewal process starts with the AP notifying the
“AP manager” (APM) to generate new keys. For synchro-
nization reasons, the APM notifies all PEs in the SZ to
complete any pending IO transaction, freezing the following
IO communications. When all PEs in the SZ notify the APM,
it generates two new random numbers {n, p}, transmitted
to all the PEs in the SZ to generate new keys {k1, k2}
using the LFRS (the seed is the previous k2 key). The APM
also transmits the new {k1, k2} keys to the AP and resets
{Cin,Cout}. This first part of the key renewal takes place
inside the SZ, with no risk related to their security.

However, the key renewal process on peripherals cannot
use the data NoC due to the probability of attacks. For this
reason, the APM sends through the control NoC the tuple
{AppID, n, p} to the SNI, which locates the stored k2 in its
table, deriving new keys using its LFSR.

The last step in the key renewal step is the transmission to
the PEs in the SZ to unfreeze the IO transactions.

V. RESULTS

Experiments use a 4x4 MCSoC running a DTW application
(6 tasks) in an SZ (3x2), communicating with two peripherals.
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The system is modeled at the RTL level, being the routers in
VHDL and the remaining modules in SystemC.

A. Software and Hardware Overheads
Table I evaluates the Application Deploy and Key Renewal

protocol phases. The row Application Deploy corresponds
to the time (in clock cycles, cc) the application takes to
start its execution with the SZ closed. Using the protocol
detailed in Figure 2, the average overhead was 3.19%. The
Key Renewal process took 5,921 ccs. This corresponds to a
best-case scenario since no PEs have pending IO transactions,
speeding up the renewal process.

TABLE I
EXECUTION TIME OF PROTOCOL PHASES.

Phase Time (clock cycles)
SZ w/ Auth. Protocol %

Application Deploy 30,118 31,080 3.19%
Key Renewal - 5,921

The hardware overhead in the PE corresponds to the AP and
the control NoC. The logic synthesis (Cadence Genus, 28 nm
technology library) resulted in: data router: 6,880 gates, 12,789
µm2; AP: 228 gates, 433µm2; control router: 3,196 gates,
4,652 µm2. The area overhead, compared to the data Router,
of 4 APs and control router is 13.4% and 36.4%, respectively.

B. Security Evaluation
Table II presents the attack scenarios, considering the threat

model (Section III). The attack campaign targets the AP and
the SNIs (first column). The second column presents the
attack scenarios: unprotected system, and the system using
the security methods under attacks with increasing complexity.
The third column details the effects and countermeasures
considering the security mechanisms proposed in this work.

TABLE II
SIMULATED SCENARIOS TO EVALUATE THE AUTHENTICATION METHOD.
Attack
target Scenario Effect & Countermeasure

AP

Unprotected
(DoS & Spoofing)

Latency increases, deadline misses,
Appsec hang

DoS AP discards packet (incorrect f1 or f2)
Spoofing
- Unexpected IO packet

AP discards packet (Cin = Cout)
Countermeasure: key renewal

Spoofing
- Expected IO packet
- Incorrect PE address

Packet enters the SZ
PE discards the malicious packet
Countermeasure: key renewal

Spoofing
- Expected IO packet
- Correct PE
- PE expecting the packet

Successful attack
Detection: correct answer packet
from the SNI starts key renewal

SNI
Unprotected

Intruder can read and write data
to/from the peripheral

DoS SNI discards packet

Spoofing
Successful attack
Detection: answer packet to Appsec
starts key renewal

The DoS attack assumes that the intruder knows the AP and
SNI locations, being able to flood the network with packets
targeting these components. The spoofing attack assumes that
a malicious entity (e.g., HT in the exposed path) executed an
eavesdropping attack, discovering flits {f1,f2} (Eq. 2).

A successful attack in the SZ is unlikely to occur, given the
number of conditions to meet. To attack the SNI it is necessary
to have access to flits {f1,f2}. However, in both cases, the
attack is detected, and countermeasures are executed.

Figure 4 presents the iteration latency for the unprotected
and secure systems under DoS (red background) and spoofing
(purple background) attacks. The x-axis corresponds to the
application iteration, and the y-axis the iteration latency.
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Fig. 4. Application latency for the unprotected and secure systems.

The DoS attack floods a random PE inside the SZ with
invalid packets. In the unprotected system, even though these
packets are discarded for having invalid content, they con-
stantly interrupt the PE affecting the Appsec execution time.
This attack increases the iteration time of the unprotected
system up to 22%. In the protected system, the DoS does not
directly affect the Appsec because the AP discards the packets.
However, a slight increase in the iteration time (up to 4.9%)
occurs due to the increased traffic attempting to enter the AP.

The spoofing attack sends packets with correct {f1,f2}
values, varying the target PE address. In the unprotected
system, the latency increases after the 13th iteration, rep-
resenting a packet being discarded. In the 17th iteration, a
malicious packet hits a PE waiting for an IO packet, causing
the application to hang.

In the secure system, the attack in the 13th iteration arrives
at the AP with correct {f1,f2} values, but at the wrong moment
(Cin == Cout). Thus, the AP discards the packet, and the
attack is detected, firing the key renewal process, explaining
the latency increase. The next malicious packets are discarded
at the AP, not impacting the latency.

VI. CONCLUSION

This work adopted the OSZ method to protect Appsec, and
five mechanisms to protect communication with IO devices: (i)
master-slave communication; (ii) differentiated communica-
tion APIs; (iii) transaction counters; (iv) address obfuscation;
(v) lightweight authentication protocol. Results showed the
effectiveness of the method. Besides the reduced software and
hardware overheads, to method protected applications against
DoS and Spoofing attack campaigns.

The proposal provides countermeasures to mitigate possible
attacks, with key renewal being the most important. Future
work includes the periodic modification of the AP position
and the path between the AP and the SNI.
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