
PONTIFICAL CATHOLIC UNIVERSITY OF RIO GRANDE DO SUL
SCHOOL OF TECHNOLOGY

COMPUTER ENGINEERING UNDERGRADUATE PROGRAM

PUC-RS5: A RISC-V
PROCESSOR CORE FOR

EMBEDDED USES

WILLIAN ANALDO NUNES

Thesis submitted to the Pontifical Catholic
University of Rio Grande do Sul in
partial fullfillment of the requirements
for the degree of Bachelor in Computer
Engineering.

Advisor: Prof. Dr. Ney Laert Vilar Calazans
Co-Advisor: Marcos Luiggi Lemos Sartori

Porto Alegre
2022





For God and my family, their sacrifice and support made this journey possible.

“The things that we love tell us what we are.”
(St. Thomas Aquinas)





PUC-RS5: UM NÚCLEO PROCESSADOR RISC-V PARA USOS
EMBARCADOS

RESUMO

A arquitetura RISC-V é modular e extensivel, sendo versátil para aplicar em múlti-
plos usos. A capacidade de atender interrupções e tratar exceções é essencial em sistemas
embarcados como os usados em computação robótica, controle industrial ou sistemas vei-
culares, A arquitetura privilegiada do RISC-V define níveis de privilégio de operação e um
conjunto de registradores de controle e de armazenamento de informação, estes últimos
conhecidos como CSRs. Através de CSRs se dá o controle dos modos de privilégio e
que se gere ações necessárias para realizar a manipulação de armadilhas (interrupções e
exceções). Este trabalho descreve o projeto e implementação de PUC-RS5, um núcleo pro-
cessador que implementa a ISA RV32I com a extensão Zicsr, para dar um suporte mínimo
à arquitetura privilegiada RISC-V. O modo de privilégio de máquina é suportado pelo núcleo
PUC-RS5; o suporte a outros modos é considerado um relevante trabalho futuro. A organi-
zação PUC-RS5 é um pipeline com emissão única, de 4 estágios, dotado de organização
Harvard. Define-se para este núcleo uma interface com ambiente de execução (EEI), que é
prototipada em uma plataforma baseada em FPGA juntamente com o núcleo. Neste ambi-
ente integram-se mecanismos capazes de gerar interrupções, como timers e botões exter-
nos para validar as rotinas de tratamento de armadilhas. PUC-RS5 é uma implementação
de código aberto, minimalista, extensível e de baixo custo em área. Quando comparado
com processadores descritos na literatura disponível, apresenta resultados comparáveis
aos que lhe são próximos em funcionalidade. Sua operação é demonstrada sobre a pla-
taforma Nexys A7 com um FPGA xc7a100tcsg324-1 da Xilinx, utilizando neste dispositivo
1542 LUTs e 814 FFs. O PUC-RS5 é uma evolução de trabalhos anteriores, demonstrando
funcionalidade adicional, qual seja a possibilidade de tratar interrupções e exceções. O
núcleo PUC-RS5 foi validado por simulação e em hardware, executando com sucesso a
suíte de Berkeley, o conjunto de programas de teste Coremark, e outros aplicativos simples
desenvolvidos para este fim.

Palavras-Chave: Sistemas embarcados, RISC-V, Arquitetura do conjunto de instruções,
ISA, Arquitetura privilegiada, Núcleo processador.





PUC-RS5: A RISC-V PROCESSOR CORE FOR EMBEDDED USES

ABSTRACT

The RISC-V architecture is modular and extensible, being versatile enough to ap-
ply in multiple uses. The ability to service interrupts and handle exceptions is essential in
embedded systems such as those used in robotic computing, industrial control, or vehicular
systems. The privileged architecture of RISC-V defines operating privilege levels and a set
of control and information storage registers, the later known as CSRs. Through CSRs, the
privilege modes are controlled and the necessary actions are generated to carry out the
manipulation of traps (interrupts and exceptions). This work describes the design and im-
plementation of PUC-RS5, a processor core that implements the ISA RV32I with the Zicsr
extension, to provide minimal support for the privileged RISC-V architecture. The machine
privilege mode is supported by the PUC-RS5 core; support to other modes is a relevant
future work. The PUC-RS5 organization is a 4-stage, single-issue pipeline with Harvard
organization. An execution environment interface (EEI) is defined for the core, which is pro-
totyped on an FPGA-based platform along with the core. In this environment, mechanisms
capable of generating interrupts are integrated, such as timers and external buttons to vali-
date trap handling routines. PUC-RS5 is an open source, minimalist, extensible and with low
area cost implementation. When compared to processors described in the available litera-
ture, it presents results comparable to those that are close to it in functionality. Its operation is
demonstrated on the Nexys A7 platform with an FPGA xc7a100tcsg324-1 from Xilinx, using
1542 LUTs and 814 FFs in this device. PUC-RS5 is an evolution of previous works, demon-
strating additional functionality, namely the capacity to handle interruptions and exceptions.
The PUC-RS5 core has been both simulation- and hardware-validated, successfully running
the Berkeley suite, the Coremark test suite, and other simple applications developed for this
purpose.

Keywords: Embedded systems, RISC-V, Instruction set architecture, ISA, Privileged archi-
tecture, Processor core.





LIST OF FIGURES

Figure 3.1 – The Ibex RISC-V core pipeline organization. . . . . . . . . . . . . . . . . . . . . 40

Figure 3.2 – The SCR1 RISC-V core organization. . . . . . . . . . . . . . . . . . . . . . . . . . 41

Figure 3.3 – The Steel RISC-V core organization. . . . . . . . . . . . . . . . . . . . . . . . . . 42

Figure 3.4 – The Siwa System-on-Chip organization. . . . . . . . . . . . . . . . . . . . . . . . 43

Figure 3.5 – CompROS hardware architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

Figure 3.6 – Hardware-Software Stack. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

Figure 4.1 – Block diagram for the PUCRS-RV organization. . . . . . . . . . . . . . . . . . 48

Figure 4.2 – Block diagram proposed for the PUC-RS5 hardware organization. . . . 51

Figure 5.1 – The PUC-RS5 processor core interface. . . . . . . . . . . . . . . . . . . . . . . . 55

Figure 5.2 – Definition of Zicsr instructions format. . . . . . . . . . . . . . . . . . . . . . . . . . 58

Figure 5.3 – The PUC-RS5 trap handling flow. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

Figure 5.4 – The PUC-RS5 memory interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

Figure 6.1 – The PUC-RS5 core prototyping environment block diagram. . . . . . . . 85

Figure 6.2 – Peripherals features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

Figure 7.1 – PUC-RS5 detailed area usage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98





LIST OF TABLES

Table 2.1 – The currently defined RISC-V modules . . . . . . . . . . . . . . . . . . . . . . . . . 31

Table 2.2 – RISC-V privilege levels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

Table 4.1 – Supported combinations of privilege modes. . . . . . . . . . . . . . . . . . . . . 53

Table 5.1 – Description of control signals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

Table 5.2 – When an instruction reads or writes a CSR. . . . . . . . . . . . . . . . . . . . . . 58

Table 5.3 – Implemented RISC-V unprivileged CSRs. . . . . . . . . . . . . . . . . . . . . . . . 67

Table 5.4 – Implemented RISC-V machine-level CSRs. . . . . . . . . . . . . . . . . . . . . . 68

Table 5.5 – Machine cause register (mcause) values after trap. . . . . . . . . . . . . . . . . 71

Table 5.6 – Description of the memory interface signals. . . . . . . . . . . . . . . . . . . . . 80

Table 6.1 – PUC-RS5 Memory-mapped registers. . . . . . . . . . . . . . . . . . . . . . . . . . 83

Table 7.1 – PUCRS-RV resource usage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

Table 7.2 – PUC-RS5 resource usage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

Table 7.3 – PUC-RS5 and prototyping environment overall resource usage report. 98

Table 7.4 – Comparison of PUC-RS5 with similar processor cores. . . . . . . . . . . . . 98

Table 7.5 – Performance comparison of PUC-RS5 to similar processor cores. . . . . 100





LISTINGS

5.1 Enumeration definitions for the Zicsr instructions. . . . . . . . . . . . . . . . . . . . . . . . 61
5.2 The Zicsr instruction decoding process. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.3 The CSR unit interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.4 CSR instructions exception detection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.5 Generation of operands and read and write enables for CSR Bank. . . . . . . . . . 64
5.6 Data and operation definition for CSR Bank. . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.7 Definition of CSR addresses and codes for exceptions and interrupts. . . . . . . . 66
5.8 Generation of the data to be written in the CSR Bank. . . . . . . . . . . . . . . . . . . . 69
5.9 Integration of the CSR Bank with Fetch Unit. . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.10 Code for the boot routine. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
5.11 Code for the trap handler routine. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.12 Code for the exception handler routine. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
5.13 Code for an interrupt handler routine. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.14 Code for the return handler routine. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
5.15 Control of the data bus access. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
6.1 Memory Initializer Generator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
6.2 Generation of interrupt request signal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91





LIST OF ACRONYMS

ALU – Arithmetic Logic Unit

APPINJ – Application Injectors

ARM – Advanced RISC Machines

ASCEND – Asynchronous Standard Cells for ‘n’ Designs

ASIC – Application Specific Integrated Circuit

BGEZ – Branch if Greater or Equal to Zero

BOOM – Berkeley Out-of-Order Machine

BRAM – Block Random Access Memory

CISC – Complex Instruction Set Computer

CLB – Configurable Logic Block

CLIC – Core Local Interrupt Controller

CLINT – Core Local Interrupter

CPU – Central Processing Unit

CSR – Control and Status Register

DMA – Direct Memory Access

DMNI – Direct Memory Network Interface

FF – Flip-Flop

FIFO – First-In-First-Out

FPGA – Field Programmable Gate Array

FSM – Finite State Machine

GUI – Graphic User Interface

GPIO – General Purpose Input/Output

GPPC – General Purpose Processing Cores

GPU – Graphics Processing Unit

HART – Hardware Thread

HDL – Hardware Description Language

HRT – Hard Real-Time

IC – Integrated Circuit

ID – Instruction Decoder

IOT – Internet of Things

IP – Intellectual Property

IR – Interrupt Register



IRQ – Interrupt Request

ISA – Instruction Set Architecture

LUT – Look Up Table

MBC – Memory and Bus Controller

MCAUSE – Machine Cause Register

MEMPHIS – Many-core Modeling Platform for Heterogeneous SoCs

MEPC – Machine Exception Program Counter

MIE – Machine Interrupt Enable

MIP – Machine Interrupt Pending

MPIE – Machine Previous Interrupt Enable

MPP – Machine Previous Privilege

MPSOC – Multi-Processor System-on-Chip

NI – Network Interface

NRT – Non-Real-Time

PC – Program Counter

PE – Processing Elements

PL – Programmable Logic

PLIC – Platform Level Interrupt Controller

PS – Processing System

PUC-RS5 – PUCRS RISC-V Privileged Architecture

PUCRS – Pontifical Catholic University of Rio Grande do Sul

PUCRS-RV – PUCRS RISC-V

PULP – Parallel Ultra Low Power

QDI – Quasi Delay Insensitive

RAM – Random Access Memory

RF – Register File

RISC – Reduced Instruction Set Computer

ROM – Read Only Memory

ROS – Robotic Operation System

RTL – Register Transfer Level

SOC – System-on-Chip

SPI – Serial Peripheral Interface

SRT – Soft Real-Time

SW – Store Word



UART – Universal Asynchronous Receiver Transmitter

VLSI – Very Large Scale Integration

XU – Execute Unit





CONTENTS

1 INTRODUCTION AND MOTIVATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.1 MOTIVATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

1.2 OBJECTIVES AND CONTRIBUTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2 BACKGROUND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.1 INSTRUCTION SET ARCHITECTURES - ISAS . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.1.1 THE RISC-V ISA SET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.2 THE RISC-V PRIVILEGED ARCHITECTURE . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.2.1 RISC-V INTERRUPT ORGANIZATION MODES . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.3 THE PUCRS-RV PROCESSOR CORE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.4 EXAMPLES OF EMBEDDED USES FOR PROCESSORS . . . . . . . . . . . . . . . . 35

2.4.1 ROBOTIC APPLICATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.4.2 MULTI-CORE/MANY-CORE APPLICATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3 STATE OF THE ART . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.1 SIMILAR PROCESSOR CORES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.1.1 THE PARALLEL ULTRA LOW POWER (PULP) PLATFORM . . . . . . . . . . . . . . . 39

3.1.2 IBEX CORE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.1.3 SCR1 CORE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.1.4 THE STEEL RISC-V CORE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.2 RISC-V APPLIED TO ROBOTICS APPLICATIONS . . . . . . . . . . . . . . . . . . . . . . 42

3.2.1 SIWA: CUSTOM RISC-V BASED SOC FOR LOW POWER MEDICAL APPLI-
CATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.2.2 COMPROS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.2.3 RISC-V FPGA PLATFORM TOWARD ROS-BASED ROBOTICS APPLICATION 45

3.3 THE MEMPHIS PLATFORM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4 WORK PROPOSAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.1 PUCRS-RV ORGANIZATION: HISTORY AND STRUCTURE . . . . . . . . . . . . . . . 47

4.1.1 THE ARV SPECIFICATION AND ASIC IMPLEMENTATION . . . . . . . . . . . . . . . . 49

4.1.2 THE PUCRS-RV SYSTEM VERILOG DESIGN AND IMPLEMENTATION . . . . . 50

4.2 CHANGES FROM PUCRS-RV TO PUC-RS5 . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.3 RISC-V PRIVILEGED ARCHITECTURE AND THE ZICSR EXTENSION . . . . . . 52



4.4 THE PUC-RS5 INTERRUPT ORGANIZATION MODE . . . . . . . . . . . . . . . . . . . . 54

5 THE PUC-RS5 CORE IMPLEMENTATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.1 CHANGES TO THE PUCRS-RV PIPELINE . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.2 THE ZICSR EXTENSION IMPLEMENTATION . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.2.1 CSRRW INSTRUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.2.2 CSRRWI INSTRUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.2.3 CSRRS INSTRUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.2.4 CSRRSI INSTRUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.2.5 CSRRC INSTRUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.2.6 CSRRCI INSTRUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.3 THE CSR UNIT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.3.1 CSR ENUMERATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.3.2 CSR INSTRUCTIONS DECODING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.3.3 CSR EXECUTE UNIT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.4 THE CSR BANK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.4.1 READ OPERATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.4.2 WRITE OPERATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.4.3 MACHINE RETURN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.4.4 EXCEPTION TRAP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.4.5 INTERRUPT TRAP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.5 THE CSR REGISTER BANK INTEGRATION . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.5.1 INTEGRATION WITH FETCH UNIT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.5.2 INTEGRATION WITH THE RETIRE UNIT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.6 SOFTWARE SUPPORT FOR THE PRIVILEGED ARCHITECTURE . . . . . . . . . 73

5.6.1 BOOT CONFIGURATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.6.2 THE TRAP HANDLER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.6.3 THE EXCEPTION HANDLER ROUTINE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.6.4 THE INTERRUPT HANDLER ROUTINE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.6.5 THE RETURN HANDLER ROUTINE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.7 REGISTER BANK CHANGES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.7.1 LOCKED REGISTERS QUEUE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.8 CHANGES TO THE MEMORY INTERFACE . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.9 PIPELINE STALL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81



6 THE PUC-RS5 CORE VALIDATION PROCESS . . . . . . . . . . . . . . . . . . . . . . . . . 83

6.1 THE PUC-RS5 TESTBENCH ENVIRONMENT . . . . . . . . . . . . . . . . . . . . . . . . . . 83

6.1.1 THE TESTBENCH RAM MODULE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

6.1.2 THE TESTBENCH MEMORY-MAPPED REGISTERS . . . . . . . . . . . . . . . . . . . . 84

6.2 PUC-RS5 PROTOTYPING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6.2.1 THE PUC-RS5 CORE LUTRAM REGISTER BANK VERSION . . . . . . . . . . . . . 86

6.2.2 THE BRAM-BASED PUC-RS5 MEMORY SUBSYSTEM . . . . . . . . . . . . . . . . . . 87

6.2.3 PERIPHERALS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

6.2.4 THE PROTOTYPING ENVIRONMENT UART . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

6.2.5 THE PROTOTYPING ENVIRONMENT INTERRUPT CONTROLLER . . . . . . . . . 91

6.2.6 THE PROTOTYPING ENVIRONMENT TIMERS . . . . . . . . . . . . . . . . . . . . . . . . . 92

6.2.7 BUTTON PRESS DETECTION AND INTERRUPT GENERATION . . . . . . . . . . . 92

6.3 THE PUC-RS5 PROTOTYPING PROCESS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

7 EXPERIMENTS AND RESULTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

7.1 AREA AND POWER RESULTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

7.1.1 COMPARISON BETWEEN PUCRS-RV AND PUC-RS5 CORES . . . . . . . . . . . . 96

7.1.2 COMPARISON BETWEEN PUC-RS5 AND SIMILAR CORES . . . . . . . . . . . . . . 97

7.2 PERFORMANCE RESULTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

8 CONCLUSIONS AND SUGGESTIONS FOR FURTHER WORK . . . . . . . . . . . . 103

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

APPENDIX A – An Excerpt of a RISC-V Reference Card . . . . . . . . . . . . . . . . . . 109





23

1. INTRODUCTION AND MOTIVATION

Simply said, a processor is a piece of digital hardware capable of executing soft-
ware. Today, processors are essential parts to build most, if not all, digital systems. The
variety of distinct processors available is huge and everyday sees the proposal of new pro-
cessors for specific or general purpose uses.

The study of processors is now a well-established and fundamental segment of
courses like Computer Science and Computer Engineering. Such study often comprises
approaching processors from two intertwined abstract points of view: processor architec-
ture and processor organization. Processor architecture studies processors as machines
that contain a set of relevant registers to store data and control information, that can ex-
ecute a set of instructions, with specified formats (source and binary), and that interacts
with external storage components (memories) where sequences of instructions and data
lie. Processor organization, in turn, relates more closely to digital hardware design and with
the process of mapping a processor architecture to a set of digital hardware components
that implement the architecture. The present work is about the implementation of a specific
processor core organization, called PUC-RS5 of a given processor architecture, the RISC-V
RV32I. The PUC-RS5 has as target its use in digital embedded systems for multiples uses,
typically in sensor-rich environments like robotic equipment and/or in multi- and many-core
chip multiprocessors for generic or specific applications.

A processor core or just a core as this work often refers, is a software executing unit
that can be a part of multiple environments. A core is often a fraction of an integrated circuit
(IC), but not necessarily. Also it often connects to external components that communicate
with it and complement its functionality. These components can be memories, communi-
cation modules, or even other processor cores. When this last situation occurs the overall
system might be referenced as a multi-core. Given the current advance in microelectronics
technologies, even complex cores can be embedded in large numbers inside a single small
silicon subtract with say just one or a few square millimeters.

An embedded system is a computational system that combines hardware and soft-
ware and is designed to perform a specific set of functions. These systems can have a fixed
functionality or be programmable. Embedded systems can vary in complexity, they can be
simple systems such as those present in many devices of daily use such as remote controls,
keyboards, digital watches, earphones, etc. But they are also present in complex and critical
applications, such as industrial machinery, complex medical equipment, airplanes, ground
vehicles etc. Embedded systems usually count with sensors and/or actuators that exchange
information with the environment. Sensors are used to obtain environmental parameters
that might be relevant for the correct operation of the system. They convert physical data
into electric signals that can be encoded, interpreted and processed. Embedded systems



24

are often used in Internet of Things (IoT) devices, which are Internet-connected devices that
can be accessed remotely and thus do not require humans to locally operate them. IoT
devices are becoming popular and keep boosting e.g. the popularization of smart houses,
smart buildings, and smart electric grids. More critical applications often rely on a Real-Time
Operating System (RTOS) a kind of operating system that has the ability to handle multiple
concurrent events and respect a set of defined deadlines for the execution of some or all of
its tasks.

Processor organizations can vary widely depending on the uses expected by the
processor. For example, it can include a simple single core used only for communicating data
to and from larger systems, or they can compose complex many-core systems responsible
for an convoluted computations such as those executed by artificial neural networks. The
features to implement in an processor core organization must be decided at a very early
stage in the project of a system.

The RISC-V Instruction Set Architecture (ISA) set of specifications has a big ad-
vantage over commercial ISAs when it comes to access to hardware, due to its openness
and associated features. The main reason for the rapid RISC-V popularization is that it is de-
fined as an open standard, integrated ISA set, which implies the ample availability of public
documents targeting every detail of each feature and its respective implementation, and also
a huge amount of worldwide contributors to the standard definition. The active community of
researchers, engineers, laboratories and enterprises is able to respond and contribute to the
improvement of RISC-V in very fast ways. Another reason that makes RISC-V an excellent
choice when it comes to projects is the modularity and extensibility of its definitions. RISC-
V is divided into very well-defined and well-documented parts called base and extension
modules [WA19]. A base module is in fact a complete ISA. Extensions are specific sets of
instructions, grouped by functionality. The base RISC-V ISA modules differ among them in
the overall characteristics such as instruction length and register bank configurations. Maybe
the most emblematic RISC-V module is the RV32I Base Integer Instruction Set. This is the
simplest ISA and its instructions are mandatory in every implementation of a RISC-V core.
RV32I defines instructions used for the most operations in general software such as arith-
metic and logic computations, control flow operations, and memory access actions. Besides
RV32I, the latest version of the RISC-V Instruction Set Manual (Unprivileged ISA) [WA19]
defines two other ratified ISAs, RV64I and RISC-V Weak Memory Ordering (RVWMO), and
also announces two draft ISAs, RV32E and RV128I.

RISC-V extension modules are optional and bring specific functionalities that com-
plement some base ISA. The current Unprivileged ISA Manual (V.20191213) lists RISC-
V 17 extensions, 8 of these already ratified, one frozen (i.e. with little room for changing
before ratification) and 8 in draft status. A more recent information, available at the site
https://wiki.riscv.org/display/HOME/Recently+Ratified+Extensions (as of November, 2022),
lists 14 new ratified classes of extensions that count with 54 extension variations as a whole.



25

These numbers attest the dinamicity of the research and development community around
the RISC-V effort in bringing a strong open source alternative to processor architecture
standardization. Among the most used ratified extensions it is worth citing here: the Multi-
plication and Division Extension (M), which introduces instructions for integer multiplication
and division; the Single-Precision Floating-Point Extension (F) introduces instructions that
can handle floating-point operations and that is the base for the another two extensions,
Double-Precision (D) and Quad-Precision (Q). Among the extensions defined for supporting
the interaction between a RISC-V core and the external world, there is the Zicsr extension
that defines instructions that manipulate Control and Status Registers (CSRs) and defines
the structure and function of the CSRs themselves. The Zicsr instructions perform atomic
operations in CSRs and are essential for the development of RISC-V organizations able to
interact in an orderly fashion with peripheral devices and systems. The fact that RISC-V is an
open-source standard allows the community to interfere in the production of new extensions
accordingly to specific needs, which allows proposing instructions and modules applicable
to specific domains, to achieve performance gains or other gains without the need of rely on
standard instructions only.

RISC-V also counts with a privileged architecture definition [WAH21] that standard-
izes the set of CSRs, and also defines and standardizes three privilege levels a RISC-V core
can operate. Privilege modes add the ability to have different levels of trust for executing
code, which enables the separation of user applications from operating system (OS) mod-
ules, among other software classes. The CSR set defined in the privileged architecture is
also used extensively in interrupt and exception handling. At this point it is interesting to
introduce a precise definition of interrupts, exceptions and traps. First, it is necessary to
establish some previous RISC-V definitions [WA19], those of core and hart:

A component is termed a core if it contains an independent instruction fetch unit.
A RISC-V compatible core might support multiple RISC-V-compatible hardware
threads, or harts, through multithreading.

Now, citing the Volume I RISC-V manual [WA19] there is said:

We use the term exception to refer to an unusual condition occurring at run time
associated with an instruction in the current RISC-V hart. We use the term inter-
rupt to refer to an external asynchronous event that may cause a RISC-V hart to
experience an unexpected transfer of control. We use the term trap to refer to the
transfer of control to a trap handler caused by either an exception or an interrupt.

This work adopts the above definitions. Here, interrupt and exception handling is collectively
called trap handling. Trap handling uses status flags present in CSRs and obeys to prede-
fined behaviors. The privileged architecture defines the steps to use in a handling routine,
and all CSRs changes triggered by every trap. The ability to treat interrupts and exceptions



26

through traps adds robustness to a processor core and allows its use in critical applications.
Interrupts are an essential part of a core design as it adds to the core the possibility of ef-
ficient communication with sensors, actuators and timers, which are all integral parts of a
real-world environment.

1.1 Motivation

The previous paragraphs already advanced a generic set of motivations to employ
and invest in dominating RISC-V.

A more internal motivation for developing an extensible RISC-V processor core
arises from the long term participation of the Author in research activities in laboratories of
hardware design of the Pontifical Catholic University of Rio Grande do Sul (PUCRS), which
can benefit from the contributions developed here. These activities relate to applications
operating on environments which require interaction with sensors and actuators. Using cores
already available in the literature revealed challenging in several occasions, leading to the
proposal of an in-house RISC-V core implementation.

A RISC-V core must be easy to embed in systems and have low area usage, to
allow its use in multiple environments requiring core replication and/or low power footprint.
Abundance of FPGA boards in the laboratories guarantee the possible to test cores easily
in real-word devices.

Another motivation for this Work is to provide a guide on how to use and extend
the proposed PUC-RS5 core. Developing source code in a simple and well documented
way enables other members of the laboratories to use and extend the core seamlessly. This
will bring advantages with regard to external open-source RISC-V implementations, such
as those available as PULP Platforms (e.g. RI5CY, Ibex). These implementations are often
full of complex parameters to enable the construction of multiple organizations from a single
code base, with features that can be added or removed, bringing difficulties for the code
understanding and extension.

Writing this work in English is a good way for the Author to practice with technical
terminology and writing skills, a challenge that motivates the production of a technical report
as a Bachelor Thesis.

1.2 Objectives and Contributions

The main contribution of this work is a processor core that implements the RISC-V
RV32I ISA with minimal support to efficiently handle external peripherals. It is implied in this



27

support the capacity to handle interrupts and exceptions in a standard and efficient way, as
described in the RISC-V privileged architecture specification [WAH21]. The generated core
is called PUC-RS5.

A requirement for achieving efficient and standard external peripherals manipula-
tion is to integrate all standard Zicsr extension instructions into a RISC-V pipeline organi-
zation and provide a set of control and status registers (CSRs) to control input/output (I/O)
processes.

Note that, although the basic support to implement multiple privilege levels as de-
scribed in [WAH21] is present in the PUC-RS5 core, there is no effort to implement privilege
levels distinct from the machine level. Support to other privilege levels that can enable the
core to be used in environments with adequate operating systems (OSs), supervisors or
hypervisors is a relevant future work.

An objective of the work is that the proposed processor core, PUC-RS5, be a valid
description, amenable to hardware implementation. To guarantee the achievement of this
objective a hardware prototyping process demonstrates the PUC-RS5 operation. The pro-
cess uses an FPGA-based platform.

The rest of this document is organized in seven additional chapters. Chapter 2
brings some important concepts for understanding this work, including a brief overview of
the RISC-V effort, a previous simple core implemented by the Author, PUCRS-RV, and ad-
dresses a few application fields that PUC-RS5 can target. Chapter 3 briefly reviews the
literature on processor cores with target similar to those of PUC-RS5. It also explores some
works that employ RISC-V cores for robotics applications and many-core environments, ex-
pectedly good target fields for PUC-RS5. Chapter 4 presents a small history of the process
that leads to the PUC-RS5 proposition and gives a generic set of aspects that differentiate
PUC-RS5 from previous efforts. Chapter 5 details the process of implementing all PUC-RS5
proposed features, serving as a guide on understanding and extending the PUC-RS5 core.
Chapter 6 covers the validation environment developed for PUC-RS5 core its FPGA pro-
totyping process. Chapter 7 compares implementation data obtained during the PUC-RS5
prototyping with results from similar RISC-V cores and details a set of conducted experi-
ments in running software with it. Chapter 8 brings a set of conclusions of the work and
presents some relevant topics to explore as immediate future work.



28



29

2. BACKGROUND

This Chapter provides an introduction to topics required to fully understand this
work: Section 2.1 introduces the concept of Instruction Set Architectures (ISA) in gen-
eral and a more detailed overview of the RISC-V architecture [WA19]. Section 2.2 ad-
dresses some details on the RISC-V privileged architecture [WAH21]; Section 2.3 introduces
PUCRS-RV, an implementation of the RISC-V RV32I ISA as a processor core developed by
the Author, and which is the base of this work. Section 2.4 introduces some possible em-
bedded uses where RISC-V processor cores and other cores can be used.

2.1 Instruction Set Architectures - ISAs

An ISA is an abstract model of a processor. A specific ISA establishes sets of
instructions, registers, memory access features, and other characteristics which defines a
software-executing abstract machine. The hardware that implements the abstractions de-
fined by an ISA is called a processor organization. Such hardware is capable of decoding
and executing programs written using instructions of some ISA. An ISA defines the function-
ality of instructions without stating how to precisely implement such functionalities, leaving
implementation details to be defined by the organization design. For example, an ISA that
contains a instruction that multiplies two integers defines the sizes of operands, where and
how to find these, the size of the operation result and where to store it. Different organiza-
tions for this ISA can implement these instructions in different forms, with a wide variation of
hardware sizes, performance and power characteristics.

This enables multiple implementations of the same ISA, allowing different kinds of
machines to be able to run the same code.

A common criterion used to classify ISAs relies on how the machine accesses
external memory during instruction execution. The criterion falls into two ISA classes:

1. Complex Instruction Set Computers (CISC) - these correspond to an older way to im-
plement processor that emphasizes: (i) hardware-powerful implementations; (ii) multi-
step complex instructions in addition to single-step instructions. A single CISC instruc-
tion can e.g. dictate the fetch of multiple data from external memory, perform some
operation (say arithmetic or logic) on these data and store results back in memory; (iii)
smaller program sizes; (iv) small number of architectural working registers (typically
from 1 to less than 10 data registers);



30

2. Reduced Instruction Set Computer (RISC)1 - this is a more modern way to define
processors, which emphasizes: (i) software-efficient implementations; (ii) only simple
instructions, easily executed by simple hardware. One of the main characteristics that
differentiate RISC from CISC machines is the use of a load-store philosophy, where
reading and writing from/to external memory is a task of specific instructions, com-
pletely separated from instructions that process data with e.g. arithmetic and logic
instructions; (iii) RISC organizations usually require larger program sizes compared to
CISC organizations; (iv) RISC organizations rely on a large number of working regis-
ters (16, 32 or even much more).

The RISC-V ISA stands out by its simplicity. It is a RISC set of ISAs, implying
instructions easy to understand and implement in hardware. It is a modular ISA, which
makes its design usually more flexible and extensible. It is an open standard, implying the
enabling of royalty-free processor core development

2.1.1 The RISC-V ISA Set

The most popular commercial ISAs today are the Intel X86 and the ARM set of
ISAs, both of which are proprietary and subject to the payment of royalties for their use. Of
course, there are some advantages in adopting these ISAs, since they are popular architec-
tures, have a big set of available documentation and there is a huge software base built with
these as target.

Open standards, on the other hand, give the community the ability to develop the
technology. They attract many people from academia and industry, because are free to use
and also the engaged community grows fast, with increasing numbers of people working to
make it more accessible and more popular. The RISC-V is a modern, open, and extensible
ISA set, initially designed at the Berkeley University that was created aiming to be an open
standard ISA. Today RISC-V is controlled by RISC-V International, a global non-profit orga-
nization (see https://riscv.org/about/). RISC-V aims at being simple, flexible and extensible,
being generic enough to be scalable for a huge variety of applications, which is achieved
by defining a few basic set of instructions that is mandatory in every implementation and by
defining several optional extensions.

The RISC-V ISA set is defined in its two-volume Instruction Set Manual [WA19,
WAH21]. Table 2.1, extracted from [WA19] contains the current list of modules reinforced
by the RISC-V standard. The Base modules, except for RVWMO, correspond to the ISAs
options available for implementation. RVWMO defines one option (the simplest one) for pro-

1Note that the RISC name is today a misleading denomination, even if the first RISC machines displayed
such characteristic (having a small number of instructions compared to CISC architectures). RISC instruction
sets need not, and often are not, smaller that those of CISC architectures.



31

viding a memory consistency model to RISC-V implementations, which is specially relevant
for multiprocessor designs and is ignored here.

Table 2.1 – The currently defined RISC-V modules, divided into Base and Extension ones.
Note that modules can be in the Ratified, Frozen or Draft status.

Base Version Status
RVWMO 2.0 Ratified

RV32I 2.1 Ratified
RV64I 2.1 Ratified
RV32E 1.9 Draft
RV128I 1.7 Draft

Extension Version Status
M 2.0 Ratified
A 2.1 Ratified
F 2.2 Ratified
D 2.2 Ratified
Q 2.2 Ratified
C 2.0 Ratified

Counters 2.0 Draft
L 0.0 Draft
B 0.0 Draft
J 0.0 Draft
T 0.0 Draft
P 0.2 Draft
V 0.7 Draft

Zicsr 2.0 Ratified
Zifencei 2.0 Ratified

Zam 0.1 Draft
Ztso 0.1 Frozen

Extensions are ways of improving a base module with additional sets of standard
instructions. The most relevant extensions are M, A, F and D, which are collectively known
a the G extension set. These extensions add integer multiply and division instructions
(M), atomic read-modify-write memory instructions (A) single-precision and double-precision
floating point registers, and instructions (F and D). The extension Zicsr adds a set of instruc-
tions that operate atomically in the core CSRs. Among the other ratified extensions are the
Quad-Precision Floating-Point extension (Q), Compressed Instructions extension (C) and
Instruction-Fetch Fence (Zifencei). To inform the compiler of which extensions are avail-
able in the target core, compilation flags are used indicating the sets of instructions that the
generated code can contain.

This work describes a minimal hardware implementation, including just the RV32I
base module and the Zicsr extension.

The RISC-V project that begins in 2010 continues to receive new features and new
extensions. See, for example [RIS22], a repository that contains the latest changes in the



32

RISC-V and shows the set of extensions that will be eventually merged into the final specifi-
cations in the future. All extensions are optional and each one has a status of development.
The modules marked as Frozen are not expected to change significantly before being rati-
fied. The modules marked as Draft are expected to change before ratification. The Modules
marked as Ratified are ratified at the present time and will (hopefully) never change.

Table 2.1 and the [RIS22] repository shows how the RISC-V is an evolving concept.
It has stable features, but also contains several volatile features and is today in a process of
continuous evolution. One proof of this is that there are 13 extensions ratified in years 2021
and 2022 (see https://wiki.riscv.org/display/HOME/Recently+Ratified+Extensions) but were
not yet integrated yet into the formal specifications.

2.2 The RISC-V Privileged Architecture

The RISC-V privileged architecture is a complement of base ISAs. It defines as-
pects such as privilege levels and functionalities required to run operating systems and at-
tach external devices.

Privilege levels encapsulate different levels of software permissions. There are
three defined privileges: (i) Machine (M) - this mode is the most privileged level and its
implementation is mandatory in a privileged architecture. Code running in machine mode
is inherently trusted; (ii) Supervisor (S) - is the second privilege level and is often used by
operating systems; (iii) User (U) - this mode is the less trustable mode and has the lowest
privilege, its operation is restricted. The privilege levels and their encoding is presented in
Table 2.2. Note there is an undefined but reserved for future use level, the level 2 privilege.

Table 2.2 – RISC-V privilege levels.

Level Encoding Name Abbreviation
0 00 User/Application U
1 01 Supervisor S
2 10 Reserved
3 11 Machine M

All RISC-V hardware implementations must support the M mode, as this is the
most privileged mode, which has access to all the hart functionalities. All code that runs in
machine mode is considered trusted, it will not provide any protection against incorrect or
malicious application code. The user mode U is the most common option besides M, since
it protects the rest of the system from application code. The hart usually initializes in the M
mode, where boot configurations take place. Next the mode switches to U, if available. The
U mode runs applications until a trap occurs, forcing the privilege to change to a higher level.



33

When a trap occurs the privilege changes and the hart branches to a trap handler routine.
The trap handler filters the cause of the trap and performs adequate treatment of that kind
of trap.

The privileged architecture specifies the Control Status Registers (CSRs) responsi-
ble for keeping track of the actual privilege and the status of the hart. It requires the RISC-V
Zicsr extension, which introduces instructions to access and control the status of CSRs.
All Zicsr instructions are atomic, meaning they read and write CSRs in a single instruction.
Each privilege level has its own set of CSRs, and each set can be accessed by its privilege
or by a higher privilege one. If an application tries to access a CSR of a set that belongs to
a higher privilege mode, this causes an exception.

2.2.1 RISC-V Interrupt Organization Modes

The ability of handling interrupts can be implemented in different forms, depending
on the desired application and they vary in complexity. Unfortunately, this is a subject not
yet regulated in a ratified way by RISC-V formal specifications. There are drafts of interrupt
modes currently under study, and some have already been used by more than one RISC-
V implementation. This work chooses to employ interrupt treatment by adopting one of
the interrupt treatment proposition options pleaded by the SiFive, Inc. company a long-term
adopter of RISC-V. SiFive describes interrupt treatment in detail in [SiF20]. It describes three
interrupt controller types: (i) the Core Local Interrupter (CLINT); (ii) the Core Local Interrupt
Controller (CLIC); and (iii) the Platform Level Interrupt Controller (PLIC). The first two are
local interrupt controllers that provide low-latency interrupt treatment to the hart and the last
is a global interrupt controller that can act at a platform level. The differences and some
details on each approach are the subject of next sections.

Core Local Interrupter (CLINT)

CLINT uses a fixed priority for software, timer, and external interrupts. The interrupt
ID represents the fixed priority value of each interrupt and is predefined. There are two
different CLINT modes of operation, the direct mode and the vectored mode. To configure
CLINT modes, the Mode field of the MTVEC CSR holds the actual configuration. For direct
mode, the Mode field is set to 0, and for vectored mode Mode field is set to 1. The MTVEC
CSR in the Base field holds the base address for trap handling in both modes. When the
Mode is set to “direct”, all interrupts and exceptions trap to the same handler located at
the base address in the MTVEC CSR. This value will be loaded into the Program Counter
register, branching to a generic trap handler that will evaluate the trap cause and jump to
the specific trap handler. In the vectored mode, a vector table is used for lower interrupt



34

handling latency. When a trap occurs, the trap cause code is used to index the vector table
for the corresponding handler, based on the interrupt ID. This means that when an interrupt
occurs, program execution jumps directly to the place pointed to by the vector table offset of
the corresponding interrupt.

Core Local Interrupt Controller (CLIC)

CLIC has a more flexible configuration than CLINT. However, CLINT has a smaller
design overall. CLIC can display reverse compatibility with CLINT when programmed in the
CLINT mode. CLIC has programmable interrupt levels and priorities, introducing new direct
and vectored modes. CLIC introduces new CSRs that are used for CLIC’s own configuration.

The CLIC direct mode takes an approach similar to CLINT direct mode, but with the
addition of a feature called selective vectoring. Selective vectoring allows each interrupt to
be configured for CLIC hardware vectored operation, while all other interrupts use the CLIC
direct mode. The CLIC CSR CLICINTCFG is used to configure selective vectoring. CLIC
direct modes use MTVEC as the base address for exception and interrupt handling, but
introduces CLIC CSR MTVT as the base address for the interrupts configured for selective
hardware vectoring.

The vectored mode is a concept similar to the CLINT vectored mode, where an
interrupt vector the table is used for specific interrupts. In CLIC vectored mode, the han-
dler table contains the address of the interrupt handler instead of a jump instruction. CLIC
vectored mode uses MTVEC exclusively for exception handling and the CLIC CSR MTVT is
used to define the base address for all vectored interrupts.

CLIC allows programmable interrupt levels and priorities for all supported inter-
rupts. For that, it replaces the MIE, MIP, and MIEDELEG with new CLIC CSRs: CLICINTIE,
CLICINTIP, and CICINTCFG.

Platform Level Interrupt Controller (PLIC)

PLIC is used to manage global interrupts and route them to one or several CPUs
in the system. PLIC can route a single interrupt source to multiple CPUs. In PLIC, each
interrupt has a configurable priority from 1-7, with 7 being the highest priority and the value
0 disables an interrupt. PLIC can be combined with CLINT and CLIC in multi-CPU systems,
being the manager of the external interrupts for the local interrupt controllers.



35

2.3 The PUCRS-RV Processor Core

The PUCRS-RV is a processor core that implements the RISC-V RV32I ISA, devel-
oped by the Author. It was first described in [LNZ+22], consisting of a single-issue, five-stage
pipeline organization as follows:

1. Instruction fetch;

2. Instruction decoding;

3. Operand fetch;

4. Execution;

5. Retirement.

The instruction flow of PUCRS-RV is controlled by a system of tags. Every time
it fetches an instruction, it is associated with a tag that will follow it until retirement. The
Retirement Stage has a tag initialized with the same value as the tag in the Instruction
Fetch Stage. Every time a jump/branch is taken, the tag is incremented in the Retirement
Stage first, since it is this stage that performs the branch. When a branch is obtained in the
Instruction Fetch Stage its tag is also incremented. Instructions in the pipeline that follow
an instruction that branches are associated with the older branch. When these arrive at the
Retirement Stage, its tag and the Retirement Stage tag will not match, and the effects of the
instruction will not be effectuated. For this system to work, the branch prediction strategy
must use a "never taken" policy.

To detect Data Hazards the PUCRS-RV processor core has in the third stage a
queue mechanism that stores the registers having pending writes (instructions on the fourth
or fifth stage of the pipeline that will write on that register), this register is called a "locked
register". Every time an instruction enters the third stage and one of its source registers
is a locked register that indicates a data conflict/Hazard, in this case, a bubble (a NOP
instruction) is issued forward until the conflict is resolved and the instruction can read a
proper operand.

2.4 Examples of Embedded Uses for Processors

Processor cores can be used in many kinds of applications. The most common
and known processor cores are used in general-purpose computers. Such cores have to
display features supporting many kinds of applications and needs that a general user may
have. Embedded processor cores take a different approach as they seek to be cheaper



36

and are more application specific. To be cheaper, one thing these cores seek is to have
a low area, to reduce production costs. Another required feature of embedded cores is
low power consumption, due to the fact that embedded platforms many times operate with
limited power resources, usually a battery or even less than that. An embedded core that
consumes less battery extends or even enables its use. This said, the design of a compact
and low-power processor core is essential to consider its use in embedded applications.
This Section brings an overview of two possible classes of applications that a core can be
applied and how they relate to the PUC-RS5 proposed core. Section 2.4.1 explores needs
present in robotic applications and Section 2.4.2 presents an overview of the use of cores in
many-core platforms.

2.4.1 Robotic Applications

The idea of developing the PUC-RS5 core for robotic applications arises from the
participation of the Author in the Laboratório de Sistemas Autônomos (LSA) of the PUCRS
University. This lab aims to build autonomous systems that can be applied in real-life situa-
tions, such as autonomous boats, drones, and robots. The team of this lab is integrated by
undergraduate students, graduate students and researchers. As often systems are built and
embedded in environments, the idea of having a customizable core took shape and encour-
aged the enhancement of the Author’s available PUCRS-RV core. PUC-RS5 can already be
used as an FPGA prototype to provide hardware acceleration for specific tasks.

Robotic applications are usually sensor-rich and input-output rich, as the environ-
ment where they operate generally produces large amounts of information that are required
to process for a robot to realize its mission autonomously. Sensors can produce multiple
kinds of interrupts and exceptions, thus the ability to treat exceptions and serve interrupts is
essential for this kind of application. These features are present in the PUC-RS5 as a main
goal.

Sensor data are used by algorithms for determining the robot operation. For ex-
ample, a software implementing machine learning for image and location recognition may
be a target. Also, packages like the Robotic Operating System (ROS) may be used in con-
junction with sensor data for robot navigation in the environment. Sensor data are read in
interrupt handling routines and processed. Next, actuator data can then be generated and
applied to external peripherals. These actions can used to control speed, position, etc. of a
robot. Section 5.6 briefly discusses the minimum required software stack to provide support
to interrupt and exception handling.



37

2.4.2 Multi-Core/Many-Core Applications

Multi-core or Many-core applications are those that use more than one instance
of one or more processor cores through association of heterogeneous cores or replication
of identical cores, respectively. Cores can be connected through a shared bus that imple-
ments some protocol such as ARM AXI or through an intrachip network, also known as a
network-on-chip (NoC) that uses routers for message exchange among cores. Cores in-
teract with each other for information exchange, bus control, synchronization etc. This can
be performed in systems with shared memory or by having a system based in message
exchange only. For enabling core replication in embedded systems, it is necessary to have
cores with low area usage to enable the possibility of having Networks-On-Chip (NoCs) with
a many-core approach.

In many applications that use multi- or many-core systems, a method called Direct
Memory Access (DMA) is used for data transfer that allows peripherals (or other cores) to
access and write data directly to the memory of a core without the need for the target core
branching to treatment routines until the transfer is complete. When the transfer operation
is complete, the DMA controller communicates the core the end of the transfer operation
through an interrupt. The core then can employ the transferred data and operate on them.
The DMA method is quite useful in scenarios requiring the transfer of large amounts of data
into the core memory. It only takes that the core program the DMA controller to perform the
transfer, reducing the core computational load.

One devised future application for the PUC-RS5 core is to become the new pro-
cessor core to use in the Memphis many-core [RCFM19]. This many-core is a configurable
system where a possibly large numbers of cores is integrated by an NoC, creating a bi-
dimensional mesh arrangement of cores into processing tiles. Each tile comprises four
modules: (i) a processor core; (ii) a local scratchpad memory, a DMA/Network Interface
module (name DMNI); and (iv) a 5-port NoC router. Each processor runs a multi-tasking
micro-kernel software, containing the basic processing features to allow operations such
as inter-core communication, external system communication, user applications reception,
execution and migration, etc.



38



39

3. STATE OF THE ART

This Chapter brings an overview of the state of the art on some RISC-V privileged
architecture cores similar to the PUC-RS5 propose here, in Section 3.1. Next, it gives an
initial overview of the few works that already employed RISC-V architectures in robotic en-
vironments in Section 3.2, and revises an effort of the GAPH research group able to benefit
from this work, namely the Memphis platform in Section 3.3.

3.1 Similar Processor Cores

Several projects proposing RISC-V cores already exist, and many such efforts are
under way. This Section revises implementations similar in features to the PUC-RS5 cores,
so that a comparison of PUC-RS5 to these is applicable.

3.1.1 The Parallel Ultra Low Power (PULP) Platform

The Parallel Ultra Low Power (PULP) Platform is a project created in 2013 as a
joint effort of ETH Zurich and the University of Bologna, dedicated to develop RISC-V cores
with target on low power consumption. This is an open-source platform that released 32
and 64-bit implementations of the RISC-V ISA and also some Systems-on-Chip (SoCs) that
uses these cores. Some of its RISC-V implementations have been taped-out as ASICs in
silicon that are used on IoT and low-power projects.

There are three cores currently provided by PULP: CV32E40P, CVA6, and Ibex.
The CV32E40P was formerly called RI5CY, it is a 32-bit, 4-stage, in-order RISC-V core
that implements the RV32I ISA with extensions M and C, which has an optional 32-bit FPU
hardware supporting the F extension and instruction set extensions for DSP operations. It
implements some custom extensions to achieve higher performance and energy efficiency.
The CVA6 core, formerly called Ariane is a 6-stage, single issue, in-order 64-bit CPU which
implements the RV64I ISA and extensions M, C and D. CVA6 implements the three privilege
levels M, S, and U, to fully support Unix-like operating systems. The Ibex Core is more
detailed in Section 3.1.2.

The single-core SoCs provided by PULP are two: PULPino and PULPissimo PULPino
is an open-source single-core micro-controller that uses either the Ibex core or the CV32E40P
core and contains a set of peripherals, including interfaces I2S, I2C, SPI, and UART. PULPis-
simo is a more advanced and more complex architecture compared to PULPino. It includes



40

the support to allow peripherals to copy data directly to memory using a simple DMA called
µDMA.

3.1.2 Ibex core

Ibex [Low21] was initially developed as part of the PULP platform which was for-
merly called "Zero-riscy". It is currently maintained by the lowRISC non-profit company
located at the University of Cambridge Computer Laboratory (https://lowrisc.org/) and is un-
der active development. Ibex is a 32-bit RISC-V core written in System Verilog. It is heavily
parameterized allowing it to be used in many embedded applications. Ibex supports the Inte-
ger (RV32I) or Embedded (RV32E) ISAs and offers support to the integer multiplication and
division (M), compressed (C), and b (Bit Manipulation) extensions. It is a 2-stage, in-order,
single-issue pipeline. The Ibex core implements the privileged architecture and supports the
M and U privilege levels.

Figure 3.1 presents the general organization of the Ibex 2-Stage pipeline.

Figure 3.1 – The Ibex RISC-V core pipeline organization [Low21].

The Ibex core can be used in FPGA RTL simulation and ASIC synthesis, having
the characteristics of being ultra-low-power and ultra-low-area. It can also be configured in
a way to reduce the register bank size, implementing the RV32E, instead of the RV32I ISA.

3.1.3 SCR1 core

The SCR1 core [Syn22] is maintained by the Syntacore company from Cambridge
(UK). SCR1 is the simplest of seven cores offered by Syntacore (from SCR1 to SCR7) and
it overall organization is depicted in Figure 3.2.



41

Figure 3.2 – The SCR1 RISC-V core organization [Syn22].

SCR1 is a RISC-V core that implements the RV32I ISA and the extension Zicsr
to support the RISC-V privileged architecture. It also offers the integer multiplication and
division (M) and the compressed (C) as optional extensions. It also offers the possibility
to reduce the register bank in order to implement the Embedded RV32E ISA. SCR1 can
be configured to have from 2 to 4 pipeline stages and offers many optional resources for
communication with the environment. It is industry-grade core and has been silicon-proven.
It is the simpler RISC-V core designed by Syntacore and the only one with open-source
code.

3.1.4 The Steel RISC-V core

The Steel core is a processor core developed as a Bachelor Thesis at the UFRGS
Brazilian university [Cal20]. It is a 3-stage, single-issue, in-order pipeline that implements the
RV32I ISA and the Zicsr extension. It implements the Privileged architecture and supports
just the machine (M) privilege level as PUC-RS5. It was validated in an FPGA board, but
does not count with an interrupt controller nor details any software adaptation for the privi-



42

leged architecture support. The organization of the Steel pipeline is presented in Figure 3.3.
Steel Performs branches on the second stage of the pipeline.

Figure 3.3 – The Steel RISC-V core organization [Cal20].

3.2 RISC-V Applied to Robotics Applications

Previous sections presented RISC-V cores comparable to PUC-RS5 and their char-
acteristics. This Section approaches some Works using RISC-V cores for robotic applica-
tions.

3.2.1 Siwa: custom RISC-V based SOC for low power medical applications

Garcia-Ramirez et al [GRCRMR+20] introduce Siwa, a RISC-V RV32I-based SoC
built around RISC-V, designed for highly integrated implantable biomedical applications, tar-
geting implantable or wearable applications, that was implemented on a commercial 0.18
µm (HV) CMOS technology. It includes control for integrated sensing and stimulation in-
terfaces, as well as standard communication interfaces like a Universal Asynchronous Re-
ceiver/Transmitter (UART), eight general purpose input/output ports (GPIO), and a serial
peripheral interface (SPI) as displayed in Figure 3.4.

Siwa is a customized implementation version of the RV32I architecture, with several
CSRs modified from its definition and some not even implemented at all. Interrupts disable



43

Figure 3.4 – The Siwa SoC organization [GRCRMR+20].

the handling of further interrupts until the service routine is completed and a return to normal
executions is performed, except for system exceptions that are always accepted.

The centrally controlled organization is composed of five general blocks: the mem-
ory and bus controller (MBC), in charge of interfacing the CPU with the general bus and the
system’s memory; an instruction decoder (ID) that translates instructions into micro-coded
data going to the arithmetic and logic unit (ALU) and the register file (RF), and command
fields serving as the input to the CPU’s controller finite state machine (FSM); a 32-word, 32-
bit RF that also includes all the special CSRs of the system; 32-bit ALU capable of signed
addition, word rotation, and standard the Boolean logic functions defined by the RV32I spec-
ification; and the central micro-coded FSM which coordinates the whole CPU.

3.2.2 CompROS

Dehnavi et al. [DKN+21] propose a hardware-software architecture called Com-
pROS for ROS2-based robotic development in a Multi-Processor System-on-Chip (MPSoC)
platform. The proposed hardware architecture consists of a Hard Real-Time (HRT) RISC-V-



44

based subsystem implemented in programmable logic (PL) part of the MPSoC platform, a
Soft Real-Time (SRT) ARM-based subsystem in the Processing System (PS) part of the MP-
SoC platform and a Non-Real-Time (NRT) PC. Figure 3.5 shows the CompROS hardware
architecture.

Figure 3.5 – The CompROS hardware architecture [DKN+21].

CompROS consists of three subsystems including an HRT subsystem for real-time
control, an SRT ARM subsystem for supervisory control, and an NRT personal computer for
system monitoring.

As an HRT subsystem, CompROS hardware implements a 3-tile CompSOC plat-
form on a Xilinx ZCU102 board that hosts a Zynq UltraScale+ as FPGA devide. However,
given the modularity of the platform, it is easily scalable to more tiles. Each CompSOC tile
embeds a 32-bit RISC-V processor that runs at 100 MHz. Each tile includes 512KBytes of
Instruction+Data (I+D) memory implemented through FPGA BRAMs. There is a real-time
dual-ported shared memory with a capacity of 64KBytes between any two tiles of the plat-
form that is used for inter/intra-tile communication. For RISC-V to/from ARM communication,
and to dynamically load programs, there is a 32KBytes dual-port shared memory between
each tile and the SRT ARM processor on the processing system side.

The second subsystem of CompROS is an SRT subsystem that consists of a quad-
core ARM Cortex-A53, a dual-core Cortex-R5F real-time processor, and a Mali-400 MP2
graphics processing unit (GPU). This subsystem is used for supervisory control (such as in
robot navigation), programming the HRT subsystem, and connecting the robot to the outside
world.

The last CompROS subsystem is an NRT PC node that is used to monitor mul-
tiple robots, each of which hosts its HRT+SRT subsystems. The communication from the
monitoring system to the supervisory control system is done through wireless network in-
frastructures.



45

3.2.3 RISC-V FPGA Platform toward ROS-based Robotics Application

Lee et al. [LCYK20] describe the design of an FPGA platform for a RISC-V pro-
cessor able to run robotic applications on the Robot Operating System (ROS). This platform
allows exploring the design space of RISC-V CPU for robotic applications and get insight
into RISC-V CPU architectures for optimal performance and a secure system.

The platform implements on an FPGA board the RISC-V Berkeley Out-of-Order
Machine (BOOM), a synthesizable and parameterizable open-source RV64GC RISC-V core
written in the Chisel hardware construction language running ROS and applications. Inter-
nally, a RISC-V Core is connected with other peripherals through a system bus, so it can
communicate with the outer world by using UART, I2C, SPI, and USB.

Figure 3.6 show the employed hardware and software stacks.

Figure 3.6 – The hardware-software stack proposed by Lee et al. [LCYK20].

The FPGA board which implements the RISC-V platform is connected to a vacuum
cleaner robot via an USB interface. It can process the input image from a camera on the
robot and navigate as a result.

3.3 The Memphis Platform

The Many-core Modeling Platform for Heterogeneous SoCs (Memphis) is a plat-
form developed by the GAPH research group at PUCRS, described for example in [RCFM19].
Memphis is a many-core architecture used in academic/research environments. It is divided
into two regions General Purpose Processing Cores (GPPC) and Peripherals.



46

GPPC is a set of identical Processing Units/cores called Processing Elements (PE)
in the platform. PEs can be processors with different architectures, such as MIPS, ARM, and
RISC-V. To adapt a processor core to become a Memphis PE little effort is required regarding
connection to memory. The memory used by PEs is a true dual-port memory, storing code
and instructions, and is possible to have shared memories connected to the system, as
peripherals. The Direct Memory Network Interface (DMNI) is a component that merges two
functions, a Network Interface (NI) and a Direct Memory Access (DMA). Memphis adopts a
Network-on-Chip (NoC) That uses packet switching routers with the following characteristics:
XY routing, round-robin arbitration, input buffering, and credit-based flow control. The DMNI
directly connects the NoC router to the PE internal scratchpad memory.

Peripherals provide an input/output interface or hardware acceleration for tasks run-
ning on the GPPC region. Examples of peripherals include shared memories, accelerators
for image processing, communication protocols (e.g., Ethernet, USB), and Application Injec-
tors (AppInj). The NoC differentiates data packets from peripheral packets. Data packets
are those exchanged by tasks running in PEs, and peripheral packets are those transferred
between a task and a peripheral.

Memphis provides hardware applications for modeling, implemented in VHDL and
SystemC. On its software stack, Memphis provides a distributed micro-Kernel capable of
running the applications and is responsible for real-time task scheduling and communication
among tasks.



47

4. WORK PROPOSAL

This Chapter presents and justifies the work proposal for this end-of-term work.
Technically, it consists in producing improvements to the previously presented PUCRS-RV
processor core, briefly described in Chapter 2.3 and detailed in [SC17, NSC22a]. The im-
provements target the provision of a processor core with support to deal with exceptions and
interrupt handling. The work explores standard features of the RISC-V architecture on how
to support such features. The basis for the work is the definition of the RISC-V privileged
architecture [WAH21].

The scope of this end-of-term work is restricted to the development of improve-
ments over the PUCRS-RV processor core and the implementation of the RISC-V Zicsr ex-
tension, alongside with the privileged architecture and one or more of the privileged modes.
All changes made in the original architecture will be tracked into a branch with no privi-
leged modes and Zicsr extension to keep track of the impact that these features bring to the
processor core when it comes to area usage and performance.

This work also seeks to be a guide on how to extend the developed processor core,
documenting the needed changes and their impacts on the original PUCRS-RV core pipeline
structure. This will bring support for future users and developers to easily use and extend
the PUC-RS5 core, and this is one of the goals of this project. For that, a detailed overview
of the improvements and of the validation process will be brought in Chapters 5 and 6.

To ensure the feasibility of using the proposed organization in real system imple-
mentations, this work also describes the design and implementation of an FPGA prototype
of the PUC-RS5 processor core on top of a commercial platform, and demonstrates its op-
eration. The PUC-RS5 core FPGA prototyping process is detailed in Chapter 6.

The rest of this Chapter includes four sections. It explores the previous work that
helped the Author in defining the specification of the PUC-RS5 core in Section 4.1. Next,
Section 4.2 details the changes necessary on the PUCRS-RV to transform it into the PUC-
RS5 core. A central feature of the PUC-RS5 core is that it follows the RISC-V Privileged
Architecture standard, by adding the Zicsr extension to the RV32I ISA, and this is the subject
of Section 4.3. Lastly, Section 4.4 explores how this work deals with the standard RISC-V
interrupt organization modes depicted in Section 2.2.1.

4.1 PUCRS-RV Organization: History and Structure

The PUCRS-RV core development started in the year 2017 with ARV, a high-level
organization specification implemented in the Google Go language [SC17, SC21]. The ARV
specification and its unfolding into a RISC-V organization is described in Section 4.1.1.



48

PUCRS-RV in itself is a 5-stage pipeline organization intended to support the design of a
fully asynchronous organization, code-named ARV (an acronym for Asynchronous RISC-V).

Figure 4.1 gives an overview of the PUCRS-RV organization, briefly discussed next
and approached in more detail in Section 4.1.2.

Decoder

Register Locking Queue

Hazard Detection &
Operand Fetch

Write Data

Retire Unit 

Bypass

Add

Logic 

Shift

Branch

Memory
Access 

Instruction
Memory

Data Memory

W
rit

e 
Ad

dr
es

s

Execution Unit

R
ea

d 
Po

rt

Read Port

W
rit

e 
Po

rt

Instruction Fetch Decode Operand Fetch Execution Retirement

1
Register Bank

1Tag and PC 1 1 / 2

2

2

1 / 2
Dispatcher

1 / 2

3 3

Fetch Unit

Jump Address

Figure 4.1 – Block diagram of the PUCRS-RV organization. Blue numbers over arrows
indicate the three operational loops of the organization: (1) Control Loop; (2) Datapath Loop;
(3) Register Locking Loop.

One of the main features of PUCRS-RV is its tag system, which tracks instructions
fetched along the pipeline until their retirement. Retirement here refers to the process of
instruction execution conclusion. An instruction is only retired if the tag associated with
it is the same tag present in the Retire Unit. The Retire Unit has an internal tag that is
increased every time a branch instruction is retired. The Fetch Unit creates the tag, which is
increased when a branch is accepted. Instructions fetched from the new address jumped to
are associated with the new tag, causing a match in the Retire Unit tag. Instructions fetched
after fetching the instruction that causes the branch may be fetched before knowing these
are not to be executed, and the tags of these instructions will not match any Retire unit tag,
when these arrive at the Retire Unit, justifying to discard them. This system is described as
the organization "Control Loop", and involves the system of tags and the branching control
tied to the tags. The loop can be observed in Figure 4.1, and is identified by number 1 on
the arrows composing it.

Another feature present in the PUCRS-RV organization is a queue of locked reg-
isters, called Register Locking Queue (RLQ). The RLQ keeps track of every register of the
Register Bank with a pending write to it. A pending write register is a register that has an
instruction on the pipeline that will write its result to it. When an instruction tries to read
from a register that has a pending write this implies a data hazard. When a data hazard
is detected, a bubble is issued in the pipeline and the instruction that caused the hazard is
held until the hazard is resolved. The hazard is considered resolved after the instruction that
targets the locked register writes its result to the locked register, which then contains a valid
value to be read and is thus unlocked. This register-locking mechanism also creates a loop,
due to its cyclical usage in data hazard detection and its relationship with the Register Bank,



49

since this pipeline stage is the last one in the organization, and which writes to the Register
Bank. The "Register Locking Loop" is presented in Figure 4.1 and is identified by number 3.

The third and last loop in the PUCRS-RV pipeline organization is the "Datapath
Loop". It comprises the path that fetches instruction operands from the Register Bank and
ends with the write-back operation performed by the Retire Unit. This loop is identified in
Figure 4.1 by number 2.

4.1.1 The ARV Specification and ASIC Implementation

The ARV specification was proposed by Sartori and first described in [Sar17], con-
sisting in a Go language abstract description. Go is a modern concurrent language de-
signed by Google, which incorporates modeling principles derived from the Communicating
Sequential Processes (CSP) paradigm.

The main goal of the ARV specification was to provide the functionality of a com-
plete asynchronous design of a RISC-V processor core. This goal was achieved by using a
series of go-routines communicating through channels. ARV was validated using the RISC-
V Berkeley suite that performs unit tests for each instruction, achieving compliance with the
ISA specification. The complete ARV specification is freely available at github [SC21].

Later, the Author entered the research project and was responsible for develop-
ing the Pulsar ARV (PARV) processor core [NSC22b], an RTL-like System Verilog descrip-
tion. PARV is amenable to automatic synthesis by using the Pulsar asynchronous synthe-
sis tool [SWMC19, SMC20c, SMC20a], targeting an Application Specific Integrated Circuit
(ASIC) implementation using the ASCEnD-FreePDK45 standard cell library [SMC20b]. To
learn the System Verilog language the Author started by implementing a synchronous RTL
version of the ARV specification, which then becomes the PUCRS-RV processor core.

The Go language serves to describe the ARV organization and also to validate its
asynchronous operation. To use this processor core, nonetheless it is necessary to trans-
late it in some description that is amenable to be used as source for automated hardware
development. This triggered a work of implementing the architecture in a Hardware Descrip-
tion Language (HDL). The chosen HDL was System Verilog, due to its powerful validation
features and also for its compatibility with the [SWMC19] flow that was under development
to support synthesis of the asynchronous organization. The Pulsar flow transforms an RTL-
like description into a Quasi Delay Insensitive (QDI) asynchronous circuit. The PULSAR tool
under development at the time required more complex circuit descriptions for demonstrating
its correct operation. Its development was implicitly aligned with new challenges that would
arise from more complex circuit constructions. For that purpose, the System Verilog version
of the ARV organization (PARV) was defined and implemented.



50

The initial strategy was to develop the simpler units first such as the Execute Unit,
next tackling units of increasing complexity. As the simpler units were built and validated
using the PULSAR flow, the integration started to be performed between units, to the point
where the asynchronous core was entirely built and validated by post-layout simulation.

As the main goal was to validate the Pulsar flow and the development of an entirely
asynchronous synthesizable core and the RTL-like source code was very close to an RTL
design of a synchronous processor core, the PUCRS-RV core was created in parallel with
the asynchronous organization. This processor core was first published in [LNZ+22] where
it was used as a target for a RISC-V soft error reliability analysis.

4.1.2 The PUCRS-RV System Verilog Design and Implementation

The PUCRS-RV organization is briefly introduced in Section 4.1, while its first spec-
ification in Go and later asynchronous RTL-like implementation are treated in Section 4.1.1.
This is the basis for the work realized herein by the Author.

The PUCRS-RV core is a complete synchronous implementation of the RV32I ISA,
and has a pipeline organization similar to the Go-language specification. It was first devel-
oped with the goal to learn more about the RISC-V architecture and its hardware develop-
ment, and to increase circuit design knowledge. The target was to apply the acquired knowl-
edge to further the design of an asynchronous version of RISC-V. PUCRS-RV was quickly
recognized as a valuable asset, providing the research group of the Author with a processor
core capable of being adapted to multiple uses, such as to build embedded robotic systems
and/or constitute a processor core to use many-core integrated circuit design.

4.2 Changes from PUCRS-RV to PUC-RS5

The PUCRS-RV processor core consists of a simple pipeline. This pipeline has no
capability to support interrupts of the instruction execution flow, gives no support for traps or
trap handling, and was validated only through simulation. Its validation relies on the use of
HDL specific and or generic testbenches built to validate arbitrary software execution. This
approach can simplify memory access behavior, by assuming asynchronous and instanta-
neous access to memories for both, instructions and data. This led to difficulties when trying
to prototype the core design using real-world memories, which often operate synchronously
and which access latency can be long, even longer than the core processor clock period.
To provide a processor core effectively usable in real-world systems there arises the need
for a series of changes and additions to the original organization. The PUCRS-RV core
organization, depicted in Figure 4.1 is essentially a single issue five-stage pipeline.



51

This work proposes changes to the PUCRS-RV organization to extend its appli-
cability, by adding support to handle interrupts and exceptions. The main organizational
change over the PUCRS-RV core organization is combining the Instruction Fetch and De-
code stages in a single one. This is intended to decrease the pipeline depth, lowering
area usage (by reducing the number of flip-flops used as time barriers to separate stages).
Besides that, the PUC-RS5 core is expected to support the Zicsr extension, the only re-
quirement to provide a standard implementation of the RISC-V privileged architecture. The
Zicsr extension basically provides atomic read-modify-write instructions that operate on the
control and status registers (CSRs) [WAH21].

The change in the pipeline depth is motivated by the implementation of the privi-
leged architecture, which foresees the addition of a set of CSRs. These registers are the
core of any privileged architecture, once they control and keep track of the state and status
of the processor core and also add some features, such as trap handling. Trap handling is
an essential part of a processor core, because it adds the aptitude for interruption handling.
CSRs can be classified as mandatory or optional. Once there are several mandatory CSRs,
these will be grouped in a CSR Bank that has the capability of reading and writing from/to
CSRs through instructions of the Zicsr extension.

Since privilege modes are not mandatory for every RISC-V implementation, this
work will restrict attention to a pipeline without any support to privilege modes other than
the machine mode, with complete support for the Zicsr extension, and with a minimal CSR
bank. This will allow comparisons between PUC-RS5, PUCRS-RV and other cores in the
literature, allowing to achieve an estimation of the minimum overhead required for counting
with a RISC-V privileged architecture.

Figure 4.2 – Proposed block diagram for the PUC-RS5 organization. Note the new CSR
register bank and the new connections to enable the privileged architecture.

Figure 4.2 depicts the proposed organization. The pipeline is reduced by one stage,
becoming a pipeline with the following stages:

1. Fetch;



52

2. Decode;

3. Execute

4. Retire.

The Fetch unit addresses the instruction memory that returns the requested in-
struction directly to the Decode Unit on the next clock cycle. The Register Bank is accessed
in the second stage of the pipeline, and its operands will be returned in the same cycle,
asynchronously. The Execution Unit is still responsible for memory readings, but the data
requested by the execution stage will be provided directly to the Retire Unit on the next clock
cycle. Writes to memory are performed by the Retire Unit in the fourth stage. The new CSR
Bank is placed between the third and fourth stages. This allows access to CSR Bank with
the same behavior as Data Memory accesses, which brings the possibility to use some CSR
mapped in memory to reduce the use of registers inside the processor core. The Retire Unit
represents the fourth stage, and is responsible for performing the trap handling protocol, to
be discussed in Chapter 5. Due to this requirement, it is in constant communication with the
CSR Bank.

The communication between the Retire Unit and the CSR Bank is represented by
the wire with label 4 in Figure 4.2. The CSR Execute Unit communicates directly with the
CSR Bank to perform reads and writes from/to it. The Retire unit communicates with the
CSR Bank to perform the control of interrupts and exception traps.

4.3 RISC-V Privileged Architecture and the Zicsr Extension

The RISC-V Privileged Architecture is established in Volume II of the RISC-V In-
struction Set Manual [WAH21]. It defines the privileged architecture itself, which uses CSRs
and privilege levels that are encoded as operation modes inside CSRs. In the privileged
architecture, a RISC-V core is also referred to as a hardware thread (or hart). The privilege
levels provide protection to the core from different components of the software, intercepting
and eventually preventing attempts to perform operations that are not permitted on the cur-
rent privilege mode. When such attempts happen, it causes an exception, that causes a
trap to a higher privilege level to treat the exception. Table 4.1 shows the RISC-V supported
combinations of privilege modes.

The machine level is the highest privilege level and is the only level that is manda-
tory for a RISC-V privileged implementation. The machine level is encoded as machine
mode (M-Mode) and has access to all the functionalities of the core. All the code that is run
in M-Mode is inherently trusted, as it has low-level access to the machine implementation.

The supervisor level is encoded as supervisor mode (S-Mode) and the user level
is encoded as user mode (U-Mode). These levels are not mandatory and a RISC-V im-



53

Table 4.1 – Supported combinations of privilege modes.

Level Number Supported Modes Intended Usage
1 M Simple embedded systems
2 M, U Secure embedded systems
3 M, S, U Systems running Unix-like operating systems

plementation might provide from 1 to 3 privilege modes. Simpler embedded systems usu-
ally implement only the machine mode because of the prioritization of reduced area usage
though this will provide no protection against incorrect or malicious application code. Some
RISC-V implementations will also support the user mode to provide separation of the soft-
ware stacks and protect the system from application code. More complex systems that run
Unix-like operating systems usually implement all three levels to provide isolation between a
supervisor level operating system and the supervisor execution environment. A hart usually
runs application code in user mode until a trap occurs, forcing a switch to a higher privilege
level through a trap handler that will eventually resume execution in user mode.

Each privilege mode has its own set of CSRs with a predefined range of addresses.
The two higher bits of the CSR address (csr[11:10]) define whether the register is read/write
or read-only. The following two bits (csr[9:8]) encode the lowest privilege level that has
access to the CSR. When an instruction tries to access a inexistent or non-implemented
CSR, an exception will be generated. An exception is also raised when there is an attempt
to access a CSR without the minimum privilege level or when attempting to write into a
read-only register. The privileged architecture also provides the possibility to implement
custom CSRs in non-reserved addresses. Some CSRs have no mandatory implementation
based on the privilege levels that the hart implements. For example, in a hart that has only
the machine mode it makes no sense to implement the Machine Trap Delegation Registers
(medeleg and mideleg).

Access to the CSRs is made by the instructions defined in the Zicsr extension.
This extension is mandatory in a privileged architecture. It defines a set of six Instructions
that operate on CSRs. All CSR instructions atomically read-modify-write a single CSR,
whose CSR specifier is encoded in a 12-bit immediate field of the instruction. The immediate
form of instructions employs a 5-bit zero-extended immediate encoded in the rs1 field. This
extension will be further discussed in Section 5.2, where all instructions in this extension will
be detailed and their implementation will be presented.

The privileged architecture and the CSRs are primordial for the aptitude of trap
handling. It is the main goal of this work to implement a RISC-V core capable of handling
exceptions and especially interrupts.



54

4.4 The PUC-RS5 Interrupt Organization Mode

The PUC-RS5 processor core implements just the simplest interrupt organization
mode, CLINT (see Section 2.2.1 for details on the RISC-V available interrupt modes). The
Core Local Interrupter (CLINT) mode for interrupt control has a fixed priority and two modes
of operation, direct and vectored. PUC-RS5 is expected to implement only the direct mode.



55

5. THE PUC-RS5 CORE IMPLEMENTATION

This Chapter presents the design of the PUC-RS5 processor core in detail All
changes made to the start core (PUCRS-RV) are discussed and justified.

The PUC-RS5 core interface to the external world is displayed in Figure 5.1. Sig-
nals represented to the left of the Figure are related to instruction memory access and are
further described in Section 5.8. Signals to the right are used for data memory access and
are also discussed in Section 5.8.

I_ADDRESS

DATA_ADDRESS

I_ACK

RESET

IRQ

WRITE

ENABLE

PUC-RS5 CORE

STALL CLOCK

DATA_IN
INSTRUCTION

DATA_OUT

32

32

32

32

32

32

4

Figure 5.1 – The PUC-RS5 processor core interface, precisely depicting all core pins.

The three signals represented on the top of the Figure are global control signals
and are detailed in Table 5.1. The two signals located at the bottom of the figure are related
to the interrupt control and are also somehow detailed in Table 5.1.

Table 5.1 displays a brief description for each control signal. The CLOCK signal
represents the synchronization signal that operates at a constant frequency. The RESET
signal sets the state of the core to an initial known state and is synchronous to the CLOCK
signal. The STALL signal is further discussed in Section 5.9. The I_ACK and IRQ signals
are related to the interrupt controller and are further explored in Section 5.4.5.

The following nine Sections detail the PUC-RS5 design. Section 5.1 presents an
overview of the PUCRS-RV pipeline changes, focusing on the reduction of one stage. Sec-
tion 5.2 brings a detailed view of the Zicsr extension and its instructions. Section 5.3 details



56

Table 5.1 – Description of control signals.
Signal Width Direction Description
CLOCK 1 Bit input Clock Synchronicity signal
RESET 1 Bit input Reset the state of the core
STALL 1 Bit input Stall the pipeline State
IRQ 32 Bits input Interrupt Request Indicator
I_ACK 1 Bit output Interrupt Acknowledgment

the implementation of the PUC-RS5 CSR unit. Section 5.4 focus on the implementation of
the CSRs that are grouped as a CSR bank. Section 5.5 presents the integration and com-
munication of the CSR bank with the rest of the pipeline. Section 5.6 presents the software
stack developed to support privilege modes. Section 5.7 presents the changes made to the
structure of the data register bank. Section 5.8 describes the changes made to the external
data memory interface. Finally, Section 5.9 discusses the new STALL signal, responsible for
stalling the PUC-RS5 core pipeline.

5.1 Changes to the PUCRS-RV Pipeline

The organization implemented by the PUCRS-RV pipeline has 5 stages. One of
the bigger changes implemented in the PUC-RS5 processor core is reducing one pipeline
stage. This was made by merging the second stage, the Decode unit, and the third stage,
the Operand Fetch Unit into a new and more complex Decoder unit that comprises the two
stages. The older Decode unit was responsible for just identifying the instruction and its
format, also detaching from the instruction code the address of the operands and forwarding
it to the next stage. The Operand Fetch stage received the pre-processed signals from the
Decode unit and processed them. It forwarded the address of the operands to the register
bank, detected data hazards, and also performed the extraction of immediate data, based
on the instruction format. With this explained it is clear the possibility of identifying the
unnecessary use of additional registers and therefore an increase of area usage. One of
the cases where there is unncessary use of a register is in the detachment of the operand
addresses, which have a fixed position on the instruction code and was just assigned to a
register to be passed to the register bank. For reducing area, it was needed to pass forward,
by registers, the instruction, and also the instruction format.

In the data hazard detection, the cost of a hazard was the same, once hazards
are detected only in the stages in front of the unit that performs the register bank access.
In both cases there were two stages, execute and retire. In the PUC-RS5 core, hazard
detection is made considering the execute stage and the retire stage. The retire stage is
responsible for the conclusion of the instructions, performing jumps, and memory writes,
and also performing write-back in the register bank. The retire unit is considered in hazard



57

detection because it currently writes in the same clock edge that the read occurs, the rising
edge of the clock. If the register bank is a master-slave or has a write-then-read architecture
or works in two clock edges, then the data hazard detection can be simplified to consider
locked only the destination register of the instruction present in the execute stage.

The branch prediction for both PUCRS-RV and PUC-RS5 pipelines is never jump.
It keeps the pipeline simpler and takes less area. When the prediction is wrong, the pipeline
is filled with instructions that must be discarded until the instructions of the new instruction
flow have arrived and then fill the pipeline again. The cost of discarding the wrong-fetched
instructions is higher in a 5-stage pipeline than in a 4-stage pipeline, since the maximum
number of discards is lower in the later pipeline.

The PUC-RS5 Decoder unit becomes more complex with more responsibilities but
with fewer registers being used as time barriers.

Some other changes relate to memory communication delays. The PUCRS-RV
considered that memory data fetch was available in the same cycle. This was a less com-
mon behavior for real-world memories and is hard to reproduce in practice. The more usual
behavior is to have a 1-cycle delay from the address signal being sent and the requested
data is available. This way, the new pipeline addresses the instruction memory at the Fetch
unit and the Decoder unit receives the instruction directly from memory. The older specifi-
cation addressed the instruction memory in the Fetch unit and considered that it received
the instruction immediately, in an asynchronous way, bringing the need for an Instruction
Register (IR) as a time barrier for the instruction being provided to the second stage. The
same happened in memory reads that are performed on the Execute unit. These expected
the data to appear in the same cycle and then registered it to pass it to the Retire unit. In
PUC-RS5 the Execute stage only outputs the read address and the data is received by the
Retire unit that processes it and then writes to the register bank. The Retire unit, besides
receiving data read from memory also provides the data for writing to memory.

One of the intentions of this work was also to keep track of the area increase caused
by the use of the privileged architecture and the CSRs.

5.2 The Zicsr Extension Implementation

The RISC-V Instruction Set Manual [WA19] specifies several extensions for RISC-
V. Among them, there is the Zicsr extension. This extension defines 6 new instructions
that are used to access CSRs. These CSRs are defined in the Volume 2 of the RISC-
V Manual [WAH21] and will be further explained in Section 5.4. The CSR instructions can
atomically read from and write to a single CSR. The format of the six instructions is displayed
in Figure 5.2. The CSR address is encoded on a 12-bit immediate field held in the field csr
located in bits 31-20. The 12-bit field reaches an address space of 4096 CSRs on each



58

hart. The instruction encoding provides two register addresses: a source register, rs1, and
a destiny register, rd. In the immediate forms of the instructions, the field rs1 holds a 5-
bit immediate that is zero-extended. The fields funct3 and opcode are used for instruction
decoding.

Figure 5.2 – Definition of Zicsr instructions format.

Based on the source and target registers, the functionality of the instruction can be
reduced by not performing one of its actions, such as reading from or writing to the CSR.
These changes in the behavior of the instruction are illustrated in Table 5.2. This behavior
is needed to be able to just read or just write a register, which is useful in cases such as
reading a read-only CSR without writing to it and causing an exception. The CSR reads
and writes can have some side-effects such as exception raising (e.g. when the user tries
to access a CSR with higher privilege required or performing a write to a read-only register)
and other CSRs being modified implicitly (e.g. instret CSR).

Table 5.2 – Conditions determining whether a CSR instruction reads or writes to a CSR.
Register operand

Instruction rd is x0 rs1 is x0 Reads CSR Writes CSR
CSRRW Yes – No Yes
CSRRW No – Yes Yes
CSRRS/CSRRC – Yes Yes No
CSRRS/CSRRC – No Yes Yes

Immediate operand
Instruction rd is x0 uimm=0 Reads CSR Writes CSR
CSRRWI Yes – No Yes
CSRRWI No – Yes Yes
CSRRSI/CSRRCI – Yes Yes No
CSRRSI/CSRRCI – No Yes Yes



59

5.2.1 CSRRW Instruction

The CSRRW instruction is an atomic Read and Write instruction that performs a
swap of the CSR and the source register. It reads the value of the CSR and writes it in the
destiny register and writes the source register content to the CSR. When the destiny register
is the x0 (the zero register) the instruction does not perform the read, only the write. In this
case, the instruction can also be known as the CSRW assembly pseudo-instruction.

5.2.2 CSRRWI Instruction

The CSRRWI instruction is a variant of the CSRRW that uses the rs1 field as an
unsigned 5-bit immediate. This instruction has the same behavior as CSRRW when the rd
field is x0. In this case, the instruction can also be known as the CSRWI assembly pseudo-
instruction.

5.2.3 CSRRS Instruction

The CSRRS instruction is an atomic Read and Set instruction that performs a CSR
read and sets the intended bits of the CSR. The initial value in the source register, rs1, is
used as a bit mask that specifies the CSR bit positions that must be set. Any bit high in rs1
causes the corresponding bit to be set in the CSR only if that CSR bit is writable. When the
rs1 field holds the value of the register x0 the instruction does not write to the CSR. In this
case, the instruction can also be known as the CSRR assembly pseudo-instruction.

5.2.4 CSRRSI Instruction

The CSRRSI instruction is a variant of the CSRRS that uses the rs1 field as an
unsigned 5-bit immediate. This instruction has the same behavior as CSRRS when the rd
field is x0.



60

5.2.5 CSRRC Instruction

The CSRRC instruction is an atomic Read and Clear instruction that performs a
CSR read and clears the intended bits of the CSR. The initial value in the source register,
rs1, is used as a bit mask that specifies the CSR bit positions that must be cleared. Any
bit high in rs1 causes the corresponding bit to be cleared in the CSR only if that CSR bit is
writable. When the rs1 field holds the value of the register x0 the instruction does not write
to the CSR.

5.2.6 CSRRCI Instruction

The CSRRCI instruction is a variant of the CSRRC that uses the rs1 field as an
unsigned 5-bit immediate. This instruction has the same behavior as CSRRC when the rd
field is x0.

5.3 The CSR Unit

To implement the Zicsr extension the pipeline required changes, which are:

1. The inclusion of Zicsr instructions in the instruction type enumeration;

2. The inclusion of a new unit XU type enumeration;

3. The creation of the CSR operation type;

4. Zicsr instruction decoding;

5. The CSR Unit creation and integration in the execute stage;

6. The CSR Bank integration.

Topics 1, 2 and 3 are described in Section 5.3.1, topic 4 is described in the Sec-
tion 5.3.2, topic 5 is described in Section 5.3.3 and topic 6 is described in Section 5.5

5.3.1 CSR Enumerations

The first step to implementing the Zicsr instruction is to define them in the enumer-
ations that define the type of instructions. These definitions are made in a package module



61

that defines every type and constant that the organization uses, this package is defined in
the file "pkg.sv" that is presented in Listing 5.1.

1 package my_pkg;

2

3 const int MEMORY_SIZE = 65535;

4

5 typedef enum logic [2:0] {R_type , I_type , S_type , B_type , U_type , J_type}

fmts;

6

7 typedef enum logic [2:0] {

8 OP0 , OP1 , OP2 , OP3 , OP4 , OP5 , OP6 , OP7

9 } op_type;

10

11 typedef enum logic [5:0] {

12 NOP = 6’o00 ,LUI ,SRET ,MRET ,WFI ,ECALL ,EBREAK ,INVALID ,

13 ADD = 6’o10 ,SUB ,SLTU ,SLT ,

14 XOR = 6’o20 ,OR,AND ,

15 SLL = 6’o30 ,SRL ,SRA ,

16 BEQ = 6’o40 ,BNE ,BLT ,BLTU ,BGE ,BGEU ,JAL ,JALR ,

17 LB = 6’o50 ,LBU ,LH,LHU ,LW ,SB,SH,SW,

18 CSRRW=6’o60 ,CSRRS ,CSRRC ,CSRRWI ,CSRRSI ,CSRRCI

19 } i_type;

20

21 typedef enum logic [2:0] {bypass , adder , logical , shifter , branch , memory ,

csri} xu;

22

23 typedef enum logic [1:0] {NONE , WRITE , SET , CLEAR} csr_ops;

24

25 typedef enum logic [1:0] {USER , SUPERVISOR , HYPERVISOR , MACHINE = 3}

Privilege;

26

27 endpackage

Listing 5.1 – Enumeration definitions for the Zicsr instructions.

The instruction encoding of the PUC-RS5 core is made in a way that it can be split
afterward into simpler types that defines the Execute Unit (XU) for the instruction and the
corresponding operation in that Execute Unit.

The execute Unit type is defined by the enumeration called "xu" that is defined in
line 21 of Listing 5.1, it is a 3-bit type and corresponds to the 3 highest bits of the instruction
type.

The operation type is defined by the enumeration called "op_type" that is defined
in line 7. It corresponds to the 3 lower bits of the instruction type. This operation is only
used inside the operation units and is a way of sparing some bits in the management of the
operation to perform.



62

To add a new execute unit the only change needed is to add a new field in the
enumeration xu called "csri" which stands for "CSR Instructions".

The instructions are defined as a 6-bit type called "i_type". This type has the exe-
cute unit as the 3 higher bits and the operation as the 3 lower bits. Because of that, the octal
format that comprises 3 bits is used to separate instructions by unit. This definition is located
in line 11. The new instructions definitions are located in line 19 and they were made using
the instruction name as the enumeration key.

A new type was defined for the CSR operations, this type is called "csr_ops" and is
defined in line 24. It is a 2-bit type that defines the three operations that can be performed
in a CSR: Write, Set and Clear. The remaining bit is used as a No-Operation code.

The definition of privileges is also shown in line 24. Although the machine privilege
mode is the only one currently supported, others are already defined for future utilization.

5.3.2 CSR Instructions Decoding

Instruction decoding is made at the second stage of the pipeline. This stage is
defined in the file "decode.sv" The decode is made based on the instruction object code
received from the memory. The decode of the Zicsr extension is made based on the fields
funct3 and opcode that correspond respectively to bits 14-12 and 6-0 of the instruction word.
The definition of these codes is made in the RISC-V specification. To perform the decoding
of the instruction object code into the previously defined instruction enumeration types, pre-
sented in Section 5.3.1, other conditions are added into the main decoding "if" operation,
these conditions are displayed in Listing 5.2.

1 if(instruction [6:0]==7 ’ b0110111) i<=LUI;

2 .

3 .

4 .

5 else if(instruction [14:12]==3 ’ b001 & instruction [6:0]==7 ’ b1110011)i<=CSRRW;

6 else if(instruction [14:12]==3 ’ b010 & instruction [6:0]==7 ’ b1110011)i<=CSRRS;

7 else if(instruction [14:12]==3 ’ b011 & instruction [6:0]==7 ’ b1110011)i<=CSRRC;

8 else if(instruction [14:12]==3 ’ b101 & instruction [6:0]==7 ’ b1110011)i<= CSRRWI;

9 else if(instruction [14:12]==3 ’ b110 & instruction [6:0]==7 ’ b1110011)i<= CSRRSI;

10 else if(instruction [14:12]==3 ’ b111 & instruction [6:0]==7 ’ b1110011)i<= CSRRCI;

11 .

12 .

13 .

14 else i<= INVALID;

Listing 5.2 – The Zicsr instruction decoding process.



63

The instruction format is already decoded as a "I_type" based on the opcode field.
The format is responsible for the generation of the immediate and also for assigning the
correct operands to the execute stage. The execute unit is implicitly defined in the instruction
type as explained in Section 5.3.1.

5.3.3 CSR Execute Unit

The first step to add a new Execute unit to the PUC-RS5 core is to instantiate it
in the "execute.sv" file. This file defines the third pipeline stage and is responsible for the
instantiation of the Execute units and the demultiplexing of the results. To do that, the unit
must be instantiated with the input signals being associated with the operands received
from the Decoder stage. The outputs are then assigned to an array of results where each
position is an Execute unit output. This array is demultiplexed based on the instruction being
executed. In the case of the CSR Unit, the output to the Retire unit is the data read from
CSR bank. The other CSR unit outputs are directly linked to the CSR bank.

The CSR Execute unit is defined inside the file xus.sv, together with the other
execute units, its interface is shown in Listing 5.3. The CSR Unit receives the two operands
and the instruction operation. The first operand is the opA input and is the data read from
the Register bank. The second operand instruction, is the instruction code, the immediate
and the CSR address is extracted from this signal. The third operand, i, is the operation the
instruction performs.

The Unit has 6 outputs. The first two, csr_rd_en and csr_wr_en, are the read and
write enables for the CSR Bank. The csr_op is the output that defines the operation to be
executed in the CSR Bank. The csr_addr is the address of the CSR. The csr_data is the
data to write or used in the set and clear operations. The csr_exception is a signal that
indicates an exception in the CSR operation.

1 module csrUnit (

2 input logic [31:0] opA ,

3 input logic [31:0] instruction ,

4 input op_type i,

5 output logic csr_rd_en ,

6 output logic csr_wr_en ,

7 output csr_ops csr_op ,

8 output logic [11:0] csr_addr ,

9 output logic [31:0] csr_data ,

10 output logic csr_exception

11 );

Listing 5.3 – The CSR unit interface.



64

Listing 5.4 displays the code used for CSR access exception detection. A CSR
exception is raised in cases where either the instruction tries to write to a read-only CSR or
if the instruction tries to access a CSR with a Higher privilege than the actual privilege. As
the current implementation has only the machine mode implemented, the privilege is fixed
in a hard-coded way.

1 always_comb

2 // Raise exception if CSR is read -only and write enable is true

3 if (( csr_addr [11:10] == 2’b11) && (csr_wr_en_int == 1))

4 csr_exception <= 1;

5 // Check Level privileges

6 else if (( csr_addr [9:8] < privilege) && (( csr_rd_en_int == 1) || (

csr_wr_en_int == 1)))

7 csr_exception <= 1;

8 // No exception is raised

9 else

10 csr_exception <= 0;

Listing 5.4 – CSR instructions exception detection.

Listing 5.5 displays the process of the CSR Bank read enable and write enable
alongside its operands. From the instruction input, the internal operands rd (destiny reg-
ister), rs1 (register source 1), and csr_addr_int are extracted (lines 1-3). These internal
signals are then used in the conditional operator "if" in lines 8-26. This Conditional opera-
tor is responsible for generating the internal read and write enables based on the behavior
of each instruction facing the rs1 and rd addresses as listed in Figure 5.2. These internal
enables are then assigned to the output after a bitwise AND operation with the inverse of
the csr_exception signal. When an exception is detected no operation is allowed, since the
bitwise AND with the enables will result in a not enable state.

1 assign rd = instruction [11:7];

2 assign rs1 = instruction [19:15];

3 assign csr_addr_int = instruction [31:20];

4

5 assign csr_rd_en = csr_rd_en_int & !csr_exception;

6 assign csr_wr_en = csr_wr_en_int & !csr_exception;

7

8 always_comb begin

9 if (i==OP0 || i==OP3) begin // CSSRW or CSSRWI

10 csr_wr_en_int = 1;

11 if (rd==0)

12 csr_rd_en_int = 0;

13 else

14 csr_rd_en_int = 1;

15

16 end else if (i==OP1 || i==OP2 || i==OP4 || i==OP5) begin // CSRRS/C and

CSRRS/CI



65

17 csr_rd_en_int = 1;

18 if (rs1 ==0)

19 csr_wr_en_int = 0;

20 else

21 csr_wr_en_int = 1;

22

23 end else begin

24 csr_rd_en_int <= 0;

25 csr_wr_en_int <= 0;

26 end

27 end

Listing 5.5 – Generation of operands and read and write enables for CSR Bank.

Listing 5.6 displays the code that is used to identify if the data to be written in the
CSRs is the data from the register bank or the immediate from the instruction code. It also
shows the operation decoding based on the previously decoded OP input signal. Lines 1-2
define a block that assigns the internal signal to the output csr_addr. Lines 4-8 describe
the assignment to the output csr_data either the operand from the register bank or the zero-
extended immediate from the instruction that was located in the rs1 field. Lines 10-19 define
the operation output csr_op the operation based on the instruction operation received.

1 always_comb

2 csr_addr <= csr_addr_int;

3

4 always_comb

5 if (i==OP0 || i==OP1 || i==OP2)

6 csr_data <= opA;

7 else

8 csr_data <= ’0 & rs1;

9

10 always_comb

11 if (i==OP0 || i==OP3) // WRITE

12 csr_op <= WRITE;

13 else if (i==OP1 || i==OP4) // SET

14 csr_op <= SET;

15 else if (i==OP2 || i==OP5) // CLEAR

16 csr_op <= CLEAR;

17 else // NONE

18 csr_op <= NONE;

19 end

Listing 5.6 – Data and operation definition for CSR Bank.



66

5.4 The CSR Bank

Once the PUC-RS5 core correctly implements the Zicsr extension, the CSR bank
can be developed. For that, the first step is to define CSR names and addresses. This was
done in the package definition in the way previously explained in Section 5.3.1 and appears
in Listing 5.7. Line 1 defines the two Trap Modes that can exist, direct and vectored. Direct
Mode always traps (branch to a routine address) to a fixed address independently of the kind
of trap. Vectored Mode will have a dynamic trap address, once it is based on the cause of the
trap, it will add the base trap address to the code of the interrupt or exception resulting in the
exact trap handler for that trap. Line 3 defines the CSRs names and addresses for each. It
is defined as a type that has a 12-bit length giving a CSR address space of 4096 addresses.
The defined CSRs are the mandatory Machine mode CSRs defined in the privilege mode
specification. All of these have a predefined address. Line 5 and line 7 define the exception
and interrupt codes used in the trap handlers.

1 typedef enum logic [1:0] {DIRECT , VECTORED} TRAP_MODE;

2

3 typedef enum logic [11:0] { MVENDORID = 12’hF11 , MARCHID , MIMPID , MHARTID ,

MCONFIGPTR , MSTATUS = 12’h300 , MISA , MEDELEG , MIDELEG , MIE , MTVEC ,

MCOUNTEREN , MSTATUSH = 12’h310 , MSCRATCH = 12’h340 , MEPC , MCAUSE , MTVAL , MIP ,

MTINST = 12’h34A , MTVAL2 , CYCLE = 12’hC00 , TIME , INSTRET , CYCLEH =12’hC80 ,

TIMEH , INSTRETH} CSRs;

4

5 typedef enum logic [4:0] { INSTRUCTION_ADDRESS_MISALIGNED ,

INSTRUCTION_ACCESS_FAULT , ILLEGAL_INSTRUCTION , BREAKPOINT ,

LOAD_ADDRESS_MISALIGNED , LOAD_ACCESS_FAULT , STORE_AMO_ADDRESS_MISALIGNED ,

STORE_AMO_ACCESS_FAULT , ECALL_FROM_UMODE ,ECALL_FROM_SMODE , ECALL_FROM_MMODE =

11, INSTRUCTION_PAGE_FAULT , LOAD_PAGE_FAULT , STORE_AMO_PAGE_FAULT = 15, NE}

EXCEPT_CODE;

6

7 typedef enum logic [4:0] { S_SW_INT = 1, M_SW_INT = 3, S_TIM_INT = 5, M_TIM_INT

= 7, S_EXT_INT = 9, M_EXT_INT = 11} INTERRUPT_CODE;

Listing 5.7 – Definition of CSR addresses and codes for exceptions and interrupts.

The implementation of the CSR Bank is made in the file "CSRBank.sv". Each CSR
address mapped in the package has a 32-bit registered signal corresponding to it, except the
read-only that are constants assigned to the output. During the core reset, CSRs receive
their initial value. Each CSR has also a write mask that can prevent some fields to be
written in each register as defined in each specification. To perform operations over a CSR,
the current CSR value is assigned to an internal signal called current_val. A switch-case
operator based on the CSR address is responsible for assigning the current value and the
write mask to the respective signals.



67

Table 5.3 presents the implemented unprivileged CSRs that were implemented in
the register bank, they are unprivileged because they can be accessed in any privilege
mode without raising an exception. Column Privilege(Access) shows the privilege required
for accessing the CSR and the access type of the respective CSR, in these cases being
Unprivileged and (U) and read-only (RO). The cycle CSR is a read Only CSR that is incre-
mented at every clock cycle and can be read by the Zicsr instructions or by the RDCYCLE
pseudo-instruction. The instret CSR is a read-only CSR incremented every time the Retire
unit retires an instruction. This CSR can be read by the Zicsr instructions or by the RDTIME
pseudo-instruction. The time CSR is a read-only CSR that implements a real-time timer,
it was not implemented directly in the CSR Bank but its behavior was implemented in the
peripherals as will be explained in Section 6.2.6.

Table 5.3 – Implemented RISC-V unprivileged CSRs.

Number Privilege(Access) Name Description
Unprivileged Counter/Timers

0xC00 U(RO) cycle Cycle counter for RDCYCLE pseudo-instruction
0xC02 U(RO) instret Instructions-retired counter for RDINSTRET
0xC01 U(RO) time Timer for RDTIME pseudo-instruction

Table 5.4 presents the machine-level CSRs that were implemented in the register
bank, they are exclusive for machine-level privilege access and any attempt to access it with
a lower privilege level will raise an exception. There are five CSR that are Read Only, these
CSRs are related to core-specific information for registered commercial RISC-V distributions,
such as Vendor, Architecture, and Implementation Identifiers, they all return the value 0 as
the PUC-RS5 distribution is not yet classified in the RISC-V canonical implementations.
Column Privilege(Access) shows the privilege required for accessing the CSR as machine
level (M) and classifies the CSR according to the access being read-only (RO) or read-write
(RW).

The mstatus CSR is a read-write CSR that holds the current status of the core, it
is used on privilege mode changes and has some fields related to enabling functionalities
such as the field Machine Interrupt Enable (MIE). The misa CSR is a read-write CSR that
holds information about the ISA and extensions implemented by the core. This is important
for generic software to identify which extensions are implemented in hardware, including to
define if that kind of operation should be treated in software or can be performed by hard-
ware. The misa CSR writes allows the possibility to disable some implemented extensions
or to change the core instruction length from 64 to 32, for example. The mie CSR holds the
enabled interrupts, each bit of this register corresponds to a kind of interrupt and is directly
mapped with the mip CSR, its behavior will be explored in further Sections. The mtvec CSR
holds the trap handler base address and is set in boot routines as will be further explained in



68

Table 5.4 – Implemented RISC-V machine-level CSRs.

Number Privilege(Access) Name Description
Machine Information Registers

0xF11 M(RO) mvendorid Vendor ID
0xF12 M(RO) marchid Architecture ID
0xF13 M(RO) mimpid Implementation ID
0xF14 M(RO) mhartid Hardware thread ID
0xF15 M(RO) mconfigptr Pointer to configuration data structure

Machine Trap Setup
0x300 M(RW) mstatus Machine status register
0x301 M(RW) misa ISA and extensions
0x304 M(RW) mie Machine interrupt-enable register
0x305 M(RW) mtvec Machine trap-handler base address

Machine Trap Handling
0x340 M(RW) mscratch Scratch register for trap handlers
0x341 M(RW) mepc Machine exception program counter
0x342 M(RW) mcause Machine trap cause
0x343 M(RW) mtval Machine bad address or instruction
0x344 M(RW) mip Machine interrupt pending

Section 5.6. The mscratch CSR is a register used for swapping an integer register contents
with its value in the trap handler routines. The mepc CSR receives the PC address of the
instruction causing an exception or the PC address of the instruction that was interrupted by
the trap to an interrupt handling routine. The mcause CSR holds the value of the cause of
the trap. It is read by software to isolate the cause of the trap handling trigger event to jump
to a proper handler routine. Values that the mcause CSR can receive and its meanings are
shown in Table 5.5. The mtval CSR is an auxiliary register that receives either the instruction
that caused the instruction or the address of the instruction that caused the exception. The
mip CSR holds the interrupts that have pending requests, it is associated directly with the
mip register. The behavior of these CSRs will be further explored in the following Sections,
associated with related software routines.

5.4.1 Read Operation

The read operation is made by a block of code that first checks if the read operation
is enabled and if the instruction is not going to be killed (this will be further explained in
Section 5.5). After validation, the contents of the addressed CSR is assigned to the output.
This is done by a switch case command indexed by the CSR address. Read-only registers



69

are constants that are directly assigned to the output port and the other CSRs are indexed
by the output.

5.4.2 Write Operation

As previously said, each CSR has a write mask, and its current value is assigned
to a hardware internal signal. Signals are combined with the data input to generate the data
to be written to the addressed CSR as displayed in Listing 5.8, which has different behavior
for each operation that must be performed.

To actually perform a write operation as a result of executing an instruction, it does
have the lowest precedence. This happens because other operations have a higher impact
on the core state. The higher precedence writes are originally from interrupts, exceptions,
and trap returns. These cases imply in general more than one CSR to be written. The write
is made if the write enable is set and if the instruction is not going to be killed. In this case,
the addressed CSR receives the value calculated and assigned to the wr_data signal.

1 always_comb

2 if(csr_op ==WRITE)

3 wr_data <= data & wmask;

4 else if(csr_op ==SET)

5 wr_data <= (current_val | data) & wmask;

6 else if(csr_op ==CLEAR)

7 wr_data <= (current_val & (~data)) & wmask;

8 else

9 wr_data <= ’Z;

Listing 5.8 – Generation of the data to be written in the CSR Bank.

5.4.3 Machine Return

The trap return, also known as MACHINE_RETURN, is caused by an MRET in-
struction, which is used at the end of a trap handling routine. It causes the core to return to
the previous stage before the trap occurred. It usually rollbacks the privilege to the privilege
that it had before the trap (as the PUC-RS5 core has only the machine privilege imple-
mented, it stays the same). It does that by restoring the field Machine interrupt enable (MIE)
of the mstatus CSR with the value stored in the field Machine Previous Privilege (MPP) of
the same register.



70

5.4.4 Exception Trap

When an exception occurs, several CSR fields and CSRs are written at the same
time. The mcause CSR will hold the cause of the exception. Bit 31 of mcause CSR will
be set to zero to indicate to the handler that the trap cause is an exception. The other 31
bits will receive the code of the exception according to predefined values that are shown in
Table 5.5. The field MPP of the mstatus CSR receives the current privilege. The current
privilege will be set to machine mode. The field Machine Previous Interrupt Enable (MPIE)
receives the field MIE both from the mstatus CSR and then the MIE is set to zero. The mepc
CSR receives the current PC if the exception cause was an ECALL instruction, otherwise
it receives PC+4. The mtval CSR receives the instruction that caused the exception if the
exception was caused by an illegal instruction, otherwise it receives the PC that fetched the
instruction causing the exception.

5.4.5 Interrupt Trap

The CSR bank receives the interrupt request signal (IRQ) from the environment
and stores it in the Machine Interrupt Pending (MIP) CSR. The MIE CSR holds the enable
for each kind of interrupt, where each bit corresponds to an enable bit relative to the MIP
CSR. Based on the MIP CSR and in the relative enable from the MIE, a signal called inter-
rupt_pending is raised to the core. When the core is able to accept the interrupt it will return
a signal called interrupt_ack signaling the trap to the interrupt handler.

When an interrupt is acknowledged, several CSR fields and CSRs are written at
the same time. The mcause CSR will hold the interruption code. Bit 31 of the mcause CSR
will be set to one to indicate to the handler that the trap cause is an interrupt. The other 31
bits will receive the code of the interrupt according to predefined values that are shown in
Table 5.5. The field MPP of the mstatus CSR receives the current privilege. The current
privilege will be set to the machine mode. The field Machine Previous Interrupt Enable
(MPIE) receives the field MIE both from mstatus CSR and then the MIE is set to zero. The
Machine Exception Program Counter (MEPC) CSR receives the current PC.

5.5 The CSR Register Bank Integration

The CSR Bank integration was made by instantiating the module called CSRBank
described in Section 5.4, in parallel with the Execute unit, at the third stage of the pipeline.



71

Table 5.5 – Machine cause register (mcause) values after trap.

Interrupt Exception Code Description
1 0 Reserved
1 1 Supervisor software interrupt
1 2 Reserved
1 3 Machine software interrupt
1 4 Reserved
1 5 Supervisor timer interrupt
1 6 Reserved
1 7 Machine timer interrupt
1 8 Reserved
1 9 Supervisor external interrupt
1 10 Reserved
1 11 Machine external interrupt
1 12–15 Reserved
1 ≥16 Designated for platform use
0 0 Instruction address misaligned
0 1 Instruction access fault
0 2 Illegal instruction
0 3 Breakpoint
0 4 Load address misaligned
0 5 Load access fault
0 6 Store/AMO address misaligned
0 7 Store/AMO access fault
0 8 Environment call from U-mode
0 9 Environment call from S-mode
0 10 Reserved
0 11 Environment call from M-mode
0 12 Instruction page fault
0 13 Load page fault
0 14 Reserved
0 15 Store/AMO page fault
0 16–23 Reserved
0 24–31 Designated for custom use
0 32–47 Reserved
0 48–63 Designated for custom use
0 ≥64 Reserved



72

It receives the signals from the CSR Unit of the Execute stage and communicates with the
Fetch stage and also with the Retire stage.

5.5.1 Integration with Fetch Unit

The Fetch unit is the first stage and is responsible for fetching instructions and
assigning a tag to them. The Program Counter, before the changes to PUCRS-RV had only
two paths, or it received the PC plus 4 or it received a new address when a branch occurred.
The process used for PC generation is displayed in Listing 5.9

1 always @(posedge clk)

2 if (reset)

3 PC <= start_address;

4 else if (MACHINE_RETURN)

5 PC <= mepc;

6 else if (EXCEPTION_RAISED || Interrupt_ACK)

7 PC <= mtvec;

8 else if (jump)

9 PC <= result;

10 else if (! hazard && !stall)

11 PC <= PC_plus4;

Listing 5.9 – Integration of the CSR Bank with Fetch Unit.

The CSR Bank integration resulted in more branching options for the PUC-RS5 or-
ganization. When an MRET instruction executes, the PC receives its older value, previously
stored in the MEPC CSR. When an exception is detected or an interrupt is acknowledged,
the PC receives the MTVEC CSR value that holds the trap handler address. The other cases
are the standard ones and already existed. This work only increased the validation of the
stall stall along the hazard verification. This topic will be discussed in Section 5.9.

Another required change in the Fetch unit is the increment of the tag in these cases.
Before, the tag was only incremented when a branch was taken, now it is also incremented
when an MRET is executed or when an exception is detected, or when an interrupt is ac-
knowledged. In other words, the tag is increased every time the PC receives a new value
which is different from an increment by 4.

5.5.2 Integration with the Retire Unit

The Retire unit has also a tag system, used to validate instructions to retire. The tag
is also increased when the execution flow of the core is changed, in the cases mentioned



73

in Section 5.5.1. Since the two tag systems must have the same behavior regarding the
pipeline operation, this unit is modified in the same way as the Fetch unit.

The Retire unit is essential to the CSR Bank functionality. It validates executed
instructions and raises exceptions in case they do not work properly. Also, it is responsible for
the ECALL, EBREAK, and MRET instructions. These instructions operations are triggered
by the Retire unit by raising an exception or indicating an MRET to the CSR Bank and
passing proper data such as exception codes and arguments.

Interrupts are also taken by this unit. After the recognition of an interrupt_pending
signal and finding the right moment to accept the interrupt, it generates an acknowledgment
for the interrupt source. This acknowledgment triggers the required changes in the CSR
Bank and also causes a branch to the handler routine in the Fetch unit.

5.6 Software Support for the Privileged Architecture

The hardware side of the privileged architecture is just a base for the privileges
modes, that have their behavior defined by the software. The software is responsible for
defining the routines that implement the trap handling. One of the software’s responsibilities
is setting the initial state of the required CSRs. Also, in the direct mode, when a trap occurs it
applies a filter to determine what is the trap cause and then jumps to the respective handler.
The software was built in the RISC-V assembly language and is compiled by a GCC compiler
into a binary. As the focus of this work is the hardware side of the implementation, the built
software is basic and simple, with goal to validate the implemented organization.

Figure 5.3 represents the trap handling flow. Initially, an event occurs which trig-
gers the peripheral to generate a trap request. Next, the CLINT accepts the trap request,
signaling an acknowledgment and changing the core state to a handling state, while stores
the previous state. After that, the PC receives the generic trap handling address. The trap
handler routine decodes the trap cause and branches to the trap specific handler. Finally,
the return handler executes a machine return (MRET) instruction that restores the previous
PC and the previous state in the CSRs and CLINT.

5.6.1 Boot Configuration

The assembly code in Listing 5.10 displays the boot routine. At startup, the software
enters a code section with the label "boot". This section is responsible for setting the initial
state of all CSRs. The first step is to define the address that the PUC-RS5 core must branch
when a trap occurs. As defined in the specification the mtvec CSR holds the trap handler



74

Peripheral

EVENT

CLINT

TRAP

REQUEST

SOFTWARE

GENERIC HANDLER

SPECIFIC HANDLER

CSRs

STORE STATE AND
SWITCH TO HANDLE STATE

TRAP HANDLER ADDRESS

Program Counter

TRAP CAUSE

RETURN HANDLER

MACHINE RETURN

ACKNOWLEDGE

RESTORE OLD STATE

MACHINE RETURN

Figure 5.3 – The PUC-RS5 trap handling flow.

value. Initially, the address of the trap handler label is loaded into register t0, and then it is
written to the mtvec CSR with the CSRW Zicsr instruction.

1 .globl boot

2

3 # Set the trap handler address

4 la t0, trap_handler # Trap Handler address is loaded into t0

5 csrw mtvec , t0 # and then written in the MTVEC CSR

6

7 # Enable Global Interrupts

8 li t1, 0x80 # Sets MPIE (bit 7)

9 csrs mstatus , t1 # of MSTATUS CSR

10

11 # Enable External Interrupts

12 li t2, 0x888 # Set bits 11, 7 e 3 (MEIE , MTIE e MSIE)

13 csrs mie , t2 # of MIE CSR

14

15 # Adjust mscratch

16 la t1, reg_buffer # Loads address of a memory region

17 csrw mscratch , t1 # in the MSCRATCH CSR

18

19 # Changes to USER MODE

20 csrr t1, mstatus # SET MPP field

21 li t2, ~0x1800 # of MSTATUS CSR

22 and t1, t1, t2 # with user mode (00)

23 csrw mstatus , t1

24

25 la t0, main # Loads main address

26 csrw mepc , t0 # in MEPC CSR

27 mret # Execute a Machine Return

Listing 5.10 – Code for the boot routine.



75

Register mstatus is initialized by default with interrupts disabled, to guarantee that
an interrupt does not happen during boot. One of the boot steps is then to set the bit that
globally enables interrupts. To keep it disabled until the boot process is complete the correct
way is to set the field MPIE. This is done by setting bit 7 of the mstatus CSR. When the
MRET instruction is executed, the MPIE field is loaded into the MIE field of the same CSR.
When that is done interrupts are thus enabled.

To actually enable the interrupts, the mie CSR must be configured. Each bit of
this CSR corresponds to an enable to a kind of interrupt that is requested by setting that
bit in the mip CSR. As the three predefined interrupt types are external, timer and software
interrupts,the bits corresponding to these are set. The enable bits for these 3 interrupt types
are bits 11, 7, and 3 respectively, which are set during the boot process in line 12 and line 13.

The mscratch CSR is a CSR that holds a memory address is reserved for use dur-
ing trap handling to store the context. This CSR is loaded with the address of the "reg_buffer"
label, a predefined memory region reserved for this purpose.

Lines 19 to 23 load the mstatus CSR content into the t1 register and then sets the
MPP field to the user privilege. This field will be loaded with the current privilege when a
machine return occurs. As the PUC-RS5 core has only the machine mode implemented,
this change does not cause any effect, but it is kept to display how mode change is expected
to occur in future core versions.

The last three lines conclude the boot process, by loading the label "main" into the
mepc CSR. This CSR content will be loaded into the PC when a machine return instruction
is executed. Lastly, the MRET instruction is executed, by applying all effects programmed by
the Boot Routine, concluding the process of putting the CSRs to a known state.

5.6.2 The Trap Handler

The code in Listing 5.11 displays the assembly code used in the trap handling setup
routine. This routine is responsible for the identification of the trap cause. The first thing it
does is to swap the a0 register and the mscratch CSR. The value loaded in a0 is used as
the address to store the current context. The values of the integer register a1-a5 are then
stored in memory, to enable their use in the routines.

1 trap_handler:

2 csrrw a0, mscratch , a0

3

4 sw a1, 0(a0)

5 sw a2, 4(a0)

6 sw a3, 8(a0)

7 sw a4, 12(a0)

8 sw a5, 16(a0)



76

9

10 csrr a1, mcause # a1 is not used in programs

11

12 bgez a1, exc_handler # Branch to an Exception handler if is an exception

13 andi a1, a1, 0x3f # Isolate interrupt cause

14 li a2, 11 # a2 = External Interrupt

15 beq a1, a2, MEI_handler # If is a MEI branch to MEI_handler

16 li a2, 3 # a2 = software Interrupt

17 beq a1, a2, MSI_handler # If is a MSI branch to MSI_handler

18 li a2, 7 # a2 = Timer Interrupt

19 beq a1, a2, MTI_handler # IF is a MTI branch to MTI_handler

20

21 j return # Else just returns

Listing 5.11 – Code for the trap handler routine.

The routine reads the mcause CSR into the a1 register. Next, it works in isolating
the cause. If bit 31 is set to 0 the Cause value is positive, which implies an exception since
bit 31 of the mcause CSR is the field that defines an exception when is set to 0 or an interrupt
(when set to 1), as explained in Section 5.4.4. If the Cause value is positive then the Branch
if Greater or Equal to Zero (BGEZ) will branch to the exception handler.

The other lines perform field isolation and comparisons with the interruption cause
codes. When a match is found, the routine branches to the respective handler. If no match
is found, it just returns to the normal application flow.

5.6.3 The Exception Handler Routine

The code in Listing 5.12 displays the assembly code used in the Exception Handler
routine. This routine simply treats the return address located in the mepc CSR. In Excep-
tions the mepc holds the address of the instruction that caused the exception, as the most
common exceptions are ECALL instructions then the regular flow must be retaken and for
that, the return address must be the next instruction. Therefore the mepc value is loaded
into an integer register and then increased and then placed in mepc again. After the mepc
is increased the return process is called.

1 exc_handler:

2

3 # Adjust Mepc to return from a ECALL

4 csrr a1, mepc # Loads return address

5 addi a1, a1, 4 # Sums 4 to the return address

6 csrw mepc , a1 # Updates MEPC to new value

7



77

8 j return

Listing 5.12 – Code for the exception handler routine.

5.6.4 The Interrupt Handler Routine

The code in Listing 5.13 displays the assembly code used in the interrupt handling
routine. The interrupt handlers are specific to each kind of interrupt. In this case, to keep it
simple they are almost the same, being different only in the string output that is sent to the
memory-mapped output register to be printed on the screen.

1 MTI_handler:

2 li a1 ,0 x80001000

3 addi a2,zero ,’\n’

4 sw a2 ,0(a1)

5 addi a2,zero ,’M’

6 addi a3,zero ,’T’

7 addi a4,zero ,’I’

8 addi a5,zero ,’\n’

9 sw a2 ,0(a1)

10 sw a3 ,0(a1)

11 sw a4 ,0(a1)

12 sw a5 ,0(a1)

13

14 j return

Listing 5.13 – Code for an interrupt handler routine.

Initially, the output register address is loaded into register a1. After that, some
ASCII codes are loaded into integer registers to be used in stores later. The Store Word
(SW) instruction uses the address stored in register a1 and the ASCII codes are loaded in
registers. These stores send the data to the memory-mapped output register. The output
register is responsible for printing the data on the screen. This is made by either just calling
a System Verilog print Function or by sending it over a UART to the host computer screen,
as will be explained in Section 6.2.4.

5.6.5 The Return Handler Routine

The code in Listing 5.14 displays the assembly code used in the Return Handler
routine. This routine undoes the context store made in the trap handler routine as explained
in Section 5.6.2. First, it reads the 5 values stored in the memory into their origin and then
undo the swap of the a0 register and the mscratch CSR.



78

1 return:

2 lw a1, 0(a0)

3 lw a2, 4(a0)

4 lw a3, 8(a0)

5 lw a4, 12(a0)

6 lw a5, 16(a0)

7

8 csrrw a0, mscratch , a0

9 mret

Listing 5.14 – Code for the return handler routine.

5.7 Register Bank Changes

The Register Bank suffered some changes in its implementation aiming for less
area usage. On the PUCRS-RV core, the register bank had a tri-state logic for assigning
values to the bank outputs. The zero register was also emulated to preserve the use of one
32-bit register, but this behavior required the tri-state organization. The write address was
made by a 31-bit one-hot signal, where each bit represented the enable for the correspond-
ing register.

The first change was to remove the tri-state logic since it usually increases area
usage. After that, the write address was simplified to a 5-bit encoded signal. This was made
to keep the pattern between the two usages of the register bank that will be discussed in
Section 6.2.1.

5.7.1 Locked Registers Queue

The one-hot write address of the register bank was made in this format because of
the locking register queue. This mechanism is responsible for keeping track of the register
that has pending writes. They were stored in a queue and the positions of the queue were
merged into a wired-OR signal.

After the change of the one-hot signal to an encoded address, the locked registers
queue had to change its behavior to accommodate 5-bit signals instead of the old signal with
31 bits. The locked registers queue then did not merge itself in a unique signal anymore and
the test must address each position of the queue individually.

These changes were made mainly aiming at the usage of LUTRAMs during the
core FPGA prototyping. The project of the LUTRAM-based register bank is discussed in
Section 6.2.1. To also be able to use a regular register bank when the simulation is made



79

in a non-prototyping environment, compiler directives were created. This Directive relies
on a DEFINE directive called "PROTO" in the TOP level RTL. This directive must be set
when the intended version is the prototyping and unset when RTL simulation is the intended
usage. This directive is used in an "ifdef" block that switches between the two versions of
the register bank.

5.8 Changes to the Memory Interface

The memory interface suffered changes to accommodate the BRAM usage in pro-
totyping, discussed in Section 6.2.2. These changes addressed the need to make aligned
memory accesses, which was not the case in PUCRS-RV. Before, the interface had sepa-
rate addressing signals for the data memory reads and writes. This organization would have
caused the need to use a single port BRAM just for the instruction memory and another
dual-port BRAM for the data memory. As the intended behavior of the circuit is to keep the
area and resources as low as possible, the interface changed to have only one set of ports
for data access. Figure 5.4 presents a diagram of the input and output signals related to
memory and Table 5.6 presents a brief description of each signal.

I_ADDRESS

DATA_ADDRESS

WRITE

ENABLE

PUC-RS5 CORE

DATA_IN
INSTRUCTION

DATA_OUT

32

32

32

32

32

4

Figure 5.4 – The PUC-RS5 memory interface.

To access the instruction memory there are only two signals. The PUC-RS5 core
outputs the I_ADDRESS signal which contains the address of the requested instruction. In
the next cycle, the INSTRUCTION signal is provided by the memory.

The data Memory interface has five signals, one input, and 4 outputs. These sig-
nals are detailed in Table 5.6. The input signal is the DATA_IN that is used in memory
reading operations. Memory access is only allowed when the ENABLE signal is set to one,
otherwise, all other signals are ignored. The WRITE signal indicates to the memory the
intended operation, indicating a write when its value is set to 1, and a read is set to 0. The
DATA_ADDRESS signal is the signal that addresses all data memory operations. Finally,
signal DATA_OUT is the output data to be written in memory in a write operation.



80

Table 5.6 – Description of the memory interface signals.
Signal Width Direction Description
I_ADDRESS 32 bits output Instruction request address
INSTRUCTION 32 bits input Requested instruction
ENABLE 1 bit output Enable for memory operations
WRITE 4 bits output Byte-wide Write enable
DATA_ADDRESS 32 bits output Data operation address
DATA_OUT 32 bits output Data to write in memory
DATA_IN 32 bits input Data read from memory

As the data memory uses the same address signal for reads and writes the core
has to manage the use of this resource. Memory reads are made by the Execute unit of the
pipeline and the writes are made by the Retire unit, which can lead to concurrency for the
memory signals. To avoid the concurrency and possible failures by read and write operations
trying to access the memory at the same time, a data hazard detection mechanism is em-
ployed. Memory conflict detection keeps track of the presence of a memory write instruction
in the pipeline in a queue, similar to the locked register queue, but with a single bit indicating
if a store instruction is present in that stage. This mechanism allows memory instructions of
the same kind, stores or loads, to be propagated in the pipeline, but does not allow a store
instruction to be followed by a read to avoid the operations concurrency.

Listing 5.15 displays the data memory access control based on the core internal
read and write signals. The memory enable signal is only set to one if an internal read
or write signal has a value set to a value different from zero. If the write signal is differ-
ent from zero, this means that a write operation must be made. The memory address-
ing signal Data_address receives the internal write_address signal, otherwise it receives
the read_address signal. The lowest two bits of the address signal are always set to zero as
the data access is always aligned to a 32-bit word frontier.

1 always_comb begin

2 if(write !=’0)

3 DATA_address [31:2] <= write_address [31:2];

4 else

5 DATA_address [31:2] <= read_address [31:2];

6

7 DATA_address [1:0] <= ’0;

8

9 if(write!=’0 || read ==1)

10 enable <= 1;

11 else

12 enable <= 0;

13 end

Listing 5.15 – Control of the data bus access.



81

5.9 Pipeline Stall

To be able to perform some operations such as communication with the environ-
ment, the core must be able to hold its state until the operation is ready/complete. For that,
the stall signal was created. The stall signal is responsible for holding the pipeline stages
propagation when it is set to one. For that, this signal is used in all the pipeline registers as
an enable signal. In this way, when the stall signal is set then all registers hold their previous
state on subsequent clock edges, until stall is reset.

The stall signal in the first two stages is used alongside the hazard signal since it
also works as an enable for the pipeline’s first two stages registers, in the bubble propagation
mechanism. The bubble propagation is different from a stall state. In bubble propagation,
it is necessary that the Execute and the Retire stage proceed with their operation to solve
a data conflict (hazard) identified in the register locking queue. In a stall, the Execute and
the Retire stage must hold their state, since probably the stall state is caused by a memory
access operation. The core stages must hold their state until the resource is clear or until
the data is ready to be read.

Cases that can lead to a stall state are related to the core environment. The most
common possibility is when a write to the memory-mapped output register is tried and the
output register buffer is full. In this case, the write signals must be held until the output
register completes the current operation and releases space in the buffer. Another case can
be when the core is trying to read data from a peripheral that takes longer than 1 clock cycle
to provide the requested data. This case can be described by the reading of a peripheral
that has to first process the value to be returned.



82



83

6. THE PUC-RS5 CORE VALIDATION PROCESS

This Chapter presents the PUC-RS5 core validation process. It uses two environ-
ments, one to validate the core only through simulation, detailed in Section 6.1. This is called
testbench environment. The second environment validates the core in a minimalist FPGA
prototyping environment. The later is the target of Section 6.2, and is accordingly called
prototyping environment.

To support the process of using the PUC-RS5 core, Table 6.1 presents a set of
memory-mapped registers employed by both validation environments. These registers are
mapped to addresses higher than the hexadecimal address 0x80000000. The testbench
environment emulates the functionality of these registers using System Verilog functions
and the prototyping environment implements their behavior using components described in
the following sections.

Table 6.1 – Memory-mapped registers employed in the PUC-RS5 validation process.
Address R/W Size Description Usage

0x80000000 W 8 bits Application end register Indicates to the environment
that the application finished

0x80001000 W 8 bits Output register Prints data on screen
(sent to the UART)

0x80004000 W 8 bits Output register Prints data on screen
(sent to the UART)

0x80006000 R 32 bits Real-time timer Returns the core running
time in µs.

6.1 The PUC-RS5 Testbench Environment

For the validation of the core only, the environment used is just a regular Hardware
Description Language (HDL) testbench that emulates peripherals and memory to simulate
their behavior in conjunction with the core. The testbench provides the clock and reset
signals to the core. It instantiates the processor and an abstract RAM module. The memory-
mapped registers have a behavior modified to simplify their use. This is made to have a
simple and fast environment to validate the core, since this can be simulated in regular
simulators such as Mentor Modelsim or Questa, and Cadence Xcelium. The testbench
helps validating minor changes in the core, allowing to build the validation environment much
faster through the use of command-line scripts. The testbench environment also offers more
powerful debug functionalities, such as logging all the memory operations into external files,
which help the bug tracking process.



84

6.1.1 The Testbench RAM Module

The RAM module consists in System Verilog RTL code that implements the inter-
face described in Section 5.8. It emulates a true dual-port memory with synchronous reads
and writes. Read operations return the requested data on the next clock cycle and a similar
behavior is implemented for writes. The RAM has a word-addressed behavior and allows
byte-wide writes.

The RAM module initially opens a binary file containing the compiled software to
be executed by the core and loads these file contents into an array of 65536 byte-wide
positions. After memory initialization, it creates debug file pointers. Each pointer accesses
a file located in a sub-folder called Debug. Every log entry contains the simulation time of
the operation alongside with its contents. There are three debug files:

1. instructions.txt - keeps track of every instruction fetch, the address and the instruction
fetched are logged to it;

2. reads.txt - this file contains the log of every data read from memory and its address;

3. writes.txt - receives a new entry every time a write is performed and outputs the ad-
dress of the write and the new value, alongside with the write signal that indicates what
bytes of the addressed word received new data.

6.1.2 The Testbench Memory-Mapped Registers

The memory-mapped registers presented in Table 6.1 have their implementation
individually implemented in the testbench as described below.

Applications that print characters on the screen employ output registers mapped to
the hexadecimal addresses 0x80004000 or 0x80001000. It is expected that these memory-
mapped registers receive a byte-wide signal. The PUC-RS5 testbench environment imple-
ments the register functionality using System Verilog $write function. This function prints a
byte in the screen/console of the program running the simulation.

A write to address 0x80000000 indicates the end of program execution. In the test-
bench, the Verilog $finish function is called after a finish message is logged to the console.
This function ends the simulation and usually closes the program running the simulation.

The register mapped to address 0x80006000 behave as a real-time timer whose
value can be assessed by reads to its address. This value returns the simulation time and
is implemented by the use of the System Verilog $time function. As the software expects
the value returned by the timer to express time in microseconds units and the testbench



85

timing precision is set to nanoseconds, then the value returned to the core is converted from
nanoseconds to microseconds by dividing the value returned by the $time function by 1000.
This timer is used by the Coremark benchmark for performance measurements.

6.2 PUC-RS5 Prototyping

The PUC-RS5 core validation in an environment with real-world components be-
havior relies on an FPGA hardware prototyping process. The prototyping process employs
a Digilent NEXYS A7 FPGA board with the Xilinx xc7a100tcsg324-1 FPGA device in it. All
components described in this Section use resources from this board.

This environment is instantiated by a module called PUCRS5_With _Peripherals
which organization is depicted in Figure 6.1. This Figure groups the signals described in
Table 5.6 and showed in Figure 5.4.

Instruction_Bus

Data_Bus

Interruption_Bus

PUC-RS5

RAM

SERIAL_TX

Button_interrupt
PERIPHERALS

RESET

CLOCK

Figure 6.1 – The PUC-RS5 core validation prototyping environment block diagram.

In the prototyping process, the environment relies on the use Xilinx BlockRAMs
available in the FPGA device, instead of using emulated RAMs as described in Section 6.1.1.
The memory subsystem corresponds to the block called RAM in Figure 6.1. BlockRAMs or
BRAMs in short are high-density configurable memory hardware modules available in Xilinx
FPGAs, usually containing from 16Kbits to 36Kbits of memory. For the core register bank
implementation, an alternative version of the PUC-RS5 description was produced. The new
System Verilog description relies on specific Xilinx device libraries and uses a Xilinx FPGA
primitive device called LUTRAM instead of generic System Verilog code to describe the 32
32-bit register bank. LUTRAMs are a much more area- and power-efficient way to produce
register and register files in FPGAs. Note that CSRs logic is too convoluted to justify their
implementation with LUTRAMs.

Besides the core memory subsystem built with BRAMs, and a new core register
bank description optimized for FPGAs, the prototyping environment contains a universal
asynchronous receiver transmitter (UART) module to exchange data with the board host



86

computer. This UART has a FIFO implemented using LUTRAM registers to reduce the
core pipeline stalling during communication with the external world. The environment also
counts with a timer that generates timer interrupts. One of the input buttons of the board is
mapped as an external interrupt source for the core. The blocks described in this paragraph
correspond to the block called PERIPHERALS in Figure 6.1.

Still regarding Figure 6.1, the core instruction-related signals are grouped in a line
called Instruction_Bus and the line called Data_Bus represents the grouped data-related
signals. The same is true for the IRQ and interrupt acknowledgment lines, which are grouped
into the Interrupt_Bus composite signal.

Finally, it is possible to note in Figure 6.1 the PUC-RS5 core instantiation and sig-
nals connecting it to the RAM subsystem, detailed in Section 6.2.2 and the Peripherals
module, detailed in Section 6.2.3.

The TOP module, that constitutes the whole prototyping environment has its struc-
ture somehow abstracted in Figure 6.1. It in fact manages data enable signals that are
passed among the main hardware modules, based on decoding address actions from ad-
dress lines produced by the core. The RAM subsystem implements the same RAM behavior
presented in Section 6.1.1. It receives the enable signal when the core-generated address
is within the range of 0 to 65536, as this is the prototyped memory size. When the Address
is larger than 65536 the processor is assumed to be addressing a peripheral. In this case,
the enable signal is then passed to the Peripherals module. The four ports used of the
prototyping environment design shown in Figure 6.1 are three inputs and one output, being
the output the SERIAL transmitter port and the inputs the signal coming from the external
button, and the clock and reset control signals.

6.2.1 The PUC-RS5 Core LUTRAM Register Bank Version

The register bank often takes more than half of the area usage of small processor
core. To reduce this area usage in FPGA boards, a feature called LUTRAM is available. It
uses the Look Up Tables (LUTs) of the board to produce multi-bit registers, instead of using
the output registers of the Configurable Logic Block (CLB), which can take a large number
of CLBs to implement the entire register bank. A LUTRAM can be inferred by the tool in the
optimization process or can be directly configured and instantiated in the design.

Initial attempts to infer LUTRAMS for PUC-RS5 register bank were made but with-
out success. This difficulty to infer LUTRAMs is due to the register bank interface counting
with two read ports and one write port. The easiest way to solve this point was to rely in
the explicit declaration and configuration of registers as LUTRAMs. To enable an easy ac-
cess to the later choice, a tool is available in the Intellectual Property (IP) modules Catalog
or "IP Catalog" inside the Xilinx Vivado design environment. The specific tool is called "Dis-



87

tributed Memory Generator". It generates an IP hardware module (also called IP core) that
implements LUTRAM registers that can then be instantiated in any design.

The configuration of the desired block is intuitive, using a graphic user interface
(GUI). It Initially offers options for sizing the dimensions of the block, the Data Depth and
the Data Width. The register bank for a RISC-V 32I core has 32 data registers, that is
the block Data Depth, each register having 32 bits, which corresponds to the block Data
Width dimension. Input and output port configurations are made in a way that they replicate
the behavior of the regular register bank. Reads are made asynchronously and writes are
synchronous. At the reset, all registers receive the constant value of zero.

In the "Distributed Memory Generator" tool, the memory type can be defined in 4
ways, one option is as a ROM memory and three are available for read and write (RAM)
configurations. The option selected was to have a simple Dual Port RAM, where one port is
for writing and the other is for reading. As the register bank works much more efficiently by
having two read ports, the register bank was duplicated. The first register bank is respon-
sible for the read of the A operand and the second for the B operand. To keep the data in
both blocks identical for the reads, every write performed in the register bank is executed
simultaneously in both blocks.

6.2.2 The BRAM-based PUC-RS5 Memory Subsystem

To implement the PUC-RS5 core memory, several possibilities are available. Using
the testbench environment RAM module would be an option, if it was written as a prototy-
pable piece of code. But this would most certainly use much of FPGA resources, maybe
making the prototyping unfeasible in the available device. Another option would be to use
the large external memory devices available in the Nexys 7 board outside the FPGA. The
Nexys A7 board contains two external memory devices: 128 Mbytes of DDR2 SDRAM and
16MBytes of nonvolatile serial Flash [Dig19]. Besides, it contains a slot where an SDCard
can be inserted, supporting still larger amounts of memory. However, any of these options
would imply developing or retrieving memory driver hardware and software, increasing the
time taken beyond that available to develop this work. A third option, which also avoids the
high use of CLB slice registers to implement memory, is to employ memory IPs available in
FPGA devices, called BlockRAMs or BRAMs. BRAMs can store medium to large amounts
of data, without the need to recur to use external devices. They are used for building large
First-In-First-Out (FIFO) memories and are configurable as single or true dual-port mem-
ories. Dual-port memory supports simultaneous reads and writes in any two independent
addresses, while a single port has only one access, used for read or write operations in a
half-duplex mode. In simple dual-port RAMs, one port is used for reading and another for
writing, while in true dual-port RAMs both ports can be used for reads and writes.



88

The RAM subsystem used in the prototyping process was generated using a tool
present in the same "IP Catalog" of the Xilinx Vivado environment. The tool in question is
the "Block Memory Generator". This tool produces a memory block based on the config-
urations inserted in the tool GUI. The generated block was configured with the True Dual
Port option, with both RAM subsystem ports sharing a same clock. The RAM subsystem
Write width was configured with the 32-bit value and the write enable as byte-wide signal,
which means that the enable signal for the write has a width of 4 bits. Each bit of the enable
signal allows the write operation of the corresponding byte(s) of the word sent for writing.
This allows to have word-aligned memory accesses and still be able to perform byte-wide
writes. The memory depth was set to 16384 words. As each word has 4 bytes (32 bits), the
resulting total size of the RAM subsystem is 64 Kilobytes or 65536 Bytes.

The first port of the RAM subsystem is used for instruction fetching and is con-
nected directly with the processor signals. This port only performs read operations. The
second port is used for the DATA interface and is a read/write port. It receives signals directly
from the processor except for the enable. The enable that the RAM subsystem receives is
a signal generated by the TOP module that instantiates the core and the RAM subsystem,
the signal is generated based on the address signals produced by the PUC-RS5 core. As
the RAM subsystem was configured with 64 Kbytes of space, the RAM subsystem enable
is only set when the address is within this range. Otherwise, the processor is addressing a
peripheral. Refer here to Listing 6.1. The RAM subsystem is initialized using a ".coe" file,
which holds the contents to be loaded into memory.

1 with open("input.bin", "rb") as file_in:

2 rd = file_in.read(-1)

3 byteArray = bytearray(rd)

4

5 while len(byteArray) < 65536:

6 byteArray.append (0)

7

8 with open("./ output.coe", "w") as file_out:

9 file_out.write("memory_initialization_radix =16;\n")

10 file_out.write("memory_initialization_vector =\n")

11

12 for i in range(0, len(byteArray)-4, 4):

13 file_out.write(str(hex(byteArray[i+3]) [2:]. zfill (2)))

14 file_out.write(str(hex(byteArray[i+2]) [2:]. zfill (2)))

15 file_out.write(str(hex(byteArray[i+1]) [2:]. zfill (2)))

16 file_out.write(str(hex(byteArray[i+0]) [2:]. zfill (2)))

17 file_out.write(",\n")

18

19 file_out.write("00000000;")

Listing 6.1 – Memory Initializer Generator.



89

The content is placed in the coe file with a memory position per line in the header-
specified encoding. As the memory Data Width was configured as 32-bit width, each mem-
ory position holds 32 bits. Thus, each line of the file will hold a 32-bit content. The encoding
of each line is set on the header of the file on the memory_initialization_radix statement.
The encoding can be set to binary(2), octal(8), decimal(10), and hexadecimal(16). The file
contents must then agree to the selected encoding.

The ".coe" file is generated by a Python program that takes the compiled binary as
input and generates the coe output file. This program was created in the context of this work.
First, it reads the binary file content into a byte array with a length of 65536 positions (the
same size configured in the RAM subsystem). After the content is read, it writes the header
of the ".coe" output file, setting the number format to hexadecimal, and then initializes the
contents vector. The contents vector receives a word per line. For that, the loop iteration
is made by steps of 4 and the 4 bytes are then arranged into a 32-bit word. After the
loop iteration, the program ends the initialization vector with the ";" character and finishes
execution.

The RAM subsystem is instantiated by the TOP module RTL code used for FPGA
prototyping. This RTL connects the signals from the PUC-RS5 core and the BRAM. It is also
responsible for generating the RAM subsystem enable, based on the address generated by
the core.

6.2.3 Peripherals

To separate the RAM subsystem from the other prototyping environment features, a
module called Peripherals was created in the Peripherals.sv file. This module is instantiated
by the TOP module, called PUCRS5_With_Peripherals, as presented in Figure 6.1. The
peripherals module receives the core signals always when the processor tries to access
an address with value larger than the predefined memory size. This keeps a separation
between what is access to the RAM subsystem and what is related to the external world
provided by the prototyping environment.

Figure 6.2 presents a block diagram of the Peripherals module. It contains a data
access controller, which controls the writes to the peripherals memory mapped registers.
This is used only by the UART module, it sends write signals to the FIFO Buffer based
on the FIFO status signals. This controller also manages the reads from register-mapped
addresses such as the real-time timer.

The Peripherals module instantiates the UART transmitter alongside with the FIFO
used as a Buffer for the UART. It contains a timer set to generate an interruption every
5 seconds. The module also contains a Button Debouncer module and a hardware that
generates a single interrupt request per button press. This interrupt generator module is



90

SERIAL_TXUART

REAL-TIME TIMER

TIMER ( 5 SECONDS)

BUTTONBUTTON
DEBOUNCER

FIFO BUFFER

BUTTON SINGLE
PRESS DETECTION

IRQ

ACK

INTERRUPT
CONTROLLER

DATA_SIGNALS READ / WRITE
CONTROLLER

Figure 6.2 – The Peripherals module block diagram.

controlled by a hardware that generates the Interrupt Request (IRQ) signal to the core and
manages the acknowledgment received from it.

The mentioned modules are briefly detailed in the following sections. Section 6.2.4
explores the UART and its Buffer, while Section 6.2.5 presents the interrupt controller and
Sections 6.2.6 and 6.2.7 present the Timers and Button related modules implementation,
respectively.

6.2.4 The Prototyping Environment UART

The UART is a module used for sending data to the outside of the PUC-RS5 pro-
totyping environment. The UART acts in response to writes to a memory-mapped register
used for printing on the screen. The UART serial output signal is connected to one of the
serial output ports of the FPGA board. This signal is then passed through the same cable
user for FPGA configuration, connected to the host computer. In the host computer, a termi-
nal emulator program is configured and executed to receive serial data. This terminal input
is set to connect to the serial port connected to the board. This way, data sent through the
serial port by the PUC-RS5 UART is just printed on the terminal screen.

The prototyping environment UART module used is a UART transmitter that re-
ceives a byte as input and transmits it using a serial protocol. The protocol used is the 8N1
standard that has no parity bit and has 1 stop bit for each data byte sent. The baud rate
used is configured to 9600bps.

As previously said, the UART transmission is triggered by writes in the memory-
mapped register used in the prints present in RISC-V code software. When a write occurs to
these mapped registers data is sent to the UART if the UART is not busy. If the UART is still
busy sending the last byte, then the core would need to hold its state until the UART is ready



91

to receive a new byte to transmit. This is made by setting the PUC-RS5 stall signal until the
UART becomes available, which forces the core to hold the write signals in the same state,
ensuring that no data is lost.

To avoid the need of stalling the pipeline at every write, a FIFO is instantiated
to add throughput to UART writes on the core side. This FIFO was configured using a
tool called FIFO Generator from the IP Catalog of the Xilinx Vivado environment. The tool
generates an IP that can be instantiated into the design. The configuration screen gives
various alternatives for FIFO implementations, such as BRAM, LUTRAM, or shift registers.
The chosen alternative was to use a FIFO implemented in LUTRAMs. The FIFO configured
as a standard FIFO with a Data width of 8 bits and a depth of 64 positions. When the
core writes to the UART-mapped register the data is passed to the FIFO and then the FIFO
passes it to the UART. When the FIFO is full and a write occurs, the stall of the processor is
unavoidable. This management process is made based on the signals empty and full of the
queue that indicate the FIFO status.

6.2.5 The Prototyping Environment Interrupt Controller

There is a hardware block in the prototyping environment that generates the sig-
nal Interrupt Request (IRQ), which is sent to the PUC-RS5 core. Listing 6.2 shows the main
excerpt of System Verilog code for this hardware block.

1 always @(posedge clk)

2 if (reset)

3 IRQ <= ’0;

4 // EXTERNAL Interrupt

5 else if (IRQ [11]==1 && Interrupt_ACK)

6 IRQ [11] <= 0;

7 else if (Button_request ==1)

8 IRQ [11] <= 1;

9 // TIMER Interrupt

10 else if (IRQ [7]==1 && Interrupt_ACK)

11 IRQ[7] <= 0;

12 // 5 seconds = 100 ,000 ,000 * 10ns * 5 = 0x1DCD6500

13 else if (counter >=32’1 DCD6500)

14 IRQ[7] <= 1;

Listing 6.2 – Generation of interrupt request signal.

The IRQ signal is stored in the MIP CSR that holds pending interrupts. When an
interrupt is accepted and is about to be treated by software, the acknowledgment signal
is sent to the environment, indicating that an interrupt was accepted. The three kinds of
implemented interrupts obey to a predefined order of precedence as the interrupt controller
is a CLINT controller (See Section 2.2.1 for details). The order is: first, external interrupts;



92

next software interrupts; lastly timer interrupts. This precedence is ensured by the ordering
of the if-else statement.

The code above presents the process of generation of the IRQ signal. During reset,
IRQ is set to zero. After detecting an Acknowledgment signal the signal that corresponds to
the ack is set to zero representing that the request was accepted. Otherwise, the conditions
to raise the request are checked. The generation of the condition for generating an external
interrupt appears in line 7 and the generation of the signal Button_request is discussed in
Section 6.2.7. The counter implementation used in line 13 as a condition is discussed in
Section 6.2.6.

6.2.6 The Prototyping Environment Timers

The Peripherals module implements a 32-bit clock counter that acts like a timer.
This counter is increased by one at every clock cycle. As the clock operates at a frequency of
100MHz, the corresponding clock period is 10 nanoseconds. When it reaches 100,000,000
clock counts then a second has passed. The timer is configured to generate an interruption
when 5 seconds have elapsed. When this occurs and the interrupt is treated, the timer is
reset to zero to start a new 5s-cycle.

Another timer is used as a real-time timer. It is implemented by a 64-bit register
that is increased at each clock cycle. As the clock period is 10 nanoseconds, the value is
increased by 10, this way, the register holds the value of the elapsed nanoseconds since the
start of the count. This is used in some applications that read the elapsed time of execution
such as some of the Coremark benchmarks. Coremark expects this value to be returned in
microseconds, which brings the need to divide the read value by 1,000. As the core does
not have a divider module, the value read from the timer is shifted in 10 positions to the right,
performing a division by 1024, which results in an approximation for the division by 1,000
that can be accepted since this is not used in any critical operation.

6.2.7 Button Press Detection and Interrupt generation

The signal Button_request used for external interrupt requests is generated by the
pressing of a button on the FPGA board. To implement such a request, the first thing to
do was the mapping the FPGA board button signal to the core input. After that, the signal
is passed to the Peripherals module for treatment. The input signal is pre-processed by
a Debouncer Module that ensures the button was pressed long enough and is clean from
glitches. This is made e.g. to avoid imperfections of the button signal when responding to a
physical button press by a human, a very slow event. The filtering process simply registers



93

any change in a button signal and checking if it remains constant for a defined number of
clocks. The output signal of the debouncer is registered and used in a comparison operation
that detects changes in the de-bounced signal. When the de-bounced signal is set to one
and the registered signal is 0 then a press of the button occurred. This last step is made
to ensure that a single press of the button generates a single interrupt request. This signal
is then used to generate the Button_request signal used in the IRQ generation process
discussed in Section 6.2.5.

6.3 The PUC-RS5 Prototyping Process

As previously stated, the prototyping process employs a Nexys A7 Board. The
entire prototyping system used the Xilinx Vivado environment for design, simulation, and
board prototyping. First functional simulation validates the design and after synthesis back-
annotated simulations help ensure the correct timing functionality. The testbench is rather
simple as it only needs to implement the clock/reset generation and a UART receiver for
printing the data sent to it.

After the core and its environment are determined as correct by simulation, the
output bitstream file generation takes place and is loaded into the board FPGA device using
also resources from Vivado. The board connects to the host computer by means of the con-
figuration cable, that later acts as a serial communication interface for the UART prototyping
environment module. On the host computer, a serial interpreter is configured to listen to the
prototyping environment uART and print everything it receives to the host screen. Through
this, the Berkeley suite and the Coremark benchmarks were used as software validating
tools and the physical buttons were used to validate the external interrupts of the core. The
prototyping environment also communicate the occurrence of the timer-generated interrupts
through the UART to the host.



94



95

7. EXPERIMENTS AND RESULTS

This Chapter discusses experiments conducted over the PUC-RS5 processor core
and the obtained results. The basic validation software used for validation was the Berke-
ley suite that performs unit tests for each RISC-V instruction, as previously presented in
Chapter 6. Section 7.1 presents area usage results assuming an specific FPGA part, the
one present in the prototyping board adopted for the experiments. For performance mea-
surements, the Coremark benchmark was used and the associated results are the target of
Section 7.2, where additionally comparisons with similar cores are also described.

7.1 Area and Power Results

The area results are all taken after logic and physical synthesis using the AMD/X-
ilinx Vivado environment, version 2021.1. The target is part xc7a100tcsg324-1, the largest
FPGA device that fits in the Digilent Nexys A7 board (https://digilent.com/shop/nexys-a7-
fpga-trainer-board-recommended-for-ece-curriculum/), the adopted prototyping platform. All
resources mentioned herein, such as number of LUTs and BRAMs refer to the cited FPGA
part.

As mentioned in Chapter 4 this work deals with two processor cores: PUCRS-RV
(a RISC-V core without privileged architecture) and PUC-RS5 (a minimalist implementation
of the RISC-V privileged architecture). PUCRS-RV has no CSRs and no feature related to a
privileged architecture, it only implements the bare RV32I ISA. PUC-RS5 counts with a CSR
Bank containing all mandatory CSRs and makes available the Zicsr extension. The PUCRS-
RV core will be used as a base of comparison for results. Clearly, the comparison gives a
clear idea of minimum overheads implied by the use of a RISC-V privileged architecture.

Area results can be interpreted in two ways, the first one is considering only the
PUC-RS5 core resources usage, and the second one is considering the entire environ-
ment with external peripherals and memory(ies). Core comparison considers only the core
resources, ignoring peripherals and environment features such as memories or Universal
Asynchronous Receiver-Transmitter (UART) mechanisms. The results used to compare the
PUC-RS5 core with similar processors from the literature are those considering the entire
environment used in FPGA prototyping, to be fairer since most literature results consider the
entire environment as well, even if the environment might comprise fewer resources.



96

7.1.1 Comparison between PUCRS-RV and PUC-RS5 Cores

This Section shows a comparison between the two processor cores developed by
the Author, PUCRS-RV and PUC-RS5. Both core organizations employ exactly the same
Register Bank organization, which takes 44 LUT RAMs to implement a three-port (two read
ports and one write port) memory. Note that in general LUTs correspond to combinational
logic, while FFs stand for sequential logic. Using the AMD/Xilinx LUT RAM feature enables
a more efficient implementation of medium-sized memories such as register banks [XIL19].
The 44 LUT RAMs of the Register Bank are part of the sequential logic, although made up
mostly of LUTs.

Table 7.1 presents the resource usage for the non-privileged PUCRS-RV core or-
ganization. The core uses 1,017 LUTs in its implementation, which represents just 1.60%
of the LUTs available on the FPGA. The Decoding stage is the stage that consumes more
combinational resources. The decoder unit uses 841 LUTs and 183 registers, which repre-
sents about 82.7% of the LUTs used in the entire core, and about 54% of the registers used
by the entire core. This is due to the complexity of the unit, that performs the instruction
decoding, operands fetching, register locking logic, and bubble issue.

Table 7.1 – PUCRS-RV resource usage.
Resource Utilization Available Utilization (%)
LUT 1,017 63,400 1.60
FF 339 126,800 0.27

Table 7.2 shows the resource use for the PUC-RS5 core. It uses a total of 1,542
LUTs, which represents about 2.43% of the total LUTs available on the FPGA. The number
of LUTs compared to PUCRS-RV grows by 525 LUTs, which represents an increase of about
51.60%. The flip-flop use also increases significantly, from 339 to 814 FFs,which represents
an increment of 475 FFs, or about 140% more FFs.

The decoder unit uses 1,121 LUTs, which represents about 73% of the total LUT
usage. This represents an increase of 280 LUTs, which compared with the decoder unit
of PUCRS-RV is about a 33% increase. This increment is caused by the addition of the
decoding logic for the Zicsr extension new instructions.

The Execute Unit is another unit that shows a significant increase in LUT usage. It
uses 124 LUTs and 80 FFs in PUCRS-RV, and the privileged architecture uses 246 LUTs
and 112 FFs. This increase represents about 98% more LUTs and 40% more FFs. This
increment is caused by the addition of the unit responsible for executing the instructions of
the Zicsr extension and performing its communication with the CSR Bank.



97

The CSR Bank represents the biggest usage of FFs in the design, it uses 421
registers and 106 LUTs. The LUT usage is about 7% of the total LUTs. The FF usage is
about 52% of total FFs.

Regarding on-chip power consumption, the PUCRS-RV core consumes an esti-
mated 0.129W, while the PUC-RS5 core consumes an estimated 0.136W, which represents
an increase of about 8% in the privileged organization.

Table 7.2 – PUC-RS5 resource usage.
Resource Utilization Available Utilization (%)
LUT 1,542 63,400 2.43
FF 814 126,800 0.64

7.1.2 Comparison between PUC-RS5 and Similar Cores

To compare this work with similar cores, the entire environment used in the FPGA
prototyping is considered to provide a fairer comparison with other cores, even though the
PUC-RS5 counts with more environmental resources than others core cited in the litera-
ture such as including timers and interrupt controller hardware. The environment comprises
RAMs and a peripheral set, the later of which include features such as UARTs, timers, and
interrupt controllers as presented in Section 6.2.3. Steel, Ibex, and SCR1 processors were
targeted at the same FPGA chip used in this work, as reported by Calçada in [Cal20]. All
three cores are implementations of the RISC-V RV32I ISA with some degre of privileged ar-
chitecture. Steel resulted from the Bachelor Thesis of Calçada [Cal20]. Ibex is a freely avail-
able core developed by the non-profit company lowRISC [Low21, Low22] and SCR1 [Syn22],
provided by Syntacore, an enterprise dedicated to develop RISC-V-based Intellectual Prop-
erty (IP) cores. Thus, using the data reported in this reference provides a good and fair
comparison.

Figure 7.1 presents the detailed hierarchical area usage for the PUC-RS5 proces-
sor core.

The FPGA prototyping environment organization is presented in Chapter 6. The
core uses 1,542 LUTs and 814 FFs (note that Vivado´Reports calls a FF by the term “regis-
ter”, avoided here to prevent confusion). The peripherals consume 110 LUTs and 261 FFs.
The high number of FFs used in this unit is due to the implementation of the two counters
discussed in Section 6.2.6. There are 70 LUTs and 4 FFs used in the BRAM access. Ob-
serving the overall results, the core takes around 90% of all used LUTs and about 75% of
the FFs used in the design.

Next, Table 7.3 presents the overall account of resources used in the PUC-RS5
and its FPGA prototyping environment.



98

Figure 7.1 – PUC-RS5 detailed hierarchical area usage.

Table 7.3 – PUC-RS5 and prototyping environment overall resource usage report.
Resource Type Utilization Available Utilization (%)
LUTs 1721 63400 2.71
FFs 1080 126800 0.85
LUTRAMs 56 19000 0.29
BRAMs 16 135 11.85
IO pins 4 210 1.90

Percentually, the most demanded resource by the PUC-RS5 FPGA prototyping en-
vironment are BRAMs, since the design reserves 64Kbytes of memory for program and
data, taking 11.85% of the BRAMs available on the FPGA. The number of BRAMs can of
course be reduced, the 64Kbyte value was arbitrarily chosen to support rather large com-
piled source codes and/or rather large data. The LUT RAM usage increased from 44 to
56 from the core-only values, due to the addition of 12 LUT RAMs used as a UART output
buffer. Note that the FPGA prototyping environment design uses just 4 FPGA IO pins as
already discussed in Section 6.2 and depicted in Figure 6.1.

To put the above results in perspective with the available literature, the Table 7.4
presents a resource comparison among the PUC-RS5 core and Steel [Cal20], Ibex [Low21,
Low22] and SCR1 cores.

Table 7.4 – Comparison of PUC-RS5 with similar processor cores.
PUC-RS5 Steel [Cal20] Ibex [Low21] SCR1 [Syn22]

LUTs 1721 1626 (-5,5%) 2010 (+17%) 2359 (+37%)
LUTRAMs 56 48 48 0
FFs 814 624 (-23,3%) 790 (-3%) 1392 (+71%)
Extensions RV32I + Zicsr RV32I + Zicsr RV32I + Zicsr + C RV32I + Zicsr
Modes M M M, U M

It is important to point out that the compiled Ibex counts with the RISC-V Com-
pressed instructions extension ("C") and the User mode, features that are not implemented



99

on the three other cores. Another important point to consider is that SCR1 is a generic
HDL description, which does not benefit from building the Register Bank with specific FPGA
memory resources such as LUT RAMs. This explains in part the significantly higher number
of FFs and LUTs in the synthesized SCR1 design.

The comparison results do not indicate that an implementation is better or worse
than others. There are always trade offs in the design and each one has its particularities.
The environments also are not exactly the same, since some implement interrupt controllers
inside the core and others on the environment, while still others do not even implement this.
In general, it is hard to isolate just the core from their environments or even equalizing the
same environment features for performing exact comparisons without re-implementing all
cores. Remember, all data in Table 7.4 except for data on the PUC-RS5 come from [Cal20].

SCR1 takes significantly higher resource usage than PUC-RS5, 37% more LUTs
and 71% more FFs. SCR1 is the most similar to the PUC-RS5 and Steel cores, since it
implements the same privilege modes and the same Extensions. Based on this, it is possible
to consider that PUC-RS5 and Steel take less area than SCR1.

The comparison between Steel and PUC-RS5 cores is the easier and fairer to per-
form. Although Steel uses 5.5% less LUTs and 23.3% less FFs, the PUC-RS5 implements
more features than it. It is also important to point out that Steel is a 3-stage pipeline while
PUC-RS5 is a 4-stage pipeline. Steel does not implement an interrupt controller nor makes
available the interrupt generation mechanisms used in PUC-RS5 for validation of the Ma-
chine mode. Meanwhile Steel implements a UART receiver that consumes around 30 LUTs
and 53 FFs. PUC-RS5 in turn implements two timers (one as a 32-bit register and another
as a 64-bit register), plus button debouncers and single press detection. It besides makes
available a buffer for UART writes, to increase UART write performance. This additional
features in the PUC-RS5 brings a significant increase in the resource use.

Based on these results it is possible to conclude that even with an additional
pipeline stage compared to Steel, and bringing more features such as an interrupt controller
and timers, the PUC-RS5 obtains a good compromise in terms of area occupation.

7.2 Performance Results

The PUC-RS5 performance was evaluated using the EEBMC Coremark [EDN22].
Coremark is a widely used benchmark for core performance evaluation. It produces a nor-
malized score for a core, which allows simple comparison between several processors. The
Coremark programs need to run for about 10 seconds to obtain a result that minimizes the
impact of the time spent in trap handling routines that are not programmed, such as interrupt
handling. Coremark was ported to the PUC-RS5 software platform and was executed in the



100

prototyping environment (the xc7a100tcsg324-1 FPGA part of the Digilent Nexys A7 board,
using the board main clock at 100MHz frequency.

The Coremark performance data for PUC-RS5 and for the three compared cores
is depicted in Table 7.5.

Table 7.5 – Performance comparison of PUC-RS5 to similar processor cores.
Core Iterations/MHz
PUC-RS5 0.670
Steel 1.360
Ibex 0.904
SCR1 1.270

Coremark performance presented results of about 67 iterations per second in the
mentioned platform. For comparison with other cores this score must be normalized by
dividing it by the operating frequency (expressed in MHz), which is needed because the
iterations score is frequency dependent, meaning that if the frequency is doubled the number
of iterations per second would probably double the previous value. The PUC-RS5 score
normalization resulted in the value of 0.67 Iterations per MHz.

PUC-RS5 obtained the least performance score among all compared cores. It is
important to cite that the PUC-RS5 design did not initially targets high performance. Analyz-
ing the sources of this low performance and suggesting organization enhancements based
on such an analysis is a relevant future work.

As performance results comparatively below expectations, some quick hypothe-
ses and tests are advanced to determine the possible sources of inefficiencies, to enable
increase the PUC-RS5 performance by eventually solving these.

A first hypothesis was that much time is spent waiting for the solution of data haz-
ards. To try to minimize this hazard impact, a data forwarding mechanism is useful. This
allows the register locking queue to reduce in size by one position, generating fewer hazards
and issuing fewer bubbles. The forwarding mechanism uses a condition that directly assigns
data coming from the Retire Unit to the Decoder Unit based on read and write addresses
for instructions in the pipeline. If the write address matches one of the read addresses of a
following instruction already fetched, the data the Decoder Unit gets can come directly from
the Retire Unit before the Register Bank update. This change was tested and brought an
increase in performance from about 67 iterations per second to about 78 interactions per
second, an increase of 16.5% in performance. As this mechanism is quite simple and takes
neither a lot of resources nor big complexity to the pipeline, it can be implemented easily on
future versions of the core.

Even with the improvements just cited, performance is still poor compared to the
other cores. As a result, this works concludes that hazard detection and bubbles are not the
only organization issue responsible for the low performance.



101

Another hypothesis that can be raised is the cost of missed branches caused by
the never-branch policy. Remember branches are performed only at the last stage, in the
Retire Unit. This causes the need of discarding up to three instructions wrongly fetched.
A possibility to increase performance related to the branches is implementing some branch
prediction mechanism to alter the never-branch policy. But this can be costly. Another
possibility is performing the branch in an earlier stage of the pipeline, reducing the cost of a
missed branch as is made in the Steel core that branches always in the second stage of the
pipeline. However, for conditional branches, this can make the second stage quite complex,
since in this stage operands are obtained, branch addresses need to be computed, and the
comparison required by the conditional branch needs to be realized. And finally, the result
of the comparison needs to be used for executing (or not) the branch. Clearly, such chain of
sequential actions can imply a long critical path in this stage, which might explain why Steel
is clocked at only 50MHz.



102



103

8. CONCLUSIONS AND SUGGESTIONS FOR FURTHER WORK

This work describes a new RISC-V processor core, PUC-RS5 with a minimal privi-
leged architecture and supporting the RV32I ISA. The main feature of the newly developed
core is the support to deal with a basic set of interrupts and exception types, providing the
implementation of a set of trap handlers for these. It also validates PUC-RS5 in a real-
world environment using FPGA prototyping. This work is expected to serve as a base for
future works on the development of embedded systems. The core is simple, cleanly code to
facilitate its understanding, and built for enabling easy extension of its functionalities.

The core tests revealed some implementation caveats, due to the effort to make
the initial core version a simplest of implementations. The mechanism of the data forward-
ing discussed in Chapter 7 alongside other performance improvement opportunities, can
help reducing the number of issued bubbles in the pipeline and thus increase the core per-
formance. The PUC-RS5 implementation showed good performance improvement with the
forwarding logic tests, but it is not yet fully integrated in the first version of the pipeline. The
full integration of a data forwarding unit in the core is a first future work.

Another improvement suggested in Chapter 7 is the implementation of branch pre-
diction mechanisms to alter the never-branch policy, or changing the pipeline to perform the
branch in an earlier stage of the pipeline, reducing the cost of a missed branch. These two
possibilities are still pending evaluation of their trade-offs relating performance improvement
and the resulting area overhead. Concerning performance improvements there is an unex-
ploited opportunity to increasing the core operating clock frequency. A hint that this is indeed
a relevant way to improve the core is the fact that absolutely no effort was made to control the
design critical paths and yet, the 100MHz running frequency was achieved by an ordinary
synthesis process. Probably PUC-RS5 still has some room to accommodate a much higher
operating clock frequency due to its positive slack. It is expected that with little adjustments
and attention to critical path analysis, the clock can be increased to higher frequencies such
as 150 or 200MHz or even more. This is another interesting future work.

Another possibility is to expand the core implementation to support other privilege
modes, starting by the user mode and next supervisor mode, designing the required set of
CSRs. It is important to point out that other privileged modes implementation will obviously
increase core area and the software side needs, since they are mostly used by more complex
software stacks.

Another set of future works is the implementation of other RISC-V extensions. One
of the RISC-V extensions that can be addressed is the Multiply extension ("M"), which in-
troduces instructions for multiplication and division, operations that performed by compiler-
generated code in PUC-RS5. This can be interesting for applications that require multiplica-
tions and divisions in large scale, but it is important to point that this is expected to consume



104

a lot of area if fast versions of multiply and divide modules are added. Another extension
is the atomic (A) extension. This extension introduces instructions capable of performing
atomic operations that are widely used in multi-processed environments to control bus ac-
cess and create semaphores. Also, the compressed extension ("C") introduces interesting
instructions for reducing the software memory footprint, although the decoding process be-
comes way more complex for this extension, once the instruction width becomes variable,
this extension does not implement any new operation to the pipeline beyond the possibility
of code reduction.

All such extensions and their respective instructions are reported in Appendix A,
alongside the implemented extensions. Appendix A also presents a suggested list of RISC-
V assembly pseudo-instructions. This Appendix has the intention of being a guide to the im-
plemented extensions and a link to those extensions that are interesting to be implemented
in the context of near-future works. The Appendix also presents a brief description of each
instruction and their performed operation, and lists the correlated pseudo instructions for
software development guidance.

The software stack is also a pretty big subject that can be explored in future works,
as it is intrinsic to the privileged architecture usage and is directly related to the applications
where it can be used. The possibility of integrating real-time systems or a ROS system into
the software stack is determinant for the use of this processor core in robotic applications.



105

REFERENCES

[Cal20] Calçada, R. d. O. “Design of Steel: a RISC-V Core”, Bachelor’s Thesis,
Federal University of Rio Grande do Sul (UFRGS), Computer Engineering
Course. Informatics Institute, Porto Alegre, RS - Brazil. Advisor: Ricardo A.
L. Reis, 2020, 83p.

[Dig19] Digilent, Inc. “Nexys A7 FPGA Board Reference Manual”, 2019,
Captured in: https://digilent.com/reference/programmable-logic/nexys-a7/
reference-manual?redirect=1.

[DKN+21] Dehnavi, S.; Koedam, M.; Nelson, A.; Goswami, D.; Goossens, K.
“CompROS: A composable ROS2 based architecture for real-time
embedded robotic development”. In: 2021 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), 2021, pp.
6449–6455.

[EDN22] EDN Embedded Microprocessor Benchmark Consortium. “CoreMark - An
EEMBC Benchmark”. Captured in: https://www.eembc.org/coremark/index.
php, Jul 2022.

[GRCRMR+20] Garcia-Ramirez, R.; Chacon-Rodriguez, A.; Molina-Robles, R.; Castro-
Gonzalez, R.; Solera-Bolanos, E.; Madrigal-Boza, G.; Oviedo-Hernandez,
M.; Salazar-Sibaja, D.; Sanchez-Jimenez, D.; Fonseca-Rodriguez, M.; et al..
“Siwa: A custom RISC-V based system on chip (SOC) for low power medical
applications”, Microelectronics Journal, vol. 98, 2020, pp. 1–8.

[LCYK20] Lee, J.; Chen, H.; Young, J.; Kim, H. “RISC-V FPGA platform toward ROS-
based robotics application”. In: 2020 30th International Conference on Field-
Programmable Logic and Applications (FPL), 2020, pp. 370–370.

[LNZ+22] Lodéa, N.; Nunes, W.; Zanini, V.; Marcos Luiggi Lemos Sartori, L. C. O.;
Calazans, N. L. V.; Garibotti, R. F.; Marcon, C. A. M. “Early Soft Error
Reliability Analysis on RISC-V”, IEEE Latin America Transactions, vol. 20–9,
2022, pp. 2139–2145.

[Low21] LowRISC C.I.C. “Ibex: An Embedded 32-bit RISC-V CPU core”. Captured
in: https://ibex-core.readthedocs.io, May 2021.

[Low22] LowRISC C.I.C. “Ibex RISC-V Core, open-source hardware project”.
Captured in: https://github.com/lowrisc/ibex, Nov 2022.

[NSC22a] Nunes, W. A.; Sartori, M. L. L.; Calazans, N. L. V. “PUCRS-RV”. Captured
in: https://github.com/gaph-pucrs/pucrs-rv, May 2022.

https://digilent.com/reference/programmable-logic/nexys-a7/reference-manual?redirect=1
https://digilent.com/reference/programmable-logic/nexys-a7/reference-manual?redirect=1
https://www.eembc.org/coremark/index.php
https://www.eembc.org/coremark/index.php
https://ibex-core.readthedocs.io
https://github. com/lowrisc/ibex
https://github.com/gaph-pucrs/pucrs-rv


106

[NSC22b] Nunes, W. A.; Sartori, M. L. L.; Calazans, N. L. V. “Pulsar ARV - A QDI
Asynchronous RISC-V Implementation”. Captured in: https://lesvos.pucrs.
br/williannunes/PARV, Jul 2022.

[RCFM19] Ruaro, M.; Caimi, L. L.; Fochi, V.; Moraes, F. G. “Memphis: a framework
for heterogeneous many-core SoCs generation and validation”, Design
Automation for Embedded Systems, vol. 23–3, 2019, pp. 103–122.

[RIS22] RISC-V International. “RISC-V Instruction Set Manual”. Captured in: https:
//github.com/riscv/riscv-isa-manual, Nov 2022.

[Sar17] Sartori, M. L. L. “ARV: Towards an Asynchronous Implementation of the
RISC-V Architecture”, Bachelor’s Thesis, Pontifical Catholic University of
Rio Grande do Sul (PUCRS), Computer Engineering Course. School of
Technology, Porto Alegre, RS - Brazil. Advisor: Ney L. V. Calazans, 2017,
57p.

[SC17] Sartori, M. L. L.; Calazans, N. L. V. “Go Functional Model for a RISC-V
Asynchronous Organisation - ARV”. In: ICECS, 2017, pp. 381–348.

[SC21] Sartori, M. L. L.; Calazans, N. L. V. “ARV - Go High-level Functional Model”.
Captured in: https://github.com/marlls1989/arv, May 2021.

[SiF20] SiFive, Inc. “SiFive Interrupt Cookbook, Version 1.2”, 2020, Captured in:
https://www.starfivetech.com/uploads/sifive-interrupt-cookbook-v1p2.pdf.

[SMC20a] Sartori, M. L. L.; Moreira, M. T.; Calazans, N. L. V. “A Frontend using
Traditional EDA Tools for the Pulsar QDI Design Flow”. In: IEEE International
Symposium on Advanced Research in Asynchronous Circuits and Systems
(ASYNC), 2020, pp. 114–123.

[SMC20b] Sartori, M. L. L.; Moreira, M. T.; Calazans, N. L. V. “ASCEnD-FreePDK45
- A Free Standard Cell Library for SDDS-NCL Circuits”. Captured in: https:
//github.com/marlls1989/ascend-freepdk45, Jun 2020.

[SMC20c] Sartori, M. L. L.; Moreira, M. T.; Calazans, N. L. V. “Pulsar - A Flow to
Support the Design of QDI Asynchronous Circuits”. Captured in: https:
//github.com/marlls1989/pulsar, Jun 2020.

[SWMC19] Sartori, M. L. L.; Wuerdig, R. N.; Moreira, M. T.; Calazans, N. L. V. “Pulsar:
Constraining QDI Circuits Cycle Time Using Traditional EDA Tools”. In: IEEE
International Symposium on Advanced Research in Asynchronous Circuits
and Systems (ASYNC), 2019, pp. 114–123.

https://lesvos.pucrs.br/williannunes/PARV
https://lesvos.pucrs.br/williannunes/PARV
https://github.com/riscv/riscv-isa-manual
https://github.com/riscv/riscv-isa-manual
https://github.com/marlls1989/arv
https://www.starfivetech.com/uploads/sifive-interrupt-cookbook-v1p2.pdf
https://github.com/marlls1989/ascend-freepdk45
https://github.com/marlls1989/ascend-freepdk45
https://github.com/marlls1989/pulsar
https://github.com/marlls1989/pulsar


107

[Syn22] Syntacore. “SCR1 Microcontroller Core”. Captured in: https://syntacore.
com/page/products/processor-ip/scr1, Apr 2022.

[WA19] Waterman, A.; Asanović, K. “The RISC-V Instruction Set Manual, Volume
I: Unprivileged ISA”, Technical Report 20191213, University of California,
Berkeley, 2019, 238p.

[WAH21] Waterman, A.; Asanović, K.; Hauser, J. “The RISC-V Instruction Set Manual
Volume II: Privileged Architecture”, Technical Report 20211203, University
of California, Berkeley, 2021, 155p.

[XIL19] XILINX, Inc. “7 Series FPGAs Memory Resources - User
Guide”, 2019, UG473, v1.14, https://docs.xilinx.com/v/u/en-
US/ug473_7Series_Memory_Resources.

https://syntacore.com/page/products/processor-ip/scr1
https://syntacore.com/page/products/processor-ip/scr1


108



109

APPENDIX A – AN EXCERPT OF A RISC-V REFERENCE CARD



An Excerpt of a RISC-V Reference Card 110

A.1 - Basic RISC-V Formats and an Embedded Instruction Set - RV32I

A.1.1 - Core Instruction Formats
31 27 26 25 24 20 19 15 14 12 11 7 6 0

funct7 rs2 rs1 funct3 rd opcode R-type
imm[11:0] rs1 funct3 rd opcode I-type

imm[11:5] rs2 rs1 funct3 imm[4:0] opcode S-type
imm[12|10:5] rs2 rs1 funct3 imm[4:1|11] opcode B-type

imm[31:12] rd opcode U-type
imm[20|10:1|11|19:12] rd opcode J-type

A.1.2 - The RV32I Base Integer Instruction Set, Version 2.1

Inst Name FMT Opcode funct3 funct7 Description (C) Note
add ADD R 0110011 0x0 0x00 rd = rs1 + rs2
sub SUB R 0110011 0x0 0x20 rd = rs1 - rs2
xor XOR R 0110011 0x4 0x00 rd = rs1 ˆ rs2
or OR R 0110011 0x6 0x00 rd = rs1 | rs2
and AND R 0110011 0x7 0x00 rd = rs1 & rs2
sll Shift Left Logical R 0110011 0x1 0x00 rd = rs1 << rs2
srl Shift Right Logical R 0110011 0x5 0x00 rd = rs1 >> rs2
sra Shift Right Arith* R 0110011 0x5 0x20 rd = rs1 >> rs2 msb-extends
slt Set Less Than R 0110011 0x2 0x00 rd = (rs1 < rs2)?1:0
sltu Set Less Than (U) R 0110011 0x3 0x00 rd = (rs1 < rs2)?1:0 zero-extends
addi ADD Immediate I 0010011 0x0 rd = rs1 + imm
xori XOR Immediate I 0010011 0x4 rd = rs1 ˆ imm
ori OR Immediate I 0010011 0x6 rd = rs1 | imm
andi AND Immediate I 0010011 0x7 rd = rs1 & imm
slli Shift Left Logical Imm I 0010011 0x1 imm[5:11]=0x00 rd = rs1 << imm[0:4]
srli Shift Right Logical Imm I 0010011 0x5 imm[5:11]=0x00 rd = rs1 >> imm[0:4]
srai Shift Right Arith Imm I 0010011 0x5 imm[5:11]=0x20 rd = rs1 >> imm[0:4] msb-extends
slti Set Less Than Imm I 0010011 0x2 rd = (rs1 < imm)?1:0
sltiu Set Less Than Imm (U) I 0010011 0x3 rd = (rs1 < imm)?1:0 zero-extends
lb Load Byte I 0000011 0x0 rd = M[rs1+imm][0:7]
lh Load Half I 0000011 0x1 rd = M[rs1+imm][0:15]
lw Load Word I 0000011 0x2 rd = M[rs1+imm][0:31]
lbu Load Byte (U) I 0000011 0x4 rd = M[rs1+imm][0:7] zero-extends
lhu Load Half (U) I 0000011 0x5 rd = M[rs1+imm][0:15] zero-extends
sb Store Byte S 0100011 0x0 M[rs1+imm][0:7] = rs2[0:7]
sh Store Half S 0100011 0x1 M[rs1+imm][0:15] = rs2[0:15]
sw Store Word S 0100011 0x2 M[rs1+imm][0:31] = rs2[0:31]

beq Branch == B 1100011 0x0 if(rs1 == rs2) PC += imm
bne Branch != B 1100011 0x1 if(rs1 != rs2) PC += imm
blt Branch < B 1100011 0x4 if(rs1 < rs2) PC += imm
bge Branch ≥ B 1100011 0x5 if(rs1 >= rs2) PC += imm
bltu Branch < (U) B 1100011 0x6 if(rs1 < rs2) PC += imm zero-extends
bgeu Branch ≥ (U) B 1100011 0x7 if(rs1 >= rs2) PC += imm zero-extends
jal Jump And Link J 1101111 rd = PC+4; PC += imm
jalr Jump And Link Reg I 1100111 0x0 rd = PC+4; PC = rs1 + imm

lui Load Upper Imm U 0110111 rd = imm << 12
auipc Add Upper Imm to PC U 0010111 rd = PC + (imm << 12)

ecall Environment Call I 1110011 0x0 imm=0x0 Transfer control to OS

ebreak Environment Break I 1110011 0x0 imm=0x1 Transfer control to debugger

(c) Willian Nunes(<Willian.Nunes@edu.pucrs.br>), 2022



An Excerpt of a RISC-V Reference Card 111

A.2 - Some Extensions for Simple Embedded Systems

A.2.1 - “Zicsr” - Control and Status Register (CSR) Instructions, Version 2.0
31 20 19 15 14 12 11 7 6 0

csr rs1 funct3 rd opcode
12 5 3 5 7

Inst Name FMT Opcode funct3 Description (C)
CSRRW CSR Read/Write I 1110011 0x1 rd = csr, csr = rs1
CSRRS CSR Read and Set Bits I 1110011 0x2 rd = csr, csr = csr | rs1
CSRRC CSR Read and Clear Bits I 1110011 0x3 rd = csr, csr = csr & rs1
CSRRWI CSR Read/Write Immediate I 1110011 0x5 rd = csr, csr = rs1(imm)
CSRRSI CSR Read and Set Bits Immediate I 1110011 0x6 rd = csr, csr = csr | rs1(imm)
CSRRCI CSR Read and Clear Bits Immediate I 1110011 0x7 rd = csr, csr = csr & rs1(imm)

A.2.2 - “M” - Standard Extension for Integer Multiplication and Division, Version 2.0

Inst Name FMT Opcode funct3 funct7 Description (C)
mul MUL R 0110011 0x0 0x01 rd = (rs1 * rs2)[31:0]
mulh MUL High R 0110011 0x1 0x01 rd = (rs1 * rs2)[63:32]
mulsu MUL High (S) (U) R 0110011 0x2 0x01 rd = (rs1 * rs2)[63:32]
mulu MUL High (U) R 0110011 0x3 0x01 rd = (rs1 * rs2)[63:32]
div DIV R 0110011 0x4 0x01 rd = rs1 / rs2
divu DIV (U) R 0110011 0x5 0x01 rd = rs1 / rs2
rem Remainder R 0110011 0x6 0x01 rd = rs1 % rs2
remu Remainder (U) R 0110011 0x7 0x01 rd = rs1 % rs2

A.2.3 - “A” - Standard Extension for Atomic Instructions, Version 2.1
31 27 26 25 24 20 19 15 14 12 11 7 6 0

funct5 aq rl rs2 rs1 funct3 rd opcode
5 1 1 5 5 3 5 7

Inst Name FMT Opcode funct3 funct5 Description (C)
lr.w Load Reserved R 0101111 0x2 0x02 rd = M[rs1], reserve M[rs1]
sc.w Store Conditional R 0101111 0x2 0x03 if (reserved) { M[rs1] = rs2; rd = 0 }

else { rd = 1 }
amoswap.w Atomic Swap R 0101111 0x2 0x01 rd = M[rs1]; swap(rd, rs2); M[rs1] = rd
amoadd.w Atomic ADD R 0101111 0x2 0x00 rd = M[rs1] + rs2; M[rs1] = rd
amoand.w Atomic AND R 0101111 0x2 0x0C rd = M[rs1] & rs2; M[rs1] = rd
amoor.w Atomic OR R 0101111 0x2 0x0A rd = M[rs1] | rs2; M[rs1] = rd
amoxor.w Atomix XOR R 0101111 0x2 0x04 rd = M[rs1] ˆ rs2; M[rs1] = rd
amomax.w Atomic MAX R 0101111 0x2 0x14 rd = max(M[rs1], rs2); M[rs1] = rd
amomin.w Atomic MIN R 0101111 0x2 0x10 rd = min(M[rs1], rs2); M[rs1] = rd

A.2.4 - “C” - Standard Extension for Compressed Instructions, Version 2.0
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

funct4 rd/rs1 rs2 op CR-type
funct3 imm rd/rs1 imm op CI-type
funct3 imm rs2 op CSS-type
funct3 imm rd’ op CIW-type
funct3 imm rs1’ imm rd’ op CL-type
funct3 imm rd’/rs1’ imm rs2’ op CS-type
funct3 imm rs1’ imm op CB-type
funct3 offset op CJ-type

(c) Willian Nunes(<Willian.Nunes@edu.pucrs.br>), 2022



An Excerpt of a RISC-V Reference Card 112

Inst Name FMT OP Funct Description
c.lwsp Load Word from SP CI 10 010 lw rd, (4*imm)(sp)
c.swsp Store Word to SP CSS 10 110 sw rs2, (4*imm)(sp)
c.lw Load Word CL 00 010 lw rd’, (4*imm)(rs1’)
c.sw Store Word CS 00 110 sw rs1’, (4*imm)(rs2’)
c.j Jump CJ 01 101 jal x0, 2*offset
c.jal Jump And Link CJ 01 001 jal ra, 2*offset
c.jr Jump Reg CR 10 1000 jalr x0, rs1, 0
c.jalr Jump And Link Reg CR 10 1001 jalr ra, rs1, 0
c.beqz Branch == 0 CB 01 110 beq rs’, x0, 2*imm
c.bnez Branch != 0 CB 01 111 bne rs’, x0, 2*imm
c.li Load Immediate CI 01 010 addi rd, x0, imm
c.lui Load Upper Imm CI 01 011 lui rd, imm
c.addi ADD Immediate CI 01 000 addi rd, rd, imm
c.addi16sp ADD Imm * 16 to SP CI 01 011 addi sp, sp, 16*imm
c.addi4spn ADD Imm * 4 + SP CIW 00 000 addi rd’, sp, 4*imm
c.slli Shift Left Logical Imm CI 10 000 slli rd, rd, imm
c.srli Shift Right Logical Imm CB 01 100x00 srli rd’, rd’, imm
c.srai Shift Right Arith Imm CB 01 100x01 srai rd’, rd’, imm
c.andi AND Imm CB 01 100x10 andi rd’, rd’, imm
c.mv MoVe CR 10 1000 add rd, x0, rs2
c.add ADD CR 10 1001 add rd, rd, rs2
c.and AND CS 01 10001111 and rd’, rd’, rs2’
c.or OR CS 01 10001110 or rd’, rd’, rs2’
c.xor XOR CS 01 10001101 xor rd’, rd’, rs2’
c.sub SUB CS 01 10001100 sub rd’, rd’, rs2’
c.nop No OPeration CI 01 000 addi x0, x0, 0
c.ebreak Environment BREAK CR 10 1001 ebreak

(c) Willian Nunes(<Willian.Nunes@edu.pucrs.br>), 2022



An Excerpt of a RISC-V Reference Card 113

A.3 - A Set of RISC-V Pseudo Instructions
Pseudoinstruction Base Instruction(s) Meaning

la rd, symbol
auipc rd, symbol[31:12]

Load address
addi rd, rd, symbol[11:0]

l{b|h|w|d} rd, symbol
auipc rd, symbol[31:12]

Load global
l{b|h|w|d} rd, symbol[11:0](rd)

s{b|h|w|d} rd, symbol, rt
auipc rt, symbol[31:12]

Store global
s{b|h|w|d} rd, symbol[11:0](rt)

fl{w|d} rd, symbol, rt
auipc rt, symbol[31:12]

Floating-point load global
fl{w|d} rd, symbol[11:0](rt)

fs{w|d} rd, symbol, rt
auipc rt, symbol[31:12]

Floating-point store global
fs{w|d} rd, symbol[11:0](rt)

nop addi x0, x0, 0 No operation
li rd, immediate Myriad sequences Load immediate
mv rd, rs addi rd, rs, 0 Copy register
not rd, rs xori rd, rs, -1 One’s complement
neg rd, rs sub rd, x0, rs Two’s complement
negw rd, rs subw rd, x0, rs Two’s complement word
sext.w rd, rs addiw rd, rs, 0 Sign extend word
seqz rd, rs sltiu rd, rs, 1 Set if = zero
snez rd, rs sltu rd, x0, rs Set if ̸= zero
sltz rd, rs slt rd, rs, x0 Set if < zero
sgtz rd, rs slt rd, x0, rs Set if > zero
fmv.s rd, rs fsgnj.s rd, rs, rs Copy single-precision register
fabs.s rd, rs fsgnjx.s rd, rs, rs Single-precision absolute value
fneg.s rd, rs fsgnjn.s rd, rs, rs Single-precision negate
fmv.d rd, rs fsgnj.d rd, rs, rs Copy double-precision register
fabs.d rd, rs fsgnjx.d rd, rs, rs Double-precision absolute value
fneg.d rd, rs fsgnjn.d rd, rs, rs Double-precision negate
beqz rs, offset beq rs, x0, offset Branch if = zero
bnez rs, offset bne rs, x0, offset Branch if ̸= zero
blez rs, offset bge x0, rs, offset Branch if ≤ zero
bgez rs, offset bge rs, x0, offset Branch if ≥ zero
bltz rs, offset blt rs, x0, offset Branch if < zero
bgtz rs, offset blt x0, rs, offset Branch if > zero
bgt rs, rt, offset blt rt, rs, offset Branch if >
ble rs, rt, offset bge rt, rs, offset Branch if ≤
bgtu rs, rt, offset bltu rt, rs, offset Branch if >, unsigned
bleu rs, rt, offset bgeu rt, rs, offset Branch if ≤, unsigned
j offset jal x0, offset Jump
jal offset jal x1, offset Jump and link
jr rs jalr x0, rs, 0 Jump register
jalr rs jalr x1, rs, 0 Jump and link register
ret jalr x0, x1, 0 Return from subroutine

call offset
auipc x1, offset[31:12]

Call far-away subroutine
jalr x1, x1, offset[11:0]

tail offset
auipc x6, offset[31:12]

Tail call far-away subroutine
jalr x0, x6, offset[11:0]

fence fence iorw, iorw Fence on all memory and I/O
CSRR rd, csr CSRRS rd, csr, x0 Read CSR
CSRW csr, rs CSRRW x0, csr, rs Write CSR
CSRS csr, rs CSRRS x0, csr, rs Set bits in CSR
CSRC csr, rs CSRRC x0, csr, rs Clear bits in CSR
CSRWI csr, uimm CSRRWI x0, csr, uimm Write CSR, immediate
CSRSI csr, uimm CSRRSI x0, csr, uimm Set bits in CSR, immediate
CSRCI csr, uimm CSRRCI x0, csr, uimm Clear bits in CSR, immediate

(c) Willian Nunes(<Willian.Nunes@edu.pucrs.br>), 2022



An Excerpt of a RISC-V Reference Card 114

A.4 - The RISC-V Register Naming Conventions

Register ABI Name Description Saver
x0 zero Zero constant —
x1 ra Return address Caller
x2 sp Stack pointer Callee
x3 gp Global pointer —
x4 tp Thread pointer —
x5-x7 t0-t2 Temporaries Caller
x8 s0 / fp Saved / frame pointer Callee
x9 s1 Saved register Callee
x10-x11 a0-a1 Fn args/return values Caller
x12-x17 a2-a7 Fn args Caller
x18-x27 s2-s11 Saved registers Callee
x28-x31 t3-t6 Temporaries Caller
f0-7 ft0-7 FP temporaries Caller
f8-9 fs0-1 FP saved registers Callee
f10-11 fa0-1 FP args/return values Caller
f12-17 fa2-7 FP args Caller
f18-27 fs2-11 FP saved registers Callee
f28-31 ft8-11 FP temporaries Caller

(c) Willian Nunes(<Willian.Nunes@edu.pucrs.br>), 2022


	Introduction and Motivation
	Motivation
	Objectives and Contributions

	Background
	Instruction Set Architectures - ISAs
	The RISC-V ISA Set

	The RISC-V Privileged Architecture
	RISC-V Interrupt Organization Modes

	The PUCRS-RV Processor Core
	Examples of Embedded Uses for Processors
	Robotic Applications
	Multi-Core/Many-Core Applications


	State of the Art
	Similar Processor Cores
	The Parallel Ultra Low Power (PULP) Platform
	Ibex core
	SCR1 core
	The Steel RISC-V core

	RISC-V Applied to Robotics Applications
	Siwa: custom RISC-V based SOC for low power medical applications
	CompROS
	RISC-V FPGA Platform toward ROS-based Robotics Application

	The Memphis Platform

	Work Proposal
	PUCRS-RV Organization: History and Structure
	The ARV Specification and ASIC Implementation
	The PUCRS-RV System Verilog Design and Implementation

	Changes from PUCRS-RV to PUC-RS5
	RISC-V Privileged Architecture and the Zicsr Extension
	The PUC-RS5 Interrupt Organization Mode

	The PUC-RS5 Core Implementation
	Changes to the PUCRS-RV Pipeline
	The Zicsr Extension Implementation
	CSRRW Instruction
	CSRRWI Instruction
	CSRRS Instruction
	CSRRSI Instruction
	CSRRC Instruction
	CSRRCI Instruction

	The CSR Unit
	CSR Enumerations
	CSR Instructions Decoding
	CSR Execute Unit

	The CSR Bank
	Read Operation
	Write Operation
	Machine Return
	Exception Trap
	Interrupt Trap

	The CSR Register Bank Integration
	Integration with Fetch Unit
	Integration with the Retire Unit

	Software Support for the Privileged Architecture
	Boot Configuration
	The Trap Handler
	The Exception Handler Routine
	The Interrupt Handler Routine
	The Return Handler Routine

	Register Bank Changes
	Locked Registers Queue

	Changes to the Memory Interface
	Pipeline Stall

	The PUC-RS5 Core Validation Process
	The PUC-RS5 Testbench Environment
	The Testbench RAM Module
	The Testbench Memory-Mapped Registers

	PUC-RS5 Prototyping
	The PUC-RS5 Core LUTRAM Register Bank Version
	The BRAM-based PUC-RS5 Memory Subsystem
	Peripherals
	The Prototyping Environment UART
	The Prototyping Environment Interrupt Controller
	The Prototyping Environment Timers
	Button Press Detection and Interrupt generation

	The PUC-RS5 Prototyping Process

	Experiments and Results
	Area and Power Results
	Comparison between PUCRS-RV and PUC-RS5 Cores
	Comparison between PUC-RS5 and Similar Cores

	Performance Results

	Conclusions and Suggestions for Further Work
	References
	Appendix A – An Excerpt of a RISC-V Reference Card

