
ESCOLA POLITÉCNICA

PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO

DOUTORADO EM CIÊNCIA DA COMPUTAÇÃO

DÉBORA CRISTINA ENGELMANN

INTENTIONAL DIALOGUES IN MULTI-AGENT
SYSTEMS BASED ON ONTOLOGIES AND

ARGUMENTATION

Porto Alegre

2023

PONTIFICAL CATHOLIC UNIVERSITY OF RIO GRANDE DO SUL
SCHOOL OF TECHNOLOGY

COMPUTER SCIENCE GRADUATE PROGRAM

INTENTIONAL DIALOGUES IN
MULTI-AGENT SYSTEMS

BASED ON ONTOLOGIES AND
ARGUMENTATION

DÉBORA CRISTINA ENGELMANN

Doctoral Thesis submitted to the Pontifical
Catholic University of Rio Grande
do Sul in partial fulfillment of the
requirements for the degree of Ph.D. in
Computer Science.

Supervisors:
Prof. Dr. Rafael Heitor Bordini
Profa. Dra. Viviana Mascardi

Co-Supervisors:
Prof. Dr. Alison Roberto Panisson
Prof. Dr. Angelo Ferrando

Porto Alegre
2023

Ficha Catalográfica

E57i Engelmann, Débora Cristina

Intentional dialogues in multi-agent systems based on ontologies and
argumentation / Débora Cristina Engelmann. - 2023.

123 p.
 Tese (Doutorado) - Programa de Pós-Graduação em Ciência da
Computação, PUCRS.

Orientador: Prof. Dr. Rafael Heitor Bordini.
Orientadora: Profa. Dra. Viviana Mascardi.
Coorientador: Prof. Dr. Alison Roberto Panisson.
Coorientador: Prof. Dr. Angelo Ferrando.

1. Argumentation Theory. 2. Ontological Reasoning. 3. Argumentation Dialogues.
4. XAI. 5. Hybrid Intelligence. I. Bordini, Rafael Heitor. II. Mascardi,
Viviana. III. Panisson, Alison Roberto. IV. Ferrando, Angelo. V. Título.

Elaborada pelo Sistema de Geração Automática de Ficha Catalográfica da PUCRS
com os dados fornecidos pelo(a) autor(a).

Bibliotecária responsável: Clarissa Jesinska Selbach CRB-10/2051

DÉBORA CRISTINA ENGELMANN

INTENTIONAL DIALOGUES IN MULTI-AGENT
SYSTEMS BASED ON ONTOLOGIES AND

ARGUMENTATION

This Doctoral Thesis has been submitted in

partial fulfillment of the requirements

for the degree of Ph.D. in Computer

Science, of the Computer Science Graduate

Program, School of Technology of the

Pontifical Catholic University of Rio Grande

do Sul

Sanctioned on February 27, 2023.

COMMITTEE MEMBERS:

Profa. Dra. Soraia Raupp Musse (PPGCC/PUCRS)

Profa. Dra. Serena Villata (CNRS, France)

Profa. Dra. Roberta Calegari (Universty of Bologna)

Prof. Dr. Alison Roberto Panisson (Department of Computing/UFSC, Brazil - Co-Supervisor)

Prof. Dr. Angelo Ferrando (DIBRIS/UniGe, Italy - Co-Supervisor)

Prof. Dr. Rafael Heitor Bordini (PPGCC/PUCRS, Brazil - Supervisor)

Profa. Dra. Viviana Mascardi (DIBRIS/UniGe, Italy - Supervisor)

I dedicate this work to my parents, Silésio and Edite Engelmann.

“Your time is limited, so don’t waste it liv-

ing someone else’s life. Don’t be trapped

by Dogma which is living with the results of

other people’s thinking, don’t let the noise

of other’s opinions drown out your own in-

ner voice. And most important, have the

courage to follow your heart and intuition.

They somehow already know what you truly

want to become; everything else is secondary.”

(Steve Jobs)

ACKNOWLEDGMENTS

Firstly, I would like to thank my advisor Prof. Rafael H. Bordini, for his constant

support, friendship and guidance throughout this journey. But mostly, I thank you for

believing in me, even against all odds, and always encouraging me to keep going. With-

out your support, I indeed would not have even started my PhD. You are an inspiration

to me. I am pleased to have had the possibility to be mentored by such an extraordinary

Professor. Thank you for everything. Likewise, I wholeheartedly thank Profa. Viviana

Mascardi, who received me in Genoa with great affection, collaborating immensely with

my research and making my stay in Italy even better. Thank you so much for your friend-

ship and for accepting me as your student. It was a great pleasure to collaborate with

you. I am also immensely grateful to my co-supervisors, Prof. Alison R. Panisson and

Prof. Angelo Ferrando. Thank you so much for sharing your knowledge and accompany-

ing me throughout this research. I was fortunate to be able to count on you.

I also want to express my gratitude to my family and friends, who supported

me emotionally throughout the PhD period. Many thanks to my husband, Marivaldo

Vivan, who accompanied and encouraged me all these years. Your encouragement was

essential to this accomplishment. Thank you for always being with me and helping me

in everything you could. Thanks to my parents, Silésio and Edite Engelmann and all my

family for always cheering for me and understanding whenever I could not be present as

I would like. To my friends, especially Daiana da Silva and Raphael Leick, thank you for

the hours of decompression. Certainly, you have relieved the great pressure to carry out

work with this seriousness. Also, many thanks to the friends that the PPGCC gave me,

who each, in their way, helped me to have the strength to complete this work. Especially

Juliana Damasio, Tabajara Krausburg, Olimar Borges, Julia Couto and Henrique Dias.

You are very special to me. Thank you for all the knowledge and good times shared.

To Hospital São Lucas da PUCRS and the healthcare professionals Adriano Chi-

mal Da Silva, Vinicius Sabedot Soares, Marla T. S. dos Santos and Tiago dos Santos who

made themselves available to be part of this research, my profound thanks. You were es-

sential in developing this work. I also thank to the committee members for their kindness

and availability to read, review, and contribute to improving this work. Profa. Roberta

Calegari, Profa. Serena Villata, and Profa. Soraia Raupp Musse, I really appreciate your

valorous insights. I thank the PPGCC and CAPES for granting me scholarships during

part of the PhD period. Finally, I thank everyone who contributed directly or indirectly

to carrying out this work. Thanks very much to all of you.

DIÁLOGOS DE INTENÇÕES EM SISTEMAS MULTIAGENTES

BASEADOS EM ONTOLOGIAS E ARGUMENTAÇÃO

RESUMO

Algumas áreas, como por exemplo a área da saúde, são conhecidas por resisti-

rem à substituição de operadores humanos por sistemas totalmente autônomos. Normal-

mente, não é transparente para os usuários como os sistemas de inteligência artificial

tomam decisões ou obtêm informações, dificultando a confiança dos usuários. Para abor-

dar essa questão, investigamos como a teoria da argumentação e as técnicas de ontologia

podem ser usadas em conjunto com o raciocínio sobre intenções para construir diálogos

complexos em linguagem natural para apoiar a tomada de decisão humana. Com base

nessa investigação, propomos o MAIDS, um framework para desenvolvimento de siste-

mas de diálogo intencional multiagente, que pode ser usado em diferentes domínios.

Nosso framework é modular para que possa ser utilizado integralmenteou apenas os

módulos que se encaixem nas necessidades de cada sistema a ser desenvolvido. Nosso

trabalho também inclui a formalização de uma nova estrutura de diálogo-subdiálogo com

a qual se pode resolver questões ontológicas ou de teoria da mente e posteriormente

retornar ao assunto principal. Como estudo de caso, desenvolvemos um sistema mul-

tiagente usando o framework MAIDS para auxiliar a decisão de profissionais da saúde

sobre alocação de leitos hospitalares. Além disso, avaliamos esse sistema multiagente

com especialistas do domínio usando dados reais de um hospital. Os especialistas que

avaliaram nosso sistema concordam fortemente ou concordam que o sistema contempla

os desideratos de Cohen para sistemas de diálogo orientados a tarefas. Nossos agentes

têm a capacidade de explicar ao usuário como ele chegou a determinadas conclusões.

Além disso possuem representação semântica e de estados mentais dos participantes

de diálogo permitindo a formulação de justificativas coerentes em linguagem natural,

portanto de fácil compreensão para os participantes humanos. Isso demonstra o poten-

cial do framework apresentado nessa tese para o desenvolvimento prático de sistemas

explicáveis e sistemas de inteligência híbrida.

Palavras-Chave: Teoria da Argumentação, Raciocínio Ontológico, Diálogos Argumenta-

tivos, IA explicável, Inteligência Híbrida.

INTENTIONAL DIALOGUES IN MULTI-AGENT SYSTEMS BASED

ON ONTOLOGIES AND ARGUMENTATION

ABSTRACT

Some areas of application, for example, healthcare, are known to resist the

replacement of human operators by fully autonomous systems. It is typically not trans-

parent to users how artificial intelligence systems make decisions or obtain information,

making it difficult for users to trust them. To address this issue, we investigate how

argumentation theory and ontology techniques can be used together with reasoning

about intentions to build complex natural language dialogues to support human decision-

making. Based on such an investigation, we propose MAIDS, a framework for developing

multi-agent intentional dialogue systems, which can be used in different domains. Our

framework is modular so that it can be used in its entirety or just the modules that fulfil

the requirements of each system to be developed. Our work also includes the formali-

sation of a novel dialogue-subdialogue structure with which we can address ontological

or theory-of-mind issues and later return to the main subject. As a case study, we have

developed a multi-agent system using the MAIDS framework to support healthcare pro-

fessionals in making decisions on hospital bed allocations. Furthermore, we evaluated

this multi-agent system with domain experts using real data from a hospital. The special-

ists who evaluated our system strongly agree or agree that the dialogues in which they

participated fulfil Cohen’s desiderata for task-oriented dialogue systems. Our agents

have the ability to explain to the user how they arrived at certain conclusions. Moreover,

they have semantic representations as well as representations of the mental state of the

dialogue participants, allowing the formulation of coherent justifications expressed in

natural language, therefore, easy for human participants to understand. This indicates

the potential of the framework introduced in this thesis for the practical development of

explainable intelligent systems as well as systems supporting hybrid intelligence.

Keywords: Argumentation Theory, Ontological Reasoning, Argumentation Dialogues,

XAI, Hybrid Intelligence.

LIST OF FIGURES

Figure 2.1 – Overview of the three dimensions of JaCaMo [29] 28

Figure 2.2 – Overview of the RV process [9] . 30

Figure 3.1 – Excerpt of the CooL-AgentSpeak Syntax . 36

Figure 3.2 – Dialogue structure . 40

Figure 4.1 – MAIDS Architecture . 46

Figure 4.2 – Dial4JaCa Architecture . 48

Figure 4.3 – Onto4JaCa Architecture . 51

Figure 4.4 – RV4JaCa Architecture . 55

Figure 5.1 – Optimiser output . 62

Figure 5.2 – Validation report . 64

Figure 5.3 – Evaluation result . 72

Figure 5.4 – MAIDS testing interface . 79

Figure 5.5 – Simultaneous conversation and restriction 80

Figure 5.6 – Superlative expressions . 80

Figure 5.7 – Evaluation result . 80

LIST OF TABLES

Table 2.1 – Seven basic types of dialogue [155] . 22

Table 4.1 – Correspondence between Answers from Semantic Reasoners and

an AOPL Representation [61]. 52

Table 5.1 – Bed allocation ontology object properties . 59

Table 5.2 – Rules of the bed allocation ontology . 60

Table 5.3 – Specialists demography . 70

Table 5.4 – Questions to evaluate the functionalities . 71

Table 5.5 – Specialists demography . 78

Table 5.6 – Questions to evaluate Cohen’s desiderata . 78

Table 6.1 – Related work summary . 83

LIST OF ACRONYMS

ACMAS – Agent-Centred Multi-Agent Systems

AIF – Argument Interchange Format

AI – Artificial Intelligence

AOPL – Agent-Oriented Programming Languages

ASM – Affective Strategy Module

BDI – Belief-Desire-Intention

CS – Commitment Store

DSL – Domain-Specific Language

GLPSol – Gnu Linear Programming Solver

HI – Hybrid Intelligence

JSON – JavaScript Object Notation

MAIDS – Multi-Agent Intentional Dialogue System

MAS – Multi-agent System

NLG – Natural Language Generation

NLP – Natural Language Processing

NLU – Natural Language Understanding

OCMAS – Organisation-Centred Multi-Agent Systems

OWL – Ontology Web Language

PDDL – Planning Domain Definition Language

REST – Representational State Transfer

RML – Runtime Monitoring Language

RV – Runtime Verification

SWRL – Semantic Web Rule Language

ToM – Theory of Mind

XAI – eXplainable Artificial Intelligence

CONTENTS

1 INTRODUCTION . 13

1.1 MOTIVATION . 14

1.2 OBJECTIVES . 14

1.3 MAIN CONTRIBUTIONS . 15

1.4 THESIS OUTLINE . 15

2 BACKGROUND . 17

2.1 MULTI-AGENT SYSTEMS . 17

2.2 EXPLAINABLE ARTIFICIAL INTELLIGENCE AND HYBRID INTELLIGENCE . 18

2.3 ARGUMENTATION THEORY . 19

2.3.1 ABSTRACT ARGUMENTATION . 20

2.3.2 MONOLOGICAL AND DIALOGICAL ARGUMENTATION 21

2.3.3 ARGUMENTATION SCHEMES . 23

2.4 DIALOGUE SYSTEMS . 26

2.5 THE JACAMO FRAMEWORK . 27

2.6 ONTOLOGY . 28

2.7 RUNTIME VERIFICATION AND RUNTIME MONITORING LANGUAGE 29

2.8 HOSPITAL BED ALLOCATION DOMAIN . 32

3 CONVERSATIONAL AGENTS USING STRUCTURED DIALOGUES 34

3.1 OVERVIEW OF THE APPROACH . 34

3.2 A MULTI-PART BELIEF BASE . 35

3.2.1 THE COOL-AGENTSPEAK LANGUAGE . 35

3.2.2 ARGUMENTATION-BASED REASONING IN AGENT PROGRAMMING 36

3.2.3 THEORY OF MIND IN AGENT PROGRAMMING. 37

3.3 THE BASIS FOR ARGUMENTATION-BASED DIALOGUES 38

3.4 MULTI-AGENT DIALOGUES WITH UNDERLYING ONTOLOGICAL AND ToM

ARGUMENTS . 39

3.4.1 FORMALISATION OF PARTICIPATING AGENTS . 41

3.4.2 SUBDIALOGUE RULES . 42

4 MULTI-AGENT INTENTIONAL DIALOGUE SYSTEM 46

4.1 OVERALL ARCHITECTURE . 46

4.2 DIAL4JACA . 47

4.3 ONTO4JACA . 50

4.4 RV4JACA . 54

5 CASE STUDY . 57

5.1 BED ALLOCATION ONTOLOGY . 57

5.2 BED ALLOCATION OPTIMISATION . 61

5.3 PLAN VALIDATOR . 63

5.4 RUNTIME VERIFICATION IN BED ALLOCATION . 65

5.4.1 FIRST RML PROPERTY FOR THE BED ALLOCATION DOMAIN 66

5.4.2 SECOND RML PROPERTY FOR THE BED ALLOCATION DOMAIN 67

5.5 EVALUATION . 69

5.5.1 EVALUATION OF SYSTEM FUNCTIONALITIES FOR HOSPITAL BED ALLO-

CATION . 70

5.5.2 EVALUATION OF EXPRESSIVENESS OF THE FRAMEWORK 71

6 RELATED WORK . 82

7 CONCLUSIONS . 86

7.1 SUMMARY OF RESULTS AND DISCUSSION . 87

7.2 THESIS PUBLICATIONS . 88

7.3 FUTURE WORK . 88

REFERENCES . 90

APPENDIX A – Bed-Allocation Plan Validation Report 103

APPENDIX B – Evaluation of System Functionalities – Logs 105

APPENDIX C – Evaluation of Expressivity of the Framework – Logs 118

13

1. INTRODUCTION

The research reported in this thesis focuses on combining Argumentation The-

ory and Ontology techniques to support complex dialogues in natural language. In partic-

ular, we have created an approach to support the development of dialogue systems that

take advantage of that combination of techniques within BDI (Belief-Desire-Intention)

agents to assist humans in decision making. We have made this approach adaptable

enough to be applied across multiple domains.

Many areas can benefit from a decision support system. In the healthcare area,

for example, bed allocation represents a challenge to hospitals (especially in developing

countries such as Brazil) because hospital beds are a scarce resource. Also, hospital

environments are highly dynamic and uncertain, so allocating hospital beds optimally

plays an essential role in the overall planning of hospital resources [145]. A system that

suggests better bed allocations for the professional responsible for this task is interesting

in this context.

Moreover, the healthcare area is known to have a certain resistance to the re-

placement of human operators by automated systems. This is understandable because

it deals with humans, so a wrong decision by a fully autonomous system – that is, a sys-

tem that also takes the final decision on its own – raises legal issues that most countries

cannot yet cope with (who is accountable for a wrong decision? The engineer that im-

plemented the tool? The data scientist that trained it? ...). That is why it is important

to have a system that assists decision making but where the human operator makes the

final decision. Also, we need to consider that if the system cannot explain the suggested

decisions, it is possible that the user will not understand and, because of that, ignore

the suggestion. Another important challenge is maintaining and increasing the user’s

willingness to interact with the technical system [103]. In these cases, a mixed-initiative

system, which supports human-computer interaction, becomes useful [80]. In the con-

text of Hybrid Intelligence (HI) [3], it requires humans and intelligent systems to work

together, and one of the key challenges to achieving this partnership is the capability of

agents to understand human actors.

The Multi-Agent Intentional Dialogue System (MAIDS) framework we present

in this thesis focuses on combining Argumentation Theory techniques [110, 41], On-

tology [70], and Theory of Mind (ToM) [67] to support complex dialogues in natural

language. MAIDS includes components to support the development of complex Multi-

Agent System (MAS) applications, such as: (i) support for the creation of dialogues in

natural language to facilitate the interaction with human operators; (ii) argumentation-

based reasoning and dialogues which allow agents to reason about and communicate

well-supported information; (iii) ontologies to help agents organise domain knowledge

and perform semantic reasoning; and (iv) theory of mind to allow agents to infer other

14

agents mental attitudes leading to purposeful communication. All these components are

developed on top of an Agent-Oriented Programming Language (AOPL) based on the BDI

architecture, which provides a suitable basis for all those techniques.

1.1 Motivation

In some areas, there is resistance to replacing human operators with fully au-

tonomous systems. It is typically not transparent to users how artificial intelligence

systems make decisions or obtain information [76], making it difficult for users to trust

them. To address this issue, we have focused our efforts on developing conversational

agents to assist humans in decision-making. Our approach uses Argumentation Theory

and Ontology techniques as the basis for reasoning in natural language dialogues. Using

these techniques, the decisions can be made more transparent and explainable to users,

with more natural and richer dialogue structures. Furthermore, our approach is adapt-

able enough to be applied across multiple domains, but we have focused our evaluations

on Healthcare.

In the healthcare area, effective management of hospital beds has been the fo-

cus of much research, such as the IMBEDS model that uses artificial neural networks

and multiattribute value theory for decision-making [71]; statistical and data mining ap-

proach [145]; optimisation model with an evolutionary algorithm for bed allocation [47];

and also reviews of the literature were carried out [94, 2]. Although all the work men-

tioned above seeks to improve bed management, they do not provide natural language

interaction and do not offer decision support for the professional having complete control

over the allocations, nor are the decisions explainable. Also, there are still few studies

that practically apply the formal argumentation-based models of reasoning and dialogue

to support interactions between software and human users [59]. In addition, there is a

lack of work that empirically evaluates such models with human users [59].

1.2 Objectives

Motivated by the context discussed above, we identified the following general

objective: to investigate how argumentation theory and ontology techniques can be used

together with reasoning about intentions to build complex natural language dialogues to

support human decision making.

Our specific objectives are:

• Design and formalise an approach to argumentation-based dialogues and ontologi-

cal reasoning.

15

• Construct an architecture/framework for developing explainable systems and im-

plement all the necessary components of the architecture.

• Apply the proposed formal model to a real-world domain and problem, such as

healthcare, and fully implement a dialogue system based on that formalisation us-

ing the framework.

• Evaluate the approach with domain experts based on Cohen’s desiderata for task-

oriented dialogue systems [35].

1.3 Main Contributions

Among the contributions of this thesis we highlight: (i) identification of the ways

that the scientific community have used argumentation techniques to achieve explain-

able artificial intelligence in dialogue systems included in a literature survey published

in [52]; (ii) development of the MAIDS framework [57] to support the development of

explainable dialogue systems based on BDI agents to assist humans in decision making;

(iii) introduction and formalisation of a multi-part belief base for a BDI agent program-

ming language and a structured approach to dialogues where agents argue about the

information from the main belief base component but can move on to subdialogues to

discuss specific issues related to the ontological component or the ToM component of

the multi-part belief base; (iv) creation of the Dial4JaCa framework [51, 50] to enable

intelligent agents to communicate with humans through natural-language interaction;

(v) creation of the Onto4JaCa framework to give intelligent agents the ability to use and

manage the information contained in ontologies during their reasoning processes [61];

(vi) creation of the RV4JaCa framework [56] which supports the use of runtime verifica-

tion in multi-agent systems developed on the JaCaMo platform [28]; (vii) implementation

of an explainable system based on the MAIDS framework to assist in decision making on

hospital bed allocation; (viii) evaluation of the created system using real hospital data

and with the help of professionals responsible for the bed allocation in a hospital.

1.4 Thesis Outline

This thesis proposal is organised as follows. Chapter 2 presents the background

related to multi-agent systems, explainable artificial intelligence and hybrid intelligence,

argumentation theory, dialogue systems, JaCaMo framework, ontology, runtime verifica-

tion and runtime monitoring language, as well as bed allocation domain. Chapter 3

shows our proposed approach. Chapter 4 describes the developed multi-agent inten-

tional dialogue system framework called MAIDS and its modules. In Chapter 5, we

16

present the case study in the hospital bed allocation domain. Chapter 6 presents the

related work. Last, Chapter 7 final considerations and discusses future work.

17

2. BACKGROUND

In this chapter, we bring the background related to this thesis. We will discuss

the following topics: Multi-agent systems, Explainable artificial intelligence, Argumen-

tation theory, Dialogue systems, JaCaMo framework, Ontology, Runtime verification and

Hospital bed allocation domain.

2.1 Multi-agent Systems

Multi-agent systems are systems composed of multiple agents. They seem to be

a natural metaphor for building and understanding a wide range of artificial social sys-

tems and can be applied in several different domains [162]. There are two interlocking

strands of work in multi-agent systems: the one that concerns individual agents and the

one that deals with the collections of these agents. In practice, agents rarely act alone.

They usually inhabit an environment that contains other agents. Each agent can control,

or partially control, the environment, which is called the "sphere of influence". It may

happen that these spheres of influence overlap with what causes the environment to be

controlled jointly by more than one agent. In this case, to achieve the desired result,

an agent must also consider how other agents may act. These agents will have some

knowledge, possibly incomplete, about the other agents [31].

Wooldridge [162] believes that to be able to understand a multi-agent domain

is essential to understand the type of interaction that occurs between agents. For intel-

ligent autonomous agents, the ability to reach agreements is extremely necessary, and

for this, negotiation and argumentation skills are often necessary. In [60], the authors

cite two types of studies in multi-agent systems; the first one is agent-centred multi-

agent systems (ACMAS), which study, at the level of an agent, states and the relation-

ship between those states and their general behaviour, which are projected in terms of

the agent’s states of mind. The second one is organisation-centred multi-agent systems

(OCMAS), which are systems whose foundations reside in the concepts of organisations,

groups, communities, roles, and functions, among others. An OCMAS is not considered

in terms of mental states but in capacities and constraints, which are considered organ-

isational concepts, such as functions, tasks, groups, and interaction protocols.

In a multi-agent system, the organisation is the collection of roles, relationships,

and other social structures that govern agents’ behaviour. Every multi-agent system has

some form of organisation, even if it is implicit and informal. Organisations guide the

mode of interaction between agents, which may influence data flows, resource allocation,

authority relationships, and various other features of the system [78].

18

2.2 Explainable Artificial Intelligence and Hybrid Intelligence

Explainable Artificial Intelligence (XAI) is a research field that refers “to make

AI systems results more understandable to humans” [1]. These results must be clear (in

non-technical terms) and provide explanations about decisions made [45]. The need for

explaining a decision/reasoning/action was discussed as early as the 1970s. It started

with the expert systems development and the need for those systems to explain their

decisions not only with traces but also with justifications [3]. Recommend systems also

become facilitators to produce a justification to help users decide whether to follow a

recommendation. However, many artificial intelligence (AI) applications face difficulties

explaining their autonomous decision and actions to human users [73]. For instance,

when the application involves the logic of axioms and inferences, the reasoning process’s

explanation can be complex [45]. Indeed, if the system is limited to showing the violated

axioms, then the user will probably not understand the results [45].

In [11], the authors argue that systems which heavily adopt AI techniques are

increasing, and making them explainable is a priority. Thus the area of explainable ar-

tificial intelligence emerged intending to foster transparency and trustworthiness. Con-

ducting a systematic review of the literature in goal-driven XAI (explainable agency for

robots and agents), they conclude that: (i) most approaches are based on simple sce-

narios; (ii) almost all approaches focus on robots/agents explaining their behaviours to

the human users (very few concern about inter-agent explainability); and (iii) only a few

works addressed the issues of customisation and context-awareness.

Explainable AI has two main research directions: data-driven XAI (explaining

black-box algorithms) and goal-driven XAI (explainable agency) [11]. While data-driven

domains focus on the concept of interpretability (i.e., their operation can be understood

by a human), explainable agency reflects autonomous agents explaining their actions

and the reasons leading to their decisions. In our work, we have used goal-driven XAI to

make suggestions and support decisions from experts.

Authors believe that automatically generated explanations have a fundamental

mechanism to increase user trust in systems [164]. The explanations can also help users

make better decisions or persuade them to make one particular choice [147]. In [100],

the author describes that while there are many ways to increase trust and transparency

of intelligent agents, two complementary approaches are considered the most relevant:

(i) generating decisions in which one of the criteria taken into account during the com-

putation is how well a human could understand the decisions in the given context, which

is often called interpretability or explainability; and (ii) explicitly explaining decisions to

people, i.e., explanation. Also, explanations can be partial or complete. Partial models

19

reveal the important parts of their reasoning. In contrast, the complete models provide

complete and transparent explanations [73].

Regarding evaluating and measuring whether an XAI system is more under-

standable by the user than another XAI system, it is an open challenge [73]. Usually,

subjective measures are used, such as user satisfaction when using the system. It also

includes evaluation frameworks and argumentation [73]. For instance, in [159], they

proposed a theory-driven, user-centric XAI framework to provide pathways to mitigate

reasoning failures due to cognitive biases.

Furthermore, one of the consequences of making intelligent systems explain-

able is achieving Hybrid Intelligence, which is defined by Akata et al. [3] as "the combi-

nation of human and machine intelligence, augmenting human intellect and capabilities

instead of replacing them and achieving goals that were unreachable by either humans

or machines." The HI is underlined by the interaction between AI agents and humans,

considering human intentions and expertise, as well as ethical, legal, and societal issues.

The capability to explain motivations, actions, and results is an essential element in this

interaction. And we must keep in mind that humans are used to an environment where

norms and values (often implicitly) trace which goals and actions are permitted or even

desirable.

2.3 Argumentation Theory

For reasoning with inconsistent information based on the construction and com-

parison of arguments, we have argumentation as a promising approach [132]. Argument-

based techniques are used to facilitate interaction between rational agents and to spec-

ify the reasoning of autonomous agents. We might see argumentation as the interaction

based on principles of different arguments which are potentially conflicting and have the

objective of reaching a consistent conclusion [95].

The ultimate aim of argumentation is to resolve a potentially conflicting point

of view that may be subject to both justification or refutation depending on the available

information, arriving at a consistent conclusion. Argumentation can also be used for

theoretical reasoning, which refers to what to believe, and practical reasoning, which

refers to what to do. This second requires capturing arguments about non-propositional

attitudes such as goals and desires [95, 132].

In [95], the authors show two main research lines of argumentation in multi-

agent systems. First, autonomous agent reasoning, such as decision making under un-

certainty and belief revision. Second, since argumentation naturally provides tools for

designing, implementing and analysing advanced forms of interaction between rational

agents, it might be seen as a vehicle for facilitating multi-agent interaction. Thus, there

20

are two main types of problems encountered in the multi-agent systems addressed by

argumentation [95]:

• Formation and revision of beliefs and decisions: based on incomplete, conflicting

or uncertain information, argumentation provides a systematic means to resolve

conflicts between arguments and to form beliefs and decisions.

• Rational interaction: Argumentation provides a framework to ensure that dialogue

between participants, which have conflicting points of view, adheres to certain prin-

ciples.

The argumentation process can be considered as a kind of reasoning about ar-

guments made to determine the most acceptable of them. It is necessary to be able to

evaluate the reasons why a fact is valid by combining and comparing arguments to arrive

at a conclusion [132]. All forms of reasoning with incomplete information assume that a

defeasible statement can be believed only if there is no evidence to the contrary [46].

Argumentation-based reasoning determines when an assertion can be believed,

provided that the arguments supporting this assertion are successfully defended against

the counter-arguments of attack. Hence, we can affirm that an agent’s internal argu-

ments that support its beliefs and the external arguments that support contradictory

beliefs characterise the beliefs of a rational agent [46].

In [109], an argument structure developed based on an agent-oriented pro-

gramming language is formally defined and implemented. In addition, it describes an

argument-based reasoning mechanism that allows agents to construct and define the

acceptability of arguments, where conclusions are drawn on a provisional basis, and it

is possible to invalidate them when new information comes. This structure presented in

[109] allows the development of multi-agent applications that use argumentative tech-

niques for making decisions, as well as allows richer dialogues through the exchange of

arguments.

2.3.1 Abstract Argumentation

An essential component of human intelligence is argumentation. The human

being’s ability to engage in arguments is essential for understanding new problems, car-

rying out scientific reasoning, and defending opinions in everyday life [46]. In order to

understand how human beings, even illiterate, carry out their reasoning, the abstract

argumentation approach was proposed. Following the proposal by Baroni et al. [15], we

observe that, in addition to being a formalism to capture various approaches to common

sense reasoning, abstract argumentation is also “a methodology for providing abstrac-

21

tions of problems along three dimensions: arguments, attacks and acceptability, the lat-

ter amounting to what agents have to accept given what they know (i.e. the arguments

and associated attacks).”

Building arguments is something that human beings learn from childhood. The

structure of arguments can be problematic in general, and different models of argument

use different representations of the structure of arguments. They use reasons, rules,

assumptions, and logical deductions in various combinations.

Without disagreement, there is no arguing. Because of that, the notion of attack

is essential in abstract argumentation. Depending on the model of argument used, the

types of attacks included may vary. Taking into account only the attack relationship, we

can assess the acceptance of an argument. Evaluating acceptance without considering

any other underlying details, we guarantee uniform applicability to a wide variety of

situations. Intuitively, we can accept arguments if they can be defended against attacks.

A set that does not contain arguments that attack other arguments in the set or even

themselves and that manages to counter all attacks of arguments in the set is said to be

an admissible set of arguments.

There are several special types of admissible sets in abstract argumentation.

Some of the main ones are: (1) Stable extensions in which the arguments in that set do

not attack each other but attack arguments outside the set - there are not always sta-

ble extensions, but sometimes there are several possible ones; (2) Preferred extensions

(credulous semantics) in which the maximum admissible set is sought - there is always

at least one preferred extension, and there may also be several; (3) Grounded exten-

sions (skeptical semantics) in which the set has acceptable and unambiguous arguments

- there is always precisely one [46].

2.3.2 Monological and Dialogical Argumentation

In the 1980s, argumentation emerges in the area of AI as a powerful method to

represent a diverse range of knowledge and to support various types of reasoning [148].

A meaningful way to explore argumentation in systems is to use dialogues, i.e., dialogi-

cal argumentation, especially between agents. For agents to engage in dialogue, there

must be some protocol that both parties will follow to make sense of the information

exchanges [21].

In addition, a single agent can also use argumentation techniques to execute

their individual reasoning because they need to make decisions about complex prefer-

ence policies in a highly dynamic environment. According to [23], this type of argument

is called monological because it involves a single agent or entity that classifies knowl-

edge to build arguments for and against a given conclusion. When an agent has the

22

ability to argue, he increases his autonomy and provides him with more intelligent be-

haviour [129].

Monological and dialogical argumentation are closely related, because a ratio-

nal agent will execute monological argumentation to build and evaluate the acceptability

of its arguments, and later also consider other arguments communicated during a dia-

logue, to understand which arguments have won and what is the result of the dialogue.

Such understanding might depend on the type of dialogue the agent is participating, for

example, the seven basic types of dialogues described by Walton [155].

In that paper, Walton defines each dialogue model by its initial situation, the

participants’ individual goals, and the aim of the dialogue as a whole. He defines the six

basic types of dialogue as [157]: inquiry, negotiation, information-seeking, deliberation,

and eristic dialogue. And more Discovery dialogue as [96]. Table 2.1 shows the definition

of these seven basic types of dialogue.

Table 2.1 – Seven basic types of dialogue [155]
Type of Dialogue Initial Situation Participant’s Goal Goal of Dialogue
Persuasion Conflict of Opinions Persuade Other Party Resolve or Clarify Issue
Inquiry Need to Have Proof Find and Verify Evidence Prove (Disprove) Hypothesis

Discovery
Need to Find an Explanation
of Facts

Find and Defend a
Suitable Hypothesis

Choose Best Hypothesis for
Testing

Negotiation Conflict of Interests Get What You Most Want
Reasonable Settlement Both
Can Live With

Information-Seeking Need Information
Acquire or Give
Information

Exchange Information

Deliberation Dilemma or Practical Choice
Co-ordinate Goals and
Actions

Decide Best Available
Course of Action

Eristic Personal Conflict
Verbally Hit Out at
Opponent

Reveal Deeper Basis of
Conflict

The goal of each party in the persuasion dialogue is to win over the other side.

To this end, both parties seek to find arguments that defeat the other’s thesis or put

it in doubt. It is essential in a persuasive dialogue that participants agree with the

issue to be discussed in the opening phase [155]. This type of dialogue always arises

from a conflict of opinions and aims to resolve that conflict so that, in the end, a stable

agreement is reached [157]. While persuasion dialogue is highly adversarial, the inquiry

is cooperative in nature. Its goal is to prove that a statement is true or false, or, if none

of these options can be proved, to prove that there is not enough evidence to prove the

truth or falsity of the statement. This type of dialogue seeks to draw conclusions only

based on premises that can be firmly accepted as true or false [155]. “Inquire, as a type

of dialogue, is like persuasion dialogue (and unlike deliberation) in that it aims at a stable

agreement. However, it resembles deliberation (and differs from persuasion dialogue) in

that it arises from a problem rather than conflict: something is not known definitely to

be true or false” [157].

23

In a discovery dialogue, we want to discover something not previously known [96].

The question of whether the truth should be determined only arises during the course of

the dialogue itself, unlike the inquire dialogue, for example, in which the proposition that

must be proven true is designated before the course of argument in the dialogue [155].

Discovery dialogues, then, have a similar feature to deliberation dialogues, since the

course of action adopted by the participants can also emerge in the course of the dia-

logue itself. However, these two types of dialogue differ since, in a deliberation dialogue,

the participants’ preferences or emotions can play an essential role in selecting an ideal

course of action, while in a discovery dialogue, the participants are also seeking truth,

but, there may be many possible truths and they might filter the truths they discover by

what is interesting, novel or important [96].

Despite arising from a conflict as occurs in the persuasion dialogues, negotia-

tion, like deliberation, has the objective of reaching a decision as the basis for action,

“both deliberation and negotiation are inherently practical types of dialogue, geared

to action to enable practical affairs of life and human commerce to go ahead” [157].

Walton [155] states that deliberation is a type of collaborative dialogue. In this type

of dialogue, the parties’ actions are collectively directed towards a common goal. The

parties agree on a proposal that can solve a problem that affects them all, taking all of

their interests into account. On the other hand, unlike negotiation and deliberation, the

information-seeking type of dialogue aims to correct or eliminate an asymmetric distri-

bution of information between the parties. In the case of information-seeking, knowledge

already exists. It only needs to be communicated from one party to the other. Finally,

the eristic dialogue starts from a conflict as the initial situation but is more modest in

its aspirations than any other of the main types [157]. In eristic dialogues, the parties

attack each other’s arguments, without necessarily seeking the truth.

2.3.3 Argumentation Schemes

Argumentation schemes are argument/reasoning patterns found in daily con-

versation, and in specific argumentation, such as scientific argumentation (scientific

reports, discourses, etc.) [158]. Argumentation schemes provide an elegant way to

represent and analyse these typical argument patterns that are naturally found in the

reasoning construction.

According to Panisson [108], “Argumentation schemes are considered deductive

and inductive forms of argument, added the so-called defeasible, presumption or abduc-

tive part”. An argument that is considered defeasible can be strong enough to provide

evidence to guarantee its rational acceptance of its conclusion, even if it is not strong

in itself. This happens when its premises are acceptable [150]. We can provisionally

24

accept the conclusion of a revocable argument concerning known evidence, but it may

be necessary to retract it as new evidence emerges.

Argumentation schemes can also be considered an attempt to reach a conclu-

sion when there is a situation of uncertainty or lack of knowledge. The most important

types of schemes are revocable by nature [158]. As new evidence comes into considera-

tion, arguments that had previously been accepted can be defeated. This is what we call

the revocability factor, and it brings us to the problem of how the schemes are linked

rationally.

Revocability is usually linked to a dialogue, where a proponent, based on an

argumentation scheme, asserts some conclusion and the opponent, also based on the ar-

gumentation scheme, can ask a critical question that needs to be answered successfully

by the proponent [158]. The results of possible critical questions can have problem-

atic conclusions in several aspects. To evaluate a given argument in a particular case

concerning a context of dialogue in which that argument occurred, the argumentation

scheme critical questions are used together. The critical questions aim to raise doubts

about the structural link between the premise and the conclusion. Associated critical

questions are used to judge the strength or weakness of an argument based on an argu-

mentation scheme. In this way, we can judge whether the argument is good or fallacious.

During a dialogue, when an opponent receives an argument, he/she can: (1) ask a criti-

cal question related to that argument; (2) provide an argument against the claim of the

received argument; (3) challenge one of the premises of this argument; or (4) accept the

conclusion of this argument as a commitment [108].

For example, the Argument from role to know in MAS (role to know for short)

from [115, 112] is represented as follows:

“Agent ag is currently playing a role R (its position) that implies knowing things in a

certain subject domain S containing proposition A (Major Premise). ag asserts that

A (in domain S) is true (or false) (Minor Premise). A is true (or false) (Conclusion)”.

The associated critical questions are:

• CQ1 Does playing role R imply knowing whether A holds?

• CQ2 Is ag an honest (trustworthy, reliable) source?

• CQ3 Did ag assert that A is true (or false)?

• CQ4 Is ag playing role R?

To allow agents to instantiate arguments from argumentation schemes, Panis-

son and colleagues [109, 111, 115, 112] have proposed a framework to represent argu-

25

mentation schemes in Jason multi-agent platform using defeasible inference rules. For

example, the argumentation scheme role to know is represented in Jason as follows1:

defeasible_rule(Conclusion,[role(Agent,Role), role_to_know(Role,Domain),

asserts(Agent,Conclusion),about(Conclusion,Domain)])[as(role_to_know)].

where the agents can instantiate such argumentation schemes with the information

available to them and evaluate the acceptability of the conclusion based on the inter-

actions among such instantiated arguments [115, 112].

The critical questions are represented in Jason as beliefs as follows:

CQ1: role_to_know(Role,Conclusion)[as(role_to_know)]

CQ2: reliable(Agent)[as(role_to_know)]

CQ3: asserts(Agent,Conclusion)[as(role_to_know)]

CQ4: role(Agent,Role)[as(role_to_know)]

The argumentation-based reasoning mechanism links the critical question and

the inference rule for a particular argumentation scheme using the annotation [as(as_name)],
with as_name the name of the argumentation scheme. Note that there will be no critical

questions for many argumentation schemes.

For example, imagine that an agent ag knows that john (another agent in the

system) is playing the role of doctor — role(john, doctor). Further, ag knows that

doctors know about cancer — role_to_know(doctor, cancer). Therefore, if john asserts

that “smoking causes cancer” — asserts(john, causes(smoking, cancer)), and given that

causes of cancer are a subject matter related to cancer — about(causes(smoking, cancer),
cancer)}, ag is able to instantiate the argumentation scheme role to know, which allows

ag to conclude that smoking causes cancer — causes(smoking, cancer), based on the

unification function {Agent 7→ john, Role 7→ doctor, Domain 7→ cancer, Conclusion 7→
causes(smoking, cancer)}.

Further, argumentation schemes combined with natural language templates can

be used for translating arguments from a computational representation to a natural lan-

guage representation [113, 61]. For example, the natural language template for the

argumentation scheme role_to_know is as follows:

⟨ “<Agent> is a <Role>, and <Role>s know about <Domain>. <Agent> asserts

<Conclusion>, therefore we should believe that <Conclusion>”.⟩[as(role_to_know)]

using the same unification function {Agent 7→ john, Role 7→ doctor, Domain 7→ cancer,

Conclusion 7→ causes(smoking, cancer)}, it is possible to build the following natural lan-

guage argument:
1Note that argumentation schemes are modelled as agents beliefs, and the annotation [as(as_name)]

is used to distinguish argumentation schemes from other beliefs.

26

⟨“john is a doctor, and doctors know about cancer. john asserts smoking causes cancer,

therefore we should believe that smoking causes cancer”.⟩[as(role_to_know)]

A variety of problems in artificial intelligence can be addressed using argumen-

tation schemes. Even if we disregard the physical aspects of interaction with the world

and consider only artificial agents’ reasoning capacities, there are still significant chal-

lenges for these agents, such as uncertainty and incompleteness, that we can consider

as two fundamental problems to be addressed [158]. And in general, in addition to in-

teracting with the world, these systems of reasoning also need to interact with humans,

which needs to be understood dialectically.

2.4 Dialogue Systems

A dialogue system is a computer program capable of communicating with a user

using natural language [13]. This communication is carried out through text or voice.

Dialogue systems can be categorised into two types: (I) goal-driven dialogue systems (or

task-oriented systems), and (II) non-goal-driven systems [32, 160]. A typical goal-driven

dialogue system extracts the necessary information from the user’s utterances to achieve

a goal, for example, flight booking. While the non-driven dialogue system, user input is

answered without any specific goal [160]. A Chatbot, also known as chatterbot [146], is

a non-goal-driven dialogue system example. Virtual assistants, such as Cortana, Google

Assistant, and Siri, have embedded chatbots.

A good dialogue system should mix the two categories [160]. For instance, a

virtual assistant chats with the user in a non-goal-driven way, but there are also dia-

logues that are goal-driven such as writing an email. In recent years, famous companies

such as Google (Dialogflow2), IBM (Watson3), Microsoft (Luis4) have invested in creating

platform for the development of chatbots. These Platforms have mechanisms for natu-

ral language processing (NLP) and dialogue management. In addition, they also have

integration with services and applications.

Intents are the main component used by these platforms. According to the

user’s input (what the user says), the corresponding intent is mapped to provide the

appropriate response (or action). In other words, it has the ability to understand what

the user says, and it can choose or generate a response which can be based on the

current input and the context of the conversations [131]. The developer is responsible

for registering each intention, and it can call external services that were developed.

An intention can have a large set of user inputs; this is because a human can speak

2https://dialogflow.com/
3https://www.ibm.com/watson/br-pt/
4https://www.luis.ai/home

https://dialogflow.com/
https://www.luis.ai/home

27

the same thing in many ways. Thus, each intention must have alternative syntactic

forms to express the same semantics. In DialogFlow, for instance, it is possible to use a

prebuild agent with some intentions, and the developer can complement it according to

the domain chosen.

Due to advances in NLP, we have seen a growing demand for integrating speech

and text recognition capabilities with interactive software applications [152]. This in-

tegration can minimise one of the most important challenges in the field of human-

computer interaction, which is maintaining and enhancing the willingness of the user

to interact with the technical system [103]. Just as people use natural language for

human communication, people want to use their language to communicate with comput-

ers [142].

2.5 The JaCaMo Framework

JaCaMo is a framework that allows the multi-agent-oriented programming. This

framework consists of the integration of three existing platforms: Jason - for program-

ming autonomous agents, CArtAgO - for programming environmental artefacts and Moise

- for programming multi-agent organisations [29]. A multi-agent system programmed in

JaCaMo has Jason agents that are organised and follow roles according to a hierarchi-

cal structure programmed in Moise. These agents work in environments based on dis-

tributed artefacts programmed using CArtAgO. Figure 2.1 shows the JaCaMo dimensions

overview.

Jason (Agent dimension) is an agent-oriented programming language that is an

interpreter for the AgentSpeak [31] language. Agents programmed in Jason use the BDI

model. The main idea of this model is to model the process of deciding which action to

take to achieve certain objectives [134].

Moise is related to the organisation dimension, where agents can be part of

groups and follow specific roles [81, 29]. Also, with Moise, the schemes are defined, that

is, the structure of goals of the organisation that is decomposed into sub-goals, which

are grouped into missions. This organisation is programmed in an XML file.

CArtAgO, the last dimension, is related to a simulation of the environment where

is defined the artefacts [135]. These artefacts define the environment’s structure and

behaviour, representing all resources that agents need in the simulation. Agents can

discover, create, and use artefacts at runtime [29]. Artefacts are programmed in Java

language.

The combination of these dimensions provides us with a complete framework

for developing multi-agent systems with agents, organisations, and environments. Al-

though this framework is relatively recent, several researchers have already explored

28

its potential such as in [37, 4]. In [37], the authors describe the JaCa-Android approach,

a framework based on the JaCaMo that allows for designing and programming smart

mobile apps. While [4] presents jacamo-web, an interactive programming IDE for de-

veloping Multi-Agent Systems. Also, JaCaMo’s full potential was used in a worldwide

multi-agent programming contest (MAPC) that took place in 2018. Our team used the

framework and came in second place [86]. There was no first place that year.

Figure 2.1 – Overview of the three dimensions of JaCaMo [29]

2.6 Ontology

The term “Ontology” was born on Philosophy and refers to the study of exis-

tence, taking into account “what” and “how” things exist in the world following a hier-

archical classification [70]. For AI, it describes a domain knowledge that follows basic

principles, such as identifying domain classes, the hierarchy of classes, properties, and

their relationships to reflect reality [153]. Ontology is also a framework that supports

the process of modelling a domain to provide a collection of terms and their semantic

interpretation [19]. Also, it can have rules that are called Axioms that constrain the

interpretation and well-formed use of these terms [70].

29

Several formal languages have been created over the years to represent on-

tologies. The most popular ontology languages are KIF, OWL, RDF + RDF(S), and

DAML+OIL [82]. These languages have web-based standards, which means that they

process web information. However, the standard language, for representing ontologies,

that is widely used both in academia and industry is the OWL (Ontology Web Language),

based on formal logic. OWL is based on description logic and has an inference mech-

anism based on this logic developed in the context of the global Semantic Web project

and graphical editors for the creation of ontologies [153].

Some tools help in the construction of ontologies; one of the most popular is

Protégé [65]. Protégé5 allows the use of plugins for ontology graphic visualisation and

semantic reasoning. It also has formats available for ontology upload and download,

such as RDF/XML, Turtle, OWL/XML, and OBO. When developing an ontology, Semantic

Web Rule Language (SWRL) [105] can be used to model more sophisticated inferences.

They are specified in the following format: pre1, ... , pren− > conc, with pre1, ... , pren the

n premises of the rule, and conc the conclusion of the rule.

In this work, we are interested in using Ontology together with MAS. This is

motivated because Ontologies can help in agent knowledge modelling and reasoning,

task representation, and inference [151, 141]. We found some approaches that inte-

grated ontology information with agent-oriented programming languages. For exam-

ple, in [101], they created AgentSpeak-DL that extends agents’ belief base with de-

scription logic where agents can share knowledge by using ontology languages such

as OWL. In [83], the authors used AgentSpeak-DL to develop JASDL (Jason AgentS-

peak–DescriptionLogic), which provides agents’ ontology manipulation capabilities using

the OWL API. JASDL allows plan trigger generalisation based on ontological knowledge

and using such knowledge in querying the belief base.

Also, in [93], the authors created CooL-AgentSpeak, an extension of AgentSpeak-

DL with plan exchange and ontology services. CooL-AgentSpeak uses a CArtAgO arte-

fact as an ontology repository tool to store a set of ontologies and provides ontology

matching/alignment. Another approach is presented in [63], whose authors developed a

CArtAgO artefact to give access to ontological information. The artefact uses OWL API

to create, manipulate, query, and serialise ontologies coded in OWL. Thus, agents can

use operations such as loading the ontology, adding instances, and adding concepts.

2.7 Runtime Verification and Runtime Monitoring Language

Runtime Verification (RV) [16] is a kind of formal verification technique that

focuses on checking the behaviour of software and hardware systems. It dynamically

5https://protege.stanford.edu/

30

checks whether the event traces generated by single runs of a system under scrutiny

comply with the formal specification of its expected correct behaviour [88]. Concerning

other formal verification techniques, such as Theorem Provers [89] and Model Check-

ing [34], RV is considered more dynamic and lightweight. This is mainly due to its focus

on checking how the system behaves while it is currently running, which is important

from a complexity perspective. Furthermore, RV analyses what the system produces

(i.e., everything that can be observed in the system); in other words, it does not need to

simulate the system to check all possible execution scenarios.

The system under scrutiny and the specification of the properties to be verified

are used as the inputs of the RV process (Figure 2.2). The specification denotes sets of

event traces where a trace is called valid according to the specification if and only if it

belongs to such a set. This specification is usually defined in either a Domain-Specific

Language (DSL) or a programming language.

Figure 2.2 – Overview of the RV process [9]

A monitor synthesised from the specification is responsible for consuming the

observed events generated by the system, emitting verdicts and, sometimes, some feed-

backs [9]. The system can use these feedbacks for error recovery when monitoring con-

tinues after deployment. In turn, a formal property is a formal representation of how we

expect the system should behave. The monitor’s job is to verify whether such a property

holds at runtime.

The monitor uses a 4-valued logic [18] where the two conclusive verdicts False

and True are combined with the two inconclusive ones MaybeFalse and MaybeTrue.

This is needed because the verdicts emitted after each observed event may be incon-

31

clusive [88] as the monitor only inspects a finite prefix of the possibly infinite trace

generated by the system execution.

Monitors are suitable for checking properties that need continuous monitoring

since they are usually deployed in conjunction with the system under analysis. This is

especially true in critical security scenarios, where a system failure can cause injury,

loss of money, and even death. The protocols involved in the communication between

agents and human beings can be very complex and hard to track. Moreover, agents are

usually mainly focused on the reasoning and reactive aspects, while the consistency of

the protocols is given for granted. However, above all, in the case of human beings in

the loop, such an assumption cannot be made. Therefore, RV is a suitable candidate to

keep track of the protocols to check whether the current agents’ enactment is consistent

(or not) with the expected protocol. Furthermore, such consistency checking is crucial

in safety-critical scenarios, such as healthcare, where a protocol violation can be costly.

Runtime Monitoring Language6 (RML [9]), in turn, is a Domain-Specific Lan-

guage (DSL) for specifying highly expressive properties in RV (such as non-context-free

ones). We use RML in this paper for its support of parametric specifications and its na-

tive use for defining interaction protocols. In fact, the low-level language, on which RML

is based upon, was born for specifying communication protocols [7, 8].

Since RML is just a means for our purposes in this thesis, we only provide a

simplified and abstract view of its syntax and semantics. However, the complete presen-

tation can be found in [9].

In RML, a property is expressed as a tuple ⟨t , ETs⟩, with t a term and ETs =
{ET1, ... , ETn} a set of event types. An event type ET is represented as a set of pairs

{k1 : v1, ... , kn : vn}, where each pair identifies a specific piece of information (ki) and its

value (vi). An event Ev is denoted as a set of pairs {k ′
1 : v ′

1, ... , k ′
m : v ′

m}. Given an event

type ET , an event Ev matches ET if ET ⊆ Ev , which means ∀(ki : vi) ∈ ET · ∃(kj : vj) ∈
Ev · ki = kj ∧ vi = vj . In other words, an event type ET specifies the requirements that an

event Ev has to satisfy to be considered valid.

An RML term t , with t1, t2 and t ′ as other RML terms, can be:

• ET , denoting a set of singleton traces containing the events Ev s.t. ET ⊆ Ev ;

• t1 t2, denoting the sequential composition of two sets of traces;

• t1 | t2, denoting the unordered composition of two sets of traces (also called shuffle

or interleaving);

• t1 ∧ t2, denoting the intersection of two sets of traces;

• t1 ∨ t2, denoting the union of two sets of traces;

6https://rmlatdibris.github.io/

https://rmlatdibris.github.io/

32

• {let x ; t ′}, denoting the set of traces t ′ where the variable x can be used (i.e., the

variable x can appear in event types in t ′, and can be unified with values).

• t ′∗, denoting the set of chains of concatenations of traces in t ′

Given an event type ET , the term ¬ET denotes its negation. Specifically, ∀Ev .ET ⊆
Ev ⇐⇒ ¬ET ̸⊆ Ev . Other RML terms can also be negated. For example, if the term

is ET1 ∧ ET2, its negation is ¬ET1 ∨ ¬ET2; the same reasoning can be applied to the

remaining operators.

Event types can contain variables. For example, ET (ag1, ag2) = {sender :
ag1, receiver : ag2}, where we do not force any specific value for the sender (resp., re-

ceiver) of a message (in this case, the events of interest would be messages). This event

type matches all events containing the sender and receiver. When an event matches an

event type with variables, such as in this case, the variables get the values from the

event. For instance, if the event observed would be Ev = {sender : “Alice”, receiver :
“Bob”}, it would match ET by unifying its variables as follows: ag1 = “Alice”, and

ag2 = “Bob”. This aspect is important because we can use variables in RML terms to

enforce a specific order of messages. For instance, in this very high-level example, we

could say that when a message from ag1 to ag2 is observed, the only possible conse-

quent message can be a message from ag2 to ag1. Since the first event has unified the

two variables, the second event will have to be a message from Bob to Alice (otherwise,

this would be considered a violation). Naturally, this is only the intuition behind it, but

it should help to grasp the expressiveness of RML and how variables can be exploited at

the protocol level to enforce specific orders amongst the messages.

2.8 Hospital Bed Allocation Domain

Resource management in hospitals aims to maximise resource usage and avoid

hospital overcrowding. In the last decades, healthcare systems have been facing a mas-

sive increase in demand, which has led to an ongoing need to improve and optimise

operational processes and quality control methods [48]. In addition, hospital managers

have studied ways to improve the use of hospital resources and maintain high occupancy

rates without creating chaos in the emergency room or long queues [71]. The demands

on hospitals and the growing financial constraints make planning and efficient allocation

of hospital beds increasingly difficult [94].

Brazil had the second highest burden of coronavirus disease 2019 (COVID-19)

worldwide. More than 36.55 cases and 0.93 deaths per thousand inhabitants as of De-

cember 31, 2020. In addition, as of October 1, 2021, the country has recorded the

highest number in the world (402,220) of deaths caused by COVID-19 [24]. With a con-

33

siderable number of COVID-19 patients worldwide during the pandemic, the hospitals

faced massive shortages of isolation beds with an appropriate environment to prevent

airborne microorganisms from entering corridors, which could result in secondary infec-

tions. On the other hand, they still had to consider the needs of non-COVID-19 patients.

Even during the pandemic, many non-COVID-19 patients, mainly those in emergency

cases, still require hospitalisation. Therefore a critical management problem faced was

how to optimally allocate the limited amount of hospital beds between COVID-19 and

non-COVID-19 patients [90].

Hospital beds are scarce, and therefore, allocating them optimally plays an es-

sential role in the overall planning of hospital resources [145]. Availability of beds in

specialised wards for each patient’s medical condition can reduce errors and improve

the quality of patient care [165]. However, when performing an efficient bed allocation,

it is necessary to consider many variables that make it difficult for a human to work

out the best solutions without any assistance. Also, this is a complex task computa-

tionally, so artificial intelligence incorporated into multi-agent systems can be helpful in

this context. Effective management of such resources has always been a challenge for

managers, given that hospital settings are highly dynamic and uncertain. Uncertainty in

this domain comes from the fact that hospitals need to accommodate patients undergo-

ing elective (scheduled) and emergencies requiring multiple specialities in a wide range

of departments with varying constraints [71] as well as handling emergency cases that

are impossible to predict. This makes bed management an essential part of planning

and controlling operational capacity and an activity involving the efficient use of re-

sources [128]. Thus, it would be interesting to have a system that assists in suggesting

better bed allocations for the professional responsible for this task.

34

3. CONVERSATIONAL AGENTS USING STRUCTURED

DIALOGUES

3.1 Overview of the Approach

This approach supports the development of dialogue systems based on BDI

agents to assist humans in decision making. The use of dialogues in natural language

facilitates the interaction and adaptation of human users. Also, the use of argumenta-

tion theory and ontology can make dialogues more useful for them. The argumentation

ability provides more autonomy and smarter behaviour to agents. Ontology, on the other

hand, helps agents to organise domain knowledge, as it contains all relevant entities and

their relationships, providing the possibility of ontological reasoning about the domain.

We have made our approach adaptable enough to be applied across multiple domains.

We have created a framework for developing dialogue systems built on top of

Jason. In that framework, agents have three separate components of their belief base:

(i) argumentation schemes for the application domain that the dialogue system is aimed

for, following a structured (rather than abstract) argumentation approach; (ii) an OWL

ontology about that same domain; and (iii) a theory of mind component storing presumed

mental attitudes of other agents. With that multi-part belief base setting, our framework

provides support for agents having a structured dialogue where the main line of argu-

mentation is based on the argumentation schemes knowledge component. Still, it can

lead to subdialogues when ontological or ToM issues must be resolved. We have focused

on the expressiveness of dialogue systems where agents have such a multi-part belief

base and the ability to engage in such structured dialogues.

The idea of subdialogues is in line with general ideas on nested dialogues (see,

e.g., [27]), but we give a practical protocol limiting such “digressions”, thus avoiding un-

necessary computational burden. In fact, the multi-part belief base accompanied by the

dialogue structure with subdialogues has a clear impact on efficiency, given that com-

mitment stores of subdialogues can be deleted when they are completed. Importantly,

because this is all in the context of an agent-oriented programming language that is

formally based on the BDI architecture, we have precise and computationally-grounded

[163] semantics for the mental attitudes that agents have and ascribe to others.

Although all the knowledge of the multi-part belief base, if suitably translated

from the various sources, could be merged and used by argumentation systems as a

single knowledge base, there are two main advantages of the modular approach we

propose here: (i) it allows us to reuse existing ontologies on top of the more expressive

(argumentation-based) reasoning that we may want to program for particular systems

(i.e., encouraging reusability of existing ontologies in agent development); and (ii) it

35

allows the agent strategy to “consciously” decide when to move on to an ontological

argumentation1 or argumentation about other agents’ mental attitudes before returning

to the main line of argumentation.

3.2 A Multi-Part Belief Base

In our system, agents have a belief base with at least three main components.

Each of these is based on work appearing in the literature, in particular: (i) defeasible

and strict rules based on an AgentSpeak implementation of d-Prolog [104]; (ii) the CooL-

AgentSpeak language which allows for the use of ontologies and ontology alignment; and

(iii) recent work on the theory of mind for AgentSpeak agents. The subsections below

describe each of these separate bases forming our multi-part belief base.

3.2.1 The CooL-AgentSpeak Language

CooL-AgentSpeak stands for “Cooperative description-Logic AgentSpeak” [92].

It resulted from various strands of past work on combining AgentSpeak with ontological

reasoning [101, 83, 10], and has the following features:

• it extends the AgentSpeak programming language with ontological knowledge, for-

mally through a description logic and in practical implementation through the use

of OWL ontologies;

• it has an explicit cooperation strategy to be used when agents exchange plans;

• it takes advantage of ontology matching functions so that agents using different on-

tologies can communicate, in practice using available ontology matching services.

Because it has all these features that are, in practice, important in multi-agent

settings, we take that programming language as the basis for this component of the

belief base that we require for our structured dialogue approach with ontological argu-

mentation.

However, for this purpose, we only need the belief base component of that lan-

guage (Ont), so we do not show the other components of a CooL-AgentSpeak agent (ag);

the excerpt of the syntax that is of interest here is summarised in Figure 3.1.

1It should be noted that the ontological argumentation term we introduce here bears no relation to what
in Philosophy is known as “ontological argument”. We use this expression to refer specifically to multi-
agent dialogues based on argumentation theory, where the content of the arguments being exchanged
make explicit reference to a formal ontology.

36

ag ::= Ont ps cs ms

Ont ::= ABox TBox
ABox ::= at1 ... atn (n ≥ 0)
TBox ::= C1 ≡ D1 ... Cn ≡ Dn (n ≥ 0) |

C1 ⊑ D1 ... Cn ⊑ Dn (n ≥ 0) |
R1 ≡ S1 ... Rn ≡ Sn (n ≥ 0) |
R1 ⊑ S1 ... Rn ⊑ Sn (n ≥ 0)

C, D ::= A |¬ C |C ⊓ D |C ⊔ D |∀R.C |∃R.C
R, S ::= P |R ⊓ S |R ⊔ S
at ::= C(t)[o(oid), src(bsrc)] |

R(t1, t2)[o(oid), src(bsrc)]
bsrc ::= self |aid1, ..., aidn |percept
oid ::= a string identifying an ontology |self
aid ::= a string identifying an agent

Figure 3.1 – Excerpt of the CooL-AgentSpeak Syntax

Following [101], CooL-AgentSpeak usedALC as the underlying description logic

[14]. The definition of classes and properties belonging to the ABox of the ontology as-

sumes the existence of identifiers for primitive (i.e., not defined) classes and properties

(metavariables A and P, respectively). New classes and properties can be defined using

constructs such as ⊓ and ⊔ that represent the intersection and the union of two enti-

ties, respectively. The TBox is a set of axioms establishing equivalence and subsumption

relations between classes and between properties. With respect to [14] and [101], the

syntax was extended to allow annotations (as available in Jason) of concepts and proper-

ties. Furthermore, in practice, we use OWL ontologies, so OWL inference rules [79] can

also be used.

An agent belief is an atom belonging to the ABox annotated with o(oid), where

oid is the identifier of the ontology. We use oid=self for “naive beliefs” [83], i.e., a

normal AgentSpeak belief that does not relate to an ontology. Along the lines of [154],

beliefs are also annotated with sources src(bsrc), where bsrc can be either an agent

identifier aid specifying the agent which previously communicated that information or

self to denote beliefs created by the agent itself, or percept to indicate that the belief

was acquired through the perception of the environment.

3.2.2 Argumentation-based Reasoning in Agent Programming

Our agents have an internal rule-based argumentation mechanism capable of

generating (evolving) arguments. Rule-based argumentation frameworks can be found

in the literature, for example, in [125], which extends well-known work by Dung [46],

with structures to arguments based on strict and defeasible rules, and the work of Be-

rariu [22] and [117] which extend Jason agents with such argumentative reasoning capa-

37

bilities. In this work, we use specifically the approach and implementation by Panisson

et al. [117], which has been extended to consider the representation of argumentation

schemes (i.e., reasoning patterns) for various applications domains [110].

Agents in our framework should use an argumentation semantics that allows a

unique set of acceptable arguments such as grounded semantics defined in [46] and used

in [22, 125], or the defeasible semantics defined in [68] and used in [117]. Furthermore,

agents only accept propositions/claims which they do not have an acceptable argument

against (i.e., the cautious attitude), and agents only assert propositions/claims for which

they have an acceptable argument (i.e., the thoughtful attitude) [122, 123].

In our dialogue approach, we need to determine the acceptability of an argu-

ment from the agent’s perspective (i.e., whether the agent does or does not have an

argument for a given claim). That implementation referred to above and upon which we

have built this component of our belief base provides that for us.

3.2.3 Theory of Mind in Agent Programming

For an agent to interact successfully, effectively achieving its goals in a multi-

agent environment, it is essential for it to be able to model and reason about other

agents’ minds. The term theory of mind is used to refer to such an ability. ToM has been

much discussed in the context of multi-agent systems, as it can be noted in [42, 43],

which investigated the advantages of using different levels of ToM in games played by

agents, and [25, 74, 75, 107, 136], which investigated the advantages of modelling the

opponent when considering strategies in argumentation-based dialogues.

More recently, works have been published on how ToM can be modelled in

Agent-Oriented Programming Languages (AOPL) [120, 140]. The authors discuss how

AOPLs are suitable as a basis for analysing social interaction, including, for example,

when intelligent agents can be dishonest [121]. Pioneering work relating ToM to AOPLs

appeared in [87], building on seminal work on the semantics of speech-acts [36].

In this work, we take advantage of existing approaches to ToM in agent pro-

gramming in order to model and reason about other agents’ mental attitudes. Similar

to ontological inquiries, in our approach, agents’ ToM may also be the target of subdi-

alogues, in which agents will argue about their own or other agents’ mental attitudes.

In fact, ToM subdialogues may be more often required than ontological ones, given how

susceptible ToM is to be incorrect or incomplete. Even with probabilistic models, such

as in [140], when an agent builds a model of other agents’ minds, this model is often

different from reality, given that many factors can mislead the perception of the men-

tal attitudes of others, and given that agents change their mental attitudes constantly,

particularly in highly-dynamic multi-agent systems.

38

3.3 The Basis for Argumentation-Based Dialogues

In our mechanism, agents argue using a subset of the speech acts found in the

literature of argumentation-based dialogue [6, 122, 123]. This work builds on an existing

approach by Panisson et al. [118]. It will be summarised in this section to make the full

operation of our approach clearer. The particular performative verbs used here and their

informal meaning are as follows:

assert: an agent that performs an assert utterance declares, to all participants of the di-

alogue, that it is committed to defending this claim — the receivers of the message

become aware of this commitment;

accept: an agent that performs an accept utterance declares, to all participants of the

dialogue, that it accepts the previous claim (assert) of another agent — the re-

ceivers of the message become aware of this acceptance;

question: an agent that performs a question utterance desires to know the reasons for

a previous claim of another agent or, in case of an information-seeking dialogue,

desires to know if the receiver can provide the information requested in the content

of a question message.

challenge: the receiver of the message, who previously committed to defend a claim,

should now provide the support set for that claim;

justify: the justify message is similar to the assert message but is used as a response to

a challenge message previously received, whereby the agent provides the support

to its previous claim.

We adopt the formal definition of the semantics of these speech acts from the

work by Panisson et al. [116, 119] which specify precisely the effect of the speech acts

in the agent’s mental state, as well as in the multi-agent dialogue as a whole. The formal

semantics allows for direct implementation of the effects of receiving and sending the

speech-act in a BDI-based agent-oriented programming language based on the mental

attitudes used in that specification. From that work, we use the stated effects of each

speech act on an agent’s commitment store (CS) for the specification of our protocol, as

described below.

The CS consists of one or more structures, accessible to all agents in a dialogue,

containing commitments made by the agents during the dialogue2. The CS is simply a

subset of the knowledge base, and the union of the CSs can be viewed as the global state

of the dialogue at a given time [123].

2Other names are used for CS, such as dialogue obligation store in [99] and dialogue store in [138].

39

In the course of the dialogue, the agents use rules that define how the CS is

updated. Such rules are part of the semantics used in this work and are summarised as

follows (making reference to the agent that uttered the speech act):

• assert : the agent’s CS is updated with the asserted content p: CS ← CS ∪ {p};

• accept : the agent’s CS is updated with the accepted content p: CS ← CS ∪ {p};

• question: no effect on the CS;

• challenge: no effect on the CS; and

• justify: the agent’s CS is updated with the justified content contained in the set of

rules and facts S (the support for a challenged claim p): CS ← CS ∪ S;

Note that in our implementation, we support multi-agent interaction, so mes-

sages can be directed to a particular agent or to ‘∗’, which is used to denote all agents

taking part in a particular dialogue. A message has the format performative(sender,

receiver, content). Besides the performative verbs used in individual messages, a di-

alogue game protocol restricts the moves allowed to agents. The dialogue game restricts

the moves but, as usual in such mechanisms, it also determines the alternative moves

available to agents at any point in the multi-agent interaction. In fact, an interesting

approach to determine an agent’s individual strategy to participate in such interaction

is through planning, as done, for example, in [26, 114].

The particular dialogue game approach we use in this work is built upon fun-

damental ideas that appeared in [123, 122]. That work formalises the preconditions

(called “rationality rules”) for an agent to make each type of dialogue move and what

commitment store updates ensue. Furthermore, that work shows how those moves can

be used to build dialogues for various purposes among those mentioned in Section 2.3.2

depending on the agent’s intention. Our case study in Chapter 5 shows in practice the

sort of dialogue that the implementation of such rationality rules supports. Note that

they provide the means for agents to engage in a dialogue, but our case study further

shows when an agent chooses to move to an ontological subdialogue, following the rules

we formally introduce in the next section.

3.4 Multi-Agent Dialogues with Underlying Ontological and ToM Arguments

We present the structure of subdialogues, which can be seen in Figure 3.2.

Agents engage in a dialogue about some subject (a claim put forward by the agent initi-

ating the main dialogue). The dialogue proceeds normally following a particular protocol

and using the knowledge base δ. In the case study reported here, for example, we use

40

a multi-agent version of the dialogue protocol referred to in Section 3.3 for both the

main dialogue and each of the two types of subdialogues. What we formalise later in

this section is precisely when an agent may digress from the mainline of argumentation

and move on to an ontological or ToM subdialogue. As seen in Figure 3.2, after some

moves in either type of subdialogue, the agents involved in the dialogue must go back to

discussing the main subject; that is, the main line of argumentation is suspended when

a subdialogue starts, and it is only resumed when that subdialogue finishes.

Dialogue on the
main subject (𝛅)

Ontological
Argumentation (𝛐)

Argumentation about
ToM (𝛕)

Figure 3.2 – Dialogue structure

The move towards a subdialogue is best explained by an example. Suppose we

have P(c) as a strict fact, P(c) ∧ D(c) → Q(c) as a defeasible rule, C(c) in the ABox, and

C ⊑ D in the TBox of the o belief-base component. If, after asserting Q(c) the agent

is questioned about D(c), the justification involves the ontological assertions. When

presented with them, the other agent might disagree that C(c) or disagree with the TBox

statement if the ontologies are not correctly aligned. After that dialogue phase (i.e., a

subdialogue) is finished, the main dialogue flow resumes. The result of the subdialogue,

of course, will affect the main line of discussion (the dialogue about a particular subject

of interest in the domain following the available defeasible knowledge). The agents may

conclude the subdialogue by unanimously agreeing that D(c), that ¬D(c), or finishing

the subdialogue inconclusively. In the latter case, the main dialogue will continue so

that agents try to reach an agreement on the main subject despite being unable to agree

on the ontological issue.

Similarly, we might have a subdialogue to further inquire about ToM assump-

tions, in which case the subdialogue uses knowledge from the ToM component. Support

for ToM in our framework is done by incorporating the work on ToM for agent program-

ming languages discussed in Section 3.2.3. Yet, those beliefs are particularly susceptible

to being incorrect and incomplete. This is partly because of the intrinsic benevolence

assumption in the rules for generating ToM, but also because, in a dynamic environ-

ment, the agent’s mental attitudes can change rapidly without further communication

exchange that would have allowed the ToM to be updated. Again, after a ToM subdia-

logue, the result will affect the main dialogue in the same ways mentioned above.

41

Our work includes the formalisation of a novel dialogue-subdialogue structure,

and we use an existing protocol for the (sub)dialogues. Besides implementing the rules

that support the dialogue protocol, our framework requires derivation of conclusions to

be obtained for each of the 3 belief-base components when the agent needs to respond

to a challenge message. For the defeasible component, the existing argumentation-

scheme-based implementation already produces an AgentSpeak list with the sequence

of rules used to derive a particular conclusion. For the ontology component, we auto-

matically translate the semantic rules presented in the ontologies to a computational

representation of argumentation schemes (defeasible rules), allowing the agents to rea-

son using the defeasible component. Finally, for the ToM component, the justification

directly references the rules of the operational semantics that govern how ToM is up-

dated in an agent language [120] that we incorporated into our system.

3.4.1 Formalisation of Participating Agents

As seen in the previous section, our work builds on two other separate pieces of

work in the literature: domain-specific strict and defeasible rules and facts, and one or

more ontologies (without lack of generality, we use only one in the formalisation), and a

ToM (i.e., the information about other agents’ state of mind that is kept updated through

communication); note that the all messages exchanged by agents may contribute to ToM

updating, including the messages exchanged following the overall dialogue protocol we

present in this section and the associated protocol governing (sub)dialogues. An agent

participating in dialogues created with our framework is formalised as follows.

Definition 1 (Agent) An agent that takes part in our structured-dialogue argumenta-

tion protocol is defined as a tuple ⟨δ, o, τ , π, ε, ι⟩, where δ is a set of defeasible and strict

rules and facts (in the AgentSpeak style based on d-Prolog); o is a CooL-AgentSpeak

style ontology-based belief base; τ is an AgentSpeak representation for ToM following

the approach described in the previous section; π is the set of plans to achieve goals

forming the agent’s know-how (i.e., its plan library); ε is a set of AgentSpeak events

which include, for example, recent goal adoptions (i.e., goals that are not yet intentions);

and ι is the agent’s current set of intentions (partially executed, partially instantiated

plans to achieve goals).

Note that (δ, o) are two now separate components replacing what would nor-

mally be simply one set of beliefs representing the agent’s current belief base. We use

Ci to refer to component C of agent i . Introducing further notation, we say that an agent

can build an acceptable argument S that supports a claim p (denoted as S |= p) from

one of its knowledge bases and the commitment store of the other participants. For

42

example, agent i can build an acceptable argument S, which supports a conclusion p,

from its defeasible knowledge base (δi) and the commitment store of j (CS j) (denoted

(δi ∪ CS j) |= S).

3.4.2 Subdialogue Rules

We now introduce the rules governing the high-level dialogue structure; that is,

the rules that allow agents to initiate the subdialogue we would like them to have in our

framework. They should be interpreted in the context of normal dialogue rules [98, 97]

determining a protocol that governs the interactions between the agents, given their

strategies whereby each agent moves by performing one of the utterances allowed by the

protocol. Such rules, effectively determining a dialogue game [98], are often expressed

as if-then rules, which are then easy to implement.

The dialogue rules specify the moves that each player can make, and so specify

the protocol under which the dialogue takes place [6]. As mentioned before, the per-

mitted moves in each (sub)dialogue follow the existing protocol discussed in Section 3.3.

Instead of the usual if-then rules, we use a different style, similar to operational se-

mantic rules, to formalise new performatives that are required to support the dialogue

structure. In order to do so formally, we first define the overall dialogue setting.

Definition 2 (Subdialogue Game) A subdialogue game is formally represented as a

tuple ⟨MD, SD1, ... , SDn, MS, DR⟩, where MD is the main dialogue, SDi (1 ≤ i ≤ n) are n
possible subdialogues, MS is a finite set of allowed moves between any of the dialogues,

and DR a set of dialogue rules governing the moves between the various (sub)dialogues.

Our model assumes that digressing to a subdialogue suspends the dialogue on the main

subject, which is only resumed when the subdialogue finishes.

We propose one particular subdialogue game as follows.

Definition 3 (Ontological-ToM Subdialogue Game) An Ontological-ToM subdialogue

game, denoted by SDGOT , is formally defined by ⟨MDOT , SDO, SDT , MSOT , DROT ⟩.

Arguments can be formed from the commitment store of the main dialogue and

the knowledge in δ of each agent. The SDO subdialogue uses o plus its commitment store

and SDT uses τ and another particular commitment store as well as ε and ι (so that the

agent may refer to its own desires and intentions, as well as beliefs3). The formalisation

of the two other components is given below in this section. First, we formalise a partic-

ular running instance of dialogue following our Ontological-ToM Subdialogue Game.

3For a formalisation of the BDI modalities for AgentSpeak agents, see [30].

43

Definition 4 (Dialogue Instance) A particular dialogue instance following our

Ontological-ToM Subdialogue Game is defined as ⟨dID,A, SDGOT ⟩ where dID is a unique

dialogue instance ID, A is the set of agents (in this paper we assume the same set of

agents participates in the main as well as all subdialogues), and SDGOT is as per Defini-

tion 3.

Definition 5 (Dialogue Moves) We denote a move in MSOT as v (i , j ,φ), where v is the

performative verb used for that move, made by agent i , addressed to agent j , regard-

ing content φ. We consider the following set of performatives, denoted by P (see Sec-

tion 3.3): assert, accept, question, challenge, justify, closedialogue, ontoargsubdlg,

tomsubdlg, closesubdlg, and failsubdlg. The content of a move (φ) can be an argument

(a set of formulæ) or just a formula (e.g., in an assert move, the content is a formula

and in a justify move, the content will be a support set for a claim made in a previous

assert move).

The dialogue rules in DROT indicate the possible moves that an agent can make

following a previous move by another agent. They are presented here in the form of

an inference rule in a similar presentation style as used in operational semantics of

programming languages, except that here the conclusion part of the rule state which

dialogue move (or transition) is allowed when the premises of the rule hold. A dialogue

transition l −→ r means making the r move in response to a previously received message

l . When necessary to make that clear, a move r may be written rM , rO, or rT depending

on whether it took place in the main, ontological, or ToM (sub)dialogue. In the premises,

existential quantification is assumed, and horizontal space between formulæ denotes

conjunction. When multiple rules can fire, those are precisely the points where an indi-

vidual agent strategy will determine how the dialogue unfolds (and as mentioned before,

planning is one possible technique to help determine optimal dialogue strategies). We

use ∗ to denote messages that are not directed towards a particular agent but to all

agents taking part in the dialogue. The specific rules DROT that govern our subdialogue

structure are as follows.

f ∈ δj C(t) ∈ f o ⊢ C(t)

challenge(i , j , f)M −→ ontoargsubdlg(j , ∗, C(t))O

(OAsdlg1)

f ∈ δj R(t1, t2) ∈ f o ⊢ R(t1, t2)

challenge(i , j , f)M −→ ontoargsubdlg(j , ∗, R(t1, t2))O

(OAsdlg2)

Rule OAsdlg1 says that if an agent challenges, in the main dialogue M, a for-

mula in which C(t) appears, and C is related to an ontology class, we can enter a subdia-

logue to discuss whether t indeed is an instance of class C. Rule OAsdlg2 is exactly like

OAsdlg1 but for an ontology relation R(t1, t2) rather than a class. Note that it is assumed

44

in the formalisation, without loss of generality, that the participating agents have only

one ontology, which they have individually aligned using CooL-AgentSpeak. In practice,

a ontoargsubdlg message could include a parameter for the URI of the particular OWL

ontology referred to by the agent starting the subdialogue. When agents receive an

ontoargsubdlg message, they know they have to switch their moves to a fresh instance

of the subdialogue protocol.

∀a ∈ A.oa |= φ

closedialogue(i , ∗,φ)O −→ closesubdlg(i , ∗,φ)M

(CloseOAsdlg1)

∀a ∈ A.oa |= ¬φ
closedialogue(i , ∗,¬φ)O −→ closesubdlg(i , ∗,¬φ)M

(CloseOAsdlg2)

a ∈ A oa |= φ

b ∈ A ob |= ¬φ
closedialogue(i , ∗,φ)O −→ failsubdlg(i , ∗,φ)M

(FailAOsdlg)

Rule CloseOAsdlg1 states that when the closedialogue performative is used by one of

the agents to finish a dialogue which was an ontological subdialogue, that leads to the closing

of the subdialogue with success (closesubdlg), in case all agents agreed on φ, and thereafter to

the resuming of the main dialogue. Note that although we specify the condition from the point of

view of the belief base of the participating agents, that can also be checked from the commitment

stores of the subdialogue. Rule CloseOAsdlg2 is exactly like CloseOAsdlg1 except that it applies

when all agents accept ¬φ instead.

It should also be noted that following a closesubdlg(i , ∗,φ) message, the commitment

store of the main dialogue is updated with the fact that now all agents accept φ (i.e., they reach

an agreement about whether that ontological issue holds or not). When instead rule FailAOsdlg

applies, the main dialogue is resumed with no alteration in the commitment stores. The dialogue

will have to continue despite the disagreement on φ.

The closing rules for ToM subdialogues are very similar, so for our purposes here, we

only need to formalise the rules for starting a ToM subdialogue.

f ∈ δj Moda∈A(φ) ∈ f τj ⊢ Moda∈A(φ)

challenge(i , j , f)M −→ tomsubdlg(j , ∗, Moda∈A(φ))T

(OTsdlg)

where Mod ∈ {Bel, Des, Int}. Rule OTsdlg says that if a formula f is challenged by an agent and

that formula involves a subformula which is associated with the ToM component of the belief

base, we may start a subdialogue to discuss specifically whether the mental attitude of a partic-

ular agent does in fact hold, i.e., there is a divergence between their ToMs.

Definition 6 (Divergence between agents’ ToM) Considering two agents i , j ∈ A, there is di-

vergence between their ToM about some mental attitude Modk (φ), for some agent k ∈ A, when

τi |= Modk (φ) and τj ̸|= Modk (φ).

45

We assume that agents have a consistent ToM about their own mental attitudes (they

have perfect introspection about their own mental attitudes), i.e., ∀φ ∈ {δi ∪ ιi} then Modi (φ) ∈ τi .

Also, they have a consistent ToM about other agents, i.e., Modj (φ) and Modj (¬φ) does not hold in

τi simultaneously. Thus, we have the following scenarios for ToM subdialogues: (i) When j = k ,

i.e., agent i has a divergent model about j ’s mental attitude Modj (φ), agent j can inform its current

mental attitude Modj (φ) to i . (ii) When i = k , i.e., agent j has a divergent model about i ’s mental

attitude Modi (φ), agent i can inform its current mental attitude Modi (φ) to j . (iii) When j ̸= k and

i ̸= k , i.e., agents i and j have a divergence about another agent k ’s mental attitude Modk (φ),
agents i and j may argue about the current mental attitude Modk (φ) of k .

When the mental attitude causing a divergence between two agents’ ToM refers to a

belief (i.e., Modi (φ) = Beli (φ)), ToM subdialogues will be characterised as an information-seeking

(sub)dialogue for cases (i) and (ii) above and an inquiry (sub)dialogue for case (iii). When the

mental attitude causing such divergence refers to a desire or intention, (e.g., Modi (φ) = Desi (φ)),
those ToM subdialogues may result in more complex interactions, possibly involving persuasion in

case (iii). Such subdialogues about agents’ desires/intentions are supported by carefully designed

argumentation schemes introduced by D.Walton [156].

FINAL REMARKS

This chapter presented an overview of our approach. We show the components used

in our approach to assisting users in decision making. Also, it presents the definitions and rules

used in our dialogue protocol. We have idealised our approach in a way that allows us to explain

to the user how our agents arrived at certain conclusions. We worked with a more semantic

representation and representations of the mental state of the dialogue participants, allowing the

formulation of coherent justifications expressed in natural language, therefore, easy for human

participants to understand. This fact has revealed the potential of our approach to be used in the

practical development of explainable intelligent systems as well as systems supporting hybrid

intelligence. The contents of this chapter have been published in [57].

46

4. MULTI-AGENT INTENTIONAL DIALOGUE SYSTEM

4.1 Overall Architecture

The architecture of the Multi-Agent Intentional Dialogue System (MAIDS) framework

we developed in this work is shown in Figure 4.1. As it is shown, our framework relies on the

use of Dial4JaCa (see Section 4.2) as an interface to dialogue platforms such as Dialogflow1 or

Rasa2. The Human users can interact with the chatbot through voice or text. This interaction

is classified into intents by Dialogflow or Rasa and sent to Dial4JaCa, which makes the request

available to the Communication agent assigned to that specific user.

Human users

Multi-Agent System

Formal Monitor

Domain specific
agents

Monitor

Onto4JaCa

Ontologies

Argumentation
reasoning

Assistant Communication
agents

Domain specific
Artefacts

RV4JaCa

Dial4JaCa

Pellet Argumentation
schemes

Ontology
agents

Communication SniffingAgent

Figure 4.1 – MAIDS Architecture

One or more Communication agents can be instantiated, each one responsible for rep-

resenting a Human user. This allows us to customise the responses given to the user based on a

previously defined (or learned) profile. With this profile, the application avoids giving too many

explanatory answers to a user with a specialist background and avoids giving very superficial an-

swers to users without a specialist background since it translates the responses of the Assistant

(the result of the MAS reasoning) into natural language messages, using templates as described

in [113, 61], to be sent to its corresponding Human user. Furthermore, the ability to instantiate

multiple communication agents, one for each system’s user, also allows an Assistant agent to

engage in multiparty conversations, helping a team or a group of users make joint decisions.

1https://cloud.google.com/dialogflow/es/docs
2https://rasa.com/docs/

47

The Assistant agent is responsible for communicating with other agents in search of

information and performing argumentation reasoning. Besides multiple communication agents,

several Ontology agents can be instantiated in MAIDS, allowing the MAS to consult several

ontologies simultaneously through Onto4JaCa (see Section 4.3). These agents can also perform

ontological reasoning using the Pellet reasoner [143] and its open-source continuation effort

Openllet3. In addition, these agents can translate OWL inference rules [79] automatically to de-

feasible rules (representing argumentation schemes) and use them during the reasoning process.

In order to address the specificity of different application domains, Domain specific

agents are added to the system, and they can query different Domain specific Artefacts de-

pending on the system’s needs. Also, MAIDS uses the RV4JaCa (see Section 4.4) to perform run-

time verification. It observes all messages exchanged between agents and sends them through a

REST (Representational State Transfer) request to a Formal Monitor where the properties that

need to be checked are defined. The Formal Monitor processes the received information, check-

ing whether any property has been violated. In case of violation, RV4JaCa adds information about

the failure in the Monitor agent’s belief base that warns the agents involved in the exchange of

messages that there has been a violation. This makes it possible for our agents to take action to

recover from the failure that the breach caused.

Note that MAIDS is a modular framework, which means that its components can be

used together or separately, depending on the needs of the multi-agent system. The following

sections explain each of the modules in more detail.

4.2 Dial4JaCa

Dial4JaCa4 [51, 50] integrates the JaCaMo framework with Dialogflow and, therefore,

allows us to implement intelligent agents that can communicate with humans through natural-

language interaction. We have made this integration sufficiently adaptive to be applied to differ-

ent applications and domains. To do so, we use modular components which can be imported into

any multi-agent system developed in JaCaMo. Figure 4.2 depicts an overview of the Dial4JaCa

architecture.

To develop the bridge that links a MAS application, developed using JaCaMo, to a

natural language processing platform, e.g., Dialogflow, we use part of the open-source project

JaCaMo REST5 [5]. JaCaMo REST allows a MAS to interact with services or applications on the

web and to be managed and updated by other applications. In our approach, Dial4JaCa re-

ceives requests from Dialogflow through JaCaMo REST. It conveys the received information to

a CArtAgO Artefact responsible for making the requests available to the agents. The data are

received in JSON (JavaScript Object Notation) format and immediately transformed into a Java

object, which becomes available in a CArtAgO Integration Artefact. This Interface allows

the integration artefact to perceive whenever a request is received. Upon realising the arrival

3https://github.com/Galigator/openllet
4https://github.com/smart-pucrs/Dial4JaCa
5https://github.com/jacamo-lang/jacamo-rest

https://github.com/smart-pucrs/Dial4JaCa
https://github.com/jacamo-lang/jacamo-rest

48

JaCaMo REST
Adapted

Interface

CArtAgO Artefact

Agent

Belief
Base

Belief
Addition

Call Reply
Operation

Figure 4.2 – Dial4JaCa Architecture

1 +request(ResponseId, IntentName, Params, Contexts) :true
2 <- .print("Request received ",IntentName," of Dialog");
3 !reply(ResponseId, IntentName, Params, Contexts).

Listing 1: An example of how an agent perceives a request.

of a requisition, the artefact performs a belief addition in the belief base of all agents who are

observing it (i.e., the observable properties). That belief contains all relevant information about

the request. Doing so, the agents that focus on that artefact are able to decide whether they are

going to react to such requests or not.

Regarding Dialogflow, it uses the fulfillment6 service to communicate to external

APIs. We use this service to integrate Dialogflow with the MAS, passing requests through the

resource-oriented abstraction layer from JaCaMo REST. With the resulting communication inter-

face, intelligent agents developed in JaCaMo perceive not only information about an intent trig-

gered by the user’s speech, but also parameters and contexts that Dialogflow has collected in

each interaction.

Contexts7 are another important concept in Dialogflow. They are similar to contexts in

natural language conversations. That is, it is a relationship between the text and the situation

in which it occurs. To process a user’s expression in natural language, Dialogflow can use the

context to correctly match it with an intent. By doing so, it is possible to control the flow of a

conversation. In addition, intents can also have parameters8 that are values extracted from the

user’s expression.

Listing 1 shows an example of a plan in Jason that agents can use to react to a belief

addition (+request). It informs the agent that a new request from the user has arrived. In this

6https://cloud.google.com/dialogflow/es/docs/fulfillment-overview
7https://cloud.google.com/dialogflow/es/docs/contexts-overview?hl=en
8https://cloud.google.com/dialogflow/es/docs/intents-overview?hl=en

https://cloud.google.com/dialogflow/es/docs/fulfillment-overview
https://cloud.google.com/dialogflow/es/docs/contexts-overview?hl=en
https://cloud.google.com/dialogflow/es/docs/intents-overview?hl=en

49

1 context(Name,LifeSpanCount,[param(Key,Value),param(Key1,Value1)])

Listing 2: An example of context.

1 +!reply(ResponseId, IntentName, Params, Contexts)
2 : (IntentName == "Reply With Context")
3 <- .print("The context will be created next.");
4 contextBuilder(ResponseId, "test context", "1", Context);
5 .print("Context created: ", Context);
6 replyWithContext("Hello, I am your Jason agent, and I am
7 responding with context", Context).

Listing 3: An example of a plan to reply to a request with a context.

simple example, the agent creates a new goal to !reply(), which will result in a sequence of

instructions to be carried out.

In addition to the intention’s name, Dial4JaCa also allows the agent to have access to

contexts and parameters, which are captured by Dialogflow. This information is recorded in its

belief base and might be used during its reasoning cycle. Contexts is a list, as shown in the List-

ing 2, where for each element of this list: Name corresponds to the context name; LifeSpanCount

corresponds to the context lifespan; and [param(Key, Value), param(Key1, Value1)] matches

the context parameter list. Even if there is no context, receiving a list of parameters is possible.

That list has the same structure as the parameter list in the context, where Key corresponds to

the parameter’s key, and Value corresponds to the value recorded by Dialogflow.

Dial4JaCa also allows an agent to send new contexts to Dialogflow along with the re-

sponse to a request. An operation named contextBuilder is available for this purpose. This

operation receives as a parameter the response id (responseId), the name of the context to be

created (contextName), and the lifespan of the context (lifespanCount). It returns a context

formatted according to the Dial4JaCa specification. To reply with a context, the agent calls the

operation replyWithContext, which takes as a parameter a string with the text that the chatbot

must tell the user and the context created by the contextBuilder. We exemplify this process in

Listing 3.

Dial4JaCa also provides the reply operation in case an agent does not need to send out

a context and the replyWithEvent operation that allows an agent to send events to Dialogflow.

One should be particularly careful when dealing with timeouts in Dialogflow. They indi-

cate that the conversation flow should continue, and a reply from the MAS is no longer expected.

This behaviour can be triggered, for instance, when an agent calls upon external services to

reason about an appropriate response. Upon realising that an agent takes too long to respond,

Dial4JaCa automatically fires an event in Dialogflow, containing the same name as the current

remote intent (getting rid of the blank spaces). Doing so allows the agent more time to finish its

reasoning. This process is perceived by neither the user nor the agent. Dialogflow allows these

sorts of events to be fired up to three times in a row. In our tests, this mechanism has provided

sufficient time for an agent to deliver a response with no endless waiting time on the user side.

50

In our implementation, we have approached only the Dialogflow platform. However,

preliminary investigations have shown that with small changes in our code, we can also use other

natural language processing platforms such as Watson, or Luis. It was confirmed by a project

called Rasa4JaCa [38], which has extended our approach to be able to use JaCaMo agents with

the open-source natural language processing platform Rasa9.

In addition, some works have used Dial4JaCa to integrate chatbots and multi-agent

systems in different domains. In [40], the authors developed a Chatbot using a multi-agent

organisation to support collaborative learning. In [106] a multi-agent architecture used as a

basis for an ambient assisted living system to assist visually-impaired and elderly people was

presented. Furthermore, in [64], it was introduced VEsNA, a framework for managing virtual

environments via natural language agents.

Also, in [58], they propose a tool called Onto2Conv, which is responsible for reading

a customised domain-specific ontology and generating the files to feed the information for the

chatbot and the MAS. It feeds them with their acceptable skeleton and format to make these

chatbots robust and their development faster and less error-prone when using Dial4JaCa. Fur-

thermore, they have implemented donnaMAMi, a motivational agent in the mirror in the domain

of psychology and domestic violence against women, which also uses Dial4JaCa as a bridge be-

tween Dialogflow and the multi-agent system developed using JaCaMo. In addition, donnaMAMi

also uses Onto4JaCa for querying in ontologies.

4.3 Onto4JaCa

Onto4JaCa10 seeks to give intelligent agents, developed using the JaCaMo platform,

the ability to use and manage the information contained in ontologies during their reasoning

processes. It allows agents to access concepts, relationships and even semantic rules in OWL

ontologies and reason using this information. It also allows agents to use the Pellet reasoner, a

semantic reasoner, to make inferences about ontology information, understanding and communi-

cating the explanations that came from the reasoner.

We have extended the approach presented by [62] to process the traces of computa-

tional steps (including the application of inference rules) used by semantics reasoners during

queries to OWL ontologies. Then, using Onto4JaCa to translate those traces into an agent-

oriented programming representation, agents can understand and manipulate that information,

building explanations from external semantic reasoning. In addition, it is also possible for them

to translate all the semantic rules contained in the ontology into argumentation schemes, in the

format of defeasible rules, like those presented in Section 2.3.3, which are stored in their belief

base and processed by agents using the framework presented in [115, 112].

Figure 4.3 presents an overview of the Onto4JaCa architecture. We implemented our

approach using a CArtAgO artefact (named Onto4JaCa Artefact), which provides several inter-

nal operations to the agents. Among these internal operations, there are operations to extract

9https://rasa.com/docs/
10https://github.com/DeboraEngelmann/Onto4JaCa

https://github.com/DeboraEngelmann/Onto4JaCa

51

concepts, relationships, data properties, individuals and SWRL rules from ontologies, as well as

operations to add, delete or update this information in the ontology, and operations to seek in-

ferences and explanations in semantic reasoners. When the agent triggers any of these internal

operations in Onto4JaCa Artefact, we use the OWL API11 (a Java API for creating, manipulating

and serialising OWL Ontologies) as a basis for querying ontologies in conjunction with Openllet

(an open-source OWL DL reasoner for Java based on Pellet) to extract the information from the

ontology, as well as the explanations and inferences made by the semantic reasoner. OWL API

returns this information in java object format. These objects are then translated into beliefs or

defeasible rules by our Axiom Translator class and forwarded to Onto4JaCa Artefact, which

makes them available to the agents.

Multi-Agent System

Onto4JaCa
Artefact

Ontologies

Pellet

Argumentation
schemes

Beliefs

Ontology
agent

Axiom
Translator

OWL API

Figure 4.3 – Onto4JaCa Architecture

When agents query semantic reasoners, they obtain the answer for the queries in the

format of traces of computational steps (including concepts, classes and inference rules) used

by the semantic reasoner to infer that particular query. Through the Onto4JaCa Artefact, we

provide agents with an operation called getExplanation that receives, as a parameter, the string

corresponding to the objectProperty (e.g. "is-unsuitable-for") that relates the individuals,

and the predicate corresponding to the query (e.g. is_unsuitable_for("101b", "patient2")).

Then, the artefact executes the query to the semantic reasoner and provides the answer to agents

in the following format:

explanationTerms(rules(RulesList),assertions(AList),classInfo(CInfoList))

To build this internal representation based on the data returned for OWL API and Open-

llet, the class Axiom Translator has the method translateAxioms that takes a set of objects of

type OWLAxiom as a parameter, and, according to the type of that, converts each axiom to an

AOPL representation. An example of this process is shown in Table 4.1. Also, our approach trans-

lates the inference rules returned into an answer to the format of argumentation schemes. This

representation allows agents to build arguments from the reasoning patterns extracted from the

11https://github.com/owlcs/owlapi

https://github.com/owlcs/owlapi

52

Table 4.1 – Correspondence between Answers from Semantic Reasoners and an AOPL
Representation [61].

Answer from the Semantic Reasoner Representation in AOPL
101b is-in 101 is_in("101b","101")

DifferentIndividuals: Intensive-Care,
Minimal-Care, Semi-Intensive-Care

isDifferentFrom("Intensive-Care","Minimal-Care")
isDifferentFrom("Intensive-Care","Semi-Intensive-Care")
isDifferentFrom("Minimal-Care","Semi-Intensive-Care")

101a is-in 101 is_in("101a","101")
Patient2 is-care Minimal-Care is_care("Patient2","Minimal-Care")
101b Type Hospital_Bed hospital_Bed("101b")
Hospital_Bed(?B1r), Bedroom(?Br),
is-in(?B1r,?Br), bed-is-care(?B1r,?C1r) ->
bedroom-is-care (?Br,?C1r)

defeasible_rule(bedroom_is_care(Br,C1r),
[hospital_Bed(B1r),bedroom(Br),is_in(B1r,Br),
bed_is_care(B1r,C1r)])[as(<schemeName>)]

101a Type Hospital_Bed hospital_Bed("101a")
Patient(?P2r), Hospital_Bed(?B2r),
is-care(?P2r,?C2r), bed-is-care(?B2r,?C1r),
DifferentFrom(?C1r,?C2r) ->
is-unsuitable-for(?B2r,?P2r)

defeasible_rule(is_unsuitable_for(B2r,P2r)[patient(P2r),
hospital_Bed(B2r),is_care(P2r,C2r),bed_is_care(B2r,C1r),
differentFrom(C1r,C2r)])[as(<schemeName>)]

101 Type Bedroom bedroom("101")
Hospital_Bed(?B2r), Bedroom(?Br),
is-in(?B2r,?Br), bedroom-is-care(?Br,?C1r) ->
bed-is-care(?B2r,?C1r)

defeasible_rule(bed_is_care(B2r,C1r),
[hospital_Bed(B2r),bedroom(Br),is_in(B2r,Br),
bedroom_is_care(Br,C1r)])[as(<schemeName>)]

Patient1 occupy-one 101a occupy_one("Patient1","101a")
Patient1 is-care Semi-Intensive-Care is_care("Patient1","Semi-Intensive-Care")
Patient2 Type Patient patient("Patient2")
Patient(?P1r), is-care(?P1r,?C1r),
Hospital_Bed(?B1r), occupy-one(?P1r,?BIr) ->
bed-is-care(?BIr,?C1r)

defeasible_rule(bed_is_care(B1r,C1r),
[patient(P1r),is_care(P1r,C1r),hospital_Bed(B1r),
occupy_one(P1r,B1r)])[as(<schemeName>)]

Patient1 Type Patient patient("Patient1")

answers, being able to reason, understand and communicate arguments instantiated from these

argumentation schemes using the argumentation-based framework showed in Section 2.3.3.

We also created an internal action named unifyRule that receives as parameters the

rule list and the assertion list that we identified with the logical variables RulesList and AList,

respectively, in the explanationTerms internal representation introduced above. It allows agents

to unify terms in argumentation schemes based on the assertions received in the answer pro-

vided by our interface. That is, the unification function is obtained from RulesList, AList, and

CInfoList. This process provides agents with the set of arguments extracted from the answer,

which we call here an argumentation-based explanation. With an internal representation of those

reasoning patterns, agents can build and communicate explanations represented in a computa-

tional representation for arguments. This is useful when the system requires agents to explain

to other software agents. In order to provide explanations to human users, agents use natural

language templates for argumentation schemes [113, 61] to translate those arguments to natural

language arguments, then use those arguments to build and provide natural language explana-

tions to human users.

Argumentation Scheme for Unsuitable Beds (AS4UB): “Patient P is of care C1 (premise).

Bed B is of care C2 (premise). Care C1 is different of care C2 (premise). Bed B is unsuitable

for patient P (conclusion)”.

This argumentation scheme is extracted from the SWRL rule below, which is available

in the ontology used in a multi-agent application.

53

Patient(?P), Hospital_Bed(?B), is-care(?P,?C1), bed-is-care(?B,?C2),

DifferentFrom(?C1,?C2) -> is-unsuitable-for(?B,?P)

When the assistant agent queries the semantic reasoner, asking if a particular bed

101b is unsuitable for the patient patient2 – is_unsuitable_for(101b,patient2) – looking for

validating the operator allocation, the semantic reasoner will answer that query with the trace

of computational steps used to make the inference. From the answer provided by the seman-

tic reasoner, our approach automatically translates the inference rules contained in that an-

swer to argumentation schemes, according to the representation required by the argumentation-

based framework from [115], i.e., using defeasible inference rules represented by the predicate

defeasible_rule(Conclusion,Premises), in which Conclusion represents the conclusion of the

rule, and Premises the set of premises used in the body of that particular rule. That means, af-

ter querying the ontology, the domain-specific rules used to answer that particular query are

processed and translated to argumentation schemes and then stored into the agents’ belief base.

For example, the argumentation scheme presented in this section is internally repre-

sented by agents as follows:

defeasible_rule(is_unsuitable_for(B,P), [patient(P), hospital_Bed(B),

is_care(P,C1), bed_is_care(B,C2), differentFrom(C1,C2)])[as(as4ub)]

Thus, when agents need to communicate an explanation to another software agent,

for example, to explain why bed 101b is unsuitable for patient patient2, according to our run-

ning scenario, they are going to build an explanation using the computational representation for

arguments introduced before.

explanation(is_unsuitable_for(101b,patient2),

[defeasible_rule(bed_is_care(101a,semi-intensive-care),[...])[as(as4bc1)],

defeasible_rule(bedroom_is_care(101,semi-intensive-care),[...])[as(as4br)],

defeasible_rule(bed_is_care(101b,semi-intensive-care),[...])[as(as4bc2)],

defeasible_rule(is_unsuitable_for(101b,patient2), [patient(patient2),

hospital_Bed(101b), is_care(patient2,minimal-care),

bed_is_care(101b,semi-intensive-care),

differentFrom(minimal-care,semi-intensive-care)])[as(as4ub)]])}

To build the explanation presented above12, agents query their belief base for the pred-

icate they are interested in providing an explanation for, using argument(Q, Arg) with Q the

queried predicate, and Arg a free variable that will unify with the argument supporting Q. In

this query, the argumentation-based framework looks for argumentation schemes that infer that

particular queried information, using the information available to the agent to instantiate argu-

mentation schemes, building an argument that supports the queried information. In our scenario,

12We omitted the premises of argumentation schemes we did not present here. All argumen-
tation schemes are available at https://github.com/DeboraEngelmann/explaining-ontological-reasoning/
blob/main/base_rules.md

https://github.com/DeboraEngelmann/explaining-ontological-reasoning/blob/main/base_rules.md
https://github.com/DeboraEngelmann/explaining-ontological-reasoning/blob/main/base_rules.md

54

Arg unifies with the set of arguments (or chained/complex argument) presented above, support-

ing is_unsuitable_for(101b,patient2).

Thus, for example, using the Jason plan presented in Listing 4, agents are able to ex-

plain a query to another software agent Ag.

1 +!buildExplanation(Query,Ag)
2 :- argument(Query,Arg)
3 <- .send(Ag,explain,explanation(Query,Arg)).

Listing 4: Jason plan to explain a query

In this plan, an agent reacts to the triggering event +!buildExplanation(Query,Ag),

for example, when an agent creates the goal !buildExplanation(ag,p), i.e., the agent has the

goal of building an explanation of p for an agent ag. As a precondition to executing that plan,

the agent must have an argument supporting that query, i.e., argument(Query,Arg), so that the

agent can proceed with the execution of the plan, sending the explanation to the target agent Ag,

i.e., .send(Ag,explain,explanation(Query,Arg)).

Furthermore, an argument containing the answer for that particular query also is pro-

vided to the agent towards the interface developed. Consequently, agents become able to reason

by themselves using the reasoning patterns extracted from the ontology (the inference rules

translated to argumentation schemes), obtained from previous queries, as well as, they can in-

terpret, understand and communicate those answers as explanations.

When it is necessary to communicate with human users, agents can build natural lan-

guage explanations, translating the computational representation of arguments to natural lan-

guage arguments using natural language templates for argumentation schemes, as described in

[61].

4.4 RV4JaCa

Communications between agents play a key role in the functioning of a multi-agent sys-

tem since, in practice, agents rarely act alone; they usually inhabit an environment that contains

other agents. Therefore, an extra layer of security that allows us to verify key aspects of this mes-

sage exchange adds great value and great possibilities for improvement since certain aspects do

not need to be considered when developing each agent. Using this type of formal verification

at runtime allows us to standardise the interaction between agents through previously defined

protocols that all agents must follow and, if they do not, react in a way that the execution is not

negatively affected by the effects that were caused by this protocol deviation.

On the other hand, the verification done with RV is not limited to protocol validation.

More specific properties of each application domain can also be verified once the monitor has

access to the content of the exchanged messages. Even the execution of certain routines or

55

functions can be executed according to the direction in which the agents’ conversations go.

For example, recording the results obtained during the agents’ reasoning in a database without

agents having the responsibility to carry out the registrations themselves. Or even sending an

automatic email to a supervisor if any property identified by an agent and communicated to

another is outside certain parameters. Therefore, depending on the MAS’s domain, there is a

range of possibilities in which RV can be used.

RV4JaCa Artefact

Monitor

Belief
Base

Belief
Addition

1st Agent

2nd Agent

nth agent

Multi-Agent System

 .send(Sender,Receiver,Performative,Content)

Sniffer
RML Monitor

{
 "msgId": "",
 "isReply": "",
 "performative": "",
 "sender": "",
 "receiver": "",
 "content": ""
}

JSON

JaCaMo platform

RV4JaCa

...

Figure 4.4 – RV4JaCa Architecture

Based on that, we proposed RV4JaCa13[56], a framework to integrate multi-agent sys-

tems and runtime verification. RV4JaCa allows performing runtime verification in multi-agent

systems developed using the JaCaMo platform. In Figure 4.4, we present an overview of the ap-

proach. RV4JaCa is composed of the following: (i) a Sniffer class, developed in Java language,

responsible for observing all communication between agents in the MAS; (ii) a CArtAgO Artefact

named RV4JaCa Artefact responsible for analysing the messages perceived by the Sniffer,

transforming them into a JSON object and sending it by a REST request to the RML Monitor.

Note that RV4JaCa is not in any way limited to a specific kind of monitor; we used RML simply

because it was the most suitable candidate for specifying the protocols of our interest. Nonethe-

less, a different monitor could be as easily integrated instead of the RML one. In addition, when

the RV4JaCa Artefact receives the response of the request made to the RML Monitor saying that

there was a violation, it can add a belief in the Monitor agent belief base; (iii) the RML Monitor

responsible for analysing the events sent by RV4JaCa Artefact and verifying the satisfaction or

violation of a formal property of interest; and (iv) a Monitor agent, which can be added to the

system if it is necessary to interfere with agents’ behaviour at runtime. In this case, if there is

13https://github.com/DeboraEngelmann/RV4JaCa

https://github.com/DeboraEngelmann/RV4JaCa

56

a violation, the RV4JaCa Artefact adds a belief to the Monitor’s belief base. When the agent

perceives this addition, it can react by sending a message to the interested agents warning about

the violation. This may trigger some consequent recovery mechanism, which usually is fully

domain-dependent. On the other hand, the Monitor agent can also perform different activities

depending on the system’s needs.

In Section 5.4 we present a case study developed considering the bed allocation sce-

nario to clarify how RV4JaCa works.

FINAL REMARKS

This chapter presented the overall architecture of the MAIDS framework we have devel-

oped. It is a modular framework to support the development of explainable multi-agent systems

that can be used entirely, or it is also possible to use only the modules that fit the needs of each

system under development. After presenting the overall architecture, each module is described

in more detail, including some works that already use some of the modules we have developed.

We have some publications related to this part of the work ([54, 51, 50, 52, 113, 61, 56, 106]).

57

5. CASE STUDY

As a case study, we chose to implement a system using the MAIDS framework to assist

in decision support in allocating hospital beds. We created some specific tools for this domain, as

described below. We also conducted two evaluations with the professionals responsible for the

allocation of beds at Hospital São Lucas da PUCRS in Brazil.

5.1 Bed Allocation Ontology

We use the inspiring approach [77] to develop an ontology [49] containing 95 classes,

85 object properties, 78 individuals, and 32 SWRL Rules (Semantic Web Rule Language). After

the publication in [49], we improve some details in our ontology. Now it contains 95 classes,

89 object properties, 81 individuals, and 40 SWRL Rules. We created the original version in

Portuguese, aiming to use it in applications for Brazilian hospitals. We translated the terms here

for consistency with the study report. Next, we explain its components (about the improved

version) and present the rules we created based on the hospital bed management context. This

ontology is available in a repository at GitHub1. Both versions of our ontology can be found in

this repository: the published and improved versions.

Our ontology is composed of 15 main classes, with 80 related sub-classes, containing

95 classes in total. Note that all the concepts described here refer to the scenario created by the

researchers, and they can have different meanings in different contexts.

Attendance: The term attendance refers to the whole period the patient attended any

activity in a hospital, either ambulatorial or hospitalisation. Ambulatorial is the assistance that

occurs via prior scheduling or by emergency need. It has Elective (when it is scheduled) and

Emergency sub-classes (when it occurs without scheduling because of an urgent need of the

patient). Hospitalisation occurs when the patient needs to stay in hospital for more than one day,

occupying a Hospital_Bed.

Risk_Classification: A risk category assigned to patients when they start being cared

for is widely used in the emergency sector to prioritise patients in the worst health conditions.

We describe it based on Manchester protocol, defined by Mackway-Jones, Marsden, and Windle

[91]. Sub-classes range from immediate to non-urgent. A patient at risk of death is classified as

Immediate. Patients with immediate risk of limb loss or loss of organ function are classified as

Very_urgent. Patients with conditions that can worsen if not helped soon are Urgent. Patients

with low risk of health damage are Standard, and those without any immediate risk of health

damage are Non_urgent.

Temporal_concept: Concepts related to the timing of events. It includes the following

sub-classes: Now, Year, Date, Day, Today, Hour, Time interval, Month, and Week.

Document: It refers to the documents generated during or after a patient’s atten-

dance. It includes diagnosis, report, prescription, and medical records. (1) Diagnosis: made by

1https://github.com/smart-pucrs/hospital-bed-allocation-ontology

https://github.com/smart-pucrs/hospital-bed-allocation-ontology

58

a doctor, it determines the disease’s nature and causes, based on the patient history, symptoms,

examination, etc. (2) Report : made by a specialist doctor, it usually contains the analysis of ex-

ams, such as radiology, laboratory, etc. (3) Prescription: made by a doctor, it includes drugs and

treatments recommended to the patient. 4) Medical_records: it includes all the data related to

the patient that can be accessed and stored by the hospital.

Disease: Biological alteration of a person’s health state, manifested by a set of symp-

toms.

Speciality: Represents the medical specialisation or expertise that the doctor pos-

sesses or that the patient needs.

State: it represents patient conditions and has five sub-classes: Coma, In treatment,

Stable, Severe, and Vegetative.

Situation: it represents hospital bed conditions and has five sub-classes: Blocked,

Clean, Free, Occupied, and Dirty.

Local: places inside a hospital. Sub-classes are Corridor, Pharmacy, Hospital_Bed, Bed-

room, Reception, Room and Hospitalisation_Unit. The Hospitalisation_Unit also has sub-classes

named: Speciality_Unit, Nursery, Pediatrics, Intensive_Care_Unit, and Special_Care_Unit.

Medication: the drugs stored in the Pharmacy, which are meant to treat the patients.

Furniture: All the furniture that belongs to the hospital. For this study, we describe

just two sub-classes: Bed and Stretcher.

Person: People who belong to the hospital ecosystem. Sub-classes are Companion,

Man, Woman, Patient, and Employee. The employee has the following sub-classes: Adminis-

tration, Cleaner, Receptionist, Security_Guard, and Health_Professional. The last one compre-

hends Nurse, Nursing_Technician, and Doctor. Doctor also have sub-classes named: Generalist,

Resident, and Specialist. Specialist has the following sub-classes: Cardiologist, Dermatologist,

Neurologist, Oncologist, Pediatrician, Pneumologist, Radiologist, and Traumatologist.

Restriction: rules to restrict bed allocation. (1) Routing: Origin of the patient, for

example, if he came from the emergency or is an elective patient. (2) Age: person’s age group,

which can be adult, teenager, or child. (3) Gender: male or female. (4) Isolation: Refers to the

cases where the patient cannot be in a room with other patients. (5) Puerperal : Women who just

gave birth. (6) Length_Of_Stay: Predicted time of patient stay in the hospital, can be turn-fast

or long-stay. (7) Hospital_Care: Hospital care the patient needs, can be surgical or clinical. (8)

Type_Of_Care: The type of care the patient needs, can be minimal, semi-intensive or intensive.

Symptom: Signs to which the patient refers when talking about his illness (pain, fever,

etc.).

Treatment: Set of instructions of procedures that the doctor recommends for the pa-

tient undergo.

We also created 89 relationships between the classes, and we present them in Table

5.1. We have not included all possible relationships between classes, only those we consider

interesting for this domain, so we could see clearly how the classes relate to each other, to help

us test the rules presented in Table 5.2.

59

Table 5.1 – Bed allocation ontology object properties
Domain Object Property Range Inverse of
Companion accompanies Patient is-accompanied-by
Attendance happens-in Temporal_concept
Nurse allocates Hospital_Bed is-allocated-by
Health_Professional analyses Document is-analysed-by
Patient presents Symptom is-presented-by
Patient presents-one Disease
Employee attend Patient is-attended-by
Health_Professional evaluates Patient is-evaluated-by
Patient consumes Medication is-consumed-by
Patient have-appointment Doctor
Patient needs-assistance-like Attendance
Doctor discharges Patient is-discharged-from
Patient vacates-one Hospital_Bed is-vacated-by
Doctor diagnoses-one Patient is-diagnosed-by
Attendance is-associated-to Risk_Classification
State is-assigned-to Patient
Hospitalisation is-made-in-one Hospital_Bed
Patient is-medicated-by Nursing_Technician
Patient is-moved by Health_Professional
Patient is-observed-by Health_Professional
Patient is-classified-as Risk_Classification
Doctor is-responsible-by Patient
Hospital_Bed is-in Bedroom
Hospital_Bed is-suitable-for Patient
Hospital_Bed is-unsuitable-for Patient
Furniture is-in-a Local
Bedroom is-in-one Hospitalisation_Unit
Pharmacy make-dispensation-of Medication
Cleaner sanitises-one Local is-sanitised-by
Doctor indicates-one Treatment
Patient occupy-one Hospital_Bed is-occupied-for
Hospital_Bed bed-may-have Restriction
Patient may-have Restriction
Hospital_Bed own-one Situation
Employee fill-one Document is-filled-by
Doctor prescribes Medication is-prescribed-by
Patient has-one-attendance Attendance
Hospital_Bed has-a Bed
Symptom characterises-a Disease is-characterised-by

We instantiated 81 individuals, so we could use the reasoner to test our rules. Individ-

uals we created include Patient, Room, Hospital_Bed, Symptoms, and so on. To create them, we

used names such as Patient1, 100, 100A, Headache, and so forth.

Our ontology aims to help in decision making about the beds where patients can be

allocated according to the bed allocation constraints. Thus, we establish rules that propagate

60

Table 5.2 – Rules of the bed allocation ontology
Rules
1. {Patient(?X), Man(?X) → is − of − the − gender (?X , Male)}

2. {Hospital_Bed(?Y), Bedroom(?Z), is − in(?Y , ?Z), bed − is − isolation(?Y , ?I) → bedroom − is − isolation(?Z , ?I)}

3. {Patient(?X), has − one − attendance(?X , ?A) → is − routing(?X , ?A)}

4.
{Hospital_Bed(?Y), Bedroom(?Z), is − in(?Y , ?Z), bedroom − is − the − attendance(?Z , ?A)

→ bed − is − the − attendance(?Y , ?A)}

5. {Patient(?X), is − routing(?X , ?E), Hospital_Bed(?Y), occupy − one(?X , ?Y) → bed − is − routing(?Y , ?E)}

6. {Hospital_Bed(?Y), Bedroom(?Z), is − in(?Y , ?Z), bed − is − stay (?Y , ?P) → bedroom − is − stay (?Z , ?P)}

7. {Hospital_Bed(?Y), Bedroom(?Z), is − in(?Y , ?Z), bed − is − puerperal(?Y , ?Q) → bedroom − is − puerperal(?Z , ?Q)}

8. {Hospital_Bed(?Y), Bedroom(?Z), is − in(?Y , ?Z), bedroom − is − speciality (?Z , ?S) → bed − is − speciality (?Y , ?S)}

9. {Hospital_Bed(?Y), Bedroom(?Z), is − in(?Y , ?Z), bed − is − speciality (?Y , ?S) → bedroom − is − speciality (?Z , ?S)}

10. {Patient(?X), Woman(?X) → is − of − the − gender (?X , Female)}

11. {Patient(?X), is − care(?X , ?C), Hospital_Bed(?Y), occupy − one(?X , ?Y) → bed − is − care(?Y , ?C)}

12. {Patient(?X), is − puerperal(?X , ?Q), Hospital_Bed(?Y), occupy − one(?X , ?Y) → bed − is − puerperal(?Y , ?Q)}

13. {Patient(?X), is − the − attendance(?X , ?A), Hospital_Bed(?Y), occupy − one(?X , ?Y) → bed − is − the − attendance(?Y , ?A)}

14. {Patient(?X), is − stay (?X , ?P), Hospital_Bed(?Y), occupy − one(?X , ?Y) → bed − is − stay (?Y , ?P)}

15. {Hospital_Bed(?Y), Bedroom(?Z), is − in(?Y , ?Z), bed − is − routing(?Y , ?E) → bedroom − is − routing(?Z , ?E)}

16.
{Hospital_Bed(?Y), Bedroom(?Z), is − in(?Y , ?Z), bed − is − of − the − age − group(?Y , ?G)

→ bedroom − is − of − the − age − group(?Z , ?G)}

17. {Patient(?X), is − classified − as(?X , Urgent) → needs − assistance − like(?X , Hospitalisation)}

18.
{Hospital_Bed(?Y), Bedroom(?Z), is − in(?Y , ?Z), bedroom − is − of − the − age − group(?Z , ?G)

→ bed − is − of − the − age − group(?Y , ?G)}

19. {Hospital_Bed(?Y), Bedroom(?Z), is − in(?Y , ?Z), bedroom − is − of − the − gender (?Z , ?H) → bed − is − of − the − gender (?Y , ?H)}

20. {Patient(?X), is − isolation(?X , ?I), Hospital_Bed(?Y), occupy − one(?X , ?Y) → bed − is − isolation(?Y , ?I)}

21. {Patient(?X), is − speciality (?X , ?S), Hospital_Bed(?Y), occupy − one(?X , ?Y) → bed − is − speciality (?Y , ?S)}

22. {Hospital_Bed(?Y), Bedroom(?Z), is − in(?Y , ?Z), bedroom − is − routing(?Z , ?E) → bed − is − routing(?Y , ?E)}

23. {Patient(?X), is − of − the − gender (?X , ?H), Hospital_Bed(?Y), occupy − one(?X , ?Y) → bed − is − of − the − gender (?Y , ?H)}

24. {Patient(?X), is − of − the − age − group(?X , ?G), Hospital_Bed(?Y), occupy − one(?X , ?Y) → bed − is − of − the − age − group(?Y , ?G)}

25. {Hospital_Bed(?Y), Bedroom(?Z), is − in(?Y , ?Z), bed − is − the − attendance(?Y , ?A) → bedroom − is − the − attendance(?Z , ?A)}

26. {Hospital_Bed(?Y), Bedroom(?Z), is − in(?Y , ?Z), bedroom − is − care(?Z , ?C) → bed − is − care(?Y , ?C)}

27. {Hospital_Bed(?Y), Bedroom(?Z), is − in(?Y , ?Z), bedroom − is − isolation(?Z , ?I) → bed − is − isolation(?Y , ?I)}

28. {Hospital_Bed(?Y), Bedroom(?Z), is − in(?Y , ?Z), bedroom − is − puerperal(?Z , ?Q) → bed − is − puerperal(?Y , ?Q)}

29. {Hospital_Bed(?Y), Bedroom(?Z), is − in(?Y , ?Z), bed − is − of − the − gender (?Y , ?H) → bedroom − is − of − the − gender (?Z , ?H)}

30. {Hospital_Bed(?Y), Bedroom(?Z), is − in(?Y , ?Z), bedroom − is − stay (?Z , ?P) → bed − is − stay (?Y , ?P)}

31. {Hospital_Bed(?Y), Bedroom(?Z), is − in(?Y , ?Z), bed − is − care(?Y , ?C) → bedroom − is − care(?Z , ?C)}

32. {Patient(?X), is − years − old(?X , ?Y), lessThan(?Y , 12) → is − of − the − age − group(?X , Child)}

33.
{Patient(?X), Hospital_Bed(?Y), is − of − the − gender (?X , ?Gp), bed − is − of − the − gender (?Y , ?Gb),

DifferentFrom(?Gp, ?Gb) → is − unsuitable − for (?Y , ?X)}

34. {Patient(?X), is − discharged − from(?X , ?Y), occupy − one(?X , ?Z) → vacates − one(?X , ?Z), is − vacated − by (?Z , ?X)}

35.
{Patient(?X), Hospital_Bed(?Y), is − speciality (?X , ?Sp), bed − is − speciality (?Y , ?Sb),

DifferentFrom(?Sp, ?Sb) → is − unsuitable − for (?Y , ?X)}

36. {Patient(?X), is − years − old(?X , ?A), greaterThan(?A, 17) → is − of − the − age − group(?X , Adult)}

37.
{Patient(?X), Hospital_Bed(?Y), is − of − the − age − group(?X , ?Ap), bed − is − of − the − age − group(?Y , ?Ab),

DifferentFrom(?Ap, ?Ab) → is − unsuitable − for (?Y , ?X)}

38.
{Patient(?X), Hospital_Bed(?Y), is − of − the − gender (?X , ?G), bed − is − of − the − gender (?Y , ?G),

is − of − the − age − group(?X , ?A), bed − is − of − the − age − group(?Y , ?A), is − speciality (?X , ?S), bed − is − speciality (?Y , ?S),

is − care(?X , ?C), bed − is − care(?Y , ?C) → is − suitable − for (?Y , ?X)}

39. {Patient(?X), is − years − old(?X , ?A), greaterThan(?A, 11), lessThan(?A, 18) → is − of − the − age − group(?X , Teenager)}

40.
{Patient(?X), Hospital_Bed(?Y), is − care(?X , ?Cp), bed − is − care(?Y , ?Cl), DifferentFrom(?Cp, ?Cl)

→ is − unsuitable − for (?Y , ?X)}

information about registered individuals’ restrictions, and we can use these rules for ontological

reasoning with Pellet reasoner. We are aware that many rules can be created to help in decision

61

making related to bed allocation in hospitals. We present the ones we created for our ontology in

Table 5.2.

5.2 Bed Allocation Optimisation

In our previous work [53], one of the improvements suggested by the professionals re-

sponsible for bed allocation who evaluated our application was that our agent could help optimise

bed allocation, suggesting beds for patients to be allocated. In order to meet this request, we

created an optimiser for bed allocation2. For this purpose, we chose to use the simplex method

since it is a popular method of solving linear programming systems.

The bed allocation optimisation program takes the database’s restrictions and converts

them into three types of linear restrictions, equality, relative equality, and negation.

(2*Q112[p])+(abs(gender[p]-2)/2) <= 2;

The equality constraint requires that every patient allocated to the bedroom has a spe-

cific characteristic. In this case, we want the patient to have gender 2. Q112[p] is a Boolean

value equal to 1 if patient p is in the bedroom; gender[p] is an integer value referring to the

patient’s gender. The left side of the sum results in 2 if the patient has been allocated to that

bedroom; otherwise, it results in 0. The right side results in 0 if the patient’s gender is 2; oth-

erwise, it results in some number greater than zero. The result of the sum must be less than or

equal to two, being the only case in which this does not happen when the patient is allocated to

the bedroom, but the gender is not two.

(Q112[p1]+Q112[p2])+(abs(gender[p1]-gender[p2])/2) <= 2;

Relative equality requires that if two patients are allocated to the same bedroom, they

must have the same characteristic; in this case, the same gender. The sum’s left side has a

maximum value of 2 when the two patients are in room 112. The right side results in a value

greater than zero when the two patients’ genders differ. The restriction is not obeyed only when

the two patients are in the same bedroom, but the genders are different.

(Q112[p]) - abs(gender[p]-2) <= 0;

Negation requires that every patient allocated to the bedroom does not have a specific

characteristic. If the patient is in the bedroom, but the gender is 2, this will result in 1-0 = 1,

which does not comply with the restriction. If the patient is not allocated to the room or the

gender is not 2, the result is less than or equal to zero, following the bed’s rules.

2This application was developed jointly with the student of scientific initiation Lucca Dornelles Cezar
in the project "Seleção e integração de técnicas de Teoria da Argumentação para o contexto hospitalar",
Edital FAPERGS 03/2020 – PROBIC/PROBITI.

62

For this development3, we are using GLPSol4 (Gnu Linear Programming Solver). It is

a free, open-source program for solving linear programming problems. One of the implemented

algorithms is the simplex method. GLPSol allows the user to set certain limits, such as a time

limit. When the limit is reached, the process returns the best result found. This allows the

program to generate some possibly useful allocation suggestions without arriving at the optimal

result, which can be an extremely time-consuming process in some instances.

We have integrated the optimiser with our multi-agent system. Figure 5.1 presents a

result of an allocation made using the optimiser5.

Figure 5.1 – Optimiser output

3https://github.com/smart-pucrs/explainable_agents/tree/glpsol
4http://winglpk.sourceforge.net/
5All patient data in our tests are fictitious

https://github.com/smart-pucrs/explainable_agents/tree/glpsol

63

5.3 Plan Validator

When real-world problems can be modelled in a planning language, it is possible to use

a plan validator to tell the human operator whether the plan is feasible or not [80]. Behnke et

al. [20] define plan verification as “the task of determining whether a plan is a solution to a given

planning problem”. A plan validator can be used in a wide range of applications. The application

that interests us is the validation of bed allocation plans prepared by the user.

In our previous work [53], we use a plan validation tool for PDDL (Planning Domain

Definition Language) called VAL [80] to check if any bed allocation rule has been broken in the

user allocation. However, in this work, to achieve better performance, we developed a new plan

validator using Java6. Like VAL, our plan validator also receives three PDDL files as input: a file

containing the domain, a file containing the problem and a file containing the plan to be validated.

The domain file establishes some basic rules, such as the types of objects and possible

actions. The actions are generally divided into three parts, the parameters, the preconditions,

and the effects. In this case, the action of allocating a patient to a bed requires that the patient

is not allocated to another bed and that the bed is empty. The effects generated by applying this

action are that the patient is now allocated, the room is occupied, and the patient is allocated

in that room. Problem files use domain rules to complete a problem, making all objects (e.g.

patients and beds) and objectives explicit (e.g., all patients must be allocated).

For validators, a plan file is also necessary, which is simply a set of actions to be applied

sequentially, which lead to the objective of the problem. Given these files, the validation process

is straightforward, check if each action is applicable and then apply its effects. An action is only

applicable if the types of parameters are correct (e.g., patient1 bed3) and if the preconditions

have been met. If any action is not applicable, the plan is considered flawed. If all actions

are applicable, but the problem’s objective is not satisfied, then the plan is also considered to

be flawed. The plan only satisfies the problem if all actions are applicable and the objective is

satisfied after applying the last action. A characteristic of the hospital domain is that the actions

are not ordered. It is possible to generate several changes in the order of execution of the actions

since they are actions independent of each other, which, in general, would not be possible in other

domains.

In our plan validator, the user can print the plan and the validation result in the terminal

through the planTest function as shown in Figure 5.2. The user still has the possibility, through

the valOut("filename") function, to obtain a LaTeX file that generates a PDF with the validation

report according to Appendix A. These results presented in Figure 5.2 and Appendix A are based

on domain, problem and plan files adapted from our previous work [53].

6This application was developed jointly with the student of scientific initiation Lucca Dornelles Cezar
in the project “Seleção e integração de técnicas de Teoria da Argumentação para o contexto hospitalar”,
Edital FAPERGS 03/2020 – PROBIC/PROBITI.

64

Figure 5.2 – Validation report

As the program was designed thinking about a specific type of problem, we have consid-

ered certain restrictions to facilitate the implementation of this version. In this version, we have

65

some limitations that do not negatively affect the results of the tasks for which we are using the

validator but that need to be resolved to make our validator available to the research community

to use it. Although the PDDL language is modular, specific options are practically universally ac-

cepted. However, not all have been implemented in our validator. In total, the program supports

three types of requirements:

• “STRIPS”, which is necessary to use the program;

• “typing”, which allows the use of types and sub-types, but sub-types have not been imple-

mented; and

• “equality”, which allows the use of equality comparisons.

Another actual limitation is that the planner was made to be used in automatically gen-

erated problems. The plan validator considers that the PDDL files are semantically and syntac-

tically correct. Because of that, we have not implemented any pre-processing to look for errors.

The current version of our plan validator is available on GitHub7.

5.4 Runtime Verification in Bed Allocation

We developed a case study considering the bed allocation scenario to clarify how the

RV4JaCa works. This case study includes the following agents:

assistant: the internal representation in MAS for a chatbot that assists hospital staff in carrying

out bed allocation in a hospital;

operator: the internal representation in MAS for the hospital staff member who operates the

system for allocating beds;

database: an agent responsible for querying and updating the bed allocation system database.

validator: an agent responsible for validating bed allocation plans using a PDDL plan validator.

optimiser: an agent responsible for making suggestions for optimised allocations using the GLP-

Sol solver of GLPK.

monitor: an agent responsible for warning the agents involved in the exchange of messages

when there has been a violation in a property.

In this case study, RV4JaCa is responsible for collecting information about all messages

exchanged between agents and sending them through a REST request to the RML monitor. After

processing the received message, the monitor returns a result that identifies whether the mes-

sage sent from one agent to the other violates any of the properties being checked by it. If a

property is violated, RV4JaCa adds this information to the Monitor agent’s belief base, which in

7https://github.com/smart-pucrs/PDDL-plan-validator

66

turn warns the agents involved in the exchange of messages that there has been a violation. This

makes it possible for our agents to take action to recover from the failure that the breach caused.

The ability to monitor the messages exchanged between the agents in this case study

is used for two different purposes. The first one is, according to the performative and content of

each move, to verify whether the agents are following the predefined communication protocol.

This aspect may be crucial for safety-critical and privacy-preserving aspects. For instance, in

a healthcare domain, such as the bed allocation one, the agents might be expected to follow

specific medical guidelines for communicating personal information (even amongst themselves).

Moreover, when in the presence of multiple agents, each with its own goals, it is common to

specify the ideal expected outcome at a more abstract level, where it is more natural to reason

upon.

The second one is to check if the human changed the topic of the conversation without

the proper conclusion of the previous topic. When we add humans to the agent-to-agent com-

munication loop, the developer has limited control over the human interactions in the dialogue.

For example, in some cases, when the MAS is performing some specific task, it is important to

be able to finish it before starting a new one. But when completing this task depends on some

human interaction, we have no guarantee that the human will complete the necessary exchange.

Naturally, it would be possible to do this check within each agent. However, when we have agents

specialised in specific tasks, it is preferable to assume the messages handled by the agents are

all related to the current topic; so to focus on the actual agents’ implementation.

In the following, we report two example properties, written in RML, that have been

checked for the bed allocation case study using RV4JaCa.

5.4.1 First RML Property for the Bed Allocation Domain

The first property, which is presented in Listing 5.1, concerns checking the user does

not change the topic before completing the one currently processed by the agents. In particular,

the reported property cares about the 'getValidationResult' topic. Such topic relates to the user

asking the assistant agent to validate a suggested bed allocation (the corresponding event type

is expressed in lines 1-5). When the assistant receives this message, the protocol goes on, causing

a sequence of messages exchanged amongst the assistant, the optimiser and the validator agents.

Note that this part is not reported because it is not of interest for checking the property. After

this step, the assistant agent sends back an answer to the user (the event type is in lines 6-11).

Suppose this answer is not empty (i.e., the event contains arg1, and arg2 fields). In that case,

the user is expected to conclude the communication with a certain content (listed in lines 12-

17). For instance, the user could reply with an additional message containing 'allocValPatients',

meaning that the user wants to allocate all patients according to the plan, even if there are

failures because the reported failures correspond to rules he is aware of breaking. Naturally,

the user might decide not to complete any of the plan allocations that have been validated, as

some have flaws. In that scenario, the message would have content 'dontAllocValPatients'. Another

possibility is the message has the content 'allocValidValPatients', meaning that the user wants to

67

allocate only those patients where the allocation does not break any rules. And the last one is

when the user asks for an optimised bed allocation suggestion. In this case, the message would

be content 'getOptimisedAllocation'.

Once the events corresponding to previously mentioned messages have been specified

(lines 1-26), the actual property can be expressed following the RML syntax (lines 27-30). In

more detail, in line 27, we may find the definition of the main term denoting the property to

check (which in RML is always called Main). In this scenario, the principal term corresponds to a

sequence of subterms, named Question. Such term is defined in line 28 and starts with a question

(as defined in lines 1-5). This means that to comply with the protocol, the first event has to be

a message containing a 'question' of the 'operator' for the 'assistant' (in this case regarding the

validation of a bed allocation). After that, the property goes on with the Answer term (line 29).

Inside it, we find a disjunction between two possible alternatives in the protocol. On the left, we

may observe a answer_with_constraint event, which means, according to lines 6-11, that the 'assistant'

replied to the 'operator' with a suggested result that the latter has to decide upon. On the right, we

may observe an event corresponding to any other answer, which in this specific case denotes the

case where the result is empty, meaning that no result is available to be suggested to 'operator'. In

the latter case (the right branch), the property ends this cycle, since the communication between

the two agents is concluded, and new messages concerning new topics can be exchanged in the

future. Instead, in the former case (the left branch), the current cycle is not ended, because

the 'assistant' is still waiting for an answer from the 'operator' regarding the suggested result.

This last aspect is handled in the term in line 30, where not any question is admissible from the

'operator', but only one amongst the ones listed in lines 12-17. Upon the reception of the event

matching one such listed event type, the property cycle ends, and as it happened for the right

branch, the protocol can move on.

Now, before presenting another property of interest that we have analysed through

RV4JaCa, it is important to detail how a property can be violated. As we mentioned before,

we presented the events that are accepted in certain points of the property and why. An RML

property is violated whenever, given the current term denoting the current state of the property,

and a new event, the property does not accept the such event. For instance, in the property

presented in Listing 5.1, an event which is different from an answer, after having observed a

question, is not acceptable. This can be seen in line 29, where after consuming an event denoting

a question, the only possible following events can be an answer requiring additional info (left

branch), or a general answer (right branch). Thus, if the observed event is neither of the two,

the term is stuck and cannot move on. In RML, this translates into a violation of the property,

which is then reported back to the monitor agent, that in turn, will trigger all mechanisms for

the agents involved to react properly.

5.4.2 Second RML Property for the Bed Allocation Domain

The second RML property we tested in the bed allocation domain is reported in List-

ing 5.2. Differently from the property reported in Listing 5.1, here, we do not check the consis-

68

1 question matches {
2 performative:'question',
3 sender:'operator', receiver:'assistant',
4 content:{name:'getValidationResult'}
5 };
6 answer_with_constraint matches
7 {
8 performative:'assert',
9 sender:'assistant', receiver:'operator',

10 content:{name:'answer', name:'result', arg1:_, arg2:_}
11 };
12 constrained_question matches
13 {performative:'question', sender:'operator', receiver:'assistant', content:{name:'allocValPatients'}} |
14 {performative:'question', sender:'operator', receiver:'assistant',

content:{name:'getOptimisedAllocation'}} |
15 {performative:'question', sender:'operator', receiver:'assistant', content:{name:'dontAllocValPatients'}} |
16 {performative:'question', sender:'operator', receiver:'assistant', content:{name:'allocValidValPatients'}};
17 a_question matches
18 {
19 performative:'question',
20 sender:'operator', receiver:'assistant'
21 };
22 an_answer matches
23 {
24 performative:'assert',
25 sender:'assistant', receiver:'operator'
26 };
27 Main = Question*;
28 Question = (question Answer);
29 Answer = (answer_with_constraint ConstrainedQuestion) \/ (an_answer);
30 ConstrainedQuestion = constrained_question Answer;

Listing 5.1 – The RML specification for checking that no change of topic is observed after
the user has requested a validation result.

tency amongst topics. Instead, we care about checking that an agent always replies to a question,

before posing a new one. As before, the first part of Listing 5.2 concerns the definition of which

events are of interest for the property (lines 1-10). In this specific case, we have questions (lines

1-5), and answers (lines 6-10). Note that, differently from the previous RML property, here we

exploit parameters inside the specification. Indeed, the event types reported in lines 1-10 are all

parametric w.r.t. the agents involved in the communication. This means that such event types do

not focus on specific messages exchanged between predefined agents, as it was before, but are

free (through RML parameters, we have late binding on the agents involved in the interaction).

This makes the definition of the RML property in line 11 highly parametric, without updating the

property for each new agent added to the system. The property is defined in line 11, through the

standard Main term in RML. Since the property is parametric, it starts with the let operator, which

defines the variables used in the term. In this case, the variables used are ag1, and ag2 (naturally,

any other name would have sufficed). After that, the property goes on, expecting a question,

followed by a corresponding answer. Here, note that in the first event (i.e., the question), the

variables are bound to the agents involved in the communication, while in the second event (i.e.,

the answer), such variables are ground to the previously initialised values. In this way, a question

is free to be sent by any possible agent ag1, to any possible agent ag2 in the system (where ag1 and

ag2 are bound to the observed agents involved in the communication); instead, an answer is con-

strained to be sent by agent ag2 to agent ag1 (with both variables already bound to the respective

values through the previously observed question).

69

1 question(ag1, ag2) matches
2 {
3 performative:'question',
4 sender:ag1, receiver:ag2
5 };
6 answer(ag1, ag2) matches
7 {
8 performative:'assert',
9 sender:ag1, receiver:ag2

10 };
11 Main = {let ag1, ag2; question(ag1, ag2) answer(ag2, ag1)}*;

Listing 5.2 – The RML specification for checking that an agent always replies before
starting messaging about something else.

As before, also with this property, we can ponder on which events can cause a violation.

In particular, the property expressed in Listing 5.2 is violated when after a question between

two agents (ag1→ag2), the following event is not the corresponding answer (ag2→ag1), but another

message (for instance another question).

5.5 Evaluation

Hospital São Lucas da PUCRS in Brazil has kindly agreed to support us in evaluating

our system. We divided the evaluation of our system into two parts. The first one focused on

system functionality. The aim was to verify if the functionalities that the decision support system

developed using the MAIDS framework were adequate to the needs of the professionals responsi-

ble for allocating beds in the hospital. The second one was intended to verify the expressiveness

of our framework when using real data in a real-world domain. In both evaluations, this case

study included the following agents:

assistant (a): the internal representation in MAS for a chatbot that assists hospital staff in

carrying out bed allocation in a hospital;

ontology (l): an agent with access to ontologies responsible for semantic reasoning using ar-

gumentation schemes as defeasible rules generated automatically from the semantic rules

contained in the ontology.

operator (o): the internal representation in MAS for the hospital staff member who operates

the system for allocating beds;

nurse (n): the internal representation in MAS for a nurse who in that hospital serves as domain

expert for bed allocation and whom the operator needs to consult in case of doubt;

database (d): an agent with access to the hospital’s general information system for checking

details of past and current patients, bed allocations, etc.

validator (v): an agent responsible for validating bed allocation plans using the PDDL plan val-

idator presented in Section 5.3.

70

optimiser (p): an agent responsible for making suggestions for optimised allocations using the

optimiser presented in Section 5.2.

Furthermore, in both evaluations, were used the modules Dial4JaCa (4.2) for communi-

cation between the multi-agent system and Dialogflow; Onto4JaCa (4.3) to access ontology infor-

mation and rules; and RV4JaCa (4.4) to observe all conversations between agents and generate

logs of these conversations so that we can later test using the RV4JaCa module in its entirety.

Below, both evaluations performed with hospital staff are described in more detail.

5.5.1 Evaluation of System Functionalities for Hospital Bed Allocation

In this evaluation, we seek to assess whether changes will be necessary to adapt the

dialogue system instance created from the MAIDS framework to be used with real data from that

hospital and whether the functionalities already developed were in accordance with their needs.

We fed the web interface with fictitious data about beds and patients. Based on the data in the

system, we asked that professionals use the simulator to check out the fictitious hospital situa-

tion and ask the chatbot to validate the bed allocation they created, give suggestions, evaluate

the availability of a bed related to a specific patient, and explain the statements put forward.

Afterwards, we asked the professionals to evaluate the chatbot’s answers. Also, we performed

an online questionnaire to collect the opinion of these professionals about the use of the system.

All professionals signed a consent form for participation.

Evaluation Procedure

We created fictitious data based on our previous research that contained patients with

their characteristics, beds with their status, bed requests, and exceptions. During testing, we

used 40 beds, 35 inpatients, and 6 bed requests. Of the 40 beds, there were vacant and occupied

statuses. We create an ontology with the following settings: Classes (95), Object Properties (51),

Data Properties (3), Individuals (8), Datatypes (2), and SWRL Rules (5).

Two hospital staff responded to our questionnaire. The first one has been a bed manage-

ment administrator for nine years. Moreover, the second one has been the medical coordinator in

this hospital for one year and is one of the doctors who assisted in the construction of a manual

for the implantation and implementation of the internal regulation committee (including bed-

allocation rules) for general and specialised hospitals [39] used by many hospitals in the country.

Table 5.3 presents the specialists’ demography.

Table 5.3 – Specialists demography
Id Gender Job occupation How long in this job?
S1 M Bed management administrator 9 year
S2 M Medical coordinator 1 year

The evaluation was performed online and asynchronously with the two specialists. We

sent them a video showing the system’s functionalities and explaining the intention of this eval-

71

uation. They could access the system online and perform the tests by themselves. After the

test, the experts answered an online questionnaire. We created a questionnaire with eight closed

questions following the 5-point Likert scale to evaluate the functionalities (Table 5.4) and an open

question to suggestions. Also, we generate a system log with all requests made as presented in

Appendix B.

Table 5.4 – Questions to evaluate the functionalities
Id Question

Q1
Are the bed allocation rules considered in the development of the software consistent with those
practised in the hospital?

Q2 Are the answers given by the chatbot easily understandable?
Q3 Are the chatbot’s allocation suggestions adequate according to the patients’ needs?

Q4
Do the suggestions for optimised allocations contemplate the allocation rules, and are they
considered adequate to be used?

Q5
Is the chatbot able to validate a bed allocation and still explain which allocation rules are being
broken when the allocation is not valid?

Q6
When asked if a bed is suitable for a patient, is the chatbot able to respond and still explain in
an easily understandable way how it reached that?

Q7
Is the option to request an optimised allocation by moving a maximum number of patients from
the beds where they are currently allocated useful daily?

Q8
Is the option of registering exceptions so that the system considers them when making
suggestions useful daily?

Results

As we can see in Figure 5.3, the questionnaire results indicated that some rules would

need to be added or changed. The evaluators asked us to add rules related to patients with

infection, information about health insurance plans or health plans, and information sent by the

bed requesting unit. Due to inconsistencies between the rules used by the agents and those used

in the hospital, the interaction with the chatbot was also compromised since the explanations

it gave sometimes did not match the reasons used in real life. Because of that, one evaluator

strongly disagrees that the answers given by the chatbot are easily understandable. On the

other hand, both professionals agree that the chatbot is able to validate the bed allocation and

explain which allocation rules are being broken when that is the case. In addition, one of the

professionals agrees that when asked if a bed is suitable for a patient, the chatbot can answer

and also explain how it reached that conclusion in an easily understandable way, while the other

one disagrees.

As a consequence of this evaluation, the local (university) hospital managers have asked

us to help deploy our multi-agent system to be used in their daily bed management activities as

soon as we can interface it with the information systems currently used in the hospital.

5.5.2 Evaluation of Expressiveness of the Framework

Some desiderata for task-oriented dialogue systems have been recently formulated [35].

We summarise that desiderata below and give in parenthesis the lines of an example dialogue

72

Figure 5.3 – Evaluation result

using our framework where each of the features of the desiderata is demonstrated. The example

also illustrates the ontological subdialogues supported by our framework.

1. The system should allow the explicit representation of the user’s desires that are implicit

in requests such as in (1).

2. The system should be able to represent the meaning of users’ utterances in logical forms,

including constraints having two superlative expressions, one embedded within the other

as exemplified in (8 and 27).

3. In the case of multiparty dialogues, it should keep track of the mental attitudes of all the

involved participants as in (9 and 19).

4. It is important to reason about plans and intentions, as it allows the system to be helpful by

reasoning about what the user is trying to do, as in (18–25).

5. It should reason about the meaning of mental attitudes as in (1 and 22).

6. It should also represent other agents’ beliefs without having precise information about

what those beliefs are (9).

The idea behind such desiderata is to have a system that is fully explainable because

everything it says has an explicitly represented plan being referred to by the system.

We now reproduce an example dialogue involving both humans and agents, including

a version of the dialogue system that supports natural language interaction through the use of

73

Dialogflow and has been developed and evaluated with the support of medical staff from Hospital

São Lucas da PUCRS in Brazil.

These excerpts exemplify the type of dialogues that can take place in systems developed

with the approach put forward in this thesis. They demonstrate the ontological discussions (in

lines 17–17p) and the desired features discussed above.

The dialogue starts with the operator trying to allocate a bed to a particular patient and

proceeds as follows. We show each (numbered) dialogue game move, but before it we provide

an English equivalent for readability. We enclose in curly brackets the changing beliefs of some

of the agents which underlie the dialogue move. Note that our approach only allows for atomic

formulæ in argument conclusions, but it allows for constraints on a particular conclusion to be

specified using Jason annotations, so if a dialogue move contains a formula p(X)[q(X)], it means

that in Jason we will find an instantiation for X such that p(X) & q(X) holds.

operator to assistant: check if any female surgical bed is free;

1. question(o,a,free(B)[female(B), surgical(B)])

{assistant: des(o,allocate(P,B)[female(B),surgical(B)]), bel(d,free(B))}

(desiderata (1 and 5))

assistant to database: check if any female surgical bed is free;

2. question(a,d,free(B)[female(B),surgical(B)])

database to assistant: bed 203b is free and satisfies those constraints;

3. assert(d,a,free(203b)[female(203b),surgical(203b)])

assistant to operator: bed 203b has the characteristics you requested;

4. assert(a,o,answer(free(203b)[female(203b),surgical(203b)])

operator to nurse: I’m allocating Patient8 to 203b;

5. assert(o,n,allocate(patient8,203b))

{assistant: des(o,allocate(patient8,B)[female(B),surgical(B)])}

nurse to operator: we cannot allocate patient8 to 203b;

6. assert(n,o,∼allocate(patient8,203b))

operator to nurse: why?

7. challenge(o,n,∼allocate(patient8,203b))

nurse to all: this bed is in a room that has many beds, for Patient8 we need the smallest room

with the fewest occupied beds;

8. justify(n,*,[defeasible_rule(∼allocate(patient8,203b),[large(203),

in_room(203b,203)])[as(nurse_statement)],

defeasible_rule(allocate(patient8,B),[in_room(B,R),smallest(R)

[fewest_occupants(R)]])[as(nurse_restriction)]])(desiderata (2))

{assistant: des(n,allocate(patient8,B)[female(B),surgical(B),in_room(B,R),

smallest(R)[fewest_occupants(R)]]),

defeasible_rule(allocate(patient8,B),[in_room(B,R),smallest(R)

[fewest_occupants(R)]])[as(nurse_restriction)]

operator to assistant: how about allocating Patient8 to the bed that was freed yesterday by

Patient6;

74

9. assert(o,a,allocate(patient8,B)[allocated(patient6,B,TI,TF),

within_time(yesterday,TI,TF)])

{assistant: des(n,allocate(patient8,B)[female(B),surgical(B),

in_room(B,R),smallest(R)[fewest_occupants(R)]]),

defeasible_rule(allocate(patient8,B),[in_room(B,R),

smallest(R)[fewest_occupants(R)]])[as(nurse_restriction)],

des(o,allocate(patient8,B)[allocated(patient6,B,TI,TF),

within_time(yesterday,TI,TF)]), bel(d,allocated(P,B,TI,TF))} (desiderata (3 and 6))

assistant to database: which bed did Patient6 free yesterday?

10. question(a,d,allocated(patient6,B,TI,TF)

[within_time(yesterday,TI,TF)])

database to assistant: Patient6 was allocated to bed 202b;

11. assert(d,a,allocated(patient6,202b,t1,t2))

assistant to ontology: Is bed 202b suitable to Patient8?

12. question(a,l,question(suitable(202b,patient8)))

ontology to assistant: No, it is not.

13. assert(l,a,∼suitable(202b,patient8))

assistant to operator: the bed freed by patient Patient6 is 202b; it is not suitable for patient

Patient8;

14. assert(a,o,answer(allocated(patient6,202b,t1,t2)

15. assert(a,o,answer(∼suitable(202b,patient8))

operator to assistant: why not?

16. challenge(o,a,∼suitable(202b,patient8))

entering an ontological subdialogue using OAsdlg2

17. ontoargsubdlg(a,*,∼suitable(202b,patient8))

assistant to ontology: Explain why bed 202b is not suitable to Patient8.

17a. question(a,l,explain(∼suitable(202b,patient8)))

ontology to assistant: Patient Patient8 is of the age group Adult, and bed 202b is of the age

group Adolescent, which is different from Adult. So bed 202b is unsuitable for patient Patient8.

17b. assert(l,a,defeasible_rule(

∼suitable(202b,patient8),[patient(patient8),

hospital_bed(202b),is_of_the_age_group(patient8,adult),

bed_is_of_the_age_group(202b,adolescent),

differentFrom(adult,adolescent)])[as(nSbyAG)])

assistant to all: Patient Patient8 is of the age group Adult, and bed 202b is of the age group

Adolescent, which is different from Adult. So bed 202b is unsuitable for patient Patient8.

17c. assert(a,*,answer(defeasible_rule(

∼suitable(202b,patient8),[patient(patient8),

hospital_bed(202b),is_of_the_age_group(patient8,

adult),bed_is_of_the_age_group(202b,adolescent),

differentFrom(adult,adolescent)])[as(nSbyAG)])

operator to all: Why do you think bed 202b is of the age group Adolescent?

75

17d. challenge(o,*,

bed_is_of_the_age_group(202b,adolescent))

assistant to ontology: Explain why bed 202b is of the age group Adolescent.

17e. question(a,l,explain(bed_is_of_the_age_group(

202b,adolescent)))

ontology to assistant: Patient Patient5 is of the age group Adolescent and is in the same room

as the bed 202b

17f. assert(l,a,defeasible_rule(

bed_is_of_the_age_group(202b,adolescent),

[patient(patient5),is_of_the_age_group(patient5,

adolescent),hospital_bed(202a),

occupy_one(patient5,202a),is_in(202a,202),

hospital_bed(202b),is_in(202b,202)])[as(aGbyPinRoom)])

assistant to all: Patient Patient5 is of the age group Adolescent and is in the same room as the

bed 202b

17g. justify(a,*,answer(defeasible_rule(

bed_is_of_the_age_group(202b,adolescent),

[patient(patient5),is_of_the_age_group(patient5,

adolescent),hospital_bed(202a),

occupy_one(patient5,202a),is_in(202a,202),

hospital_bed(202b),is_in(202b,202)])[as(aGbyPinRoom)])

nurse to all: we can make an exception in this case, they can stay in the same room provided

they are of the same gender and same type of care;

17h. assert(n,*,defeasible_rule(suitable(B,patient8),

[patient(patient8),bed(B),is_of_the_gender(patient8,G),

bed_is_of_gender(B,G),is_of_care(patient8,C),

bed_is_of_care(B,C)])[as(nurse_exception)])

{assistant: des(n,defeasible_rule(suitable(B,patient8),

[patient(patient8),bed(B),is_of_the_gender(patient8,G),

bed_is_of_gender(B,G),is_of_care(patient8,C),

bed_is_of_care(B,C)])[as(nurse_exception)])}

assistant to ontology: Nurse made an exception; Is bed 202b suitable to Patient8 now?

17i. assert(a,l,defeasible_rule(suitable(B,patient8),

[patient(patient8),bed(B),is_of_the_gender(patient8,G),

bed_is_of_gender(B,G),is_of_care(patient8,C),

bed_is_of_care(B,C)])[as(nurse_exception)])

22a. question(a,l,question(suitable(202b,patient8)))

ontology to assistant: No, it is not.

17j. assert(l,a,∼suitable(202b,patient8))

assistant to all: that room is still not suitable;

17k. assert(a,*,∼suitable(202b,patient8))

operator to all: why not?

76

17l. challenge(o,*,∼suitable(202b,patient8))

assistant to ontology: Explain why bed 202b is still not suitable for patient Patient8

17m. question(a,l,explain(∼suitable(202b,patient8)))

ontology to assistant: Patient Patient8 is in Intensive care, and bed 202b is for Minimal care,

which is different from Intensive care. So bed 202b is unsuitable for patient Patient8

17n. assert(l,a,defeasible_rule(

is_unsuitable_for(202b,patient8),[patient(patient8),

hospital_bed(202b),is_care(patient8,intensive),

bed_is_care(202b,minimal),

differentFrom(intensive,minimal)])[as(nSbyCare)]

assistant to all: Patient Patient8 is in Intensive care, and bed 202b is for Minimal care, which

is different from Intensive care. so bed 202b is unsuitable for patient Patient8

17o. justify(a,*,defeasible_rule(

is_unsuitable_for(202b,patient8),[patient(patient8),

hospital_bed(202b),is_care(patient8,intensive),

bed_is_care(202b,minimal),

differentFrom(intensive,minimal)])[as(nSbyCare)]

... NB: We suppressed messages from all agents accepting; ∼suitable(202b,patient8).

closing ontological subdialogue in agreement that ∼suitable(202b,patient8) using rule

CloseOAsdlg1 as all agree with that content, the one used to open the subdialogue;

17p. closesubdlg(a,*,∼suitable(202b,patient8))

{assistant: des(o,allocate(patient8,B)[female(B),surgical(B)])}

assistant to operator: Would you like me to try to suggest another bed for Patient8?

18. question(a,o,des(o,suggestion(B,patient8)

[suitable(B,patient8)]))(desiderata (4))

operator to assistant: yes, please!

19. assert(o,a,des(o,suggestion(B,patient8)

[suitable(B,patient8)]))

{assistant: des(n,defeasible_rule(allocate(patient8,B),

[in_room(B,R),smallest(R)[fewest_occupants(R)]]]) [as(nurse_restriction)]),

des(o,suggestion(B,patient8)[suitable(B,patient8)]) (desiderata (3))

assistant to optimiser: generate an allocation suggestion to patient Patient8 considering the

nurse restriction.

20. question(a,p,suggestion(B,patient8)[suitable(B,

patient8),defeasible_rule(C,R)8[as(nurse_restriction)]])

optimiser to assistant: I can not generate a suggestion to patient Patient8 considering this

restriction.

21. assert(p,a,∼suggestion(B,patient8)

[defeasible_rule(C,R]])[as(nurse_restriction)]]])

8We use the abbreviation C to represent the rule’s conclusion and R to represent the body of the rule
described just before.

77

{assistant:des(n,defeasible_rule(suitable(B,patient8),

[patient(patient8),bed(B),is_of_the_gender(patient8,G),

bed_is_of_gender(B,G),is_of_care(patient8,C),

bed_is_of_care(B,C)])[as(nurse_exception)])}

assistant to all: can I use the exception made by nurse?

22. question(a,*,des(o,suggestion(B,patient8)

[suitable(B,patient8),

defeasible_rule(Ce,Re)[as(nurse_exception)]]))(desiderata (5))

nurse to all: yes, you can.

23. assert(n,*,des(o,suggestion(B,patient8)

[suitable(B,patient8),

defeasible_rule(Ce,Re)[as(nurse_exception)]]))

assistant to optimiser: Generate a suggestion considering the nurse restriction and the nurse

exception.

24. question(a,p,suggestion(B,patient8)[suitable(B,

patient8),defeasible_rule(Ce,Re)[as(nurse_exception)],

defeasible_rule(Cr,Rr)[as(nurse_restriction)]])

optimiser to assistant: Considering this restrictions and exceptions I recommend bed 201a for

Patient8

25. assert(p,a,suggestion(201a,patient8)

[suitable(201a,patient8)])

{assistant: suitable(202a,patient8)}

assistant to all: Considering the exception made by nurse I suggest allocating Patient8 to bed

201a

26. assert(a,*,suggestion(201a,patient8)

[suitable(201a,patient8),

[defeasible_rule(Ce,Re)[as(nurse_exception)]])

operator to assistant: ok, please book bed 201a for Patient8 who will leave the operation

room, not before 19:00 nor after 20:30;

27. assert(o,a,booked(201a, patient8, 19:00h, 20:30h))(desiderata (2))

{assistant: des(o,booked(201a, patient8, 19:00h, 20:30h))}

assistant to database: book bed 201a to patient Patient8 from 19:00H and keep the booking

until 20:30H;

28. assert(a,d, booked(201a, patient8, 19:00h, 20:30h))

database to assistant: Ok, bed 201a is now booked;

29. accept(d,a,booked(201a,patient8,19:00h,20:30h))

{assistant: booked(201a, patient8, 19:00h, 20:30h)}

assistant to operator: booking done!

30. assert(a,o,booked(201a,patient8,19:00h,20:30h))

operator to assistant: Ok!

31. accept(o,a,booked(201a,patient8,19:00h,20:30h))

78

Based on Cohen’s desiderata for task-oriented dialogue systems and seeking to offer

hospital professionals a dialogue as presented above, we loaded our system with real data from

the hospital. Then we asked two bed-allocation specialists, who work at that hospital, to evaluate

it. Our main objective was to verify if the chatbot’s performance matches the points raised by

Cohen’s desiderata. Next, we describe the test setup and the results obtained.

Evaluation Procedure

We received a data load from the hospital that contained patients, beds with their sta-

tus, bed requests, infections, type of request, type of insurance, coverage, and speciality. During

testing, we used 80 beds, 45 inpatients, 42 bed requests, and 65 infections (possibly more than

one per patient). Of the 80 beds, there were vacant, occupied by a patient, blocked by infection,

maintenance, and cleaning status. We create an ontology with the following settings: Classes

(20), Object Properties (29), Data Properties (2), Individuals (22), Datatypes (1), and SWRL Rules

(12).

We intentionally invited two bed allocation specialists who work at the hospital. They

were selected due to their experience in bed allocation and their knowledge of hospital data.

Table 5.5 presents the specialists’ demography.

Table 5.5 – Specialists demography
Id Gender Job occupation How long in this job? Experience in bed allocation
S1 M Research center coordinator 1 year 6 years
S2 F Access management coordinator 6 months 22 years

The evaluation was performed in person at the hospital and simultaneously with the

two specialists. After the test, the experts answered an online questionnaire. We created a

questionnaire with eight closed questions following the 5-point Likert scale to evaluate Cohen’s

desiderata (Table 5.6) and an open question to suggestions. During the test, we took notes on

what the specialists said. Also, we generate a system log with all requests made, as shown in

Apendix C.

Table 5.6 – Questions to evaluate Cohen’s desiderata
Id Question
Q1 Are the bed allocation rules consistent with those practised in the hospital?
Q2 Are the answers given by the chatbot easily understandable?

Q3
Can the chatbot understand the meaning of user statements, including restrictions with two
superlative expressions, one embedded in the other? For example, what is the smallest room
with the fewest patients allocated?

Q4 Is the chatbot able to understand the user’s intent even if this is not explicitly informed?

Q5
When asked if a bed is suitable for a patient, is the chatbot able to respond and still
explain in an easily understandable way how it reached that conclusion?

Q6
Is the chatbot capable of chatting with more than one user at the same time, taking into
account the requests and restrictions
of all users?

Q7 Does the chatbot reason about what the user is trying to do?

Q8
Can the chatbot understand that another person may have the necessary information/authorization
to resolve a situation and is able to request that this person be asked?

79

We started the test by explaining the system and the objective of the evaluation. Then,

we show the interface (Figure 5.4) where they could see the patients’ and beds’ data and provide

users with examples of questions they could ask the chatbot. After signing the consent form, the

specialists started the test.

Figure 5.4 – MAIDS testing interface

One of the evaluators performed the test remotely via video call and the other in person.

Both evaluators requested that questions be asked to the chatbot, and the questions were typed

in by us. After viewing the response provided by the chatbot, the evaluators decided together

what would be the next question to be asked and informed us so that it could be typed into the

chatbot. After a series of questions and answers, the evaluators declared themselves satisfied

and started answering the questionnaire.

Results

Regarding the evaluation of the chatbot by the specialists, Figure 5.5 shows an excerpt

from the conversation log where the operator asks if he can put a patient in a room, which is

not possible, but the operator wants it anyway. Then, the nurse in charge is asked to make an

exception, so after that, it is possible to carry out the allocation. This shows that simultaneous

conversations with the chatbot are possible and that it considers requests from both users. After

that, we can see in Figure 5.6 that the chatbot can handle superlative expressions; the operator

asked which is the smallest room with fewer patients and which is the biggest room with more

patients allocated. Room 118J and 759 were answered, respectively.
The results of the questionnaire indicated that specialists strongly agree or agree that

the system respect Cohen’s desiderata, according to Figure 5.7. During the test, they suggested

it would be very helpful if the system had voice input. Also, it would be useful if, when asking the

80

Agent operator asks to allocate patient 2044429 to bed 3132
Answering to chatbot: First I need to check if this bed is suitable for this patient, is that ok?
Answering to chatbot: No, this bed is not suitable.
Chatbot of operator is requesting explanation about suitability of 3132 bed to 2044429
Answering to chatbot: Bed 3132 is not suitable for patient 2044429 as patient coverage is WARD and this bed is
GENERAL ADULT ICU.
Chatbot of operator is requesting to allocate anyway.
Answering to chatbot: Sorry, you are not authorized to make this allocation, but you can ask the manager to make
an exception
Chatbot of nurse is requesting to register an exception: patient: 2044429, bed: 3132
Agent nurse asks to register exception on patient 2044429 and bed 3132
Answering to chatbot: Ok I am logging the requested exception
Chatbot of operator is requesting to verify suitability: patient: 2044429, bed: 3132
Answering to chatbot: Yes, this bed is suitable.
Chatbot of operator is requesting explanation about suitability of 3132 bed to 2044429
Answering to chatbot: Bed 3132 is suitable for patient 2044429 as the manager made an exception for this case.

Figure 5.5 – Simultaneous conversation and restriction

Chatbot of operator is asking about the smallest room with fewer patients allocated.
Answering to chatbot: The smallest room with the fewest occupants is 118J
Chatbot of operator is asking about the biggest room with most patients allocated.
Answering to chatbot: The biggest room with most occupants is 759

Figure 5.6 – Superlative expressions

Figure 5.7 – Evaluation result

chatbot about free beds for women, for example, the MAIDS brings a list of free beds that can be

used. Today MAIDS brings one.

81

FINAL REMARKS

This chapter presented some tools developed specifically for the bed allocation domain

we use as a case study, such as a domain ontology, a Java-based PDDL plan validator, an optimiser

using the GLPSol solver of GLPK, and two RML properties to perform runtime verification. In ad-

dition, we describe the evaluations made with professionals responsible for the bed allocation at

Hospital São Lucas da PUCRS in Brazil, where the functionalities offered by the system developed

using the MAIDS framework and the expressiveness of this system based on Cohen’s desiderata

were evaluated separately. The contents of this chapter have been published in [49, 55].

82

6. RELATED WORK

The only work that supports agents arguing about OWL ontologies specifically, to the

best of our knowledge, appeared in [102]. However, that work was not formalised in the context

of an agent programming language, and did not support ToM, nor the structured dialogue ap-

proach we introduced in this thesis. Furthermore, that framework does not seem to have been

further developed and does not seem to be available for download, so it does not support the

development of practical dialogue systems like ours. In fact, we are unaware of any practical

agent framework that supports all the features of dialogue systems supported by our framework.

There is much work on allowing for defeasibility in description logic and OWL [66, 12],

but this is also distant from our work in that it does not provide practical support for agent pro-

gramming with argumentation-based dialogues. Although there is work on nested dialogues [27],

the possibility to digress about ontological and ToM issues in subdialogues as put forward in this

thesis is completely original.

Another strand of work in argumentation to mention here is on using automated plan-

ning techniques to support an agent’s strategy in taking part in dialogue games [26]. In the

context of XAI, as described in [11], there is little work addressing the issues of multi-agent ex-

plainability, personalisation of explanation, and context awareness. Also in the explainable AI

context, Arg2P, for example, is a logic-based argumentation framework for defeasible reasoning

and agent conversation based on a modular architecture allowing for system transparency and

ease of extension. Unlike MAIDS, which is implemented in AOPL, the Arg2P is an ASPIC+-like

implementation for structured argumentation.

Regarding works that seek to use argumentation to make dialogue systems more ex-

plainable to the user, we present some works in Table 6.1.

Tao et al. [144] used a Fuzzy Cognitive Map based on argumentation model to construct

an intelligent tutoring system, with an intelligent agent to conduct argumentative dialogues help-

ing children learn ecosystems and adults to gain knowledge on diabetes risk factors. The user

interacts with the chatbot using pre-defined buttons. The system has not yet been evaluated.

Grando et al. [69] introduce an argument-based system for enhancing human-computer

dialogues in the medical domain, more specifically, in medical training. The user interacts with

the chatbot using buttons. The system has not yet been evaluated.

Koit and Õim [84] used the naive theory of reasoning to model argumentation in agree-

ment negotiation processes. They created an experimental dialogue system implemented in Java

where the user can both choose their sentences from a menu or put them in free text, which will

be interpreted by the computer using keywords or phrases to classify the user texts semantically.

In both, the computer uses a list of ready-made sentences about business trips and vegetarian-

ism in Estonian [84]. Six voluntary users have carried out some experiments with the dialogue

system. However, the generated dialogues are not quite coherent because the computer uses

predefined sentences.

83

Table 6.1 – Related work summary

Author Argumentation Techniques
XAI
Techniques

Multiple
domains

Natural
Language
Interaction

[144]
Fuzzy Cognitive Map based
on argumentation model

Not cited No No

[69]
ASPIC rules and argumentation
schemes

Argumentation graph No No

[84] Naive theory of reasoning Not cited No Yes

[149]

Graphical representation of
arguments structure,
argumentation-based reasoning,
and argumentation schemes

Not cited No No

[33] Pragmatic argumentation Not cited No No

[17]
Argumentation scheme
and ontology

Not cited No No

[44] Argumentation theory Not cited No No

[59]
Argumentation-based
dialogue

Not cited No No

[130] Argument game Not cited No No
[139] Argumentation scheme Not cited No Yes

[133]
Regression, agglomerative
clustering, similarity
algorithm (UMBC STS score)

Not cited No No

[85]
Argumentation scheme
and attack schemes

Not cited No Yes

[126] Crowd sourced argument graph Not cited No Yes

[161]
Argument annotation scheme
and bipolar weighted argument
graphs (BWAGS)

Not cited No No

MAIDS
(our approach)

Argumentation scheme
and argumentation-based
dialogues

Argumentation scheme
and ontological reasoning

Yes Yes

Toniolo et al. [149] developed Moira (Mobile Intelligence Reporting Agent), a Con-

trolled Natural Language (CNL) conversational agent, that uses a conversational model based on

the syntax and semantics of the ITA Controlled English [127]. They used the CISpaces (Collabo-

rative Intelligence Spaces) toolkit based on a graphical representation of structured arguments.

They analysed through argumentation-based reasoning and argumentation schemes to support

the identification of plausible hypotheses. CISpaces structure and share analyses of conflicting

information through argumentation techniques and maintains records of the provenance informa-

tion. While Moira captures sensed information by supporting queries and intelligence provision

from a wide set of different sources, such as physical sensors and information systems, social

media and human sources. They demonstrated a scenario showing the support offered by Moira

and CISpaces to an intelligence coalition while gathering information about and responding to

the attack on Kish.

Cheng et al. [33] created a recommendation system using pragmatic argumentation

to check if this has the potential to affect the decision making of the elderly and help him/her

pursue a healthier life. The system has only recommendations, it did not have free conversation.

The system was evaluated by 21 volunteers who interacted with the robot.

84

Baskar et al. [17] developed a coaching to improve health and well-being using multi-

agent system and argumentation. The user interacts with the chatbot using pre-defined buttons.

The system has not yet been evaluated.

Dignum and Floris [44] discussed an approach to dialogue management using chatbots

in combination with social practices and argumentation theory. Their future system provides for

the use of an avatar that expresses emotions and the user will be able to utterances with natural

language. The system has not yet been evaluated.

Essers et al. [59] created a prototype called POSTURE (Pressure Offloading Support

Technologies for Ulcer REduction). This prototype help patients suffering from Diabetic Foot

Ulcer (DFU) self-manage their treatment. This system receives data from commercial wellness

sensors. The sensor data is fed into a data-backed decision support tool that interacts with

users via an intelligent agent, using a chatbot style interface, underpinned by computational

argumentation-based dialogue. The user is not able to chat freely with the chatbot. Regarding

evaluation, 10 users interacted with the prototype via tablet interface and fictitious data, then

answer a questionnaire about the idea of such a system.

Rach et al. [130] used Charamel tool1 to create the avatar EVA, a multimodal argumen-

tative dialogue system that uses Nuance text-to-speech and all Amazon Polly Voices. They use an

argument game based on the formalism of Prakken [124] to model the interaction between the

user and the system. The avatar uses a pre-defined template of mimics and gestures that will be

replaced by customized signals in the future. It presents arguments about marriage and supports

them. The system has not yet been evaluated.

Sakai et al. [139] present a chat interface that generated dialogue text based on ar-

gumentation structures. They created a model with a graph structure in which nodes represent

premises and edges represent the relationship between nodes. Each node has a natural language

statement representing the content of its premise. If the logical connection is based on an argu-

mentation scheme, the scheme name is represented on the arcs. More than 30 annotators were

recruited to create the argumentation structures. Since they created the argument structures

manually, it is quite costly to expand and create new structures for other topics. They evaluated

the dialogue system with 19 participants who read ten dialogue texts that were randomly ordered

and answered a questionnaire.

Rakshit et al. [133] created a chatbot called Debbie that uses retrieval from existing

conversations to argue with users. In Debbie, the user picks a button with three topics - death

penalty, gay marriage, and gun control and inform about their position (for or against). Then,

Debbie generate arguments against that position using a similarity algorithm (UMBC STS score)

to retrieve a ranked list of the most appropriate counter-arguments, i.e., arguments opposing

the user’s stance. They evaluated the average response times for each retrieval method and the

quality of the responses testing three sentences per stance per topic.

Kokciyan et al. [85] developed a system called CONSULT, which is a collaborative

decision-support tool to help patients suffering from chronic diseases to self-manage their treat-

1https://www.charamel.com/competence/avatare

https://www.charamel.com/competence/avatare

85

ment plans. The system has a conversation interface with the user, in which the user can make

utterances in natural language. The system has not yet been evaluated.

Prakken et al. [126] developed a chatbot that was deployed on Facebook via the Mes-

senger Send/Receive API to engage and persuade the user to accept university fees should be

kept. They evaluated the chatbot with 50 participants. The participants interacted with the chat-

bot. Before using the chatbot, participants answered a questionnaire on google forms indicating

whether they strongly disagreed, disagreed, neutral, agreed or strongly agreed that university

fees should be kept. After using the chatbot, users answered another questionnaire on google

forms informing about the experience and “How much do you agree that fees in the UK should

be kept as they are? (Strongly disagree - strongly agree)”.

Weber et al. [161] presented Gloria avatar, which can perform lip-sync speech output

using the Nuance text-to-speech along with the Amazon Polly voices. They used an argument

structure based on the argument annotation scheme. Their study includes three types of argu-

ment components (Major Claim, Claim, and Premise) and two different directed relations (sup-

port and attack) between them. They infer the argumentation structure using a hotel reviews

dataset annotated through an argument mining approach. The annotated sentences serve as a

template for the system’s natural language generation. They determined the polarity of each re-

view by making a comparison between positive and negative phrases annotated. The prediction

model computes the user’s preferences based on bipolar weighted argument graphs (BWAGS)

using linear Euler-based restricted semantics. Gloria talks about a topic by giving arguments ei-

ther for or against the topic. The agent can try to influence the user using appropriate emotions

(angry, happy, and sad). After each argument from the agent, the user has three button options

to give their feedback on the argument (convincing, neutral, not convincing).

Comparing those works with MAIDS (Table 6.1) we can see we did not find research

which can be applied to multiple domains. None of the research on bed allocation with decision-

support characteristics and explainability based on argumentation theory was found. Also, only

in [84, 139, 85, 126] is allowed free user interaction with the chatbot, i.e., where the user can

interact in natural language with the agent.

86

7. CONCLUSIONS

Our main objective in this thesis was to investigate how argumentation theory and on-

tology techniques can be used together with reasoning about intentions to build complex natural

language dialogues to support humans in decision making. The thesis puts forward a framework

for developing explainable multi-agent systems. Its potential is demonstrated by a case study on

human-agent dialogues on hospital bed allocation. We achieved that goal through the following

specific objectives:

• Design and formalise an approach to argumentation-based dialogues and ontological rea-

soning. In Chapter 3 we presented and formalised an approach that supports the develop-

ment of dialogue systems based on BDI agents to assist humans in decision making. Using

this approach, agents have a multi-part belief base and support for having a structured

dialogue where the main line of argumentation is based on the argumentation schemes

knowledge component. Further, it can lead to subdialogues when ontological or ToM is-

sues must be resolved [57].

• Construct an architecture/framework for developing explainable systems and implement all

the necessary components of the architecture. In Chapter 4, we present our framework for

developing multi-agent intentional dialogue systems. We emphasise that the MAIDS frame-

work can be used in its entirety, or it is also possible to use only the modules (Dial4JaCa,

Onto4JaCa, RV4JaCa) that match the requirements of each system under development. We

have some publications related to this part of the work ([54, 51, 50, 52, 113, 61, 56, 106]).

• Apply the proposed formal model to a real-world domain and problem, such as healthcare,

and fully implement a dialogue system based on that formalisation using the framework. In

Chapter 5, a case study in the hospital bed allocation domain is shown. We implemented

some tools related to the bed allocation domain, such as a domain ontology published in

[49], a Java-based PDDL plan validator, and an optimiser using the linear programming

solver of GLPK [55]. Furthermore, using our framework, we built an explainable dialogue

system to support decision making for hospital bed allocation, which used real data from a

hospital.

• Evaluate the approach with domain experts based on Cohen’s desiderata for task-oriented

dialogue systems. As shown in Section 5.5, staff from PUCRS’s Hospital São Lucas, in

Porto Alegre, Brazil, supported us in evaluating our system. We performed two evaluations

with professionals responsible for bed allocation in that hospital. The first one was to

evaluate the system functionalities for hospital bed allocation, while the second one was

to evaluate the expressiveness of our framework based on Cohen’s desiderata for task-

oriented dialogue systems.

87

7.1 Summary of Results and Discussion

The use of artificial intelligence systems in our daily lives is becoming mature and

ubiquitous, resulting in the growing availability of systems where agents and humans work to-

gether [137], from which emerge new concepts such as Hybrid Intelligence [3]. However, there

are many challenges related to how humans and agents will interact in those systems and how

agents will explain their decisions and internal mental states so that they become more transpar-

ent and trustworthy [72, 73].

In this thesis, we contribute in this direction by providing tools for the practical devel-

opment of explainable intelligent systems as well as systems supporting hybrid intelligence. Aim-

ing at communication between humans and software agents, we built Dial4JaCa, which acts as

a bridge between multi-agent systems developed with JaCaMo and natural language processing

platforms such as Dialogflow and Rasa. This way, we endow intelligent agents to communicate in

natural language with human users. Onto4JaCa, in turn, was developed to enable agents to use,

during their reasoning process, the information contained in ontologies as well as inferred by

semantic reasoners. In addition, we built RV4JaCa, capable of observing all messages exchanged

by agents during runtime and forwarding them to a formal monitor in order to verify properties of

interest and, if necessary, interfere with the execution of the system to recover from or prevent

failures. These three modules form the basis of MAIDS, our framework for developing multi-

agent intentional dialogue systems, which can be used, together with domain-specific agents, in

different domains. As our framework is modular, it can be used in its entirety or just the mod-

ules that fulfil the requirements of each system to be developed. Our work also includes the

formalisation of a novel dialogue-subdialogue structure with which we can address ontological

or theory-of-mind issues and later return to the main subject of the dialogue.

In order to evaluate the practical applicability of our framework, we have developed a

multi-agent system that supports hospital bed allocation. In addition to the modules of the MAIDS

framework, some specific tools for this domain were also developed, such as a domain ontology,

a PDDL plan validator, an optimiser, and two RML properties to be verified during runtime. The

developed system was evaluated by professionals specialised in bed allocation at Hospital São

Lucas – PUCRS, who agreed to support us in evaluating our approach. Two separate evaluations

were carried out, the first one, with synthetic data, in order to check whether the functionalities

offered by our system fulfilled the hospital’s needs. The second one, using real data from the

hospital, aimed to evaluate the expressiveness of a system developed with the MAIDS framework

based on Cohen’s desiderata for task-oriented dialogue systems. As a result of the evaluations,

we were able to conclude that, according to the evaluators, our system addresses all the elements

of the desiderata.

Although much work remains to be done, as discussed in Section 7.3, in its current

state, our framework already contributes towards increased sophistication in explainable AI,

hybrid intelligence, and human-agent dialogue systems.

88

7.2 Thesis publications

We have published the following papers related to the research presented in this thesis,

in particular, the results described above:

• “Towards an ontology to support decision making in hospital bed allocation” [49];

• “Conversational Agents Based on Argumentation Theory and Ontologies” [54];

• “Dial4JaCa – A Communication Interface Between Multi-agent Systems and Chatbots” [51];

• “Dial4JaCa – A Demonstration” [50];

• “A Conversational Agent to Support Hospital Bed Allocation” [55];

• “Argumentation as a Method for Explainable AI: A Systematic Literature Review” [52];

• “Engineering Explainable Agents: An Argumentation-Based Approach” [113];

• “Explaining Semantic Reasoning using Argumentation” [61];

• “RV4JaCa - Runtime Verification for Multi-Agent Systems” [56];

• “Multi-Agent Interaction to Assist Visually-Impaired and Elderly People” [106];

• “MAIDS — a Framework for the Development of Multi-Agent Intentional Dialogue Sys-

tems” [57].

7.3 Future Work

During the development of this thesis, it was possible to identify future directions aris-

ing from the results and their limitations, which may allow future work to increase knowledge and

its application on this topic. For example, one of the directions to follow would be the use of more

complex ontological subdialogues than those presented in this thesis, in addition to the practical

use of ToM subdialogues, since although we formalise them here, we do not use subdialogues

based on the theory of mind in practice in our case study.

In addition, there is a lack of argumentation schemes aimed at reasoning patterns to

discuss theory of mind. So, efforts should be made to identify schemes that justify or attempt

to invalidate an inference from a mental attitude. Possibly there are general schemes, but new

argumentation schemes may be necessary depending on the application domain. Another venue

for future work is related to the complexity of arguments over time. It is necessary to consider

that information can be true at a given moment but cease to be true over time.

We also aim to apply automated planning techniques to support an agent’s strategy

in taking part in dialogue games [26] to decide when to move to subdialogues (currently, we

used a simple strategy for the case study, one that moves to subdialogues as soon as possible).

89

Future work also includes allowing a subset of the agents entering a subdialogue as well as

other agents that are not involved in the main dialogue but may have some information needed

to reach a subdialogue conclusion. Further developing the applications so they also use the

ToM subdialogues, and experimenting with our framework to develop dialogue systems in other

hospital management domains besides bed allocation, are also possible future work.

Finally, it is also possible to use the MAIDS framework or some of its modules in building

explainable multi-agent systems in other domains, such as Law and IoT (Internet of Things), to

help people in decision making, bringing more areas of application to the direction of hybrid

intelligence.

90

REFERENCES

[1] Adadi, A.; Berrada, M. “Peeking inside the black-box: A survey on explainable artificial

intelligence (xai)”, IEEE Access, vol. 6, September 2018, pp. 52138–52160.

[2] Ahmadi-Javid, A.; Seyedi, P.; Syam, S. S. “A survey of healthcare facility location”,

Computers & Operations Research, vol. 79, March 2017, pp. 223–263.

[3] Akata, Z.; Balliet, D.; de Rijke, M.; Dignum, F.; Dignum, V.; Eiben, G.; Fokkens, A.;

Grossi, D.; Hindriks, K.; Hoos, H.; et al.. “A research agenda for hybrid intelligence:

Augmenting human intellect with collaborative, adaptive, responsible, and explainable

artificial intelligence”, Computer, vol. 53–8, August 2020, pp. 18–28.

[4] Amaral, C. J.; Hübner, J. F. “Jacamo-web is on the fly: An interactive multiagent system

ide”. In: Proceedings of the International Workshop on Engineering Multi-Agent Systems,

2019, pp. 246–255.

[5] Amaral, C. J.; Hübner, J. F.; Kampik, T. “Towards jacamo-rest: A resource-oriented

abstraction for managing multiagent systems”. Source: https://arxiv.org/abs/2006.05619,

April 5, 2021.

[6] Amgoud, L.; Maudet, N.; Parsons, S. “Modeling dialogues using argumentation.” In:

Proceedings of the International Conference on Multi-Agent Systems, 2000, pp. 31–38.

[7] Ancona, D.; Ferrando, A.; Mascardi, V. “Comparing Trace Expressions and Linear Temporal

Logic for Runtime Verification”. Springer International Publishing, 2016, vol. 9660,

chap. 6, pp. 47–64.

[8] Ancona, D.; Ferrando, A.; Mascardi, V. “Parametric runtime verification of multiagent

systems”. In: Proceedings of the Conference on Autonomous Agents and MultiAgent

Systems, 2017, pp. 1457–1459.

[9] Ancona, D.; Franceschini, L.; Ferrando, A.; Mascardi, V. “RML: Theory and Practice of a

Domain Specific Language for Runtime Verification”, Science of Computer Programming,

vol. 205, May 2021, pp. 1–56.

[10] Ancona, D.; Mascardi, V.; Hübner, J. F.; Bordini, R. H. “Coo-agentspeak: Cooperation in

agentspeak through plan exchange”. In: Proceedings of the International Joint Conference

on Autonomous Agents and Multiagent Systems, 2004, pp. 696–705.

[11] Anjomshoae, S.; Najjar, A.; Calvaresi, D.; Främling, K. “Explainable agents and robots:

Results from a systematic literature review”. In: Proceedings of the International

Conference on Autonomous Agents and Multiagent Systems, 2019, pp. 1078–1088.

[12] Antoniou, G.; Wagner, G. “Rules and defeasible reasoning on the semantic web”. In:

Proceedings of the International Workshop on Rules and Rule Markup Languages for the

Semantic Web, 2003, pp. 111–120.

https://arxiv.org/abs/2006.05619

91

[13] Arora, S.; Batra, K.; Singh, S. “Dialogue system: A brief review”. Source: https://doi.org/

10.48550/arXiv.1306.4134, October 9, 2022.

[14] Baader, F.; Nutt, W. “Basic description logics”. In: The Description Logic Handbook:

Theory, Implementation, and Applications, Baader, F.; Calvanese, D.; McGuinness, D.;

Patel-Schneider, P.; Nardi, D. (Editors), Cambridge University Press, 2003, chap. 2, pp.

43–95.

[15] Baroni, P.; Toni, F.; Verheij, B. “On the acceptability of arguments and its fundamental

role in nonmonotonic reasoning, logic programming and n-person games: 25 years later”,

Argument & Computation, vol. 11–Preprint, May 2020, pp. 1–14.

[16] Bartocci, E.; Falcone, Y.; Francalanza, A.; Reger, G. “Introduction to runtime verification”.

In: Lectures on Runtime Verification - Introductory and Advanced Topics, Bartocci, E.;

Falcone, Y. (Editors), Springer, 2018, chap. 1, pp. 1–33.

[17] Baskar, J.; Janols, R.; Guerrero, E.; Nieves, J. C.; Lindgren, H. “A multipurpose goal model

for personalised digital coaching”. In: Agents and Multiagent Systems for Health Care,

Montagna, S.; Abreu, P. H.; Giroux, S.; Schumacher, M. I. (Editors), Springer, 2017, chap. 6,

pp. 94–116.

[18] Bauer, A.; Leucker, M.; Schallhart, C. “The good, the bad, and the ugly, but how ugly is

ugly?” In: Proceedings of the International Workshop on Runtime Verification, 2007, pp.

126–138.

[19] Becker, M.; Heine, C.; Herrler, R.; Krempels, K.-H. “OntHoS - an Ontology for Hospital

Scenarios.” Birkhäuser Verlag, 2003, chap. 7, pp. 87–103.

[20] Behnke, G.; Höller, D.; Biundo, S. “This is a solution! (... But is it though?) -

verifying solutions of hierarchical planning problems”. In: Proceedings of the International

Conference on Automated Planning and Scheduling, 2017, pp. 20–28.

[21] Bench-Capon, T. J. M.; Dunne, P. E. “Argumentation in artificial intelligence”, Artificial

Intelligence, vol. 171–10-15, July 2007, pp. 619–641.

[22] Berariu, T. “An argumentation framework for bdi agents”. In: Intelligent Distributed

Computing VII, Zavoral, F.; Jung, J.; Bădică, C. (Editors), Springer, 2014, chap. 40, pp.

343–354.

[23] Besnard, P.; Hunter, A. “Elements of Argumentation”. The MIT Press, 2008, 20p.

[24] Bigoni, A.; Malik, A. M.; Tasca, R.; Carrera, M. B. M.; Schiesari, L. M. C.; Gambardella,

D. D.; Massuda, A. “Brazil’s health system functionality amidst of the covid-19 pandemic:

An analysis of resilience”, The Lancet Regional Health-Americas, vol. 10, June 2022, pp.

1–14.

[25] Black, E.; Atkinson, K. “Choosing persuasive arguments for action”. In: Proceedings of

the International Conference on Autonomous Agents and Multiagent Systems, 2011, pp.

905–912.

https://doi.org/10.48550/arXiv.1306.4134
https://doi.org/10.48550/arXiv.1306.4134

92

[26] Black, E.; Coles, A. J.; Hampson, C. “Planning for persuasion”. In: Proceedings of the

International Conference on Autonomous Agents and MultiAgent Systems, 2017, pp. 933–

942.

[27] Black, E.; Hunter, A. “A generative inquiry dialogue system”. In: Proceedings of the

International Joint Conference on Autonomous Agents and Multiagent Systems, 2007, pp.

1–8.

[28] Boissier, O.; Bordini, R. H.; Hubner, J.; Ricci, A. “Multi-agent oriented programming:

programming multi-agent systems using JaCaMo”. MIT Press, 2020, 264p.

[29] Boissier, O.; Bordini, R. H.; Hübner, J. F.; Ricci, A.; Santi, A. “Multi-agent oriented

programming with jacamo”, Science of Computer Programming, vol. 78–6, October 2013,

pp. 747–761.

[30] Bordini, R. H.; Fisher, M.; Visser, W.; Wooldridge, M. J. “Verifying multi-agent programs by

model checking”, Autonomous Agents and Multiagent Systems, vol. 12–2, February 2006,

pp. 239–256.

[31] Bordini, R. H.; Hübner, J. F.; Wooldridge, M. “Programming multi-agent systems in

AgentSpeak using Jason”. John Wiley & Sons, 2007, 269p.

[32] Chen, H.; Liu, X.; Yin, D.; Tang, J. “A survey on dialogue systems: Recent advances and

new frontiers”. In: Proceedings of the ACM SIGKDD Explorations Newsletter, 2017, pp.

25–35.

[33] Cheng, C.-Y.; Qian, X.; Tseng, S.-H.; Fu, L.-C. “Recommendation dialogue system through

pragmatic argumentation”. In: Proceedings of the International Symposium on Robot and

Human Interactive Communication, 2017, pp. 335–340.

[34] Clarke, E. M. “Model checking”. In: Proceedings of the International Conference on

Foundations of Software Technology and Theoretical Computer Science, 1997, pp. 54–56.

[35] Cohen, P. “Foundations of collaborative task-oriented dialogue: What’s in a slot?” In:

Proceedings of the Annual SIGdial Meeting on Discourse and Dialogue, 2019, pp. 198–

209.

[36] Cohen, P. R.; Perrault, C. R. “Elements of a plan-based theory of speech acts”, Cognitive

Science, vol. 3–3, August 1979, pp. 177–212.

[37] Croatti, A.; Ricci, A. “Mobile apps as personal assistant agents: the jaca-android

framework for programming agents-based applications on mobile devices”, Autonomous

Agents and Multiagent Systems, vol. 34–2, July 2020, pp. 1–27.

[38] Custódio, M. d. S. “Rasa4jaca: Uma interface entre sistemas multiagentes e tecnologias

chatbots open source”, Undergraduate thesis, Universidade Federal de Santa Catarina,

Campus Araranguá, Graduação em Engenharia de Computação, 2022, 37p.

93

[39] da Saúde, M. “Manual de implantação e implementação : núcleo interno de regulação para

Hospitais Gerais e Especializados”. Ministério da Saúde, 2017, 57p.

[40] da Silveira Colissi, M.; Vieira, R.; Mascardi, V.; Bordini, R. H. “A chatbot that uses a multi-

agent organization to support collaborative learning”. In: Proceedings of the International

Conference on Human-Computer Interaction - Posters, 2021, pp. 31–38.

[41] de Oliveira Gabriel, V.; Panisson, A. R.; Bordini, R. H.; Adamatti, D. F.; Billa, C. Z.

“Reasoning in BDI agents using toulmin’s argumentation model”, Theoretical Computer

Science, vol. 805, January 2020, pp. 76–91.

[42] de Weerd, H.; Verbrugge, R.; Verheij, B. “Higher-order social cognition in rock-paper-

scissors: A simulation study”. In: Proceedings of the International Conference on

Autonomous Agents and Multiagent Systems, 2012, pp. 1195–1196.

[43] De Weerd, H.; Verheij, B. “The advantage of higher-order theory of mind in the game of

limited bidding”. In: Proceedings of the Workshop on Reasoning about Other Minds, 2011,

pp. 149–164.

[44] Dignum, F.; Bex, F. “Creating dialogues using argumentation and social practices”. In:

Proceedings of the International Conference on Internet Science, 2017, pp. 223–235.

[45] Donadello, I.; Dragoni, M.; Eccher, C. “Explaining reasoning algorithms with

persuasiveness: a case study for a behavioural change system”. In: Proceedings of the

Annual ACM Symposium on Applied Computing, 2020, pp. 646–653.

[46] Dung, P. M. “On the acceptability of arguments and its fundamental role in nonmonotonic

reasoning, logic programming and n-person games”, Artificial Intelligence, vol. 77–2,

September 1995, pp. 321–357.

[47] e Oliveira, B.; de Vasconcelos, J.; Almeida, J.; Pinto, L. “A simulation-optimisation approach

for hospital beds allocation”, International Journal of Medical Informatics, vol. 141,

September 2020, pp. 1–11.

[48] Elalouf, A.; Wachtel, G. “Queueing problems in emergency departments: A review of

practical approaches and research methodologies”, Operations Research Forum, vol. 3–

1, December 2021, pp. 1–46.

[49] Engelmann, D.; Couto, J.; Gabriel, V.; Vieira, R.; Bordini, R. “Towards an ontology to

support decision-making in hospital bed allocation”. In: Proceedings of the International

Conference on Software Engineering & Knowledge Engineering, 2019, pp. 71–74.

[50] Engelmann, D.; Damasio, J.; Krausburg, T.; Borges, O.; Cezar, L. D.; Panisson, A. R.;

Bordini, R. H. “Dial4jaca – a demonstration”. In: Proceedings of the International

Conference on Practical Applications of Agents and Multiagent Systems, 2021, pp. 346–

350.

94

[51] Engelmann, D.; Damasio, J.; Krausburg, T.; Borges, O.; Colissi, M.; Panisson, A. R.; Bordini,

R. H. “Dial4jaca – a communication interface between multi-agent systems and chatbots”.

In: Proceedings of the International Conference on Practical Applications of Agents and

Multiagent Systems, 2021, pp. 77–88.

[52] Engelmann, D.; Damasio, J.; Panisson, A. R.; Mascardi, V.; Bordini, R. H. “Argumentation as

a method for explainable ai: A systematic literature review”. In: Proceedings of the Iberian

Conference on Information Systems and Technologies, 2022, pp. 1–6.

[53] Engelmann, D. C. “An interactive agent to support hospital bed allocation based on plan

validation”, Master thesis, Pontifícia Universidade Católica do Rio Grande do Sul, 2019,

85p.

[54] Engelmann, D. C. “Conversational agents based on argumentation theory and ontologies”.

In: Proceedings of the Summer School on Argumentation: Computational and Linguistic

Perspectives, 2020, pp. 10–12.

[55] Engelmann, D. C.; Cezar, L. D.; Panisson, A. R.; Bordini, R. H. “A conversational agent to

support hospital bed allocation”. In: Proceedings of the Brazilian Conference on Intelligent

Systems, 2021, pp. 3–17.

[56] Engelmann, D. C.; Ferrando, A.; Panisson, A. R.; Ancona, D.; Bordini, R. H.; Mascardi, V.

“Rv4jaca – runtime verification for multiagent systems”. In: Proceedings of the Workshop

on Agents and Robots for reliable Engineered Autonomy, 2022, pp. 23–36.

[57] Engelmann, D. C.; Panisson, A. R.; Vieira, R.; Hübner, J. F.; Mascardi, V.; Bordini, R. H.

“Maids — a framework for the development of multiagent intentional dialogue systems”.

In: Proceedings of the International Conference on Autonomous Agents & Multiagent

Systems, 2023, pp. 1–9.

[58] Esfahani, Z. N. “Onto2conv: An application for boosting cognitive conversational agents”,

Master thesis, University of Genoa, 2023, 95p.

[59] Essers, K.; Rogers, R.; Sturt, J.; Sklar, E. I.; Black, E. “Assessing the posture prototype: A

late-breaking report on patient views”. In: Proceedings of the International Conference on

Human-Agent Interaction, 2018, pp. 344–346.

[60] Ferber, J.; Gutknecht, O.; Michel, F. “From agents to organizations: An organizational view

of multi-agent systems”. In: Proceedings of the International Workshop on Agent-Oriented

Software Engineering, 2003, pp. 214–230.

[61] Ferreira, C. E. A.; Panisson, A. R.; Engelmann, D. C.; Vieira, R.; Mascardi, V.; Bordini,

R. H. “Explaining semantic reasoning using argumentation”. In: Proceedings of the

International Conference on Practical Applications of Agents and Multiagent Systems,

2022, pp. 153–165.

[62] Freitas, A.; Panisson, A.; Hilgert, L.; Meneguzzi, F.; Vieira, R.; Bordini, R. “Applying

ontologies to the development and execution of multi-agent systems”, Web Intelligence,

vol. 15, November 2017, pp. 291–302.

95

[63] Freitas, A.; Panisson, A. R.; Hilgert, L.; Meneguzzi, F.; Vieira, R.; Bordini, R. H. “Integrating

ontologies with multiagent systems through cartago artifacts”. In: Proceedings of the

International Conference on Web Intelligence and Intelligent Agent Technology, 2015, pp.

143–150.

[64] Gatti, A.; Mascardi, V. “Towards VEsNA, a framework for managing virtual environments

via natural language agents”, Electronic Proceedings in Theoretical Computer Science,

vol. 362, July 2022, pp. 65–80.

[65] Gennari, J. H.; Musen, M. A.; Fergerson, R. W.; Grosso, W. E.; Crubézy, M.; Eriksson,

H.; Noy, N. F.; Tu, S. W. “The evolution of protégé: an environment for knowledge-

based systems development”, International Journal of Human-computer Studies, vol. 58–1,

January 2003, pp. 89–123.

[66] Giordano, L.; Gliozzi, V. “Strengthening the rational closure for description logics: An

overview”. In: Proceedings of the Italian Conference on Computational Logic, 2019, pp.

68–81.

[67] Goldman, A. I. “Theory of mind”, The Oxford handbook of philosophy of cognitive science,

vol. 1, January 2012, pp. 1–25.

[68] Governatori, G.; Maher, M. J.; Antoniou, G.; Billington, D. “Argumentation semantics for

defeasible logic”, Journal of Logic and Computation, vol. 14–5, October 2004, pp. 675–

702.

[69] Grando, A.; Moss, L.; Bel-Enguix, G.; Jiménez-López, M. D.; Kinsella, J. “Argumentation-

based dialogue systems for medical training”. In: Where Humans Meet Machines,

Neustein, A.; Markowitz, J. A. (Editors), Springer, 2013, chap. 10, pp. 213–232.

[70] Gruber, T. R. “Toward principles for the design of ontologies used for knowledge sharing?”,

International Journal of Human-computer Studies, vol. 43–5-6, November 1995, pp. 907–

928.

[71] Grübler, M. d. S.; da Costa, C. A.; Righi, R.; Rigo, S.; Chiwiacowsky, L. “A hospital bed

allocation hybrid model based on situation awareness”, Computers, Informatics, Nursing,

vol. 36, May 2018, pp. 249–255.

[72] Gunning, D. “Explainable artificial intelligence (xai)”, Defense Advanced Research Projects

Agency, vol. 2–2, January 2017, pp. 1–36.

[73] Gunning, D.; Stefik, M.; Choi, J.; Miller, T.; Stumpf, S.; Yang, G.-Z. “Xai—explainable

artificial intelligence”, Science Robotics, vol. 4–37, December 2019, pp. 1–4.

[74] Hadidi, N.; Dimopoulos, Y.; Moraitis, P.; et al.. “Tactics and concessions for argumentation-

based negotiation.” In: Proceedings of the International Conference on Computational

Models of Argument, 2012, pp. 285–296.

96

[75] Hadjinikolis, C.; Siantos, Y.; Modgil, S.; Black, E.; McBurney, P. “Opponent modelling in

persuasion dialogues”. In: Proceedings of the International Joint Conference on Artificial

Intelligence, 2013, pp. 164–170.

[76] Hois, J.; Theofanou-Fuelbier, D.; Junk, A. J. “How to achieve explainability and transparency

in human ai interaction”. In: Proceedings of the International Conference on Human-

Computer Interaction, 2019, pp. 177–183.

[77] Holsapple, C. W.; Joshi, K. D. “A collaborative approach to ontology design”,

Communications of the ACM, vol. 45–2, February 2002, pp. 42–47.

[78] Horling, B.; Lesser, V. R. “A survey of multi-agent organizational paradigms”, The

Knowledge Engineering Review, vol. 19–4, March 2004, pp. 281–316.

[79] Horrocks, I.; Patel-Schneider, P. F.; Boley, H.; Tabet, S.; Grosof, B.; Dean, M.; et al.. “Swrl:

A semantic web rule language combining owl and ruleml”, W3C Member Submission,

vol. 21–79, May 2004, pp. 1–31.

[80] Howey, R.; Long, D.; Fox, M. “Val: Automatic plan validation, continuous effects and mixed

initiative planning using pddl.” In: Proceedings of the International Conference on Tools

with Artificial Intelligence, 2004, pp. 294–301.

[81] Hubner, J. F.; Sichman, J. S.; Boissier, O. “Developing organised multiagent systems using

the moise+ model: programming issues at the system and agent levels”, International

Journal of Agent-Oriented Software Engineering, vol. 1–3-4, January 2007, pp. 370–395.

[82] Kalibatiene, D.; Vasilecas, O. “Survey on ontology languages”. In: Proceedings of the

International Conference on Business Informatics Research, 2011, pp. 124–141.

[83] Klapiscak, T.; Bordini, R. H. “Jasdl: A practical programming approach combining agent

and semantic web technologies”. In: Proceedings of the International Workshop on

Declarative Agent Languages and Technologies, 2008, pp. 91–110.

[84] Koit, M.; Õim, H. “A computational model of argumentation in agreement negotiation

processes”, Argument & Computation, vol. 6–2, April 2015, pp. 101–129.

[85] Kökciyan, N.; Chapman, M.; Balatsoukas, P.; Sassoon, I.; Essers, K.; Ashworth, M.;

Curcin, V.; Modgil, S.; Parsons, S.; Sklar, E. I. “A collaborative decision support tool for

managing chronic conditions.” In: Proceedings of the World Congress on Medical and

Health Informatics, 2019, pp. 644–648.

[86] Krausburg, T.; Cardoso, R. C.; Damasio, J.; Peres, V.; Farias, G. P.; Engelmann, D. C.;

Hübner, J. F.; Bordini, R. H. “Smart–jacamo: An organisation-based team for the multiagent

programming contest”. In: Proceedings of the Multiagent Progamming Contest, 2018, pp.

72–100.

[87] Kumar, S.; Cohen, P. R. “STAPLE: an agent programming language based on the joint

intention theory”. In: Proceedings of the International Joint Conference on Autonomous

Agents and Multiagent Systems, 2004, pp. 1390–1391.

97

[88] Leucker, M.; Schallhart, C. “A brief account of runtime verification”, The Journal of Logic

and Algebraic Programming, vol. 78–5, June 2009, pp. 293–303.

[89] Loveland, D. W. “Automated theorem proving: a logical basis”. North-Holland, 1978,

Fundamental Studies in Computer Science, vol. 6, 418p.

[90] Ma, X.; Zhao, X.; Guo, P. “Cope with the covid-19 pandemic: Dynamic bed allocation and

patient subsidization in a public healthcare system”, International Journal of Production

Economics, vol. 243, January 2022, pp. 1–14.

[91] Mackway-Jones, K.; Marsden, J.; Windle, J. “Emergency triage: Manchester triage group”.

John Wiley & Sons, 2013, 204p.

[92] Mascardi, V.; Ancona, D.; Barbieri, M.; Bordini, R. H.; Ricci, A. “Cool-agentspeak:

Endowing agentspeak-dl agents with plan exchange and ontology services”, Web

Intelligence and Agent Systems: An International Journal, vol. 12–1, January 2014, pp.

83–107.

[93] Mascardi, V.; Ancona, D.; Bordini, R. H.; Ricci, A. “Cool-agentspeak: Enhancing

agentspeak-dl agents with plan exchange and ontology services”. In: Proceedings of the

International Conferences on Web Intelligence and Intelligent Agent Technology, 2011, pp.

109–116.

[94] Matos, J.; Rodrigues, P. P. “Modeling decisions for hospital bed management - a review”. In:

Proceedings of the International Conference on Health Informatics, 2011, pp. 504–507.

[95] Maudet, N.; Parsons, S.; Rahwan, I. “Argumentation in multiagent systems: Context and

recent developments”. In: Proceedings of the International Workshop on Argumentation

in Multiagent Systems, 2006, pp. 1–16.

[96] McBurney, P.; Parsons, S. “Chance discovery using dialectical argumentation”. In:

Proceedings of the Annual Conference of the Japanese Society for Artificial Intelligence,

2001, pp. 414–424.

[97] McBurney, P.; Parsons, S. “Games that agents play: A formal framework for dialogues

between autonomous agents”, Journal of Logic, Language and Information, vol. 11,

June 2001, pp. 315–334.

[98] McBurney, P.; Parsons, S. “Dialogue games in multiagent systems”, Informal Logic, vol. 22–

3, November 2002, pp. 257–274.

[99] McBurney, P.; Parsons, S. “Locutions for argumentation in agent interaction protocols”.

In: Agent Communication, Eijk, R. M.; Huget, M.-P.; Dignum, F. (Editors), Springer, 2005,

chap. 14, pp. 209–225.

[100] Miller, T. “Explanation in artificial intelligence: Insights from the social sciences”, Artificial

Intelligence, vol. 267, February 2019, pp. 1–38.

98

[101] Moreira, Á. F.; Vieira, R.; Bordini, R. H.; Hübner, J. F. “Agent-oriented programming

with underlying ontological reasoning”. In: Proceedings of the International Workshop

on Declarative Agent Languages and Technologies, Selected and Revised Papers, 2005,

pp. 155–170.

[102] Muñoz, A.; Botía, J. A. “ASBO: argumentation system based on ontologies”. In: Proceedings

of the International Workshop on Cooperative Information Agents, 2008, pp. 191–205.

[103] Nielsen, F.; Minker, W. “Assistive and Adaptive Dialog Management”. Springer

International Publishing, 2017, chap. 9, pp. 167–186.

[104] Nute, D. “Defeasible prolog”. Artificial Intelligence Programs, University of Georgia, 1993,

8p.

[105] O’Connor, M.; Musen, M.; Das, A. “Using the semantic web rule language in the

development of ontology-driven applications”. In: Handbook of Research on Emerging

Rule-Based Languages and Technologies: Open Solutions and Approaches, Giurca, A.;

Gasevic, D.; Taveter, K. (Editors), IGI Global, 2009, chap. 22, pp. 525–539.

[106] Oliveira, J. D.; Engelmann, D. C.; Kniest, D.; Vieira, R.; Bordini, R. H. “Multiagent

interaction to assist visually-impaired and elderly people”, International Journal of

Environmental Research and Public Health, vol. 19–15, July 2022, pp. 1–14.

[107] Oren, N.; Norman, T. J. “Arguing using opponent models”. In: Proceedings of the

International Workshop on Argumentation in Multiagent Systems, 2009, pp. 160–174.

[108] Panisson, A. R. “A framework for reasoning and dialogue in multiagent systems using

argumentation schemes”, Phd thesis, Pontifícia Universidade Católica do Rio Grande do

Sul, 2019, 149p.

[109] Panisson, A. R.; Bordini, R. H. “Knowledge representation for argumentation in agent-

oriented programming languages”. In: Proceedings of the Brazilian Conference on

Intelligent Systems, 2016, pp. 13–18.

[110] Panisson, A. R.; Bordini, R. H. “Argumentation schemes in multi-agent systems: A social

perspective”. In: Proceedings of the International Workshop on Engineering Multiagent

Systems, Revised Selected Papers, 2017, pp. 92–108.

[111] Panisson, A. R.; Bordini, R. H. “Uttering only what is needed: Enthymemes in multi-

agent systems”. In: Proceedings of the International Conference on Autonomous Agents &

Multiagent Systems, 2017, pp. 1670–1672.

[112] Panisson, A. R.; Bordini, R. H. “Towards a computational model of argumentation schemes

in agent-oriented programming languages”. In: Proceedings of the International Joint

Conference on Web Intelligence and Intelligent Agent Technology, 2020, pp. 9–16.

[113] Panisson, A. R.; Engelmann, D. C.; Bordini, R. H. “Engineering explainable agents:

an argumentation-based approach”. In: Proceedings of the International Workshop on

Engineering Multiagent Systems, 2021, pp. 273–291.

99

[114] Panisson, A. R.; Farias, G.; Freitas, A.; Meneguzzi, F.; Vieira, R.; Bordini, R. H. “Planning

interactions for agents in argumentation-based negotiation”. In: Proceedings of the

International Workshop on Argumentation in Multiagent Systems, 2014, pp. 1–15.

[115] Panisson, A. R.; McBurney, P.; Bordini, R. H. “A computational model of argumentation

schemes for multi-agent systems”, Argument & Computation, vol. 12–Preprint,

November 2021, pp. 357–395.

[116] Panisson, A. R.; Meneguzzi, F.; Fagundes, M. S.; Vieira, R.; Bordini, R. H. “Formal

semantics of speech acts for argumentative dialogues”. In: Proceedings of the

International Conference on Autonomous Agents and Multiagent Systems, 2014, pp. 1437–

1438.

[117] Panisson, A. R.; Meneguzzi, F.; Vieira, R.; Bordini, R. H. “An approach for argumentation-

based reasoning using defeasible logic in multi-agent programming languages”. In:

Proceedings of the International Workshop on Argumentation in Multiagent Systems,

2014, pp. 1–15.

[118] Panisson, A. R.; Meneguzzi, F.; Vieira, R.; Bordini, R. H. “Towards practical argumentation-

based dialogues in multi-agent systems”. In: Proceedings of the International Conference

on Web Intelligence and Intelligent Agent Technology, 2015, pp. 151–158.

[119] Panisson, A. R.; Meneguzzi, F.; Vieira, R.; Bordini, R. H. “Towards practical argumentation

in multiagent systems”. In: Proceedings of the Brazilian Conference on Intelligent Systems,

2015, pp. 98–103.

[120] Panisson, A. R.; Sarkadi, S.; McBurney, P.; Parsons, S.; Bordini, R. H. “On the formal

semantics of theory of mind in agent communication”. In: Proceedings of the International

Conference on Agreement Technologies, 2018, pp. 18–32.

[121] Panisson, A. R.; Sarkadi, S.; McBurney, P.; Parsons, S.; Bordini, R. H.; et al.. “Lies, bullshit,

and deception in agent-oriented programming languages”. In: Proceedings of the CEUR

Workshop, 2018, pp. 50–61.

[122] Parsons, S.; McBurney, P. “Argumentation-based dialogues for agent co-ordination”, Group

Decision and Negotiation, vol. 12–5, September 2003, pp. 415–439.

[123] Parsons, S.; Wooldridge, M.; Amgoud, L. “An analysis of formal inter-agent dialogues”.

In: Proceedings of the International Conference on Autonomous Agents and Multiagent

Systems, 2002, pp. 394–401.

[124] Prakken, H. “On dialogue systems with speech acts, arguments, and counterarguments”.

In: Proceedings of the European Workshop on Logics in Artificial Intelligence, 2000, pp.

224–238.

[125] Prakken, H. “An abstract framework for argumentation with structured arguments”,

Argument and Computation, vol. 1–2, June 2011, pp. 93–124.

100

[126] Prakken, H.; et al.. “A persuasive chatbot using a crowd-sourced argument graph and

concerns”, Computational Models of Argument, vol. 326, August 2020, pp. 1–9.

[127] Preece, A.; Braines, D.; Pizzocaro, D.; Parizas, C. “Human-machine conversations

to support multi-agency missions”, ACM SIGMOBILE Mobile Computing and

Communications Review, vol. 18–1, February 2014, pp. 75–84.

[128] Proudlove, N. C.; Gordon, K.; Boaden, R. “Can good bed management solve the

overcrowding in accident and emergency departments?”, Emergency Medicine Journal,

vol. 20–2, March 2003, pp. 149–155.

[129] Prunera, J. J. “Case-based argumentation infrastructure for agent societies”, Master thesis,

Universitat Politècnica de València, 2011, 69p.

[130] Rach, N.; Weber, K.; Pragst, L.; André, E.; Minker, W.; Ultes, S. “Eva: a multimodal

argumentative dialogue system”. In: Proceedings of the International Conference on

Multimodal Interaction, 2018, pp. 551–552.

[131] Rahman, A.; Al Mamun, A.; Islam, A. “Programming challenges of chatbot: Current and

future prospective”. In: Proceedings of the Humanitarian Technology Conference, 2017,

pp. 75–78.

[132] Rahwan, I.; Amgoud, L. “An argumentation-based approach for practical reasoning.” In:

Proceedings of the International Workshop on Argumentation in Multiagent Systems,

2006, pp. 74–90.

[133] Rakshit, G.; Bowden, K. K.; Reed, L.; Misra, A.; Walker, M. “Debbie, the debate bot of the

future”. In: Advanced Social Interaction with Agents, Eskenazi, M.; Devillers, L.; Mariani,

J. (Editors), Springer, 2019, chap. 5, pp. 45–52.

[134] Rao, A. S.; Georgeff, M. P.; et al.. “Bdi agents: from theory to practice.” In: Proceedings of

the International Conference on Multiagent Systems, 1995, pp. 312–319.

[135] Ricci, A.; Piunti, M.; Viroli, M.; Omicini, A. “Environment programming in cartago”. In:

Multi-agent programming, Seghrouchni, A. E. F.; Dix, J.; Dastani, M.; Bordini, R. H.

(Editors), Springer, 2009, chap. 8, pp. 259–288.

[136] Rienstra, T.; Thimm, M.; Oren, N. “Opponent models with uncertainty for strategic

argumentation”. In: Proceedings of the International Joint Conference on Artificial

Intelligence, 2013, pp. 332–338.

[137] Rosenfeld, A.; Richardson, A. “Explainability in human–agent systems”, Autonomous

Agents and Multiagent Systems, vol. 33–6, May 2019, pp. 673–705.

[138] Sadri, F.; Toni, F.; Torroni, P. “Logic agents, dialogues and negotiation: An abductive

approach”. In: Proceedings of the AISB Symposium on Information Agents for E-

Commerce, 2001, pp. 1–8.

101

[139] Sakai, K.; Inago, A.; Higashinaka, R.; Yoshikawa, Y.; Ishiguro, H.; Tomita, J. “Creating large-

scale argumentation structures for dialogue systems”. In: Proceedings of the International

Conference on Language Resources and Evaluation, 2018, pp. 3975–3980.

[140] Sarkadi, Ş.; Panisson, A. R.; Bordini, R. H.; McBurney, P.; Parsons, S. “Towards an

approach for modelling uncertain theory of mind in multi-agent systems”. In: Proceedings

of theInternational Conference on Agreement Technologies, 2018, pp. 3–17.

[141] Schmidt, D.; Bordini, R. H.; Meneguzzi, F.; Vieira, R. “An ontology for collaborative tasks

in multi-agent systems”. In: Proceedings of the Ontobras, 2015, pp. 1–12.

[142] Shawar, B. A.; Atwell, E. “Chatbots: are they really useful?”, LDV Forum, vol. 22, July 2007,

pp. 29–49.

[143] Sirin, E.; Parsia, B.; Grau, B. C.; Kalyanpur, A.; Katz, Y. “Pellet: A practical owl-dl reasoner”,

Journal of Web Semantics, vol. 5–2, June 2007, pp. 51–53.

[144] Tao, X.; Yelland, N.; Zhang, Y. “Fuzzy cognitive modeling for argumentative agent”. In:

Proceedings of the International Conference on Fuzzy Systems, 2012, pp. 1–8.

[145] Teow, K. L.; El-Darzi, E.; Foo, C.; Jin, X.; Sim, J. “Intelligent analysis of acute bed overflow

in a tertiary hospital in singapore”, Journal of Medical Systems, vol. 36, June 2012, pp.

1873–1882.

[146] Thorat, S. A.; Jadhav, V. “A review on implementation issues of rule-based chatbot

systems”. In: Proceedings of the International Conference on Innovative Computing &

Communications, 2020, pp. 1–6.

[147] Tintarev, N.; Masthoff, J. “Designing and evaluating explanations for recommender

systems”. In: Recommender systems handbook, Ricci, F.; Rokach, L.; Shapira, B.; Kantor,

P. B. (Editors), Springer, 2011, chap. 15, pp. 479–510.

[148] Toni, F. “A tutorial on assumption-based argumentation”, Argument and Computation, vol.

5-1, January 2014, pp. 89–117.

[149] Toniolo, A.; Preece, A. D.; Webberley, W.; Norman, T. J.; Sullivan, P.; Dropps, T.

“Conversational intelligence analysis”. In: Proceedings of the International Conference

on Distributed Computing and Networking, 2016, pp. 1–6.

[150] Toulmin, S. E. “The Uses of Argument”. Cambridge University Press, 1958, 262p.

[151] Tran, Q.-N. N.; Low, G. “Mobmas: A methodology for ontology-based multi-agent systems

development”, Information and Software Technology, vol. 50–7, June 2008, pp. 697–722.

[152] Vibbert, M.; Goussard, J.-O.; Beaufort, R. J.; Monnahan, B. P. “Dialog flow management

in hierarchical task dialogs”. US Patent 9,767,794, Source: https://patents.google.com/

patent/US20160042735A1/en, December 9, 2022.

https://patents.google.com/patent/US20160042735A1/en
https://patents.google.com/patent/US20160042735A1/en

102

[153] Vieira, R.; Abdalla, D. S.; Silva, D. M.; Santana, M. R. “Web Semântica: Ontologias, Lógica

de Descrição e Inferência”. Sociedade Brasileira de Computação, 2005, vol. 1, chap. 5, pp.

127–167.

[154] Vieira, R.; Moreira, Á. F.; Wooldridge, M. J.; Bordini, R. H. “On the formal semantics of

speech-act based communication in an agent-oriented programming language”, Journal of

Artificial Intelligence Research, vol. 29, June 2007, pp. 221–267.

[155] Walton, D. “Types of dialogue and burdens of proof.” In: Proceedings of the International

Conference on Computational Models of Argument, 2010, pp. 13–24.

[156] Walton, D. “Using argumentation schemes to find motives and intentions of a rational

agent”, Argument & Computation, vol. 10–Preprint, January 2019, pp. 233–275.

[157] Walton, D.; Krabbe, E. C. “Commitment in dialogue: Basic concepts of interpersonal

reasoning”. SUNY Press, 1995, 235p.

[158] Walton, D.; Reed, C.; Macagno, F. “Argumentation schemes”. Cambridge University Press,

2008, 443p.

[159] Wang, D.; Yang, Q.; Abdul, A.; Lim, B. Y. “Designing theory-driven user-centric explainable

ai”. In: Proceedings of the Conference on Human Factors in Computing Systems, 2019,

pp. 1–15.

[160] Wang, X.; Yuan, C. “Recent advances on human-computer dialogue”, CAAI Transactions on

Intelligence Technology, vol. 1–4, October 2016, pp. 303–312.

[161] Weber, K.; Janowski, K.; Rach, N.; Weitz, K.; Minker, W.; Ultes, S.; André, E. “Predicting

persuasive effectiveness for multimodal behavior adaptation using bipolar weighted

argument graphs”. In: Proceedings of the International Conference on Autonomous Agents

and Multiagent Systems, 2020, pp. 1476–1484.

[162] Wooldridge, M. “An introduction to multiagent systems”. John Wiley & Sons, 2009, 343p.

[163] Wooldridge, M. J. “Computationally grounded theories of agency”. In: Proceedings of the

International Conference on Multiagent Systems, 2000, pp. 13–22.

[164] Ye, L. R.; Johnson, P. E. “The impact of explanation facilities on user acceptance of expert

systems advice”, MIS Quarterly, vol. 19, June 1995, pp. 157–172.

[165] Zhang, C.; Eken, T.; Jørgensen, S. B.; Thoresen, M.; Søvik, S. “Effects of patient-level risk

factors, departmental allocation and seasonality on intrahospital patient transfer patterns:

network analysis applied on a norwegian single-centre data set”, BMJ Open, vol. 12–3,

March 2022, pp. 1–12.

PDDL Plan Validator

Validation Report

1 Domain

Domain: hospital
Problem: aloc

1.1 Files

Domain file: test\domain.pddl
Problem file: test\problem.pddl
Plan file: test\plan.pddl

2 Plan

1. (aloc-Oncologia 34345454354 100a genero–Masculino genero–Masculino)

2. (aloc-Oncologia 93092302930 100c genero–Masculino genero–Masculino)

3. (aloc-Oncologia 09090909091 100b genero–Masculino genero–Masculino)

4. (aloc-Medicina-Interna 23433454353 112a genero–Feminino genero–Feminino)

5. (aloc-Medicina-Interna 34343434324 112d genero–Feminino genero–Feminino)

6. (aloc-Neurologia 23266656502 113b genero–Masculino genero–Masculino)

7. (aloc-Cardiologia 32323233232 114a genero–Masculino genero–Masculino)

8. (aloc-Neurologia 32135131355 115b genero–Feminino genero–Feminino)

9. (aloc-Cardiologia 23102103133 116b genero–Feminino genero–Feminino)

10. (aloc-Oncologia 54532513216 117e genero–Feminino genero–Feminino)

3 Validation

1. (aloc-Oncologia 34345454354 100a genero–Masculino genero–Masculino)

• +(alocado 34345454354)

• +(ocupado 100a)

• +(in 34345454354 100a)

2. (aloc-Oncologia 93092302930 100c genero–Masculino genero–Masculino)

• +(alocado 93092302930)

• +(ocupado 100c)

• +(in 93092302930 100c)

3. (aloc-Oncologia 09090909091 100b genero–Masculino genero–Masculino)

• +(alocado 09090909091)

1

APPENDIX A – BED-ALLOCATION PLAN VALIDATION REPORT

• +(ocupado 100b)

• +(in 09090909091 100b)

4. (aloc-Medicina-Interna 23433454353 112a genero–Feminino genero–Feminino)

• +(alocado 23433454353)

• +(ocupado 112a)

• +(in 23433454353 112a)

5. (aloc-Medicina-Interna 34343434324 112d genero–Feminino genero–Feminino)

• +(alocado 34343434324)

• +(ocupado 112d)

• +(in 34343434324 112d)

6. (aloc-Neurologia 23266656502 113b genero–Masculino genero–Masculino)

• +(alocado 23266656502)

• +(ocupado 113b)

• +(in 23266656502 113b)

7. (aloc-Cardiologia 32323233232 114a genero–Masculino genero–Masculino)

• +(alocado 32323233232)

• +(ocupado 114a)

• +(in 32323233232 114a)

8. (aloc-Neurologia 32135131355 115b genero–Feminino genero–Feminino)

• +(alocado 32135131355)

• +(ocupado 115b)

• +(in 32135131355 115b)

9. (aloc-Cardiologia 23102103133 116b genero–Feminino genero–Feminino)

• +(alocado 23102103133)

• +(ocupado 116b)

• +(in 23102103133 116b)

10. (aloc-Oncologia 54532513216 117e genero–Feminino genero–Feminino)

• +(alocado 54532513216)

• +(ocupado 117e)

• +(in 54532513216 117e)

Goal achieved

2

MAS log from specialist S1

[NetworkListener] Started listener bound to [{0}]
[HttpServer] [{0}] Started.
[Cartago] Workspace wp created.
[Cartago] getJoinedWorkspaces: [main]
[Cartago] artifact dial4jaca:
br.pucrs.smart.Dial4JaCa.Dial4JaCaArtifact() at wp created.
[Cartago] artifact rv4jaca: br.pucrs.smart.rv4JaCa.RV4JaCaArtifact()
at wp created.
[Cartago] artifact pddl:
br.pucrs.smart.validator.ValidatorArtifact() at wp created.
[Cartago] artifact optimiser:
br.pucrs.smart.optimiser.OptimiserArtifact() at wp created.
[Cartago] artifact postgres:
br.pucrs.smart.postgresql.PostgresArtifact() at wp created.
[OntologyArtifact] Importing ontology from
src/resources/HospitalBedAllocationNoIndividualsand5rules-pt.owl
[OntologyArtifact] Ontology ready!
[Cartago] artifact onto:
br.pucrs.smart.ontology.mas.OntologyArtifact("src/resources/Hospital
BedAllocationNoIndividualsand5rules-pt.owl") at wp created.
[assistant] Assistant agent enabled.
[optimiser] joinned workspace wp
[operator] joinned workspace wp
[validator] joinned workspace wp
[database] joinned workspace wp
[validator] focusing on artifact pddl (at workspace wp) using
namespace default
[operator] focusing on artifact dial4jaca (at workspace wp) using
namespace default
[ontology_specialist] joinned workspace wp
[database] focusing on artifact postgres (at workspace wp) using
namespace default
[optimiser] focusing on artifact optimiser (at workspace wp) using
namespace default
[ontology_specialist] focusing on artifact onto (at workspace wp)
using namespace default
[database] Database specialist agent enabled.
[operator] Communication specialist agent enabled.
[optimiser] Optimiser agent enabled.
[ontology_specialist] focusing on artifact postgres (at workspace
wp) using namespace default
[validator] Validator agent enabled.
[ontology_specialist] Agent ontology_specialist enabled.
[operator] Request received - Get Suggestion from Dialog
[operator] Chatbot of operator suggestions to allocate: ["Marisa da
Costa"]
[assistant] Agent operator requesting suggestion.

APPENDIX B – EVALUATION OF SYSTEM FUNCTIONALITIES –

LOGS

[optimiser] Agent assistant requesting optmised suggestion.
[assistant] Result received from agent optimiser
[database] Agent optimiser wants to save the optimiser result
[operator] Answering to chatbot: Eu posso sugerir colocar o/a
paciente Marisa da Costa no leito 402b. Você gostaria que eu
confirmasse essa alocação?
[optimiser] Resultado da otimização salvo no banco de dados
[operator] Request received - Get Suggestion - no from Dialog
[operator] Chatbot of operator is requesting the cancellation of the
suggested allocation.
[assistant] Agent operator requesting cancellation of the optmised
allocation.
[optimiser] Agent assistant requesting cancellation of the last
optmised allocation.
[database] Agent optimiser wants to cancel the last optmised
allocation
[optimiser] Agent database is returning about the cancellation of
the last optmised allocation.
[assistant] Agent optimiser is answering about the cancellation of
the optmised allocation.
[operator] Answering to chatbot: Ok, solicitação concluida sem
alocar nenhum paciente.

RV4JaCa log from specialist S1

{"msgId":"mid1","isReply":"nirt","performative":"question","sender":"oper
ator","receiver":"assistant","content":{"name":"getSuggestionByPatient","
prop1":{"pos1":"\"Marisa da Costa\""},"isNegated":false}}
{"msgId":"mid2","isReply":"nirt","performative":"question","sender":"assi
stant","receiver":"optimiser","content":{"name":"getSuggestionByPatient",
"prop1":{"pos1":"\"Marisa da Costa\""},"isNegated":false}}
{"msgId":"mid3","isReply":"nirt","performative":"assert","sender":"optimi
ser","receiver":"assistant","content":{"name":"suggestionByPatient","prop
1":{"prop2":{"name":"notAlloc","isNegated":false},"prop1":"\"true\"","nam
e":"optimiserResult","isNegated":false,"prop3":{"prop1":{"prop1":{"prop2"
:"\"402b\"","prop1":"\"Marisa da
Costa\"","name":"alloc","isNegated":false}},"name":"sugestedAllocation","
isNegated":false}},"isNegated":false}}
{"msgId":"mid4","isReply":"nirt","performative":"question","sender":"opti
miser","receiver":"database","content":{"name":"saveOptimiserResult","isN
egated":false}}
{"msgId":"mid5","isReply":"nirt","performative":"assert","sender":"assist
ant","receiver":"operator","content":{"prop2":"\"Eu posso sugerir colocar
o/a paciente Marisa da Costa no leito 402b. Você gostaria que eu
confirmasse essa
alocação?\"","name":"answer","prop1":{"prop1":{"prop2":{"name":"notAlloc"
,"isNegated":false},"prop1":"\"true\"","name":"optimiserResult","isNegate
d":false,"prop3":{"prop1":{"prop1":{"prop2":"\"402b\"","prop1":"\"Marisa
da
Costa\"","name":"alloc","isNegated":false}},"name":"sugestedAllocation","
isNegated":false}},"name":"suggestionByPatient","isNegated":false},"isNeg
ated":false}}
{"msgId":"mid6","isReply":"nirt","performative":"assert","sender":"databa
se","receiver":"optimiser","content":{"name":"savedOptimiserResult","prop
1":"\"Success\"","isNegated":false}}
{"msgId":"mid7","isReply":"nirt","performative":"question","sender":"oper
ator","receiver":"assistant","content":{"name":"cancelAllocByOptimization
","isNegated":false}}
{"msgId":"mid8","isReply":"nirt","performative":"question","sender":"assi
stant","receiver":"optimiser","content":{"name":"cancelOpAlloc","isNegate
d":false}}
{"msgId":"mid9","isReply":"nirt","performative":"question","sender":"opti
miser","receiver":"database","content":{"name":"cancelOpAlloc","isNegated
":false}}
{"msgId":"mid10","isReply":"nirt","performative":"assert","sender":"datab
ase","receiver":"optimiser","content":{"name":"cancelOpAllocation","prop1
":"\"Success\"","isNegated":false}}
{"msgId":"mid11","isReply":"nirt","performative":"assert","sender":"optim
iser","receiver":"assistant","content":{"name":"cancelOpAllocation","prop
1":"\"Success\"","isNegated":false}}
{"msgId":"mid12","isReply":"nirt","performative":"assert","sender":"assis
tant","receiver":"operator","content":{"prop2":"\"Ok, solicitação
concluida sem alocar nenhum
paciente.\"","name":"answer","prop1":{"prop1":"\"Success\"","name":"cance
lOpAllocation","isNegated":false},"isNegated":false}}

MAS log from specialist S2

[NetworkListener] Started listener bound to [{0}]
[HttpServer] [{0}] Started.
[Cartago] Workspace wp created.
[Cartago] getJoinedWorkspaces: [main]
[Cartago] artifact dial4jaca:
br.pucrs.smart.Dial4JaCa.Dial4JaCaArtifact() at wp created.
[Cartago] artifact rv4jaca: br.pucrs.smart.rv4JaCa.RV4JaCaArtifact() at
wp created.
[Cartago] artifact pddl: br.pucrs.smart.validator.ValidatorArtifact() at
wp created.
[Cartago] artifact optimiser:
br.pucrs.smart.optimiser.OptimiserArtifact() at wp created.
[Cartago] artifact postgres: br.pucrs.smart.postgresql.PostgresArtifact()
at wp created.
[OntologyArtifact] Importing ontology from
src/resources/HospitalBedAllocationNoIndividualsand5rules-pt.owl
[OntologyArtifact] Ontology ready!
[Cartago] artifact onto:
br.pucrs.smart.ontology.mas.OntologyArtifact("src/resources/HospitalBedAl
locationNoIndividualsand5rules-pt.owl") at wp created.
[assistant] Assistant agent enabled.
[optimiser] joinned workspace wp
[optimiser] focusing on artifact optimiser (at workspace wp) using
namespace default
[validator] joinned workspace wp
[validator] focusing on artifact pddl (at workspace wp) using namespace
default
[database] joinned workspace wp
[database] focusing on artifact postgres (at workspace wp) using
namespace default
[operator] joinned workspace wp
[ontology_specialist] joinned workspace wp
[database] Database specialist agent enabled.
[validator] Validator agent enabled.
[optimiser] Optimiser agent enabled.
[operator] focusing on artifact dial4jaca (at workspace wp) using
namespace default
[ontology_specialist] focusing on artifact onto (at workspace wp) using
namespace default
[operator] Communication specialist agent enabled.
[ontology_specialist] focusing on artifact postgres (at workspace wp)
using namespace default
[ontology_specialist] Agent ontology_specialist enabled.
[operator] Request received - Get Suggestion from Dialog
[operator] Chatbot of operator suggestions to allocate: ["Maria da
Silva"]
[assistant] Agent operator requesting suggestion.
[optimiser] Agent assistant requesting optmised suggestion.
[assistant] Result received from agent optimiser
[database] Agent optimiser wants to save the optimiser result
[operator] Answering to chatbot: Eu posso sugerir colocar o/a paciente
Maria da Silva no leito 103a. Você gostaria que eu confirmasse essa
alocação?
[optimiser] Resultado da otimização salvo no banco de dados
[operator] Request received - Get Suggestion - no from Dialog

[operator] Chatbot of operator is requesting the cancellation of the
suggested allocation.
[assistant] Agent operator requesting cancellation of the optmised
allocation.
[optimiser] Agent assistant requesting cancellation of the last optmised
allocation.
[database] Agent optimiser wants to cancel the last optmised allocation
[optimiser] Agent database is returning about the cancellation of the
last optmised allocation.
[assistant] Agent optimiser is answering about the cancellation of the
optmised allocation.
[operator] Answering to chatbot: Ok, solicitação concluida sem alocar
nenhum paciente.
[operator] Request received - Get Suggestion from Dialog
[operator] Chatbot of operator suggestions to allocate: ["Maria da
Silva"]
[assistant] Agent operator requesting suggestion.
[optimiser] Agent assistant requesting optmised suggestion.
[assistant] Result received from agent optimiser
[database] Agent optimiser wants to save the optimiser result
[operator] Answering to chatbot: Eu posso sugerir colocar o/a paciente
Maria da Silva no leito 103a. Você gostaria que eu confirmasse essa
alocação?
[optimiser] Resultado da otimização salvo no banco de dados
[operator] Request received - Get Optimised Allocation from Dialog
[operator] Chatbot of operator is requesting an optimised allocation.
[assistant] Agent operator requesting an optmised allocation.
[optimiser] Agent assistant requesting an optmised allocation.
[optimiser] Calling Optimiser.
[database] Agent optimiser wants to save the optimiser result
[assistant] Result received from agent optimiser
[operator] Answering to chatbot: Gerei uma alocação otimizada, porém não
conseguirei alocar todos os pacientes pois não localizei leitos adequados
para os pacientes Vitor Almeida, e Daniel Souza. Você pode ver minha
sugestão no menu 'Alocação otimizada' aqui ao lado. Você quer que eu
confirme essa alocação?
[optimiser] Resultado da otimização salvo no banco de dados
[operator] Request received - Get Optimised Allocation - yes from Dialog
[operator] Chatbot of operator is requesting the confirmation of the
optimised allocation.
[assistant] Agent operator requesting confirmation of the optmised
allocation.
[optimiser] Agent assistant requesting confirmation of the optmised
allocation.
[database] Agent optimiser wants to allocate patients using optimizer
result
[assistant] Communication error -- no_applicable: Found a goal for which
there is no applicable plan:
+!kqml_received(optimiser,assert,allocatedOpPatients("Erro"),mid29)
[operator] Request received - Get Validation Result from Dialog
[operator] Chatbot of operator is requesting plan validation.
[assistant] Agent operator requesting validation result.
[validator] Agent assistant requesting validation result.
[assistant] Response received from agent validador
[validator] Agent assistant requesting to save result in validation.
[database] Agent validator wants to update the validation result
[operator] Answering to chatbot: O seu plano de alocação de leitos possui
falhas. Houve um erro ao alocar os seguintes pacientes: Vitor Almeida no

leito 301b - Pois o leito 301b não é de Tipo de Encaminhamento Agudo,
e Especialidade Gastro como é o caso do paciente. Devo confirmar a
alocação mesmo assim ou prefere que eu sugira uma alocação otimizada?
[validator] Agent database is answering about the update.
[assistant] Retorno da validação salvo no banco de dados
[operator] Request received - Get Validation Result - optimize from
Dialog
[operator] Chatbot of operator is requesting an optimised allocation.
[assistant] Agent operator requesting an optmised allocation.
[optimiser] Agent assistant requesting an optmised allocation.
[optimiser] Calling Optimiser.
[database] Agent optimiser wants to save the optimiser result
[assistant] Result received from agent optimiser
[operator] Answering to chatbot: Desculpe-me, mas com os dados
disponíveis atualmente, não foi possível gerar uma alocação otimizada.
[optimiser] Resultado da otimização salvo no banco de dados
[operator] Request received - Get Validation Result from Dialog
[operator] Chatbot of operator is requesting plan validation.
[assistant] Agent operator requesting validation result.
[validator] Agent assistant requesting validation result.
[assistant] Response received from agent validador
[operator] Answering to chatbot: Desculpe, não recebi o seu plano de
alocação para validar. Por favor, envie novamente.
[assistant] Communication error -- no_applicable: Found a goal for which
there is no applicable plan: +!saveResult(result("NULL"),"Desculpe, não
recebi o seu plano de alocação para validar. Por favor, envie
novamente.")[source(self)]
[operator] Request received - Get Validation Result from Dialog
[operator] Chatbot of operator is requesting plan validation.
[assistant] Agent operator requesting validation result.
[validator] Agent assistant requesting validation result.
[assistant] Response received from agent validador
[operator] Answering to chatbot: Desculpe, não recebi o seu plano de
alocação para validar. Por favor, envie novamente.
[assistant] Communication error -- no_applicable: Found a goal for which
there is no applicable plan: +!saveResult(result("NULL"),"Desculpe, não
recebi o seu plano de alocação para validar. Por favor, envie
novamente.")[source(self)]
[operator] Request received - Get Validation Result from Dialog
[operator] Chatbot of operator is requesting plan validation.
[assistant] Agent operator requesting validation result.
[validator] Agent assistant requesting validation result.
[assistant] Response received from agent validador
[operator] Answering to chatbot: O seu plano de alocação de leitos possui
falhas. Houve um erro ao alocar os seguintes pacientes: Vitor Almeida no
leito 301b - Pois o leito 301b não é de Tipo de Encaminhamento Agudo,
e Especialidade Gastro como é o caso do paciente. Devo confirmar a
alocação mesmo assim ou prefere que eu sugira uma alocação otimizada?
[validator] Agent assistant requesting to save result in validation.
[database] Agent validator wants to update the validation result
[validator] Agent database is answering about the update.
[assistant] Retorno da validação salvo no banco de dados
[operator] Request received - Get Validation Result - confirm from Dialog
[operator] Chatbot of operator is requesting the confirmation of the
allocation.
[assistant] Agent operator requesting allocation based on the last
validation result.
[validator] Agent assistant requesting allocation.

[database] Agent validator wants to allocate patients using validation
result
[validator] Agent database is answering about the allocation.
[operator] Answering to chatbot: Ok, pacientes alocados conforme
solicitado

RV4JaCa log from specialist S2

{"msgId":"mid1","isReply":"nirt","performative":"question","sender":"oper
ator","receiver":"assistant","content":{"name":"getSuggestionByPatient","
prop1":{"arr":["\"Maria da Silva\""],"length":1},"isNegated":false}}
{"msgId":"mid2","isReply":"nirt","performative":"question","sender":"assi
stant","receiver":"optimiser","content":{"name":"getSuggestionByPatient",
"prop1":{"arr":["\"Maria da Silva\""],"length":1},"isNegated":false}}
{"msgId":"mid3","isReply":"nirt","performative":"assert","sender":"optimi
ser","receiver":"assistant","content":{"name":"suggestionByPatient","prop
1":{"prop2":{"prop1":{"length":0},"name":"notAlloc","isNegated":false},"p
rop1":"\"true\"","name":"optimiserResult","isNegated":false,"prop3":{"pro
p1":{"arr":[{"prop2":"\"103a\"","prop1":"\"Maria da
Silva\"","name":"alloc","isNegated":false}],"length":1},"name":"sugestedA
llocation","isNegated":false}},"isNegated":false}}
{"msgId":"mid4","isReply":"nirt","performative":"question","sender":"opti
miser","receiver":"database","content":{"name":"saveOptimiserResult","isN
egated":false}}
{"msgId":"mid5","isReply":"nirt","performative":"assert","sender":"assist
ant","receiver":"operator","content":{"prop2":"\"Eu posso sugerir colocar
o/a paciente Maria da Silva no leito 103a. Você gostaria que eu
confirmasse essa
alocação?\"","name":"answer","prop1":{"prop1":{"prop2":{"prop1":{"length"
:0},"name":"notAlloc","isNegated":false},"prop1":"\"true\"","name":"optim
iserResult","isNegated":false,"prop3":{"prop1":{"arr":[{"prop2":"\"103a\"
","prop1":"\"Maria da
Silva\"","name":"alloc","isNegated":false}],"length":1},"name":"sugestedA
llocation","isNegated":false}},"name":"suggestionByPatient","isNegated":f
alse},"isNegated":false}}
{"msgId":"mid6","isReply":"nirt","performative":"assert","sender":"databa
se","receiver":"optimiser","content":{"name":"savedOptimiserResult","prop
1":"\"Success\"","isNegated":false}}
{"msgId":"mid7","isReply":"nirt","performative":"question","sender":"oper
ator","receiver":"assistant","content":{"name":"cancelAllocByOptimization
","isNegated":false}}
{"msgId":"mid8","isReply":"nirt","performative":"question","sender":"assi
stant","receiver":"optimiser","content":{"name":"cancelOpAlloc","isNegate
d":false}}
{"msgId":"mid9","isReply":"nirt","performative":"question","sender":"opti
miser","receiver":"database","content":{"name":"cancelOpAlloc","isNegated
":false}}
{"msgId":"mid10","isReply":"nirt","performative":"assert","sender":"datab
ase","receiver":"optimiser","content":{"name":"cancelOpAllocation","prop1
":"\"Success\"","isNegated":false}}
{"msgId":"mid11","isReply":"nirt","performative":"assert","sender":"optim
iser","receiver":"assistant","content":{"name":"cancelOpAllocation","prop
1":"\"Success\"","isNegated":false}}
{"msgId":"mid12","isReply":"nirt","performative":"assert","sender":"assis
tant","receiver":"operator","content":{"prop2":"\"Ok, solicitação
concluida sem alocar nenhum
paciente.\"","name":"answer","prop1":{"prop1":"\"Success\"","name":"cance
lOpAllocation","isNegated":false},"isNegated":false}}
{"msgId":"mid13","isReply":"nirt","performative":"question","sender":"ope
rator","receiver":"assistant","content":{"name":"getSuggestionByPatient",
"prop1":{"arr":["\"Maria da Silva\""],"length":1},"isNegated":false}}
{"msgId":"mid14","isReply":"nirt","performative":"question","sender":"ass
istant","receiver":"optimiser","content":{"name":"getSuggestionByPatient"
,"prop1":{"arr":["\"Maria da Silva\""],"length":1},"isNegated":false}}

{"msgId":"mid15","isReply":"nirt","performative":"assert","sender":"optim
iser","receiver":"assistant","content":{"name":"suggestionByPatient","pro
p1":{"prop2":{"prop1":{"length":0},"name":"notAlloc","isNegated":false},"
prop1":"\"true\"","name":"optimiserResult","isNegated":false,"prop3":{"pr
op1":{"arr":[{"prop2":"\"103a\"","prop1":"\"Maria da
Silva\"","name":"alloc","isNegated":false}],"length":1},"name":"sugestedA
llocation","isNegated":false}},"isNegated":false}}
{"msgId":"mid16","isReply":"nirt","performative":"question","sender":"opt
imiser","receiver":"database","content":{"name":"saveOptimiserResult","is
Negated":false}}
{"msgId":"mid17","isReply":"nirt","performative":"assert","sender":"assis
tant","receiver":"operator","content":{"prop2":"\"Eu posso sugerir
colocar o/a paciente Maria da Silva no leito 103a. Você gostaria que eu
confirmasse essa
alocação?\"","name":"answer","prop1":{"prop1":{"prop2":{"prop1":{"length"
:0},"name":"notAlloc","isNegated":false},"prop1":"\"true\"","name":"optim
iserResult","isNegated":false,"prop3":{"prop1":{"arr":[{"prop2":"\"103a\"
","prop1":"\"Maria da
Silva\"","name":"alloc","isNegated":false}],"length":1},"name":"sugestedA
llocation","isNegated":false}},"name":"suggestionByPatient","isNegated":f
alse},"isNegated":false}}
{"msgId":"mid18","isReply":"nirt","performative":"assert","sender":"datab
ase","receiver":"optimiser","content":{"name":"savedOptimiserResult","pro
p1":"\"Success\"","isNegated":false}}
{"msgId":"mid19","isReply":"nirt","performative":"question","sender":"ope
rator","receiver":"assistant","content":{"name":"getOptimisedAllocation",
"isNegated":false}}
{"msgId":"mid20","isReply":"nirt","performative":"question","sender":"ass
istant","receiver":"optimiser","content":{"name":"getOptimisedAllocation"
,"isNegated":false}}
{"msgId":"mid21","isReply":"nirt","performative":"question","sender":"opt
imiser","receiver":"database","content":{"name":"saveOptimiserResult","is
Negated":false}}
{"msgId":"mid22","isReply":"nirt","performative":"assert","sender":"optim
iser","receiver":"assistant","content":{"prop2":{"prop1":{"arr":["\"Vitor
Almeida\"","\"Daniel
Souza\""],"length":2},"name":"notAlloc","isNegated":false},"name":"optimi
serResult","prop1":"\"false\"","isNegated":false,"prop3":{"prop1":{"arr":
[{"prop2":"\"205b\"","prop1":"\"Janaina de
Vargas\"","name":"alloc","isNegated":false},{"prop2":"\"205a\"","prop1":"
\"Maria da
Silva\"","name":"alloc","isNegated":false},{"prop2":"\"402a\"","prop1":"\
"Felipe
Pinto\"","name":"alloc","isNegated":false},{"prop2":"\"402b\"","prop1":"\
"Antônio
Marques\"","name":"alloc","isNegated":false},{"prop2":"\"301c\"","prop1":
"\"Vicente
Nunes\"","name":"alloc","isNegated":false},{"prop2":"\"103a\"","prop1":"\
"Marisa da
Costa\"","name":"alloc","isNegated":false}],"length":6},"name":"sugestedA
llocation","isNegated":false}}}
{"msgId":"mid23","isReply":"nirt","performative":"assert","sender":"assis
tant","receiver":"operator","content":{"prop2":"\"Gerei uma alocação
otimizada, porém não conseguirei alocar todos os pacientes pois não
localizei leitos adequados para os pacientes Vitor Almeida, e Daniel
Souza. Você pode ver minha sugestão no menu \u0027Alocação
otimizada\u0027 aqui ao lado. Você quer que eu confirme essa
alocação?\"","name":"answer","prop1":{"prop2":{"prop1":{"arr":["\"Vitor

Almeida\"","\"Daniel
Souza\""],"length":2},"name":"notAlloc","isNegated":false},"prop1":"\"fal
se\"","name":"optimiserResult","isNegated":false,"prop3":{"prop1":{"arr":
[{"prop2":"\"205b\"","prop1":"\"Janaina de
Vargas\"","name":"alloc","isNegated":false},{"prop2":"\"205a\"","prop1":"
\"Maria da
Silva\"","name":"alloc","isNegated":false},{"prop2":"\"402a\"","prop1":"\
"Felipe
Pinto\"","name":"alloc","isNegated":false},{"prop2":"\"402b\"","prop1":"\
"Antônio
Marques\"","name":"alloc","isNegated":false},{"prop2":"\"301c\"","prop1":
"\"Vicente
Nunes\"","name":"alloc","isNegated":false},{"prop2":"\"103a\"","prop1":"\
"Marisa da
Costa\"","name":"alloc","isNegated":false}],"length":6},"name":"sugestedA
llocation","isNegated":false}},"isNegated":false}}
{"msgId":"mid24","isReply":"nirt","performative":"assert","sender":"datab
ase","receiver":"optimiser","content":{"name":"savedOptimiserResult","pro
p1":"\"Success\"","isNegated":false}}
{"msgId":"mid26","isReply":"nirt","performative":"question","sender":"ass
istant","receiver":"optimiser","content":{"name":"allocOpPatients","isNeg
ated":false}}
{"msgId":"mid27","isReply":"nirt","performative":"question","sender":"opt
imiser","receiver":"database","content":{"name":"allocOpPatients","isNega
ted":false}}
{"msgId":"mid25","isReply":"nirt","performative":"question","sender":"ope
rator","receiver":"assistant","content":{"name":"confirmAllocByOptimizati
on","isNegated":false}}
{"msgId":"mid29","isReply":"nirt","performative":"assert","sender":"optim
iser","receiver":"assistant","content":{"name":"allocatedOpPatients","pro
p1":"\"Erro\"","isNegated":false}}
{"msgId":"mid30","isReply":"nirt","performative":"question","sender":"ope
rator","receiver":"assistant","content":{"name":"getValidationResult","is
Negated":false}}
{"msgId":"mid31","isReply":"nirt","performative":"question","sender":"ass
istant","receiver":"validator","content":{"name":"getValidationResult","i
sNegated":false}}
{"msgId":"mid32","isReply":"nirt","performative":"assert","sender":"valid
ator","receiver":"assistant","content":{"prop2":"\"false\"","name":"resul
t","prop1":"\"c10473aa-426b-4eb3-b0bd-
ffd1c9cdee4a\"","isNegated":false,"prop3":{"arr":[{"prop2":"\"301b\"","pr
op1":"\"Vitor
Almeida\"","name":"err","isNegated":false,"prop3":{"arr":[{"prop2":"\"Tip
o de Encaminhamento
\"","prop1":"\"missingPositive\"","name":"mot","isNegated":false,"prop3":
"\"Agudo\""},{"prop2":"\"Especialidade
\"","prop1":"\"missingPositive\"","name":"mot","isNegated":false,"prop3":
"\"Gastro\""}],"length":2}}],"length":1}}}
{"msgId":"mid33","isReply":"nirt","performative":"assert","sender":"assis
tant","receiver":"operator","content":{"prop2":"\"O seu plano de alocação
de leitos possui falhas. Houve um erro ao alocar os seguintes pacientes:
Vitor Almeida no leito 301b - Pois o leito 301b não é de Tipo de
Encaminhamento Agudo, e Especialidade Gastro como é o caso do
paciente. Devo confirmar a alocação mesmo assim ou prefere que eu sugira
uma alocação
otimizada?\"","name":"answer","prop1":{"prop2":"\"false\"","prop1":"\"c10
473aa-426b-4eb3-b0bd-
ffd1c9cdee4a\"","name":"result","isNegated":false,"prop3":{"arr":[{"prop2

":"\"301b\"","prop1":"\"Vitor
Almeida\"","name":"err","isNegated":false,"prop3":{"arr":[{"prop2":"\"Tip
o de Encaminhamento
\"","prop1":"\"missingPositive\"","name":"mot","isNegated":false,"prop3":
"\"Agudo\""},{"prop2":"\"Especialidade
\"","prop1":"\"missingPositive\"","name":"mot","isNegated":false,"prop3":
"\"Gastro\""}],"length":2}}],"length":1}},"isNegated":false}}
{"msgId":"mid34","isReply":"nirt","performative":"question","sender":"ass
istant","receiver":"validator","content":{"prop2":"\"O seu plano de
alocação de leitos possui falhas. Houve um erro ao alocar os seguintes
pacientes: Vitor Almeida no leito 301b - Pois o leito 301b não é de Tipo
de Encaminhamento Agudo, e Especialidade Gastro como é o caso do
paciente. Devo confirmar a alocação mesmo assim ou prefere que eu sugira
uma alocação otimizada?\"","name":"updateValidation","prop1":"\"c10473aa-
426b-4eb3-b0bd-ffd1c9cdee4a\"","isNegated":false}}
{"msgId":"mid35","isReply":"nirt","performative":"question","sender":"val
idator","receiver":"database","content":{"prop2":"\"O seu plano de
alocação de leitos possui falhas. Houve um erro ao alocar os seguintes
pacientes: Vitor Almeida no leito 301b - Pois o leito 301b não é de Tipo
de Encaminhamento Agudo, e Especialidade Gastro como é o caso do
paciente. Devo confirmar a alocação mesmo assim ou prefere que eu sugira
uma alocação otimizada?\"","name":"updateValidation","prop1":"\"c10473aa-
426b-4eb3-b0bd-ffd1c9cdee4a\"","isNegated":false}}
{"msgId":"mid36","isReply":"nirt","performative":"assert","sender":"datab
ase","receiver":"validator","content":{"name":"updatedValidation","prop1"
:"\"Success\"","isNegated":false}}
{"msgId":"mid37","isReply":"nirt","performative":"assert","sender":"valid
ator","receiver":"assistant","content":{"name":"updatedValidation","prop1
":"\"Success\"","isNegated":false}}
{"msgId":"mid38","isReply":"nirt","performative":"question","sender":"ope
rator","receiver":"assistant","content":{"name":"getOptimisedAllocation",
"isNegated":false}}
{"msgId":"mid39","isReply":"nirt","performative":"question","sender":"ass
istant","receiver":"optimiser","content":{"name":"getOptimisedAllocation"
,"isNegated":false}}
{"msgId":"mid40","isReply":"nirt","performative":"question","sender":"opt
imiser","receiver":"database","content":{"name":"saveOptimiserResult","is
Negated":false}}
{"msgId":"mid41","isReply":"nirt","performative":"assert","sender":"optim
iser","receiver":"assistant","content":{"prop2":{"prop1":{"arr":["\"Vitor
Almeida\"","\"Daniel
Souza\""],"length":2},"name":"notAlloc","isNegated":false},"name":"optimi
serResult","prop1":"\"false\"","isNegated":false,"prop3":{"prop1":{"lengt
h":0},"name":"sugestedAllocation","isNegated":false}}}
{"msgId":"mid42","isReply":"nirt","performative":"assert","sender":"assis
tant","receiver":"operator","content":{"prop2":"\"Desculpe-me, mas com os
dados disponíveis atualmente, não foi possível gerar uma alocação
otimizada.\"","name":"answer","prop1":{"prop2":{"prop1":{"arr":["\"Vitor
Almeida\"","\"Daniel
Souza\""],"length":2},"name":"notAlloc","isNegated":false},"prop1":"\"fal
se\"","name":"optimiserResult","isNegated":false,"prop3":{"prop1":{"lengt
h":0},"name":"sugestedAllocation","isNegated":false}},"isNegated":false}}
{"msgId":"mid43","isReply":"nirt","performative":"assert","sender":"datab
ase","receiver":"optimiser","content":{"name":"savedOptimiserResult","pro
p1":"\"Success\"","isNegated":false}}
{"msgId":"mid44","isReply":"nirt","performative":"question","sender":"ope
rator","receiver":"assistant","content":{"name":"getValidationResult","is
Negated":false}}

{"msgId":"mid45","isReply":"nirt","performative":"question","sender":"ass
istant","receiver":"validator","content":{"name":"getValidationResult","i
sNegated":false}}
{"msgId":"mid46","isReply":"nirt","performative":"assert","sender":"valid
ator","receiver":"assistant","content":{"name":"result","prop1":"\"NULL\"
","isNegated":false}}
{"msgId":"mid47","isReply":"nirt","performative":"assert","sender":"assis
tant","receiver":"operator","content":{"prop2":"\"Desculpe, não recebi o
seu plano de alocação para validar. Por favor, envie
novamente.\"","name":"answer","prop1":{"prop1":"\"NULL\"","name":"result"
,"isNegated":false},"isNegated":false}}
{"msgId":"mid48","isReply":"nirt","performative":"question","sender":"ope
rator","receiver":"assistant","content":{"name":"getValidationResult","is
Negated":false}}
{"msgId":"mid49","isReply":"nirt","performative":"question","sender":"ass
istant","receiver":"validator","content":{"name":"getValidationResult","i
sNegated":false}}
{"msgId":"mid50","isReply":"nirt","performative":"assert","sender":"valid
ator","receiver":"assistant","content":{"name":"result","prop1":"\"NULL\"
","isNegated":false}}
{"msgId":"mid51","isReply":"nirt","performative":"assert","sender":"assis
tant","receiver":"operator","content":{"prop2":"\"Desculpe, não recebi o
seu plano de alocação para validar. Por favor, envie
novamente.\"","name":"answer","prop1":{"prop1":"\"NULL\"","name":"result"
,"isNegated":false},"isNegated":false}}
{"msgId":"mid52","isReply":"nirt","performative":"question","sender":"ope
rator","receiver":"assistant","content":{"name":"getValidationResult","is
Negated":false}}
{"msgId":"mid53","isReply":"nirt","performative":"question","sender":"ass
istant","receiver":"validator","content":{"name":"getValidationResult","i
sNegated":false}}
{"msgId":"mid54","isReply":"nirt","performative":"assert","sender":"valid
ator","receiver":"assistant","content":{"prop2":"\"false\"","name":"resul
t","prop1":"\"3df9af07-55fb-4580-ba42-
e2a6b6f45e9d\"","isNegated":false,"prop3":{"arr":[{"prop2":"\"301b\"","pr
op1":"\"Vitor
Almeida\"","name":"err","isNegated":false,"prop3":{"arr":[{"prop2":"\"Tip
o de Encaminhamento
\"","prop1":"\"missingPositive\"","name":"mot","isNegated":false,"prop3":
"\"Agudo\""},{"prop2":"\"Especialidade
\"","prop1":"\"missingPositive\"","name":"mot","isNegated":false,"prop3":
"\"Gastro\""}],"length":2}}],"length":1}}}
{"msgId":"mid55","isReply":"nirt","performative":"assert","sender":"assis
tant","receiver":"operator","content":{"prop2":"\"O seu plano de alocação
de leitos possui falhas. Houve um erro ao alocar os seguintes pacientes:
Vitor Almeida no leito 301b - Pois o leito 301b não é de Tipo de
Encaminhamento Agudo, e Especialidade Gastro como é o caso do
paciente. Devo confirmar a alocação mesmo assim ou prefere que eu sugira
uma alocação
otimizada?\"","name":"answer","prop1":{"prop2":"\"false\"","prop1":"\"3df
9af07-55fb-4580-ba42-
e2a6b6f45e9d\"","name":"result","isNegated":false,"prop3":{"arr":[{"prop2
":"\"301b\"","prop1":"\"Vitor
Almeida\"","name":"err","isNegated":false,"prop3":{"arr":[{"prop2":"\"Tip
o de Encaminhamento
\"","prop1":"\"missingPositive\"","name":"mot","isNegated":false,"prop3":
"\"Agudo\""},{"prop2":"\"Especialidade

\"","prop1":"\"missingPositive\"","name":"mot","isNegated":false,"prop3":
"\"Gastro\""}],"length":2}}],"length":1}},"isNegated":false}}
{"msgId":"mid56","isReply":"nirt","performative":"question","sender":"ass
istant","receiver":"validator","content":{"prop2":"\"O seu plano de
alocação de leitos possui falhas. Houve um erro ao alocar os seguintes
pacientes: Vitor Almeida no leito 301b - Pois o leito 301b não é de Tipo
de Encaminhamento Agudo, e Especialidade Gastro como é o caso do
paciente. Devo confirmar a alocação mesmo assim ou prefere que eu sugira
uma alocação otimizada?\"","name":"updateValidation","prop1":"\"3df9af07-
55fb-4580-ba42-e2a6b6f45e9d\"","isNegated":false}}
{"msgId":"mid57","isReply":"nirt","performative":"question","sender":"val
idator","receiver":"database","content":{"prop2":"\"O seu plano de
alocação de leitos possui falhas. Houve um erro ao alocar os seguintes
pacientes: Vitor Almeida no leito 301b - Pois o leito 301b não é de Tipo
de Encaminhamento Agudo, e Especialidade Gastro como é o caso do
paciente. Devo confirmar a alocação mesmo assim ou prefere que eu sugira
uma alocação otimizada?\"","name":"updateValidation","prop1":"\"3df9af07-
55fb-4580-ba42-e2a6b6f45e9d\"","isNegated":false}}
{"msgId":"mid58","isReply":"nirt","performative":"assert","sender":"datab
ase","receiver":"validator","content":{"name":"updatedValidation","prop1"
:"\"Success\"","isNegated":false}}
{"msgId":"mid59","isReply":"nirt","performative":"assert","sender":"valid
ator","receiver":"assistant","content":{"name":"updatedValidation","prop1
":"\"Success\"","isNegated":false}}
{"msgId":"mid60","isReply":"nirt","performative":"question","sender":"ope
rator","receiver":"assistant","content":{"name":"allocValPatients","isNeg
ated":false}}
{"msgId":"mid61","isReply":"nirt","performative":"question","sender":"ass
istant","receiver":"validator","content":{"name":"allocByValidation","isN
egated":false}}
{"msgId":"mid62","isReply":"nirt","performative":"question","sender":"val
idator","receiver":"database","content":{"name":"allocByValidation","isNe
gated":false}}
{"msgId":"mid63","isReply":"nirt","performative":"assert","sender":"datab
ase","receiver":"validator","content":{"name":"allocByValidation","prop1"
:"\"Success\"","isNegated":false}}
{"msgId":"mid64","isReply":"nirt","performative":"assert","sender":"valid
ator","receiver":"assistant","content":{"name":"allocByValidation","prop1
":"\"Success\"","isNegated":false}}
{"msgId":"mid65","isReply":"nirt","performative":"assert","sender":"assis
tant","receiver":"operator","content":{"prop2":"\"Ok, pacientes alocados
conforme
solicitado\"","name":"answer","prop1":{"prop1":"\"Success\"","name":"allo
cByValidation","isNegated":false},"isNegated":false}}

MAS log

[NetworkListener] Started listener bound to [{0}]
[HttpServer] [{0}] Started.
[Cartago] Workspace wp created.
[Cartago] getJoinedWorkspaces: [main]
[Cartago] artifact dial4jaca:
br.pucrs.smart.Dial4JaCa.Dial4JaCaArtifact() at wp created.
[Cartago] artifact rv4jaca: br.pucrs.smart.RV4JaCa.RV4JaCaArtifact() at
wp created.
[Onto4JaCaArtifact] Importing ontology from src/resources/hsl-
ontology.owl
[Onto4JaCaArtifact] Ontology ready!
[Cartago] artifact onto4jaca:
br.pucrs.smart.Onto4JaCa.mas.Onto4JaCaArtifact("src/resources/hsl-
ontology.owl") at wp created.
[Cartago] artifact pddl: br.pucrs.smart.validator.ValidatorArtifact()
at wp created.
[Cartago] artifact postgres:
br.pucrs.smart.postgresql.PostgresArtifact() at wp created.
[ontology_specialist] joinned workspace wp
[ontology_specialist] focusing on artifact onto4jaca (at workspace wp)
using namespace default
[ontology_specialist] focusing on artifact postgres (at workspace wp)
using namespace default
[database] joinned workspace wp
[database] focusing on artifact postgres (at workspace wp) using
namespace default
[assistant] Assistant agent enabled.
[validator] joinned workspace wp
[optimiser] Optimiser agent enabled.
[operator] joinned workspace wp
[operator] focusing on artifact dial4jaca (at workspace wp) using
namespace default
[validator] focusing on artifact pddl (at workspace wp) using namespace
default
[validator] Validator agent enabled.
[operator] Communication specialist agent enabled.
[nurse] joinned workspace wp
[database] Database specialist agent enabled.
[nurse] focusing on artifact dial4jaca (at workspace wp) using
namespace default
[nurse] Communication specialist agent enabled.
[ontology_specialist] Iniciando busca no banco de dados
[ontology_specialist] Busca no banco de dados finalizada
[ontology_specialist] Agent ontology_specialist enabled.
[nurse] Request received - Default Welcome Intent from Dialog
[nurse] Params: []
[operator] Request received - Default Welcome Intent from Dialog
[operator] Params: []
[operator] Request received - Default Welcome Intent from Dialog

APPENDIX C – EVALUATION OF EXPRESSIVITY OF THE

FRAMEWORK – LOGS

[operator] Params: []
[operator] Request received - Default Welcome Intent from Dialog
[operator] Params: []
[nurse] Request received - Default Welcome Intent from Dialog
[nurse] Params: []
[operator] Request received - Default Welcome Intent from Dialog
[operator] Params: []
[operator] Request received - Allocate Patient from Dialog
[operator] Params: [param("paciente","2044429"),param("leito","3132")]
[operator] Chatbot of operator is requesting an allocation.
[assistant] Agent operator asks to allocate patient 2044429 to bed 3132
[operator] Answering to chatbot: Antes eu preciso verificar se esse
leito é adequado para esse paciente, pode ser?
[operator] Request received - Allocate Patient - verify suitability
from Dialog
[operator] Params: []
[operator] Chatbot of operator is requesting to verify suitability:
paciente: 2044429, leito: 3132
[ontology_specialist] Verifying if adequado("3132","2044429").
[ontology_specialist] Verifying if inadequado("3132","2044429").
[operator] Answering to chatbot: Não, esse leito não é adequado.
[operator] Request received - Allocate Patient - verify suitability -
why from Dialog
[operator] Params: []
[operator] Chatbot of operator is requesting explanation about
suitability of 3132 leito to 2044429
[ontology_specialist] Received explain request for explaning the
predicate: inadequado("3132","2044429")
[ontology_specialist] !getAnswer
[ontology_specialist] Explanation for adequado("3132","2044429") not
found.
[ontology_specialist] Found argument for: inadequado("3132","2044429")
[operator] Answering to chatbot: O leito 3132 não é adequado para o(a)
paciente 2044429 pois a cobertura do(a) paciente é ENFERMARIA e esse
leito é UTI ADULTO GERAL.
[operator] Request received - Allocate Patient - verify suitability -
why - allocate anyway from Dialog
[operator] Params: []
[operator] Chatbot of operator is requesting to allocate anyway.
[assistant] Agent operator asks to allocate a patient to a bed anyway
[operator] Answering to chatbot: Desculpe, você não tem autorização
para efetuar essa alocação, mas você pode pedir para a gestora abrir
uma exceção
[nurse] Request received - Default Welcome Intent from Dialog
[nurse] Params: []
[nurse] Request received - Register Exception from Dialog
[nurse] Params: [param("paciente","2044429"),param("leito","3132")]
[nurse] Chatbot of nurse is requesting to register an exception:
paciente: 2044429, leito: 3132
[assistant] Agent nurse asks to register exception on patient 2044429
and bed 3132
[ontology_specialist] Registering exception for bed 3132 and patient
2044429
[assistant] Agent ontology_specialist informs that the exception on
patient 2044429 and bed 3132 was registered.
[nurse] Answering to chatbot: Ok, estou registrando a exceção
solicitada
[operator] Request received - Verify Suitability from Dialog

[operator] Params: [param("paciente","2044429"),param("leito","3132")]
[operator] Chatbot of operator is requesting to verify suitability:
paciente: 2044429, leito: 3132
[ontology_specialist] Verifying if adequado("3132","2044429").
[operator] Answering to chatbot: Sim, esse leito é adequado.
[operator] Request received - Verify Suitability - why from Dialog
[operator] Params: []
[operator] Chatbot of operator is requesting explanation about
suitability of 3132 leito to 2044429
[ontology_specialist] Received explain request for explaning the
predicate: inadequado("3132","2044429")
[ontology_specialist] !getAnswer
[ontology_specialist] Found argument for: adequado("3132","2044429")
[operator] Answering to chatbot: O leito 3132 é adequado para o(a)
paciente 2044429 pois o(a) gestor(a) abriu uma exceção para esse caso.
[operator] Request received - getSuperlativeInfo1 from Dialog
[operator] Params: []
[operator] Chatbot of operator is asking about the smallest room with
fewer patients allocated.
[assistant] Agent operator asks about the smallest room with fewest
occupants.
[database] Agent assistant wants get the smallest room with fewest
occupants.
[assistant] Agent database answer about the smallest room with fewest
occupants.
[operator] Answering to chatbot: O menor quarto com o menor número de
ocupantes é o 118J
[operator] Request received - getSuperlativeInfo3 from Dialog
[operator] Params: []
[operator] Chatbot of operator is asking about the smallest room with
most patients allocated.
[assistant] Agent operator asks about the biggest room with most
occupants.
[database] Agent assistant wants get the biggest room with most
occupants.
[assistant] Agent database answer about the biggest room with most
occupants.
[operator] Answering to chatbot: O maior quarto com o maior número de
ocupantes é o 759
[operator] Request received - Get Information About Beds from Dialog
[operator] Params:
[param("status_leito","Vago"),param("genero","FEMININO"),param("tipo_es
pecialidade",""),param("acomodacao",""),param("faixa_etaria","")]
[operator] Chatbot of operator is asking for information about beds.
[assistant] Agent operator asks about a bed
leito_e_do_genero(Bed,"FEMININO")leito_e_da_faixa_etaria(Bed,"")leito_e
_do_tipo_especialidade(Bed,"")e_de_acomodacao(Bed,"")possui_status(Bed,
"Vago")
[database] Agent assistant wants a bed.
[assistant] Agent database answered about the bed.
[operator] Answering to chatbot: Localizei o leito 3132 que se encaixa
na sua solicitação. Você gostaria de alocar um paciente nele?
[operator] Request received - Default Welcome Intent from Dialog
[operator] Params: []

RV4JaCa log

{"msgId":"mid1","isReply":"nirt","performative":"question","sender":"oper
ator","receiver":"assistant","content":{"prop2":"\"2044429\"","name":"alo
car","prop1":"\"3132\"","isNegated":false}}
{"msgId":"mid2","isReply":"nirt","performative":"assert","sender":"assist
ant","receiver":"operator","content":{"prop2":"\"Antes eu preciso
verificar se esse leito é adequado para esse paciente, pode
ser?\"","name":"answer","prop1":{"prop2":"\"2044429\"","prop1":"\"3132\""
,"name":"verifySuitability","isNegated":false},"isNegated":false}}
{"msgId":"mid3","isReply":"nirt","performative":"question","sender":"oper
ator","receiver":"assistant","content":{"prop2":"\"2044429\"","name":"ade
quado","prop1":"\"3132\"","isNegated":false}}
{"msgId":"mid4","isReply":"nirt","performative":"question","sender":"assi
stant","receiver":"ontology_specialist","content":{"prop2":"\"2044429\"",
"name":"adequado","prop1":"\"3132\"","isNegated":false}}
{"msgId":"mid6","isReply":"nirt","performative":"assert","sender":"assist
ant","receiver":"operator","content":{"prop2":"\"Não, esse leito não é
adequado.\"","name":"answer","prop1":{"prop2":"\"2044429\"","prop1":"\"31
32\"","name":"adequado","isNegated":false},"isNegated":false}}
{"msgId":"mid5","isReply":"nirt","performative":"assert","sender":"ontolo
gy_specialist","receiver":"assistant","content":{"prop2":"\"2044429\"","n
ame":"adequado","prop1":"\"3132\"","isNegated":false}}
{"msgId":"mid7","isReply":"nirt","performative":"question","sender":"oper
ator","receiver":"assistant","content":{"name":"explain","prop1":{"prop2"
:"\"2044429\"","prop1":"\"3132\"","name":"inadequado","isNegated":false},
"isNegated":false}}
{"msgId":"mid8","isReply":"nirt","performative":"question","sender":"assi
stant","receiver":"ontology_specialist","content":{"name":"explain","prop
1":{"prop2":"\"2044429\"","prop1":"\"3132\"","name":"inadequado","isNegat
ed":false},"isNegated":false}}
{"msgId":"mid10","isReply":"nirt","performative":"assert","sender":"assis
tant","receiver":"operator","content":{"prop2":"\"O leito 3132 não é
adequado para o(a) paciente 2044429 pois a cobertura do(a) paciente é
ENFERMARIA e esse leito é UTI ADULTO GERAL.
\"","name":"answer","prop1":{"prop2":{"arr":[{"prop2":{"arr":[{"prop1":"\
"2044429\"","name":"paciente","isNegated":false},{"prop1":"\"3132\"","nam
e":"leito","isNegated":false},{"prop2":"\"ENFERMARIA\"","prop1":"\"204442
9\"","name":"possui_cobertura","isNegated":false},{"prop2":"\"UTI ADULTO
GERAL\"","prop1":"\"3132\"","name":"e_de_acomodacao","isNegated":false},{
"prop2":"\"UTI ADULTO
GERAL\"","prop1":"\"ENFERMARIA\"","name":"differentFrom","isNegated":fals
e},{"prop2":"\"NONE\"","prop1":"\"UTI ADULTO
GERAL\"","name":"differentFrom","isNegated":false},{"prop2":"\"NONE\"","p
rop1":"\"ENFERMARIA\"","name":"differentFrom","isNegated":false}],"length
":7},"prop1":{"prop2":"\"2044429\"","prop1":"\"3132\"","name":"inadequado
","isNegated":false},"name":"defeasible_rule","isNegated":false}],"length
":1},"prop1":{"prop2":"\"2044429\"","prop1":"\"3132\"","name":"inadequado
","isNegated":false},"name":"explaining","isNegated":false},"isNegated":f
alse}}
{"msgId":"mid9","isReply":"nirt","performative":"assert","sender":"ontolo
gy_specialist","receiver":"assistant","content":{"name":"explain","prop1"
:{"prop2":"\"2044429\"","prop1":"\"3132\"","name":"inadequado","isNegated
":false},"isNegated":false}}
{"msgId":"mid11","isReply":"nirt","performative":"question","sender":"ope
rator","receiver":"assistant","content":{"prop2":"Patient","name":"alocar
","prop1":"B","isNegated":false}}

{"msgId":"mid12","isReply":"nirt","performative":"assert","sender":"assis
tant","receiver":"operator","content":{"prop2":"\"Desculpe, você não tem
autorização para efetuar essa alocação, mas você pode pedir para a
gestora abrir uma
exceção\"","name":"answer","prop1":{"prop1":{"prop2":"Patient","prop1":"B
","name":"alocar","isNegated":false},"name":"askPermission","isNegated":f
alse},"isNegated":false}}
{"msgId":"mid13","isReply":"nirt","performative":"question","sender":"nur
se","receiver":"assistant","content":{"prop2":"\"2044429\"","name":"excep
tion","prop1":"\"3132\"","isNegated":false}}
{"msgId":"mid14","isReply":"nirt","performative":"question","sender":"ass
istant","receiver":"ontology_specialist","content":{"prop2":"\"2044429\""
,"name":"nurse_exception","prop1":"\"3132\"","isNegated":false}}
{"msgId":"mid15","isReply":"nirt","performative":"assert","sender":"ontol
ogy_specialist","receiver":"assistant","content":{"prop2":"\"2044429\"","
name":"nurse_exception","prop1":"\"3132\"","isNegated":false}}
{"msgId":"mid16","isReply":"nirt","performative":"assert","sender":"assis
tant","receiver":"nurse","content":{"prop2":"\"Ok, estou registrando a
exceção
solicitada\"","name":"answer","prop1":{"prop2":"\"2044429\"","prop1":"\"3
132\"","name":"nurse_exception","isNegated":false},"isNegated":false}}
{"msgId":"mid17","isReply":"nirt","performative":"question","sender":"ope
rator","receiver":"assistant","content":{"prop2":"\"2044429\"","name":"ad
equado","prop1":"\"3132\"","isNegated":false}}
{"msgId":"mid18","isReply":"nirt","performative":"question","sender":"ass
istant","receiver":"ontology_specialist","content":{"prop2":"\"2044429\""
,"name":"adequado","prop1":"\"3132\"","isNegated":false}}
{"msgId":"mid19","isReply":"nirt","performative":"assert","sender":"ontol
ogy_specialist","receiver":"assistant","content":{"prop2":"\"2044429\"","
name":"adequado","prop1":"\"3132\"","isNegated":false}}
{"msgId":"mid20","isReply":"nirt","performative":"assert","sender":"assis
tant","receiver":"operator","content":{"prop2":"\"Sim, esse leito é
adequado.\"","name":"answer","prop1":{"prop2":"\"2044429\"","prop1":"\"31
32\"","name":"adequado","isNegated":false},"isNegated":false}}
{"msgId":"mid21","isReply":"nirt","performative":"question","sender":"ope
rator","receiver":"assistant","content":{"name":"explain","prop1":{"prop2
":"\"2044429\"","prop1":"\"3132\"","name":"inadequado","isNegated":false}
,"isNegated":false}}
{"msgId":"mid22","isReply":"nirt","performative":"question","sender":"ass
istant","receiver":"ontology_specialist","content":{"name":"explain","pro
p1":{"prop2":"\"2044429\"","prop1":"\"3132\"","name":"inadequado","isNega
ted":false},"isNegated":false}}
{"msgId":"mid23","isReply":"nirt","performative":"assert","sender":"ontol
ogy_specialist","receiver":"assistant","content":{"name":"explain","prop1
":{"prop2":"\"2044429\"","prop1":"\"3132\"","name":"inadequado","isNegate
d":false},"isNegated":false}}
{"msgId":"mid24","isReply":"nirt","performative":"assert","sender":"assis
tant","receiver":"operator","content":{"prop2":"\"O leito 3132 é adequado
para o(a) paciente 2044429 pois o(a) gestor(a) abriu uma exceção para
esse caso.
\"","name":"answer","prop1":{"prop2":{"arr":[{"prop2":"\"2044429\"","prop
1":"\"3132\"","name":"adequado","isNegated":false}],"length":1},"prop1":{
"prop2":"\"2044429\"","prop1":"\"3132\"","name":"inadequado","isNegated":
false},"name":"explaining","isNegated":false},"isNegated":false}}
{"msgId":"mid25","isReply":"nirt","performative":"question","sender":"ope
rator","receiver":"assistant","content":{"name":"smallestRoom","isNegated
":false}}

{"msgId":"mid26","isReply":"nirt","performative":"question","sender":"ass
istant","receiver":"database","content":{"name":"smallestRoom","isNegated
":false}}
{"msgId":"mid27","isReply":"nirt","performative":"assert","sender":"datab
ase","receiver":"assistant","content":{"name":"smallestRoom","prop1":"\"1
18J\"","isNegated":false}}
{"msgId":"mid28","isReply":"nirt","performative":"assert","sender":"assis
tant","receiver":"operator","content":{"prop2":"\"O menor quarto com o
menor número de ocupantes é o
118J\"","name":"answer","prop1":{"prop1":"\"118J\"","name":"smallestRoom"
,"isNegated":false},"isNegated":false}}
{"msgId":"mid29","isReply":"nirt","performative":"question","sender":"ope
rator","receiver":"assistant","content":{"name":"biggestRoom","isNegated"
:false}}
{"msgId":"mid30","isReply":"nirt","performative":"question","sender":"ass
istant","receiver":"database","content":{"name":"biggestRoom","isNegated"
:false}}
{"msgId":"mid31","isReply":"nirt","performative":"assert","sender":"datab
ase","receiver":"assistant","content":{"name":"biggestRoom","prop1":"\"75
9\"","isNegated":false}}
{"msgId":"mid32","isReply":"nirt","performative":"assert","sender":"assis
tant","receiver":"operator","content":{"prop2":"\"O maior quarto com o
maior número de ocupantes é o
759\"","name":"answer","prop1":{"prop1":"\"759\"","name":"biggestRoom","i
sNegated":false},"isNegated":false}}
{"msgId":"mid33","isReply":"nirt","performative":"question","sender":"ope
rator","receiver":"assistant","content":{"name":"getBed","isNegated":fals
e}}
{"msgId":"mid34","isReply":"nirt","performative":"question","sender":"ass
istant","receiver":"database","content":{"name":"getBed","isNegated":fals
e}}
{"msgId":"mid35","isReply":"nirt","performative":"assert","sender":"datab
ase","receiver":"assistant","content":{"name":"getBed","prop1":"\"3132\""
,"isNegated":false}}
{"msgId":"mid36","isReply":"nirt","performative":"assert","sender":"assis
tant","receiver":"operator","content":{"prop2":"\"Localizei o leito 3132
que se encaixa na sua solicitação. Você gostaria de alocar um paciente
nele?\"","name":"answer","prop1":{"prop1":"\"3132\"","name":"getBed","isN
egated":false},"isNegated":false}}

	Introduction
	Motivation
	Objectives
	Main Contributions
	Thesis Outline

	Background
	Multi-agent Systems
	Explainable Artificial Intelligence and Hybrid Intelligence
	Argumentation Theory
	Abstract Argumentation
	Monological and Dialogical Argumentation
	Argumentation Schemes

	Dialogue Systems
	The JaCaMo Framework
	Ontology
	Runtime Verification and Runtime Monitoring Language
	Hospital Bed Allocation Domain

	Conversational Agents Using Structured Dialogues
	Overview of the Approach
	A Multi-Part Belief Base
	The CooL-AgentSpeak Language
	Argumentation-based Reasoning in Agent Programming
	Theory of Mind in Agent Programming

	The Basis for Argumentation-Based Dialogues
	Multi-Agent Dialogues with Underlying Ontological and ToM Arguments
	Formalisation of Participating Agents
	Subdialogue Rules

	Multi-Agent Intentional Dialogue System
	Overall Architecture
	Dial4JaCa
	Onto4JaCa
	RV4JaCa

	Case Study
	Bed Allocation Ontology
	Bed Allocation Optimisation
	Plan Validator
	 Runtime Verification in Bed Allocation
	First RML Property for the Bed Allocation Domain
	Second RML Property for the Bed Allocation Domain

	Evaluation
	Evaluation of System Functionalities for Hospital Bed Allocation
	Evaluation of Expressiveness of the Framework

	Related Work
	Conclusions
	Summary of Results and Discussion
	Thesis publications
	Future Work

	References
	Appendix A – Bed-Allocation Plan Validation Report
	Appendix B – Evaluation of System Functionalities – Logs
	Appendix C – Evaluation of Expressivity of the Framework – Logs

