PUCRS

ESCOLA POLITECNICA
PROGRAMA DE POS-GRADUACAO EM CIENCIA DA COMPUTAGCAO
DOUTORADO EM CIENCIA DA COMPUTACAO

FRANCISCO ASSIS MOREIRA DO NASCIMENTO

DECENTRALIZED FEDERATED LEARNING- éSED

INTRUSION DETECTION IN IOT SYSTEM

Porto Alegre
2023

POS-GRADUACAO - STRICTO SENSU

»8.¢

it
i h

. XK

o] < - —— -].ﬂ
Epym©

Pontificia Universidade Catdlica
do Rio Grande do Sul

PONTIFICAL CATHOLIC UNIVERSITY OF RIO GRANDE DO SUL
SCHOOL OF TECHNOLOGY
COMPUTER SCIENCE GRADUATE PROGRAM

DECENTRALIZED FEDERATED
LEARNING-BASED INTRUSION
DETECTION IN IOT SYSTEMS

FRANCISCO ASSIS MOREIRA DO
NASCIMENTO

Doctoral Thesis submitted to the Pontifical
Catholic University of Rio Grande do Sul
in partial fulfilment of the requirements
for the degree of Ph. D. in Computer
Science.

Advisor: Prof. Fabiano Passuelo Hessel

Porto Alegre
2023

Ficha Catalografica

N244d Nascimento, Francisco Assis Moreira do

Decentralized Federated Learning-Based Intrusion Detection in IoT
Systems / Francisco Assis Moreira do Nascimento. — 2023.

129 p.

Tese (Doutorado) — Programa de Pos-Graduagao em Ciéncia da
Computagao, PUCRS.

Orientador: Prof. Dr. Fabiano Passuelo Hessel.

1. Federated Learning. 2. Internet of Things. 3. Cybersecurity. 4.
Decentralized Computing. 5. Artificial Intelligence. I. Hessel,
Fabiano Passuelo. II. Titulo.

Elaborada pelo Sistema de Geragao Automatica de Ficha Catalografica da PUCRS
com os dados fornecidos pelo(a) autor(a).
Bibliotecaria responsavel: Clarissa Jesinska Selbach CRB-10/2051

FRANCISCO ASSIS MOREIRA DO NASCIMENTO

DECENTRALIZED FEDERATED
LEARNING-BASED INTRUSION DETECTION IN
IOT SYSTEMS

This Doctoral Thesis has been submitted in
partial fulfilment of the requirements for the
degree of Ph. D. in Computer Science of
the Computer Science Graduate Program,
School of Technology of the Pontifical
Catholic University of Rio Grande do Sul

Sanctioned on August 4, 2023.

COMMITTEE MEMBERS:

Prof. Dr. Jorge Luis Victéria Barbosa (PPGCA/Unisinos)
Prof. Dr. Leonel Pablo Carvalho Tedesco (PPGSPI/UNISC)
Prof. Dr. Cesar Augusto Missio Marcon (PPGCC/PUCRS)

Prof. Fabiano Passuelo Hessel (PPGCC/PUCRS - Advisor)

To my loving wife, Juliana, who has been my steadfast partner through every step
of this journey. Your support and belief in me have been invaluable.

To my daughter, Ana Julia, who brings joy and purpose to my days. Your spirit and
curiosity inspire me to always strive for more.

In memoriam,

To my father, Jodo Neto, who left when | was still young. His memory continues to
guide me.

To my mother, Judith, whose influence remains a part of who | am.

May this work serve as a testament to the importance of perseverance, dedication,
and the pursuit of knowledge.

“We can only see a short distance ahead, but
we can see plenty there that needs to be done.”
(Alan Turing)

ACKNOWLEDGMENTS

| owe an immense debt of gratitude to my advisor, Prof Dr. Fabiano Hessel, whose
unparalleled support has been the bedrock of this work. His mentorship, continuous feed-
back, and guidance have been invaluable. His dedication to nurturing and listening to his
students during this demanding journey is a testament to his exceptional character. The
wisdom and experiences I've garnered from him will indelibly shape my professional and
personal trajectory.

In my computer science Ph.D. journey, I'm genuinely thankful for the scientific tools
and methods that guided my research. They were essential in helping me tackle challenges,
make discoveries, and complete my thesis. These tools made it possible for me to contribute
to our field meaningfully.

| extend my heartfelt appreciation to Prof. Dr. César Marcon, Prof. Dr. Leonel
Tedesco, and Prof. Dr. Jorge Barbosa for their invaluable feedback, insights, and dedication.
Their contributions have been pivotal in refining this dissertation.

Further, | wish to express my gratitude to the faculties of the Computer Science
department of the Polytechnical School in the PUCRS for their efficient and effective support
during my coursework.

To my family, friends, and well-wishers, your belief, and encouragement have been
the emotional backbone of this journey. This accomplishment is as much yours as it is mine.

Lastly, I thank CAPES and HPE. Your belief in my potential and your financial sup-
port have been instrumental in bringing this work to fruition.

Thank you all once again for your support and encouragement.

APRENDIZAGEM FEDERADA DESCENTRALIZADA PARA DETECCAO
DE INTRUSAO EM SISTEMAS IOT

RESUMO

Os sistemas baseados na Internet das Coisas (loT) sdo vulneraveis a diversos ti-
pos de ataques, em grande parte devido a fragilidade dos dispositivos 10T, que possuem
pouco poder computacional e de memdria, necessario para a implementacao de recursos
de seguranca mais sofisticados. Além disso, os sistemas IoT séo sistemas distribuidos
(dispositivos autbnomos interconectados e colaborativos) e, portanto, herdam todos os pro-
blemas destes sistemas, relacionados a necessidade de garantir a confidencialidade, inte-
gridade, autenticidade e disponibilidade. Uma das estratégias tradicionais para lidar com
alguns desses problemas envolve a deteccdo de intrusdo e técnicas de prevencgdo. E co-
mum implementa-los de forma centralizada, o que além de nao ser escalavel para sistemas
loT com um numero crescente de componentes distribuidos, implica em um ponto Unico
inaceitavel de falha no sistema. Além disso, o envio de todos os dados coletados para um
servidor centralizado na nuvem representa um grande risco para a privacidade das informa-
coes. Com o processamento de dados sendo executado na borda, esse problema também
€ minimizado em uma abordagem distribuida. Esta tese apresenta uma arquitetura de se-
gurancga descentralizada para suporte a deteccao de intrusdo em sistemas baseados em
loT, que é baseada em técnicas de aprendizado de maquina federado para deteccao de
intrusdo, combinado com o uso de tecnologias de razdo distribuida para a implementagéo
de autenticac&o e autorizagdo no acesso a recursos, permitindo obter um mecanismo efi-
caz e eficiente para minimizar os riscos de seguranga em sistemas loT. Para a avaliagdo da
arquitetura descentralizada foi implementado um protétipo, permitindo a realizacdo de va-
rios experimentos, que comprovaram sua efetividade, com resultados similares aos obtidos
com abordagem centralizada, mas com todas as vantagens oferecidas por uma arquitetura
totalmente descentralizada.

Palavras-Chave: Aprendizagem Federada, Internet das Coisas, Ciberseguranga, Aprendi-
zagem de Maquina, Registro Distribuido.

DECENTRALIZED FEDERATED LEARNING-BASED INTRUSION
DETECTION IN IOT SYSTEMS

ABSTRACT

Internet of Things (loT) based systems are vulnerable to several types of attacks,
mainly due to the weakness of loT devices, which have reduced computational and memory
power necessary to implement more sophisticated security features. In addition, loT sys-
tems are distributed systems (interconnected and collaborative autonomous devices) and
thus inherit all problems of these systems, which are related to the need to guarantee confi-
dentiality, integrity, authenticity, and availability. One of the traditional strategies to deal with
some of these problems involves intrusion detection and prevention techniques. It is usual to
implement them in a centralized way, which in addition to not being scalable for IoT systems
with an increasing number of distributed components, implies an unacceptable single point
of failure in the system. Furthermore, sending all collected data to a centralized server in the
cloud poses a significant risk to the privacy of information. With data processing at the edge,
this problem is minimized in a distributed approach. This thesis presents a decentralized se-
curity architecture for supporting detecting intrusion in loT-based systems, which is based
on federated machine learning techniques for intrusion detection. It also combines the use
of distributed ledger technologies for the implementation of authentication and authorization
in the access to resources. Thus, the thesis approach allows one to obtain an effective and
efficient mechanism to minimize security risks in loT systems. A prototype was implemented
to evaluate the decentralized architecture, allowing several experiments, which proved its ef-
fectiveness, with results similar to those obtained with a centralized approach but with all the
advantages offered by a decentralized, federated learning-based architecture.

Keywords: Federated Learning, Internet of Things, Cybersecurity, Machine Learning, Dis-
tributed Ledgers.

Figure 1.1
Figure 1.2
Figure 2.1
Figure 2.2
Figure 2.3
Figure 2.4
Figure 2.5
Figure 2.6
Figure 3.1
Figure 3.2
Figure 3.3
Figure 3.4
Figure 3.5
Figure 3.6
Figure 3.7
Figure 4.1
Figure 4.2
Figure 4.3
Figure 4.4
Figure 4.5
Figure 4.6
Figure 4.7
Figure 4.8
Figure 4.9

LIST OF FIGURES

Number of connected devices worldwide 2015-2025. [121]........ 22

Typical three-tier architecture forloT 25

Global Edge Computing Architecture - GECA. [112].............. 30

Taxonomy of IDS for loT. [124] 34

Model training: Conventional., 42

Model training: Centralized FL. 43

Model training: Decentralized FL. 43

Overview of the FedCS protocol. [128] 45

DCD-FL: P2P network as an overlay of components in loT layers ... 49

DCD-FL: P2P clusters to perform specifictasks 50

DCD-FL components and workflow. 52

State Machine Diagram for DCD-FLnodes 57

DCD-FL: Example of configuration file to generate plans 59

DCD-FL: Example of generated plan 60

DCD-FL: Smart contract for key value store 63

Testbed environment to generate UNSW-NB15 dataset. [73] 69

Testbed environment in generating Bot-loT dataset. [48] 71

Testbed environment in generating NBaloT dataset.[66] 73

Model quality x Nodes: ANN, Bot-loT, 10 rounds, 1 aggr., 1 worker. . 76

Model quality x Nodes: ANN, Bot-loT, 10 rounds, 1 aggr., 5 workers. 77

Model quality x Nodes: ANN, Bot-loT, 10 rounds, 1 aggr., 10 workers. 77

Model quality x Nodes: ANN, Bot-loT, 10 rds, 1 aggr., 5 and 10 wks. 78

Model quality x Nodes: ANN, Bot-loT, 4 rounds, 3 aggrs., 5 workers. 79

Model quality x Nodes: ANN, Bot-loT, 4 rounds, 3 aggrs., 10 workers. 79

Figure 4.10 — Convergence: ANN, UNSW-NB15, 1 aggreg., and 1, 5, 10 workers. . 80
Figure 4.11 — Model quality per class: LSTM, N-BaloT, aggreg. round 2.......... 81
Figure 4.12 — Model quality per class: LSTM, N-BaloT, aggreg. round 4.......... 81
Figure 4.13 — Effect of the DL model: ANN, Bot-loT, 1 aggreg., 5 workers. 82
Figure 4.14 — Effect of the DL model: LSTM, Bot-loT, 1 aggreg., 5 workers. 83
Figure 4.15 — Effect of the DL model: GRU, Bot-loT, 1 aggreg., 5 workers. 83
Figure 4.16 — Time metrics for models: ANN, LSTM, GRU. 83
................... 84

Figure 4.17 — Size metrics for models: ANN, LSTM, GRU.

Figure A.1 — Class Diagram: DecideApp and mainclasses 121

Figure B.1 — Sequence Diagram: Decentralized aggregation in DCD-FL 122
Figure B.2 — Sequence Diagram: Main execution flow in DCD-FL 123
Figure C.1 — Python code to persist and retrieve model metadata in Ethereum ... 124
Figure C.2 — Python code to deploy smart contract in Ethereum 125
Figure C.3 — Python code to persistmodel inIPFS 126
Figure C.4 — Python code to retrieve model from IPFS 127
Figure C.5 — Python code to generate TLS/SSL certificates (part 1) 128

Figure C.6 — Python code to generate TLS/SSL certificates (part2) 129

Table 2.1
Table 2.2
Table 2.3
Table 3.1
Table 3.2
Table 4.1
Table 4.2
Table 4.3
Table 4.4
Table 4.5
Table 4.6
Table 4.7
Table 4.8
Table 4.9

Table 4.10 -
Table 4.11 -

Table 5.1
Table 5.2
Table 5.3
Table 5.4
Table 5.5
Table 5.6

LIST OF TABLES

Main threats to loT security. [52] i 33
Machine Learning-based IDSs. 37
Commondatasets. e 38

DecideApp: set of modules and their classes in each DCD-FL node. . 58

Technologies used in DCD-FL development. 61
Number of parameters of each deep learningmodel. 67
Hyper-parameters forthe models. 68
Main features of the UNSW-NB15 dataset. [73] 69
Categories in the UNSW-NB15 dataset. [73] 70
Features of the Bot-loT dataset. [48] 71
Categories of attacks in Bot-loT dataset. [48] 72
loT devices used to generate NBaloT dataset. [66] 73
Categories in the N-BaloT dataset. [66] 74
Extracted features for NBaloT dataset. [66] 74
Average F1-score of RNN and LSTM for N-BaloT dataset. 84
Accuracy, Precision, Recall, and F1 Score for Bot-loT usinga MLP... 85
Literature Review: number of publications (2015-2023) 87
Selected surveys andreviews 88
Intrusion Detection for IoT Systems 91
Comparison between DCD-FL and other approaches 92
Federated Learning-based IDSs. 94

Distributed Ledger Approaches for IoT Security 96

LIST OF ALGORITHMS

Algorithm 3.1 — Local Model Training.o e 54
Algorithm 3.2 — Aggregate Models 55
Algorithm 3.3 — Aggregate GlobalModels 55

Algorithm 3.4 — Intrusion Detection i 56

LIST OF ACRONYMS

Al — Artificial Intelligence

API — Application Programming Interface
ANN — Artificial Neural Network

BC — BlockChain

BOT — BotneT

CDN — Content Distribution Network

CNN — Convolutional Neural Network

CPE — Customer-Premises Equipment
DARPA — Defense Advanced Research Projects Agency
DCD-FL — DeCentralized Federated Learning
DDOS - Distributed Denial of Service

DL — Deep Learning

DL — Distributed Ledger

DOS — Denial of Service

DR — Detection Rate

FAR — False Alarm Rate

FC — Fully Connected

FL — Federated Learning

FN — False Negative

FP — False Positive

FPR — False Positive Rate

GDPR — General Data Protection Regulation
GECA — Global Edge Computing Architecture
GRPC — g Remote Procedure Call

GRU — Gated Recurrent Unit

GSE - Grupo de Sistemas Embarcados
HTTP — HyperText Transfer Protocol

HTTPS — HyperText Transfer Protocol Secure
IDS — Intrusion Detection System

[IOT — Industrial Internet of Things

IOT — Internet of Things

IP — Internet Protocol

IPFS — InterPlanetary File System

JSON — JavaScript Object Notation

KDD — Knowledge Discovery in Databases

LGPD — Lei Geral de Protecédo de Dados

LSTM — Long Short-Term Memory

ML — Machine Learning

MLP — Multi-Layer Perceptron

NIDS — Network Intrusion Detection Systems

NON-1ID — non-Independent Identically Distributed

NSL-KDD — Network Security Laboratory-Knowledge Discovery in Databases
P2P — Peer-to-Peer

POS - Proof of Stack

POW — Proof of Work

PUCRS - Pontificia Universidade Catélica do Rio Grande do Sul
REST — Representational State Transfer

RNN — Recurrent Neural Network

RPC — Remote Procedure Call

SGD - Stochastic Gradient Descent

SOAP — Simple Object Access Protocol

SOC - System on Chip

SSL — Secure Sockets Layer

SVM — Support Vector Machine

TCP — Transmission Control Protocol

TLS — Transport Layer Security

TN — True Negative

TP — True Positive

UNSW-NB15 — University of New South Wales-Network Benchmark 15
VM — Virtual Machine

XML — eXtensible Markup Language

LIST OF ABBREVIATIONS

DApp. — Decentralized Application

FedAvg. — Federated Average

FedCS. — Federated Learning with Client Selection
N-BaloT. — Network-Based Detection of loT Botnet Attacks

LIST OF SYMBOLS

Ad;— Administratornode 7 22
Agk —Aggregator node K oo 22
Cty—Controllernode go 22
Pli—Plannernode j 22
Stn—Storage Node M 22
Wk —Worker node | e 22
VL0Loss () — Gradientof aloss function 22
n—Learning rate 22
0ag, — Global model parameters generated by aggregator Agx 22
Qi’\gk — Initial global model parameters of aggregator Agk - - - . .« oo oot 22
Owk, — Model parameters of worker Wk 22
6! — Model parameters of worker Wk; inthe localround ¢ 22
nA — Number of aggregators to be used by a plannernode 22
nP — Number of planners to be used by an administratornode. 22
nW — Number of workers to be used by an aggregatornode 22
D! — Dataset of worker / at aggregationround t 22
2(; — Set of available aggregators to plannernode Pl; 22
P, — Set of available planners inadminnode Ad; 22

M, — Set of global models available in aggregatornode Agx 22

1.1
1.2
1.3
1.4

2.1
211
21.2
2.2
2.2.1
2.2.2
2.3
2.3.1
2.3.2
2.3.3
2.3.4
2.4
241
24.2
2.5

3.1
3.2
3.2.1
3.2.2
3.3
3.3.1
3.3.2
3.3.3

CONTENTS

INTRODUCTION e 22
MOTIVATION . . e 23
RESEARCH PROBLEMS 25
THESIS CONTRIBUTIONS e 27
THESIS OUTLINE e 28
BACKGROUND e 29
INTERNET OF THINGS e 29
REFERENCE ARCHITECTURE FORIOT i 30
IOT SECURITY AND INTRUSION DETECTION 32
MACHINE LEARNING-BASED INTRUSION DETECTION 36
DATASETS FOR IOT . . . o e 37
METRICS . .. 40
FEDERATED LEARNING e 41
STRATEGIES FOR MODEL TRAINING INFL it 42
AGGREGATION STRATEGIES 44
PRIVACY ISSUES e 45
STRATEGIES FOR INFERENCE PHASE INFL 46
DISTRIBUTED LEDGERS TECHNOLOGIES 46
MINING OR VALIDATION PROCESS e 46
SMART CONTRACTS ... e 47
SUMMARY . . 47
DECENTRALIZED INTRUSION DETECTION ORIENTED TOIOT 49
OVERVIEW . . 49
DCD-FL FOR INTRUSION DETECTION 51
DCD-FL COMPONENTS AND WORKFLOW 52
ALGORITHMS . . 54
PROTOTYPE IMPLEMENTATION FORDCD-FL 58
DCD-FL PROTOTYPE ARCHITECTURE 58
TECHNOLOGIES USED IN THE DCD-FL PROTOTYPE 61
TLS/SSLAND GRPCINDCD-FL 62

3.3.4
3.3.5
3.4

41

411
41.2
4.1.3
4.2

4.2.1
422
4.2.3
424
4.2.5
4.2.6
4.3

5.1
5.2
5.3
54

6.1
6.1.1
6.1.2
6.2
6.2.1
6.2.2
6.2.3
6.2.4
6.3

ETHEREUMIN DCD-FL 62

IPES IN DCD-FL . . 63
SUMMARY . . 64
EXPERIMENTS AND RESULTS 65
SETUP . 65
MODELS . . . 66
DATASE TS . . o 68
METRICS . . . 74
EXPERIMENTS . . 75
MODEL QUALITY VERSUS PARTICIPANT NODES. 76
CONVERGENCE OF GLOBAL MODEL QUALITYt 79
MODEL QUALITY PER CLASS 81
EFFECT OF DEEP LEARNING MODEL e 82
COMPARATIVE ANALYSIS . .. e 84
SUPPORT TO DIFFERENT IOT APPLICATIONS 85
SUMMARY . . 86
RELATED WORK e 87
INTRUSION DETECTION SYSTEMS FORIOT ot 91
FEDERATED LEARNING INIOT 93
DISTRIBUTED LEDGER TECHNOLOGIES APPLIED TOIOT 96
SUMMARY . . 99
FINAL CONSIDERATIONS 101
REVISITING THE THESIS RESEARCH PROPOSAL 101
RESEARCH PROBLEMS AND OBJECTIVES 101
HYPOTHESES AND RESEARCH QUESTIONS 103
LIMITATIONS AND FUTUREWORK 105
PROBLEM P1: CONSTRAINED RESOURCES 105
PROBLEM P2: PRIVACY RISKS. 106
PROBLEM P3: DEEP LEARNING OVERHEAD 107
PROBLEM P4: BLOCKCHAIN-BASED ACCESS CONTROL OVERHEAD 107
CONCLUDING REMARKS . . . e 107

REFERENCES 109

APPENDIX A - Class Diagram
APPENDIX B - Sequence Diagrams

APPENDIX C — Python Source Code

22

1. INTRODUCTION

Internet of Things (IoT) consists of the interconnection of machines and devices
through the internet, enabling the creation of data that can yield analytical insights and
support new operations [86]. In this sense, loT characteristics are similar to the ones of
distributed systems: a set of independent devices, communicating to cooperate in order to
perform some useful tasks [112]. Thus, loT systems have problems similar to those pre-
sented in distributed systems: How to guarantee confidentiality, integrity, authenticity, non-
repudiation, and high availability? How to tolerate computation and communication failures?
[104]

These questions are becoming even more relevant with the growing demand for
loT-based systems in all areas. As illustrated by Figure 1.1 (extracted from [121]), it is
expected that by 2025, the total of loT-connected devices to be 75.44 billion worldwide, de-
manding new architectures and network protocols, which must be able to handle such a
huge number of loT devices and provide necessary scalability and flexibility levels. Thus,
for instance, traditional architectures based on a centralized server in the cloud usually have
high latency and many difficulties managing so many connected devices, which can gener-
ate an immense amount of data.

80 75.44

70
62.12

60
51.11

50 42.62

40 35.82

30.73~
26.66_

00,3523 14
1768

30

20 1541

Connected devices in billions

Connected devices in billions

10
Exponential fit

0
2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025

Figure 1.1 — Number of connected devices worldwide 2015-2025. [121]

There is a growing demand for loT applications, for example, in the areas of:
Healthcare (Pace et al. [90] describe BodyEdge, an loT architecture oriented to support
applications for the health industry); smart home (Marikyan et al. [62] present a detailed re-

23

view of smart home concepts and applications, and Heartfield et al. [40] present many of the
cyber threats to smart home applications); smart cities (Yin et al. [122] offer an exhaustive
literature survey on smarty cities), and logistics (Han et al. [38] describes an electronic pedi-
gree system for food safety, tracking the processes in production, storage, transportation,
and sale).

All these application areas, and many others [67] [49], demand a high level of data
privacy and strong data access control and do not allow unauthorized access to information
and available resources and services. One can obtain more details on these data security
threats from Zhang et al. [125], and Hou et al. [42], which explains the main data security and
privacy-preserving issues related to loT applications and approaching IoT security issues
from a data-driven perspective.

Moreover, Sfar et al. [107] give an overview of the loT security roadmap based on a
cognitive and systemic approach, in terms of relationships between individuals, processes,
intelligent objects, and technological ecosystems, as basic components of any IoT system.

1.1 Motivation

The essential security requirements for loT applications are challenging because
many devices that can be part of an loT-based system have low processing power and
small memory capacity. Moreover, most of the devices are designed with no concerns about
security issues and are vulnerable to many kinds of security threats and criminal attacks
[123].

Some basic security principles to minimize risks are usually not taken into account:
many loT devices have weak passwords and also backdoors left by manufacturers to provide
remote support for the device; security updates are not regularly installed in the loT devices;
and, usually, there is no protection, as firewalls, for vulnerable loT devices, which do not
have computational power either memory capacity to support more sophisticated security
mechanisms [37].

In 2016, the Mirai botnet attack [50] infected a huge number of IoT devices and
used them to launch one of the biggest Distributed Denial of Service (DDoS) attacks ever
[47]. Since then, these kinds of security incidents are becoming very common, as the one
reported by [51]: On April 24, 2019, a botnet consisting of more than 400,000 loT devices
(home routers, modems, and other CPEs - Customer-Premises Equipments) launched a
massive DDoS attack against a Content Distribution Network (CDN) company in the en-
tertainment industry that lasted 13 days with peak attack flows reaching 292,000 HTTP
GET/POST requests per second, making it one of the largest Layer 7 attacks handled by the
DDoS mitigation firm, Imperva [110].

24

Another security incident, reported by [29] on a German steel mill, caused serious
damages and was very dangerous: In 2015, the German Federal Office for Information
Security issued a report confirming that some hackers breached a steel plant in their country,
compromising numerous systems, including components of the production network. As a
result, the personnel of the milling sector could not shut down a blast furnace when requireq,
resulting in massive damage to the system.

One of the traditional strategies to deal with these problems involves intrusion de-
tection techniques [4], where the traffic network is monitored. Based on some specific rules,
inadequate behaviors may indicate a security threat, leading to triggering preventive ac-
tions to minimize risks. Unfortunately, it is usual to implement them in a centralized way.
In addition to not being scalable for loT systems with an increasing number of distributed
components, it implies an unacceptable single point of failure in the security of loT systems.

Another very essential strategy to guarantee security and also privacy in loT is the
use of efficient and effective access control mechanisms to prevent unauthorized access to
information (confidentiality), to avoid information modification without adequate authorization
(integrity), and to guarantee access to information to authenticated users at any needed time
(availability) [89].

It is also important to highlight the growing demand for 10T applications and a huge
number of connected loT devices generating a massive amount of data, the traditional
Cloud-oriented model is not more effective in supporting these new kinds of applications.
Since to be efficient, they demand the data be processed near where it is produced to avoid
the high latency offered by the access to the centralized servers in the cloud [121]. This
local processing strategy is also important to guarantee more privacy since data is no longer
transiting in the network.

In 2012, Cisco researchers, taking into account this strategy, proposed a new net-
work architecture they called Fog Computing [15], where some network elements are allo-
cated near the edge of the network, providing computational power and memory and storage
capacity near the users and their devices and applications. Figure 1.2 illustrates this con-
cept.

As shown in Figure 1.2, the "things" (or edge devices: user gadgets, mobiles,
smartphones, music players, wearables, game controllers, etc.) interact with the edge layer,
which may consist of edge nodes (edge servers, routers, switches, base stations). The fog
layers compose intermediary interconnection between the edge layer and the cloud layer,
providing more powerful resources directly to the edge devices.

Typically, loT applications are deployed at the edge layer and eventually commu-
nicate with fog and cloud nodes to execute some functions demanding more computational
resources. In this way, edge nodes will also be exposed to the many kinds of cyber-attacks
usual in fog and cloud nodes, such as DoS (Denial of Service), DDoS, Man in the Middle,
botnets, privilege escalation, data leakage, etc.

25

@ @ Cloud Layer
Datacenters, hosts,
servers, storage,
virtual machines

B T T T T e T T e e T T T

Fog Layer
h X Servers, storage,
- - gateways

N — o

R e e R T T T R e R T T

T %) —-T-T P o] Ed L
T = (ié? T 1&: Senregrf gat;a\-‘g:iil,-

resource-constrained devices

End Devices
S5ensors, actuators,

U@:‘ '@ -§r\“ a. ﬁr [?.} :;3:} -]Hm[t_: smart devices

TIIIT

Figure 1.2 — Typical three-tier architecture for loT

Intrusion Detection Systems (IDSs) have been used in loT systems to cope with
these security risks [93]. It has been usual to adopt machine learning techniques to im-
plement IDS tools [115]. Since many of these techniques depend on manually selected
features, they are becoming obsolete due to the many new loT applications and the dif-
ferent kinds of network traffic they imply. Thus, Deep Learning algorithms are becoming a
viable strategy for developing traffic classifiers, which can automatically extract features from
complex traffic patterns, and also being able to handle encrypted traffic [3].

1.2 Research Problems

As loT applications become present in the everyday life of everyone, efficient se-
curity mechanisms become the main concerns in developing loT applications [85]. Since
all these issues represent challenging problems, intense research is dedicated to them, but
there are many open problems. To summarize all the issues mentioned above, the main
problems to be considered in the present thesis include:

P.1. Problem 1: vulnerable and constrained devices should be protected and supported by
any loT security platform intended to be effective and efficient;

P.2.

P.3.

P4.

P.5.

H.1.

H.2.

H.3.

26

Problem 2: huge amount of generated data by devices should not be transmitted to fog
and cloud to be processed by the intrusion detection system; instead, the IDS should
be near where the data is produced;

Problem 3: traditional machine learning techniques for intrusion detection, demanding
some manual feature engineering, are not enough anymore, given the very dynamic
aspects of 10T, in terms of growing new kinds of devices and applications;

Problem 4: data privacy-preserving is becoming even more important since penalties
for privacy violations become very severe, according to recently approved regulations
(e.g., General Data Protection Regulation - GDPR in Europe and General Data Pro-
tection Law - LGPD in Brazil);

Problem 5: typical fog and cloud cyber threats will also affect the edge since they are
all interconnected, so they must be carefully considered.

In this context, the present thesis investigates the following hypotheses:

Hypothesis 1: federated machine learning techniques for intrusion detection allows
obtaining a decentralized, no single point of failure, effective mechanism to minimize
security risks in loT systems;

Hypothesis 2: distributed ledgers guarantee the adequate availability and integrity of
digital identities and all necessary access control information to the authentication and
authorization for resource uses in loT systems;

Hypothesis 3: resulting security platform can be adopted in many kinds of loT appli-
cations.

To validate these hypotheses, the explored research questions in this thesis in-

cluded:

RQ.1.

RQ.2.

RQ.3.

RQ.4.

Research Question 1: What are the state-of-the-art of intrusion detection techniques,
and can they be applied to loT systems?

Research Question 2: Federated machine learning techniques can be effectively ap-
plied to intrusion detection in loT systems?

Research Question 3: Can distributed ledgers be efficiently deployed on the edge in
loT systems to guarantee information integrity and availability in loT systems?

Research Question 4: Is it possible to develop an IoT security platform based on the
techniques mentioned above, which can be adopted in different kinds of IoT applica-
tions?

27

Given that the primary goal of this research is to develop an efficient, effective,
and flexible I0T security platform, the specific objectives to be achieved included: (i) identify
and report the state-of-the-art of intrusion detection approaches that can be applied to loT
systems; (ii) develop an efficient, effective, and flexible 10T security platform; (iii) explore
the use of federated learning to implement decentralized machine learning algorithms for
intrusion detection in loT systems; (iv) evaluate the developed loT security platform and
compare its performance with results reported by other similar platforms; and, (v) report the
research results by publishing them in scientific publications and presenting at academic
events, as well as exploring the possibility of technology transfer to the industry.

1.3 Thesis Contributions

As part of the present thesis, it was developed a decentralized, federated learning-
based security platform for loT applications, mainly focused on intrusion detection, which
allows for handling problems P.1, P2, P.3, and P.4 since model training and prediction for
anomalies/intrusion are performed locally at edge nodes, according to their available re-
sources, and only machine learning models, not collected data, are transmitted to other
edge nodes for global models generation.

Moreover, distributed ledgers, included as part of a decentralized IoT platform,
guarantee the integrity and high availability of the necessary information for the security
platform in a decentralized way. The developed platform also provides authentication, au-
thorization, and auditing mechanisms, essential to treat problem P.5 by providing necessary
security features in a distributed manner.

Thus, the main contributions of the present research work consist of:

C.1. Contribution 1: Efficient and effective intrusion detection mechanism based on decen-
tralized machine learning techniques, which should be able to predict attacks based on
previous incidents, as well on the behaviors of 10T devices and users;

C.2. Contribution 2: Efficient and effective use of distributed ledger technologies to provide
security mechanisms for authentication, integrity, confidentiality, non-repudiation, and
high availability of loT-based systems;

C.3. Contribution 3: Security platform based on distributed ledger technologies and intru-
sion detection using machine learning techniques, which can be adopted in different
loT application areas.

1.4

28

Thesis Outline

This thesis is organized into the following chapters:

In the next Chapter 2, basic concepts related to loT and security for loT-based systems
are presented, as well the main topics of the thesis are introduced;

In Chapter 3, the adopted approach in the research is described, including the main
characteristics of the developed security platform for loT-based systems, as well the
methods, techniques, and tools, which have been used during the research work;

Chapter 4 presents the obtained results, describing the performed experiments, using
a prototype of the security platform and how the developed approach compares to
existing intrusion detection systems;

Chapter 5 discusses some relevant related work, mainly the ones that try to provide
some security mechanisms for loT-based systems using decentralized intrusion detec-
tion techniques;

Finally, Chapter 6 summarizes the research findings, discusses their implications, and
suggests areas for future research.

29

2. BACKGROUND

This chapter introduces some basic concepts related to loT and security for loT-
based systems, providing more detailed explanations of some ideas for readers who may
need to become more familiar with them. Additionally, it discusses the existing methods and
techniques used in the field and their limitations, which the present research addresses.

2.1 Internet of Things

The term Internet of Things is applied to a network of smart objects, which can
intelligently interact with each other and cooperate for the loT-based system to provide useful
services [49].

According to Nord et al. [86], loT applications are adopted in many areas, from per-
sonal to ‘big’ business. Also, loT facilitates the development of a myriad of industry-oriented
and user-specific loT applications. Whereas devices and networks provide physical connec-
tivity, loT applications enable device-to-device and human-to-device interactions reliably and
robustly.

Generally, the performed operations in loT-based systems pass through a collection
phase, transmission phase, and processing, management, and utilization phase [17]. The
objective of the collection phase is to collect data about the physical environment employing
devices, which are usually small and resource-constrained [52].

In the transmission phase, the data is sent to the IoT applications/users through a
network interconnecting objects and users across longer distances. Commonly, gateways
servers are adopted to interconnect the collecting devices with the Internet-based network
components that act in the transmission phase [124].

In the processing, management, and utilization phase, loT applications process
collected data to obtain useful information about the environment and the behavior of the de-
vices [17]. Based on this information, these loT applications decide when and how to control
the devices and actuate the physical environment. The integration and communication be-
tween very heterogeneous devices and multi-platform applications are usually implemented
through middleware or APIs.

Transport Layer Security (TLS) [100] and its predecessor, Secure Sockets Layer
(SSL), are cryptographic protocols designed to provide secure communication over a net-
work. TLS/SSL [102] protocols ensure data confidentiality, integrity, and authentication be-
tween client-server applications.

In this context, gRPC [44], a high-performance, open-source framework for remote
procedure calls (RPC), which supports various programming languages, has been used to

30

implement communication in distributed systems and use TLS/SSL to secure communica-
tions between clients and servers.

By utilizing TLS/SSL certificates, which act as digital identities using cryptographic
keys, gRPC ensures secure and encrypted communication between clients and servers.
It protects against eavesdropping, tampering, and impersonation attacks, establishing a
trusted channel for data exchange.

211 Reference Architecture for loT

Sitton-Candanedo et al. [112] propose, based on the existing reference architec-
tures for loT-based systems, a Global Edge Computing Architecture (GECA) consisting of
three layers: 10T layer, Edge layer, and Business Solutions layer (see Figure 2.1).

5| & '
@
$ % Applications ~
- Cloud ‘ - A
g = * Analytics @ , @ @ H
@ .g » Dashboards]
8 = Analytics Cloud Authentication Oracles Knowledge APIS
° management base
»
1S p—
g Orchestration
) Policy shceduling H H
e H Compute a
Analyze the data flows
T
w Analyze data. Edge Gateway =
Local data store -
=
Q
()
I ;
M@ Blockchain (BC)]:
< Oracles R e -
% 83— P loT Node P H
Fl B — |
- PoLod i g
« Collect 83 Pl P
« Store R Sensors, Actuators .
6] or Controllers

Figure 2.1 — Global Edge Computing Architecture - GECA. [112]

31

In this proposed reference architecture, the loT layer comprises devices or physical
objects that monitor services, activities, or equipment in operation. These devices include
sensors, actuators, controllers, and gateways for loT environments. Usually, they are based
on technologies traditionally used for embedded systems development [63], as, for example,
Systems-on-Chip (SoC) [68].

Also, in the loT layer, to guarantee the integrity and validity of the data, a basic
blockchain scheme (indicated as Blockchain (BC) in Figure 2.1) is adopted. When data is
captured by sensors (inside of loT Node in Figure 2.1), a hash is generated and stored in
the blockchain, and then the data is sent to the edge nodes (blue bubbles in Figure 2.1) to
be stored off-chain [112].

Thus, an edge node can verify data integrity at any time by generating a hash on the
locally stored data and comparing it with the hash previously stored in the blockchain. The
data is still valid if the hashes have the same value. Brokers called oracles in Figure 2.1 are
responsible for this interaction between edge nodes and blockchain. This GECA’s loT layer
corresponds to the Edge layer in the generic three-tier architecture, shown in Figure 1.2.

The proposed Edge layer implements the orchestration of diverse technological as-
sets, improving supply, monitoring, and updating existing resources by managing physical
resources or analyzing large volumes of data in real time. This layer filters and pre-processes
the obtained data from the loT layer, usually implemented using micro-controllers with re-
duced computational and limited storage resources. This GECA’s Edge layer corresponds
to the Fog layer in Figure 1.2.

The filtered and processed data is then transferred to the layers in the Cloud, known
as the Business solution layer in the proposed GECA. The integrity of all the data obtained
from the loT layer is another responsibility of the Edge layer by using a blockchain imple-
mented in the lowest layer of the architecture.

The Business Solution layer, corresponding to the Cloud layer in Figure 1.2, pro-
vides services and business applications in the Cloud. Each API call can be activated by ex-
ecuting more complex operations involving interactive interfaces and are part of the business
applications ecosystem. The main components of this layer include analytics, cloud man-
agement, authentication, knowledge base, and API (Application Programming Interface), for
example, REST, XML, and SOAP.

As already mentioned in the previous chapter (see Figure 1.2), there are proposed
reference architectures for 10T that suggest some additional layers between this proposed
GECA'’s Edge layer and the Business Solution layer [121]. More powerful computational,
storage, and communication resources will compose these intermediate layers, which can
interact directly with the resources in the above layer, the Business Solution layer [75].

So, many reported reference architectures for loT systems are well covered in [99].
However, the decentralized architecture, elaborated in the present thesis, adopted the ter-

32

minology from this IoT architecture reference (named GECA) mentioned above since the
main objective of the present thesis is to demonstrate the feasibility of distributed ledgers
combined with edge computing concepts in a decentralized way, to implement intrusion de-
tection in the network edge layer.

Moreover, following the concepts from the Peer-to-Peer (P2P) networking paradigm
[108], the decentralized architecture developed in the present thesis establishes a P2P over-
lay on the components in the 10T and Edge layer of the GECA reference architecture.

Remember that P2P networks are decentralized distributed systems and enable
computational systems to share and integrate their computing resources, data, and services
[108]. In P2P networking, each peer node works as both client and server, requesting ser-
vices from and providing services for other peer nodes. A P2P network can be seen as a
logical overlay network over a physical infrastructure. Thus, as detailed in Chapter 3, the de-
centralized architecture developed in the present thesis defines a logical unstructured P2P
overlay, where each P2P node corresponds to an loT or Edge node in the GECA refer-
ence architecture, which can communicate between them by using cryptographed remote
procedure calls.

2.1.2 loT Security and Intrusion Detection

Given the large volume of generated data by most loT applications, the edge com-
puting paradigm [125], where processing is performed preferentially in devices at the net-
work edge, is becoming predominant to data network traffic be minimized.

Even so, some loT applications need powerful resources that usually are only avail-
able at the cloud layer or at least at the intermediate fog layer (e.g., big data analytics may
need a huge amount of storage and computational power). Thus, any efficient and effective
architecture for loT security must consider all security threats inherent to all these three lay-
ers [128]. Some of the main threats to loT are summarized in Table 2.1 and explained in the
following.

All the threats listed in Table 2.1 can produce peculiar traces of network traffic,
which usually characterize each possible security risk. The presence of these traces is
one of the main arguments for using techniques based on network traffic analysis to detect
possible anomalous behaviors in a system that can indicate some security issues.

Zarpelao et al. [124] claim that some ongoing projects for enhancing loT security
include methods for providing data confidentiality and authentication, access control within
the loT network, privacy and trust among users and things, and the enforcement of security
and privacy policies. However, even with these mechanisms, IoT networks are vulnerable to

33

Table 2.1 — Main threats to 10T security. [52]

Threat Description Attack
Cloning of things By manufacturing, a device copy is produced Conventional
Substitution of thing By installation, a device is replaced Conventional

Firmware replacement By operation, the device’s firmware has security parameters ex- Conventional
tracted and altered

Spoofing, modifying, Create routing loops, attract or repel network traffic, extend or Routing
or replaying routing in- shorten source routes, and so on
formation

Man-in-the-middle Modify communications from entity A to another entity B without Routing
both A and B noticing it

DoS, distributed DoS By exhausting service provider resources and/or network band- Denial of
width, make service unavailable Service
(DoS)

multiple attacks to disrupt the network. For this reason, another line of defense designed for
detecting attackers is needed. Intrusion Detection Systems (IDSs) can fulfill this purpose.

Mitchell et al. [69] define Intrusion Detection as consisting of collecting data related
to the actions being performed in a system and analyzing the collected data to identify the
eventual presence of intruders in the system. The identified intruder actions, known as
intrusions, usually try to obtain unauthorized access to the system.

Also, according to Michell et al. [69], there are two kinds of intruders: internal ones,
which are users inside the network with some degree of legitimate access that attempt to
raise their access privileges to misuse non-authorized privileges, and external ones, which
are users outside the target network trying to gain unauthorized access to system informa-
tion.

Mohammadi et al. [70] define Intrusion Detection Systems as systems designed
to inspect all in bound and outbound traffic and identify the suspicious traffic and actions of
various attackers in a timely and accurate manner. So, an IDS monitors a host or a network
and alerts the system administrator when it detects a security violation [124].

Due to the previously mentioned characteristics of loT-based systems, current so-
lutions for IDS need to be adequate. In traditional networks, the IDS agents are deployed
in nodes with higher computing capacity, and loT networks are usually composed of nodes
with minimal resources. Therefore, finding nodes supporting IDS agents is more challenging
in loT systems.

Moreover, as argued by Zarpelao et al. [124] In traditional networks, end systems
are directly connected to specific nodes (e.g., wireless access points, switches, and routers)
responsible for forwarding the packets to the destination. loT networks, on the other hand,
are usually multi-hop. Then, regular nodes may simultaneously forward packets and work
as end systems.

34

Usually, an IDS consists of sensors (for collecting data), an analysis engine (to
receive data from sensors and detect intrusion based on the investigation of the collected
data), and a reporting system (to generate alerts when an intrusion is detected). In this
context, Zaperlao et al. [124] propose a taxonomy of IDS for IoT, shown in Figure 2.2,
divided into placement strategy, detection method, security threat, and validation strategy.

IDS for loT

T
Placement Detection Security Validation
Strategy Method Threat Strategy

1 1

Conventional Routing Man-in-the-
attack attack middle

Distributed Centralized Hybrid DoS

[I I | [T I |

Signature- Anomaly- Specification-

based based bisad Hybrid Hypothetical Empirical Simulation Theoretical None

Figure 2.2 — Taxonomy of IDS for loT. [124]

As shown in Figure 2.2, the placement strategy can be distributed (IDSs are placed
in every physical object of the network), centralized (the IDS is set in a centralized compo-
nent, for example, in the border router or a dedicated host.), or hybrid (combines concepts
of centralized and distributed placement).

As detection method, there are four categories: signature-based (IDSs detect at-
tacks when a system or network behavior matches an attack signature stored in the IDS in-
ternal databases), anomaly-based (compare the activities of a system at an instant against a
normal behavior profile and generates the alert whenever a deviation from normal behavior
exceeds a threshold), specification-based (detect intrusions when network behavior devi-
ates from manually specified rules in a set of specification definitions), and hybrid (explores
all the above methods trying to maximize their advantages and minimize the impact of their
drawbacks) [14].

It is important to note that signature-based IDS approaches cannot deal with new
attacks in which their signatures are unknown, and traffic is encrypted. However, anomaly-
based IDS schemes operate according to the users’ expected behavior profiles and can
detect newly unleashed attacks.

The main types of security threats include conventional attacks, routing attacks,
man-in-middle attacks, and Deny of Service (DoS) [124]. Cloning of things, the malicious
substitution of things, firmware replacement, and extraction of security parameters can be
organized according to the process phase in which the attacker acts - manufacturing (cloning
of things), installing (malicious substitution of things), operation (firmware replacement and
extraction of security parameters) or maintenance (firmware replacement).

Routing attacks consist of spoofing, modifying, or replaying routing information to
create routing loops, attract or repel network traffic, extend or shorten source routes, and so

35

on. A man-in-the-middle attack is performed when an attacker node modifies communica-
tions from entity A to another entity B without both A and B noticing it [52].

Physical objects usually have tight memory and limited computation capacity, so
they might be vulnerable to DoS attacks that can be launched in a traditional way, exhausting
service provider resources, and network bandwidth or targeting the wireless communication
infrastructure, jamming the communication channel [52].

Zarpelao et al. [124] state that /DS validation consists of checking that the built
model behaves with satisfactory accuracy within the study objectives. Based on this vali-
dation concept, they investigated 18 works on intrusion detection. They identified the vali-
dation types listed in Figure 2.2: hypothetical (use of examples, having unclear relation to
actual phenomena and degree of realism), empirical (for example, a systematic experimen-
tal gathering of data from operational settings), simulation (use of some simulator for 10T),
theoretical (formal or precise arguments to support results), or none (no validation methods
are employed).

As pointed out by Zarpelédo et al. [124], only one of the 18 works performed em-
pirical validation and compared the results with other IDS approaches. Since there is no
standard benchmark for IDSs, they recommend as very important at least to perform vali-
dation with realistic data sets oriented to loT systems, with realistic network configuration,
realistic traffic, labeled dataset, full capture, and multiple attack scenarios. Unfortunately,
many of these characteristics are not present in the existing data sets for IoT, so creating
specific data sets must be the object of research.

Kumar et al. [52] claim that many of the difficulties in developing Intrusion detection
algorithms for loT-based systems are related to their dynamic characteristics: intrusive and
normal behavior of users, applications, and networks is always changing over time.

These dynamic behaviors are mostly due to the many new loT devices and ap-
plications constantly coming up and even due to new functionalities offered by current de-
vices and applications. Thus, an IDS must constantly learn and adapt itself to cope with
the changes to be effective and efficient. Machine learning-based Intrusion Detection is a
possible approach to this issue, as suggested by [92].

Access control is the usual mechanism to grant permission to users and devices to
access shared resources in an loT network [96]. An access control process usually includes
authentication, authorization, audit, and administration functions. Authentication verifies the
identity of a user, process, or device. Authorization grants and denies specific user, process,
or device requests. The audit function allows the analysis of records to assess the adequacy
of the access control, determining if it complies with specified policies. And administration
consists of creating, provisioning, and managing users, groups, roles, devices, and policies.

In the context of Internet of Things (loT) applications, XACML and OAuth are the
most commonly utilized technologies for access control to shared resources. XACML (eX-

36

tensible Access Control Markup Language) [89] includes an attribute-based access control
policy language, an architecture, and a processing model to evaluate access requests. The
Policy Enforcement Point (PEP) enforces policy application by intercepting the request and
forwarding it to the Policy Decision Point (PDP) for evaluation. Based on the PDP’s evalu-
ation, the PEP decides whether to grant or deny access. OAuth [23] is a token-based au-
thorization protocol, where permission to access a given resource is granted to a requester
only if it possesses a token requested to and provided by the resource owner, which also
determines the allowed access level.

Both technologies are unsuitable for 10T applications since they assume a central
authorization server, which receives requests and evaluates them to decide if access is
granted to the requester. This assumption restricts loT scalability and also represents a
single point of failure. Thus, many blockchain-based approaches to access control for loT
systems allow the decentralization of the process and handle these two issues [96].

2.2 Machine Learning-based Intrusion Detection

Machine Learning (ML) is a computational paradigm allowing machines to adjust
their behavior based on helpful knowledge inferred from data sets. ML techniques have
been used for classification, regression, and estimation tasks, which can be applied to solve
problems in fraud detection, computer vision, natural language processing, and many other
areas [43].

Intelligent IDS is a kind of IDS, which explores the use of machine learning methods
and techniques to detect intrusion based on historical data about previous incidents and
behaviors of the 10T devices, as well all the participating nodes of the loT-based system [92].
Table 2.2 lists some ML algorithms and techniques for implementing IDSs.

An intelligent IDS can be categorized, according to data labels in the used datasets
and the adopted machine learning method, as (i) supervised, (ii) semi-supervised, and (iii)
unsupervised IDS. Supervised intelligent IDSs use a fully labeled dataset to train the model
and usually achieve the highest accuracy in recognizing intrusions. Since finding a fully
labeled dataset for intrusion in 10T systems is challenging, implementing this type of IDS
takes work.

Unsupervised IDSs have no access to a labeled dataset and try to build a cluster
of similar data samples. Any data point out of the cluster is considered an anomaly and
eventually indicates an intrusion attempt. In general, this kind of intelligent IDS can generate
a high False Alarm Rate (FAR), where benign behavior is classified as malign and identified
as an intrusion. Semi-supervised intelligent IDSs use a partially labeled dataset to train the
model for intrusion detection.

37

Table 2.2 — Machine Learning-based IDSs.

IDS | Su,Se,Un?| Description | ML | Dataset | H/N®| loT
Sindhu et | Su Reduce KDD'’s redundance, perform feature se- | DT®, | KDD N No
al. [111] lection, and combine decision tree and a neural | ANN’

network, to implement a multi-class classifier
Ammar et | Su Complement to a conventional IDS to classify | DT¢ ISCX N No
al. [9] traffic identified as suspicious
Hodo et al. | Su A three layers feed-forward Neural Network is | ANN’ | Script N Yes
[41] used offline to identify DoS attacks inC
Koroniotis Su, Un Present some intrusion detection approaches | SVM”, | Bot-loT | N Not
et al. [48] based on three ML techniques to evaluate the | RNN9Y, only

Bot-loT dataset LSTMK
Wu et al. | Su Combine ML techniques in a 5-class classifier | DBN/, | NSL- N Yes
[119] (normal, DoS, Probe, R2L, U2R) SVM9 | KDD
Kumari et | Sup, Se Intrusion detection was conducted using both | SVM”, | NSL- N No
al. [54] classifiers engines (SVM and FCM) to improve | FCM’ | KDD

confidence
Almiani et | Su A multi-layered recurrent neural network-based | RNN9 | NSL- N Yes
al. [6] IDS to be deployed at the fog layer KDD
Mohammadi| Su Present many IDS approaches based on SVM | SVM" | KDD, N Yes
et al. [70] combined with various techniques and NSL-

others | KDD

Kumar et | Su Preprocessing data set to remove redundancy, | DT® UNSW- | N Yes
al. [53] perform feature selection, and combine four de- NB15

cision trees to implement an IDS as a 5-class

classifier
Alsaedi et | Su, Un Present many intrusion detection approaches | LR¢, TON_IoT| Both| Yes
al. [8] based on various ML techniques to evaluate a | kNNY,

data-driven dataset, instead of a usual network | RF/,

flow-driven one SVM”,

LSTMk

aSupervised,Semi-supervised,Unsupervised °Host/Network, CLogistic Regression, dk-Nea.rest Neighbour,
eDecision'Tree, fRandom Forest 9Recurrent Neural Network, "Support Vector Machine, Artificial Neural
Network, /Deep Belief Network, “Long-Short Term Memory, 'Fuzzy C-Means

In Table 2.2, there is an indication of this classification for each approach, as well
as a brief description, adopted type of model learning, used dataset, if it is a host-based or
network-based IDS, and if it has a focus on loT-based systems.

2.2.1 Datasets for loT

As previously mentioned, supervised machine learning depends essentially on the
available data to be used during a model’s training, which will be used to predict eventual
anomalous behavior that can indicate an intrusion. Most of the available data sets are not
representative of 1oT systems [67]. Table 2.3 presents common data sets with reported
results in the literature for intrusion detection approaches.

38

Table 2.3 — Common datasets.

Data set | Description | Year | loT | Samples | Feat. | Classes
KDD99 [70] | Records of network traffic using tcpdump | 1999 | No | 4,898,430 | 41 | 5
NSL-KDD Selected records from KDD99 by eliminat- | 2009 | No | 148,517 41 5

[114] ing redundancy

UNSW- Records of real benign network activities | 2012 | No | 2,540,440 49 10

NB15 [73] (87.35%) and synthetic attack scenarios
(12.65%), captured with tcpdump

ISCX [109] Records of generated normal and attack | 2015 | No | 2,450,324 9 1
traffic samples from profiles specific to
some internet protocols

BoT-loT [48] | Records of a realistic network environ- | 2019 | Yes | 3,668,522 42 5
[101] ment, with normal (0.01%) and botnet traf-

fic (99.99%)
TON_IoT [8] | Records of a heterogeneous dataset, in- | 2020 | Yes | 22,339,021 | 44 1

cluding telemetry data and network traffic
(3.56% benign flows and (96.44%) attack
samples

N-BaloT [66] | Records real network traffic from 9 loT de- | 2018 | Yes | 7,062,606 115 11
vices infected by two malware

Edge lloT | Records real network traffic generated by | 2023 | Yes | 2,219,201 92 15
[30] more than ten types of loT devices, with a

subset specific for use in deep learning
[0T23 [34] Records real and labeled malware and be- | 2020 | Yes | 1,444,674 24 10

nign traffic from 3 loT smart home devices

The KDD99 or KDDCup dataset is derived from the DARPA 98 dataset, which was
generated by MIT’S Lincoln Lab for the evaluation of intrusion detection systems and simu-
lated a small Air Force network connected to the internet [70]. The NSL-KDD dataset [114]
is derived from the KDDCup, mainly by removing data redundancy. These DARPA-based
datasets contain 41 input features with discrete or continuous values, including Transmis-
sion Control Protocol (TCP) connections data, duration, prototype, number of bytes from the
source and destination IP (Internet Protocol) addresses, etc.

KDD99 and NSL-KDD datasets are labeled with five classes, one for normal traffic
and four classes representing attack of: (i) Denial of Service - DoS (the attacker overloads
the victim with many requests, exhausting its memory, the network interface, or other server
resources); (i) User to root - U2R (the intruder gains unauthorized access into the system
as a normal user, which it then tries to modify as an admin-user exploiting vulnerabilities;
(iii) Remote-to-Local - R2L (the intruder uses system vulnerability to act as a normal user;
and, (iv) PROBE (the intruder scans the network to retrieve information about the victim’s
computers attached to a network) [21].

KDDCup and NSL-KDD are obsolete since they do not have more recent types of
attack [19] and even so, are adopted in many recently published works [103][115] [119] [97].
More recent and adequate datasets for loT are also included in Table 2.3.

39

UNSW-NB15 [73] is a dataset developed at UNSW Canberra, containing 100 Giga
bytes of benign and anomalous traffic. It consists of 49 features and flows labeled with
ten classes: normal, fuzzers (feeding a program/network with randomly generated data to
force its suspension), analysis (port scan, spam), backdoors (bypass system security to
obtain unauthorized access), DoS (iry to make a server or network resource unavailable
for used by causing excessive overhead to a provided service), exploits (use of a known
security problem to exploit system vulnerabilities), generic (attack applicable to all block-
ciphers), reconnaissance (attacks to gather system information), shellcode (code as payload
in exploiting system vulnerabilities), and worms (attacker self replicated to other systems).

ISCX [109] was produced at the Canadian Institute for Cybersecurity, using the
concept of profiles that can characterize attacks in a network. From profiles generated for
various network protocols (HTTP, FTP, SSH, etc.) and activities related to intrusion detection
systems, network traffic was generated that was captured and used to build the dataset with
2,381,532 normal traffic samples and 68,792 attack samples.

BoT-loT was created by Koroniotis et al. [48] at the Research Cyber Range lab of
UNSW Canberra using both real and simulated loT network traffic. This dataset consists
of normal and botnet traffic, with 42 features, and containing 477 (0.01%) benign flows and
3,668,045(99.99%) attack ones, that is 3,668,522 flows in total. The testbed environment
used to generate it includes (i) network services and platforms (legitimate and malicious vir-
tual machines), (ii) a simulated loT-based smart-home application (with thermostat, garage
door, refrigerator, weather monitoring system, and lights), and (iii) a tool to perform foren-
sics analytics (Argus tool). Bot-loT was used to train a Recurrent Neural Network (RNN),
a Support Vector Machine (SVM), and a Long-Short Term Memory (LSTM), and the SVM
produced better results (accuracy of 100%). In the present thesis, this dataset was adopted
in some of the experiments, using a subset of it and considering four types of attacks (DDoS,
DoS, Information gathering, and Data theft) and normal traffic.

TON_IoT [16] includes telemetry data of loT services, network traffic of loT net-
works, and operating system logs, and contains 44 features, with 796,380 (3.56%) benign
flows and 21,542,641 (96.44%) attack samples, that is, 22,339,021 flows in total. TON_loT
was collected from a realistic and large-scale network designed at the Cyber Range and loT
Labs, UNSW Canberra, at the Australian Defence Force Academy (ADFA), using a testbed
of loT and lloT networks.

The N-BaloT dataset was created by Meidan et al. [66], capturing actual network
traffic samples from 9 IoT devices infected by two malware, Mirai and BASHLITE. N-BaloT
contains a total number of instances of 7,062,606, with 23 statistical features about the
network traffic, which were computed for five different time windows, resulting in a total of
115 features. The normal traffic was captured after a new testbed installation to ensure no
infected streams were injected. The malicious traffic consists of 10 attack types carried by

40

the two botnets (Mirai and BASHLITE). It is reported a TPR of 100% and mean FPR of 0.7%,
using a fine-tuned autoencoder.

I0T23 [34] is a dataset that consists of loT network traffic captured in the Strato-
sphere Laboratory at CTU University in the Czech Republic from 3 different smart home loT
devices (Amazon Echo, Philips HUE, and Somfy Door Lock). It consists of real and labeled
loT malware infections and benign traffic, including 23 captures: 20 malicious and three
benign captures.

Edge Industrial loT dataset [30] was generated using a testbed organized into
seven layers, including the Cloud Computing Layer, Network Functions Virtualization Layer,
Blockchain Network Layer, Fog Computing Layer, Software-Defined Networking Layer, Edge
Computing Layer, and loT and lloT Perception Layer. Each layer incorporates technologies
related to loT and lloT applications, such as the ThingsBoard loT platform, OPNFV platform,
Hyperledger Sawtooth, Digital twin, ONOS SDN controller, Mosquitto MQTT brokers, and
Modbus TCP/IP. The loT data was generated from various loT devices, such as Low-cost
digital sensors for sensing temperature and humidity, Ultrasonic sensors, Water level detec-
tion sensors, pH Sensor Meters, Soil Moisture sensors, Heart Rate Sensor, Flame Sensor,
etc.), from which it was identified fourteen attacks related to loT and lloT. These are catego-
rized into five threats: DoS/DDoS attacks, Information gathering, Man in the middle attacks,
Injection attacks, and Malware attacks. This dataset was used to train different machine
learning models, including a deep learning neural network, with 47 trainable parameters that
presented 99.99%

Ring et al. [101] and Sarhan et al. [105] present an exhaustive list of datasets, giv-
ing many details of each one. Most datasets are oriented to intrusion detection in traditional
networks and not specific to IoT.

2.2.2 Metrics

An intelligent IDS should be trained using some subset of a given dataset, called
training dataset, and should be evaluated using another subset of the dataset, called testing
dataset. The classifications produced by the intelligent IDS can be: (i) True Negatives (TN),
normal traffic is correctly recognized as normal traffic; (ii) True Positives (TP), attacks, and
malicious behaviors are correctly detected as intrusions; (iii) False Positives (FP), normal
traffic is falsely detected as attacks; and, (iv) False Negatives (FN), attack traffic is falsely
detected as normal traffic [67].

Usually, based on TN, TP, FP, and FN, common evaluation metrics for intelligent
IDSs include:

41

(TP + TN)

ACCUrACY = 75 TN+ FP + EN)

(2.1)

Accuracy is the fraction of correctly classified examples by the number total of
examples in the dataset. This metric is adequate when the dataset is balanced, otherwise,
it may not reflect the actual model quality.

TP
TP+ FN
Detection Rate (or Recall) is the fraction of examples classified as positive, among
the total number of positive examples. It is useful when False Negative is of high cost for
Model quality, for example, Fraud Detection Model.

Detection rate (DR) = (2.2)

FP
“FP+TN
FPR is the fraction of examples classified as positive among the total number of
negative examples. It is useful when False Positive is of high cost for Model quality, for
example, email Spam Detection Model.

False Positive Rate (FPR) (2.3)

P
TP + FP
Precision is the fraction of true positive examples among the examples that the
model classified as positive. It is also useful when False Positive is of high cost for Model
quality.

Precision = (2.4)

F1— score = ————— 2 1 (2.9)
DR t Precision

F1-score is a combination of recall and precision, and when equal to 1 indicates

perfect both precision and recall metrics. This is a metric of importance for an imbalanced

dataset as equal importance is given to both Precision and Recall. An efficient intelligent

IDS should have ideally 0% FPR and 100% DR.

2.3 Federated Learning

The term Federated Learning (FL) was proposed by Google in 2016 [65] to desig-
nate a machine learning technique where a group of client devices performs model training
locally, using their private datasets, and a global model is generated by a central server,
which only receives updates from local models and never the local datasets. The global
model, generated by the central server, is then shared back to all the client devices.

42

2.3.1 Strategies for Model Training in FL

In conventional model training, a central server trains a model using data gathered
from distributed end devices. The trained model is then shared back with the devices to be
used in prediction or inference tasks. Figure 2.3 illustrates this approach.

Figure 2.3 — Model training: Conventional.

In centralized FL (see Figure 2.4), local models are trained at devices based on
available data; A server trains a global model by some aggregation applied on collected
local models from devices. The trained global model is shared back to devices for updating
their local models. As previously discussed, this approach corresponds to the centralized
cloud-based one, which cannot support 0T peculiarities.

In the decentralized FL architecture (shown in Figure 2.5), each node can perform
local model training based on local data and models shared by other nodes. It corresponds
to the ideal concept of federated learning. But, most published approaches adopt a unique
central server for aggregation implementation, leading to an undesirable single point of fail-
ure in the system. The decentralized FL architecture corresponds to the concept of Feder-
ated Learning, adopted in the present thesis.

It is important to note that, independent of the architecture, the model training ob-
jective is to minimize a training loss function, i.e., the difference between the learned values
and the labeled data used to train the model.

In the decentralized FL architecture, the local training must converge to a con-
sensus in the global shared model, depending on how its gradient will be computed [128].

43

- (@A)D P2P Network

Figure 2.5 — Model training: Decentralized FL

Usually, the global shared model is generated by some aggregation algorithm applied to the
locally generated models.

44

2.3.2 Aggregation Strategies

One possible aggregation algorithm is based on SGD (Stochastic Gradient De-
scent), which updates the gradient over tiny subsets (mini-batches) of the whole data set or
even by selecting the clients that will contribute to the model updates, calculated indepen-
dently by each client device [128].

One most common aggregation algorithms, proposed by McMahan et al. [65] and
called the FedAvg method, consists of iterative model averaging, i.e., the client devices
update the model locally with one-step SGD, and then the server averages the resulting
models with weights. This aggregation method allows for treating unbalanced and non-11D
(non-Independent Identically Distributed) since the distributed data may come from various
sources.

Another important issue related to model training in Federated Learning is the com-
munication costs since the client devices will send model updates to the central server and
eventually receive whole global models from the server. Some approaches to minimize these
communication costs are reported in the literature. For instance, McMahan et al. [65] sug-
gests performing more iterations in the client devices to reduce the training rounds between
them and the central server, which is necessary for the training convergence.

Another approach to computing global parameter aggregation, called FedCS (Fed-
erated Learning with Client Selection), is described by Nishio et al. [84], which performs
a selection of the client devices that will participate in each training round based on infor-
mation about available computational resources and communication channels collected on
randomly selected client devices. From these pre-selected client devices, it is chosen for the
training round the ones that allow to aggregate the maximum number of client devices in a
given deadline [84]. Figure 2.6 illustrates this protocol.

After initialization (step 1), the central server requests resource information from
randomly selected client devices (step 2). Based on the received information, the central
server chooses devices that will participate in the training round (step 3) and sends the
global model to them (step 4). The central server receives model updates from each client
device according to the planned schedule (step 5) and computes model aggregation. Train-
ing rounds are iterated until to obtain model convergence.

These approaches to aggregation in federated learning can be applied in an intelli-
gent IDS based on federated learning [36]. Each client device will train a local model based
on the network traffic it captures, contributing to model updates for the central server. How-
ever, since network traffic patterns are usually specific to given types of devices, it would be
important to train global models per device type [45].

In this context, federated learning offers a very efficient approach to dealing with
security risks due to the limitations of the resource-constrained devices in loT systems since

45

1. Initialization

4l
-
[
)

2. Resource request
a e L TR e P
3. Client selection i Resource information
STess
S5 -
~ -~
-~ ~ -~ -
4. Distribution Global model™ ~ ~ = ~ </
and schedule Ss S~ao
j -~
Update model _ = ==~
5. Scheduled update | _ = =" " ACK
and upload |~ (R . --> - -
- 1 -
-
Updated model _ = = -
-
- -
‘o e e o ACK 5l oyl - -5
6. Aggregation l

Figure 2.6 — Overview of the FedCS protocol. [128]

these devices take advantage of the knowledge on intrusion detection captured in the glob-
ally trained models, even if they don’t have enough resources to take part on the model
training of them.

2.3.3 Privacy Issues

Since data privacy-preserving is a big issue due to the recent regulations in Europe
and Brazil intended to protect user’s privacy and provide data security, federated learning
also here offers a significant advantage since model training is not dependent on access to
the device data, which is only available locally at each client device [56]. Moreover, since
device data is not transmitted through the network, security risks are also minimized.

However, since an initial global model must be shared with the client devices and
further model updates should be transmitted to the central server, some malicious client
devices may capture the network traffic, threatening data privacy, and even make changes
to the models, intending to influence on the final results. Thus, some techniques should be
adopted to cope with these threats.

Differential privacy [118] is one of these techniques, which adds noise to the data,
or uses generalization methods to obscure model attributes until the third party cannot iden-
tify who sent the model updates, thereby making the data impossible to be restored and so
to protecting user privacy.

46

2.3.4 Strategies for Inference Phase in FL

For the inference phase, a client device receives an input (a network traffic se-
guence in an intrusion detection case). It applies its local model to classify it as normal or
attack traffic. Another possibility is for the client device to send the input to an edge server
with a trained model to perform the inference and then to receive back the classification
[128].

It is also possible to perform part of the inference in a local partial model in the
client device that sends the partial result to an edge server, which has another part of the
model, that finishes the inference, giving back the classification to the client device. Yet
another possibility for the inference is that the edge server uses a trained model at a cloud
server to perform part of the inference [5]. One of the above inference modes can be chosen
according to the available computation, memory, storage, and communication resources in
the client devices and edge servers.

24 Distributed Ledgers Technologies

A distributed ledger (DL) maintains transactions or digital interactions in a trans-
parent, immutable, and auditable manner. Blockchain, which was first introduced in 2008
by Nakamoto [76], is one of the technologies to implement DLs [59], by storing a set of
transactions in a block and chaining every block using cryptographic techniques [117]. Each
transaction can be a transfer of values between different entities that are broadcast to the
network and collected into the blocks. The transactions are mined into a block by the so-
called miners, and so they add transactions into the blockchain [61].

2.4.1 Mining or Validation Process

Through the mining process, the participant nodes can reach a secure, tamper-
resistant consensus, which is a fundamental problem in distributed systems that requires two
or more nodes to agree with each other on a given decision, even if some of the nodes are
unreliable. Many different consensus algorithms have been used by blockchain, including
proof of work (PoW), proof of stake (PoS), and proof of storage.

In a blockchain, there is no central trusted authority to maintain data validity, which

the participating nodes in the blockchain-based system guarantee. Each node has a copy
of the ledger, and they keep their copy up-to-date by using some consensus algorithm to

47

decide the validity of any change or update to the ledger. Thus, the ledger replica in a
blockchain guarantees high availability for the entire system [1].

Each block stores a cryptographic hash of the block that precedes it and the trans-
actions stored within it. Thus, tampering with blocks requires propagation of the change to
all blocks that follow it, creating a chain of blocks from the genesis block (the first one in a
blockchain, which has no previous block) to the current block.

2.4.2 Smart Contracts

Smart contracts can execute some action associated with registered transactions
on a blockchain. They provide the automation mechanism for the execution of code, accord-
ing to implemented rules that have been agreed upon by the participant nodes [126].

It is worth noting that there are at least two types of blockchain: public one, where
anyone can participate in the network, and private or permissioned one, where only privi-
leged nodes can participate [18].

2.5 Summary

This chapter introduces the main topics related to the present thesis, conceptualiz-
ing loT security, machine learning-based intrusion detection systems (IDSs), and the archi-
tecture of loT systems. Initially, it describes the architecture of loT systems, particularly the
GECA reference architecture. It explains the roles of the loT, Edge, and Business Solution
layers in this architecture. The chapter also introduces the Peer-to-Peer (P2P) networking
concept and its implementation in a decentralized architecture. The architecture aims to
demonstrate the feasibility of combining distributed ledgers with edge computing concepts
in a decentralized manner to implement intrusion detection in the network edge layer.

The chapter outlines the main threats to IoT security, such as cloning of things,
firmware replacement, and denial of service (DoS) attacks, emphasizing that these threats
can leave distinctive traces in network traffic. The chapter then defines machine learning-
based IDSs, highlighting the importance of representative datasets for loT systems based on
deep learning techniques to model training, particularly federated learning, and presenting
common datasets used for intrusion detection approaches.

The chapter also discusses strategies for the inference phase in federated learning,
explaining that the choice of approach depends on the available resources for computation,
memory, storage, and communication in client devices and edge servers. It introduces dis-
tributed ledger technologies, including blockchain, and discusses their role in maintaining

48

transactions or digital interactions in a transparent, immutable, and auditable manner. The
mining or validation process in blockchain, which helps reach a secure, tamper-resistant
consensus, is also explained.

Thus, this chapter has introduced the main concepts mentioned in the following
thesis chapters.

49

3. DECENTRALIZED INTRUSION DETECTION ORIENTED TO IOT

This chapter presents a DeCentralizeD, Federated Learning-based approach to
intrusion detection in loT, called DCD-FL. First, an overview of DCD-FL and its architecture is
given, then the workflow through the developed approach is described. Finally, a prototype,
implemented to validate the defined architecture, is presented in detail.

3.1 Overview

DCD-FL is an approach to intrusion detection that combines decentralized com-
puting and federated learning. Its architecture consists of a network of Peer-to-Peer (P2P)
nodes, each composed of computation, storage, and communication components, as illus-
trated in Figure 3.1.

P2P node

Computing
VM

Storage
IPFS

P2P overlay

Communication
gRPC

Bootstrap node

,,,,, deployment

bidirectional
communication

Cloud/Edge/loT layer

Figure 3.1 — DCD-FL: P2P network as an overlay of components in loT layers

The P2P nodes can be virtual machines, computers, or devices from the cloud,
edge, or loT layers, selected from available components in the IoT system or some provi-
sioned resource specifically for the intrusion detection process. This P2P structure ensures
that DCD-FL has a fault-tolerant architecture, where a set of nodes is oriented to specific
tasks in the intrusion detection process.

As indicated in the legend of Figure 3.1, each P2P node may have a specific type
and so be responsible for particular tasks; for instance, the two bootstrap nodes are well-
known contact peers at start-up to provide integration of joining peers into the P2P network.
As shown in Figure 3.2, P2P nodes of specific types can be dynamically grouped to form P2P

50

clusters, according to the demand from the intrusion detection process, to perform particular
tasks in a fault-tolerant and load-balanced way.

Control cluster

Admin node
Controller node
Planner node

Aggregator node

(o]

=] & [=][2] 2]

Worker node

Admin cluster Training/Prediction cluster

Figure 3.2 — DCD-FL: P2P clusters to perform specific tasks

P2P nodes can be of type: Admin (Ad), Controller (C/), Planner (Pl), Aggregator
(Ag), Worker (Wk), and Storage (Str). Figure 3.2 shows clusters composed of these types
of nodes.

Ad nodes in the admin cluster manage information about the registered nodes and
tasks to be executed and in execution, in a decentralized way, by using a blockchain to store
metadata and a decentralized storage resource to store all data.

C/ nodes in a controller cluster perform access control to the resources and tasks
available in DCD-FL by consulting the authentication/authorization data maintained by the
admin cluster.

Following the federated learning approach, the training/prediction cluster trains the
local model (employing Wk nodes) and global models (by using the Ag nodes), collecting
and sharing them with the nodes involved in each planned task (defined by the P/ nodes).

There are also storage clusters composed of St nodes (not exemplified in Fig-
ure 3.1), which can register information in distributed ledgers and decentralized storage
components.

Communication between all the nodes, intra- and cross-clusters, uses TLS, with a
digital identity for each node, generated from the node’s public key and managed by admin
and controller clusters.

Each node uses an API service call to register itself in the admin cluster, providing
its characteristic properties (its identity, computational, storage, and energy attributes), in-
cluding its public key from a key pair (public and private keys) generated by the node itself,
using a specific distributed client application (DApp). Only then the new node can participate
in the IoT system.

51

Thus, admin and controller clusters manage the IDS’s infrastructure, providing au-
thentication and authorization services for nodes, including the P2P network topology man-
agement, by registering/maintaining the participant nodes. Inside each cluster, a lightweight
local blockchain is used to register information generated/used by the IDS tasks securely
and decentralized.

Thus, DCD-FL incorporates distributed ledgers (global and local blockchains) and
off-chain storage to guarantee the integrity and high availability of the necessary information
for the loT security platform in a totally decentralized way. It also supports authentication,
authorization, and auditing mechanisms, providing essential security features in a distributed
manner.

DCD-FL is designed to handle problems related to loT security, such as intrusion
detection and data privacy. It achieves this by performing model training and predicting
intrusion locally at edge nodes, selected based on their available resources. Only models
are transmitted to other edge nodes (Wk nodes) for global model generation (at Ag nodes),
ensuring data privacy.

The intrusion detection mechanism of DCD-FL is based on deep learning tech-
niques, which explore network traffic patterns to predict possible attacks. Alerts are gener-
ated by Pl nodes when anomalous behavior is detected and sent to Ad nodes, which can
activate Pl nodes to create new plans to be executed to handle the alerts.

Thus, one of the main characteristics of DCD-FL is decentralization. Admin, con-
troller, and IDS-specific clusters can be deployed on different available edge components.
This decentralized architecture reduces network traffic between edge servers and fog/cloud
servers, enhancing privacy since monitored information in the network traffic data is not
transmitted to fog and edge servers.

In conclusion, DCD-FL presents a practical approach to intrusion detection in IoT
applications. It leverages the power of decentralized computing, federated learning, and dis-
tributed ledger technologies to provide a secure and efficient solution to loT security issues.

3.2 DCD-FL for Intrusion Detection

In this thesis, a decentralized FL approach for intrusion detection in loT applications
generates global models, by means of a set of servers, called aggregators (or Ag nodes in
the architecture), and not just one central server. Each Ag node manages a group of client
loT devices, called workers (Wk nodes), and interacts with the other aggregators to generate
their models.

52

3.2.1 DCD-FL Components and Workflow

Figure 3.3 illustrates the intrusion detection workflow through the DCD-FL com-
ponents, indicating, with little numbered circles, the point where each step occurs in the
workflow and also indicating the algorithms used by each group of nodes in the workflow,
which will be described in the following.

00000
Global blockchain
"‘v\“‘

O~ D 0,0 0,000
@ AE @ H;| }Algorithm 3.3

-~
‘h‘""‘-\“
~

4 -
Ag s Ag } Algorithm 3.2
Y v
Wk| = ** [Wk Wk| = ** | Wk } Algorithm 3.1
@@ @@ ®® @@ IDS cluster
<——> Model flow <«——> Control flow < > Info flow

Figure 3.3 — DCD-FL components and workflow.

In Step 1, the admin cluster activates P/ nodes to perform task scheduling, resource allo-
cation, and operation binding to determine which specific Ag and Wk nodes perform each
task.

In Step 2, each planner PI:

» starts the updates of global and local ML models;

* creates training rounds for global and local models, taking into account computational
and storage resources, power consumption, and eventual timing constraints in the
model training tasks; and,

« starts inferences/predictions in the devices to identify eventual anomalies according to
activation by the admin cluster.

In Step 3, aggregator nodes Ag, which implement the generation of global models per device
type and security threat according to the plan sent by the P/ node:

53

+ collect local models from worker nodes to be considered in the aggregation, receiving
control information from the controller cluster and accessing the storage cluster and its
eventual available cache nodes;

» perform model aggregation, selecting and executing an aggregation algorithm indi-
cated in the received plan; and,

 publish generated global models, accessing storage cluster and its eventual available
cache nodes and notifying the planner node.

In Step 4, worker nodes Wk, which perform basic intrusion detection tasks:

» monitor/collect network traffic periodically, using a sniffer and registering it locally or by
means of the storage cluster;

* prepare collected data for training, according to scheduling, by:

— accessing data locally or by the storage cluster, depending on device resources,

— applying data transformations to adequate them to the deep neural network algo-
rithm to be used in the model training,

— registering transformed data, locally or in the storage cluster, depending on the

device resources;

+ execute training of local models at each end device (sensors, actuators, smart devices)
or edge devices (routers, switches, small servers), according to schedule, by:
— accessing data locally or in the storage cluster, depending on device resources,
— executing deep neural network algorithm for training, and

— registering trained model updates in the storage cluster.
In Step 5, worker nodes also perform inference to identify eventual attacks by:

* using the current ML model at each device, according to scheduling, by:

— obtaining transformed data, locally available or from storage cluster,
— executing deep neural network algorithm for inference,

— notifying inference result to the planner node.

As mentioned in the above DCD-FL workflow, the storage cluster implements decentralized
storage for global and local models, offering cache resources to minimize communication
between nodes of all clusters in the IDS.

In Step 6, the storage cluster can:

54

« authenticate nodes, which are requesting access, by using information from the con-
troller cluster,

« validate node authorization by using information from the controller cluster,

» execute the operation, as requested by the node, in the case of valid authentication
and authorization, and

* register operation logs using the controller cluster.

The following Section describes the algorithms performed by each node in the
workflow of the intrusion detection process in DCD-FL in a bottom-up manner.

3.2.2 Algorithms

At each worker Wk, it is executed the local model training described in Algo-
rithm 3.1, where 6, represents the initial local model parameters, 7 is the learning rate, and t
is the aggregation round that the worker Wk is participating.

Algorithm 3.1 — Local Model Training

Local Model Training (6, t)
D!+ get_dataset (/, t)
09; — 6/
for each local epoch do
for each batch b from D! do
g + Vloss (6}; b)
0l + 0! —nxg
end for
end for
9/2+1 — 9/2
return 9!

TeLoNo RN 2

—_ =

The function get_dataset (/, t) obtains a dataset of worker Wk, to be used in the
aggregation round t. The VLoss (6!; b) expression represents the gradient of the loss func-
tion with respect to the local model parameters 6! of worker Wk; in the local round t, and
minibatch data b obtained from the dataset ©!. The algorithm updates the local model pa-
rameters 6!, using the SGD update rule 8] — n x g, according to the specified learning rate
n, and returns the updated local model parameters 0!*! after training.

At each aggregator Agk, a global model is generated by the aggregation process,
given by the Algorithm 3.2, where 9, is the set of global models available in Agx and nW is

55

Algorithm 3.2 — Aggregate Models

Aggregate Models (91,, nW)
for each aggregation round r do
25, + select_workers (nW, r)
for each worker Wk, € 20, do
Owik, < select_model (M, Wk, r)
Owk, < Local Model Training (G, r)
end for
{n;, N;: number of samples used by worker Wk; and number total of samples}
O = o0 i/ Ny O
: end for
AL
. return 0+

N RN

— o —h
N = oo

the number of workers to be used, according to the current plan, in the round r, which is the
current round of the plan being activated by the planner PJ.

For each planned aggregation round r, a set of nW is selected from the available
workers. Then for each selected worker Wk;, one deep learning model is selected from the
set of available models M, in the aggregator Agk, and this selected model is given to the
worker’s Local Model Training function to update it. After receiving all the updated models
fwk,, they are aggregated by applying the FedAvg technique [65].

At each planner PJ;, a global model is generated by the aggregation process, given
by the Algorithm 3.3, where %, is the set of available aggregators to P/; and nA is the number
of aggregators to be used, according to the current plan, in the round p, which is the current
round of the plan being activated by the planner Pi,.

Algorithm 3.3 — Aggregate Global Models

: Aggregate Global Models (2, nA)
: for each planning round p do
2, < select_aggregators (2l;, nA, p)
for each aggregator Agx € 2, do
0ag, < Aggregate Models <92‘gk, nW)
end for
{my, Mi: number of samples used by aggregator Agx and number total of samples}

N g b2

1 k=|2;
9;-” < Zk=|1 d mk/Mk X QAQk
: end for
10: return 9/‘.’”

© ®

56

A set of nA aggregators are selected from the ones, which are available to the
planner PJ;. Then, a global model 6,4, for each aggregator Agy is computed by the function
Aggregate Models (02\gk, nA), which receives an initial global model of Agx and the number
of workers that should be used by the aggregator, according to the current plan. A global
model 9/’.’” for Pl is generated by applying FedAvg on the models 0,4, , which were obtained
to each of the selected aggregators.

An Ad; node from the admin cluster is responsible for starting an intrusion detection
process. It must select one or more planners PJ;, which will participate in the following
workflow process and request that each one determine a plan to be executed. Ad; follows
the Algorithm 3.4, where 3, is the set of available planners in Ad; and nP is the number of
planners to be used by the intrusion detection process to be executed.

Algorithm 3.4 — Intrusion Detection

Intrusion Detection ([3;, nP)
P < select_planners (35, nP)
for each planner PJ; ¢ 33, do
2; < get_aggregators (P;)
Aggregate Global Models (2(;, nA)
Notifyp;, < Intrusion Prediction (2;, nA)
end for
return Notifyp,j

N2

For each selected planner PJ;, the set of available aggregators 2, is obtained,
and the function Aggregate Global Models (Ql,-, nA) is used to perform the aggregation of
the models. Moreover, the function Intrusion Prediction (2(;, nA) executes model inference
at nA aggregators in 2(;, which will generate a notification into Notifyp, for each detected
anomaly.

The select_workers(), select_aggregators(), and select_planners() functions are re-
sponsible for making decisions about which P2P node is adequate to perform each of the de-
manded tasks in the intrusion detection workflow. To select the workers, the select_workers()
function must consider their computational and memory resources to decide if it can perform
model training with the planned deep learning model and dataset, according to the current
plan in execution. The other select functions must also handle this process.

To make these decisions, each deep learning model and dataset has a character-
ization to indicate the necessary resources they will demand. Also, each P2P node must
have a characterization that makes it possible to compare and check which nodes can be
allocated. This information is persisted and is available to all DCD-FL nodes from decentral-
ized storage.

57

The DCD-FL nodes that can be selected for each specific task are obtained from
the list of known peers maintained by each node. Thus, when an Ad; node needs to se-
lect planners, it searches for planner nodes in its list of known peers, which is periodically
synchronized with the list of known peers of its neighborhood and DCD-FL bootstrap nodes.

Since for each intrusion detection process, all the number of elements (admin,
planner, aggregator, and worker nodes, number of planning and aggregation rounds, and
number of epochs and batches) are constants, the time complexity of these algorithms is
also constant, O(1).

Each DCD-FL node may be in one of the states: NEW, CONNECTED, DISCON-
NECTED, FREE, or BUSY. So, the select functions will collect only the nodes compatible with
the demanded tasks, according to the plan in execution, and are in the state FREE, which
will change to BUSY when selected and to FREE again when finished the task. Figure 3.4
shows a State Machine diagram, showing the state transitions for DCD-FL nodes.

Join()

Release()

Figure 3.4 — State Machine Diagram for DCD-FL nodes

A DCD-FL node is in state NEW when it registers in the Admin cluster and changes
to state CONNECTED when it calls the Join service of a controller cluster to get authenti-
cated and authorized to participate in the DCD-FL network. When the node calls the Leave
service of a controller cluster, its state is changed to DISCONNECTED.

When a node is ready to perform tasks, it changes its state to FREE. The state of
the nodes is obtained by calling a specific service for this in the node’s server or then in a
node from an admin cluster, which is also responsible for maintaining this information.

The following Section describes the technologies adopted to satisfy these DCD-FL

requirements, providing decentralized storage in an adequate way for loT-based systems,
which involve a P2P network-based approach as DCD-FL.

58

3.3 Prototype Implementation for DCD-FL

This section presents the implementation of DCD-FL, covering the tools and tech-
nologies used in the development, the challenges encountered, and how they were ad-
dressed. In the next chapter, the results of the evaluation of DCD-FL are presented, where it
is discussed its performance in terms of its ability to detect intrusions, its scalability, and its
impact on data privacy through various experiments, which were performed with the DCD-FL
prototype here described.

3.3.1 DCD-FL Prototype Architecture

DCD-FL comprises a set of worker and aggregator nodes as P2P clusters and
provides a specific API for intrusion detection based on the proposed decentralized, feder-
ated learning approach. According to available resources in the corresponding host, each
edge server may work as a blockchain node to the controller cluster and a worker or ag-
gregator node to the training/predicting cluster. An edge server can work as different types
of nodes simultaneously if its available resources allow it and it is authenticated/authorized
with enough permissions.

As usual in P2P networking, each node in DCD-FL provides similar functionalities,
working as servers and clients. Thus, each P2P node is implemented by a Python appli-
cation consisting of the same set of libraries and modules. Table 3.1 lists the implemented
modules and their classes for the DCD-FL nodes.

Table 3.1 — DecideApp: set of modules and their classes in each DCD-FL node.
Storage | Node | Services

DatasetStorage, ModelStorage, | AdminNode, ControllerNode, | AdminServices, ControllerSer-

PeerStorage, ControllerStorage, | PlannerNode, AggregatorNode, | vices, PlannerServices , Aggre-

IpfsStorage WorkerNode, StorageNode gatorServices, WorkerServices ,
ModelServices. PeerServices

Each DCD-FL node implements the decide_app Python module, which contains
the DecideApp class with the node’s main function. Figure A.1 in Appendix A contains a
class diagram in UML that shows these classes’ functionalities and their associations.

When instantiated, the DecideApp class instantiates several other classes to imple-
ment computation, communication, and storage functionalities. They initiate a gRPC server,
connect with a DCD-FL bootstrap node to receive an initial set of known peers, and wait for
service calls from other DCD-FL nodes. Figure B.2 in Appendix B contains a UML sequence
diagram showing the main workflow related to these classes.

59

All node classes have a constructor and a start() method to initialize a gRPC
server, which provides remote access to the functionalities from the modules of services
related to the node type. Thus, for instance, the gRPC server of an AdminNode will provide
the functionalities of the AdminServices class.

Storage modules are responsible for persisting information related to datasets,
models, and peers, using decentralized storage in IPFS [13] or the Ethereum blockchain
[22]. For each type of DCD-FL node, there is a specific module that has a correspond-
ing class. Storage nodes St,, start their respective gRPC server and keep waiting for calls
from other nodes to perform their specific services, which include retrieving/storing models
from/to IPFS (model parameters) and Ethereum (model metadata). Controller nodes Ct;
behave similarly, but their services consist of performing authentication and authorization for
the other nodes.

Each Ad; is implemented by an AdminNode class. After initiating its gRPC server,
it waits for remote procedure calls to register a calling node to a session, which requires its
node Id and the node Id of an existing recommender admin node that it will be contacted to
confirm it. The calling node must also provide its name and technical specification, including
available resources (CPU, RAM, and connectivity characteristics). Ad; will return a node
session token to be used in the authentication/authorization in the access control. AdminNode
class also provides an undo of the node register from a session.

An Ad; node also periodically activates intrusion detection processes, which include
intrusion prediction and training model tasks. To do this, Ad; select one or more planner
nodes PJ; from its list of known peers and activates them to perform the tasks, receiving the
metadata of the trained models and the results of the predictions with eventual notifications
of anomalies.

After starting their gRPC server, PJ; nodes wait for service calls to be activated.
In the case of a training model call, P/ generates new plans or selects an existing one,
indicated by Ad; node. To create new plans, a planner uses a configuration file that defines
all the factors to consider. Figure 3.5 shows an example of this configuration file.

{

1

2 "factors": {

3 "nodes_qty": {"admin_node_qty": [1,2,5], "controller_node_qty": [2], "planner_node_qty": [1,2,5,10], "
aggregator_node_qty": [1,3], "worker_node_qty": [1,5,10], "storage_node_qty": [2]

4 },

5 "models": {

6 "ann" : {"learning_rate":[0.01, 0.001], "layers":[2], "hidden_size":[64, 128, 256], "batch_size": [64, 128,
25661}, "lstm": {"learning_rate":[0.001],"layers":[2],"hidden_size":[64, 128, 256],"batch_size": [64, 128,
25661}, ‘"gru": {"learning_rate":[0.001], "layers":[2], "hidden_size":[64, 128, 256], "batch_size": [64, 128,

2561}

7 },

8 "datasets": {

9 "unswnb15": {"inputs":[67],"outputs":[10]}, "n-baiot": {"inputs":[115],"outputs":[11]}, "iot23": {"inputs":[24],"
outputs":[4]}, "bot_iot": {"inputs":[10],"outputs":[5]}, "edge-iiotset": {"inputs":[92],"outputs":[15]}

10 }

Figure 3.5 — DCD-FL: Example of configuration file to generate plans

60

A cartesian product of the specified factors, models, and datasets, in the configu-
ration file, produces all the possible plans. Figure 3.6 presents an example of a generated
plan.

~

"plan_name": "ann-edge-iiotset-3-10",
"num_plan_rounds": 1,
"num_aggregation_rounds": 4,
"num_aggregators": 3,
"num_workers": 10,
"model_type": "ann",
"dataset_name": "edge-iiotset",
"learning_rate": 0.001,
"num_layers": 2,

"hidden_size": 128,
"batch_size": 128,
"num_epochs": 4,

"num_inputs": 92,

COON®UAWND =

o0ghwN

"num_outputs": 15,
"aggregation_algorithm": "FedAvg"
17 %,

Figure 3.6 — DCD-FL: Example of generated plan

The execution of this plan, in Figure 3.6, will consist of one planning round, with four
aggregation rounds. In each aggregation round, three aggregators will train global models,
each using ten workers to train local models. Model training will be on a multilayer perceptron
(ANN), using the indicated hyperparameters and the edge-iiotset dataset.

The planner PJ; activates each selected aggregator Agx by calling its gRPC service
AggregateModels (), which receives the plan as an argument. This service selects worker
nodes Wk, from the list of known peers of Agy in the indicated quantity in the plan. It activates
them to perform the local model training by calling the worker’'s gRPC service TrainModel (),
which receives the plan and an initial model, as indicated in the plan.

After starting its gRPC server, each Wk; waits for service calls from other nodes.
When its gRPC service TrainModel () is called, Wk; collects locally the dataset, indicated in
the plan, pre-processes it, which includes splitting it in 75% for training and 25% for testing,
and calls its method for local model training and testing. This method obtains the model from
IPFS by using the IPFS hash, which is passed to it by Agk. After model training and testing,
Wk, persists the model in the IPFS and returns the IPFS hash for it, and also registers model
metadata in the blockchain using the Ethereum smart contract, shown in Figure 3.7.

After receiving the local models from its workers, each Agx performs its FedAvg
method to generate a global model, which is also persisted using IPFS and Ethereum, as
done by the workers.

When a planner PJ; is activated by an Ad; to perform a prediction, the flow is similar
to the one described above. Still, instead of training models, the workers will collect samples
of their datasets and execute their local models on them to predict if occurred or not an
anomaly.

61

3.3.2 Technologies Used in the DCD-FL Prototype

The DCD-FL prototype was developed using Python, PyTorch, and several other
Python libraries. Python is a high-level, interpreted programming language known for its
readability, and PyTorch is an open-source machine learning library based on the Torch
library. It is used for applications such as computer vision and natural language process-
ing. Table 3.2 lists the main technologies used in the DCD-FL development, indicating the
specific version.

Table 3.2 — Technologies used in DCD-FL development.

Technology | Version | Description

Python 3.9.13 | An interpreted object-oriented programming language; Very popular in the im-
plementation of machine learning-based systems.

Pytorch 1.13.1 | Open-source machine learning library developed by Facebook; Oriented to
high-performance deep learning models; Used to train all the models in DCD-
FL.

Sci-klearn 1.2.1 Also an open-source machine learning library, built on top of two core Python

libraries, NumPy and SciPy; More suitable for traditional machine learning mod-
els; Used utilities as, for example, train_test_split () to partition dataset.

Pandas 15.3 Open-source data manipulation and analysis library for Python; Used
DataFrame structure (two-dimensional labeled data tables) and its utilities to
perform pre-processing of datasets.

matplotlib 3.7.1 Data visualization library for Python; Provides various plotting customizable util-
ities; Used to plot experiment results.
cryptography 40.0.2 | Open-source Python library, providing cryptographic functionalities for secure

communications, encryption, and digital signatures; Used to generate hashes
and also server and client certificates.

gRPC 1.51.1 | Open source high-performance Remote Procedure Call (RPC) framework de-
veloped by Google; Uses Protobuf (Protocol Buffers) as its interface definition
language and HTTP/2 as its transfer protocol; Provides type checking, bidirec-
tional streaming, and flow control.

IPFS 0.10.0 | Decentralized protocol and network; Uses content addressing and peer-to-peer
technology to create a distributed file system.

Ethereum - Decentralized, open-source blockchain platform, oriented to the creation and
execution of smart contracts and decentralized applications (DApps).

web3.py 6.2.0 Python library for interacting with the Ethereum blockchain and building decen-
tralized applications.

solcx 0.8.19 | Python library for Solidity compilation by providing a programmatic interface to
interact with the Solidity compiler.

Pinata IPFS API - Service provided by the Pinata company, offering a set of HTTP endpoints and

functionalities to store, retrieve, and manage files on the IPFS network.

62

3.3.3 TLS/SSL and gRPC in DCD-FL

In DCD-FL, it is adopted gRPC [44], combined with TLS/SSL certificates [102], to
ensure secure and encrypted communication between all the nodes. TLS/SSL certificates
are digital documents that bind cryptographic keys to specific entities, such as organizations,
individuals, or servers. They are issued and signed by certificate authorities (CAs) and are
essential in establishing trust and authenticity in online communications. Figures C.5 and C.6
in Appendix C shows Python code to generate certificates for server and clients.

Each DCD-FL node has installed its private key and certificate on its gRPC server
and gets the public certificates of all other nodes via IPFS.

The gRPC of a node, working as a client, verifies the server’s TLS/SSL certificate
during the connection handshake. It checks whether the certificate is trusted, valid, and
matches the expected server identity, conforming to the certificate of the other node. Once
the client validates the server’s certificate, a secure TLS/SSL connection is established. This
connection encrypts the data exchanged between the client and server, ensuring confiden-
tiality and integrity.

Optionally, gRPC can enable mutual TLS/SSL authentication. In this scenario, the
client also presents its own TLS/SSL certificate to the server, verifying its identity. The server
can then authenticate the client’s certificate and make access control decisions based on it.

3.34 Ethereum in DCD-FL

Ethereum [22], a blockchain-based platform, provides a decentralized virtual ma-
chine that can execute scripts using a worldwide network of public nodes. This feature is
particularly useful in DCD-FL as it allows for the creation of smart contracts, which are self-
executing contracts with the terms of the agreement directly written into code.

In DCD-FL, Ethereum is used to register metadata related to the trained models
and the properties of the nodes. Figure 3.7 shows the smart contract, coded in the Solidity
language [22], implemented to register key/value pairs in the Ethereum blockchain.

By adopting the dictionary format as key/value pairs, the smart contract becomes
very flexible and could be used to register all relevant information produced by the DCD-FL
nodes. Figures C.2 and C.1 in Appendix C shows the Python code to deploy the above smart
contract KeyValueStore in the Ethereum blockchain (Mumbai testnet), using the Alchemy
API, and to set/get a value by executing the smart contract, respectively.

Using the Remix IDE, the cost to deploy the smart contract KeyValueStore in the
Polygon network (Mumbai testnet) was circa 0.001178 MATIC, which is the Polygon cryp-

63

1 pragma solidity ~0.8.18

2 // SPDX-License-Identifier: MIT

3 contract KeyValueStore {

4 mapping(string => string) private _data;

5

6 function setData(string memory key, string memory value)
public {

7 _datalkey] = value;

8 }

9

10 function getData(string memory key) public view returns (
string memory) {

11 return _datalkey];

12}

13 }

Figure 3.7 — DCD-FL: Smart contract for key value store

tocurrency. Since cryptocurrency prices are highly volatile, converting this value to USD can
vary greatly. Assuming that the price of 1 MATIC is approximate $0.672600, then 0.001178
MATIC would be approximate $0.000792 in USD (0.001178 * 0.672600); And the cost to
execute the smart contract was circa 0.000117 MATIC (approximately $0.00008 in USD).

3.3.5 IPFSin DCD-FL

IPFS (InterPlanetary File System) [13] is a protocol and network designed to cre-
ate a content-addressable, peer-to-peer method of storing and sharing hypermedia in a
distributed file system. Figure C.3 in Appendix C shows the Python code to persist a model
in the IPFS system using the Pinata HTTP API. In the same Appendix C, Figure C.4 shows
a Python code to retrieve a stored model using the IPFS API.

The Pinata HTTP API receives data in JSON format and returns a hash that can
be used to retrieve the stored data. It also provides access control to the decentralized store
through authentication to a Pinata gateway. It is a low-cost resource since a twenty dollars
monthly fee allows the storage of 20,000 files in the system with a total size of 50Gbytes.

Since the DCD-FL trained models have circa 500Kbytes in size, it would be possible
to store circa 105,000 new models with the basic fee. Thus, considering the limit of the
number of files, the cost per model will be 0.001 dollars per model. However, deploying a
local IPFS server in DCD-FL nodes is always possible to become independent of the Pinata
gateway.

64

3.4 Summary

This chapter presents the development of a decentralized approach based on fed-
erated learning to intrusion detection in 10T applications, named DCD-FL. This system con-
sists of a network of servers, known as aggregators, to generate global models. These
aggregators use groups of loT devices or workers and collaborate with other aggrega-
tors to create their global models. The system’s intrusion detection mechanism is built on
deep learning techniques, which analyze network traffic patterns to predict potential security
breaches. When unusual behavior is detected, planner nodes generate alerts sent to admin
nodes, which can then handle these alerts.

The DCD-FL system is characterized by its decentralization, with admin, controller,
and IDS-specific clusters deployed across various edge components. This structure reduces
network traffic between edge servers and fog/cloud servers and enhances privacy. The pro-
totype of DCD-FL consists of worker and aggregator nodes that form peer-to-peer clusters
and provides a specific API for intrusion detection.

The system’s storage modules are tasked with persisting information related to
datasets, models, and peers, utilizing decentralized storage in IPFS and the Ethereum
blockchain. Each type of DCD-FL node has a corresponding class within a specific module.
Admin nodes periodically activate intrusion detection processes, which include intrusion pre-
diction and model training tasks. These nodes select planner nodes from their list of known
peers and start them to perform the tasks. They subsequently receive the trained models’
metadata and the predictions’ results, including any anomaly notifications.

65

4. EXPERIMENTS AND RESULTS

This chapter presents a detailed report of the experimental evaluation conducted
to assess the performance and effectiveness of the DeCentralizeD, Federated Learning-
based Intrusion Detection System (DCD-FL IDS), developed as part of this research. This
research aims to develop a robust, efficient, and effective intrusion detection system for 0T
applications that can address the limitations of existing systems. The experiments’ results
are crucial in determining whether DCD-FL achieves this aim. They offer a quantitative
evaluation of its performance, providing the necessary support for the conclusions drawn in
this thesis.

4.1 Setup

The experiments were designed to evaluate DCD-FL under various conditions and
configurations, using three different machine learning models and three distinct datasets,
described in the following. The results obtained from these experiments provide insights
into the DCD-FLs capabilities, highlighting its strengths and identifying areas for potential
improvement.

All the experiments were executed on a single computer, a 2.3 GHz Intel Core i9
8-core, with 16 Gbytes 2.6 MHz DDR4, running MacOS Ventura 13.4. This setup was cho-
sen to ensure a constrained environment, as with loT-based systems, for the experiments,
eliminating potential variables that could affect the results. Each P2P node of DCD-FL was
assigned a unique local IP and a unique port on this computer, effectively simulating a de-
centralized network environment on a single machine.

The communication between DCD-FL nodes was performed using TLS/SSL en-
crypted service calls to gRPC servers implemented on each DCD-FL node. This approach
ensured secure and reliable communication between the nodes, which is crucial in a decen-
tralized system where data privacy and integrity are the main requirements. Using gRPC
servers provided a high-performance, open-source framework for handling remote proce-
dure calls, facilitating efficient and effective node communication.

The process of model training was carried out at the edge nodes. Each edge node
was responsible for training a local model using its subset of one of the available datasets,
according to the plan being executed at the moment, and making predictions based on
this local model. This decentralized approach to model training and prediction leverages
the computational resources of the edge nodes and allows for more efficient and scalable
machine learning tasks. It also ensures that data privacy is maintained, as the raw data
does not need to be transferred between nodes.

66

Once the worker nodes train the local models, the next step is generating the global
model by the aggregator nodes, following the executed plan, using model aggregation of the
local models from each edge node. This global model represents the collective learning of
all the edge nodes and is used to predict new data. The generation of global models was
carried out by the aggregator nodes, which were responsible for collecting the local models
from the edge nodes and performing model aggregation.

DCD-FL leverages distributed ledger technologies for the persistence of trained
model metadata by executing a smart contract on Ethereum in the Polygon network (Mumbai
testnet) using a wallet created in Metamask.

A smart contract allows for the secure and transparent recording of model meta-
data, ensuring the process is auditable and tamper-proof. The Polygon network provides a
scalable and efficient solution for executing the smart contract, with lower transaction costs
and faster block mining times compared to the main Ethereum network, which will be nec-
essarily used in a production environment.

The storage of the trained models was implemented off-chain using IPFS [13].
The Pinata HTTPS API was used to save and restore the models by the DCD-FL nodes
in IPFS. This approach ensures that the trained models are securely and reliably stored
while reducing the load on the blockchain.

4.1.1 Models

In the experiments, it was utilized different machine learning models: Multi-layer Ar-
tificial Neural Networks (ANN), Recurrent Neural Networks (RNN), Long Short-Term Memory
(LSTM), and Gated Recurrent Units (GRU). These models were chosen due to their proven
effectiveness in various deep learning applications, particularly in handling sequential data,
which is common in loT applications.

The given fully connected neural network (FC NN) or Multi-Layer Perceptron (MLP),
also known as a dense network, is an artificial neural network where all the neurons in one
layer are connected to all the neurons in the next layer. The specific FC NN used here is a
4-layer network, which includes an input layer, two hidden layers, and an output layer.

The input layer size is variable and depends on the dataset being used, with the
number of neurons equal to the number of input features. The hidden layers contain 64
neurons, and the output layer size is also variable, with the number of neurons equal to the
number of output classes or targets.

The network is implemented in Python version 3.9.13, using the PyTorch library

version 1.13.1 and the torch.nn.Linear class was used to define the fully connected layers,
and the ReLU (Rectified Linear Unit) activation function was applied to the outputs of the first

67

three layers. The output of the final layer is directly returned as the network output, which is
suitable for a multi-class classification problem where a softmax function would be applied
to the network’s output to obtain class probabilities.

The number of parameters in this FC NN depends on the sizes of the input and
output layers and is calculated as the sum of the number of weights and biases in each
layer. The number of weights in a layer is the product of the number of input and output
neurons, and the number of biases is equal to the number of output neurons. The total
number of parameters is the sum of the parameters in all layers. Table 4.1 lists the number
of parameters for each model in the experiments.

Table 4.1 — Number of parameters of each deep learning model.

Dataset Name | Inputs | Outputs | FCANN | RNN | LSTM | GRU
UNSW-NB15 | 57 | 10 | 12,682 | 16,266 | 63,114 | 47,498
N-BaloT | 115 | 11 | 30,082 | 37,566 | 150,114 | 112,598
loT23 | 24 | 4 | 10432 13,066 | 52,214 | 39,198
Bot-loT | 10 | 5 | 8832210566 | 42,214 | 31,698
Edge-lloTset | 92 | 15 | 23,682 | 29,666 | 118,614 | 88,998

The Recurrent Neural Network (RNN), Long Short-Term Memory (LSTM), and
Gated Recurrent Unit (GRU) are all types of recurrent neural networks that are particu-
larly effective for sequence prediction problems because they can use their internal state
(memory) to process sequences of inputs.

The implemented RNN model is a two-layer network with a variable hidden layer
size. The torch.nn.RNN class was used to define the RNN layers. The output of the RNN
layers is then passed through a fully connected layer to produce the final output. The number
of parameters in an RNN layer is calculated as the sum of the parameters for the weights
and biases for each gate, which includes the input and hidden states.

The LSTM model is similar to the RNN model but uses torch.nn.LSTM to define
the LSTM layers. LSTMs have an advantage over simple RNNs in that they can avoid the
long-term dependency problem: they can remember information for extended periods. This
characteristic is advantageous when the network needs to learn from significant past events
that have taken many time steps. An LSTM layer has more parameters than an RNN layer
because it has four gates (input, forget, cell, and output), each with weights and biases.

The GRU model is similar to the RNN and LSTM models but uses torch.nn.GRU to
define the GRU layers. GRUs are a variation of LSTMs that combine the forget and input
gates into a single "update" gate and merge the cell state and hidden state. As a result, they
have fewer parameters than LSTMs and may train faster or need less data to generalize.

The number of parameters in these models depends on the sizes of the input and
output layers and is calculated as the sum of the number of weights and biases in each layer.
The number of weights in a layer is the product of the number of input and output neurons,

68

and the number of biases is equal to the number of output neurons. The total number of
parameters is the sum of the parameters in all layers.

All these machine learning models were implemented using the PyTorch Python
library [91]. Table 4.2 lists the hyperparameters for the models.

Table 4.2 — Hyper-parameters for the models.
Hyperparameter | Values

4 in FC ANN and 2 in others

Number of Layers
Number of Neurons per Layer

Learning Rate 0.001

Batch Size 128

Optimizer Adam

Loss Function Cross-Entropy

Dropout Rate

He, biases initialized to zero

|
| 64
|
|
Number of Training Epochs \
|
|
Y
Weight Initialization |

The selection of these models aligns with the orientation of DCD-FL towards deep
learning techniques. Deep learning models, such as Multi-layer ANN, LSTM, and GRU, can
learn complex patterns from large amounts of data, making them suitable for the diverse and
high-dimensional data in loT applications.

41.2 Datasets

The experiments used different datasets: UNSWNB15, Bot-1oT, and N-BaloT. Each
of these datasets corresponds to a different type of loT application, allowing us to demon-
strate the versatility of DCD-FL in various uses of 10T. This diversity demonstrates that DCD-
FL can be effectively applied in various loT contexts, from intrusion detection to malware
and botnet detection.

All these datasets have more than one output, so they allow to train of multi-class
machine learning models, with a specific output for each possible particular attack class,
instead of just a binary output, which can only predict if it was detected or not an attack. All
the experiments reported in this section were performed to train multi-class machine learning
models.

UNSW-NB15 Dataset

The UNSW-NB15 dataset was created by the Cyber Range Lab of the Australian
Centre for Cyber Security (ACCS) [73], using the IXIA PerfectStorm tool to generate normal

69

and anomalous network traffic. The Tcpdump tool was used to capture the network traffic,
producing a pcap file of 100 Gigabytes, which Argus, BrolDS, and C# scripts used to extract
features. The ground truth table to label the dataset was obtained from an IXIA report
generated during the attacks’ simulation. Figure 4.1 shows the testbed environment used to
generate the dataset.

IXIA
Traffic Generator

10.40.85.30 I, I, 10.40.184.30
ra e
- / ’ Server 2 —— Server 3
Server 1 —-‘_—J' [>"—-| (Malware) —‘j
el L_/ :_/ . [f ~
(_sea66.00 175.a45.176.0) '1',__ 149.171.1 *oo/,x
Clients T I\ l 77 Clients
- G l=— " mgm
—-V /' Ii: lutulstl -

- - I2: 10.40.183.1 —
11: 10.40.85.1 _ Firewall /

12 10.40.182.1 n
T1: 10. 40,1823

12: 10.40. 183 3

Figure 4.1 — Testbed environment in generating UNSW-NB15 dataset. [73]

As shown in Figure 4.1, there are three servers from where the network traffic
generated by the IXIA PerfectStorm tool is propagated. Server 2 transmits anomalous traffic,
and the tcpdump tool is running on router 1, capturing the network traffic and storing it in a
pcap file, from which the tools mentioned above extracted 49 features. Some of them are
listed in Table 4.3.

Table 4.3 — Main features of the UNSW-NB15 dataset. [73]

Feature | Description

srcip, dstip,sport, dport \ The IP address and port number of the source and of destination
proto \ Transaction protocol: TCP, UDP

state \ The state and its dependent protocol

dur | Record total duration

sbytes, dbytes \ Source to destination and destination to source bytes

sttl, dttl \ Source to destination and destination time to live
sloss, dloss | Source and destination packets re-transmitted or dropped
service | http, ftp, ssh, dns ..,

sload, dload Source and destination bits per second
spkts, dpkts Source to destination and destination to source packet count

The UNSW-NB15 dataset [74] contains 2,540,044 records, and Table 4.4 lists the
nine types of attack into which these records are classified. All these types of attacks were
considered in the experiments in the present Thesis.

70

Table 4.4 — Categories in the UNSW-NB15 dataset. [73]

Class | Count | Description
Benign 1,550,712 | Normal traffic
Fuzzers 19,463 | Feeding a program/network with randomly generated data to

force its suspension

Analysis \ 1,995 \ Performs of port scan and use of spam

Backdoor 1,782 \ Bypass system security to obtain unauthorized access

DoS 5,051 | Try to make a server or network resource unavailable for use by
causing excessive overhead to a provided service

Exploits \ 24,736 \ Use of a known security problem to exploit system vulnerabilities

Generic 5,570 | A method that targets cryptography and causes a collision with
each block-cipher

Reconnaissance 12,291 | A technique for gathering information about a network host and
is also known as a probe

Shellcode \ 1,365 \ Code as payload in exploiting system vulnerabilities

Worms \ 153 \ Attacker self-replicated to other systems

The wide range of attack types in the dataset allows us to test the DCD-FLs ability to
detect different kinds of intrusions in a class of applications similar to an loT-based system
with a combined fog and edge setup (servers and clients as devices, respectively, in the
Figure 4.1).

Bot-loT Dataset

BoT-10T [48] is a realistic dataset consisting of normal and botnet traffic, with 42
features, and containing 477 (0.01%) benign flows and 3,668,045 (99.99%) attack flows,
that is 3,668,522 flows in total. Figure 4.2 shows the testbed environment used to generate
the dataset.

As shown in Figure 4.2, the testbed environment includes normal and attacking
virtual machines (VMs), all with the same IP, and each one is identified by a unique port.
In the Ubuntu VMs, it simulated loT services, using the Node-red tool and the Argus tool
to extract features. A PFSense firewall is used to maintain controlled traffic for the exper-
iments. The Kali VMs generates anomalous traffic, performing port scanning, DDoS, and
other Botnet-related attacks by targeting the Ubuntu Server, Ubuntu mobile, Windows 7,
and Metasploitable VMs. And the Ostinato tool was used to generate realistic benign traffic.

The simulated loT devices included a weather station, which generates information
on air pressure, humidity, and temperature; a smart fridge, which measures the fridge’s tem-
perature and, when necessary, adjusts it below a threshold; motion-activated lights, which
turn on or off based on a pseudo-random generated signal; a remotely activated garage
door, which opens or closes, based on a probabilistic input; and, a smart thermostat, which
regulates the house’s temperature by starting the Air-conditioning system [48].

192.168.100.(20,22,24) Ry |
- — =
192.168.100.1 VMWare Cluster Packet filter firewall
Pf fil I
- Pf sense firewal —
« LAN/WAN | I—
interfaces
° 168.100.150 100.1 00.148

PF Sense machin
LAN/WAN

VM Setup

Bot Kali_1

Attacking Machines
Target Machines

=6

192.168.100.6

Record Uaftc (

192.168.100.4

71

192.168.100.3

—
—

=

Ubuntu Server

Internal network

Section (a) Ubuntu_Tap

Figure 4.2 — Testbed environment in generating Bot-loT dataset. [48]

Table 4.5 lists all the extracted features of the Bot-loT dataset, from which Koroni-
atis et al. [48] identified the 10 more relevant: 'seq’, 'stddev’, 'N_IN_Conn_P_SrclIP’, 'min’,
'state_number’, 'mean’, ’N_IN_Conn_P_DstIP’, 'drate’, 'srate’, 'max’.

Table 4.5 — Features of the Bot-loT dataset. [48]

Feature Description
pkseqid Row Identifier
stime Record start time

flgs, flgs_number

Flow state flags seen in transactions and its numerical representation

proto, proto_number

Textual and numerical representation of transaction protocols

saddr , sport

Source IP address and port number

daddr, dport

Destination IP address and port number

pkts, bytes Total count of packets and the total number of bytes in transaction
state, state_number Transaction state and numerical representation of feature state
ltime, dur Record last time and record total duration

seq Argus sequence number

mean, stddev, sum

Average duration, standard deviation, and the sum of aggregated records

min, max

Minimum, and maximum duration of aggregated records

spkts, dpkts

Source-to-destination and destination-to-source packet count

sbytes, dbytes

Source-to-destination and destination-to-source byte count

rate

Total packets per second in transaction

srate, drate

Source-to-destination and destination-to-source packets per second

attack

Class label: 0 for Normal traffic, 1 for Attack Traffic

category, subcategory

|
|
|
|
|
|
|
|
|
|
|
|
|
|
l
|
|
|

Traffic category and subcategory

The additional features, not included in Table 4.5, 'N_IN_Conn_P_SrcIP’ (number
of inbound connections per source IP) and 'N_IN_Conn_P_DstIP’ (number of inbound con-

72

nections per destination IP) were generated by using sliding windows of length 100 connec-
tions. Ten more relevant features were used in all of the experiments performed with this
dataset in the present Thesis.

Table 4.6 lists the categories and subcategories for the BoT-loT dataset’s attack
types. There are four attack categories plus a normal one, and five categories/subcategories
(indicated as Classes 0, 1, 2, 3, and 4 in Table 4.6) were used in all the experiments with this
dataset in the present Thesis, i.e., the others were not considered. The used samples were
obtained after a pre-processing phase that removed redundancies in the available samples.

Table 4.6 — Categories of attacks in Bot-loT dataset. [48]

Category/Subcategory | Tools | Samples | Samples in experiments
Denial of Service | | |
DDoS (Class 0) 1,541,315
TCP hping3 19,547,603
UbDP hping3 18,965,106
HTTP golden-eye 19,771
DoS (Class 1) 1,320,148
TCP hping3 12,315,997
UDP hping3 20,659,491
HTTP golden-eye 29,706
Information gathering (Class 2) | | | 72,919
Service scanning | nmap, hping3 | 1,463,364 |
OS Fingerprinting | nmap, xprobe2 | 358,275 |
Information theft | | |
Keylogging | Metasploit | 1,469 |
Normal (Class 3) | Benign | 370 | 370
Data theft (Class 4) | Metasploit | 118 | 65
Total \ | 73,361,270 | 2,934,817

N-BaloT Dataset

The N-BaloT dataset is a collection of network traffic traces from loT devices in-
fected with the Mirai and BASHLITE botnets [66]. The dataset was created to develop new
methods for detecting attacks launched from compromised loT devices and differentiating
between hour and millisecond-long loT-based attacks. The dataset was generated using the
testbed environment shown in Figure 4.3.

The testbed environment contains a total of nine commercial loT devices (listed in
Table 4.7), connected via Wifi and also to a switch, as illustrated in Figure 4.3. To capture
the network traffic was used port mirroring and the Wireshark tool.

Five types of BASHLITE attacks and five kinds of Mirai attacks were applied in the

network, and network traffic was captured separately for each loT device. It generated nine
separate datasets for each device, including some benign traffic instances (as indicated in

73

BASHLITE Mirai

Access Point Access Point

) . .
IR & <&,
A Switch K Switch

route from
\ I \ I original
DHCP Server DHCP Server Cc&C

Sniffer C&C Scanner + Loader Sniffer

S
(Wireshark) Server (Wireshark) erver

Figure 4.3 — Testbed environment in generating NBaloT dataset. [66]

Table 4.7 — loT devices used to generate NBaloT dataset. [66]

Device ID | Device Maker, Model | Type | Benign Instances
1 | Danmini | Doorbell | 49,548
2 | Ennio | Doorbell | 39,100
3 | Ecobee | Thermostat | 13,113
4 | Philips B120N/10 | Baby Monitor | 175,240
5 | Provision PT-737E | Security Camera | 62,154
6 | Provision PT-838 | Security Camera | 98,514
7 | SimpleHome XCS7-1002-WHT | Security Camera | 46,585
8 | SimpleHome XCS7-1003-WHT | Security Camera | 19,528
9 | Samsung SNH 1011 N | Webcam | 52,150

Table 4.7). These ten types of attacks constitute the categories or classes which identify the
possible anomalies. Table 4.8 lists these classes of attacks and the benign class with the
number of samples of each one in the dataset, which were used in the experiments in the
present Thesis.

Different from the previous datasets, the N-BaloT dataset is characterized by 23
features (shown in Table 4.9), which represent statistical data computed on the captured
network packets, per loT device, and not by properties of the network traffic. These 23
features were computed for five different time windows (100 ms, 500 ms, 1.5 s, 10 s, and 1
min), thus resulting in a total of 115 features. All these features are used in the experiments
of the present Thesis. However, it is essential to note that devices three (thermostat) and
seven (security camera) do not have data on Mirai attacks, so they were not included in the
performed experiments.

74

Table 4.8 — Categories in the N-BaloT dataset. [66]

Class Id | Class | Count | Description

0 | Benign | 15,538 | Normal traffic

1 | BASHLITE COMBO | 15,345 | Sending spam data and opening a connection to a specified IP

2 | BASHLITE Junk | 15,449 | Sending spam data

3 | BASHLITE Scan | 14,648 | Scanning the network for vulnerable devices

4 | BASHLITETCP | 15,676 | TCP flooding

5 | BASHLITEUDP | 15,602 | UDP flooding

6 | Mirai Ack | 15,138 | Ack flooding

7 | Mirai Scan | 14,157 | Automatic scanning for vulnerable devices

8 | Mirai Syn | 16,436 | Syn flooding

9 | Mirai UDP | 15,625 | UDP flooding

10 | Mirai UDP Plain | 15,304 | UDP flooding with fewer options

Table 4.9 — Extracted features for NBaloT dataset. [66]
Value | Statistic | Aggregated by | Nr. Features
Packet size (of outbound pack- | Mean, Variance Source IP, Source MAC- 8
ets only) IP, Channel, Socket
Packet count Number Source IP, Source MAC- 4
IP, Channel, Socket
Packet jitter (the amount of time | Mean, Variance, Number | Channel 3
between packet arrivals)
Packet size (of both inbound and | Magnitude, Radius, Co- | Channel, Socket 8
outbound together) variance, Correlation co-
efficient

The N-BaloT dataset was selected for the evaluation of DCD-FL due to its focus
on botnet attacks, a major threat in loT environments. The dataset allows us to test the
system’s ability to detect these types of attacks, demonstrating its effectiveness in protecting
loT devices from botnet infections, as shown in the next section on the experiment results.

4.1.3 Metrics

In evaluating the DCD-FL system, several metrics and measures were collected
to assess the trained models’ quality, time efficiency, and size. These metrics and mea-
surements are crucial in understanding the performance and effectiveness of the DCD-FL
system in a decentralized intrusion detection context.

Quality metrics are essential in evaluating the performance of the trained models.
These include accuracy, precision, recall, and F1-score. Accuracy is the proportion of true
results (both true positives and true negatives) in the population. It provides a general mea-
sure of the model’s performance. Precision is the proportion of true positive results out of all

75

positive results. It measures the model’s ability to identify only relevant instances correctly.
Recall (also known as sensitivity) is the proportion of true positive results out of the actual
positive results. It measures the model’s ability to find all the relevant cases within a dataset.
F1-score is the harmonic mean of precision and recall. It balances the two metrics and is
particularly useful when the class distribution is imbalanced.

These metrics were collected for each local model generated by each worker node
execution and for each aggregated global model generated by each aggregator node from
the aggregation of the local models. Collecting these metrics allows for a comprehensive
evaluation of DCD-FLs performance in detecting intrusions.

Time metrics were collected to assess the efficiency of the model training tasks.
These include training execution time per epoch, per local model generation, and model
aggregation execution. These metrics were further separated by dataset loading time, model
training execution time, and model testing time.

These time metrics provide insights into the efficiency and scalability of DCD-FL.
They allow for an understanding of how the system performs under different configurations
and workloads, which is crucial in a decentralized setting where resources may be limited or
variable.

Size metrics were collected to understand the resource requirements of the trained
models. These include model size (in terms of the number of parameters), model memory
use, and model storage space.

The model size is an essential factor in understanding the complexity and compu-
tational requirements of the model. Model memory use and storage space are crucial in a
decentralized setting with limited resources. These metrics provide insights into the feasi-
bility and scalability of deploying the DCD-FL system in a real-world loT environment with
constrained resources.

4.2 Experiments

The experiments explored several factors, including the number of aggregation
rounds and varying topologies of the P2P networking, according to the number of available
aggregator and worker nodes. These factors were chosen based on their potential impact
on the quality of the trained models, both locally at each worker and globally by aggregation
in the aggregator nodes.

The aggregation rounds were varied to understand their effect on the learning pro-
cess and the final model performance. The topologies of P2P networking were varied to
examine the impact of different network structures on the learning process. For instance, it
was considered different configurations, such as one aggregator with one worker, one ag-

76

gregator with three workers, one aggregator with ten workers, three aggregators with one
worker, and so on.

4.2.1 Model Quality versus Participant Nodes

The first experiment was designed to investigate the correlation between the num-
ber of participant nodes (aggregators and workers) and the quality of the local and global
models. The quality of the models was assessed in terms of accuracy, precision, recall,
and F1 score. The experiment involved varying the number of aggregators and workers and
measuring the resulting model quality. The relevance of this experiment lies in its potential
to reveal how the system’s performance scales with the number of nodes.

In this experiment, model training was executed using the Multi-layer Artificial Neu-
ral Network (ANN) and dataset Bot-loT with one aggregator node and 1, 5, and 10 worker
nodes. Figures 4.4, 4.5, and 4.6 show model quality metrics (accuracy, precision, recall, and
f1 score) for these three cases, plotting the metrics per aggregator and worker nodes.

Convergence of Quality Metrics for exper:192.168.0.103:5055:18
(Aggregators: 1, Workers: 1)

Local Model 1 Global Model

0% 0%
S _/ - accuracy

precision
.....................
12345678910 1 234567809110 — recall

Round Round — fl

Figure 4.4 — Model quality x Nodes: ANN, Bot-loT, 10 rounds, 1 aggr., 1 worker.

As noted in Figure 4.4, with just one worker, the global model will reflect the ob-
tained local model generated by it without taking advantage of information from other avail-
able workers. Even after ten rounds, the quality metrics are unsatisfactory.

In Figure 4.5, it can be noted that even the workers presenting a diverse quality,
the global model obtained by aggregation converge in less than six aggregation rounds, with
precision, recall, and F1 score of around 80%, which is satisfactory, since there was no
fine-tuning of the ANN hyperparameters.

Also, the global model convergence occurs independently of the number of work-
ers, as seen with the results of Figure 4.6, where the global model converges by aggregation

77

Convergence of Quality Metrics for exper:192.168.0.103:5055:19
(Aggregators: 1, Workers: 5)

Local Model 1 Local Model 2 Local Model 3 Local Model 4
S — S — [— ——
%% 4 5% o 5% 4 ®%
0%
90% 0% 4
\ 8%
L % < g
g g &1 § e
0% /
0% 75% o
%A 0%
75%
% - 6%
B AT — T T T T T T T T T T T T T T T T T
12 34 5 67 89 W 12 34567 89 W0 1 2 3 456 7 89 10 1 23 456 78 910
Round Round Round Round
Local Model 5 Global Model

- —

%% o
0% 0% o
8% - v ao%
\]
0% - | A
0% 4
75%
% | 20% —— accuracy
T T T T T
1 23 4567 80910

Score

——— precision
—— recall
— fl

T T T T T T T T
12 3456 7 8910
Round Round

Figure 4.5 — Model quality x Nodes: ANN, Bot-loT, 10 rounds, 1 aggr., 5 workers.

Convergence of Quality Metrics for exper:192.168.0.103:5055:20
(Aggregators: 1, Workers: 10)

Local Model 1 Local Model 2 Local Model 3 Local Model 4

0% 0% o 0% 0% o
g 4 g 4
& & & &
— B0% - 0% 0%
T T T T T T T T 1 Fi e e e e N e e R L e e S N H ML T T T T T T T T T
12 3 4 5 6 7 B 9 10 1 2 3 4 5 6 7T B %9 10 12 3 4 5 6 7T B 9 W 1 2 3 4 5 6 7T B 9 10
Round Round Round Round
Local Model 5 Local Model 6 Local Model 7 Local Model 8

e] o %7 Em* p
S e 3 5 &% o 3
g4 % g A A e
0% ; 0% |
T 0% T T T T T T T T T T
1 2 3 4 5 6 7 B % 10 1 2 3 5 6 7 B 9% 1D 12 3 4 5 6 7 B %W 1 2 3 4 5 7 B % 1
Round Round Round Round
Local Model 9 Local Model 10 Global Model
100%
0% | 0% B0t
v g o
= BO%] B0% o B oo J
0% % 4 0% —— accuracy
T T T T T T T T T T T T T T T T T T L A S B e S S R —— precsion
1 2 3 4 5 6 7 B 9 10 1 2 3 4 5 6 7 B 910 12 3 4 5 6 7 B 9 W0
Round Round Round ECB"

Figure 4.6 — Model quality x Nodes: ANN, Bot-loT, 10 rounds, 1 aggr., 10 workers.

round six, with metrics also around 80%. This same pattern in the results could be perceived
using the other datasets. It can also be noted that the higher the number of workers, the
smoother the convergence of the global model, but it does not guarantee a better quality,
which depends strongly on the dataset and hyperparameters, as stated in the literature.

Since the objective here is not fine-tuning the model hyperparameters, there is no
change in the model hyperparameters during the rounds, so the model size doesn’t change

78

within the same dataset. The Bot-loT dataset has 8,022 parameters, so it has a memory
use of 32K bytes. And this is the same for the local and global models.

During each round, initially, each worker may receive an updated model from the
aggregator node and, at the end of the aggregation round, will send its local model to the
aggregator node. Thus, the communication cost C will consist of the sum of storage use of
the models exchanged during each aggregating round:

R
C=) (Kx(Lx+G) (4.1)
r=1
where R is the number of aggregation rounds, K is the number of workers, Ly is
the size of local model for worker k in round r, and G; is the size of the global model in round
r.

Thus, for one aggregator and five workers, ten messages are exchanged (five from
aggregator to workers and five from workers to aggregator), so the total communication
costis C =10 (5%x2%32) = 10 « 320 = 3,200 Kbytes ~ 3.2Mbytes. Similarly, for one
aggregator and ten workers, the total communication costis C = 10 (10x2x32) = 10640 =
6,400 Kbytes ~ 6.4Mbytes.

So, the communication cost is linearly proportional to the number of participant
nodes in the aggregation rounds. Also, considering the number of aggregation rounds, for
the case with one aggregator and five workers, for example, from the first round to the
fifth round, there is an increase of 320Kbytes to 1,600Kbytes, i.e., an increase of 5 times
in communication cost, and an increase of 6.3 times in the recall (detection rate), from
14% to 89%, which compensates the communication cost, given yet the advantages of the
decentralized federated learning.

Model training experiments were performed to evaluate the effect of the number of
aggregators, using the same ANN model with the same Bot-loT dataset, taking one, three,
and six aggregators and always ten workers. Figures 4.7, 4.8, and 4.9 show metrics for
each of these cases.

Global Model

Global Model

---al - =y = .
U aw
5
B a0
0%
— T T —T

T
1 2 3 4 5 6 7 8 9 W
Round

—— accuracy
precision
— recall
Round
a) 1 Aggregator, 10 workers b) 1 Aggregator, 5 workers —_f1

T T T T T T T T T T
1L 2 3 4 5 6 7 B8 0 W

Figure 4.7 — Model quality x Nodes: ANN, Bot-loT, 10 rounds, 1 aggr., 5 and 10 workers.

In Figure 4.7a) and Figure 4.7b), there are one aggregator and ten and five workers,
respectively. In the case of using more workers and just one aggregator, the more relevant

79

metrics are below 80% at round ten, clearly showing that the aggregation will need more
rounds to converge to the metric values obtained by using only five workers.

Global Model

Global Model Global Model

—— accuracy
precision
— recall

a) Aggr.0 Round b) Aggr.1 Round ¢) Aggr.2 Round fl

Figure 4.8 — Model quality x Nodes: ANN, Bot-10T, 4 rounds, 3 aggrs., 5 workers.

Figures 4.8a), Figure 4.8b), and Figure 4.8c) show results for the three aggregators
(0, 1, and 2), each one using five workers. It can be seen that, at round 4, aggregator
2 has all metrics over 80%. This result can be explained by the fact that an aggregator
can take advantage of the use of model training results from the other aggregators. Thus,
by increasing the number of aggregators without increasing the number of workers, some
aggregators can eventually converge faster than others.

Global Model Global Model Global Model

—— accuracy

2 3 4 3
found Round Round precision
a) Aggr.o b} Aggr.1 c) Aggr.2 — recall

—fl
Figure 4.9 — Model quality x Nodes: ANN, Bot-1oT, 4 rounds, 3 aggrs., 10 workers.

Figures 4.9a), Figure 4.9b), and Figure 4.9c) show results for the three aggregators
(0, 1, and 2), each one using ten workers. It can be seen that, at round 4, all aggregators
have the more relevant metrics under 80%. Thus, increasing the number of workers de-
mands more rounds to the convergence of the model, which has shown metrics over 80% in
the previous above-reported experiments.

4.2.2 Convergence of Global Model Quality

The second experiment was designed to demonstrate if the convergence of the
quality of the global model is correlated with the number of aggregation rounds. At each
round, a fixed number of aggregators and workers were used to train local and global mod-
els. This experiment is relevant as it can provide insights into the system’s learning efficiency
and the impact of the aggregation process on the global model’s quality.

80

This experiment also executed model training for ten aggregation rounds, using the
Multi-layer Artificial Neural Network (ANN) and dataset UNSW-NB15 with one aggregator
node and 1, 5, and 10 worker nodes. Figure 4.10 shows model quality metrics (accuracy,
precision, recall, and f1 score) for these three cases (one worker in 4.10a, five workers in
4.10b, and ten workers in 4.10c), plotting the global model metrics per aggregator.

Global Medel

0% |
0% 0% |

65%

Global Model Global time per number of workers (in secs)

Total: 222.06

200
Total: 190.46 240

Total: 168.12 19.3
16.35

150 19.99

60% 18.24
17.28

16.99 17.94 24.3

Score

55% o

Time

1 2 3 4 5 6 7 8 9 10
—— accuracy Round
precision
0% —— recall b)
— fl
16.52 19.31 352

15% o Global Model PR
50 24.66 19.84
60% i e — 16.45
h .—-—.

16.73 W

100
16.53 21.78

vvvvvvvvvv

1 worker 5 workers 10 workers

6
Round d)

Figure 4.10 — Convergence: ANN, UNSW-NB15, 1 aggreg., and 1, 5, 10 workers.

Figure 4.10d) shows the time model training takes in the three cases. It can be
noted that the time overhead is not high when using a higher number of aggregation rounds
(practically the same time for the different numbers of workers).

Using the UNSW-NB15 dataset and basic configuration for the ANN model (without
tuning its hyper-parameters), the trained global model has not had a satisfactory quality
(metrics should be around 90%, as suggested in the literature). Still, it can be noted that
aggregation round 3 already occurred with a convergence of the aggregated global model
metrics.

In the previous Figures 4.4, 4.5, and 4.6, for the experiment using the Bot-loT
dataset, it could be noted that this convergence occurred around aggregation round 5. So,
the convergence of the global model quality depends on the quality of the dataset and, of
course, on using better hyperparameters for the model, which can eventually produce better
metrics and in less time too. It is worth noting that this same pattern was also obtained for
the N-BaloT dataset.

4.2.3

The third experiment was designed to analyze the performance of the trained mod-
els for each class of attack in a dataset. In this experiment, model training was executed for
ten aggregation rounds, using the Long Short Term Memory (LSTM) algorithm and dataset

Model Quality per Class

N-BaloT, with one aggregator node and five worker nodes.

Figures 4.11 and 4.12 show the ROC-AUC and Precision-Recall curves at the ag-

gregation rounds 2 and 4, respectively.

1.0+

0.8

True Positive Rate

0.2 4

0.0 q

Figure 4.11 — Model quality per class: LSTM, N-BaloT, aggreg. round 2.

1.0+

0.8 1

True Positive Rate

0.2 4

0.0

Figure 4.12 — Model quality per class: LSTM, N-BaloT, aggreg. round 4.

In Figures 4.11 and 4.12, each class of attack is indicated by the class ID, listed
previously in Table 4.8, thus "Class 0" represents the benign class, with normal traffic, and
classes 4, 5, and 6, correspond to BASHLITE TCP and UDP, and Mirai Ack, which has un-
satisfactory metrics at all aggregation rounds. Even so, with the basic configuration for the

ROC-AUC curve

0.6 1

0.4

T— /
= Class 0 (AUC = 1.00)
Class 1 (AUC = 0.80)
—— Class 2 (AUC = 0.97)
= Class 3 (AUC = 0.97)
l = Class 4 (AUC = 0.50)
—— Class 5 (AUC = 0.50)
Class 6 (AUC = 0.58)
= Class 7 (AUC = 1.00)
Class 8 (AUC = 1.00)
H = Class 9 (AUC = 0.94)
= Class 10 (AUC = 1.00)
Micro-average (AUC = 0.85)
== Random

Precision

T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate

ROC-AUC curve

0.6 1

0.4 q

3 %
/
/s
’
’
K4
= Class 0 (AUC = 1.00)
| Class 1 (AUC = 0.87)
= Class 2 (AUC = 0.87)
E —— Class 3 (AUC = 0.98)
= Class 4 (AUC = 0.77)
= Class 5 (AUC = 0.96)
Class 6 (AUC = 0.96)
= Class 7 (AUC = 1.00)
,‘ Class 8 (AUC = 1.00)
4 —— Class 9 (AUC = 0.67)
—— Class 10 (AUC = 1.00)
Micro-average (AUC = 0.92)
== Random

Precision

T T T T T T
0.0 0.2 0.4 0.6 0.8 Lo

False Positive Rate

1.0

0.8

0.6

0.4

0.2 4

0.0

1.0

0.8

0.6

0.4 4

0.2

0.0

Precision-Recall curve

N,

Class 0 (AP = 0.99)
Class 1 (AP = 0.50)
Class 2 (AP = 0.66)
Class 3 (AP = 0.94)
Class 4 (AP = 0.07)
Class 5 (AP = 0.08)
Class 6 (AP = 0.26)
Class 7 (AP = 1.00)
Class 8 (AP = 1.00)
Class 9 (AP = 0.57)
Class 10 (AP = 1.00)
Micro-average (AP = 0.63)

=

T T T T
0.2 0.4 0.6 0.8
Recall

Precision-Recall curve

Class 0 (AP = 1.00)
Class 1 (AP = 0.60)
Class 2 (AP = 0.58)
Class 3 (AP = 0.97)
Class 4 (AP = 0.31)
Class 5 (AP = 0.53)
Class 6 (AP = 0.61)
Class 7 (AP = 1.00)
Class 8 (AP = 1.00)
Class 9 (AP = 0.42)
Class 10 (AP = 1.00)
Micro-average (AP = 0.69)

e

T T T T
0.2 0.4 0.6 0.8
Recall

82

LSTM model (no tunning of hyperparameters), the obtained metrics, already at the aggre-
gation round 4, for almost all classes, are above 90%.

4.2.4 Effect of Deep Learning Model

The fourth experiment was designed to analyze the effects of the deep learning
model on the quality of the trained models. This experiment used the same dataset BoT_IoT
to model training with a Multi-layer Artificial Neural Network, a Long Short Term Memory
(LSTM), and a Gated Recurrent Network (GRU) machine learning algorithm. Figures 4.13,
4.14, and 4.15 show the ROC-AUC and Precision-Recall curves for each of these cases.

ROC-AUC curve Precision-Recall curve

1.0 10] ——

0.8 1 0.8

o
o
|
e
o
L

Precision

True Positive Rate

b~

S
I

oS

s
|

= Class 0 (AUC = 0.98)

Class 1 (AUC = 0.98) —— Class 0 (AP = 0.97)

= Class 2 (AUC = 0.96) Class 1 (AP = 0.96)

0.2 1 4 —— Class 3 (AUC = 0.99) 0.29 —— class 2 (AP = 0.67)

’ = Class 4 (AUC = 0.79) —— Class 3 (AP = 0.94)
4 == Micro-average (AUC = 0.99) = Class 4 (AP = 0.42)

0.0 1 == Random 0.0 { == Micro-average (AP = 0.96)

’

T T T T T T T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate Recall

Figure 4.13 — Effect of the DL model: ANN, Bot-loT, 1 aggreg., 5 workers.

All three DL models present satisfactory metrics (above 90%), except for "Class 4"
which corresponds to the "Data theft" attack, which has only 65 samples (as indicated in
Table 4.6), in this very imbalanced dataset.

Figure 4.16 shows the model training and testing time the three models took using
the Bot-loT dataset, with one aggregator and five worker nodes during four aggregation
rounds. It can be noted that the time metrics for the FC ANN model are circa ten times
shorter than the recurrent NN-based models (LSTM and GRU) and presented results similar
to them in terms of trained model quality.

Moreover, looking at the size metrics for the three models (shown in Figure 4.17), it
can be noted that the ANN model is circa five times smaller than the other DL models for the
three datasets used in the experiments. Thus, based on these results, ANN represents the
better alternative to loT-based systems, where limited time and resource constraints must
be satisfied.

ROC-AUC curve

Precision

o]
[
o
@
2
=
g
v 0.4 - £
g = Class 0 (AUC = 0.98)
——— Class 1 (AUC = 0.98)
,‘— Class 2 (AUC = 0.89)
0.2 1 7 = Class 3 (AUC = 0.99)
—— Class 4 (AUC = 0.85)
,’ — — Micro-average (AUC = 0.99)
0.0 == Random
T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate

Precision-Recall curve

Class 0 (AP = 0.97)
Class 1 (AP = 0.96)

0.29 —— Class 2 (AP = 0.72)
= Class 3 (AP = 0.91)
—— Class 4 (AP = 0.61)
0.0 4 == Micro-average (AP = 0.96)
0.‘0 0.‘2 0.‘4 0:6 0:8 l.IO
Recall

Figure 4.14 — Effect of the DL model: LSTM, Bot-loT, 1 aggreg., 5 workers.

ROC-AUC curve

Precision

z
I
o
[
2
=]
£
v 0.4 - £
é —— Class 0 (AUC = 0.98)
= Class 1 (AUC = 0.98)
/= Class 2 {AUC = 0.91)
0.2 4 7/ = Class 3 (AUC = 0.99)
—— Class 4 (AUC = 0.94)
,’ == Micro-average (AUC = 0.98)
0.0 4 == Random
T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate

Precision-Recall curve

1.0

0.8

e
o
L

o
B
L

0.2

0.0

Class 0 (AP = 0.97)
Class 1 (AP = 0.96)
Class 2 (AP = 0.65)
Class 3 (AP = 0.92)
Class 4 (AP = 0.49)
Micro-average (AP = 0.96)

(=]

.0 0.2 0.4 0.6 0.8
Recall

1.0

Figure 4.15 — Effect of the DL model: GRU, Bot-loT, 1 aggreg., 5 workers.

ANN
Testing 21.56 9.24 18.33 18.74
Totg
Training 4209.42 21431 211.64
0 200 400 600 800 1000
Time

83

Round 1
e Round 2
Round 3
Round 4

587.75

LST™M GRU
Testing $2.73 6.26 55.12 61.05 Testing 62.73 6.26 55.12 61.05
I: 914.31 Total: 14587.75 Total: 14
Training {3932.72 3177.85 3594.68 Training 43932.72 3177.85 3594.68
o 2500 5000 7500 10000 12500 15000 17500 o 2500 5000 7500 10000 12500 15000 17500

Time

Time

Figure 4.16 — Time metrics for models: ANN, LSTM, GRU.

84

600 4 585.57
[0 FC ANN
500 LSTM
[GRU
439 84
@ 400
£
=]
¥ 300
o 246.23
N
wn 185.54
200 164 .65
117.39 12383
100 4
49.54 3252
0 T T T
UNSW-NB13 N-BaloT Bot-loT

Dataset

Figure 4.17 — Size metrics for models: ANN, LSTM, GRU.

4.2.5 Comparative Analysis

This experiment was designed to demonstrate that DCD-FL produces results com-
parable to those reported in the literature of related works but aggregates all advantages of
a decentralized approach to intrusion detection.

Table 4.10 compares DCD-FL results with the results from Kim et al. [46] for N-
BaloT and deep learning models RNN and LSTM. The comparison could show only four of
the loT devices, the only ones reported in [46].

Table 4.10 — Average F1-score of RNN and LSTM for N-BaloT dataset.

| Doorbell | Baby monitor | Security Camera | WebCam

| [46] | DCD-FL | [46] | DCD-FL | [46] | DCD-FL | [46] | DCD-FL
NN |041| 084 |044| 087 [037| 088 |055| 088
LSTM | 062 | 084 |025| 086 [025| 0.83 [043]| 0.89

DCD-FL results were obtained with nine workers acting as the nine IoT devices
from the N-BaloT dataset, i.e., each worker received only subsets of the dataset that came
from the corresponding loT device (note that in N-BaloT, there are nine separated CSV files,
one for each loT device). As seen, DCD-FL has a better F1 score for all devices and classes
(benign and attacks) reported by Kim et al. [46].

Ge et al. [35] report results obtained using a Multi-Layer Perceptron and the Bot-loT
dataset, in the form of a confusion matrix, from which it was computed the accuracy, preci-
sion, recall, and F1 score metrics, shown in Table 4.11, which compares their metrics and
the produced by DCD-FL, using an aggregator and ten workers nodes after ten aggregation
rounds.

The results in the paper [35] were obtained by manually fine-tuning the hyperpa-
rameters of the MLP. DCD-FL produced similar results, even not performing any tuning of

85

Table 4.11 — Accuracy, Precision, Recall, and F1 Score for Bot-loT using a MLP

\ Accuracy \ Precision \ Recall \ F1 Score

| [35] | DCD-FL| [35] | DCD-FL| [35] | DCD-FL | [35] | DCD-FL
Normal | 99.67% | 99.84% | 99.84% | 95.06% | 98.31% | 98.65% | 99.07% | 96.83%
DDoS/DoS | 99.42% | 98.22% | 99.37% | 98.15% | 99.70% | 98.20% | 99.53% | 98.17%
Reconnaissance | 99.12% | 99.99% | 98.40% | 88.00% | 97.91% | 70.21% | 98.15% | 78.21%
Information theft | 99.82% | 100.0% | 76.80% | 50.00% | 93.81% | 30.77% | 84.44% | 38.10%

hyperparameters. However, the results for the Information theft class are not satisfactory
(precision, recall, and F1 score under 50%), which is justified by the fact that this class has
only 65 samples from circa 2,934,817 samples in the Bot-loT dataset, and so making it
difficult to obtain better results without some specific adjusts in the model.

4.2.6 Support to Different IoT Applications

It is described here how the testbed environments used to generate the datasets
adopted in the experiments can be easily mapped to the DCD-FL architecture. Thus it can
be deployed into any of them, and so it demonstrated that DCD-FL can cope with specific
characteristics of different types of 10T applications,

Figure 4.1 illustrates the testbed environment for the UNSW-NB15 dataset, which
has elements that characterize a smart city loT system. In a direct map from this testbed
environment to the DCD-FL architecture, each DCD-FL worker node corresponds to a given
client in the testbed, receiving batches from the UNSW-NB15 dataset, to be used in model
training, as it was its monitored network traffic. Servers 1 and 3 are mapped to DCD-FL
aggregator nodes to collect local models and generate and share global models, all working
in a decentralized manner.

As shown in Figure 4.2, described previously, the testbed environment used to
generate the Bot-loT dataset has all the characteristics of a smart home IoT application.
This testbed can be easily mapped to a DCD-FL setup, where each VM and simulated
loT device corresponds to P2P nodes in DCD-FL, either collecting traffic and performing
local model training or collecting local models, performing aggregations and sharing the
generated global models with the other P2P nodes in DCD-FL.

Similarly, the testbed environment shown in Figure 4.3, which was used to produce
the N-BaloT dataset, has typical characteristics of a smart home loT application and can also
easily be mapped to the DCD-FL decentralized architecture. Each loT device can assume
the role of a DCD-FL worker node, or even an aggregator node, if it has enough resources,
to perform model training tasks activated by the DCD-FL planner nodes. In this testbed, the

86

sniffer server can assume the role of an aggregator node to produce the global models and
share them with the other nodes.

4.3 Summary

This chapter presents experiments designed to analyze the effects of various pa-
rameters on the quality of trained models. One experiment evaluated the impact of the
number of aggregators on model training, revealing that increasing the number of aggrega-
tors without increasing the number of workers can lead to faster convergence. However, with
more workers and just one aggregator, the metrics are below 80%, indicating the need for
more rounds to achieve the metric values obtained with fewer workers.

The chapter also explores the impact of different deep learning models, including
a Multi-layer Artificial Neural Network (ANN), a Long Short Term Memory (LSTM), and a
Gated Recurrent Network (GRU), applied in the same dataset, Bot_loT. All models showed
satisfactory metrics (above 90%), except for "Class 4" representing the "Data theft" attack.
Notably, the ANN model was about five times smaller than the other models and had a
shorter execution time, making it a preferable choice for loT-based systems, which usually
have constrained resources.

Finally, a comparative analysis demonstrated that DCD-FL produces results com-
parable to those in the literature but with the benefits of a decentralized approach to intrusion
detection. The communication cost was linearly proportional to the number of participant
nodes in the aggregation rounds, with an increase in communication cost offset by a signif-
icant increase in the relevant model metrics, such as recall and f-1 score, highlighting the
advantages of decentralized, federated learning.

87

5. RELATED WORK

This chapter presents the work with similar characteristics to the present one. First,
the conducted systematic literature review is described and discussed, and then each se-
lected work is described and compared with the work of the present thesis.

A systematic literature review was conducted to identify the loT state-of-the-art,
including loT security-related issues, which are the main focus of this work. This review was
important to unify the main concepts and bring together the technologies related to loT and
loT security aspects.

The initial step of the review consisted of searching the most relevant scholarly aca-
demic databases: |IEEE Explorer (http://ieeexplore. ieee.org), Google Scholar (http://scholar.
google.com), ACM Digital Library (http://dl.acm.org), Wiley (http://onlinelibrary.wiley.com),
Springer (http:/link.springer.com), ArXiv (https://arxiv.org/), and Science Direct (http://www.
sciencedirect.com).

The key terms used in the electronic searching, chosen according to the research
questions of this thesis proposal, including combinations of Internet of Things, loT, secu-
rity, intrusion detection, federated machine learning, deep learning, distributed ledgers, and
survey.

The obtained search results were grouped into four categories: surveys (to unify
the concepts), approaches (to determine state-of-the-art), security issues (to identify open
problems), applications. The results were filtered according to document relevance, the
number of citations, as given by search engines, and the kind of content based on analysis
of the abstract section.

In the next step of the literature review, after applying the exclusion criteria (pub-
lished not from 2015 to 2022, content not related to the focus of the present thesis, and low
relevance as indicated by search engines), the Author of this work read the more relevant
papers. And so new bibliographical references of interest were included in the review, allow-
ing one to consider papers that had not matched to key terms used in the electronic search.
Table~5.1 shows the number of publications in each category.

Table 5.1 — Literature Review: number of publications (2015-2023)
Topic | Surveys | Approaches | Security Issues | Applications | Total
Intrusion detection for loT | 36 | 407 | 28 | 8 | 479
Federated learning for loT | 19 | 373 | 28 | 10 | 430
Distributed ledgers for IoT | 48 | 229 | 112 | 46 | 435
Total | 103 | 1,009 | 168 \ 64 | 1,344

According to the search engines and further analysis of the present Author, a sub-
set of the more relevant collected papers are listed in the following tables and discussed.

88

Table 5.2 lists the selected surveys and reviews about intrusion detection, federated learn-
ing, and distributed ledgers focused on IoT.

Table 5.2 — Selected surveys and reviews

Title

\ Description

loT Concepts

Fog Computing and lts
Role in the Internet of
Things

Definition of Fog layer characteristics, showing it as the appro-
priate platform for critical Internet of Things (loT) services and
applications. Included here, even in the exclusion criterium,
since it is where Fog computing is first characterized

The Internet of Things
vision: Key features, ap-
plications, and open is-
sues

Included here, even in the exclusion criterium, since it presents
an interesting vision of loT operations in terms of four phases:
collection, transmission, and processing/management/utiliza-
tion phases

A survey on Internet of
Things architectures

Survey on loT-oriented architectures, discussing related tools,
technologies, and methodologies to solve real-life problems by
building and deployment of loT applications

Internet of Things 2.0:
Concepts, Applications,
and Future Directions

Survey on the evolution of loT, presenting the vision for loT
2.0, focusing on the fields of machine learning intelligence,
mission-critical communication, scalability, energy harvesting-
based sustainability, interoperability, user-friendly loT, and se-
curity

loT Security

Internet of Things: A
survey on the security of
loT frameworks

Survey on the security of eight loT frameworks, discussing the
proposed architecture, compatible hardware, and security fea-
tures

Centralized, Distributed,
and Everything in be-
tween: Reviewing Ac-
cess Control Solutions
for the loT

Review centralized, hierarchical, federated, and distributed ac-
cess control approaches to loT systems and examine the suit-
ability of each one for specific requirements of access control in
loT

Machine Learning in loT
Security: Current Solu-
tions and Future Chal-
lenges

Review security requirements, attack vectors, and security so-
lutions based on ML and DL, which can be applicable to loT
networks

Internet of Things secu-
rity: A top-down survey

Survey of security and privacy solutions in loT, using blockchain
and Software Defined Networking, with comparisons based on
various parameters

Refs‘ Year \
[15] | 2012
[17] | 2014
[99] | 2018
[127]] 2021
[10] | 2018
[28] | 2021
[43] | 2020
[49] | 2018
[52] | 2016

Intrusion detection in
mobile ad hoc networks

Survey of intrusion detection techniques in MANETSs consid-
ering technologies and detection algorithms, classified into
nine categories, comparing different techniques, according to
strengths and limitations

Continued on next page

Table 5.2 — Selected surveys and reviews (continued)

89

Refs‘ Year‘ Title ‘ Description

[67] | 2019| Internet of Things Appli- | Review of different security issues in loT layers (perception, net-
cations, Security Chal- | work, support, and application), focusing on Distributed Denial
lenges, Attacks, Intru- | of Service (DDoS) attacks, making a comparison between IDSs
sion Detection, and Fu- | oriented to this type of attack
ture Visions

[85] | 2019| Current research on In- | Review of research work in loT security from 2016 to 2018, dis-
ternet of Things (loT) se- | cussing relevant tools, loT modelers, and simulators
curity: A survey

[96] | 2023| Access Control for IoT: | Survey on access control in the IoT, including access control
A Survey of Existing Re- | requirements, technologies, models, policies, research chal-
search, Dynamic Poli- | lenges, and future directions
cies, and Future Direc-
tions

[101]] 2019] A survey of network- | Literature survey on data sets for network-based intrusion de-
based intrusion detec- | tection, identifying 15 different properties to assess the suitabil-
tion data sets ity of each data set for specific scenarios and highlighting the

peculiarities of each data set

[115]] 2020| Machine Learning | Review on ML classifiers to use as IDSs, trained and validated
Based Intrusion Detec- | with CIDDS-001, UNSW-NB15, and NSL-KDD datasets, includ-
tion Systems for loT | ing deployment in a Raspberry Pi to evaluate timing on an loT
Applications specific hardware

[125]] 2018| Data Security and | Review of the data security and privacy threats, protection tech-
Privacy-Preserving nologies, and countermeasures inherent in edge computing
in Edge Computing
Paradigm

Intrusion Detection Systems

[4] 2020| Intrusion detection: Is- | Study of intrusion detection, discussing popular attacks, exam-
sues, problems, and so- | ining problems associated with their detection, and exploring
lutions possible solutions

[14] | 2018] A Critical Review of | Review of intrusion detection systems for IoT technologies, fo-
Practices and Chal- | cusing on architecture types, pointing out future directions
lenges in Intrusion
Detection Systems for
loT

[19] | 2019| Network Intrusion De- | Review of existing loT NIDS implementation tools and datasets
tection for loT Secu- | and survey of the state-of-the-art in terms of architecture, detec-
rity Based on Learning | tion methodologies, validation strategies, treated threats, and
Techniques algorithm deployments

Federated Learning for loT

[56] | 2022| From distributed ma- | Survey of federated learning works, proposing a taxonomy of
chine learning to feder- | related techniques and classifying FL systems according to
ated learning types of parallelism, aggregation algorithms, data communica-

tion, and the security that they use or provide

Continued on next page

Table 5.2 — Selected surveys and reviews (continued)

90

Refs‘ Year‘ Title ‘ Description

[57] | 2021| A Systematic Literature | Systematic literature review on federated learning, from a soft-
Review on Federated | ware engineering perspective, considering development phases
Machine Learning of background understanding, requirement analysis, architec-

ture design, implementation, and evaluation

[98] | 2019| Intrusion Detection at | Review the possible IDS solutions to different Fog tiers, with
the Network Edge related deployment and design issues; and indicate future re-

search directions
Distributed Ledgers in loT

[1] 2018| The Blockchain of | Overview on the use of blockchain-based platforms for loT
Things, Beyond Bitcoin

[18] | 2019] A systematic literature | Investigate the current state of blockchain technology and its ap-
review of blockchain- | plications, based on a systematic review of the literature, point-
based applications ing out research gaps and suggesting future directions

[39] | 2019 Privacy preservation in | Review implementation of five privacy preservation strategies in
blockchain-based loT | blockchain-based loT systems (anonymization, encryption, pri-
systems vate contract, mixing, and differential privacy)

[59] | 2019| The blockchain: State- | Review of research work on the blockchain, exploring its main
of-the-art and research | components, blockchain-based IoT, blockchain-based security,
challenges blockchain-based data management, and applications based on

the blockchain

[61] | 2019| Blockchain’s adoption in | Review of the peculiarities of the loT environment and how they
loT: The challenges, and | can be efficiently supported by blockchain technologies, includ-
a way forward ing some practical issues related to the integration of loT de-

vices with the blockchain

[64] | 2019| Blockchain in healthcare | Review of blockchain focusing on its application in the health-
applications: Research | care sector, which requires more stringent authentication, inter-
challenges and opportu- | operability, and record/sharing constraints. It is discussed the
nities advantages and open issues related to this use of blockchain

technologies

[71] | 2019| Securing IoT in dis- | Literature review on the application of blockchain to loT-based
tributed blockchain: | systems, providing a taxonomy with strengths, weaknesses, op-
Analysis, requirements | portunities, and threats of blockchain in 10T and also indicating
and open issues its implementation requirements

[117]] 2019| Survey on blockchain for | Survey on Blockchain technologies used in loT applications,
the Internet of Things identifying critical issues and possible adaptations and en-

hancements to the Blockchain consensus protocols and data
structures

The selected papers are discussed in the following sections according to the men-
tioned categories and the topics related to our research questions.

91

5.1 Intrusion Detection Systems for loT

This section discusses the existing research on intrusion detection systems in loT,
introducing the different types of systems that have been proposed, their key features, and
their limitations, highlighting the novelty and significance of the present thesis. Table 5.3 lists
the selected papers about approaches, security issues, and applications related to intrusion
detection for 0T systems.

Table 5.3 — Intrusion Detection for loT Systems

Refs ‘ Year ‘ Title ‘ Description Category
[3] | 2019 | Mobile Encrypted Traffic | Deep learning approach to mobile traffic classi- | Deep
Classification Using Deep | fiers, automatically extracting features, and able | learning-
Learning to cope with encrypted traffic based IDS
[6] | 2019 | Deep recurrent neural | Use of the multi-layered recurrent neural net- | RNN-based
network for loT intrusion | work to implement IDS at the Fog layer IDS
detection system
[29] | 2020 | Passban IDS: An Intelli- | Lightweight IDS to protect loT devices that are | IDS for loT
gent Anomaly-Based In- | directly connected to it. It can be deployed di-
trusion Detection System | rectly on very cheap loT gateways
for loT Edge Devices
[31] | 2020 | Deep learning for cyber | Review of intrusion detection systems based on | Deep
security intrusion detec- | deep learning approaches, describing 35 cyber | learning-
tion datasets distributed into seven categories, ana- | based IDSs
lyzing seven deep learning models (binary and
multi-class setups), and evaluating the perfor-
mance of these methods
[35] | 2019 | Deep Learning-based In- | Intrusion detection scheme for loT, classify- | IDS for loT
trusion Detection for IoT | ing traffic using a feed-forward neural network
Networks model for binary and multi-class, trained with
the Bot-loT dataset
[46] | 2020 | Intelligent Detection of | Botnet detection intrusion for each device of | Deep
loT Botnets Using Ma- | the N-BaloT dataset, using different machine | learning-
chine Learning and Deep | learning models to identify the more effective | based IDS
Learning in terms of F1-score in binary and multi-class
classification
[51] | 2020 | Machine Learning-Based | Lightweight IoT botnet detection solution, which | IDS for loT
Early Detection of loT | canbe deployed in Raspberry Pi, based on ma-
Botnets Using Network- | chine learning algorithms.
Edge Traffic

Continued on next page

Table 5.3 — Intrusion Detection for loT Systems (continued)

92

Title

‘ Description

‘ Main topics

UIDS: a unified intrusion
detection system for loT
environment

Unified intrusion detection system for loT en-
vironment (UIDS), based on a combination of
four different decision tree models, which were
trained using the UNSW-NB15 dataset, in order
to detect four specific types of attacks (exploit,
DoS, probe, and generic)

Decision
Tree-based
IDS

A Semi-Supervised In-
trusion Detection System
Using Active Learning
SVM and Fuzzy C-Means
Clustering

Hybrid semi-supervised machine learning tech-
nique, combining Support Vector Machine
(SVM) and Fuzzy C-Means (FCM) clustering,
using the NSL-KDD dataset for model training

IDS for loT

E-GraphSAGE: A Graph
Neural Network-based In-
trusion Detection System

Network intrusion detection system (NIDS)
based on Graph Neural Networks (GNNSs),
using an adapted GraphSAGE model, which
was trained using UNSW-NB15, Bot-loT, and
TON_loT datasets

GNN-based
IDS

Refs ‘ Year ‘
[63] | 2021
[54] | 2017
[58] | 2021
[119] | 2020

Large-Scale and Robust
Intrusion Detection Model
Combining Improved
Deep Belief Network With
Feature-Weighted SVM

IDS combining Deep Belief Network (DBN)
with feature-weighted support vector machines
(WSVM), using the NSL-KDD dataset to valida-
tion

ML-based
IDS

As summarized in Table 5.3, many recent works are oriented to intrusion detection
in loT systems. Most are trying to apply machine learning techniques to implement intelligent
IDSs. All these approaches are centralized, have the single point of failure problem, do not
adopt the federating learning technique, and cannot provide data privacy.

Table 5.4 compares DCD-FL, and other IDS approaches for loT systems.

Table 5.4 — Comparison between DCD-FL and other approaches

IDS \ Technique \ Datasets Better results \ Comments
Aceto et | Auto- Private wire- | 93.45% Accuracy in Android | CNN with best results, but
al. [3] encoder, less traffic, and | setup and 93.32% in iOS no detail on datasets makes
LSTM, CNN, | Facebook and any comparison difficult
Encrypted Messenger
traffic traffic in a lab
Almiani Recurrent Balanced NSL- | Simulation in Matlab, FPR | NSL-KDD is deprecated and
et al. [6] Neural Net- | KDD 4.51%, Recall 48.99%, Pre- | results by simulation only
work at Fog cision 49.57%, and F1 score
layer 49.28%

Continued on next page

93

Table 5.4 — Comparison between DCD-FL and other approaches (continued)

IDS ‘ Technique ‘ Datasets ‘ Better results ‘ Comments
Eskandari | Local Qutlier | User-generated | On Raspberry Pi 3 Model | Tiny dataset and very spe-
et al. [29] | Factor (LOF) | benign traffic, | B, port scan attack detected | cific few attacks, so not very
and Isolation | captured using | with precision 98% and re- | representative of loT sys-
Forest (iFor- | tcpdump, and | call 100% tems
est) also four types
of attacks
Ge et al. | Feed- Bot-loT dataset | On a Google’s Colab setup, | Straightforward ML model, a
[35] Forward obtained metrics above 90% | FF with two layers, which
neural net- for binary and multi-class | was fine-tuned for the Bot-
work cases loT dataset
Kim et al. | CNN, RNN, | N-BaloT Identified as the most effec- | Both the identified models
[46] LSTM, NB, | dataset tive ML models in detecting | are not suitable for loT ap-
KNN, DT, Bashlite and Mirai botnets | plications since these mod-
RF are decision trees and ran- | els are static models that do
dom forests in both binary | not adapt well to changes in
and multiclass cases the underlying data distribu-
tion, which is the usual case
for loT-based systems
DCD-FL | Decentralized| N-BaloT, As reported previously, dif- | Three different recent
[77] FL using | UNSW-NB15, ferent types of experiments | datasets of loT applications
MLP, RNN, | Bot-loT and main metrics around | and results with actual
LSTM, GRU 90% in all datasets and | execution of ML models
models, except by partic-
ular under-sampled attack
classes
5.2 Federated Learning in loT

Here, the existing research on the use of federated learning in loT is discussed,
presented the benefits of federated learning in this context, such as improved privacy and
scalability, and how different researchers have implemented it.

Machine learning techniques, particularly deep learning techniques, have been
widely applied to intrusion detection [31]. However, federated learning application in intrusion
detection is recent (last four years), and the combination with distributed ledgers for some
aspects of this area is also very recent. Table 5.5 summarizes the FL-based approaches to
implement IDSs, found in the literature of the last six years.

Table 5.5 — Federated Learning-based IDSs.

94

Refs \ Description \ C/D? \ BC’ \ loT®
Nguyen et | Representing network packets as symbols in a language to use a C No | Yes
al.[82] Recurrent Neural Network to train local models and a central server

to produce a global model per device.
Diro et | Global model produced by a master fog node by collecting model up- C No | Yes
al.[26] dates from loT devices, which use an SGD-based algorithm in the

model training.
Prabavathy | Intrusion detection is oriented to the fog layer and acts not close to C No | Yes
et al.[92] the loT devices at the edge layer.
Sahan et | IDS for conventional networks across various organizations. Each C No No
al.[106] organization performs model training locally using LSTM, sending

model updates back to the central, which performs aggregation to

update the global model.
A.-Basset | IDS for vehicular networks, using Transformers to learn vehicular traf- C Yes | Yes
et al.[2] fic patterns, which allows for detecting attacks. A blockchain is used

for registering valid model updates.
Mothukuri | Using LTSM and GRU to implement local model training at loT de- C No | Yes
et al.[72] vices and a Random Forest decision tree to perform global intrusion

prediction.
Liu et al. | Specifically for vehicles, each vehicle works as an edge server training D Yes | Yes
[55] local models based on its data. RSUs perform aggregation to produce

global models.
Friha et al. | Using just one machine learning model (MLP) and Edge lloTset D No | Yes
[33] dataset, specifically oriented to lloT, each factory performs centralized

FL by training local models at edge devices, which are also responsi-

ble for aggregating and sharing a global model with other factories. In

the aggregation process, inside each factory, all edge devices share

local models with every other device, so there is a high communica-

tion cost to consider.
Nascimento| Using different ML models and datasets, use decentralized federated D Yes | Yes
& Hessel | learning-based aggregation to train global models combining models
[77] from aggregators and from local models, which are trained at the edge

of IoT networks, without having access to data of devices; and trained

global models are shared back with all devices.

aCentralized or Decentralized, ®Blockchain use, ¢For loT

One of these recent works is from Liu et al. [55], reporting an intrusion detection

system built using a federated learning approach specifically for vehicles, where each ve-
hicle works as an edge server training local models based on its data. The aggregation is
performed by RSUs (Road Side Units) to produce global models. All the models are stored
in a public blockchain to improve the models’ security. Unlike our approach, the adopted ag-
gregation algorithms are mainly oriented to vehicles, not any loT device. Moreover, using a

95

public blockchain and a PoW consensus algorithm makes the approach resource and time-
consuming to be adopted for any kind of loT system. As discussed previously, the reported
results are on the KDDCup99 dataset, which is already obsolete.

DioT [82] is a federated learning intrusion detection approach based on represent-
ing network packets as symbols in a language. This strategy allows the implementation
of a language analysis technique to detect anomalies using GRU (Gated Recurrent Neural
Network), a kind of Recurrent Neural Network. [83]. According to the loT device type, it
adopts a federated learning approach for aggregating anomaly-detection profiles for intru-
sion detection. Unlike our work, where an entirely decentralized federated learning approach
is defined, DIoT depends on a centralized loT security service to aggregate all local mod-
els generated by security gateways to produce new models later sent back to the security
gateways. This situation constitutes a single point of failure, which is not desirable in robust
approaches to security.

Diro et al. [26] developed an IDS based on a distributed deep learning approach
at the fog layer. A master fog node collects model updates from other fog nodes that per-
form SGD-based training on their local data to generate local models. So, the master node
aggregates the model updates to produce a global model, which is shared back to all fog
nodes. The fog nodes directly connected to loT devices collect network traffic and perform
predictions to detect eventual intrusion. This approach assumes a single global model that
can demand growing computational resources to be generated proportionally to the increas-
ing number of connected loT devices. Also, it can not consider the many different network
traffic characteristics according to the IoT device types. Moreover, it is assumed a single fog
node is a master, representing a single point of failure in the system.

Prabavathy et al. [92] developed an intrusion detection technique in the fog layer,
adopting machine learning to interpret the attacks from network traffic and taking advantage
of the distributed architecture of fog computing to obtain an intrusion detection mechanism
with scalability, flexibility, and interoperability. In this approach, ML-based intrusion detection
is oriented to the fog layer. So it will not act close to the loT devices at the edge layer, which
can cause a communication overhead between the nodes.

Sarhan et al. [106] proposed a federated learning-based IDS for conventional net-
works across various organizations, i.e., not for loT. Each participating organization receives
a global model from a central organization and performs model training locally using LSTM,
sending model updates back to the central, which performs aggregation to update the global
model. The approach evaluation used the UNSW-NB15, and BoT-loT datasets, converted
to NetFlow format [106].

FED-IDS, proposed by Abdel-Basset et al. [2], is an FL-based IDS for vehicu-
lar networks, using deep learning, specifically Transformers, to learn spatial and temporal
representations of vehicular traffic, allowing for detecting attacks. In addition, a blockchain

96

implements a decentralized and secure platform for the vehicle’s interaction, registering valid
model updates. The dataset TON_IoT is used in the evaluation of the IDS.

Mothukuri et al. [72] proposed an FL-based IDS using Recurrent Neural Networks
(LTSM and GRU - Gated Recurrent Networks) to implement local model training at loT de-
vices and a Random Forest decision tree to execute a kind of model aggregation to perform
global intrusion prediction for man-in-the-middle and DDoS attacks.

5.3 Distributed Ledger Technologies Applied to loT

This section discusses the existing research on the use of distributed ledger tech-
nologies in loT systems. In general, as a distributed ledger, blockchain has decentralized
control (no central authority dictates the rules); allows data transparency and audibility (a
full copy of every transaction ever executed in the system is stored in the blockchain and
is public to all the participant nodes); distributes information (every node keeps a copy of
the blockchain to avoid having a centralized authority privately keep all that information);
implements a decentralized consensus (transactions are validated by all the participant
nodes instead of a central entity, even in the presence of unreliable nodes); guarantees
data immutability (once registered, data can not be modified anymore); and, is secure (the
blockchain is tamper-proof and cannot be manipulated by malicious nodes).

Given the characteristics mentioned above of blockchain, many approaches to ac-
cess control are adopting it in implementing authentication, authorization, and auditing,
which are the main mechanisms to implement loT security. Table 5.6 presents some rel-
evant approaches based on blockchain technologies for loT security.

Table 5.6 — Distributed Ledger Approaches for loT Security

Refs‘ Goal Solution \ Review \ Limitations

[7] Secure autho- | lIoTChain, a scheme | Ethereum blockchain is used | Not yet actually ap-
rized access to | that provides End-to- | to implement a trustless way | plied and yet us-
loT resources End authorization to handle authorization, with | ing a permissioned
the possibility of multicast | and PoW version of
groups for authorized clients | Ethereum

[11] | Decentralized au- | Using smart contracts | Blockchain-based authoriza- | Nodes may not
thorization in 10T | on a public blockchain | tion with a mechanism to | stay up to date

systems to implement decentral- | guarantee privacy to stored | on the chain, de-
ized authorization resources pending on some
conditions

Continued on next page

97

Table 5.6 — Distributed Ledger Approaches for loT Security (continued)

Refs‘ Goal ‘ Solution ‘ Review ‘ Limitations

[12] | Ensure the in- | Two conceptual | Survey on loT datasets and | No concrete results
tegrity of shared | blockchain-based discussion on how to use | are presented; it is
datasets in loT- | approaches to share | blockchain to store them a position paper

based systems

datasets for loT

[20] | Reduce BC-Store, a combina- | Solution is detailed, and | Reported results
blockchain stor- | tion of local in-cache | interesting empirical results | only for Bitcoin
age overhead in | blockchain storage and | are reported blockchain
the initial synchro- | external storage in IPFS
nization process
and the following
maintenance

[25] | Decentralized ac- | Attribute-based access | The access control is opti- | Oriented to permis-
cess control in loT | control scheme for IoT, | mized to perform lightweight | sioned blockchain
systems based on records in the | calculations, and security | only

blockchain. and performance analysis
show resiliency to multiple
attacks

[24] | End-to-end trust | Distributed trust | Provide a security analysis | In the case of
model for loT | model for the IloT, | for both the used blockchain | operators refusing
without relying on | using a credit-based | and the overall architecture | to endorse their
any common root | Blockchain ~ with a | and also experimental results | clients, a denial
of trust built-in reputation of service (DoS)

mechanism attack may occur

[27] | A lightweight | A private blockchain, | Security analysis argues that | "Miner", respon-
blockchain ade- | used for controlling and | the blockchain-based smart | sible for local
quate to be used | auditing communica- | home framework is secure, | blockchain, and
in loT by elimi- | tions, which can be | and simulation results show | its local storage is
nating the Proof | deployed in a smart | irrelevant overheads a single point of
of Work (POW) | home device failure
and the concept
of coins

[60] | Blockchain tech- | A smart contract-based | Presents also an implemen- | Due to auditabil-

nology to define
access control
systems, oriented
to auditability of

access control
policies evalua-
tion

access control system
and its application to
a reference scenario,
where the resources to
be protected are them-
selves smart contracts

tation exploiting XACML
policies and Solidity written
smart contracts deployed on
the Ethereum blockchain

ity requirements,
there
plemented
privacy in the
access control
policies stored in
the blockchain

im-
data

is no

Continued on next page

98

Table 5.6 — Distributed Ledger Approaches for loT Security (continued)

Refs‘ Goal ‘ Solution ‘ Review ‘ Limitations
[88] | Framework for | FairAccess, a decen- | Blockchain-based framework | Implementation
access control | tralized and privacy- | providing transactions to | using Bitcoin
in IoT based on | preserving autho- | grant, get, delegate, and | blockchain not
the blockchain | rization management | revoke access, with imple- | satisfies usual
technology framework where users | mentation and deployment in | restrictive time
own and control their | a Raspberry Pl device and | constraints of loT-
data local blockchain based applications
[94] | Access con- | Blockchain-based Trust | Implementation in private | Not suitable
[95] | trol system for | and Reputation System | Ethereum blockchain with | to resource-
protection from | (TRS) for loT access | Docker containers and | constrained loT
unauthorized control, which eval- | reported performance met- | devices since
access and auto- | uates the participant | rics compatible with 1oT | they need to per-
mated detection | node ftrust and repu- | applications form asymmetric
of compromised | tation score, providing cryptography

nodes in loT a self-adaptive access
control system
[126]| Distributed and | A smart contract-based | Provide a case study in an | Case study is too
trustworthy ac- | framework, which con- | loT system, where the ACCs, | simple and not
cess control for | sists of multiple ac- | JC, and RC are implemented | suitable to demon-
loT systems cess control contracts | based on the Ethereum | strate the feasibility

(ACCs), each one with
a specific role in the ac-
cess control process

smart contract platform to
achieve the access control

of the approach,
mainly in terms
of smart contract
execution costs

Alphand et al. [7] present loTChain, a scheme that provides End-to-End autho-
rization for secure authorized access to loT resources, where a permissioned Ethereum
blockchain is used to implement a trustless way to handle authorization, with the possibil-
ity of multicast groups for authorized clients. However, it still needs to be used in an IoT
application.

Andersen et al. [11] present WAVE, a decentralized authorization system that pro-
vides fine-grained permissions, noninteractive delegation, and proofs of permission and sup-
ports revocation. WAVE uses smart contracts on a public Ethereum blockchain to implement
decentralized authorization, with a mechanism to guarantee privacy to registered information
in the blockchain. However, nodes may not always stay up to date on the chain, depending
on some conditions related to where they are deployed.

Banerjee et al. [12] proposes using blockchain to ensure the integrity of shared
datasets in loT-based systems. They describe two conceptual blockchain-based approaches
to share datasets for loT. But, no concrete results are presented; it is just a position paper.

Ding et al. [25] also present blockchain-based access control oriented to I0T. Au-
thentication and authorization attributes are registered in a blockchain, which validates any

99

posterior request for access to resources. Since any request must go through a global
blockchain, even if it is permissioned, an unacceptably high latency may occur for access
request response.

Di Petro et al. [24] present a blockchain-based protocol to establish trust between
service clients and service providers by combining Bitcoin blockchain with a subchain (called
obligation chain) where the client/providers agreements are registered.

An architecture for access management in 0T based on the use of a blockchain
is proposed by Novo et al. [87]. The IoT devices are isolated from the blockchain network
and must register in a manager node, which interacts with the blockchain network. The
manager defines access control rules for the IoT devices’ resources and can modify and
delete policies for the IoT devices. These management operations are performed employing
smart contract transactions in the blockchain, which is one of the main limitations of the
proposed architecture since the waiting time for transactions to complete in the blockchain
is too much longer and not appropriate for some management operations, for example, the
revocation of some privilege for a given loT device.

The FairAccess framework [88] also uses smart contracts in a blockchain for con-
trolling access to resources in an loT system based on registered policies in the blockchain.
Putra et al. [95] make use of smart contracts in a blockchain to develop an authorization
model based on trust, where the evaluation of positive and negative interactions of nodes
in the loT system determines the level of trust of each one. These smart contract-based
approaches depend on computational, communication, and storage resources beyond the
edge devices’ capacities without providing some mechanism to consider these constraints,
as our approach proposes.

5.4 Summary

This chapter explores the existing research on intrusion detection systems (IDS)
for the Internet of Things (loT) based on machine learning techniques, mainly based on
federated learning techniques and the application of distributed ledger technologies for lIoT
security. The chapter introduces various IDS types, key features, and limitations. It highlights
that most current systems are centralized and do not adopt federated learning techniques,
leading to potential single points of failure and lack of data privacy.

The chapter also presents a comparative analysis between DCD-FL, the developed
approach in the present thesis, and other IDS approaches for 10T systems. This analysis
includes a summary of IDS techniques, datasets they utilize, their results, and comments on
their effectiveness and limitations.

100

Lastly, the chapter reviews the application of distributed ledger technologies for
loT security. It discusses solutions to reduce blockchain storage overhead, decentralize
access control in loT systems, and create end-to-end trust models for IoT without relying
on any common root of trust. Each solution is evaluated based on its goals, the details of
the resolution, its review, and its limitations. The chapter underscores the need for more
decentralized and privacy-preserving solutions in the loT security landscape.

The next chapter details the present thesis’s advances and gives some indications
for future work related to the topics discussed in this chapter.

101

6. FINAL CONSIDERATIONS

This work contributes to solutions for critical loT security issues. It is oriented
to developing decentralized security architecture for intrusion detection in loT-based sys-
tems, allowing secure IoT applications. Decentralized, federated machine learning in a data
privacy-preserving manner, using deep learning techniques to learn and adapt itself to new
kinds of intrusions dynamically, is combined with distributed ledgers to minimize the security
risks associated with not guaranteeing integrity, confidentiality, and availability of loT-based
systems. The present thesis has as main contributions:

 a decentralized, federated learning architecture for loT-based systems, which can pre-
dict attacks based on previous incidents, as well on the behaviors of loT devices, in a
privacy-preserving and fault-tolerant way;

« use of distributed ledgers providing security mechanisms for authentication, authoriza-
tion, integrity, confidentiality, and high availability in a way that loT-based systems can
effectively and efficiently use; and

* prototype implementation for the developed architecture, which demonstrated its fea-
sibility.

6.1 Revisiting the Thesis Research Proposal

In this Section, the thesis research proposal is reviewed to analyze the research
problems and objectives, hypotheses, and research questions, which were proposed in the
context of what was accomplished with the developed work in the present thesis.

6.1.1 Research Problems and Objectives

DCD-FL, as a decentralized, federated machine learning-based approach, allows
us to handle problems P.1, P.3, and P4 (see Section 1.1) since model training and prediction
for intrusion are performed locally at edge nodes, selected from the ones that can execute
the tasks, according to their available resources, and only models are transmitted to other
edge nodes for global models generation.

DCD-FL intrusion detection mechanism is based on deep learning techniques,
which explore the network traffic patterns to predict possible attacks. Model training and
prediction for intrusion are periodically scheduled and performed at each node, generating
alerts when some anomalous behavior is detected.

102

Moreover, distributed ledgers (global and local blockchains) and off-chain storage,
included in the DCD-FL approach, guarantee the integrity and high availability of the nec-
essary information for the IoT security platform in a totally decentralized way. They also
support authentication, authorization, and auditing mechanisms, essential to treat problem
P.2 (see Section 1.1) by providing necessary security features in a distributed manner.

According to the available computation, memory, and energy resources in the cor-
responding host, instances of the IDS clusters can also be deployed on different edge
servers and provide services (e.g., for monitoring network traffic, intrusion detection, etc.)
and requests services (e.g., for obtaining trained models, for performing authentication and
authorization, etc.).

Since computation tasks in DCD-FL will be primarily executed at the edge layer,
DCD-FL decentralized architecture will reduce network traffic between edge servers and
fog/cloud servers. Moreover, privacy will be enhanced since the monitored information in
the network traffic will not be transmitted to fog and edge servers. Adopting this architecture
will also be possible to cope with problem P.1 (see Section 1.1). In summary, problems
considered in the present thesis include:

* P1 - vulnerable and constrained devices should be protected and supported by any
loT security platform, intended to be effective and efficient. DCD-FL makes use of
distributed security mechanisms in a decentralized way, allocating processing loads to
the devices according to their available resources and also allowing the use of compu-
tation and storage resources from the fog level, when necessary, thus not depending
only on the edge devices; this is possible due to the totally decentralized architecture
of our developed security system;

» P2 - a considerable amount of generated data by devices should not be transmitted
to fog and cloud to be processed by the intrusion detection system, instead, the IDS
should be near to where the data is produced: in DCD-FL, data is maintained close to
or even only locally in the edge devices, which generated it, depending on the available
resources of each device

» P3 - traditional machine learning techniques for intrusion detection, demanding some
kind of manual feature engineering, are not enough anymore, given the very dynamic
aspects of 1oT, in terms of growing new types of devices and applications: DCD-FL
makes use of deep learning algorithms in the machine learning tasks, which not de-
pend on manual activities, as manual feature engineering;

» P4 - data privacy preserving is becoming even more critical, since penalties for pri-
vacy violation become very severe, according to recently approved regulations in many
countries: in DCD-FL, model training is performed using local data, minimizing data
traffic between the devices, ideally stored only locally at the edges devices; and, when

103

necessary, only the models are transmitted through the network to be used by the
aggregation algorithms, which generate global models that are sent back to the edge
devices;

* P5 - typical fog and cloud cyber threats will also affect the edge since they are all inter-
connected, and so all of them must be carefully considered: DCD-FL uses cryptogra-
phy to protect the data that need to be exchanged between all the system components
and digital identity to be used by the system components to get authentication and
authorization to access the data.

6.1.2 Hypotheses and Research Questions

In the present thesis, hypotheses that were validated include:

» H.1 - Federated machine learning techniques for intrusion detection allow obtaining an
autonomous and decentralized, effective mechanism to minimize security risks in loT
systems: It was developed a decentralized software architecture based on concepts
from P2P networking and a detection intrusion mechanism, based on deep learning
algorithms from the machine learning area of Artificial Intelligence, which effectively
minimizes security risks by alerting possible security threats in loT based systems;
and the mechanism is performed mainly on the edges devices; also, a prototype was
implemented based on the defined architecture, which results can demonstrate the
feasibility and efficiency of the developed solution;

» H.2 - Distributed ledgers guarantee the adequate availability and integrity of digital
identities and all necessary access control information to the authentication and au-
thorization for resource uses in loT systems: DCD-FL adopted distributed ledgers to
persist information about the trained models and also to register the digital identities
of the edge devices, which are authorized to participate in the security system tasks;
moreover, the contents of the trained models are persisted in decentralized stores, to
alleviate the demands for access to the distributed ledgers and to maintain the decen-
tralized nature of the developed security system;

* H.3 resulting security platform can be adopted in many kinds of loT applications: an
implementation of the developed decentralized architecture for DCD-FL, based on ab-
stractions from the P2P networking, shows the possibility of deployment of the security
system in any loT based system, where there are devices at the edge, fog, or cloud
level, which can perform some basic computation and store data (to be used in the
model trained task in the edge devices) and models (generated by the devices and
used by them to predict eventual intrusions in the system)

104

Research questions (RQ) explored in the present thesis, and specific objectives
(SG) include:

* RQ.1 - What are the state-of-the-art of intrusion detection and prevention techniques,
and how can they be applied to loT systems?

— SG.1 - To identify and report the state-of-the-art of intrusion detection and pre-
vention approaches that can be applied to loT systems: a systematic literature
review was conducted, which identified the current approaches to intrusion de-
tection techniques applied to loT-based systems, presented in the Related Work
section of the thesis (see Chapter 5), allowing the development of architecture
and its prototype to handle some open problems, reported in the literature, and
to demonstrate its feasibility by performing various practical experiments, respec-
tively

— SG.5 To report the research results by publishing them in scientific publications
and presenting at academic events, as well as exploring the possibility of technol-
ogy transfer to the industry: It was published two papers, one review on decen-
tralized, federated learning (WF-10T°2022 [78]) and one on DCD-FL, developed
decentralized, federated learning architecture (AINA’2022 [77]).

* RQ.2 - Can Federated machine learning techniques effectively apply to intrusion de-
tection and prevention in loT systems?

— SG.2 - To develop an efficient, effective, and flexible loT security platform: per-
formed experiments, which correlate model quality and topology of the P2P net-
work (number of aggregators and workers), correlate model size and topology/-
model type/dataset, and correlate number of local models used to aggregate to
generate the global model, produce comparable results to the existing centralized
approaches (see Section 4.2.5), with the additional advantages of the decentral-
ized approach of DCD-FL;

— SG.3 - To explore the use of federated learning to implement distributed ma-
chine learning algorithms for intrusion detection and prevention in loT systems:
the DCD-FL developed decentralized architecture, allowed the implementation of
federated learning techniques, and the results of the performed experiments, by
using the implemented prototype of our security system, allows to answer this
question positively (see Chapter 4).

* RQ.3 - How can distributed ledgers be efficiently deployed on the edge in loT systems
to guarantee information integrity in loT systems?

— SG.2 - To develop an efficient, effective, and flexible loT security platform: by
adopting federated learning techniques, only trained models are exchanged be-
tween the edge, fog, and cloud devices, since data are maintained locally, thus,

105

the use of distributed ledgers can be restricted to store only the trained models;
the developed prototype of our decentralized architecture demonstrated that just
one distributed ledger could be used by all the devices, including the edge, fog
and cloud ones; avoiding the necessity of deployment of many distributed ledgers
at the edge level; moreover, the trained models are encrypted to be exchanged
between the nodes, avoiding non-authorized access to them (see Chapter 3).

* RQ.4 - Is it possible to develop an loT security platform based on these techniques
mentioned above, which can be adopted in different kinds of loT applications?

— SG.4 - To evaluate the developed loT security platform and compare its perfor-
mance with results reported by other similar platforms: the implemented pro-
totype of DCD-FL, the developed decentralized architecture, allows one to an-
swer this question positively since it can be deployed on any loT based systems,
where there are interconnected nodes, which have some degree of computational
and storage power, as argued in Section 4.2.6. Experiments using the N-BaloT
dataset, which provides separated data for each type of loT device, allowed to
show how DCD-FL can handle IoT systems with different types of devices, each
one with specific possibilities of attacks (see Section 4.2.5)

6.2 Limitations and Future Work

This Section discusses the limitations of the present research. It suggests areas for
future work, pointing out aspects of DCD-FL that could be improved and additional features
that could be added.

6.2.1 Problem P1: Constrained resources

Since vulnerable and constrained devices should be protected and supported by
any loT security platform intended to be effective and efficient, deciding when and where
each intrusion detection task will be executed is crucial. It is not acceptable nor effective the
overhead of resource-constraint devices, but at the same time, they need to be monitored
and protected in the security platform.

Thus, techniques and algorithms must be developed to estimate the necessary
resources for training and inference tasks. Another important aspect related to this issue is
the selection of participant nodes in the model training rounds. It will be necessary to define
algorithms to perform load balance between cloud/fog/edge nodes quickly and efficiently

106

and determine the best routing between the participant nodes, minimizing communication
costs.

To cope with these above issues, results from real-time scheduling theory (various
types of schedulers, feasibility analysis techniques) may be helpful in how to estimate if
available computational and memory resources are enough to execute a given task and how
to estimate execution time for computation and memory access (including cache effects) for
allocated tasks [120].

Minimizing communication costs is also related to the massive amount of generated
data by loT devices that should not be transmitted to the cloud; instead, intrusion prediction
should be performed near where the data is produced. Considering the significant hetero-
geneity of IoT devices, scheduling/allocation algorithms must consider these aspects when
deciding when and where to execute model training and intrusion prediction.

Moreover, given that in many loT-based systems, due to their mobility and scala-
bility peculiarities, nodes may become unavailable and new nodes appear in the system, a
dynamic re-scheduling based on currently available resources at each time point must be
considered, as well as mechanisms to dynamically reconfigure clusters of nodes to adjust
them for the newly defined scheduling.

In this aspect, results from Distributed Systems research area [113] may help; for
instance, the middleware concept applied to developing security platforms as a service,
accessed by secure API, can be a good starting point to deal with these problems.

6.2.2 Problem P2: Privacy Risks

Since data privacy-preserving is a big issue, mainly due to the recent regulations
(in Europe, GDPR [116], in Brazil, LGPD), intended to protect user’s privacy and provide
data security, FL offers a significant advantage since model training is not dependent on
access to the device data, which is only available locally at each client device [56] Moreover,
many security risks are minimized since device data is not transmitted through the network.

However, since an initial global model must be shared with the client devices and
further model updates should be transmitted to aggregator servers, some malicious client
devices may capture the network traffic (man-in-the-middle attack), threatening data privacy
and even make changes to the models, intending to influence on the final results (poison
attack). Thus, some techniques should be adopted to cope with these threats.

Differential privacy [118] adds noise to the data or uses generalization methods so
that a third party cannot identify who sent the model updates, making the data impossible to
be restored. However, differential privacy usually demands a high computational cost, which
is incompatible with many loT devices.

107

Other approaches to guarantee data privacy-preserving in FL and avoid poison
attacks on the transmitted models between the nodes in an FL-based system use distributed
ledger technologies.

6.2.3 Problem P3: Deep Learning Overhead

Since deep learning algorithms have a high demand for computational and storage
resources and usually loT devices have limited available energy, techniques and algorithms
must be defined to improve power consumption efficiency by all kinds of cloud/fog/edge
nodes. And this definition involves estimating available energy at each node at each time
point to identify if tasks will be finished in the node or if a re-scheduling will be necessary, for
example.

In the Design Automation for embedded systems research area, the present Author
has some published work [81] [80] [79], there are many techniques and algorithms already
developed to implement CAD tools for automatized synthesis and verification of integrated
circuits that can be explored to the solutions for the above issues, as future work.

6.2.4 Problem P4: Blockchain-based Access Control Overhead

Energy efficiency in the blockchain is mainly related to consensus algorithm exe-
cution. PoW and PoS have a high energy consumption [18], being utterly incompatible with
the energy levels which are available in the devices of loT-based systems. However, several
consensus mechanisms and procedures could be adapted to decrease energy waste.

There are many other alternatives to implement consensus as, for example, Car-
dano’s protocol [32], which provides a very effective consensus algorithm and also allows
fast transaction processing.

6.3 Concluding Remarks

This work contributes to the research for solutions to significant loT security issues.
The thesis introduced some main concepts related to intrusion detection in loT-based sys-
tems and promising technologies that have been shown to cope with many severe problems
in developing Intrusion Detection Systems: Federated Learning and Distributed Ledgers.

Decentralized, federated machine learning in a data privacy-preserving manner,
using deep learning techniques to dynamically learn and adapt itself to new kinds of intru-

108

sions, combined with distributed ledgers to minimize the security risks associated with not
guaranteeing integrity, confidentiality, and availability of loT-based systems, is a promising
solution to the IDS for loT implementation. However, there are yet many open problems. The
thesis indicated some of them and suggested possible research paths that one interested in
loT-based systems can consider.

109

REFERENCES

[1] Abadi, F. A.; Ellul, J.; Azzopardi, G. “The Blockchain of Things, Beyond Bitcoin: A
Systematic Review”. In: International Conference on Internet of Things (iThings) and
Green Computing and Communications (GreenCom) and Cyber, Physical and Social
Computing (CPSCom) and Smart Data (SmartData), 2018, pp. 1666—1672.

[2] Abdel-Basset, M.; Moustafa, N.; Hawash, H.; Razzak, |.; Sallam, K. M.; Elkomy, O. M.
“Federated Intrusion Detection in Blockchain-Based Smart Transportation Systems”,
IEEE Transactions on Intelligent Transportation Systems, vol. PP—99, Jun 2021, pp.
1-15.

[38] Aceto, G.; Ciuonzo, D.; Montieri, A.; Pescapé, A. “Mobile Encrypted Traffic
Classification Using Deep Learning: Experimental Evaluation, Lessons Learned, and
Challenges”, IEEE Transactions on Network and Service Management, vol. 16-2,
Jun 2019, pp. 445-458.

[4] Adeleke, O. “Intrusion Detection: Issues, Problems and Solutions”. In: 3rd
International Conference on Information and Computer Technologies, ICICT, 2020,
pp. 397-402.

[5] Aledhari, M.; Razzak, R.; Parizi, R. M.; Saeed, F. “Federated Learning: A Survey on
Enabling Technologies, Protocols, and Applications”, IEEE Access, vol. 8, Aug 2020,
pp. 140699-140725.

[6] Almiani, M.; AbuGhazleh, A.; Al-Rahayfeh, A.; Atiewi, S.; Razaque, A. “Deep
Recurrent Neural Network for IoT Intrusion Detection system”, Simulation Modelling
Practice and Theory, vol. 101, Dec 2020, pp. 102031.

[7] Alphand, O.; Amoretti, M.; Claeys, T.; Dall’Asta, S.; Duda, A.; Ferrari, G.; Rousseau,
F.; Tourancheau, B.; Veltri, L.; Zanichelli, F. “loTChain: A Blockchain Security
Architecture for the Internet of Things”. In: IEEE Wireless Communications and
Networking Conference (WCNC), 2018, pp. 1-6.

[8] Alsaedi, A.; Moustafa, N.; Tari, Z.; Mahmood, A.; Anwar, A. “TON_loT Telemetry
Dataset: A New Generation Dataset of IoT and lloT for Data-Driven Intrusion
Detection Systems”, IEEE Access, vol. 8-3, Sep 2020, pp. 165130-165150.

[9] Ammar, A. “A Decision Tree Classifier for Intrusion Detection Priority Tagging”, Journal
of Computer and Communications, vol. 03—04, Mar 2015, pp. 52-58.

[10] Ammar, M.; Russello, G.; Crispo, B. “Internet of Things: A Survey on the Security
of loT Frameworks”, Journal of Information Security and Applications, vol. 38-2,
Feb 2018, pp. 8-27.

110

[11] Andersen, M. P; Kumar, S.; AbdelBaky, M.; Fierro, G.; Kolb, J.; Kim, H.-S.;
Culler, D. E.; Popa, R. A. “WAVE: A Decentralized Authorization System for loT
via Blockchain Smart Contracts”, Technical Report UCB/EECS-2017-234, EECS
Department, University of California, Berkeley, University of Berkeley, CA, USA, 2017,
16p.

[12] Banerjee, M.; Lee, J.; Choo, K. K. R. “A Blockchain Future for Internet of Things
Security: A Position Paper”, Digital Communications and Networks, vol. 4-3,
Jan 2018, pp. 149-160.

[13] Benet, J. “IPFS - Content Addressed, Versioned, P2P File System”, arXiv, vol. 1-1,
Jul 2014, pp. 1-11, 1407.3561.

[14] Benkhelifa, E.; Welsh, T.; Hamouda, W. “A Critical Review of Practices and Challenges
in Intrusion Detection Systems for loT: Toward Universal and Resilient Systems”, IEEE
Communications Surveys & Tutorials, vol. 20—4, Nov 2018, pp. 3496-3509.

[15] Bonomi, F.; Milito, R.; Zhu, J.; Addepalli, S. “Fog Computing and Its Role in the Internet
of Things”. In: First Edition of the MCC Workshop on Mobile Cloud Computing, 2012,
pp. 13—16.

[16] Booij, T. M.; Chiscop, |.; Meeuwissen, E.; Moustafa, N.; Hartog, F. T. H. d. “ToN_IoT:
The Role of Heterogeneity and the Need for Standardization of Features and Attack
Types in 10T Network Intrusion Data Sets”, IEEE Internet of Things Journal, vol. 9—1,
Jun 2022, pp. 485-496.

[17] Borgia, E. “The Internet of Things vision: Key features, applications and open issues”,
Computer Communications, vol. 54—09, Oct 2014, pp. 1-31.

[18] Casino, F.; Dasaklis, T. K.; Patsakis, C. “A Systematic Literature Review of Blockchain-
based Applications: Current Status, Classification and Open issues”, Telematics and
Informatics, vol. 36-5, Jan 2019, pp. 55-81.

[19] Chaabouni, N.; Mosbah, M.; Zemmari, A.; Sauvignac, C.; Faruki, P. “Network Intrusion
Detection for lIoT Security Based on Learning Techniques”, IEEE Communications
Surveys & Tutorials, vol. 21-3, Dec 2019, pp. 2671-2701.

[20] Chou, I.-T.; Su, H.-H.; Hsueh, Y.-L.; Hsueh, C.-W. “BC-Store: A Scalable Design for
Blockchain Storage”. In: 2nd International Electronics Communication Conference,
2020, pp. 33-38.

[21] Choudhary, S.; Kesswani, N. “Analysis of KDD-Cup’99, NSL-KDD and UNSW-NB15
Datasets using Deep Learning in loT”, Procedia Computer Science, vol. 167-3,
Mar 2020, pp. 1561-1573.

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

111

Dannen, C. “Introducing Ethereum and Solidity: Foundations of Cryptocurrency and
Blockchain Programming for Beginners”. New York, NY: Apress, 2017, 1st ed., 185p.

Denniss, W.; Bradley, J.; Jones, M. B.; Tschofenig, H. “OAuth 2.0 Device Authorization
Grant”. Source: https://www.rfc-editor.org/info/rfc8628, 2023-02-10.

Di Pietro, R.; Salleras, X.; Signorini, M.; Waisbard, E. “A Blockchain-based Trust
System for the Internet of Things”. In: 23nd ACM on Symposium on Access Control
Models and Technologies, 2018, pp. 77-883.

Ding, S.; Cao, J.; Li, C.; Fan, K.; Li, H. “A Novel Attribute-Based Access Control
Scheme Using Blockchain for loT”, IEEE Access, vol. 7-10, Apr 2019, pp. 38431—
38441.

Diro, A. A.; Chilamkurti, N. “Distributed Attack Detection Scheme using Deep Learning
Approach for Internet of Things”, Future Generation Computer Systems, vol. 82,
May 2018, pp. 761-768.

Dorri, A.; Kanhere, S. S.; Jurdak, R.; Gauravaram, P. “Blockchain for loT Security
and Privacy: The Case Study of a Smart Home”. In: International Conference on
Pervasive Computing and Communications Workshops (PerCom Workshops), 2017,
pp. 618-623.

Dramé-Maigné, S.; Laurent, M.; Castillo, L.; Ganem, H. “Centralized, Distributed,
and Everything in between: Reviewing Access Control Solutions for the IoT”, ACM
Computing Surveys, vol. 54—7, May 2021, pp. 1-34.

Eskandari, M.; Janjua, Z. H.; Vecchio, M.; Antonelli, F. “Passban IDS: An Intelligent
Anomaly-Based Intrusion Detection System for loT Edge Devices”, IEEE Internet of
Things Journal, vol. 7-8, Aug 2020, pp. 6882—-6897.

Ferrag, M. A.; Friha, O.; Hamouda, D.; Maglaras, L.; Janicke, H. “Edge-lloTset: A
New Comprehensive Realistic Cyber Security Dataset of loT and lloT Applications for
Centralized and Federated Learning”, IEEE Access, vol. PP—99, Apr 2022, pp. 1-1.

Ferrag, M. A.; Maglaras, L.; Moschoyiannis, S.; Janicke, H. “Deep Learning for Cyber
Security Intrusion Detection: Approaches, datasets, and comparative study”, Journal
of Information Security and Applications, vol. 50—10, Mar 2020, pp. 102419.

Foundation, C.; EMURGO; IOHK. “Cardano’s Homepage”. Source: https://cardano.
org/, 2023-05-12.

Friha, O.; Ferrag, M. A.; Benbouzid, M.; Berghout, T.; Kantarci, B.; Choo, K.-
K. R. “2DF-IDS: Decentralized and Differentially Private Federated Learning-based

https://www.rfc-editor.org/info/rfc8628
https://cardano.org/
https://cardano.org/

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

112

Intrusion Detection System for Industrial loT”, Computers & Security, vol. 127-3,
Jan 2023, pp. 103097.

Garcia, S.; Parmisano, A.; Erquiaga, M. J. “1oT-23: A Labeled Dataset With Malicious
and Benign loT Network Traffic”, Technical Report, Zenodo, 2020, 20p, last accessed
in 05/20/2023.

Ge, M.; Fu, X.; Syed, N.; Baig, Z.; Teo, G.; Robles-Kelly, A. “Deep Learning-
based Intrusion Detection for IoT Networks”. In: IEEE 24th Pacific Rim International
Symposium on Dependable Computing (PRDC), 2019, pp. 256—265.

Ghimire, B.; Rawat, D. B. “Recent Advances on Federated Learning for Cybersecurity
and Cybersecurity for Federated Learning for Internet of Things”, IEEE Internet of
Things Journal, vol. 9—11, Dec 2022, pp. 8229-8249.

Grammatikis, P. I. R.; Sarigiannidis, P. G.; Moscholios, I. D. “Securing the Internet
of Things: Challenges, Threats and Solutions”, IEEE Internet of Things, vol. 5-11,
Jan 2019, pp. 41-70.

Han, W.; Gu, Y.; Wang, W.; Zhang, Y.; Yin, Y.; Wang, J.; Zheng, L.-R. “The Design
of an Electronic Pedigree System for Food Safety”, Information Systems Frontiers,
vol. 17-2, Aug 2015, pp. 275-287.

Hassan, M. U.; Rehmani, M. H.; Chen, J. “Privacy Preservation in Blockchain based
loT Ssystems: Integration Issues, Prospects, Challenges, and Future Research
Directions”, Future Generation Computer Systems, vol. 97—1, Jan 2019, pp. 512-529.

Heartfield, R.; Loukas, G.; Budimir, S.; Bezemskij, A.; Fontaine, J. R.; Filippoupolitis,
A.; Roesch, E. “A Taxonomy of Cyber-Physical Threats and Impact in the Smart
Home”, Computers and Security, vol. 78—1, Jan 2018, pp. 398—428.

Hodo, E.; Bellekens, X.; Hamilton, A.; Dubouilh, P-L.; lorkyase, E.; Tachtatzis,
C.; Atkinson, R. “Threat Analysis of loT Networks Using Artificial Neural Network
Intrusion Detection System”. In: International Symposium on Networks, Computers
and Communications (ISNCC), 2016, pp. 1-6, 1704.02286.

Hou, J.; Qu, L.; Shi, W. “A Survey on Internet of Things Security from Data
Perspectives”, Computer Networks, vol. 148—1, Jan 2019, pp. 295-306.

Hussain, F.; Hussain, R.; Hassan, S. A.; Hossain, E. “Machine Learning in loT
Security: Current Solutions and Future Challenges”, IEEE Communications Surveys
& Tutorials, vol. 22-3, Dec 2020, pp. 1686—1721.

Indrasiri, K.; Kuruppu, D. “gRPC: Up and Running: Building Cloud Native Applications
with Go and Java for Docker and Kubernetes”. New York, NY: O’Reilly Media, 2020,
204p.

113

[45] Kairouz, P.; McMahan, H. B.; Avent, B.; Bellet, A.; Bennis, M.; Bhagoji, A. N.;
Bonawitz, K.; Charles, Z.; Cormode, G.; Cummings, R.; D’'Oliveira, R. G. L.; Eichner,
H.; Rouayheb, S. E.; Evans, D.; Gardner, J.; Garrett, Z.; Gascon, A.; Ghazi, B.;
Gibbons, P. B.; Gruteser, M.; Harchaoui, Z.; He, C.; He, L.; Huo, Z.; Hutchinson,
B.; Hsu, J.; Jaggi, M.; Javidi, T.; Joshi, G.; Khodak, M.; Konecny, J.; Korolova, A.;
Koushanfar, F.; Koyejo, S.; Lepoint, T.; Liu, Y.; Mittal, P.; Mohri, M.; Nock, R.; Ozgir,
A.; Pagh, R.; Qi, H.; Ramage, D.; Raskar, R.; Raykova, M.; Song, D.; Song, W.; Stich,
S. U.; Sun, Z.; Suresh, A. T.; Tramér, F.; Vepakomma, P.; Wang, J.; Xiong, L.; Xu,
Z.; Yang, Q.; Yu, F. X.; Yu, H.; Zhao, S. “Advances and Open Problems in Federated
Learning”, Foundations and Trends® in Machine Learning, vol. 14—1-2, Dec 2021, pp.
1-210.

[46] Kim, J.; Shim, M.; Hong, S.; Shin, Y.; Choi, E. “Intelligent Detection of IoT
Botnets Using Machine Learning and Deep Learning”, Applied Sciences, vol. 10—
19, Mar 2020, pp. 7009, results were reported to N-BaloT for each loT device. Very
interesting to compare with our results.

[47] Kolias, C.; Kambourakis, G.; Stavrou, A.; Voas, J. “DDoS in the loT: Mirai and Other
Botnets”, Computer, vol. 50-7, Jul 2017, pp. 80—84.

[48] Koroniotis, N.; Moustafa, N.; Sitnikova, E.; Turnbull, B. “Towards the Development
of Realistic Botnet Dataset in the Internet of Things for Network forensic Analytics:
Bot-loT Dataset”, Future Generation Computer Systems, vol. 100-5, May 2019, pp.
779-796.

[49] Kouicem, D. E.; Bouabdallah, A.; Lakhlef, H. “Internet of Things Security: A Top-Down
Survey”, Computer Networks, vol. 141-1, Jan 2018, pp. 199-221.

[50] Krebs, B. “Hacked Cameras, DVRs Powered Today’s Massive
Internet Outage”. Source: https://krebsonsecurity.com/2016/10/
hacked-cameras-dvrs-powered-todays-massive-internet-outage/, 2023-05-20.

[51] Kumar, A.; Shridhar, M.; Swaminathan, S.; Lim, T. J. “Machine Learning-Based Early
Detection of loT Botnets Using Network-Edge Traffic”, arXiv, vol. abs/2010.11453—-1,
Dec 2020, pp. 1-15, 2010.11453.

[52] Kumar, S.; Dutta, K. “Intrusion Detection in Mobile ad hoc Networks: Techniques,
Systems, and Future Challenges”, Security and Communication Networks, vol. 9—14,
Sep 2016, pp. 2484-2556.

[53] Kumar, V.; Das, A. K.; Sinha, D. “UIDS: A Unified Intrusion Detection System for IoT
Environment”, Evolutionary Intelligence, vol. 14—1, Mar 2021, pp. 47-59.

https://krebsonsecurity.com/2016/10/hacked-cameras-dvrs-powered-todays-massive-internet-outage/
https://krebsonsecurity.com/2016/10/hacked-cameras-dvrs-powered-todays-massive-internet-outage/

114

[54] Kumari, V. V.; Varma, P. R. K. “A Semi-Supervised Intrusion Detection System Using
Active Learning SVM and Fuzzy C-Means Clustering”. In: International Conference on
[-SMAC (loT in Social, Mobile, Analytics and Cloud) (I-SMAC), 2017, pp. 481—485.

[55] Liu, H.; Zhang, S.; Zhang, P.; Zhou, X.; Shao, X.; Pu, G.; Zhang, Y. “Blockchain
and Federated Learning for Collaborative Intrusion Detection in Vehicular Edge
Computing”, IEEE Transactions on Vehicular Technology, vol. PP—99, Jan 2021, pp.
1-1.

[56] Liu, J.; Huang, J.; Zhou, Y.; Li, X.; Ji, S.; Xiong, H.; Dou, D. “From Distributed Machine
Learning to Federated Learning: a Survey”, Knowledge and Information Systems,
vol. 64—4, Mar 2022, pp. 885-917, 2104.14362.

[57] Lo, S. K.; Lu, Q.; Wang, C.; Paik, H.-Y.; Zhu, L. “A Systematic Literature Review
on Federated Machine Learning: From a Software Engineering Perspective”, ACM
Computing Surveys, vol. 54-5, Feb 2021, pp. 1-39, 2007.11354.

[58] Lo, W. W.; Layeghy, S.; Sarhan, M.; Gallagher, M.; Portmann, M. “E-GraphSAGE: A
Graph Neural Network based Intrusion Detection System”, arXiv, vol. abs/2103.16329,
Jan 2021, pp. 1-18, 2103.16329.

[59] Lu, Y. “The Blockchain: State-Of-The-Art and Research Challenges”, Journal of
Industrial Information Integration, vol. 15—April, Jan 2019, pp. 80—90.

[60] Maesa, D. D. F; Mori, P; Ricci, L. “A Blockchain based Approach for the Definition
of Auditable Access Control systems”, Computers & Security, vol. 84, Mar 2019, pp.
93-119.

[61] Makhdoom, |.; Abolhasan, M.; Abbas, H.; Ni, W. “Blockchain’s Adoption in loT: The
Challenges, and a Way Forward”, Journal of Network and Computer Applications, vol.
125, Jan 2019, pp. 251-279.

[62] Marikyan, D.; Papagiannidis, S.; Alamanos, E. “A Systematic Review of the Smart
Home Literature: A User Perspective”, Technological Forecasting and Social Change,
vol. 138—11, Jan 2019, pp. 139-154.

[63] Marwedel, P. “Embedded System Design”. Cham, Switzerland: Springer International
Publishing, 2018, 3rd ed., 430p.

[64] McGhin, T.; Choo, K. K. R.; Liu, C. Z.;; He, D. “Blockchain in Healthcare
Applications: Research Challenges and Opportunities”, Journal of Network and
Computer Applications, vol. 135-September 2018, Jan 2019, pp. 62-75.

[65] McMahan, H. B.; Moore, E.; Ramage, D.; Hampson, S.; Arcas, B. A. .
“Communication-Efficient Learning of Deep Networks from Decentralized Data”, arXiv,
vol. abs/1602.05629—-1, May 2016, pp. 1-14, 1602.05629.

115

[66] Meidan, Y.; Bohadana, M.; Mathov, Y.; Mirsky, Y.; Shabtai, A.; Breitenbacher,
D.; Elovici, Y. “N-BaloT—Network-Based Detection of loT Botnet Attacks Using
Deep Autoencoders”, IEEE Pervasive Computing, vol. 17-3, Jul 2018, pp. 12-22,
1805.03409.

[67] Mishra, N.; Pandya, S. “Internet of Things Applications, Security Challenges, Attacks,
Intrusion Detection, and Future Visions: A Systematic Review”, IEEE Access, vol. 9-3,
Apr 2021, pp. 59353-59377.

[68] Mishra, S.; Singh, N. K.; Roussea, V. u. “System on Chip Interfaces for Low Power
Design”. New York, NY: Morgan Kaufmann, 2015, 520p.

[69] Mitchell, R.; Chen, I.-r. “A Survey of Intrusion Detection Techniques for Cyber-Physical
Systems”, ACM Computing Surveys, vol. 46—4, Mar 2014, pp. 1-29.

[70] Mohammadi, M.; Rashid, T. A.; Karim, S. H.; Aldalwie, A. H. M.; Tho, Q. T.; Bidaki,
M.; Rahmani, A. M.; Hoseinzadeh, M. “A Comprehensive Survey and Taxonomy
of the SVM-based Intrusion Detection Systems”, Journal of Network and Computer
Applications, vol. 178-03, Jan 2021, pp. 102983.

[71] Moin, S.; Karim, A.; Safdar, Z.; Safdar, K.; Ahmed, E.; Imran, M. “Securing loTs in
Distributed Blockchain: Analysis, Requirements and Open issues”, Future Generation
Computer Systems, vol. 100, Jan 2019, pp. 325-343.

[72] Mothukuri, V.; Khare, P.; Parizi, R. M.; Pouriyeh, S.; Dehghantanha, A.; Srivastava,
G. “Federated Learning-based Anomaly Detection for loT Security Attacks”, IEEE
Internet of Things Journal, vol. PP—99, Sep 2021, pp. 1-1.

[73] Moustafa, N.; Slay, J. “UNSW-NB15: A Comprehensive Data Set for Network Intrusion
Detection Systems (UNSW-NB15 Network Data Set)”. In: Military Communications
and Information Systems Conference (MilCIS), 2015, pp. 1-6.

[74] Moustafa, N.; Slay, J. “The evaluation of Network Anomaly Detection Systems:
Statistical Analysis of the UNSW-NB15 Data Set and the Comparison with the KDD99
Data Set”, Information Security Journal: A Global Perspective, vol. 25—1-3, Mar 2016,
pp. 18-31.

[75] Mukherjee, M.; Matam, R.; Shu, L.; Maglaras, L.; Ferrag, M. A.; Choudhury, N.;
Kumar, V. “Security and Privacy in Fog Computing: Challenges”, IEEE Access, vol. 5—
3, Oct 2017, pp. 19293—-19304.

[76] Nakamoto, S. “Bitcoin: A Peer-to-Peer Electronic Cash System”, Technical Report,
bitcoin.org, 2008, 9p, available at https://bitcoin.org/bitcoin.pdf.

[77]

[78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

116

Nascimento, F. A. M.; Hessel, F. “A Decentralized Federated Learning Architecture for
Intrusion Detection in loT Systems”. In: 36th International Conference on Advanced
Information Networking and Applications (AINA), Volume 2, Barolli, L.; Hussain, F;
Enokido, T. (Editors), 2022, pp. 256—268.

Nascimento, F. A. M.; Hessel, F. “Decentralized Federated Learning for Intrusion
Detection in loT-based Systems: A Review.” In: 8th IEEE World Forum on the Internet
of Things (WFloT), 2022, pp. 200—-208.

Nascimento, F. A. M.; Oliveira, M. F. S.; Wagner, F. R. “A Model-Driven Engineering
Framework for Embedded Systems Design”, Innovations in Systems and Software
Engineering, vol. 8—1, Nov 2012, pp. 19-33.

Nascimento, F. A. M. d.; Oliveira, M. F. S.; Wagner, F. R.; IEEE; Nascimento, F. A. M.;
Oliveira, M. F. S.; Wagner, F. R. “MDE Approach to the Co-Synthesis of Embedded
Systems using a MOF-based Internal Design Representation”. In: ICSE Workshop on
Model-Based Methodologies for Pervasive and Embedded Software, 2009, pp. 53—
60.

Nascimento, F. A. M. d.; Rosenstiel, W. “A Repatrtitioning and HW/SW Partitioning
Algorithm to the Automatic Design Space Exploration in the Co-Synthesis of
Embedded Systems”. In: 14th Symposium on Integrated Circuits and Systems
Design, 2001, pp. 85.

Nguyen, T. D.; Marchal, S.; Miettinen, M.; Fereidooni, H.; Asokan, N.; Sadeghi, A.-R.
“DioT: A Federated Self-Learning Anomaly Detection System for loT”. In: 39th IEEE
International Conference on Distributed Computing Systems (ICDCS), 2019, pp. 756—
767.

Nguyen, T. D.; Rieger, P.; Yalame, H.; Mdllering, H.; Fereidooni, H.; Marchal, S.;
Miettinen, M.; Mirhoseini, A.; Sadeghi, A.-R.; Schneider, T.; Zeitouni, S. “FLGUARD:
Secure and Private Federated Learning”, arXiv, vol. abs/2101.02281-1, Feb 2021, pp.
1-12,2101.02281.

Nishio, T.; Yonetani, R. “Client Selection for Federated Learning with Heterogeneous
Resources in Mobile Edge”. In: IEEE International Conference on Communications
(ICC), 2019, pp. 1-7, 1804.08333.

Noor, M. b. M.; Hassan, W. H. “Current Research on Internet of Things (loT) Security:
A Survey”, Computer Networks, vol. 148—1, Jan 2019, pp. 283—-294.

Nord, J. H.; Koohang, A.; Paliszkiewicz, J. “The Internet of Things: Review and
Theoretical Framework”, Expert Systems with Applications, vol. 133—11, Nov 2019,
pp. 97-108.

117

[87] Novo, O. “Blockchain Meets loT: An Architecture for Scalable Access Management in
loT”, IEEE Internet of Things Journal, vol. 5-2, Jan 2018, pp. 1184—1195.

[88] Ouaddah, A.; Elkalam, A. A.; Ouahman, A. A. “FairAccess: A New Blockchain-based
Access Control Framework for the Internet of Things”, Security and Communication
Networks, vol. 9—18, Feb 2016, pp. 5943-5964.

[89] Ouaddah, A.; Mousannif, H.; Elkalam, A. A.; Ouahman, A. A. “Access Control in the
Internet of Things: Big Challenges and New Opportunities”, Computer Networks, vol.
112—11, Nov 2017, pp. 237-262.

[90] Pace, P; Aloi, G.; Gravina, R.; Caliciuri, G.; Fortino, G.; Liotta, A. “An Edge-
Based Architecture to Support Efficient Applications for Healthcare Industry 4.0”, IEEE
Transactions on Industrial Informatics, vol. 15—1, Jan 2018, pp. 481-489.

[91] Paszke, A.; et al.. “PyTorch: An Imperative Style, High-Performance Deep Learning
Library”, arXiv, vol. 1—1, Jul 2019, pp. 1-18, 1912.017083.

[92] Prabavathy, S.; Sundarakantham, K.; Shalinie, S. M. “Design of Cognitive Fog
Computing for Intrusion Detection in Internet of Things”, Journal of Communications
and Networks, vol. 20-3, Jun 2018, pp. 291-298.

[93] Prajapati, P.; Bhatt, B.; Zalavadiya, G.; Ajwalia, M.; Shah, P. “A Review on
Recent Intrusion Detection Systems and Intrusion Prevention Systems in loT”. In:
11th International Conference on Cloud Computing, Data Science & Engineering
(Confluence), 2021, pp. 588-593.

[94] Putra, G. D.; Dedeoglu, V.; Kanhere, S. S.; Jurdak, R. “Trust Management
in Decentralized loT Access Control System”. In: International Conference on
Blockchain and Cryptocurrency (ICBC), 2020, pp. 1-9.

[95] Putra, G. D.; Dedeoglu, V.; Kanhere, S. S.; Jurdak, R.; Ignjatovic, A. “Trust-
Based Blockchain Authorization for loT”, IEEE Transactions on Network and Service
Management, vol. 18-2, Jun 2021, pp. 1646—1658.

[96] Ragothaman, K.; Wang, Y.; Rimal, B.; Lawrence, M. “Access Control for loT: A Survey
of Existing Research, Dynamic Policies and Future Directions”, Sensors, vol. 234,
Feb 2023, pp. 1805.

[97] Rahman, S. A.; Tout, H.; Talhi, C.; Mourad, A. “Internet of Things Intrusion Detection:
Centralized, On-Device, or Federated Learning?”, IEEE Network, vol. 34—6, Mar 2020,
pp. 310-317.

[98] Raponi, S.; Caprolu, M.; Pietro, R. D. “Intrusion Detection at the Network Edge:
Solutions, Limitations, and Future Directions”. In: Third International Conference on
Edge Computing — EDGE, 2019, pp. 59-75.

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]

118

Ray, P. P. “A Survey on Internet of Things Architectures”, Journal of King Saud
University - Computer and Information Sciences, vol. 30-3, Jan 2018, pp. 291-319.

Rescorla, E. “The Transport Layer Security (TLS) Protocol Version 1.3”. Source:
https://datatracker.ietf.org/doc/html/rfc8446, 2023-03-12.

Ring, M.; Wunderlich, S.; Scheuring, D.; Landes, D.; Hotho, A. “A Survey of Network-
based Intrusion Detection Data Sets”, Computers & Security, vol. 86—6, Jun 2019, pp.
147-167, 1903.02460.

Ristic, I. “Bulletproof SSL and TLS: Understanding and Deploying SSL/TLS and PKI
to Secure Servers and Web Applications”. New York, NY: Feisty Duck, 2013, 2nd ed.,
512p.

Saadat, H.; Aboumadi, A.; Mohamed, A.; Erbad, A.; Guizani, M. “Hierarchical
Federated Learning for Collaborative IDS in 0T Applications”. In: 10th Mediterranean
Conference on Embedded Computing (MECO), 2021, pp. 1-6.

Sadique, K. M.; Rahmani, R.; Johannesson, P. “Towards Security on Internet of
Things: Applications and Challenges in Technology”, Procedia Computer Science,
vol. 141-01, Jan 2018, pp. 199-206.

Sarhan, M.; Layeghy, S.; Moustafa, N.; Portmann, M. “NetFlow Datasets for Machine
Learning-based Network Intrusion Detection Systems”. In: 10th EAI International
Conference, BDTA, and 13th EAI International Conference on Wireless Internet,
WICON, 2021, pp. 117—135, 2011.09144.

Sarhan, M.; Lo, W. W.; Layeghy, S.; Portmann, M. “HBFL: A Hierarchical Blockchain-
based Federated Learning Framework for Collaborative loT Intrusion Detection”,
Computers and Electrical Engineering, vol. 103—10, Sep 2022, pp. 108379.

Sfar, A. R.; Natalizio, E.; Challal, Y.; Chtourou, Z. “A Roadmap for Security Challenges
in the Internet of Things”, Digital Communications and Networks, vol. 4-2, Jan 2018,
pp. 118-137.

Shen, X.; Yu, H.; Buford, J.; Akon, M. “Handbook of Peer-to-Peer Networking”. New
York, NY: Springer Publishing Company, Incorporated, 2009, 1st ed., 1400p.

Shiravi, A.; Shiravi, H.; Tavallaee, M.; Ghorbani, A. A. “Toward Developing a
Systematic Approach to Generate Benchmark Datasets for Intrusion Detection”,
Computers & Security, vol. 31-3, Dec 2011, pp. 357-374.

Simonovich, V. “lmperva Blocks Our Largest DDoS L7/Brute Force Attack
Ever (Peaking at 292,000 RPS)”. Source: https://www.imperva.com/blog/

https://datatracker.ietf.org/doc/html/rfc8446
https://www.imperva.com/blog/imperva-blocks-our-largest-ddos-l7-brute-force-attack-ever-peaking-at-292000-rps/

119

imperva-blocks-our-largest-ddos-17-brute-force-attack-ever-peaking-at-292000-rps/,
2021-06-21.

[111] Sindhu, S. S. S.; Geetha, S.; Kannan, A. “Decision Tree based Light Weight Intrusion
Detection using a Wrapper Approach”, Expert Systems with Applications, vol. 39—1,
Jan 2012, pp. 129—-141.

[112] Sitton-Candanedo, I.; Alonso, R. S.; Corchado, J. M.; Rodriguez-Gonzalez, S.;
Casado-Vara, R. “A Review of Edge Computing Reference Architectures and a New
Global Edge Proposal”, Future Generation Computer Systems, vol. 99-01, Jan 2019,
pp. 278-294.

[113] Tanenbaum, A. S.; van Steen, M. “Distributed Systems: Principles and Paradigms”.
Upper Saddle River, NJ: Pearson Prentice Hall, 2007, 800p.

[114] Tavallaee, M.; Bagheri, E.; Lu, W.; Ghorbani, A. A. “A Detailed Analysis of the KDD
CUP 99 Data Set”. In: Symposium on Computational Intelligence for Security and
Defense Applications, 2009, pp. 1-6.

[115] Verma, A.; Ranga, V. “Machine Learning Based Intrusion Detection Systems for IoT
Applications”, Wireless Personal Communications, vol. 111—-4, Jan 2020, pp. 2287-
2310.

[116] Voigt, P;; Bussche, A. v. d. “The EU General Data Protection Regulation (GDPR), A
Practical Guide”. New York, NY: Springer, 2017, 383p.

[117] Wang, X.; Zha, X.; Ni, W.; Liu, R. P; Guo, Y. J.; Niu, X.; Zheng, K. “Survey on
Blockchain for Internet of Things”, Computer Communications, vol. 136—1, Jan 2019,
pp. 10-29.

[118] Weippl, E.; Katzenbeisser, S.; Kruegel, C.; Myers, A.; Halevi, S.; Abadi, M.; Chu, A;
Goodfellow, I.; McMahan, H. B.; Mironov, |.; Talwar, K.; Zhang, L. “Deep Learning with
Differential Privacy”. In: ACM SIGSAC Conference on Computer and Communications
Security, 2016, pp. 308-318, 1607.00133.

[119] Wu, VY.; Lee, W. W.; Xu, Z.; Ni, M. “Large-Scale and Robust Intrusion Detection
Model Combining Improved Deep Belief Network With Feature-Weighted SVM”, IEEE
Access, vol. 8, Jun 2020, pp. 98600-98611.

[120] Xia, Q.; Ye, W.; Tao, Z.; Wu, J.; Li, Q. “A Survey of Federated Learning for Edge
Computing: Research Problems and Solutions”, High-Confidence Computing, vol. 1—
1, Mar 2021, pp. 100008.

[121] Yang, Y.; Chen, X.; Tan, R.; Xiao, Y. “Intelligent loT for the Digital World”. Hoboken,
NJ: John Wiley & Sons, Inc., 2021, 200p.

https://www.imperva.com/blog/imperva-blocks-our-largest-ddos-l7-brute-force-attack-ever-peaking-at-292000-rps/
https://www.imperva.com/blog/imperva-blocks-our-largest-ddos-l7-brute-force-attack-ever-peaking-at-292000-rps/

[122]

[123]

[124]

[125]

[126]

[127]

[128]

120

Yin, C.; Xiong, Z.; Chen, H.; Wang, J.; Cooper, D.; David, B. “A Literature Survey on
Smart Cities”, Science China Information Sciences, vol. 58—10, Oct 2015, pp. 1-18.

Yu, J. Y,; Kim, Y. G. “Analysis of loT Platform Security: A Survey”. In: International
Conference on Platform Technology and Service, PlatCon, 2019, pp. 1-5.

Zarpelao, B. B.; Miani, R. S.; Kawakani, C. T.; Alvarenga, S. C. d. “A Survey of Intrusion
Detection in Internet of Things”, Journal of Network and Computer Applications,
vol. 84-02, Jan 2017, pp. 25-37.

Zhang, J.; Chen, B.; Zhao, Y.; Cheng, X.; Hu, F. “Data Security and Privacy-Preserving
in Edge Computing Paradigm: Survey and Open Issues”, IEEE Access, vol. 6-Idc,
Jan 2018, pp. 18209—-18237.

Zhang, Y.; Kasahara, S.; Shen, Y.; Jiang, X.; Wan, J. “Smart Contract-Based Access
Control for the Internet of Things”, IEEE Internet of Things Journal, vol. 6—2, Apr 2019,
pp. 1594—-1605.

Zhou, l.; Makhdoom, |.; Shariati, N.; Raza, M. A.; Keshavarz, R.; Lipman, J.;
Abolhasan, M.; Jamalipour, A. “Internet of Things 2.0: Concepts, Applications, and
Future Directions”, IEEE Access, vol. 9—-10, May 2021, pp. 70961-71012.

Zhou, Z.; Chen, X.; Li, E.; Zeng, L.; Luo, K.; Zhang, J. “Edge Intelligence: Paving the
Last Mile of Atrtificial Intelligence With Edge Computing”, Proceedings of the IEEE,
vol. 107-8, Jan 2019, pp. 1738-1762.

121

APPENDIX A — CLASS DIAGRAM

Figure A.1 — Class Diagram: DecideApp and main classes

122

APPENDIX B — SEQUENCE DIAGRAMS

T
! 1.4.1: plan_model_training()
|
!]
]
I
]
|
]

1.5: PlannerService

1

]

I 1.4.2: PlanModelTraining()
|

|

14.2.1: ge\j,nE‘EVJ\DdE,bL\VFE("ACCRECATDR”J

t +
1.4.2.2: aggregator_peer_address

i
1.4.2.3: get_peer_by_address(aggregator_peer_address)
t 5]

1.4.2.4: aggregator_peer
,,,,,,,,,,,,, P = g

i
1.4.2.5: get_server_address(aggregator_peer)

t 1
1.4.2.6: aggregator_server_address

1
|
! 1.4.2.7: AggregateModels)
1

1.4.2.7.1: get_peer_nodes_by_type("WORKER",num_workers)
]
i Il
| 1.4.2.7.2: warker_peer_addresses

Toop) 1

1.4.2.7.7: TrainModel() |
I

1.4.2.7.7.1: get_train_dataset()

ll

1.4.2.7.7.2: get_train_|oader(train_dataset,128)

il

1.4.2.7.7.3: get _test_dataset()

il

1.4.2.7.7.4: get_test_loader(test_dataset,128)

7.7.5: rain0

1.4.2.7.7.6: test)

R a RS

R |

i
1.4.2.7.8: aggregate_models()
i
|

I

|
1.4.2.7.9: test(aggregated_model)
|

.

1.4.2.7.10: aggregated_model

J S

1.4.2.7.10.1.1.1: prediction(

Powered By Visual Paradigm Community Edition €%

Figure B.1 — Sequence Diagram: Decentralized aggregation in DCD-FL

123

74-aDQA Ul Mojj uoiINdaxa urepy :welbeiq sousnbag — z'g aunbi-

(uels (g6

ERIISEINENV-TF|

QuEIs (76

3IAIFSUIWPY

DINIBSIFRY

(Quead ppe 1101

(spoN 10T

Quna iz | Quna g1

(uels i1

pAiopey Iead 10T

}——

(Qaowuesiaad ig |
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
(uels g _
|
|

abeJoiS|apop

abeJois|apoy 8

LEBIINES

oo - booe o

abeioiSiaselEq

...... :
5

= = ===

sbrioisiaseieq ¢

abeJo1sia3d

A IIIIIIIII

()3beJ015433d 1T

t

_n

(uels g

apoN

ddwapia3d | (ddyapnag z

- — —

3pPag

124

APPENDIX C — PYTHON SOURCE CODE

alchemy_endpoint = ’https://polygon-mumbai.g.alchemy.com/v2
/? + self.alchemy_api_key

w3 = Web3(Web3.HTTPProvider (alchemy_endpoint))

w3.middleware_onion.inject(geth_poa_middleware, layer=0)

contract_address = self.contract_address
contract = w3.eth.contract(address=contract_address, abi=
self.abi)

model_id = model_metadata["model_id"]
model _ipfs_hash = model_metadata["model_ipfs_hash"]

tx_hash = contract.functions.setData(model_id,
model_ipfs_hash).transact ()
tx_receipt = w3.eth.wait_for_transaction_receipt(tx_hash)

data = contract.functions.getData(model_id).call()

Figure C.1 — Python code to persist and retrieve model metadata in Ethereum

125

21

22

23

24

25

26

27

28

29

30

31

alchemy_endpoint = ’https://polygon-mumbai.g.alchemy.com/v2
/? + self.alchemy_api_key

w3 = Web3(Web3.HTTPProvider (alchemy_endpoint))
w3.middleware_onion.inject(geth_poa_middleware, layer=0)

contract_source_code = self.contract
compiled_sol = compile_standard({ ’language’: ’Solidity’,’
sources’: {’decidefl.sol’: {’content’:
contract_source_code ,},}, ’settings’: {’outputSelection’
{’*x°>: {’*x°: [’abi’, ’evm.bytecode’],},},},
i)

abi = compiled_sol[’contracts’][’decidefl.sol’][’
KeyValueStore’][’abi’]

bytecode = compiled_sol[’contracts’][’decidefl.sol’][’
KeyValueStore’][’evm’] [’bytecode’][’object’]

from web3.middleware import
construct_sign_and_send_raw_middleware

acct = w3.eth.account.from_key(self.wallet_private_key)

w3.middleware_onion.add(
construct_sign_and_send_raw_middleware (acct))

w3.eth.default_account = acct.address

gas_estimate = w3.eth.estimate_gas({"data": bytecodel})
w3.eth.set_gas_price_strategy(medium_gas_price_strategy)
w3.middleware_onion.add(middleware.

time_based_cache_middleware)
w3.middleware_onion.add(middleware.

latest_block_based_cache_middleware)
w3.middleware_onion.add(middleware.simple_cache_middleware)
gas_price = w3.eth.generate_gas_price()

transaction = {"from": acct.address,"data": bytecode, "
gasPrice": gas_price, "gas": gas_estimate,"chainId":
80001, "value": w3.to_wei("O0", "ether"), "nonce': w3.
eth.get_transaction_count (acct.address)}

signed_transaction = acct.sign_transaction(transaction)

transaction_hash = w3.eth.send_raw_transaction(
signed_transaction.rawTransaction)

transaction_receipt = w3.eth.wait_for_transaction_receipt(
transaction_hash)

contract_address = transaction_receipt.contractAddress

contract = w3.eth.contract(address=contract_address, abi=
abi)

Figure C.2 — Python code to deploy smart contract in Ethereum

126

21

22

23

24

25

data_json = json.loads(data)

url = ’https://api.pinata.cloud/pinning/pinFileToIPFS
)
headers = {
’pinata_api_key’: self.pinata_api_key,
’pinata_secret_api_key’: self.pinata_secret_api_key
}
metadata = {"name": data_json["key"],
"description": "Models",
"model_filename": data_json["model_filename"],

"aggregated_model": data_json["aggregated_model"],
"model_type": data_json["model_type"],
"model_dataset": data_json["model_dataset"],
"creator": data_json["creator"]
}
data = {’file’: (data_json["model_filename"],
data_json["model"]),
’pinataMetadata’: metadata
}
payload={’pinatalptions’: ’{"cidVersion": 1},
’pinataMetadata’: ’{"name":_"’+data_json["key"]+’
","keyvalues": {"app":,"dcd-£f1","name": "+
data_json["key"]+’" ,"description": "Models", k"
model _filename": "’+data_json["model_filename"]+
' "aggregated_model": "’ +data_json["
aggregated_model"]+’" "model_type":"’+data_jsonl[
"model_type"]+’","model _dataset":,"’+data_json["
model _dataset"]+’","creator": " ’+data_json["
creator"]+’"3}}?
}
files=[(’file’,((data_json["model_filename"],
data_json["model"]))]
response = requests.request("POST", url, headers=self
.headers, data=payload, files=files)
ipfs_hash = response.json() [’IpfsHash’]

Figure C.3 — Python code to persist model in IPFS

127

url = (’https://ipfs.io/ipfs/’ + str(cid)).replace("’","")
file_content = requests.get(url).content

file_content = file_content.decode("utf-8")

response = ipfs_storage_pb2.GetResponse(data=file_content)

Figure C.4 — Python code to retrieve model from IPFS

128

11
12
13

ca_key = rsa.generate_private_key(public_exponent=65537,
key_size=2048,backend=default_backend())

ca_name = x509.Name ([x509.NameAttribute (NameOID.COMMON_NAME
, u’secdiot.com.br’), x509.NameAttribute (NameOID.
ORGANIZATION_NAME, u’secd4diot’), x509.NameAttribute (
NameOID.COUNTRY_NAME, u’BR’),])

ca_cert = x509.CertificateBuilder ().subject_name(ca_name).
issuer_name (ca_name) .public_key(ca_key.public_key()).
serial_number (x509.random_serial_number ().
not_valid_before(datetime.utcnow() .not_valid_after(
datetime.utcnow() + timedelta(days=365)).add_extension/(
x509 .BasicConstraints (ca=True, path_length=None),
critical=True) .sign(ca_key, hashes.SHA256 (),
default_backend ())

server_key = rsa.generate_private_key(public_exponent
=65537 ,key_size=2048,backend=default_backend ())

server_name = x509.Name ([x509.NameAttribute (NameOID.
COMMON_NAME, u’sec4diot.com.br’), x509.NameAttribute(
NameOID.ORGANIZATION_NAME, u’sec4iot’), x509.
NameAttribute (NameOID.COUNTRY_NAME, u’BR’),])

server_csr = x509.CertificateSigningRequestBuilder ().
subject_name (server_name) .add_extension (x509.
BasicConstraints (ca=False, path_length=None), critical=
True,) .add_extension(x509.SubjectAlternativeName ([x509.
DNSName (u"ca.secdiot.com.br"), x509.DNSName(u"localhost"
) ,x509 .DNSName (node_DNSname) ,x509.IPAddress (ipaddress.
IPv4Address(u"127.0.0.1")),

x509 . IPAddress (ipaddress.IPv4Address (node_IpAddress)) ,x509.
IPAddress (ipaddress.IPv6Address(u"::1")),]1),

critical=False,) .sign(server_key, hashes.SHA256(),
default_backend ())

Figure C.5 — Python code to generate TLS/SSL certificates (part 1)

129

© 00 N o o

server_cert = x509.CertificateBuilder () .subject_name (
server_csr.subject) .issuer_name (ca_cert.subject

) .public_key(server_csr.public_key()).serial_number (x509.
random_serial_number ()) .not_valid_before(datetime.utcnow
()) .not_valid_after (datetime.utcnow() + timedelta(days
=365)) .add_extension(x509.BasicConstraints (ca=False,
path_length=None), critical=True,).add_extension (x509.
SubjectAlternativeName ([x509.DNSName (u"server.sec4iot.
com.br"),x509.DNSName (node_DNSname), x509.DNSName (u"
localhost") ,x509.IPAddress (ipaddress.IPv4Address (u"
127.0.0.1")) ,x509.IPAddress (ipaddress.IPv4Address(
node_IpAddress)) ,x509.IPAddress (ipaddress.IPv6Address (u"
::1")),]),critical=False,) .sign(ca_key, hashes.SHA256(),
default_backend ())

with open(filename_path+sub_filename+"ca.crt", ’wb’) as f:
f.write(ca_cert.public_bytes(serialization.Encoding.PEM))
with open(filename_path+sub_filename+"ca.key", ’wb’) as f:

f.write(ca_key.private_bytes(serialization.Encoding.PEM,
serialization.PrivateFormat .PKCS8,serialization.
NoEncryption ()))

with open(filename_path+sub_filename+"server.crt", ’wb’) as
f:

f.write(server_cert.public_bytes(serialization.Encoding.PEM
))

with open(filename_path+sub_filename+"server.key", ’wb’) as
f:

f.write(server_key.private_bytes(serialization.Encoding.PEM
, serialization.PrivateFormat.PKCS8, serialization.
NoEncryption ()))

Figure C.6 — Python code to generate TLS/SSL certificates (part 2)

‘h. T o
o e
- oy
marista PUCRS

Pontificia Universidade Catdlica do Rio Grande do Sul
Pro-Reitoria de Pesquisa e Pos-Graduagdo
Av. |piranga, 6681 - Prédio 1 - Terreo
Porto Alegre — RS - Brasil
Fone: (31) 3320-3513
E-mail: propesqg@pucrs.br
Site: www.pucrs.br

	Introduction
	Motivation
	Research Problems
	Thesis Contributions
	Thesis Outline

	Background
	Internet of Things
	Reference Architecture for IoT
	 IoT Security and Intrusion Detection

	Machine Learning-based Intrusion Detection
	 Datasets for IoT
	 Metrics

	Federated Learning
	Strategies for Model Training in FL
	Aggregation Strategies
	Privacy Issues
	Strategies for Inference Phase in FL

	Distributed Ledgers Technologies
	Mining or Validation Process
	Smart Contracts

	Summary

	Decentralized Intrusion Detection oriented to IoT
	Overview
	DCD-FL for Intrusion Detection
	DCD-FL Components and Workflow
	Algorithms

	Prototype Implementation for DCD-FL
	DCD-FL Prototype Architecture
	Technologies Used in the DCD-FL Prototype
	TLS/SSL and gRPC in DCD-FL
	Ethereum in DCD-FL
	IPFS in DCD-FL

	Summary

	Experiments and Results
	Setup
	Models
	Datasets
	Metrics

	Experiments
	Model Quality versus Participant Nodes
	Convergence of Global Model Quality
	Model Quality per Class
	Effect of Deep Learning Model
	Comparative Analysis
	Support to Different IoT Applications

	Summary

	Related Work
	Intrusion Detection Systems for IoT
	Federated Learning in IoT
	Distributed Ledger Technologies Applied to IoT
	Summary

	Final Considerations
	Revisiting the Thesis Research Proposal
	Research Problems and Objectives
	Hypotheses and Research Questions

	Limitations and Future Work
	Problem P1: Constrained resources
	Problem P2: Privacy Risks
	Problem P3: Deep Learning Overhead
	Problem P4: Blockchain-based Access Control Overhead

	Concluding Remarks

	References
	Appendix A – Class Diagram
	Appendix B – Sequence Diagrams
	Appendix C – Python Source Code

