

ESCOLA POLITÉCNICA
PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO

DOUTORADO EM CIÊNCIA DA COMPUTAÇÃO

MARCO POKORSKI STEFANI

DYNAMIC FAULT TOLERANT MECHANISM FOR MEMORY CONTROLLERS

Porto Alegre
2023

PONTIFICAL CATHOLIC UNIVERSITY OF RIO GRANDE DO SUL

SCHOOL OF TECHNOLOGY

COMPUTER SCIENCE GRADUATE PROGRAM

DYNAMIC FAULT TOLERANT
MECHANISM FOR MEMORY

CONTROLLERS

MARCO POKORSKI STEFANI

Doctoral Thesis submitted to the Pontifical
Catholic University of Rio Grande do Sul in
partial fulfillment of the requirements for the
degree of Ph. D. in Computer Science.

Advisor: Prof. Dr. César Marcon
Co-Advisor: Prof. Dr. Jarbas Silveira

Porto Alegre, 2023

MARCO POKORSKI STEFANI

DYNAMIC FAULT TOLERANT MECHANISM FOR MEMORY
CONTROLLERS

This Doctoral Thesis has been submitted in partial

fulfillment of the requirements for the degree of Ph.

D. in Computer Science of the Computer Science

Graduate Program, School of Technology of the

Pontifical Catholic University of Rio Grande do Sul.

Sanctioned on August 24th, 2023.

COMMITTEE MEMBERS:

Prof. Dr. Avelino Francisco Zorzo (PPGCC/PUCRS)

Prof. Dr. Eduardo Augusto Bezerra (PPGEEL/UFSC)

Prof Dr. Márcio Eduardo Kreutz (PPgSC/UFRN)

Prof. Dr. Jarbas Silveira (PPGETI/UFC - Co-advisor)

Prof. Dr. César Marcon (PPGCC/PUCRS - Advisor)

“I thought I knew a lot of, but in the end, it was just one small piece from the puzzle.”
(Deyth Banger)

ACKNOWLEDGMENTS

I would like to express my sincere gratitude to Prof. Dr. César Marcon for allowing

me to pursue my Ph.D. at PUCRS. His unwavering commitment to academic excellence,

ethical values, and selfless guidance has been a constant source of inspiration and

motivation throughout my doctoral journey.

I would also like to acknowledge my family for their support and encouragement.

Their selfless sacrifices and endless love have been the driving force behind my success. I

am grateful for the countless weekends, holidays, and evenings they devoted to helping me

pursue my academic goals.

Lastly, I would like to thank God for granting me the strength, perseverance, and

courage to achieve this personal milestone. Without His grace and blessings, none of this

would have been possible.

MECANISMO DINÂMICO DE TOLERÂNCIA A FALHAS PARA
CONTROLADORAS DE MEMÓRIA

RESUMO

Erros de memória podem causar falhas, vulnerabilidades de segurança, corrupção

e perda de dados que são inaceitáveis para servidores. Esses problemas impulsionam a

construção de um projeto de arquitetura de memória robusta. As controladoras de memória

podem atenuar esses erros empregando um Código de Correção de Erro (ECC) nos fluxos

de gravação e leitura de dados. Fatores ambientais e tecnológicos implicam diferentes

probabilidades de erro, impedindo definir em tempo de projeto qual ECC é mais eficaz e

eficiente a ser utilizado. Este trabalho propõe um mecanismo tolerante a falhas atuando

como gerenciador de codificação e decodificação da controladora de memória. Este

mecanismo define dinamicamente o ECC para cada bloco de memória, seguindo como

critério a taxa de erro capturada em tempo de execução e a eficácia dos ECCs

implementados na controladora. Blocos de memória com uma alta taxa de erro podem ser

recodificados para um ECC de alta eficácia e vice-versa. Resultados experimentais

mostram que nossa proposta alcança elevada eficácia na correção de erros com alta

eficiência energética. Adicionalmente, desenvolvemos a ferramenta Absimth para analisar

a eficácia e eficiência da proposta que emprega mecanismos de gerenciamento dinâmico

de tolerância a falhas. A ferramenta Absimth permite a modelagem e verificação de

hardware/software em diversas granularidades, desde aplicativos armazenados na

memória até o sistema operacional, incluindo processos de codificação e decodificação de

diversos ECCs, habilitando comparar a eficácia e eficiência das soluções propostas em

inúmeros cenários.

Palavras-chave: Tolerância a falhas, Memória confiável, Código de Correção de

Erro (ECC), ECC dinâmico, Controlador de Memória.

DYNAMIC FAULT TOLERANT MECHANISM FOR MEMORY
CONTROLLERS

ABSTRACT

Memory errors can cause failures, security vulnerabilities, corruption, and data loss,

which are unacceptable for server systems. These problems push the construction of a

robust computing memory architecture design. Memory controllers can mitigate these errors

by employing an Error Correction Code (ECC) in the data write and read flows.

Environmental and technological factors imply different error probabilities, preventing

defining at design time which ECC is most effective and efficient to be used. This work

proposes a fault-tolerant mechanism acting as a memory controller encoding and decoding

manager. This mechanism dynamically defines the ECC for each memory block, following

as criteria the error rate captured at runtime and the ECCs efficacy implemented in the

controller. Memory blocks with a high error rate can be recoded to a high efficacy ECC and

vice versa. Experimental results show that our proposal achieves high error correction

efficacy with high energy efficiency. Additionally, we developed the Absimth tool to analyze

the efficacy and efficiency of the proposal that employs dynamic fault tolerance management

mechanisms. Absimth enables hardware/software modeling and verification in various

granularity levels, from in-memory applications to the operating system, including encoding

and decoding processes that employ ECCs, enabling comparing the efficacy and efficiency

of the proposed solutions in uncountable scenarios.

Keywords: Fault Tolerance, Reliable Memory, Error Correcting Code (ECC),

Dynamic ECC, Memory controller.

LIST OF FIGURES

Figure 1. Memory capacity Evolution by GB module and clock in MHz [Author]. 11

Figure 2. Memory organization example concerning fault tolerance aspects [Author].
 .. 13

Figure 3. Fault-tolerant memory organization example encompassing the
commercial (in gray) and proposed (in blue) approaches [Author]. 14

Figure 4. Effect of a charged particle passing over a transistor junction. (a)
Cylindrical track of electron-hole pairs; (b) funnel extending the depletion
region; (c) diffusion dominating the collection process; (d) resulting current
pulse (based on [22]). ... 17

Figure 5. MBU percentages by technology nodes in nm for SRAMs [20]. 19

Figure 6. Impact of radiation on memory errors due to CMOS technology scaling; x
is used to correlate the dimension measure of each square cell [Author]. 19

Figure 7. Impact of radiation on memory errors due to CMOS technology scaling
[Author]. .. 20

Figure 8. Bit-interleaving technique [20]. ... 20

Figure 9. BIST base architecture [43]. ... 21

Figure 10. Example of a macro architecture of a BISR architecture [43]. 22

Figure 11. Example of the TMR technique applied to a 4-bit word (based on [20]). 22

Figure 12. Parity technique [20]. .. 24

Figure 13. PmC2 technique [20]. ... 25

Figure 14. High-level description of DPSR technique [20]. .. 25

Figure 15. Basic structures of (a) PC and (b) modified PC [49]. 31

Figure 16. LPC structure encompassing five regions of bits: data (D), row-check (CR),

column-check (CC), row-parity (PR), and column-parity (PC) [65]. 33

Figure 17. Graphical representation of LPC codeword and the auxiliary structures
sCR, sPR, DEr, SEr, CC, PC, sCC, sPC, DEc, and SEc [65]. 34

Figure 18. The communication architecture between the memory controller and
DRAM DIMM [76]. ... 36

Figure 19. Memory base architecture [76]. .. 36

Figure 20. Abstract organization of a generic memory controller [Author]. 37

Figure 21. A simplified example of cache hierarchy with PERC [84]. 40

Figure 22. Operations in LLC with Memory Mapped ECC [61]. 41

Figure 23. Block diagram for Hi-ECC [56]. ... 42

Figure 24. (a) traditional virtual memory versus the (b) virtualized ECC architecture
[63]. ... 43

Figure 25. Dynamic RAM (DRAM) and LLC operations in a two-tiered virtualized ECC
[63]. ... 44

Figure 26. (a) LOT-ECC is shown with a single rank of nine ×8 DRAM chips and (b)
data layout for one GEC cache line in the red-shaded GEC region [64]. 45

Figure 27. Checksum example; the symbol “+” represents the computation of
checksums from data symbols, S is short for symbol, and CS stands for
an erasure check symbol [89]. .. 47

Figure 28. ECC-P example. D stands for the eight detection check symbols, and C
stands for the eight correction check symbols per line, and C0C1C2 stands
for C0 ⊕ C1 ⊕ C2. Shaded boxes represent values only calculated for the
data lines but not stored in memory [80]. .. 47

Figure 29. CPT Entry Format. Each table entry corresponds to four 32-bit words [81].
 .. 48

Figure 30. (a) Modifications to L1 caches; the critical path for the common case of
correct prediction is in bold, (b) correction prediction for an L1 cache
access [81]. .. 49

Figure 31. The codeword layout of ECC schemes that are currently in use [90]. 50

Figure 32. Bamboo ECC layouts on a 64b data channel (with an 8b burst length) [90].
 .. 50

Figure 33. QDPC on a 128b data channel (2-pin ×4-beat symbols) [90]. 50

Figure 34. (a) Block and ECC mapping tables and (b) ECC sector organization
[91][92]. ... 51

Figure 35. 4KB flash page layout with adaptive OOB sizes [94]. 53

Figure 36. (a) Major steps in variable ECC allocation. (b) Architecture for post-
fabrication variable ECC allocation based on the process corner of the
individual memory blocks [82]. .. 54

Figure 37. MAGE architecture overview. LLCs can be shared or private, and memory
controllers can be attached through either LLCs or directly through the
NoC [95]. .. 56

Figure 38. ARCC page operations using two (relaxed) or four (upgraded) codewords
[97]. ... 57

Figure 39. Overview of the proposed VL-ECC approach [98]. 58

Figure 40. (a) Major steps to determine the ECC and (b) in the adaptive ECC encoder
[99]. ... 59

Figure 41. (a) Scheme for the proposed variable error correction. The correction
capability changes over space and time. T and W indicate the number of
correct bits and the codeword width, respectively. (b) Two types of
configurability for dynamic error correction in the memory array [100]. 60

Figure 42. Block diagram of the AFT mechanism (synthesized in a reconfigurable
FPGA) [103]. ... 62

Figure 43. CARE framework and its operation details [104]. ... 63

Figure 44. The proportion of 32-bit narrow-width values in DRAM [105]. 64

Figure 45. Overview of the scheme proposed by Lee et al. [105]. 65

Figure 46. DFMC encompassing memory controller circuits and DFTM, which
implements the proposed fault-tolerance methodology [Author]. 67

Figure 47. Example of a memory encompassing n blocks codified with Parity or
Hamming [Author]. .. 68

Figure 48. Fault-tolerant memory organization example encompassing the
commercial (in gray) and proposed (in blue) approaches with threshold
level [Author]. .. 68

Figure 49. DFMC architecture; Frontend detailing was omitted to highlight the aspects
explored in this work [Author].. 69

Figure 50. Modules necessary to manage the double memory used by DFTM: (i) RAM
manager, (ii) Write manager, (iii) Read manager, (iv) Write RAM and (v)
Read RAM [Author]. .. 71

Figure 51. Flowchart of reading and writing data in memory [Author]. 72

Figure 52. Flowchart of reading/writing configuration data in internal memory [Author].
 .. 73

Figure 53. Flowchart for the Threshold process data [Author]. 73

Figure 54. Threshold evaluation workflow [Author]. ... 74

Figure 55. Flowchart for the Recoding process data [Author]. 75

Figure 56. DFTM workflow [Author]. .. 76

Figure 57. (i) DFMC, (ii) SL, (iii) SH, and (iv) WE memory controllers [Author]. 77

Figure 58. Power dissipation over time for the four memory controllers [Author]. 79

Figure 59. Power dissipation over time for the four memory controllers considering
the RAM having many blocks [Author]. ... 79

Figure 60. (a) Power dissipation and (b) energy consumption over the extended time
execution for the four memory controllers considering the RAM has many
blocks [Author]. ... 80

Figure 61. Power dissipation over time with many addresses manage by block
[Author]. .. 80

Figure 62. High-level description of the Absimth platform [126]. 83

Figure 63. Example of Task Simulation phase encompassing four processors
(P1…P4) execution during q quanta of simulation. This figure emphasizes
intra-quantum scheduling of P4, covering task1 and task4 [126]. 87

Figure 64. Target architecture and tasks employed in the simulation example [126]. 87

Figure 65. Source code of three synthetic tasks [126]. .. 88

Figure 66. Simulation Setup [126]. ... 88

Figure 67. Memory Area Inspector tool, containing an error in address 0×3E8 [126]. ... 89

Figure 68. (a) The highest memory level, including memory modules, rank, and chips,
shows that Chip 0, Module 0, and Rank 0 contain at least one bit with error;
(b) Memory bank organization inside the bank groups. The Bank 0 of Bank
Group 0 contains errors since it is colored in red [126]. 90

Figure 69. Memory cell window; this view displays a single error on bit 0 (colored in
red) of address 0x3E8 [126]. .. 91

Figure 70. 3D memory cell preview window [126]. ... 91

Figure 71. Processor Management tool covering processor registers, task code
objects, and memory addresses [126]. ... 92

Figure 72. Window for viewing the timeline of all processors [126]. 92

Figure 73. Simulation Report [126]. ... 93

Figure 74. Trace report of CPU, memory, and instruction executed [126]. 93

Figure 75. Experiments performed to validate the memory controller proposal
[Author]. .. 96

Figure 76. MyHDL framework using synthetic stimulus sequences for simulating the
DFMC behavior and the dynamic ECC approach – Group A of experiments
shown in Figure 75 [Author]. ... 97

Figure 77. Macro view of the developed architecture [Author]. 99

Figure 78. Stimulus module for synthetic data production and error injection [Author].
 .. 100

Figure 79. (i) Experiment to evaluate the threshold for ECC change according to NAE
in each cycle. Four blocks with 0.004% bitflip probability were evaluated
during a 2M tick-timeframe [Author]. ... 103

Figure 80. (ii) Experiment to evaluate the threshold for ECC change according to NAE
in each cycle. Four blocks with 0.008% bitflip probability were evaluated
during a 2M tick-timeframe [Author]. ... 103

Figure 81. (iii) Experiment to evaluate the threshold for ECC change according to
NAE in each cycle. Four blocks with 0.012% bitflip probability were
evaluated during a 2M tick-timeframe [Author]. .. 104

Figure 82. (iv) Experiment to evaluate the threshold for ECC change according to
NAE in each cycle. Four blocks with 0.016% bitflip probability were
evaluated during a 2M tick-timeframe [Author]. .. 104

Figure 83. MyHDL framework using Python to VHDL converter to generate four
memory controller architectures, which are synthesized with Genus tool to
get area usage, power dissipation, energy consumption and latency–
Group B of experiments shown in Figure 75 [Author]. 106

Figure 84. The used area for all synthesized memory controllers by type and total
[Author]. .. 107

Figure 85. Comparative of the (a) critical path and (b) energy consumption of reading
and writing operations of each memory controller [Author]. 110

Figure 86. Multiprocessor architecture used to evaluate the memory controllers under
evaluation scenarios - implemented in Absimth [Author]. 111

Figure 87. Details about the experiment conducted in Group C (Figure 75), including
the (a) experimental setup and tools used and (b) the software/hardware
interactions performed in the Absimth simulator [Author]. 113

Figure 88. Execution time of the four memory controller architectures (a) without and
(b) with the RAM latency [Author]. .. 118

Figure 89. Energy consumption of the four memory controller architectures (a)
without and (b) with the RAM energy consumption [Author]. 118

Figure 90. Comparative of energy consumption of the four memory controller
architectures with the RAM energy consumption [Author]. 119

Figure 91. Power dissipation of the four memory controller architectures (a) without
and (b) with the RAM power dissipation [Author]. 119

Figure 92. Energy consumption of a single memory block over time for all memory
controllers in Scenario ii [Author]. ... 120

Figure 93. Details about the experiment conducted in Group D (Figure 75), including
the (a) experimental setup and tools used and (b) the software/hardware
interactions performed in the Absimth simulator [Author]. 121

Figure 94. Total of executions with success (OK) or not (NOK) with 0.001%, 0.005%,
0.01%, 0.05% and 0.1% of bitflip probability. ALL is a table that
consolidates all bitflip probabilities [Author]. ... 123

Figure 95. The number of failed applications versus bitflip probability by ECC............ 124

LIST OF TABLES

Table 1. Example of even parity with a codeword encompassing a Data byte (Data)
and a Parity bit (P) [Author]. ... 24

Table 2. Relation between the check bit syndrome vector and codeword error bit
[Author]. .. 28

Table 3. Type of error according to the combination of syndromes [Author]............... 29

Table 4. Comparative research work, considering static and dynamic ECC
approaches [Author]. .. 66

Table 5. ECC configuration of the memory blocks [Author]. 81

Table 6. Simulation summary [Author]. ... 94

Table 7. Characterization of bitflip scenarios [Author]. ... 95

Table 8. Stimulus test configuration [Author]. ... 101

Table 9. DFMC test configuration [Author]. ... 101

Table 10. DFTM threshold possibility cases [Author]. ... 105

Table 11. DFMC and RAM area used in nm² [Author]. ... 106

Table 12. SL - Memory controller and RAM area used in nm² [Author]. 107

Table 13. SH - Memory controller and RAM area used in nm² [Author]. 107

Table 14. WE - Memory controller and RAM area used in nm² [Author]. 107

Table 15. Power dissipation, critical path and energy consumption for the ECC
encoder/decoder, DFMC and the 4GB DDR4 RAM [Author]. 108

Table 16. Energy consumption and critical path for both reading and writing of WE,
SH and SL memory controllers [Author]. .. 109

Table 17. Energy consumption for every single read/write DFTM module,
considering ECC and DDR on the critical path [Author]. 109

Table 18. Energy consumption and the critical path to read, write and recode on
DFMC [Author]. ... 110

Table 19. Status of execution - scenario versus memory controllers [Author]. 114

Table 20. Application-fail probability according to the fault-tolerant approach in
Google’s servers [Author]. .. 115

Table 21. Number of data reading and written, according to the scenario and coding
approach [Author]. .. 115

Table 22. Energy consumption by the Threshold process in DFMC operating with
Hamming or LPC, based on the number of cycles of Scenario ii [Author]. . 116

Table 23. Total energy consumption according to scenarios i to vi and WE, SH, SL,
and DHL memory controllers, with and without the RAM energy
consumption [Author]. ... 116

Table 24. Execution time according to scenarios i to vi and WE, SH, SL, and DHL
memory controllers, with and without the RAM latency [Author]. 116

Table 25. Total power dissipation according to scenarios i to vi and WE, SH, SL, and
DHL memory controllers, with and without the RAM power dissipation
[Author]. .. 117

Table 26. Power dissipation considering 30% of memory usage with Scenario ii
[Author]. .. 120

Table 27. Number of applications executed (OK) or not executed (NOK) with bitflip
rates of 0.001%, 0.005%, 0.01%, 0.05%, and 0.1%. ALL is a table that
consolidates all bitflip rates [Author]. .. 122

LIST OF ACRONYMS

1D One-Dimensional

2D Two-Dimensional

5EC6ED 5-Error Correction, 6-Error Detection

ADRAM Asynchronous Dynamic Random-Access Memory

AES-DP Adaptive ECC Scheme for Dynamic Protection

ARCC Adaptive Reliability Chipkill Correct

ASCII American Standard Code for Information Interchange

BCH Bose–Chaudhuri–Hocquenghem

BIRA Built-In Redundancy Analysis

BISR Memory Built-In Self-Repair

BIST Built-In Self-Test

CDRAM Cache Dynamic Random-Access Memory

CP Correction Prediction

CPT Correction Prediction Table

CPU Central Processing Unit

DDPC Double Double-Pin Correcting

DDR SDRAM Double-Data-Rate Synchronous Dynamic Random-Access Memory

DECTED Double Error Correction - Triple Error Detection

DFTM Dynamic Fault Tolerance Module

DFMC Dynamic Fault-Tolerant Memory Controller

DIMM Dual Inline Memory Module

DMC Decimal Matrix Code

DMR Double Memory Redundancy

DPC Double Pin Correcting

DPSR Double Parity Single Redundancy

DRAM Dynamic Random Access Memory

DSP Digital Signal Processing

ECC Error Correction Code

ECC-P ECC Parity

EDC Error Detection Code

eDRAM embedded DRAM

E-ECC Erasure and Error Correction Codes

eMRSC extended Matrix Region Selection Code

EPC Extended Product Code

FIT Failures In Time

GEC Global Error Correction

GF Galois Field

HPC High-Performance Computing

HVDD Horizontal-Vertical-Double-Bit Diagonal

JEDEC Joint Electron Device Engineering Council

LAE-FTL Lifetime Adaptive ECC in NAND Flash Page Management

LSB Least Significant Bit

LED Local Error Detection

LLC Last Level Cache

LOT-ECC LOcalized and Tiered ECC

LPC Line Product Code

MBU Multiple Bits Upset

MC Mixed Code

MLC Multi-Level Cell

ML-ECC Multi-line ECC

MM-ECC Memory Mapped ECC

MSB Most Significant Bit

MRSC Matrix Region Selection Code

MTTF Mean Time To Failure

NAE Number of Accumulated Errors

NER Number of Errors to Reduce

OLS Orthogonal Latin Square

OOB Out-Of-Band

OPC Octuple Pin Correcting

P/E Program/Erase

PBA Physical Block Address

PC Product Code

PCoSA Product Code for Space Applications

PERC Punctured ECC Recovery Cache

PmC2 Parity-Based Mono-Copy Cache

PPA Physical Page Address

QDPC Quadruple Double Pin Correcting

QPC Quadruple Pin Correcting

RAM Random Access Memory

RDRAM Rambus Dynamic Random-Access Memory

S2E Straightforward 2D-ECC

SDRAM Synchronous Dynamic Random-Access Memory

SECDED Single Error Correction – Double Error Detection

SER Soft Error Rate

SH Static Hamming

SIMM Single Inline Memory Module

SL Static LPC

SLC Single-Level Cell

SO-DIMM Small Outline - Dual in-line Memory Module

SPC Single Pin Correcting

SPC-TPD Single Pin Correcting - Triple Pin Detecting

SPEC Standard Performance Evaluation Corporation

SRAM Static Random Access Memory

SSCDSD Single Symbol Correction – Double Symbol Detect

SSD Solid State Drive

STVQ Single-Tier Virtual Queuing

R+W Read and Write

RAPM Reconfigurable ECC for Adaptive Protection of Memory

RBER Raw Bit Error Rate

PE Processing Element

RS Reed Solomon

PARSEC Princeton Application Repository for Shared-Memory Computers

T1EC First Tier Error Code

T2EC Second Tier Error Code

TAP Test Access Port

TCS Threshold Cycle Size

TMR Triple Memory Redundancy

VC-ECC Variable Capability ECC

VF-ECC Virtualized and Flexible ECC

VL-ECC Variable data-Length ECC

WE Without ECC

CONTENTS

1 INTRODUCTION .. 11

1.1 Motivation .. 12
1.2 Problem Statement and Thesis Contributions.. 13
1.3 Document Structure .. 15

2 THEORETICAL REFERENCE ... 16

2.1 Fault, Error, and Failure Concepts ... 16
2.2 Single Event Effect (SEE).. 17

 SEEs in Memories .. 18

2.3 Techniques Employed to Mitigate SEEs in Memories .. 20

 Physical Bit Interleaving .. 20
 Memory Scrubbing .. 20
 Built-In Self-Test (BIST) and Built-In Self-Repair (BISR) in Memory 21
 Double or Triple Memory Redundancy (DMR/TMR) .. 22

2.4 Error Correction Code (ECC) .. 23

 Hamming Distance ... 23
 Parity Code ... 23
 Hamming Code ... 25
 Extended Hamming Code ... 28
 Traditional Error Correction Codes.. 30
 Two-Dimensional Error Correction Codes (2D-ECCs)... 31
 Line Product Code (LPC) .. 33

2.5 Main Memory Organization ... 35
2.6 Memory Controller Fundamentals ... 37

3 RELATED WORK .. 39

3.1 Static Error Protection Schemes for Memory Controllers ... 39

 Choosing an Error Protection Scheme for a Microprocessor’s L1 Data Cache [84] 39
 Memory Mapped ECC: Low-cost Error Protection for Last Level Caches [61] 40
 Reducing Cache Power with Low-cost, Multi-bit Error-Correcting Codes [56] 41
 Virtualized ECC: Flexible Reliability in Main Memory [63] ... 43
 LOT-ECC: LOcalized and Tiered Reliability Mechanisms for Commodity Memory

Systems [64] ... 45
 Low-power, Low-storage-overhead Chipkill Correct via Multi-line Error Correction [89]

 ... 46
 ECC Parity: A Technique for Efficient Memory Error Resilience for Multi-Channel

Memory Systems [80] ... 47
 Correction Prediction: Reducing Error Correction Latency for On-chip Memories [81] 48
 Bamboo ECC: Strong, Safe, and Flexible Codes for Reliable Computer Memory [90] 49

 Adaptive ECC Scheme for Hybrid SSD’s [91] ... 51
 Using Low Cost Erasure and Error Correction Schemes to Improve Reliability of

Commodity DRAM Systems [93] ... 52
 Lifetime Adaptive ECC in NAND Flash Page Management [94] 53

3.2 Dynamic Error Protection Schemes for Memory Controllers .. 53

 Reliability-Driven ECC Allocation for Multiple Bit Error Resilience in Processor Cache
[82] ... 54

 MAGE: Adaptive Granularity and ECC for Resilient and Power Efficient Memory
Systems [95] ... 55

 Reconfigurable ECC for Adaptive Protection of Memory [96] 56
 Adaptive Reliability Chipkill Correct (ARCC) [97] .. 57

 VL-ECC: Variable Data-Length Error Correction Code for Embedded Memory in DSP
Applications [98] ... 58

 An Adaptive ECC Scheme for Dynamic Protection of NAND Flash Memories [99] 58
 Adaptive ECC for Tailored Protection of Nanoscale Memory [100] 59
 Proposal of an Adaptive Fault Tolerance Mechanism to Tolerate Intermittent Faults in

RAM [103] ... 61
 CARE: Coordinated Augmentation for Elastic Resilience on DRAM Errors in Data

Centers [104] .. 62
 Stealth ECC: A Data-Width Aware Adaptive ECC Scheme for DRAM Error Resilience

[105] ... 64

3.3 Conclusions... 65

4 PROPOSED MEMORY CONTROLLER ARCHITECTURE.. 67

4.1 Dynamic Fault Tolerance Memory Controller (DFMC) Description 67
4.2 Double RAM Manager ... 70
4.3 RAM Process .. 71
4.4 Configuration Process ... 73
4.5 Threshold Process .. 73

 Threshold Evaluator - Fixed Threshold ... 74

4.6 Recoding Process ... 75
4.7 Dynamic Fault Tolerance Module (DFTM) Workflow ... 76
4.8 DFTM Theoretical Operation ... 76
4.9 DFMC Operation and Hardware Design .. 81

5 ABSIMTH HARDWARE SIMULATOR .. 83

5.1 Absimth Architecture ... 83

 Processor Library .. 83
 Memory Controller .. 84
 Memory Device ... 84
 Error Injection Module ... 84
 Operating System (OS) ... 85
 Reports ... 85

5.2 Absimth Execution Flow .. 86

 Task Initialization .. 86
 Task Simulation .. 86

5.3 Memory Bitflip Observation ... 87

 Synthetic Application and Hardware Description ... 87
 Memory Inspector ... 89
 Execution Investigation ... 91
 Execution Report .. 92
 Trace Report ... 93

5.4 Benchmark Exploration ... 94

6 EXPERIMENTAL RESULTS.. 96

6.1 Hardware Implementation and Validation .. 97

 DFMC and RAM Implementation and Basic Assessments .. 98
 Stimulus Module Description... 100
 DFMC Adaptability Assessment .. 100

6.2 Memory Controllers and RAM Synthesis ... 105
6.3 Evaluating the Efficacy and Efficiency of Memory Controllers running Synthetic and

Embedded Applications ... 110

 Multiprocessor Architecture Implementation ... 111
 DFMC Power Dissipation and Reliability Assessments using Synthetic Applications 112
 DFMC Reliability Assessments using and Embedded Benchmark 121

6.4 Conclusion .. 124

7 CONCLUSIONS AND FUTURE WORK ... 126

7.1 Discussion and Future Work ... 127

8 REFERENCES .. 130

11

1 INTRODUCTION

High-capacity and scalable memories1 are crucial in computer systems [1]. Both

industry and university have been investigating technologies to increase memory density,

thus, decreasing area consumption and raising the number of cells on each chip for

increasing storage capacity and operating frequency [2], as evidenced in Figure 1.

Figure 1. Memory capacity Evolution by GB module and clock in MHz [Author].

Reliable hardware is essential for a wide range of projects, including High-

Performance Computing (HPC) and storage projects [3]. Memory is prone to failure due to

magnetic fields, radiation, and natural stress from physical components; the reliability of

memories is particularly sensitive to manufacturing process variations, environmental

conditions, or wear, being errors commonly found in servers [4][5]. Google noted 70000

Failures In Time/Mb (FIT/Mb)2 in storage systems, whose 8% of memory modules are

affected per year of operation [3]. At the same time, Facebook reported monthly memory

errors on 2.5% of its servers [6]. Additionally, advances in memory research can also help

improve energy efficiency while providing some resilient degree [7].

The main reliability challenge of memory systems is mitigating performance issues

and energy losses while guaranteeing the correct data written. Adding an Error Correction

Code (ECC), e.g., Hamming [8] and Chipkill [9], enables mitigating problems caused by

temporary errors. Reliability degrades over time, requiring data re-reading and rewriting

through scrubbing techniques before the number of errors exceeds the ECC efficacy [10].

Memory controllers focus on data throughput as their primary role; consequently, they

depend exclusively on error correction techniques by encoding/decoding circuits, leaving

other complex fault-tolerant methods to the Operating System (OS).

1 Scalable memories refer to computer memory systems that can easily adapt, growing or shrinking the
capacity as needed to meet changing computational demands without requiring a complete overhaul of the
system [128].
2 FIT - Number of failures expected at one billion per device-hour of operation. For example, 1000 devices for
1 million hours. The FIT to MTBF ratio can be expressed as MTBF = 1,000,000,000 x 1 / FIT.

1 4
16

32

128

0

20

40

60

80

100

120

140

DDR1 DDR2 DDR3 DDR4 DDR5

C
ap

ac
it

y
 (

G
B

)

200
533

800
1600

3200

500

1333

2800

4000

8400

0

2000

4000

6000

8000

10000

DDR1 DDR2 DDR3 DDR4 DDR5

C
lo

ck
 (

M
H

z)

Min Max

12

The memory controller manages the encoding and decoding circuits, defining ECCs

for protecting data from the memory modules based on the error rate of memory blocks.

Commercial servers use a static fault-tolerance approach, which maintains the encoding of

memory blocks throughout the system operation. While each memory controller can have a

different ECC, the usual procedure for commercial servers is to have all memory modules

with the same ECC defined according to operating requirements.

This work improves the design of high-tech memory controllers delivering higher

reliability to servers. We proposed the Dynamic Fault-Tolerant Memory Controller (DFMC)

that enables each memory block to have specific encoding, dynamically adjusting the ECC

of each block according to the error rate and system requirements. DFMC enables executing

applications with controllable error correction rates and mitigating operational costs such as

energy consumption and latency. Although the proposed approach applies to any memory

technology, this work focuses on systems compatible with standard hardware that uses

Double-Data-Rate Synchronous Dynamic Random-Access Memory (DDR SDRAM).

Businesses increasingly depend on big data3 server resources, reinforcing the need

to avoid data loss, and the memory component is crucial for mitigating temporarily stored

data losses.

Memory errors can happen due to physical factors such as voltage difference,

impact, temperature variation, radiation, magnetic variations, electrical fluctuations,

electromagnetic interference from the computer itself, quality failure, or stress over time [3].

Errors caused by logical factors can occur when writing data differently than initially

intended. Since bits retain their programmed value as an electrical charge, there are many

potential causes for errors. Sorin [11] classifies these errors as (i) transient if it occurs once

and does not persist - temporarily. This error can occur due to electromagnetic emissions

coming from the computer itself, electrical fluctuation, natural magnetic variations, or

radiation; and (ii) permanent if it cannot be corrected and can occur due to various aspects

such as temperature fluctuations, energy overload stress, hardware impact, poor handling,

manufacturing defects, and physical degradation of the component.

Govindavajhala and Appel [12] exemplify that memory errors can be used to attack

and gain access to virtual machines. Furthermore, Memory errors can cause crashes,

transcription errors, corrupted or lost data, and security vulnerabilities. Any data loss or

3 Big Data is the area of knowledge that studies how to study, analyze, and obtain information from data sets
that are too large to apply by traditional systems.

13

transcription error is unacceptable on servers because they contain sensitive information,

such as medical or financial data. Moreover, the error incidence increases with the memory

size and the system usage time, requiring fault tolerance techniques that reduce errors to a

manageable number [3].

ECC use increases reliability; on the other hand, an ECC circuit spends more energy

on encoding and decoding, requiring more storage area, implying higher latency and more

memory access for reading and writing [13].

Hwang, Stefanovici, and Schroeder [14] describe that errors are not evenly

distributed in memory; some parts of the memory chip and physical addresses experience

a higher error rate than others. Their description suggests that it is crucial to have a dynamic

approach for assessing the memory state and measuring the coding quality. In other words,

at runtime, the controller can select an ECC suitable for the error rate of each memory block

and, therefore, guarantee the fault tolerance required by the application, meet reliability, and

provide efficiency by saving energy and maintaining performance.

Memory is prone to failure by factors such as magnetic fields, radiation, and natural

stress from physical components [4][5]; therefore, commercial memories like DDR SDRAM

implement ECC-based mechanisms to provide fault tolerance. These mechanisms are

configurable according to the architecture requirements where the memory is used; this

configuration range goes from the absence to using ECCs with high correction power. Figure

2 illustrates the memory organization, focusing on fault tolerance aspects.

Figure 2. Memory organization example concerning fault tolerance aspects [Author].

Level (1) differentiates between memories with and without ECC mechanisms.

Memories implemented with ECC contain an extra chip, delivering more bits per word than

memory without ECC; e.g., a 64-bit memory without ECC has eight chips, with ECC has an

additional chip, totaling nine chips delivering 72 bits.

Level (2) shows that memories encompassing ECCs are programmed to enable or

14

disable this fault-tolerant mechanism. When ECC is disabled, the memory operates similarly

to non-ECC memory, reducing latency and energy consumption with the penalty of not

correcting or detecting errors. Enabling the fault tolerance operation makes the memory

reach a certain degree of error correction efficacy and operation cost; e.g., Hamming

provides less efficacy and greater efficiency than Chipkill. Commercial memories provide a

single and static ECC configuration; i.e., only one ECC can be chosen, and once the ECC

is selected, it must remain until the system restarts. Therefore, the tradeoffs between

efficacy and efficiency cannot be changed during system operation.

This work proposes a dynamic fault tolerance mechanism that analyzes the state of

the memory block to define the ECC configuration at runtime, thus, mitigating data reliability

and considering requirements for energy saving and runtime optimization. Figure 3 shows

the fault tolerance memory organization proposed with the main elements to carry out a

dynamic approach. Memory commercial approaches are single-ECC and static, while our

proposal is multi-ECC and dynamic; i.e., each part of the memory can have one type of

ECC, and these ECCs can be changed at runtime, as described in levels (3) and (4). Both

single- and multi-ECC approaches can enable or disable the fault tolerance mechanisms.

The approaches differ mainly in two aspects: (i) the multi-ECC fault-tolerance proposed here

provides a finer memory granularity for ECC selection, and (ii) the dynamic approach can

selectively change the ECC of a given memory module at runtime, according to pre-

established requirements.

Figure 3. Fault-tolerant memory organization example encompassing the commercial (in gray) and
proposed (in blue) approaches [Author].

Memory errors tend to happen at the same or close address [3][15]; however, this

tendency is not explored by the Single-ECC approach employed on commercial memory

controllers, as they use the same encoding procedure for the entire memory. Fault-tolerant

15

techniques that logically subdivide memory enable us to explore ECCs according to the error

incidence in each memory subdivision, i.e., a Multi-ECC memory approach. Logical memory

subdivisions can encompass ECCs with different error correction rates and operating costs.

A low-susceptible to-error subdivision can use a low-efficacy ECC, e.g., Hamming, which

consumes less energy and does not compromise the overall memory performance.

Conversely, a high-susceptible to error subdivision can employ a high-efficacy ECC with

higher operating costs, e.g., Chipkill.

We cite the reliability study of Google servers by Schroeder, Pinheiro, and Weber

[3] to illustrate one of the advantages of our proposal. This study was performed over 2.5

years, covering multiple vendors, DRAM capacities, and technologies; it displays that

91.78% of memories did not present operating errors, and the total number of memories

with corrected and uncorrected errors was greater than 8% and fewer than 0.22%,

respectively. Additionally, among the 0.22% of memories that did not have an error

corrected, 70% to 80% had an error corrected in a previous observation period, indicating

that errors do not occur randomly; i.e., the error occurrence is strongly correlated - there is

a high probability of subsequent errors occurring at the same or close location to previous

errors. Although this reliability study [3] is based on memory technologies that are more than

a decade old, e.g., DDR2, it indicates the importance of employing a dynamic and specific

distribution approach for ECCs for each memory module, mainly when the scaling down of

DDR amplifies the device vulnerability to potential faults induced by radiation effects, leaving

a 90/80nm in DDR2 [16] to 14nm in DDR5 [17]. This approach enables us to meet the

reliability required for the system with low operating costs; e.g., 91.78% of memory modules

could operate with low-cost ECCs, while 8.22% would operate with more complex ones.

In addition to this section that contextualizes, motivates, and introduces the work,

this Thesis contains six more sections. Chapter 2 explains a macro view of the main

elements of a memory controller, their roles, and how they are correlated. Chapter 3

presents some works of memory controller design, illustrating trends and allowing us to

understand research gaps for fulfilling the requirements of the current memory technologies.

Chapter 4 describes the proposed memory controller’s macroblocks. Chapter 5 describes

Absimth, a tool used to design and validate the proposed architecture. Chapter 6

demonstrates the efficacy and efficiency of the proposed memory controller when executing

a set of experiments. Finally, Chapter 7 concludes the work and discusses future works.

16

2 THEORETICAL REFERENCE

This chapter comprises scientific fundamentals employed in this Thesis, such as

fault, error, and failure events, the reason for their occurrence, and mechanisms used to

mitigate these undesirable events in memories.

Avizienis et al. [18] explain that a service is correct when it implements the

functionality defined for the system, with a failure occurring when the service deviates from

its definition. Let service be a sequence of states; then, a service failure means that at least

one state deviates from its definition, and this deviation is called an error. The cause of an

error is called a fault, which can be internal or external to the system. The presence of an

internal fault enables an external fault to harm the system, causing errors and possibly

subsequent failures. In most cases, a fault first causes an error in the service state of a

component that is part of the system's internal state, and the external state is not

immediately affected.

Let an AND logic gate with two inputs be an element that composes the system to

be evaluated; then, a grounded input (i.e., a stuck at 0) is a latent fault. An error happens

when the two inputs assume the logical value one since the output value results in 0 (due to

the stuck at 0) instead of one. In turn, a service failure happens if the system decision

differs from the specification due to the wrong result of the AND gate; otherwise, the error

remains latent.

This work targets memory systems; therefore, we focus on memory faults that cause

errors and, consequently, memory failure. Logical or physical factors are the sources of

errors [19]. Logical factors occur when writing data differently than initially intended. Physical

factors include voltage difference, impact, temperature variation, radiation, magnetic

variations, electrical fluctuations, electromagnetic interference, and stress over time [3]. In

[20], the authors classify faults into three types according to their durations:

i. Permanent fault caused by a physical event that affects all system life, like an

undesired short or open circuit; for this reason, it is only corrected by changing

the hardware. Due to functioning or fabrication issues, a permanent fault

occurs mainly due to three different causes [18]: (a) Manufacturing and Design

Time Faults that come from errors in the design or manufacturing process and

are manifested as stuck at 0/1 and signal delay. (b) Wearout Mechanisms

influenced by the system aging. Negative-Bias temperature instability, hot

17

carrier injection, time-dependent dielectric breakdown, and electro-migration

are some of the mechanisms that produce this fault. All cited mechanisms

induce at the beginning intermittent faults that become permanent faults. (c)

Process Variations due to manufacturing variability, such as non-perfect

doping, causing random differences among transistors of the same chip;

ii. Intermittent fault that sporadically appears at irregular intervals. Intermittent

faults are often considered early indicators of potential permanent faults;

iii. Transient fault occurs randomly, mainly due to charged particle emissions

[21]. The fault is manifested by one or more bitflips or computation errors and

occurs for a small amount of time.

Within the context of this Thesis, we are interested in dealing with transient faults,

employing mechanisms that recover the correct state of the system upon detecting a fault.

The Integrated Circuit (IC) scaling down increases the computational power of the

system but makes the devices more susceptible to a potential fault caused by radiation

effects. One of the most common failure-causing effects in electronic circuits is a Single

Event Effect (SEE), an electrical disturbance that causes a change in the operation of a

circuit. The passage of charged particles at the transistor junctions can induce SEEs. The

transistor behavior depends on the ion charge at the impact time. Figure 4 illustrates how a

highly charged ion affects the junction of a transistor [22]: (a) when crossing the junction,

the ion generates a cylindrical beam of highly charged electron-hole pairs; (b) the load

imbalance induces the creation of a temporary funnel; (c) the funnel is broken, and the

remaining ions are equilibrated by diffusion.

Figure 4. Effect of a charged particle passing over a transistor junction. (a) Cylindrical track of
electron-hole pairs; (b) funnel extending the depletion region; (c) diffusion dominating the collection
process; (d) resulting current pulse (based on [22]).

18

Although SEEs frequently occur in space applications due to solar radiation and

cosmic rays [23] at the ground level, alpha particles and neutrons can modify the system

state. Alpha is the most encountered particle; neutrons are usually separated into categories

according to their charges. The collision of these particles in electronic devices causes

transient and sometimes permanent faults. Therefore, a transient fault is a subset of a SEE

[24] classified into:

i. Single Bit Upset (SBU) - when occurs a single event bitflip in a single cell [25],

which is also used as a synonym for Single Event Upset (SEU);

ii. Multiple Cell Upset (MCU) - when a single event changes two or more memory

cells [26];

iii. Multiple Bit Upset (MBU) - when a single event flips the content of two or more

cells in the same word [27];

iv. Single Event Transient (SET) - when a single event causes a voltage failure in

a circuit [28];

v. Single Event Functional Interrupt (SEFI) - when a single event causes

functionality loss due to disturbance of registers, clocks, reset, and others [29];

vi. Single Event Latch-up (SEL) - when a single event causes a non-normal high

current and requires a power reset [30].

 SEEs in Memories

Memories are sensitive to radiation, making a SEE a constant threat to systems

exposed to charged particles. Designers of these systems need to know the most likely

SEEs to mitigate operational problems. Memory errors have been analyzed in detail for

decades; studies show that a significant fraction of these errors repeatedly occurs at the

same address, line, column, chip, or rank [31][32][33]. Furthermore, faults tend to be

clustered [14], having strong correlations in space and time.

Studies in [14] demonstrate that memory errors increase with time. An analysis of

failures on DRAMs performed over 15 months showed that although the failure rate due to

transient errors increases slightly, the failure rate due to permanent errors is higher at the

beginning and becomes almost the same as transient failures around the sixth to eighth

month [32].

Transistor size has been reduced, maintaining the Moore law prediction [34] and

creating the challenge called scaling faults [35]. The shrinking of transistor sizes directly

impacts hardware sensitivity to temporary errors, increasing MCU for the newest

technologies [36]. Usually, a SEE is linked to an SBU; however, Figure 5 illustrates the

19

growing presence of MBU when the technology is shrunk. For example, in SRAMs under

40nm, more than 40% of particle strikes result in MBUs [20].

Figure 5. MBU percentages by technology nodes in nm for SRAMs [20].

Figure 6 exemplifies the CMOS technological advance reducing the size of square

cells by half, and consequently, the area is reduced to a quarter. Considering the same

memory region and particle energy, the reduction of transistors increases the possibility of

the same SEE generating more MCUs. Additionally, the scaling technology reduces the

capacitances associated with each transistor and the threshold voltage, increasing the bitflip

occurrence.

Figure 6. Impact of radiation on memory errors due to CMOS technology scaling; x is used to
correlate the dimension measure of each square cell [Author].

Finally, Figure 7 shows an experiment by Gracia-Morán et al. [37]; the authors

simulate several SEEs on 45nm memories, employing the radiation level in the terrestrial

environment. Their experiment shows that although SBU is predominant, MBUs represented

approximately half of the occurrences, with double and triple errors being the cases above

10% of all simulations.

20

Figure 7. Impact of radiation on memory errors due to CMOS technology scaling [Author].

Businesses increasingly depend on Big Data server resources, reinforcing the need

to avoid data loss. Memory is one of the crucial components of mitigating the loss of

temporarily stored data. Reliability techniques are used at different system levels to preserve

system functionality, having the goals of preventing, forecasting, tolerating, or correcting

faults [38]; this section shows some of these techniques applied to memory systems.

 Physical Bit Interleaving

The bit interleaving principle splits the data bits among words - in different memory

modules or address spaces. This approach transforms MBUs into SBUs, increasing the

error correction probability. However, more than one line is accessed during a reading and

writing operation, and bit-extraction operations must be made to obtain the desired word.

Usually, two interleaved words must be accessed, consuming more energy and latency [39].

Figure 8 exemplifies a bit-interleaving on the same line.

Figure 8. Bit-interleaving technique [20].

 Memory Scrubbing

Memory scrubbing consists of continuously accessing data in memory using an

error correction circuit; therefore, error cells are continuously corrected. This approach

reduces the probability of clustered errors that prevent the correction circuit from reaching

51.72%

23.52%

11.76%

5.88%
2.94%

1.47% 0.74% 0.37% 0.18%
0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

55%

1 2 3 4 5 6 7 8 9

M
B

U
 o

cu
rr

en
ce

 p
ro

b
ab

ili
ty

MBU amount

21

high efficacy, reducing the probability of the system failing [20].

Scrubbing is an active defense against uncorrectable MCU; however, it consumes

significant energy and bandwidth since the error detecting and correction circuit is contained

in the memory controller, having to transport the data from memory to the controller [3].

Consequently, memory controllers that perform scrubbing are only in environments that

demand as close to absolute reliability as possible, such as memory systems operating in

extreme environments or large servers.

Schroeder, Pinheiro, and Weber [3] describe that half of the scenarios evaluated in

the Google servers have the scrubber active, operating at a rate of 1GB every 45 minutes.

This reinforces the article o Mukherjee et al. [40], which affirms that large memories need

scrubbing to reduce the temporal double-bit error rate to a tolerable range.

 Built-In Self-Test (BIST) and Built-In Self-Repair (BISR) in Memory

BIST, described for the first time by Marinescu [41], is a circuit integrated into a

memory that executes test patterns to verify errors. This circuit typically uses a multiplexer

ahead of memory and adds spare rows and columns, affecting performance and area size.

The memory is repaired during the tests, storing faulty addresses and returning these

addresses after the test [42]. Several test algorithms can be used in BIST to detect faults,

such as a bit with a fixed value, failure in the address decoder, or transition failure [43].

Figure 9 illustrates a BIST architecture compounded by a controller, an address and data

generator, and a comparator [44][45].

Figure 9. BIST base architecture [43].

The memory storage capacity has increased four times yearly, enabling it to meet

the requirements of various IoT devices [43]; however, an automated test strategy is needed

as density increases to reduce operating time and cost. Therefore, memory incorporates a

self-test and repair circuit called memory Built-In Self-Repair (BISR). Figure 10 exemplifies

a BISR architecture comprising a Test Access Port (TAP), BIST, Built-In Redundancy

Analysis (BIRA), and a Fuse Controller.

22

Figure 10. Example of a macro architecture of a BISR architecture [43].

BISR is implemented in three steps: (i) the BIST circuit analyzes faults; (ii) the BIRA

circuit determines the type of repair to be done; and (iii) the Fuse controller receives from

BIRA the circuits which must be disconnected for repair, reconfiguring the operation [46].

 Double or Triple Memory Redundancy (DMR/TMR)

The DMR technique consists of duplicating the stored data and using an extra circuit

to compare both data allowing us to decide if they are correct [20]. This approach does not

fix the data directly but enables a memory management mechanism to perform a readback

to find the correct data; for example, in case of a mismatch of a cache level using DMR, the

cache level just below can provide the correct data.

The TMR technique consists of tripling the stored data and using an extra circuit to

select the correct data in case of discordance [20]. Figure 11 exemplifies a TMR approach

that acts during the read operation when a voter decides the correct value among the three

available, and the majority determines the correct one.

Figure 11. Example of the TMR technique applied to a 4-bit word (based on [20]).

Memory areas where data are stored in DMR and TMR approaches should be

separated enough to consider a particle strike modifying only one stored data. With the

hypothesis of the distance enough between redundant memory areas, DMR allows error

detection, and TMR allows error detection and correction.

The main disadvantage of this memory technique is its memory space usage. Other

solutions have been developed to address specific needs for robustness, replicating

23

different hardware parts. However, these solutions go with a rise in cost and complexity, and

sometimes, a single erroneous bit makes an entire part of the memory unusable. With

process variations increasing, the solution reaches its limits [47].

ECC is a composition of a codeword and an encoding/decoding algorithm. The

codeword includes data and check bits jointly evaluated by the ECC algorithm to enable

data error detection/correction.

ECC is a technique to provide reliability emphasized in this Chapter because it is

applied in the reliable memory controller explored in this Thesis.

 Hamming Distance

The Hamming distance is the number of positions where the corresponding bits of

two vectors of equal length differ. It is a metric regarding the minimum number of errors

required to transform the content of one vector into another. Hamming distance allows us to

know the ECC limiting capacity of correcting and detecting errors.

Let 𝑑 be the Hamming distance, then Equation 1 and Equation 2 calculate the

maximum number of errors that a code can correct 𝐸𝐶 or detect 𝐸𝐷 based on 𝑑 [48].

Equation 1. 𝐸𝐶 = ⌊
𝑑−1

2
⌋

Equation 2. 𝐸𝐷 = 𝑑 − 1

These equations are exclusive, i.e., 𝐸𝐶 or 𝐸𝐷, but not 𝐸𝐶 and 𝐸𝐷 simultaneously.

The simultaneity relationship among 𝐸𝐶, 𝐸𝐷, and 𝑑 implies using Equation 3 instead of

Equation 2. Consequently, if an application targets correcting and detecting errors

simultaneously, 𝐸𝐷 is reduced [49].

Equation 3. 𝐸𝐷 = 𝑑 − 𝐸𝐶 − 1

 Parity Code

The error detection procedure of the first memories was done through parity bits

added to each byte [50]. The parity technique adds one bit to the memory line to compute

the number of 1s or 0s stored. For example, for an even parity code, the parity encoder

counts the number of data bits in 1; if this number is even, the engine puts 0 in the parity bit;

otherwise, it puts 1. When reading the data, the parity decoder checks if the number of bits

in 1 is even; if not, it informs that the data is corrupted.

24

On the one hand, a parity error is detectable only when an odd number of bits is

changed to the opposite value – i.e., 1 to 0, or vice-versa. On the other hand, an even

inversion of bits is masked since the decoding algorithm applies XOR (or exclusive) logic

among all codeword bits. Fortunately, SBU – an odd error case – is the most common error

pattern for corrupting data [3][15]. Table 1 exemplifies an even parity validation.

Table 1. Example of even parity with a codeword encompassing a Data byte (Data) and a Parity bit
(P) [Author].

Codeword Number of 1s in the
codeword

Is right?
Data P

00000000 0 0 Yes

10000001 1 3 No

11100000 1 4 Yes

10000000 1 2 Yes

The parity code is not actually an ECC but an Error Detection Code (EDC); since

the Hamming distance is 2, the code can only detect SBU, not correct them. However, the

parity code is usually presented with ECCs, mainly because many ECCs are the parity

composite with other codes. Additionally, the parity code composition also results in an ECC,

as in some 2D ECCs [49].

Figure 12 illustrates the read and write operation; on the write operation, an XOR is

performed among all bits, and the result is added to the stored bits. The same is made for

the read operation, comparing the stored parity bit with the generated one.

Figure 12. Parity technique [20].

2.4.2.1 Parity-based mono-Copy Cache (PmC2)

Alouani et al. in [51] propose combining the double memory redundancy and parity

to create the PmC2 technique. During write operations, the parity bit generated is stored

together with data in just one location. On a read operation, the parity bit of the value read

is compared to the parity bit stored; if it is equal, read the original area; otherwise, the value

taken is stored redundantly. This technique, illustrated in Figure 13, is a trade-off between

a single parity bit and redundancy; it uses the detection power of parity bits and redundancy

to correct a detected error.

25

Figure 13. PmC2 technique [20].

2.4.2.2 Double Parity bit Single Redundancy (DPSR)

Chabot et al. in [20] proposed DPSR; they observed that it is improbable to find 2-

bit upsets with a gap between the two flipped bits. Regarding the work in [36], it represents

less than 2% of 2-bit-upsets, which makes less than 0.6% of total observed patterns for

40nm SRAM technology. Moreover, in the case of a 3-bit-upset, the only pattern that may

lead to corruption in this solution is when three horizontally aligned bits are flipped, and the

probability for this pattern is less than 0.028%. DPSR proposal consists of having two parity

bits formed by one bit of distance, as demonstrated in pw0 and pw1; when one parity fails,

read the partial redundancy information stored in the other block, as illustrated in Figure 14.

Figure 14. High-level description of DPSR technique [20].

Based on thorough fault injection experiments, DPSR shows promising results; It

detects and corrects more than 99.6% of encountered MBU and has an average time

overhead of less than 3%.

 Hamming Code

Hamming was one of the first ECCs developed for application in computer systems

26

intending to correct simple errors since the Hamming distance is 3 [49]. Let 𝑀 be the data

vector and 𝑘 be the number of check bits; then, 𝑁 is the codeword vector, and |𝑁| = |𝑀| + 𝑘

is the number of the codeword bits, such that Hamming code is represented by

𝐻𝑎𝑚(|𝑀|, |𝑁|) with the following fundamentals [50]:

• Hamming results from a linear system of equations and a truth table to identify

the error position.

• A Hamming Code needs to respect Inequations 1 and 2.

Inequation 1. 2𝑘 ≥ 𝑘 + |𝑀| + 1

Inequation 2. 2|𝑀| ≥
2|𝑁|

|𝑁|+1

Hamming encoding and decoding use identity, generation, and verification matrices,

illustrated in the following 𝐻𝑎𝑚(4,7) example.

Equation 4 and Equation 5 describe, respectively, the squared identity matrix 𝐼2𝑘−𝑘−1

of order 2𝑘 − 𝑘 − 1 and the matrix 𝑄 encompassing the data addresses 011, 101, 110, and

111 in case of error occurrence.

Equation 4. 𝐼2𝑘−𝑘−1 = [

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

]

Equation 5. 𝑄 = [

0 1 1
1 0 1
1 1 0
1 1 1

]

Equation 6 displays the generating matrix 𝐺 employed to start the Hamming

encoding, and Equation 7 represents 𝐺(4,7).

Equation 6. 𝐺 = [𝐼2𝑘−𝑘−1 𝑄]

Equation 7. 𝐺(4,7) = [

1 0 0 0 0 1 1
0 1 0 0 1 0 1
0 0 1 0 1 1 0
0 0 0 1 1 1 1

]

Equation 8 describes the linear transformation that multiplies the data vector 𝑀(1,4)

and matrix 𝐺(4,7) to encode 𝐻𝑎𝑚(4,7) into the codeword 𝑁(1,7).

Equation 8. 𝑁 = 𝑀 × 𝐺

For instance, Equation 9 illustrates that the data vector 𝑀 = [1000] encoded with

27

𝐻𝑎𝑚(4,7) results in the codeword 𝑁 = [1000011]. Note that the first four bits [1000] are data,

and the remaining three bits [011] are redundancy (check bits).

Equation 9. 𝑁 = [1 0 0 0] × [

1 0 0 0 0 1 1
0 1 0 0 1 0 1
0 0 1 0 1 1 0
0 0 0 1 1 1 1

] = [1 0 0 0 0 1 1]

Decoding is the reverse of the encoding process, which requires verifying whether

the check bits have the same values as obtained in the encoding process.

Let 𝑄𝑇 be the transposed matrix of 𝑄 and 𝐼𝑘 be the squared identity matrix of order

𝑘, respectively computed by Equation 10 and Equation 11, then, Equation 12 computes the

redundancy matrix 𝐻.

Equation 10. 𝑄𝑇 = [
0 1 1 1
1 0 1 1
1 1 0 1

]

Equation 11. 𝐼𝑘 = [
1 0 0
0 1 0
0 0 1

]

Equation 12. 𝐻 = [𝑄𝑇𝐼𝑘] = [
0 1 1 1 1 0 0
1 0 1 1 0 1 0
1 1 0 1 0 0 1

]

Let 𝑁′ be the codeword read in the decoding process such that 𝑁′ = 𝑁 in case of

error absence, then, 𝑁′𝑇 be the transposed matrix of 𝑁′, as Equation 13 displays, then,

Equation 14 multiply 𝐻 by 𝑁′𝑇 to compute the check bit syndrome vector 𝑆[𝑠0 𝑠1 𝑠2]. Note

that this example produces 𝑆 = [000] since the codewords employed in the encoding (𝑁′)

and decoding (𝑁) processes are equal, meaning error absence.

Equation 13. 𝑁′𝑇 =

[

1
0
0
0
0
1
1]

Equation 14. 𝑆 = 𝐻 × 𝑁′𝑇 = [
0 1 1 1 1 0 0
1 0 1 1 0 1 0
1 1 0 1 0 0 1

] ×

[

1
0
0
0
0
1
1]

= [0 0 0]

28

Table 2 displays that the decoding process does not detect errors when 𝑆 = [000];

otherwise, the codeword 𝑁 contains one error, and the error bit position is defined by 𝑆, as

described by Equation 15.

Equation 15. 𝐸𝑟𝑟𝑜𝑟 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 = 4 × 𝑐0 + 2 × 𝑐1 + 𝑐2

Table 2. Relation between the check bit syndrome vector and codeword error bit [Author].

Codeword 𝑆 Error position Error bit

𝑁 = [𝑑0 𝑑1 𝑑2 𝑑3 𝑐0 𝑐1 𝑐2]

3 5 6 7 4 2 1
 𝑑𝑎𝑡𝑎 𝑏𝑖𝑡𝑠 𝑐ℎ𝑒𝑐𝑘 𝑏𝑖𝑡𝑠

[000] 0 Ø

[001] 1 [𝑐2]

[010] 2 [𝑐1]

[011] 3 [𝑑0]

[100] 4 [𝑐0]

[101] 5 [𝑑1]

[110] 6 [𝑑2]

[111] 7 [𝑑3]

Despite the matrixial codeword computation, the check bit vector is easily calculated

by XOR logic (⊕) operation, as Equation 16 to Equation 18 shows.

Equation 16. 𝑐0 = 𝑑1 ⊕ 𝑑2 ⊕ 𝑑3

Equation 17. 𝑐1 = 𝑑0 ⊕ 𝑑2 ⊕ 𝑑3

Equation 18. 𝑐2 = 𝑑0 ⊕ 𝑑1 ⊕ 𝑑3

Additionally, 𝑆 is also computed by ⊕ operations between the stored check bit

vector 𝐶[𝑐0 𝑐1 𝑐2] and the recomputed one 𝐶′[𝑐′0 𝑐′1 𝑐′2], as Equation 19 to Equation 21

display.

Equation 19. 𝑠0 = 𝑐0 ⊕ 𝑐′0

Equation 20. 𝑠1 = 𝑐1 ⊕ 𝑐′1

Equation 21. 𝑠2 = 𝑐2 ⊕ 𝑐′2

For instance, considering the storage codeword 𝑁′ = [1𝟏00011], whose check bits

𝐶 = [011] where computed considering 𝑀 = [1000], consequently producing 𝑁 =

[1000011]. When recomputing the stored 𝑀′ = [1𝟏00] results 𝐶′ = [110]. Applying Equation

19 to Equation 21 results 𝑆 = [101].

 Extended Hamming Code

The Extended Hamming ECC is formed by adding a parity bit, increasing the

Hamming distance to 4, which means the code can fix one error and catch two errors.

29

Therefore, Extended Hamming belongs to the Single Error Correction - Double Error

Detection (SECDED) class of ECCs [52]. The Extended Hamming code is represented by

𝐸𝑥𝐻𝑎𝑚(|𝑀|, |𝑁∗|), such that the |𝑁∗| = |𝑁| + 1. Besides the check-bit syndrome vector 𝑆,

𝐸𝑥𝐻𝑎𝑚(|𝑀|, |𝑁∗|) includes the parity syndrome 𝛿, computed by applying XOR between the

stored parity bit 𝑝 and the most recent computed 𝑝′, as described by Equation 22.

Equation 22. 𝛿 = 𝑝 ⊕ 𝑝′

Let 𝒔 be the OR logic (˅) among all bits of 𝑆, described by Equation 23; then, Table

3 describes the error type according to the combination of both syndromes.

Equation 23. 𝒔 = 𝑠0 ˅ 𝑠1 ˅ 𝑠2

Table 3. Type of error according to the combination of syndromes [Author].

𝒔 𝛿 Error type

0 0 No error

0 1 Simple error in Parity

1 0 Double error

1 1 Simple error

Employing the same example of Section 2.4.3 with 𝑀 = [1000] results in 𝑁∗ =

[1000011𝟏] since the parity is computed considering all data and check bits, as illustrated

by Equation 24.

Equation 24. 𝑝 = 𝑑0 ⊕ 𝑑1 ⊕ 𝑑2 ⊕ 𝑑3 ⊕ 𝑐0 ⊕ 𝑐1 ⊕ 𝑐2

In the occurrence of two errors in 𝑁∗ = [𝟎𝟏000111], the parity syndrome 𝛿 is zeroed,

and 𝒔 is one (𝑆 = [110]). The combination of 𝛿 and 𝒔 indicates a double error detection;

however, the error positions are unknown; thus, 𝑁∗ cannot be fixed.

The limitation of only detecting two errors without the ability to correct them is often

incompatible with critical system requirements. Therefore, a Double Error Correction - Triple

Error Detection (DECTED) ECC [20][53] is a natural evolution of a SECDED with a penalty

of adding redundancy bits and raising the algorithmic complexity for data

encoding/decoding.

On the one hand, the integrated circuit scaling makes them more susceptible to

MBU occurrence, demanding higher efficacy ECCs, sometimes with more power than

DECTED codes. On the other hand, linear ECCs demand long sequences of redundancy to

reach high error correction rates, mainly for large data words. Therefore, the Two-

Dimensional (2D) ECCs emerge as an efficacy solution to MBUs occurrence since its format

30

cross-combine low-cost codes to reach similar error correction rates than huge linear ECCs

without overloading the codeword with redundancy bits.

 Traditional Error Correction Codes

Over the years, several ECCs have gained notoriety for specific applications, such

as Golay Binary Code (GBC) [54] for space operations, Reed Soloman (RS) [55] for data

transmission in telecommunications, and Bose–Chaudhuri–Hocquenghem (BCH) [56] and

Chipkill [57] for data storage.

The Voyager 1 and 2 spacecraft use GBC, an ECC that encodes 12-bit data into a

24-bit word [54]. This code can fix any 3-bit error and detect up to 7-bit errors.

Wilkerson et al. [56] explain that BCH codes are a large class of ECCs that can

correct highly concentrated and widely scattered MBUs [58]. Each BCH is a linear block

code defined over a finite Galois Field GF(2𝑚) [59], with a generator polynomial, where 2𝑚

represents the maximum number of codeword bits. The encoding logic takes k-bit input data

word d and uses a pre-defined encoder matrix G to generate the corresponding codeword

u (u = d × G). Since BCH is a systematic code, the original k-bit data is retained in the

codeword and is followed by r-check bits. The decoding logic employs syndrome generation,

error classification, and error correction to detect and correct errors in the stored codeword.

Previous studies have shown that the decoding procedure of multi-bit BCH is arduous, the

complexity overgrows as the number of bit corrections increase, and the error correction is

the most complex and time-consuming procedure [60].

RS is a powerful ECC based on BCH, widely used in many digital systems such as

DVDs and space mission communication systems [55]. RS is a systematic way of building

codes to detect and correct random errors. Adding t-check symbols to the data, RS can

detect any combination of up to t wrong symbols and correct up to t/2 symbols.

Chipkill is a symbol-based ECC for Single Symbol Correction – Double Symbol

Detection (SSCDSD); it is an advanced form of computer memory error checking that

corrects up to 4-bit errors [57]. It has been used in many cases since large-scale systems,

including Google server farms [3], numerous supercomputers [31][14], and article proposes

[61][62][63][64]. Initially, the Chipkill circuit was located on the memory module, preventing

the use of standard memory modules. Later, this circuit was placed either on the Northbridge

chipset of the computer motherboard or within the Central Processing Unit (CPU), enabling

the SDRAM standard use, like DDR3 memory modules. Chipkill operates on 4-bit nibbles,

called symbols; if just one symbol is erroneous, it can correct all bits of the symbol. If more

than one symbol is erroneous, it can only detect the error. Chipkill is most effective if used

31

with memory modules built with 4-bit width chips - each symbol corresponds to one chip.

Thus, multi-bit errors are isolated in a single chip or symbol because of the physical distance

between the chips. Chipkill is less effective with ×8 chips because a multi-bit error could then

straddle a symbol boundary, thus causing a double-symbol error that would only be

detected. For a 64-bit word, Chipkill consists of 32 4-bit symbols for data and four 4-bit

symbols for checking, totaling 144 bits. When the computer stores a number in memory, it

calculates values for the check symbol and stores them along with the number.

 Two-Dimensional Error Correction Codes (2D-ECCs)

A 2D-ECC is characterized by having data and/or redundancy bits in two

dimensions, typically named row and column. This definition allows including any 1D-ECC

physically organized in rows and columns in the 2D-ECC class; therefore, Freitas et al. [49]

subdivide 2D-ECC into four classes: (i) Straightforward 2D-ECC (S2E) - a code organized

in 2D physical structure, but correcting errors with 1D-algorithms; (ii) Product Code (PC) -

an ECC treated as a product of two codes enabling to build long codes based on small ones;

(iii) Extended Product Code (EPC) - a special case of PC that uses more than one code per

row and/or column; and (iv) Mixed Code (MC) - a 2D-ECC containing at least one bit of data

or redundancy whose change implies encoding both dimensions but cannot be classified as

PC or EPC. Our main interest here is the PC class since the Line Product Code (LPC) [65],

one of the codes used in this Thesis, derives from PC.

Let  and β be the number of columns composing the data and redundancy areas,

and let ϑ and ε be the number of rows composing the data and redundancy areas,

respectively, such that γ =  + β and θ = ϑ + ε. Then, each PC row and column is encoded

using the 𝐶1(γ,, 𝑑1) and 𝐶2(θ, ϑ, 𝑑2) codes, respectively, forming the 𝐶1 × 𝐶2 code, and any

bitflip in the data region disturbs the row and column of the corresponding bit. Figure 15(a)

illustrates the basic PC structure. Also, PC adds a region containing check bits of check bits,

increasing the Hamming distance and, consequently, the code correction potential [50].

.α. .b.

Row check bit
region

Check on check
bit region

Data
region

Column check
bit region

ϑ

ε

θ

.γ.

.α. .b.

Row check bit
region

Data
region

Column check
bit region

ϑ

ε

θ

.γ.

(a) (b)

Figure 15. Basic structures of (a) PC and (b) modified PC [49].

Equation 25 computes the Hamming distance of a PC 𝑑𝑃𝐶 by multiplying the

32

distances of each 1D-ECC that compose PC; note that this large Hamming distance results

from hierarchical check bits combination [49].

Equation 25. 𝑑𝑃𝐶 = 𝑑1 × 𝑑2

Equation 25 demonstrates that PC increases the theoretical correction and

detection capabilities, but this increase also raises the redundancy costs, implying more

area and energy consumption. To mitigate these costs, some authors proposed the modified

PC to reduce the associated redundancy costs, which do not have the check bits of the

check bits. Figure 15(b) illustrates the structure of a modified PC, and Equation 26 displays

its minimum distance calculation 𝑑𝑚𝑃𝐶 [49].

Equation 26. 𝑑𝑚𝑃𝐶 = 𝑑1 + 𝑑2 − 1

There are several well-known 2D ECC like Matrix [66], Decimal Matrix Code (DMC)

[67], Horizontal-Vertical-Double-Bit Diagonal (HVDD) [68], Product Code for Space

Applications (PCoSA) [69], extended Matrix Region Selection Code (eMRSC) [70] and Line

Product Code (LPC) [65].

Argyrides et al. [66] presented the Matrix code based on a matrix codeword format

for correcting adjacent errors. The proposal fixes up to 16 adjacent bitflips for every 64-bit

data. In [71], the same authors present a method that divides the data bits in matrix form

and applies the Hamming code to generate the check bits; this method can detect and

correct errors of up to five bits on a row. Guo et al. [67] introduced DMC, which mitigates

soft memory errors. DMC determines all possible combinations of adjacent errors and

randomly alters the word to maximize the combination of adjacent bits based on the proposal

of Dutta et al. [72]. The DMC method divides the correction codes and data bits into symbols

arranged in an n × m matrix for detecting and correcting multiple errors on each row.

Rahman et al. [68] proposed the HVDD method based on parities for each row, column, and

diagonal, enabling to correction of up to 3-bit errors with a low additional cost. Freitas et al.

[69] proposed PCoSA, an ECC that employs Hamming and parity in rows and columns.

They evaluated PCoSA with Matrix, CLC, RM, and PBD ECCs, demonstrating that PCoSA

reaches 100% error detection for up to 3 bits; the other codes reached lower detection rates;

Matrix code achieved the worst performance, detecting only 16% for seven bitflips. Silva et

al. [70] introduced eMRSC, an ECC with low implementation cost that can be configured in

several formats; for instance, eMRSC(32, 3, 64) and eMRSC(32, 3, 56) formats that require

different redundancy and consequently result in different synthesis costs and error efficacy.

Freitas et al. [65] proposed LPC, a modified PC that uses Extended Hamming in both rows

33

and columns to implement reliable memories; since this Thesis employs LPC in the

experimental results, the following section explains LPC in detail.

 Line Product Code (LPC)

LPC [65][73] is a modified Product Code used in this work. Figure 16 shows the LPC

codeword for enclosing 16 data bits; this codeword encompasses a 4×4 data matrix (𝐷); a

4×3 row check-bit matrix (𝐶𝑅); a 4×1 row parity matrix (𝑃𝑅); a 3×4 column check-bit matrix

(𝐶𝐶); and a 1×4 column parity matrix (𝑃𝐶). Rows and columns implement Extended

Hamming using 𝐶𝑅 and 𝑃𝑅 matrices, and 𝐶𝐶 and 𝑃𝐶 matrices, respectively.

D0

D4

D8

D12

CR0

CR4

CR8

PR0D1

D5

D9

D13

CR1

CR5

CR9

PR1

D2

D6

D10

D14

CR2

CR6

CR10

PR2

D3

D7

D11

D15

CR3

CR7

CR11 PR3

CC0

CC4

CC8

PC0

CC1

CC5

CC9

PC1

CC2

CC6

CC10

PC2

CC3

CC7

CC11

PC3
Figure 16. LPC structure encompassing five regions of bits: data (𝑫), row-check (𝑪𝑹), column-check

(𝑪𝑪), row-parity (𝑷𝑹), and column-parity (𝑷𝑪) [65].

Let 𝑞 be an auxiliary variable to compose the indices of the LPC elements, then,

Equation 27 to Equation 29 computes the 𝐶𝑅 matrix, and Equation 30 calculates the 𝑃𝑅

matrix.

Equation 27. 𝐶𝑅3𝑞 = 𝐷4𝑞 ⨁𝐷4𝑞+1 ⨁𝐷4𝑞+3 ∀ 0 ≤ 𝑞 ≤ 3

Equation 28. 𝐶𝑅3𝑞+1 = 𝐷4𝑞 ⨁𝐷4𝑞+2 ⨁𝐷4𝑞+3 ∀ 0 ≤ 𝑞 ≤ 3

Equation 29. 𝐶𝑅3𝑞+2 = 𝐷4𝑞+1 ⨁𝐷4𝑞+2 ⨁𝐷4𝑞+3 ∀ 0 ≤ 𝑞 ≤ 3

Equation 30. 𝑃𝑅𝑞 = 𝐷4𝑞⨁ 𝐷4𝑞+1⨁ 𝐷4𝑞+2⨁ 𝐷4𝑞+3 ⨁𝐶𝑅3𝑞 ⨁𝐶𝑅3𝑞+1 ⨁𝐶𝑅3𝑞+2 ∀ 0 ≤ 𝑞 ≤ 3

Employing the same auxiliary variable 𝑞, Equation 31 to Equation 33 calculates the

𝐶𝐶 matrix, and Equation 34 computes the 𝑃𝐶 matrix.

Equation 31. 𝐶𝐶3𝑞 = 𝐷𝑞 ⨁𝐷𝑞+4 ⨁𝐷𝑞+12 ∀ 0 ≤ 𝑞 ≤ 3

Equation 32. 𝐶𝐶3𝑞+1 = 𝐷𝑞 ⨁𝐷𝑞+8 ⨁ 𝐷𝑞+12 ∀ 0 ≤ 𝑞 ≤ 3

Equation 33. 𝐶𝐶3𝑞+2 = 𝐷𝑞+4 ⨁ 𝐷𝑞+8 ⨁ 𝐷𝑞+12 ∀ 0 ≤ 𝑞 ≤ 3

Equation 34. 𝑃𝐶𝑞 = 𝐷4𝑞⨁ 𝐷𝑞+4 ⨁𝐷𝑞+8 ⨁𝐷𝑞+12 ⨁𝐶𝐶𝑞 ⨁𝐶𝐶𝑞+4 ⨁ 𝐶𝐶𝑞+8 ∀ 0 ≤ 𝑞 ≤ 3

When reading a memory location, the same equations used to calculate 𝐶𝑅, 𝑃𝑅, 𝐶𝐶,

and 𝑃𝐶 are used to create an analogous check and parity bit structure. This new structure

34

is represented by the same symbols concatenated with “r” to indicate that it is a recalculated

structure, i.e., 𝑠𝐶𝑅, 𝑠𝑃𝑅, 𝑠𝐶𝐶, and 𝑠𝑃𝐶.

Let 𝑞 be an auxiliary variable to compose the syndrome indices; then, Equation 35

to Equation 38 computes the check and parity bit syndromes.

Equation 35. 𝑠𝐶𝑅𝑞 = (𝐶𝑅3𝑞 ⨁𝑟𝐶𝑅3𝑞) ˅ (𝐶𝑅3𝑞+1 ⨁𝑟𝐶𝑅3𝑞+1) ˅ (𝐶𝑅3𝑞+2 ⨁𝑟𝐶𝑅3𝑞+2)

 ∀ 0 ≤ 𝑞 ≤ 3

Equation 36. 𝑠𝐶𝐶𝑞 = (𝐶𝐶𝑞 ⨁𝑟𝐶𝐶𝑞) ˅ (𝐶𝐶𝑞+7 ⨁𝑟𝐶𝐶𝑞+7) ˅ (𝐶𝐶𝑞+14 ⨁𝑟𝐶𝐶𝑞+14)

 ∀ 0 ≤ 𝑞 ≤ 3

Equation 37. 𝑠𝑃𝑅𝑞 = 𝑃𝑅𝑞 ⨁𝑟𝑃𝑅𝑞 ∀ 0 ≤ 𝑞 ≤ 3

Equation 38. 𝑠𝑃𝐶𝑞 = 𝑃𝐶𝑞 ⨁𝑟𝑃𝐶𝑞 ∀ 0 ≤ 𝑞 ≤ 3

Figure 17 illustrates the same LPC codeword as Figure 16, adding the auxiliary

structures used in the LPC encoding process. The arrows in Figure 17 help to understand

the elements that encompass the auxiliary structures.

D0

D4

D8

D12

CR0

CR4

CR8

PR0D1

D5

D9

D13

CR1

CR5

CR9

PR1

D2

D6

D10

D14

CR2

CR6

CR10

PR2

D3

D7

D11

D15

CR3

CR7

CR11 PR3

CC0

CC4

CC8

PC0

CC1

CC5

CC9

PC1

CC2

CC6

CC10

PC2

CC3

CC7

CC11

PC3

sCR2

sCR1

sCR0

sCR3

sPR0

sPR1

sPR2

sPR3

sCC0

sPC0

sCC1

sPC1

sCC2

sPC2

sCC3

sPC3

DEr0

DEr1

DEr2

DEr3

DEc0 DEc1 DEc2 DEc3 DEc

DEr

SEr0

SEr1

SEr2

SEr3

SEr

SEc0 SEc1 SEc2 SEc3 SEc

Recalculated check
and parity bits

Column
syndromes

Row
syndromes

Double and single
errors of the columns

Double and
single errors
of the rows

Figure 17. Graphical representation of LPC codeword and the auxiliary structures sCR, sPR, DEr,
SEr, CC, PC, sCC, sPC, DEc, and SEc [65].

The 𝑆𝐸 and 𝐷𝐸 structures are employed to calculate the occurrence of single and

double errors, respectively. Let 𝑞 be an auxiliary variable to compose the 𝑆𝐸 and 𝐷𝐸 indices;

then, Equation 39 and Equation 40 calculate the single and double error occurrence in each

row 𝑞, respectively; analogously, Equation 41 and Equation 42 calculate the single and

double error occurrence in each column 𝑞, respectively. The 𝑆𝐸 and 𝐷𝐸 calculations

correspond to the application of Table 3 of Section 2.4.4 (Extended Hamming Code).

Equation 39. 𝑆𝐸𝑟𝑞 = ([𝑠𝐶𝑅𝑞 , 𝑠𝑃𝑅𝑞] = [1, 1]) ? 1 ∶ 0 ∀ 0 ≤ 𝑞 ≤ 3

35

Equation 40. 𝐷𝐸𝑟𝑞 = ([𝑠𝐶𝑅𝑞, 𝑠𝑃𝐶𝑞] = [1, 0]) ? 1 ∶ 0 ∀ 0 ≤ 𝑞 ≤ 3

Equation 41. 𝑆𝐸𝑐𝑞 = ([𝑠𝐶𝐶𝑞, 𝑠𝑃𝐶𝑞] = [1, 1]) ? 1 ∶ 0 ∀ 0 ≤ 𝑞 ≤ 3

Equation 42. 𝐷𝐸𝑐𝑞 = ([𝑠𝐶𝐶𝑞 , 𝑠𝑃𝑅𝑞] = [1, 0]) ? 1 ∶ 0 ∀ 0 ≤ 𝑞 ≤ 3

Additionally, 𝑆𝐸𝑟, 𝐷𝐸𝑟, 𝑆𝐸𝑐, and 𝐷𝐸𝑐 are the sum of single and double errors on

rows and columns; these variables are computed by Equation 43 to Equation 46.

Equation 43. 𝑆𝐸𝑟 = ∑𝑆𝐸𝑟𝑞

3

𝑞=0

 ∀ 0 ≤ 𝑞 ≤ 3

Equation 44. 𝐷𝐸𝑟 = ∑𝐷𝐸𝑟𝑞

3

𝑞=0

 ∀ 0 ≤ 𝑞 ≤ 3

Equation 45. 𝑆𝐸𝑐 = ∑ 𝑆𝐸𝑐𝑞

3

𝑞=0

 ∀ 0 ≤ 𝑞 ≤ 3

Equation 46. 𝐷𝐸𝑐 = ∑𝐷𝐸𝑐𝑞

3

𝑞=0

 ∀ 0 ≤ 𝑞 ≤ 3

As described in Section 2.4, an ECC is the composition of a bit structure and the

application of an encoding and decoding algorithm. The LPC authors proposed more than

one algorithm with the same codeword, such as double error and iterative corrections [73].

This Thesis employs a less complex algorithm to reduce power dissipation, energy

consumption, latency, and area. The adopted LPC algorithm uses only cross and

simultaneous decoding of all rows and columns through the equations described in this

section. This approach allows us to correct any combination of data and check bit errors that

result in rows and columns with single errors. Although the correction potential is reduced

compared to more elaborate LPC versions, the experiments of this work showed the efficacy

of the proposed LPC algorithm, reaching error correction rates of up to 2.3 times higher

compared to other Hamming-based algorithms.

The main memory is usually built with Random Access Memory (RAM), a device

that temporarily stores and reads data providing fast hardware access. The Joint Electron

Device Engineering Council4 (JEDEC) [74] standardizes commercial memories like Dynamic

Random Access Memory (DRAM), which is widely used due to its low cost and high density.

Figure 18 displays a memory controller connected with two DRAMs in a Dual In-line Memory

4 JEDEC is responsible for standardizing semiconductor engineering, representing all areas of the US
electronics industry. JEDEC aims at product interoperability, benefiting the industry and, ultimately, analyzing
consumers by decreasing product release time on the market and reducing development costs [74].

36

Module (DIMM)5.

Figure 18. The communication architecture between the memory controller and DRAM DIMM [76].

Each bit of memory is stored in a single transistor and capacitor (cell) [75]; these

memory cells are organized in arrays with rows and columns, where each column can deliver

n bits. A DRAM can be classified by its number of memory arrays; for example, an x8 DRAM

indicates a DRAM organized in an eight-memory array format. A set of memory arrays

creates a bank that forms a group of banks and, subsequently, a chip. The number of RAM

chips depends on whether the memory supports an ECC mechanism. Memories with and

without ECC support use nine and eight chips, respectively. Figure 19 illustrates that this

group of chips forms a rank, and one or more ranks perform a memory module.

Figure 19. Memory base architecture [76].

Commercial memories that include an ECC use an extra chip for each module to

add check bits; although expensive, this additional protection is vital, especially for programs

with extensive data [77]. ECCs employ sequences of check bits together with the data,

generating a codeword whose coding allows identifying and correcting one or more error

positions; e.g., a 7-bit ECC can tolerate an error in a 64-bit data array. However, using ECC

implies encoding and decoding data, wasting energy and area, and implying computation

5 The Dual In-line Memory Module (DIMM) has memory modules and connectors on both sides, requiring a
dual channel to communicate with the memory controller.

37

delay. Due to the verification process, memories that include ECCs are usually between 1%

and 2% slower than memories without ECC [78].

A memory controller is a system that manages memory operations, consisting of an

interface to a memory client, called Processing Element (PE), like processors, hardware

accelerators, and other peripherals. These PEs send their transactions to the memory

controller, which stores them in separate queues. Memory controller architectures can be

logically organized into Frontend and Backend blocks [79]. The Frontend block is

independent of the memory technology; it provides an interface for each PE supplying buffer,

enabling reading and writing memory requests and responses. The Backend block

organization depends on the memory technology; it interfaces the requests and responses

of the Frontend block with the target memory. Figure 20 presents an abstract organization

of the main elements of a generic memory controller and their relationships.

Figure 20. Abstract organization of a generic memory controller [Author].

The Arbitration and scheduling module executes transaction policies to define which

request communicates first with memory since it is crucial in meeting latency requirements

and real-time operations. Goossens et al. [79] explain that the Arbitration and scheduling

module can be designed following a static or dynamic approach for reaching properties such

as predictability, fairness, and flexibility, which are sometimes contradictory; e.g., fairness

and flexibility are reduced to attain predictable transactions. A static memory controller

schedules predictable transactions at design time, a vital requirement for real-time systems.

However, the static approach requires well-known and specified data traffic; thus, bandwidth

and latency are generally designed for the worst-case scenario. In dynamic memory

controllers, scheduling requests are flexible and ordered at runtime, allowing for dealing with

38

strategies to improve performance and save energy but reducing predictability.

The memory controller Backend is usually composed of two modules – Memory

mapping and Command generator. The Memory mapping module decodes the logical

memory address provided by PEs into bank, row, and column, performing the physical

address. The Memory mapping module can also implement access patterns, e.g., sequential

or interleaving, that impact performance operation and energy consumption. The Command

generator module produces commands customized for a particular memory technology to

handle specific protocols that encompass timing, power, and bus-width requirements.

According to the requirements of the target application, a memory controller

encloses other modules with characteristics that make them dependent on or independent

of the memory technology, thus being implemented in the Frontend or Backend of the

memory controller. This is the case of the project proposed in this work, which considers the

reliability requirement; details of this module are described in Chapter 4.

Some of the techniques presented in this chapter are better used in the memory

controller; the memory controller has access to all the memories and data before they are

delivered to the CPU. For example, Jian and Kumar [80] present a technique for efficient

memory error resilience for multi-channel memory systems, using parity and double memory

redundancy to evaluate the memory. Duwe, Jin, and Kumar [81] employ BIST on the

memory controller to evaluate the entire memory at each time to find any fault bit, stamping

the area with the status, for when the data was read, perform a weak or strong ECC. Paul

et al. [82] present a protection scheme that changes the ECC based on the number of errors;

the proposed uses the BCH with interleaving to apply different lengths of BCH depending

on the number of faults. Chapter 3 extensively demonstrates memory controllers with fault

tolerance, which is the base of this thesis.

39

3 RELATED WORK

Memory reliability has received increased attention from the architecture

community, with mutual interest between the academy and industry. Several works highlight

the importance of memory reliability, but just a few propose memory controller approaches

[64] with dynamism. Furthermore, most approaches are restricted to the cache hierarchy,

leaving many innovation opportunities for the main memory controller [83]. This opportunity

becomes even more evident in the fault tolerance scope since memory controllers manage

many data of several application requirements.

This chapter positions our proposal by presenting and discussing schemes for main-

memory controller reliability. Additionally, we split this chapter into static and dynamic

reliability schemes. In static reliability, only one ECC can be chosen at the same level, and

once selected, the ECC must remain the same until the entire system restarts. In dynamic

reliability, each part of the memory can have a different type of ECC, and any ECC can be

selected at runtime.

This section covers memory controllers that employ a static scheme to provide

reliability at the cache level, main memory, or the entire memory hierarchy.

 Choosing an Error Protection Scheme for a Microprocessor’s L1 Data Cache

[84]

Sadler and Sorin presented the Punctured ECC Recovery Cache (PERC) [84] that

employs EDC on L1, and ECC for L1 and L2, as illustrated in Figure 21.

Each 32-bit word has seven bits for ECC and one for providing single-bit error

detection (EDCp). L1 always checks EDCp and only executes the ECC in case of error

occurrence; the PERC mechanism corrects the error reading of the data block by applying

the error correction codeword (ECCp) from the PERC structure. Next, and in the case of

non-error detection, the mechanism provides the corrected data word to the processor,

stores the corrected data and EDCp in L1, and computes and stores ECCp in PERC

structure.

In the case of L2 data written, the PERC mechanism reads the data word and EDCp

from L1 and ECCp from the PERC structure. Subsequently, the mechanism writes this

combined block into L2 and concatenates EDCp and ECCp in ECCnp. In case of an L1

miss, the PERC mechanism reads the corresponding block from L2, placing the data word

40

and EDCp in L1 and ECCp in the PERC structure.

Figure 21. A simplified example of cache hierarchy with PERC [84].

The experiment demonstrates that the EDC model performs similarly to the

unprotected scheme, increasing by 1% when checking the single-bit error detection and

10% when executing the ECC; besides, the power dissipation is increased by 24.9%, on

average.

 Memory Mapped ECC: Low-cost Error Protection for Last Level Caches [61]

Yoon and Eraz [61] present the Memory Mapped ECC (MM-ECC), a two-tiered

protection mechanism to ensure the Last Level Cache (LLC) data integrity and achieve

protection at a low cost. The First Tier Error Code (T1EC) accesses every read with a low

latency and energy ECC decode, using parity for error detection and Hamming to fix it. The

Second Tier Error Code (T2EC) is stored in a mapped DRAM region to be cacheable in the

LLC; T2EC uses a DECTED to provide a strong error correction capability, but costly to

compute and store.

When T1EC detects an error, the correction mechanism attempts to correct the error

using T1EC, if possible. If T1EC cannot correct the error found, the cache line is clean, re-

fetching the line from DRAM with the corresponding energy and latency penalty. T2EC maps

the physical DRAM addresses to avoid the address translation when reading and writing.

Figure 22 shows the operation in LLC with MM-ECC.

MM-ECC minimizes the need for a dedicated SRAM by maintaining ECC

information within the memory hierarchy and reusing existing cache storage and control.

41

Compared to the MAXn [85], the area and power savings are significant, 15% and 8%,

respectively, while performance is degraded by only 1.3% on average and less than 4%.

Figure 22. Operations in LLC with Memory Mapped ECC [61].

 Reducing Cache Power with Low-cost, Multi-bit Error-Correcting Codes [56]

Technology advancements have enabled the integration of large on-die embedded

DRAM (eDRAM) caches, which are significantly denser than traditional SRAMs but must be

42

periodically refreshed to retain data. Like SRAM, eDRAM is susceptible to devise variations,

and refresh power potentially represents a significant fraction of overall system power,

particularly during low-power states when the CPU is idle. Wilkerson et al. [56] proposed Hi-

ECC, encompassing three techniques for reducing storage overhead, latency, and dynamic

power, incorporated with multi-bit ECC to reduce refresh rate significantly. Hi-ECC avoids

the decoder complexity by using strong ECCs to identify and disable cache sections with

multi-bit failures while providing efficient single-bit error correction for the typical case.

The authors propose a system with 128MB eDRAM LLC, which must be refreshed

every 30 microseconds leading to a significant amount of power dissipation. One alternative

to reduce power dissipation is decreasing the refresh frequency; however, it requires

tolerating more failures for each line. The Hi-ECC implements a 5-Error Correction, 6-Error

Detection (5EC6ED) code on each 1KB line, requiring an additional 71 bits (0.87%

overhead) to reduce the storage overhead. A hardware implementation of a 5EC6ED code

is very complex and imposes a long decoding latency penalty. If full-strength

encoding/decoding was required for every cache access, this could significantly increase

cache access latency. However, the proposal leverages that error-prone cache portions can

be disabled, avoiding the high decode latency during typical operations.

Figure 23 displays that the authors implemented a technique to reduce the average

decoder latency by employing a simple ECC that performs one-error correction in a single

cycle. However, if the line has more than one bitflip, the correction mechanism employs

BCH, which has a high latency.

Figure 23. Block diagram for Hi-ECC [56].

The Hi-ECC challenge is reducing the dynamic power; while the L3 cache writes in

64 subblocks, the LLC operates with a 1KB line. It is necessary to perform a read-modify-

write operation to modify a 64B sub-block in a 1KB line since it is needed to compute the

ECC. Fortunately, as a linear code, BCH inherits the additive property of linear systems,

ensuring that the ECC check bits can be updated using only the modified data block

information.

43

Hi-ECC demonstrated a practical system for tolerating refresh-related failures in

eDRAM-based caches. Hi-ECC reduces the cache refresh power by 93% compared to an

eDRAM with no error correction and by 66% compared to a SECDED eDRAM and

accomplished with only 2% storage overhead.

 Virtualized ECC: Flexible Reliability in Main Memory [63]

Yoon and Eraz [63] extend the work in [62], which is an improvement of [61],

presenting the Virtualized and Flexible ECC (VF-ECC) for Main Memory. These last articles

explore the cooperative operating system and hardware techniques to maintain or improve

error-protection levels while reducing energy consumption. The operating architecture

mechanism virtualizes DRAM ECC protection and decouples redundant information

mapping from data mapping. The two-tier protection developed for DRAM improves

reliability guarantees and reduces energy consumption using wider-access configurations.

Additionally, the mechanism provides ECC protection to systems with standard non-ECC

DIMMs without changing the data mapping.

They proposed two mechanisms to achieve this: (i) An augmented virtual memory

interface that allows a separate virtual-to-physical mapping for data and its associated

redundant ECC information and (ii) the two-tiered protection mechanism. T1EC detects

errors on every access, and T2EC is only needed when an error is detected. Figure 24

compares the traditional virtual memory (a) versus the (b) virtualized ECC architecture.

Figure 24. (a) traditional virtual memory versus the (b) virtualized ECC architecture [63].

Figure 24(a) displays that traditional virtual memory translates a virtual address from

the application namespace to a physical address in DRAM. The DRAM access retrieves or

writes both the data and the ECC information, which aligns with the data in the dedicated

44

ECC DRAM chips. On the virtualized ECC architecture, Figure 24(b) shows the OS and

memory management unit maintaining the pair of mappings and ensuring that data and ECC

match and are up-to-date. T2EC is rarely accessed to read the data; however, the data write

requires second DRAM access, mitigated with an LLC to reduce the ECC traffic.

LLC improves the virtualized ECC performance by storing redundant information in

the same physical namespace as data and contains an ECC address translation unit. Figure

25 illustrates the workflow of the Cache-DRAM Interface, where on operation 1, the memory

controller fetches a data burst and its aligned T1EC from the main memory. When the

information goes to LLC, the ECC is re-executed, and in case of error, the memory controller

writes back the fixed information to the DRAM - operation 2. T2EC starts translating the data

address to ECC address on operations 3 and 4. Errors in LLC can be ignored; the line is

evicted and back to DRAM, as demonstrated in operation 5.

The proposal virtualizes an ECC with non-ECC DIMMs that only use the T2EC

module; the ECC data is stored in another rank, and the ECC address is stored in LCC. The

authors intend to bring dynamics to the project in the future by selecting different encodes.

Figure 25. Dynamic RAM (DRAM) and LLC operations in a two-tiered virtualized ECC [63].

The proposal was evaluated using Chipkill, also testing the error correction for

45

systems that do not use ECC DIMMs. Overall, analysis of demanding SPEC6 CPU 2006 [86]

and PARSEC7 [87][88] benchmarks indicates that the (i) performance overhead is only 1%

with ECC DIMMs and less than 10% using standard Non-ECC DIMM configurations, (ii)

DRAM power savings can be as high as 27%, and (iii) system energy-delay product is

improved by 12% on average.

 LOT-ECC: LOcalized and Tiered Reliability Mechanisms for Commodity

Memory Systems [64]

Udipi et al. [64] describe memory reliability as a growing concern for modern servers.

Memory protection mechanisms such as Chipkill imply costs like: (i) activation of many chips

for each memory access, increasing power dissipation; (ii) performance reduction due to the

reduced parallelism; and (iii) bandwidth waste due to the access granularity increase,

challenging to use in small-bus computer systems. Therefore, the authors propose the

LOcalized and Tiered ECC (LOT-ECC), displayed in Figure 26, a protection mechanism that

solves these problems by separating error detection from correction, employing simple parity

and checksum codes to provide fault tolerance with a straightforward implementation.

Figure 26. (a) LOT-ECC is shown with a single rank of nine ×8 DRAM chips and (b) data layout for one
GEC cache line in the red-shaded GEC region [64].

LOT-ECC operates with local and global protection layers. Local Error Detection

(LED) is the first layer with a 64-byte cache line composed of seven words of 64 bits each

6 SPEC is the anacronym for Standard Performance Evaluation Corporation.
7 PARSEC is the anacronym for Princeton Application Repository for Shared-Memory Computers.

46

to detect errors in every 57 bits of data through a 7-bit checksum. Global Error Correction

(GEC) is the second layer of three tiers. The first tier contains a 57-bit entity, a column-wise

XOR parity of the nine cache line segments with a related parity bit (T4) - e.g., cache line A

has a GEC parity (PA), an XOR of data segments A0, A1, …, A8, enabling the data

reconstruction from the GEC code, and this PA 7-bits has 1 bit of parity (T4). In the second

tier, GEC parity is distributed for each cache line among all nine chips, where the nine chip

receives a surplus bit. The last tier adds the 𝑃𝑃𝐴, an XOR of eight other PA 7-bit fields,

𝑃𝐴0−6, …, 𝑃𝐴49−55 to give the ability to recover the whole chip.

The authors developed an effective fault-tolerant mechanism for providing reliability

guarantees. The proposed memory controller adds up to 136 bits having a storage overhead

of 26.5%, where 2.5% is provided by the ninth chip on standard ECC DIMMs, and the other

14% is stored in data memory. Compared with Chipkill, they activated a few chips, reducing

energy consumption and latency by up to 44.8% and 46.9%, respectively.

 Low-power, Low-storage-overhead Chipkill Correct via Multi-line Error

Correction [89]

Jian et al. [89] present the Multi-line ECC (ML-ECC) for avoiding the high overhead

of error detection by replacing the error-correction method used in prior Chipkill with erasure

correction. ML-ECC also provides error correction at a coarse granularity to reduce storage

overhead - i.e., over groups of lines in memory.

The use of erasure correction over the original correction-check symbol per

codeword on Chipkill increases the likelihood of correction, reducing error detection

significantly. Erasure correction allows ML-ECC to correct single-symbol errors and detect

double-symbol errors while using only nine devices per rank, considerably reducing the

dynamic memory power dissipation. ML-ECC stores checksums in each rank device,

sharing a common set of checksums across a group of codewords and letting every

codeword belong to a column checksum group. Figure 27 shows that a column checksum

group comprises a set of codewords in the same column and a set of checksums computed

from these codewords. Despite ML-ECC keeping the overhead required for erasure

correction and memory access, overall, ML-ECC incurs low dynamic power at low storage

overhead (12.9%), with minimal reliability impact by sharing error-localization checksums.

The evaluation using workloads across a wide range of memory access rates shows that

ML-ECC reduces memory power dissipation by a mean of 27% and up to 38% compared to

commercial Chipkill solutions.

47

Figure 27. Checksum example; the symbol “+” represents the computation of checksums from data
symbols, S is short for symbol, and CS stands for an erasure check symbol [89].

 ECC Parity: A Technique for Efficient Memory Error Resilience for Multi-

Channel Memory Systems [80]

Jian and Kumar [80] explain that servers often use a strong ECC to meet their

reliability and availability requirements but imply power overheads. The authors observed

that error correction typically needs to be performed for one channel at a time since memory

channels are independent of one another. Based on this, they presented ECC Parity (ECC-

P), an error resilience technique for multi-channel memories.

The authors proposed storing only the ECC bitwise parity of memory channels.

When necessary, the actual ECC correction bits of a line in a faulty channel can be obtained

by XORing the ECC-P line with the ECC correction bits of appropriate lines in the remaining

healthy channels. The ECC correction bits are stored in memory only after a fault occurs in

a channel; this protects against fault accumulation across multiple channels over time. In

comparison, current systems always store every channel ECC in memory.

Figure 28 exemplifies their proposal, where D stands for the eight detection check

symbols, C stands for the eight correction check symbols per line, and C0C1C2 stands for

C0 ⊕ C1 ⊕ C2. Shaded boxes represent values only calculated for the data lines but not

actually stored in memory and are only used when a fault happens.

Figure 28. ECC-P example. D stands for the eight detection check symbols, and C stands for the eight
correction check symbols per line, and C0C1C2 stands for C0 ⊕ C1 ⊕ C2. Shaded boxes represent
values only calculated for the data lines but not stored in memory [80].

48

The authors explain that ECC-P reduces memory system energy per instruction by

54.4% and 20.6%, on average, across two memory system configurations, compared to 36-

device commercial Chipkill correct and commercial DIMM-kill correct, at similar or lower

capacity overheads.

 Correction Prediction: Reducing Error Correction Latency for On-chip

Memories [81]

Duwe, Jian, and Kumar [81] explain that strong error correction often incurs a high

latency relative to the on-chip memory access time. The authors proposed avoiding this

problem with the correction prediction mechanism that forecasts the result of strong error

correction, reducing latency and improving the L1 cache performance.

Their proposal stores all information in a Correction Prediction Table (CPT), which

is much faster than accessing the L1 cache. Each entry corresponds to four words, totaling

128 bits. The CPT entry contains a predFlag and two Map Units, and each Map Unit can fix

one bit. The predFlag indicates to the cache controller if it can perform the correction

prediction or must proceed with the strong correction. The Map Unit contains valid, location,

and value, where valid indicate if it has an error; in case of error, the address and the bit

position are fulfilled. Figure 29 shows the CPT format, corresponding to four 32-bit words.

Figure 29. CPT Entry Format. Each table entry corresponds to four 32-bit words [81].

CPT has a BIST routine to test the L1 cache and populate CPT in runtime. The BIST

routine first tests the two Map Units of the CPT entry, then verifies the four cached words to

identify as many faulty bit locations are in the valid Map Units. If the routine finds any faulty

bit, it sets to false the valid bit of the Map Unit.

When the pipeline requests any word, the L1 cache performs the normal access,

reading the CPT entry corresponding to the word accessed in parallel. In the prediction case,

the cache applies the weak error correction, delivers the result to the pipeline, and executes

the factual correction to evaluate if a misprediction occurred. In case of still an error, the

pipeline squashes all dependent instructions, returning the correct value to the pipeline and

restarting the instruction that initiated the cache request with the correct value. When the

prediction is not performed, only a strong correction is applied. Figure 30(a) illustrates the

L1 cache modifications, and Figure 30(b) the prediction workflow in an L1 cache access.

49

Figure 30. (a) Modifications to L1 caches; the critical path for the common case of correct prediction
is in bold, (b) correction prediction for an L1 cache access [81].

Their proposal was evaluated with a 32KB SRAM, 4-way, set associative, L1 cache,

which shows that the proposed implementation reduces the average access latency by 38%-

52% and reduces the energy of a 2-issue in-order core by 16%-21% when compared to the

strong correction alone. The misprediction rate is less than 0.1%, increase less than 10%

area, and has less than 2.5% worst-case latency to a cache with strong error correction.

 Bamboo ECC: Strong, Safe, and Flexible Codes for Reliable Computer

Memory [90]

Large-scale systems often employ redundant storage, error checking, and

correction codes to achieve reliability and higher bandwidth. Kim, Sullivan, and Erez [90]

proposed the Bamboo ECC that provides significantly stronger protection than the current

state-of-the-art ECC mechanisms, requiring the same or less redundant storage and off-

chip bandwidth. Bamboo ECC groups per-pin data as symbols and uses an 8-bit symbol RS

code to provide strong pin and error chip protection. The authors present five organizations

that can meet different memory system constraints and reliability requirements.

The Single Pin Correcting (SPC) organization can correct a bit or a pinning error

with two redundant pins. SPC requires just a quarter of the redundant storage of SECDED

on a 64b data channel – i.e., 3.1% vs. 12.5%, yet it provides a better uncorrectable error

rate. The second organization proposed can be used as either a Double Pin Correcting

50

(DPC) or Single Pin Correcting - Triple Pin Detecting (SPC-TPD) scheme. SPC-TPD has a

very high detection coverage, reaching 100% of up-to-3-pin detection errors. The Quadruple

Pin Correcting (QPC) organization provides the same Chipkill protection with equal or less

redundancy. Octuple Pin Correcting (OPC) achieves eight pin corrections with 16 redundant

pins, resulting in a 25% overhead on a 64-bit data channel or a 12.5% overhead on a 128-

bit data channel. Finally, the Double Double-Pin Correcting (DDPC) organization can correct

two ×4 errors or one ×8 error by correcting four 2-pin symbols, requiring 6.3%/12.5% storage

overheads on the 128-bit data channel that is typical of wide on-package memories.

Figure 31 illustrates the current schemes used by the industry, and Figure 32 and

Figure 33 show the organization proposed. The proposed organization evaluates on a DDR

64-bit data channel the SECDED against SPC-TPD and the AMD Chipkill against QPC. On

the Wide-IO 128-bit data channel, was evaluated AMD Chipkill and DDPC, and doubled

AMD Chipkill vs. Quadruple Double Pin Correcting (QDPC) to protect the 4-bit subarray.

The results show significant error coverage and memory lifespan improvements of Bamboo

ECC relative to existing SECDED, Chipkill-correct, and double-Chipkill-correct schemes.

Figure 31. The codeword layout of ECC schemes that are currently in use [90].

Figure 32. Bamboo ECC layouts on a 64b data channel (with an 8b burst length) [90].

Figure 33. QDPC on a 128b data channel (2-pin ×4-beat symbols) [90].

51

 Adaptive ECC Scheme for Hybrid SSD’s [91]

Hsieh, Chen and Lin [91] propose an adaptive scheme with four ECC levels to

enhance the Solid State Drive (SSD) reliability. Their scheme contains (i) a Multi-Level Cell

(MLC) flash memory being the major data storage medium due to its lower cost and higher

density; and (ii) a Single-Level Cell (SLC) flash memory to ECC storage due to the higher

endurance and lower disturb fault rate compared to MLC.

The ECC encoder/decoder employs an adaptive BCH engine [92] to provide 9, 14,

19, or 24 bits error correction capability per 512 bytes according to the error rate of an MLC

page. The 4-bit ECC protects the ECC generated by the adaptive ECC encoder/decoder.

After ECC has been generated, the 4-bit ECC encoder generates the ECC parity. Both ECC

codes are written into the SLC chip. The ECC mapping scheme maintains a table to keep

track of the mapping between the data and the corresponding ECC.

Figure 34(a) shows the MLC chip and the ECC mapping table indexed by Physical

Block Address (PBA). Each entry in the ECC mapping table records the Physical Page

Address (PPA) of the associated ECC sector, which is located on the first page of the

corresponding ECC area for the mapped MLC block. The block mapping table and the ECC

mapping table are maintained in RAM. The ECC area is composed of continuous SLC

pages. The scheme groups a fixed number of MLC pages as a mapping unit, and the ECC

for each page in the mapping unit is collected in the associated ECC area due to the space

efficiency concern. The ECC sector maintains the management information of the ECC for

each page in the mapping unit.

Figure 34. (a) Block and ECC mapping tables and (b) ECC sector organization [91][92].

Figure 34(b) shows the layout of an ECC sector. The management information of

ECC for each page contains four fields: (i) The page offset, which ranges from 0 to n-1,

52

records the offset of the target page in the requested MLC physical block, where n is the

total number of pages in the management unit. (ii) The ECC level records the current error

correction capability maintained for the target MLC page, which ranges from 0 to 3 for 9-bit,

14-bit, 19-bit, or 24-bit error correction capability. (iii) PPA records the associated ECC

physical page address in SLC. This field can avoid a linear search in finding the ECC for the

MLC page. (iv) The byte offset records the starting location of the associated ECC within the

page. Since each MLC page in the mapping unit might differ in ECC level, the byte offset

helps locate the required ECC directly.

The ECC and block mapping tables require about 1.2 MB of memory space for a

128 GB MLC SSD with 8 GB SLC. The authors conducted a series of trace-driven

simulations to evaluate the extended lifetime of SSDs, and the experiment results show that

a 32 GB MLC-based SSD managed by our scheme with 1 GB SLC could extend its lifetime

up to 318% with a write amplification of 1.06 for writes to the SLC, while the static wear

leveling for SLC can be achieved.

 Using Low Cost Erasure and Error Correction Schemes to Improve

Reliability of Commodity DRAM Systems [93]

Chen et al. [93] describe that most server-grade systems provide Chipkill-correct

error protection at the expense of power and performance. Therefore, the authors evaluated

and proposed five Erasure and Error Correction Codes (E-ECC) that provide at least the

same Chipkill protection with low power and performance overhead.

Three schemes were proposed for ×4 DRAM systems: (i) a rotational (144, 128)

code [58] as a representative Chipkill code; (ii) a scheme that changes the rotational code

to process in four-part using Reed Solomon (RS) (36, 32) over the Galois Field (GF) (28);

and (iii) a scheme that uses sixteen parts of RS (9, 8) to get the 144 necessary to give strong

reliability in 64 bits. Besides, they proposed the use of the RS (36, 32) code for ×8 DRAM

systems and a scheme based on the RS (20,16) code over GF(28) for ×16 DRAM systems.

The three schemes on the ×4 DRAM increase 12.5% the storage overhead but differ

in the number of ranks activated (one or two). The schemes that activate two ranks per

memory access have lower timing, power, and energy performance but higher reliability than

those that activate only one rank. The ×8 DRAM system has the lowest power dissipation

and highest energy efficiency among all five schemes; the ×16 DRAM system has a storage

overhead of 25% and has the highest timing performance among all the schemes. The

authors also compare the five schemes to other ECC schemes, demonstrating that the E-

ECC schemes use more logic die area but have the lowest storage and infrastructure

53

overhead compared to the existing schemes.

 Lifetime Adaptive ECC in NAND Flash Page Management [94]

Wang et al. [94] proposed the Lifetime Adaptive ECC in NAND Flash Page

Management (LAE-FTL). The authors explain that the storage reliability of NAND flash

memory decreases as the density or program/erase cycle increases.

Based on the above observation, the LAE-FTL system was divided into two stages:

(i) responsible for selecting the maximum error correction capability in the segment, and (ii)

adaptively adjusting ECC redundancies as needed to compensate for the increasing Raw

Bit Error Rate (RBER). When the program/erase cycle is relatively small and the Out-Of-

Band (OOB) area is large enough, it uses the traditional ECC scheme or BCH with different

sizes. When a better ECC scheme is necessary, the data user is squeezed, and the ECC

uses the user area. The squeezing data space makes user data of 4KB distributed in two

different units, even on two different pages. Figure 35 illustrates the 4k flash page layout

with the adaptative size of the OOB area.

Figure 35. 4KB flash page layout with adaptive OOB sizes [94].

The results demonstrate that LAE-FTL squeezes the data space to store the

enhanced ECC redundancy when it becomes too large to fit in the OOB area. Consequently,

LAE-FTL improves the lifetime reliability with low accessing cost and the read performance

by up to 63,42% at the early stage compared to the worst case.

This section covers memory controllers that employ a dynamic scheme to provide

reliability at the cache level, main memory, or the entire memory hierarchy.

54

 Reliability-Driven ECC Allocation for Multiple Bit Error Resilience in

Processor Cache [82]

Paul et al. [82] present the Reliability-Driven ECC (RD-ECC) to protect the cache

from runtime failures induced by soft errors, voltage or thermal noise, and aging effects. The

authors implemented a 2 MB L2 cache memory with 256 memory blocks of 8 KB each,

accessed by an associative cache with 8-way - each way has 64 bits, totaling 512 bits per

access. RD-ECC uses the shortened BCH cyclic code with zero padding, providing a high

random error correction capability with a modest amount of check bits; for tolerate (t) 2 or 3

bitflips in a 64-bit word, BCH needs 14- or 21-bits, respectively. The traditional extra 8 bits

used for Hamming are stored separately from the associate cache. Considering the 8-way

associative cache, the BCH with t=3 needs more 1-way or 2-way than t=2, reducing the data

from 512- to 448- or 384-bits. Figure 36(b) shows the proposed architecture.

Figure 36. (a) Major steps in variable ECC allocation. (b) Architecture for post-fabrication variable
ECC allocation based on the process corner of the individual memory blocks [82].

Two approaches were proposed for mapping the memory blocks: (i) mapping during

the design phase and storing the reliability map with a ROM or (ii) mapping during the design

phase and storing the reliability map with non-volatile memory to change at runtime based

on the maximum bitflip tolerated by the ECC encoding. The ECC encoding is changed by

evaluating if the number of errors is more than the ECC can tolerate; due to the fast change

on the L2 cache, do not execute recoding. The dynamic adaptation was used to save power

by combining voltage scaling for the memory cells with higher ECC protection, illustrated in

Figure 36(a).

55

This article analyzed many error rates with different combinations of techniques, like

bit interleaving and voltage scaling. In all cases, demonstrate efficient circuit/architecture-

level optimizations of the ECC encoding/decoding logic to minimize the impact on the area,

performance, and energy. Simulation results for SPEC2000 benchmarks show that such a

variable ECC scheme tolerates high error rates with negligible performance (4%) and area

(0.2%) penalty.

 MAGE: Adaptive Granularity and ECC for Resilient and Power Efficient

Memory Systems [95]

Li et al. [95] mention that resiliency is one of the toughest challenges in HPC, and

memory accounts for a significant fraction of errors. Providing strong error tolerance in

memory usually requires a wide memory channel that incurs a large access granularity.

They proposed a Memory system with Adaptive Granularity and ECC (MAGE) to achieve

high performance, power efficiency, and resiliency. MAGE can adapt memory access

granularities and ECC schemes (with straightforward SECDEC and Chipkill codes) to

applications with different memory behaviors.

MAGE is a hardware-software collaborative solution consisting of: (i) a smart

memory controller that manages data layout, memory scheduling, and memory channel

integration; (ii) a combination of modified decoupled sector cache and pool-of-subsectors

cache that manages data with mixed access granularities in the cache hierarchy; and (iii)

software support that identifies per-page or per-application access granularity and manages

multi-granularity physical memory. The modifications to the system stack are minor and can

be easily implemented in current mainstream systems.

Figure 37 depicts an overview of the MAGE solution applied to a multicore

processor, where all cores and caches share multi-channel memory controllers via an on-

chip network. Each physical memory channel has a standard 72-bit wide bus, with 64-bit

data and 8-bit ECC. MAGE architecture supports three memory modes for the memory

systems constructed with x4, x8, and x16 DRAM devices. The OS can choose three

granularity modes: (i) fine-grained - each physical memory channel is used as a 64-bit wide

logical channel, enabling 64B memory access; (ii) medium-grained - two physical memory

channels are connected in lock-step to construct a 128-bit wide logic channel providing

stronger memory protection than the fine-grained mode; and (iii) coarse-grained - four

physical memory channels are used as a 256-bit wide logical channel, enabling 256B

memory access while providing stronger memory protection than the medium-grained mode.

56

Figure 37. MAGE architecture overview. LLCs can be shared or private, and memory controllers can
be attached through either LLCs or directly through the NoC [95].

MAGE manages memory pages and segments and translates memory addresses

adaptively. The virtual memory manager operates the mode information for each physical

memory page and propagates this information through the memory hierarchy to the memory

controller, allowing the optimum access granularity and ECC scheme for each memory

access. MAGE allows the adaptation for each memory access; however, it incurs a

significant storage overhead for managing per-block mode information.

The experimental results demonstrate that MAGE enables an adaptive selection of

appropriate modes that combine access granularities and ECC schemes for applications

with different memory behaviors. MAGE concurrently satisfies three key requirements:

improved performance, power efficiency, and resiliency for large-scale computing systems.

 Reconfigurable ECC for Adaptive Protection of Memory [96]

Basak et al. [96] expand the evaluation of Paul et al. [82] in the Reconfigurable ECC

for Adaptive Protection of Memory (RAPM) to change the ECC by adding spatial and

temporal variation. The authors explain that spatial evaluation is necessary due to inter and

57

intra-die variations; as demonstrated in [82], there are 7-10x more variations in reliability

across memory blocks. The proposal evaluates the spatial condition to generate the block

reliability map during the manufacturing test. The work of Basak et al. demonstrated an

improvement in the reliability-aware in diverse applications with the pre-define map based

on the spatial condition.

 Adaptive Reliability Chipkill Correct (ARCC) [97]

Jian and Kumar [97] optimize the straightforward Chipkill solutions with the Adaptive

Reliability Chipkill Correct (ARCC), which maintains similar reliability as a stronger Chipkill

correct solution but consumes less energy. ARCC is based on the observation that, on

average, only a tiny fraction of memory experiences any fault during the typical operational

lifespan of a server. Therefore, ARCC proposes applying weaker but more energy-efficient

ECC for regions in the main memory that are fault free and dynamically increasing the ECC

strength of a region in the main memory after detecting faults in the memory region.

ARCC operates a relaxed page that consists of two check symbols per codeword in

64 bits per line and an upgraded page with four check symbols per codeword in 128 bits per

line, as demonstrated in Figure 38. When an error is detected during memory scrubbing,

ARCC increases the protection strength of the page with an error by increasing the number

of check symbols per codeword from 2 to 4, combining two adjacent 64-bit lines.

Figure 38. ARCC page operations using two (relaxed) or four (upgraded) codewords [97].

ARCC upgrades the Chipkill correction strength after faults are detected in a page

during memory scrubbing, which executes the following steps:

i. Read a line and store its value aside.

ii. Write all 0s to the line location in memory and then read the location in memory

to see if only 0s are returned. If true, go to step iii. If false, a stuck-at-1 fault

may be present; go to step iv and upgrade the page afterward.

iii. Write all 1s to the line and then read the line to see if only 1s are returned. If

true, go to step iv. If false, a stuck-at-0 fault may be present; go to step iv and

upgrade the page afterward.

iv. Correct any errors in the original line content and write the line back to memory.

58

This implementation reduces memory power dissipation by 36% and improves

performance by 5.9%, on average, when applied to commercial Chipkill solutions with

negligible reliability degradation.

 VL-ECC: Variable Data-Length Error Correction Code for Embedded Memory

in DSP Applications [98]

J. Park, J. Park, and S. Bhunia [98] explain that the vulnerability of SRAM cells to

failures becomes more complex when errors occur within the Most Significant Bits (MSB) in

Digital Signal Processing (DSP) applications. Errors on MSB give rise to much more

extensive data quality degradation than the failures in the least Significant Bits (LSB).

To avoid this problem, the authors present the Variable data-Length ECC (VL-ECC)

approach, where codeword length is dynamically reconfigured to protect MSB preferentially

using BCH. When the number of SRAM failures in a code word exceeds the error correction

capability in low voltage operation, the input data length of VL-ECC is reduced to focus on

the more MSB, as illustrated in Figure 39.

Figure 39. Overview of the proposed VL-ECC approach [98].

The proposed VL-ECC scheme shows significantly better system output quality than

the conventional ECC approach in the H.264 and Fast Fourier Transform cases. The optimal

data length of the VL-ECC under different supply voltages to minimize the output quality

degradations due to memory failures. Experimental results with 65nm CMOS technology

showed that the proposed VL-ECC scheme could tolerate a high failure rate at low power

with graceful degradation in output quality.

 An Adaptive ECC Scheme for Dynamic Protection of NAND Flash Memories

[99]

Yuan et al. [99] describe that basic ECC methods fail to consider the variable

reliability types, resulting in high waste of computations. To achieve better implementation,

they proposed the Adaptive ECC Scheme for Dynamic Protection (AES-DP) of NAND Flash

59

Memories using Hamming and BCH codes.

AES-DP evaluates Program/Erase (P/E) cycle count and retention time to have a

long-term accumulation influence on reliability [101]. The effects of these two factors are

additive; each increase can result in a more significant error rate [102]; both factors are

evaluated separately to discover the appropriate ECC and avoid this problem.

The threshold method illustrated in Figure 40(a) is divided into three levels of

retention time and P/E cycle count: level 1 uses Hamming; level 2 uses BCH (4122, 4096,

5), and level 3 uses BCH (4148, 4096, 9). The initial ECC level is 1; in the first evaluation, if

the P/E cycle count is greater than the threshold, the ECC level adds 1; afterward, if the

prospective retention time is greater than the threshold, the ECC level adds another 1. After

the two comparisons, this ECC selection is the output of the adaptive ECC encoder

illustrated in Figure 40(b). The adaptative ECC encoder determines which level of ECC

should be chosen; apply Hamming encoder if the level is 1; otherwise, the adaptive BCH

encoder is invoked.

The adaptive ECC decoder uses the number of ECC check bits to determine which

ECC is selected; if it is 24, the Hamming decoder is selected; If the number of check bits is

26, use 2-bit BCH; otherwise, the 4-bit BCH is selected.

Figure 40. (a) Major steps to determine the ECC and (b) in the adaptive ECC encoder [99].

The authors demonstrate good predictability with the retention time and the P/E

cycles. Several error models evaluated the feasibility of the proposed to simulate typical

stages of running conditions and different lifetimes of P/E cycles, demonstrating better

results than regular ECC methods in most situations. Through the proposed ECC scheme,

it was possible to avoid the waste of error-correcting capability and reduce the coding time

to ensure the throughput fits real-time requirements.

 Adaptive ECC for Tailored Protection of Nanoscale Memory [100]

Shin et al. [100] improve the works [82][96][98] by proposing Variable Capability

ECC (VC-ECC). Their work focuses on DSP and evaluates static, spatial, and temporal

60

variations in manufacturing time, as exposed in Figure 41(a). Besides, Figure 41(b) shows

they evaluate the number of bitflips prioritizing the ECC MSB in runtime.

Figure 41. (a) Scheme for the proposed variable error correction. The correction capability changes
over space and time. T and W indicate the number of correct bits and the codeword width, respectively.
(b) Two types of configurability for dynamic error correction in the memory array [100].

The Static Variation is the memory block reliability difference across the chips; the

reliability map is generated during the manufacturing test. The Spatial Variation is evaluated

(i) in the manufacturing test, to generate a custom reliability map due to intra-die differences

and (ii) in runtime, where depending on the activity, some memory blocks can be affected

by the temperature more than others. The Temporal Variation is evaluated by a

mode_selection responsible for monitoring the type of error in the same block over time -

random or contiguous, voltage or temperature noise, and the aging induced by bias

temperature instability. The mode_selection can be evaluated by a fixed time or adaptative

by the number of errors.

The runtime evaluation demonstrated in [98] and applied in [100] introduces another

important design, an extra control unit for dynamically changing the input data length

between MSB and LSB, as depicted in Figure 41(b). When the number of memory errors in

a codeword exceeds the maximum number of correctable bits, the length of the ECC input

data is reduced to focus on the most important MSB parts. As a result, error corrections in

MSBs can be assured, and the overall system quality degradation can be minimized, as

61

uncorrected LSB errors have a much less prominent system effect.

The VC-ECC approach provides the right amount of error-correction capability to

the individual memory blocks depending on their relative vulnerabilities to runtime errors

without incurring large hardware and power overhead. The proposed time-varying ECC was

tested in a 2MB L2 cache at 65nm. The case study reduces the increasing number of errors

in the L2 cache due to the gradual voltage scaling scheme together with the adaptive time

duration control, proving a good adaptive ECC with a high level of reliability for the cache

while maintaining its low-power advantage.

 Proposal of an Adaptive Fault Tolerance Mechanism to Tolerate Intermittent

Faults in RAM [103]

Baraza-Calvo et al. [103] present an Adaptive Fault Tolerance (AFT) mechanism

based on ECC, able to modify its behavior when the error conditions change without

increasing the redundancy. AFT mechanism can detect and identify intermittent errors in

RAM and swap from the Hsiao-based SECDED ECC to EPB3932, a specific ECC capable

of tolerating one intermittent error.

EPB3932 is an ECC encompassing 32-bit data and 7-bit redundancy; it applies

asymmetric error control for tolerating intermittent faults in one bit, marked as an Error-Prone

Bit (EPB). EPB3932 was designed to correct single errors, double errors containing the EPB,

and triple-adjacent errors containing the EPB; it also can detect double-adjacent errors not

containing the EPB. EPB3932 has the same redundancy as Hsiao-based ECC but has

unbalanced correction capabilities to overprotect the corresponding EPB. As EPB3932

applies special error control to the EPB, unlike Hsiao-based ECC, this code is not uniform

for all 39 codeword bits. Instead, each bit has a specific EPB3932 with its associated ECC

encoder and decoder modules.

AFT starts reading and writing with the simplest Hsiao-based SECDED ECC. As the

memory degrades because of the upset increase, the Intermittent Error Detector increases

the BITi counter, which is used as a threshold to evaluate if AFT must change to EPB3932.

When the threshold is reached, the adaptive memory controller sends a busy memory signal

to stop the processor operation; the entire RAM is scrubbed by reading all memory

addresses sequentially using the Hsiao-based ECC decoder and reencoding them with the

EPB3932 encoder. The microprocessor is resumed unsetting the memory busy, continuing

its operation from the same point. Each memory module can have a different ECC managed

by the reconfiguration manager and stored in the configuration ROM, as shown in Figure

42.

62

Figure 42. Block diagram of the AFT mechanism (synthesized in a reconfigurable FPGA) [103].

The authors have designed this AFT mechanism in VHDL and integrated it into the

memory controller of a 32-bit RISC microprocessor. They stressed the system injecting

single/multiple, random/adjacent, transient/intermittent, and combinations of intermittent and

transient faults. The experiments demonstrated that the proposed AFT mechanism could

detect, switch the encode and correct transient and intermittent faults. The authors also

analyzed that the overhead introduced by the AFT mechanism proposed was affordable in

terms of hardware, latency, and energy consumption for a reconfigurable FPGA.

 CARE: Coordinated Augmentation for Elastic Resilience on DRAM Errors in

Data Centers [104]

Chen et al. [104] propose CARE, a novel error-tolerant framework for effective and

elastic resilience on DRAM. Their work introduces a cache-like structure in the memory

controller for dynamic error tracking and proactive resilience enhancement. Figure 43

displays that CARE is compounded by an ECC cache, BCH encoder/decoder, error counting

module, and the set of registers for page retirement, which are integrated into the memory

controller and no modification in other parts of the system is required.

On the write memory transaction, the ECC Cache looked up to the DRAM address

(1). If it is a miss, no additional action is needed; otherwise, the data to be written is encoded

with BCH (2), and the corresponding BCH code, along with the address, is updated in the

ECC Cache (3). On the read path of the memory controller, for each 64-byte data block

returned from the main memory, the ECC Cache is looked up for the potential BCH code

63

regardless of whether the decoder detects an error for the data block (4).

If a SECDED decoder detects no error and there is no ECC Cache hit for the data

block, the returned data proceed to the LLC without further delay or performance penalty.

However, if there is an ECC Cache hit for the data block, the corresponding BCH code is

returned from the ECC Cache (5). This procedure is necessary because the number of

errors in the data block might exceed the error detection capability of SECDED. The

SECDED and BCH data decoded are compared to derive the error counts, which are further

sent to the ECC Cache to update the error counters and block states (6). Thus, the data

returned from memory must be held in the buffer to have the same BCH Decoding latency.

Finally, if there is no ECC Cache hit, but the SECDED decoder detects data block errors,

the data block is sent to the BCH Encoder, and the derived BCH code is stored in the ECC

Cache (3) for enhanced ECC protection in the future. Conversely, the data block does not

need to wait until the encoding is finished and can proceed to the LLC without delay. The

ECC Cache controller is also responsible for the coordinated page retirement. Each time a

page retirement condition is triggered, the ECC Cache controller sets up the page retirement

and sends an interrupt signal to the OS (7).

Figure 43. CARE framework and its operation details [104].

Experiment results show that, with around 58KB area overhead in the memory

controller, CARE achieves near Chipkill reliability without any memory capacity penalty and

incurs negligible performance overhead compared to the baseline SECDED system.

64

 Stealth ECC: A Data-Width Aware Adaptive ECC Scheme for DRAM Error

Resilience [105]

Lee et al. [105] exploit the use of MSB part as an additional area to store ECC.

According to [108], 32-bit narrow-width values account for an average of 85.4% in the data

cache when running the SPEC CPU 2017 benchmark suite [107] in 64-bit architectures. The

authors also investigate the proportion of 32-bit narrow-width values in DRAM for various

workloads from several benchmark suites (SPEC CPU 2017 [107], PARSEC [87][88][87],

and GAP [106]). Figure 44 shows that, on average, the proportion of 32-bit narrow-width

values in DRAM accounts for 47.4%, enabling the exploitation of a considerable portion of

zero parts in DRAM to store more parity bits for meaningful data, improving DRAM reliability

without storage overhead.

Figure 44. The proportion of 32-bit narrow-width values in DRAM [105].

Stealth ECC (Figure 45) mitigates system failure probability by exploiting a more robust

BCH code for narrow-width values, storing more parity bits on the MSB side instead of zeros.

While for full-width values, Stealth ECC provides the identical correction and detection

capacity as a SECDED code.

When storing a 64-bit data word in the memory, the data-width aware BCH encoder

classifies the data word as either 32-bit narrow-width or 64-bit full-width. When the data word

is narrow-width, the 32 data bits are encoded by the multi-bit BCH code. Otherwise, the data

word is encoded by the SECDED code. Since data words are encoded by different BCH

codes depending on the data width, a flag is coded together. To store the additional flag

code, Stealth takes advantage of the bursts to encode two words at the same time. In

comparison, the SECDED code for each of two data words requires 16-bit parity (8+8 bits),

and the SECDED code for two data words (128-bit) requires only 9-bit parity; this additional

free space is used to store the flag code.

65

Figure 45. Overview of the scheme proposed by Lee et al. [105].

When the Stealth ECC is used, data reliability increases to 3-bit correctable BCH code

by storing 12-bit additional parity into the zero part of a narrow-width value over the

traditional SECDED. Stealth ECC enhances overall DRAM reliability while incurring

negligible performance reduction and no storage overhead. The simulation results show that

Stealth ECC reduces the system failure probability caused by DRAM errors, by 47.9%, on

average, with only 0.9% performance overhead compared to a conventional SECDED code.

Many works explore the memory reliability increase in different levels and locations.

However, only a few works explore memory controller approaches, confirming the statement

by Lin et al. [83] on the scarcity of research on RAM controllers. Also, many reliable works

have the same authors or academy, for example, Kumar in [80][81][89][97] and Bhunia in

[82][96][98]. This theme has a high interest in the industry, evidenced by some partnerships

between authors from the academy and companies like AMD [95][89], Intel [56][96][100],

Samsung [100], HP [64], and Oracle [97].

To the best of our knowledge, our work is the first one that proposes a dynamic

approach for managing the ECC on the memory controller considering the dynamic behavior

of memory error rate reaching, at the same time, memory reliability with efficient energy

consumption. Other works with dynamic approaches operating in the L2 cache and/or after

increasing the ECC, keeping the high encode without considering a temporary failure Table

4 compares all the researched works.

66

Table 4. Comparative research work, considering static and dynamic ECC approaches [Author].

 Name Ref. Year Local Correction procedure ECC

S
ta

ti
c

PERC [84] 2006 L1/L2 cache
Evaluates parity and only execute the single error
correction when an error is founded

Parity, Single error
Correction

MM-ECC [61] 2009 LLC
Operate with two levels of protection – T1EC with
a local and T2EC with a block protection

Parity, Hamming, and
DECTED

Hi-ECC [56] 2010 LLC
Disable areas and only executes ECC if an error
occurs; try a low cost ECC; if it is not possible to
fix, execute the most powerful ECC

Parity, BCH, 5EC6ED

VF-ECC [63] 2011
LLC, Main memory
(DRAM)

Operate in two levels as MM-ECC; Integrate OS
with hardware to guarantee reliability; and add
protection for Non-ECC memories

Chipkill

LOT-ECC [64] 2012
Main memory
(DRAM)

Operate with local error detection layer and global
error correction layer

Parity and checksum

ML-ECC [89] 2013
Main memory
(DRAM)

Chipkill enhanced with erasure code to increase
error correction and adding rows with checksum

Chipkill with erasure
code

ECC-P [80] 2014
Main memory
(DRAM)

Resilience technique for a multi-channel memory.
Use parity; when found an error apply an XOR
stored in another channel

Parity, XOR

CPT [81] 2015 L1 cache
Executes tests on L1; if it does not have an error,
deliver data; if it has an error, try to perform a weak
ECC, else execute a strong ECC

Parity, BCH

Bamboo [90] 2015
Main memory
(DRAM)

Apply ECC schemes for grouping data as symbols
enabling several types of pin-error corrections

Bamboo

MLC [91] 2015
Main memory
(SSD)

Use one area for data and other for ECC. ECC
power changes depending on the error rate

Parity, BCH

E-ECC [93] 2016
Main memory
(DRAM)

Evaluates three encoding schemes to improve the
basic Chipkill code

Chipkill, RS, GF

LAE-FTL [94] 2017
Main memory
(NAND flash)

Use different BCHs depending on the error rate;
when the error rate is high, LAE-FTL squeezes the
data area to store the extra redundancy bits

Parity, BCH

D
y
n

a
m

ic

RD-ECC [82] 2011 L2 cache
Block mapping occurs in runtime or in the design
phase. Evaluates the number of errors to select
the appropriated ECC

Hamming, BCH

MAGE [95] 2012
Main memory
(DRAM)

Hardware-software collaborative solution - OS
changes the ECC in runtime

SECDED, Chipkill

RAPM [96] 2013 L2 cache
Employ ECC considering the reliability variations
across memory blocks; reliability assessment is
performed during the manufacturing test

Hamming, BCH

ARCC [97] 2013
Main memory
(DRAM)

Apply adaptively weaker Chipkill for the fault-free
region and a strong one in regions with fault

Chipkill

VL-ECC [98] 2014 L2 cache
Select in runtime or in the design phase the ECC
according to the number of errors. Explore MSB of
DSP applications

BCH

AES-DP [99] 2015
Main memory
(NAND flash)

ECC changes regarding the number of errors or
lifetime (P/E cycle count and retention time)

Hamming, BCH

VC-ECC [100] 2017 L2 cache
Chose ECC evaluating static, spatial and temporal
variations in manufacturing time. Explore MSB of
DSP applications

BCH

AFT [103] 2020
Main memory
(DRAM)

Explore a threshold of errors to change the ECC
dynamically

Hsiao-SECDED,
EPB3932

CARE [104] 2021 LLC
Dynamically explore SECDED and BCH ECCs
according to the error correction capacity

SECDED, BCH

Stealth [105] 2022
Main memory
(DRAM)

Dynamically explore SECDED and BCH ECCs
according to the error correction capacity. Use
MSB to store ECC

SECDED, BCH

DFMC [127] 2023
Main memory
(DRAM)

Evaluates in runtime the number of errors in a
slice of time and select the most efficacious
and efficiency ECC

Parity, Hamming,
and LPC

67

4 PROPOSED MEMORY CONTROLLER ARCHITECTURE

This chapter describes the proposal of the Dynamic Fault Tolerant Memory

Controller (DFMC) implemented through the fault-tolerant methodology introduced in

Section 1.2 into the architectural abstraction of the memory controller described in Section

2.6. Figure 46 illustrates the union of the proposed method with the basic architecture of the

memory controller, implying the insertion of the Dynamic Fault Tolerance Module (DFTM)

that interfaces the frontend with the backend of the memory controller.

Figure 46. DFMC encompassing memory controller circuits and DFTM, which implements the
proposed fault-tolerance methodology [Author].

This work proposes an innovative method that combines the Multi-ECC technique

and Dynamic method for selecting ECC during the execution time in memory blocks

according to the fault scenario.

The Multi-ECC technique divides the memory into memory blocks, as illustrated in

Figure 47. A finer granularity enables us to select the ECC according to user criteria for a

given memory block. For example, one block can have a high ECC for OS operation and

another block Without ECC (WE) for data like bitmap images; consequently, the approach

achieves the efficacy required by the user without compromising the memory efficiency. The

multi-ECC can be configured in Static or Dynamic approaches. When the Static approach

is set, the memory block does not change the defined ECC during all operation time. the

ECC can change according to a configurable rule when setting the Dynamic approach.

68

Figure 47. Example of a memory encompassing n blocks codified with Parity or Hamming [Author].

The Dynamic method employs a threshold decision that enables the memory

controller to change the ECC of a memory block dynamically; thresholds are used to define

the scenarios that a memory block must change from a high- to low-power ECC and vice

versa. The threshold can be defined as fixed or self-programmable. The fixed threshold has

a pre-defined number of faults; when this number is reached, the dynamic mechanism can

select another ECC; e.g., when the number of bitflips is more than 12 faults, switch to a

higher efficacy ECC. The self-programmable threshold changes the value according to

external conditions, e.g., a sensor can catch the temperature of each memory block and

associate the number of bitflips with the ECC switching.

Although our experiments use only a fixed threshold, we illustrate Figure 48 with a

level (5), expanding the original fault-tolerant memory organization shown in Figure 3.

Figure 48. Fault-tolerant memory organization example encompassing the commercial (in gray) and
proposed (in blue) approaches with threshold level [Author].

DFTM is the principal module of DFMC, whose primary function is to manage which

ECC will be used in each memory block and switch the ECC depending on memory status.

69

Figure 49 shows that DFTM implements this functionality enclosing (i) Internal memory, (ii)

ECC module, split into (ii.a) ECC encoder and (ii.b) ECC decoder, and four processing

modules: (iii) RAM process, (iv) Threshold, (v) Recoding, and (vi) Configuration

process. Besides, the RAM process contains (iii.a) R+W manager, (iii.b) Block finder,

and (iii.c) ECC evaluator modules.

Figure 49. DFMC architecture; Frontend detailing was omitted to highlight the aspects explored in
this work [Author].

i. Internal memory contains the DFTM operation settings. This memory should

be lowly susceptible to errors, such as Radiation Hardening [109], to mitigate

failures in the DFMC operation;

ii. ECC module in this work implements Parity, Hamming, and LPC and contains

two modules:

iii. ECC encoder is responsible for encoding the data to store in memory

according to the ECC configured;

iv. ECC decoder decodes data from memory according to the configured ECC

and informs the R+W manager, which afterward notifies the ECC evaluator if

some errors occur during the decoding;

v. RAM process oversees managing all the reads and writes, applying the ECC

according to the configuration; this process implements:

vi. R+W manager encodes/decodes data according to the memory block ECC –

e.g., Hamming or LPC. The manager also evaluates if it has at least one

memory block that uses two words to store data, turning the second RAM on

or off. Note that the dynamic approach handles the encodings of the memory

70

blocks independently. The second memory is only activated when the

encoding requires optimizing power dissipation;

vii. Block finder calculates the memory block location from the logical address

provided by the memory controller Frontend as well as accesses the DFTM

Internal memory to get the block configuration;

viii. ECC evaluator validates and updates the number of errors that happen from

the ECC decoder results and forwards the number of errors back to the client

(Frontend) in case of reading requests;

ix. Threshold process evaluates the number of errors that are occurring in each

memory block and, according to a predefined threshold and application

requirements, requests the memory block recoding;

x. Recoding process converts all data of a memory block from one encoding to

another, e.g., Hamming to LPC;

xi. Configuration process allows setting dynamic or static ECC managing

approach and the initial ECC encode for each block.

Traditional memory controllers use the second RAM to provide additional address

capacity. In cases where the system employs a strong ECC, such as LPC or Chipkill, the

second RAM is used to complement the word bit-size - i.e., 144 bits over the traditional 72

bits. In the proposed system, the highest efficiency ECCs need double of bits to write the

ECC, requiring a second RAM module - e.g., Hamming when compared with LPC, Reed

Solomon, or Chipkill. Due to this characteristic, managing when the second RAM can be

turned off is crucial to reducing energy consumption. DFMC accomplishes this management

by implementing three modules: (i) the RAM manager inside the Configuration process

and the (ii) read and (iii) write managers in the R+W manager, as shown in Figure 50:

i. RAM manager enables the second RAM when at least one ECC needs a

double-memory requirement in any block. This logic is based on the double

memory counter; the second RAM is enabled when the counter is higher than

zero; otherwise, the second RAM is disabled;

ii. Write manager controls whether the current ECC needs to be written in one

memory or parallelly in two memories; if the ECC needs only one RAM and

the double memory is enabled, only write in the first RAM; the second keeps

waiting for a memory block which needs the two RAM. The Write Manager

utilizes the Write RAM, which is responsible for requesting the written data and

71

sending this data to the Memory Mapping and Command generator (MMCG)

that interfaces with the RAM receiving back the written status;

iii. Read manager handles whether the current ECC needs to be read in one or

in two memories; if the ECC needs only one RAM and the double memory

requirement is enabled, it only reads the first RAM; the second keeps waiting.

The Read Manager uses the Read RAM for requesting data from a specific

address to MMCG that interfaces with the RAM, delivering back the read data.

Figure 50. Modules necessary to manage the double memory used by DFTM: (i) RAM manager, (ii)
Write manager, (iii) Read manager, (iv) Write RAM and (v) Read RAM [Author].

The RAM process encompasses the Block finder, R+W manager, and the ECC

evaluator introduced in Section 4.1, which executes the write and read steps.

In the write step, upon receiving the write request from the memory controller

Frontend, the Block finder calculates the memory block from the address, and the data is

directed to the R+W manager (read and write manager) to be encoded by ECC encoder

72

according to the ECC configuration of the memory block. Subsequently, the data is directed

to the Write manager to write in one or two memory modules; finally, the data is sent to the

Memory Mapping and Command generator (MMCG) of the DFMC Backend.

The first steps of the read request are similar to the first steps of the write request;

i.e., the Frontend forwards the request to the Block finder, which calculates the memory

block from the address, passing the logical memory address to the MMGC and activates the

R+W manager. Subsequently, the memory returns the read data decoded by the ECC

decoder. ECC evaluator receives the decoded data and decoding status; if the decode

contains an error, this error is counted and stored in internal memory; the data is forwarded

to the Frontend, which returns the information to the PE that requests the reading. Figure

51 presents the flowchart of read and write in the RAM Process; note that components

outside the DFTM were omitted, like Frontend, MMCG, and RAM.

Figure 51. Flowchart of reading and writing data in memory [Author].

The Block finder is responsible for discovering the memory block location from the

address to get the configuration from the DFTM Internal memory. The configuration

contains the operation mode that controls each memory block independently and can be

changed in runtime according to the number of errors and the system operation mode. The

ECC evaluator receives the number of errors from the ECC decoder and sums it with the

number of errors in the memory block configuration. The static operation mode maintains

the pre-programmed ECC, although the dynamic approach changes the ECC depending on

the rule to be reached. Thus, the memory controller can manage efficiency and efficacy per

application requirements and memory reliability.

Let 𝐛𝐥𝐨𝐜𝐤𝐒𝐢𝐳𝐞 be configured and stored at BIOS, and 𝐧𝐮𝐦𝐛𝐞𝐫𝐎𝐟𝐁𝐢𝐭𝐬 be the number

of bits necessary to configure each memory block; then, the first-bit block location containing

the encoding information can be computed by Equation 47. Using 𝐛𝐥𝐨𝐜𝐤𝐒𝐢𝐳𝐞 = 2000 and

𝐧𝐮𝐦𝐛𝐞𝐫𝐎𝐟𝐁𝐢𝐭𝐬 = 8, and considering 𝐚𝐝𝐝𝐫𝐞𝐬𝐬 = 5000 as an example, 𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛 =

⌊
5000

2000
⌋ × 8 = ⌊2.5⌋ × 8 = 16; therefore, the corresponding 8-bit read block location is 16.

73

Equation 47. 𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛 = ⌊
𝑎𝑑𝑑𝑟𝑒𝑠𝑠

𝑏𝑙𝑜𝑐𝑘𝑆𝑖𝑧𝑒
⌋ × 𝑛𝑢𝑚𝑏𝑒𝑟𝑂𝑓𝐵𝑖𝑡𝑠

When the DFTM is in the Configuration process, the same memory controller

signals are used to read or write the configuration; the data and address correspond to the

configuration value and block position, respectively. The RAM manager is executed after

the Write configuration to check whether the configuration has at least one ECC that needs

a second RAM module, as illustrated in Figure 52.

Figure 52. Flowchart of reading/writing configuration data in internal memory [Author].

Note that the configuration process can be customized to meet different operational

requirements when managed by the operating system (OS). However, it is important to

emphasize that this process was specifically designed to be executed solely during

hardware initialization, as OS-related activities are outside the Thesis scope.

One essential part of this work is choosing when to change the ECC, executed by

the Threshold process and presented in Figure 53.

Figure 53. Flowchart for the Threshold process data [Author].

The Threshold process executes a configurable time unit named Threshold Cycle

Size (TCS) for all memory blocks at every new cycle. When starting a new cycle, the

Threshold evaluator checks the parameters programmed in the memory controller and

evaluates the error rate with a dynamic approach, defining whether the threshold has been

reached and which threshold policy to apply. If the threshold is reached by at least one

memory block, the Threshold process triggers a command for the Recoding process to

74

change the first memory block found by the Threshold evaluator that defines which ECC

should be used to encode all the addresses inside the memory block. This work employs a

Fixed threshold, where the rule does not change in runtime, while the Self-programmed

threshold changes the rule used at runtime depending on an external factor.

 Threshold Evaluator - Fixed Threshold

The Threshold evaluator is a mechanism responsible for choosing the ECC for

each memory block based on a dynamic error rate throughout the entire block operation and

the error intervals that define using a given ECC, called threshold. The dynamic error rate

considers the sum of all errors in a given block reduced by a parametrizable number of

errors in each TCS, enabling exploring the variability of error occurrence in operation

windows. The Threshold evaluator implements this dynamic error rate for each block with

the Number of Accumulated Errors (NAE) incremented whenever a data error is detected.

At each cycle, NAE is decremented by the Number of Errors to Reduce (NER) – a

parameterizable value defined for all memory blocks; using NER avoids accumulating errors

indefinitely and enables changing to a less powerful ECC in case of error rate reduction.

The Fixed Threshold proposed and demonstrated in Figure 54 receives (i) NER

and (ii) a list of ECC thresholds, such that each ECC threshold is a tuple(min, max)

containing the error interval with the minimum and the maximum number of errors to keep

in a given ECC. If NAE exceeds max, the Threshold evaluator selects a more powerful

ECC, and if NAE becomes lesser than min, the Threshold evaluator programs a less

powerful ECC for a given block. If it is required to change the ECC, the mechanism signals

to recode the first memory block marked to change the ECC.

Figure 54. Threshold evaluation workflow [Author].

For instance, considering the following threshold configurations for Parity [0,1],

Hamming [2,3], and LPC [4,+∞); if in the moment of the Threshold evaluator, it is in

Hamming and counts more than three errors, the Threshold evaluator signals to the

Threshold process that commands the Recoding process to change the ECC to LPC;

75

conversely, if the error count is less than one, the Recoding process changes the ECC to

Parity. Note that the Threshold evaluator can receive more than one block to recode, but

it recodes just one per cycle because of the considerable time spent in recoding.

One safe approach is immediately switching to the most powerful ECC when a bitflip

is detected, allowing the Threshold process only to evaluate when changing to a less

powerful ECC is necessary. However, this approach can lead to system blockage for an

extended period, especially in extreme cases where one block might need to be recoded

after another. Another drawback is the frequent switching between ECCs; a block can

change to a powerful ECC and revert in the subsequent Threshold evaluation. We have

decided to change the ECC only after a designated time slice, as configured in TCS, to avoid

this. This approach aims to strike a balance between system stability and the need for

dynamic ECC adjustments, allowing for the best setup to be configured in the TCS, NAE,

and NER for each scenario.

The Recoding process is complex and blocking, starting with a message to the OS

informing the memory range that will be switched. Recoding implies reading all the data

stored within that range and rewriting it using a new encoding, which starts by configuring

the first address of the block in variable N. While N is less than blockSize, the process reads

and decodes the data at address N with the current ECC and writes the data with the new

ECC at the same address N. Subsequently, the Recoding process updates the block with

the new ECC and checks whether it needs to turn on or off the second RAM (RAM manager).

Once the Recoding process is activated, all requests for access to the module are queued

and only released after the operation is completed, implying a latency of several clock

cycles. Therefore, the application requirements must justify the operating costs of the

Recoding process. In the end, OS is notified again; this information allows OS to apply

another level of fault tolerance – this work does not cover the OS functionality. Figure 55

presents the Recoding process flowchart.

Figure 55. Flowchart for the Recoding process data [Author].

76

The final version of DFTM also contains the (i) Workflow process to manage when

each process has to be executed; (ii) Debug that sends data to the first slot of the memory;

(iii) Configuration process to read and write each DFTM configuration block; (iv) RAM

process to manage the data to read and write at RAM; (v) Threshold process to assess

the threshold for all blocks; and (vi) Recoding process for changing the ECC for all

addresses in the block. To manage when each process is executed, a workflow process

was included. Figure 56 demonstrates the unified DFTM workflow.

Figure 56. DFTM workflow [Author].

Figure 57 illustrates four memory controllers with their respective modules

abstracting the front end: (i) DFMC, (ii) Static LPC (SL), (iii) Static Hamming (SH), and (iv)

77

Without ECC (WE). Including the SL, SH, and WE memory controllers is meant to provide

theoretical explanations of their operation and highlight the potential of DFMC in terms of

optimized energy consumption.

Figure 57. (i) DFMC, (ii) SL, (iii) SH, and (iv) WE memory controllers [Author].

As explained in Section 4.1, DFMC has (i) an ECC module encompassing Parity,

Hamming, and LPC; (ii) the RAM process including an R+W manager, block finder, and ECC

evaluator; an internal memory; (iii) Threshold, Recoding and Configuration processes; and

a pair of (iv) MMCG connected with 4GB RAMs. SL encompasses an LPC ECC module, an

R+W manager, and two MMCG connected with two RAM modules. SH includes a Hamming

module, an R+W manager, and an MMCG connected with one memory module. Finally, WE

contains an R+W manager and an MMCG controlling a single RAM module.

The R+W manager module is the initial reference for the time spent on the critical

path and energy consumption across all processes in all memory controllers. The WE

controller assumes a constant alpha (α) value for this explanation. Additionally, gamma (γ)

and epsilon (ε) represent the SH and SL controllers’ average power dissipation over time.

78

DFMC exhibits varying energy consumption across its modules. Here is a

breakdown of the energy consumption characteristics for each module:

i. The Workflow process is executed in all operational steps. However, due to its

low complexity, its impact on the critical path latency and power dissipation is

negligible and, therefore, not considered in this analysis;

ii. The Debug module is only implemented in the evaluation version and is not

included in this example, as mentioned;

iii. The Configuration process occurs only once during startup to load pre-defined

configurations from the BIOS and set up the DFMC configuration. This process

has low complexity and is expected to have minimal energy consumption and

a short duration compared to the R+W manager. It operates with a beta (β)

power dissipation. It is worth noting that the time spent in this process may

vary depending on the number of configurations that need to be loaded, with

each configuration being written into the internal memory.

iv. The RAM process includes a Block finder, R+W manager, and ECC evaluator.

The block finder and ECC evaluator are expected to have a minor impact on

the overall system, contributing omega (ω) to the power dissipation of the R+W

manager, regarding their respective ECC modules (γ+ω for SH / ε+ω for SL);

v. The Threshold process occurs in each TCS and performs a low-complexity

verification to determine if it is necessary to switch the current ECC. This

process incurs a delta (δ) power dissipation for a brief period;

vi. The most resource-intensive process is the Recoding process due to the

number of interactions required to read, decode, encode in a new ECC, and

write all the addresses within the block. This process consumes significant

resources and has a notable impact on energy consumption.

In the theoretical operations of DFMC, the configuration was set to use Hamming

initially and, in the event of an error, migrate to LPC. The bitflip occurs at 2.5 times (t It is

important to note that the Recode process requires reading and writing, doubling the time

required for this process.

Figure 58 illustrates each memory controller's average power dissipation over time,

focusing on a single block. The WE controller maintains a constant power dissipation over

time, similar to the SH and SL controllers. However, due to the configuration process, DFMC

starts with low power dissipation. The Threshold process evaluation occurs at regular t-time

intervals, resulting in power dissipation peaks. When a bitflip occurs, the subsequent

Threshold process triggers the Recode process, leading to a high power dissipation due to

79

the intensive read and write operations in Hamming and LPC, respectively, for all addresses

within the affected block. It is worth emphasizing that when a bitflip occurs, a power

dissipation peak occurs when the corresponding address is read, and the ECC decoder fixes

the data content. When the RAM power dissipation is considered, the power spicules of the

Threshold process and bitflip correction become negligible once the average power

dissipation of RAM significantly exceeds that of the memory controller.

Figure 58. Power dissipation over time for the four memory controllers [Author].

Figure 59 illustrates the memory controllers with RAM, considering multiple blocks.

During the Recode process, the power dissipation becomes slight, while DFMC becomes

more power-efficient compared to SL and closest to the SH efficiency. The power dissipation

efficiency of DFMC depends on the number of blocks and can be virtually the same as SH

or slightly higher than SL.

Figure 59. Power dissipation over time for the four memory controllers considering the RAM having
many blocks [Author].

80

The energy savings achieved by DFMC becomes even more evident as the

execution time increases, as illustrated by Figure 60 (a) and (b).

(a)

(b)

Figure 60. (a) Power dissipation and (b) energy consumption over the extended time execution for
the four memory controllers considering the RAM has many blocks [Author].

Figure 61 displays the average power dissipation when the memory block is

configured with a substantial number of addresses. As the number of addresses increases,

the time spent on the Recoding process also increases proportionally. During the Recode

process, the memory controller signals OS to put the current process in a HALT state.

Subsequently, the decoding and encoding of addresses are initiated. Note that during the

Recode process, no other processes are executed until it is completed. This may take longer

than the interval between each Threshold process. Once all the addresses have been

recoded, the memory controller signals OS to resume the execution of the current program.

Figure 61. Power dissipation over time with many addresses manage by block [Author].

81

This representation highlights the impact of a larger number of addresses on the

duration of the Recode process and the subsequent HALT state of the current program,

ultimately influencing the overall power dissipation.

DFMC enables working with a memory divided into blocks, each with its operation

mode and encode. The operation mode can be either static, where the encode remains

unchanged, or dynamic, where the ECC dynamically changes depending on the case. The

ECC configuration includes three types: (i) Parity is the most straightforward data check, (ii)

Hamming is a well-known SECDED ECC, and (iii) LPC is a high-efficacy ECC - the LPC-

adapted on this version does not implement the parity bit. With these ECCs, DFMC employs

8 bits to configure each block: (i) one bit informs the memory block operating mode - (0)

static or (1) dynamic; (ii) two bits contain the data encoding - (00) without encoding, (01)

Parity code, (10) Hamming code, and (11) LPC; and (iii) five bits to store the error counting.

Servers experiencing more than five bitflips a year are rare [3]. Therefore, having a count of

31 errors provides a significant margin in this environment. Table 5 presents the bit

configuration for the encoding and operating mode combinations.

Table 5. ECC configuration of the memory blocks [Author].

Configuration
Operation mode Encoding mode

Bit 0 Bit 1 Bit 2

Without ECC

Static

0 0 0

Parity code 0 0 1

Hamming code 0 1 0

LPC 0 1 1

Without ECC

Dynamic

1 0 0

Parity code 1 0 1

Hamming code 1 1 0

LPC 1 1 1

It is necessary to highlight that some recent memory technologies, like MRAM [110]

and LPDDR5 [111], include on-chip ECC to mitigate errors due to scaling issues [112][113].

The on-chip ECC mechanism is built to be invisible to the memory controller, maintaining

compatibility with memory standards [113]; however, this work focuses on the ECC being

managed by the memory controller.

During project time, the hardware designer can configure the Internal memory as

necessary. The internal memory size for DFMC is given in Equation 48, where the maximum

number of blocks is multiplied by the number of bits needed to store the configuration; since

this thesis uses 8 bits, it is necessary 256 bytes to store 256 blocks of the ECC configuration,

i.e., 𝐼𝑛𝑡𝑒𝑟𝑎𝑙 𝑚𝑒𝑚𝑜𝑟𝑦 𝑠𝑖𝑧𝑒 = 256 × 8 bits = 2048 bits = 256 B.

82

Equation 48. 𝐼𝑛𝑡𝑒𝑟𝑛𝑎𝑙 𝑀𝑒𝑚𝑜𝑟𝑦 𝑆𝑖𝑧𝑒 = 𝑏𝑙𝑜𝑐𝑘𝑆𝑖𝑧𝑒 × 8𝑏

Once the hardware is prototyped, the manageable memory configuration is given

by the number addressed by the block. Knowing that 128 GB is the maximum per memory

module for a DDR5 [118] in a 64 bits architecture and considering 256 blocks, the number

of addresses per block necessary to handle 128 GB is 62.5 Million, as Equation 49

describes.

Equation 49. 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑑𝑑𝑟𝑒𝑠𝑠𝑒𝑠 𝑝𝑒𝑟 𝑏𝑙𝑜𝑐𝑘 =

𝑚𝑒𝑚𝑜𝑟𝑦𝑆𝑖𝑧𝑒

𝑁𝑢𝑚𝑏𝑒𝑟𝑂𝑓𝐵𝑖𝑡𝑠

𝑏𝑙𝑜𝑐𝑘𝑆𝑖𝑧𝑒
=

128 𝐺𝐵

64 𝑏

256
=

16 G

256
= 62.5 M

83

5 ABSIMTH HARDWARE SIMULATOR

Absimth is a hardware simulator focusing on memory controller data flow, allowing

the creation and configuration of custom modules. The simulator aims to optimize the design

of next-generation memory controller architectures, meeting fault tolerance requirements

with fast validation before the hardware implementation phases, thus, enabling us to assess

the computational system behavior in the presence of memory errors. This chapter presents

the Absimth architecture, execution flow, memory bitflip observation, and benchmarks

exploration used to design and validate the DFMC architecture.

Figure 62 displays a high-level description of Absimth for creating and configuring

custom modules of processors, memory controllers, and a memory device split into memory

modules. Absimth also disposes of a low-complex Operating System (OS) for task

management and a virtual module for simulating memory error injection.

Figure 62. High-level description of the Absimth platform [126].

All modules described next can be customized or changed, respecting the standard

interfaces and protocols.

 Processor Library

Absimth includes the following RISC-V 32-bit compatible processors [119], enabling

us to execute several programs on single or multiple heterogeneous processors.

• RISC-V 32I - 32 bits and ISA composed by integer instructions;

84

• RISC-V 32Im - including multiplication and division instructions at the RISC-

V32I, and;

• RISC-V 32f - the same features as RISC-V 32Im but including floating point.

 Memory Controller

Absimth connects the processor and memory modules through customizable

memory controllers and includes many types of memory controllers available, including or

not ECCs; the available ECCs are Parity, Hamming, LPC, and Reed-Solomon.

 Memory Device

Absimth helps to create memory according to the user configuration, and OS

accesses the memory devices using the memory controller address. The designer can

navigate the memory hierarchy by examining any bit, byte, or word value of modules, rank,

bank group, or each bank regarding any column, row, or height.

 Error Injection Module

Employing a virtual module for error injection, the designer can create several error

scenarios based on the predefined templates, such as creating bitflip at random memory

addresses in a given execution cycle. Absimth encompasses four error injection models

based on [3][15] and a five-error injection based on error occurrence probability:

• NoFaultError – Error-free memory, allowing us to assess application execution

time and amount of data transferred compared with other scenarios; it occurs

in about 91.78% of server cases [3][15];

• OneError – implying a single bitflip to simulate the most common error

scenario, occurring in approximately 8% of server cases [3][15]. This model

makes the simulator generate an error at a specific address and bit position;

• MultipleErrors – describing a memory with multiple corrupted bits to simulate

scenarios representing from 0.044% to 0.066% of server cases [3][15];

• One2MultipleErrors – one bit corrupted initially followed by multiple bitflips to

simulate 0.154% to 0.176% of the multiple-error scenarios [3][15]. The

simulator executes the OneError configuration; next, it performs the

MultipleErrors format to evaluate the system behavior from one to multiple

errors, one common memory scenario;

• BitFlipProbability – enables to configure of the following bitflip modes and

probability rates: (a) probability rate of a bitflip occurring in every tick; (b) the

85

maximum number of bitflips can occur in one cycle; (c) random or specific error

address; (d) module memory subject to error occurrence; (e) the address

distance between bitflip occurrence; (f) range allowed to bitflip inside the

address (bit position range); (g) probability rate to generate a bitflip out of the

address range; and (h) a seed for generating random errors.

 Operating System (OS)

Absimth implements a simple distributed OS that uses specific memory space; all

data used by OS is neither passed nor allocated in the memory defined by the configuration.

OS loads instructions from one task into memory per time or executes the instruction in

application load mode. OS executes a specific number of user-defined instructions

(quantum); once the quantum is completed, OS schedules the next task. Absimth employs

a global Round-Robin with random-order task choices within each quantum as default

scheduling. When the execution cycles reach the quantum defined by the user, OS saves

the processor context, looks for the next task according to the scheduling algorithm, and

loads its context into the processor. The current Absimth version does not allow disabling

the default OS or implementing a customized OS.

 Reports

At the end of the application execution, Absimth creates (i) a trace report of CPU,

memory, and instruction; and (ii) a simulation report containing the following information:

• Programs – containing a list of programs executed, each one containing the (i)

name and identification of the program, (ii) initial memory address, (iii)

instruction length, (iv) initial data address, (v) stack size, (vii) a total of allocated

memory used, (vii) last allocated address, (viii) first data address used, (ix)

total of data address used, (x) last data address used, (xi) processor identifier

(processor + core), (xii) processor number, (xiii) core number, (xiv) processor

type, (xv) the total of cycles executed by the application, (xvi) task identification

and (xvii) information if the program was executed with success;

• Memory – comprising the number of instructions, data, and total reading and

writing operations;

• Memory faults – encompassing a list of physical memory addresses with error

and the associated error type. An error injected is classified as INVERTED

when the program execution does not access the error address; if the program

accesses the error address, the error is classified as FIXED or UNFIXED,

86

depending on the success of the error correction algorithm;

• Memory controller – containing information about the numbers of memory

reads and writes performed by the memory controller module;

• Processor list – containing a list of processors with the (i) identification, (ii)

type, (iii) core number, and (iv) number of the last tick executed;

• General information – including (i) the entire simulation execution time, (ii) the

total number of ticks, and (iii) the maximum tick for each core.

The Absimth execution flow goes through two macro phases. The first phase, called

Task Initialization, defines the simulator initialization activities; the second phase, called

Task Simulation, performs the execution, insertion of errors, and application task monitoring.

 Task Initialization

Absimth initializes loading the application settings defined by the designer; in this

step, the simulator allocates the memory areas of each task and maps these tasks to the

processors of the target architecture.

The simulator checks the PeripheralAddressSize parameter, which contains the

memory size allocated to each peripheral, allowing mapping peripherals into the memory

addresses. Thus, if the developer creates a specific module, the simulator allocates part of

the memory address for this module operation. Afterward, Absimth loads the application

tasks, forwarding the following items to OS: (i) the chosen processor identification and target

architecture; (ii) task identification; (iii) total memory used according to the stack size

configured at program compilation time, and (iv) a reference for application loading.

 Task Simulation

Figure 63 displays that Absimth randomly selects the processor order execution

inside a quantum - i.e., a predefined number of clock cycles, simulating random concurrency

among processors. Although the order of processors is random, all processors must execute

a quantum before starting a new random sequence of processor execution. After choosing

the processor, OS schedules the task that must be executed in each processor. For each

task in each processor, Absimth executes an instruction and waits for the next cycle.

87

Figure 63. Example of Task Simulation phase encompassing four processors (P1…P4) execution
during q quanta of simulation. This figure emphasizes intra-quantum scheduling of P4, covering task1
and task4 [126].

Absimth implements data consistency to evaluate whether an application is only

accessing data from the process reserved area and control sequencing verification to

mitigate code execution errors. The simulator aborts the application execution if any of these

issues are detected.

Figure 64 shows the memory bitflip observation processes, exemplifying three

synthetic tasks executing in a single processor connected to a DDR4 through a memory

controller that performs reading and writing operations using Hamming ECC.

Figure 64. Target architecture and tasks employed in the simulation example [126].

 Synthetic Application and Hardware Description

Figure 65 describes SimplePrint, ReadEcc, and SimpleSum - three synthetic low-

complex tasks developed to observe the behavior of an application operating over a RAM

with bitflip. Figure 65(a) displays the small source code of the program SimplePrint, which

88

only sends a message to the standard output. Figure 65(b) shows the ReadEcc source code.

The program starts by executing a loop to simulate reading and writing in the final position

of the memory allocated for this task; since OS allocates the initial memory area for the

program code and the final memory area for the program data. Subsequently, the program

reads the information provided by the memory controller, informing which address has an

error. This error information enables the beginning of reading the affected page, making the

memory controller change the application encoding and OS transparently. Figure 65(c)

exhibits the SimpleSum source code, a simple program that sums and returns two values.

#include "../library/absimth.hpp"
void main() {
 print_str("HELLO");
}

int main() {
 int a = 1, int b = 499999;
 return a+b;
}

(a) SimplePrint (c) SimpleSum

#include "../library/absimth.hpp"
int main() {
 int *eccLocation = (int *)0x4;
 int *zeroAdd = (int *)0x0;
 int appIniAdd = read_initial_add();
 int eccAddContError = *(eccLocation - appIniAdd);
 int len = 50000;
 int arr[len];
 for(int k = 0; k < len; k++)
 arr[k] = k;
 int errorAdd = *(zeroAdd - appIniAdd + eccAddContError);
 for(int k = 0; k < len; k++)
 arr[k] = *(errorAdd + k);
 return 0;
}

(b) ReadEcc

Figure 65. Source code of three synthetic tasks [126].

Figure 66 shows the Absimth configuration, encompassing (i) memory size reserved

for hardware modules; (ii) processors used, in this case, two RISC-V 32i; (iii) memory

configured with a DDR4 based on MT40A2G8 model [120] but with a smaller size, since for

these applications require few kilobytes.

----- HARDWARE ------
Reserved Peripheral Address size for
Modules:0x00000008
PROCESSOR
Processors Model=RISCV32i
Number of Processors=2
Frequency=1000Mhz

MEMORY
Name=smallDDR4
Frequency=1000Mhz
Maximum memory bandwidth=18000000000 Bytes/s-
(18.0GB/s)
Latency for memory access=20.0 nanoseconds
Total of address=0x00a12200
Channel mode=SINGLE_CHANNEL
Word size=72
Lines per clock=2
Column Address Strobe (CAS) latency=10
Module amount=2

Rank amount=1
Chip amount=9
Bank Group amount=4
Bank amount=4
Cell=330, 1000

------ CUSTOM MODULES LOADED ------
MEMORY
Controller type=HammingMemoryController
Fault injection type=OneError; error position=0x3E8

------ PROGRAMS LOADED ------
Operational System
Cycles by Program=5

Task mapping
at CPU_0, program=simplePrint
at CPU_0, program=readEcc
at CPU_1, program=simpleSum

Figure 66. Simulation Setup [126].

Absimth currently is not compatible with the C Standard Library; it implements a

89

proprietary library with (i) math functions such as log, pow, and multiplication; (ii) standard

definitions like bool and itoa; (iii) string and memory functions as strchar, memcmp, and

memset; and (iv) functions to interact with the user interface, printing the current value for

debugging or discovering the initial process address.

 Memory Inspector

Absimth allows us to look in-depth at the processor status or memory during each

execution or in the final process. Figure 67 presents the Memory Area Inspector,

exemplifying a memory data region. The memory information is grouped in 32 bits, with eight

columns per line, for better screen use and to demonstrate a more significant amount of

simultaneous data. Data containing errors are colored in red, in this case, at address 0×3E8.

When selecting an address, the rightmost column shows its physical breakdown.

Consequently, in addition to the Address field, it shows the following fields: (i) Module, (ii)

Rank, (iii) Bank Group, (iv) Bank, (v) Row, (vi) Column, and (vii) Height range. The simulator

does not provide information on the chip, as each chip receives one byte.

Figure 67. Memory Area Inspector tool, containing an error in address 0×3E8 [126].

Absimth provides the default DDR memories hierarchical model, enabling the

90

designer to navigate throughout all the memory addresses, giving the spatial location.

Besides, the designer can provide a customized memory structure by adjusting the memory

template of Absimth.

The spatial location is crucial to evaluate and simulate scenarios where memory has

a location more susceptible to bitflips than other locations – e.g., the rightmost location of

the memory is close to a heated area because of the processor place. Figure 68(a) presents

the highest memory level for navigating the structure of memory modules, ranks, and chips.

The leftmost column reports the module number, rank, and addressing range. In case of an

error in any data, the units are colored in red. It is possible to go into any chips to see the

internal memory structure, exploring the error neighborhood in a three-dimensional (3D)

format. The hierarchical view continues selecting a given module, rank, and chip. For

instance, since Chip 0 of Module 0 and Rank 0 contains errors colored in red in Figure 68(a),

Figure 68(b) shows this chip visualization, encircling the organization of memory banks

inside each bank group.

(a)

(b)

Figure 68. (a) The highest memory level, including memory modules, rank, and chips, shows that
Chip 0, Module 0, and Rank 0 contain at least one bit with error; (b) Memory bank organization inside
the bank groups. The Bank 0 of Bank Group 0 contains errors since it is colored in red [126].

Figure 69 displays the Absimth window when selecting the memory bank 0, which

enables browsing the bank by memory address and physical cell placement - i.e., row,

column, and height.

91

Figure 69. Memory cell window; this view displays a single error on bit 0 (colored in red) of address
0x3E8 [126].

The designer can also see the 3D view of a memory cell (along with height); Figure

70 exemplifies a 3D view.

Figure 70. 3D memory cell preview window [126].

 Execution Investigation

The execution exemplification employs a memory controller with Hamming ECC and

a virtual module generating a bitflip at address 0×3E8 to simulate a stuck bit. The Processor

Management tool helps to watch the exact moment the instruction or data is corrupted and

enables selecting a given processor and task. Each instruction of the assigned task can be

executed step by step on the designated processor - the OS is bypassed in this execution.

Figure 71 shows the Processor Management tool running ReadEcc on CPU_0,

covering the object code of the task, the status of the processor registers, and the memory

address accessed at the instruction moment.

92

Figure 71. Processor Management tool covering processor registers, task code objects, and memory
addresses [126].

At the end of the simulation, Absimth provides a timeline window of the target

architecture processors displaying the execution of each processor task, as demonstrated

in Figure 72.

Figure 72. Window for viewing the timeline of all processors [126].

 Execution Report

Absimth finishes the target architecture simulation generating the report of Figure

73, containing statistics on (i) tasks performed; (ii) data traffic among processors; (iii)

execution status (with error or success); (iv) number of data reads/written from/in memory;

(v) memory positions with errors; and (vi) data traffic and instructions on the memory

controller with each ECC used.

93

[SIMULATION]
Application bytes: 3145803

[PROGRAMS]
simpleSum
 programId=2
 MEMORY
 initialAddress=0x000800cf
 instructionLength=0x00000014
 initialDynDataAddress=0x000800e3
 stackSize=0x00040000
 totalOfMemory=0x00040014
 lastAddress=0x000c00e3
 DYNAMIC MEMORY USED
initialMemoryAddressUsed=0x000c00c9
totalMemoryAddressUsed=0x00000005
lastMemoryAddressUsed=0x000c00ce
 CPU
 cpu=0
 core=1
 cpuId=1
 cpuType=RISCV32i
 totalOfTicks=40
 OTHERS
 task=0
 successful=true
simplePrint
 programId=0
 MEMORY
 initialAddress=0x00000002
 instructionLength=0x00000032
 initialDynDataAddress=0x00000034
 stackSize=0x00040000
 totalOfMemory=0x00040032
 lastAddress=0x00040034
 DYNAMIC MEMORY USED
initialMemoryAddressUsed=0x0003fff9
totalMemoryAddressUsed=0x00000008
lastMemoryAddressUsed=0x00040001

CPU
 cpu=0
 core=0
 cpuId=0
 cpuType=RISCV32i
 totalOfTicks=131
 OTHERS
 task=0
 successful=true
readEcc
 programId=1
 MEMORY
 initialAddress=0x00040034
 instructionLength=0x0000009b
 initialDynDataAddress=0x000400cf
 stackSize=0x00040000
 totalOfMemory=0x0004009b
 lastAddress=0x000800cf
 DYNAMIC MEMORY USED

InitialMemoryAddressUsed=0x1fffffff
totalMemoryAddressUsed=0xe0040035
lastMemoryAddressUsed=0x00040034
 CPU
 cpu=0
 core=0
 cpuId=0
 cpuType=RISCV32i
 totalOfTicks=156
 OTHERS
 task=1
 successful=true

[MEMORY]
Instructions
Number of instructions read: 408
Number of instructions written: 900
Number of instructions r+w: 1308
#Bytes of instructions read: 918
#Bytes of instructions written: 2025
#Bytes of instruction r+w: 2943

Data
Number of data read: 52
Number of data written: 28
Number of data r+w: 80
#Bytes of data read: 117
#Bytes of data written: 63
#Bytes of data r+w: 180
Total
Number of totals read: 460
Number of totals written: 928
Number of totals r+w: 1388
#Bytes of totals read: 1035
#Bytes of total written: 2088
#Bytes of total r+w: 3123

[MEMORY ECC STATUS]
address=0x000003e8, type=INVERTED,
position=[0]

[MEMORY CONTROLLER]
READ HAMMING_SECDEC: 115
WRITTEN HAMMING_SECDEC: 232

[Processor List]
CPU 0
Cpu Type = RISCV32i
Core 0
CpuId 0
 Last Tick at: 287
Core 1
CpuId 1
 Last Tick at: 40

[General information]
Simulation took 2472 milliseconds
Total of Ticks:327
Last Ticks At:287

Figure 73. Simulation Report [126].

The report demonstrates the exact point of bitflip in Section Memory ECC Status,

allowing us to explore the memory area and final status of the memory. Section Programs -

item Successful is another relevant point determining if the application finished the execution

successfully or was affected by the bitflip occurrence.

 Trace Report

Absimth traces all accesses for evaluating a program’s data, memory, instruction,

and flow. This configuration is normally disabled due to performance reasons. Figure 74

demonstrates a small part of an execution containing CPU status and identifier, program

counter, and the register values in decimal; RAM execution, indicating if it is reading (R) or

writing (W), address, and the data; and the instruction executed.

[CPU00] pc=503, reg=[0, 2220, 1048384, 12, 0, 0, 0, 0, 1048416, 0, 1, 67, 67, 67, 67,
67, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
[MEM] R - 0x00000203 - 0xfef40523
[INS] sb x15 -22(x8)
[MEM] W - 0x0003ffde - 0x43434300

Figure 74. Trace report of CPU, memory, and instruction executed [126].

94

Table 6 displays the results of a benchmark executing in scenarios combining

different error rates and computational resource combinations. The benchmark applications

were selected from PARSEC [87][88], BOTS [121], and HARDINFO [122] to evaluate a large

specter of application behavior, and encompasses 15 applications: (i) Binary Sort, (ii) Black

Scholes, (iii) Blowfish, (iv) Bubble Sort, (v) CRC8, (vi) Factorial, (vii) Fibonacci, (viii) Frequent

Pattern Growth, (ix) Greatest Common Divisor, (x) Hanoi, (xi) Huffman Encoding, (xii)

Insertion Sort, (xiii) JKiss32, (xiv) Matrix Multiplication, (xv) Prime Number.

We explored four combinations of programs and computation scenarios: (1) single-

task, single-processor [i, xv] - all the benchmark programs running separately in a single

processor (CPU 0); (2) multi-task, single-processor [xvi] - Bubble Sort and CRC8 executing

in the same processor; (3) single-task, multiprocessor [xvii] - Bubble Sort and CRC8

executing on processors 0 and 1, respectively; (4) multi-task, multiprocessor [xviii] - Bubble

Sort and CRC8 executing on processor 0, and two Bubble Sort tasks executing on

processors 1 and 2.

Each tick took around 0.075ms without tracing or 4ms with log access trace on a

CPU i7-9750h with 64 GB DDR4.

Absimth does not implement cache hierarchy; all instructions access the memory

controller. A prefetch can access more addresses to anticipate the accesses of the

application, increasing the probability of loading an address with corrupted data. However,

bitflips can also occur after a prefetch. The likelihood of bitflip occurrence is small for both

cases, being disregarded.

Table 6. Simulation summary [Author].

Benchmark information WithoutError SingleBitflip One2Many RandomNearError RandomArbitraryError

a b c d e f WE HM RS WE HM RS WE HM RS NºBF WE HM RS NºBF WE HM RS

i 782 782 7038 738 656 208

OK OK OK NOK OK OK NOK OK OK

1
OK OK

OK

4
OK

OK

OK

ii 4210 4210 37890 10766 1536 4546 10 9

iii 225329 225329 2027961 1167094 43718 316652 334 NOK NOK 341 NOK

iv 4183 4183 37647 9785 993 4936 10 OK OK 9 OK

v 100949 100949 908541 219267 13897 127079 150 NOK NOK 153 NOK

vi 678 678 6102 693 571 184 1
OK OK

4
OK

vii 1310 1310 11790 5114 347 1766 0 4

viii 30622 30622 275598 137994 8206 43493 14 NOK NOK 50 NOK NOK

ix 691 691 6219 792 581 178 1

OK OK

4

OK

OK

x 3635 3635 32715 18166 1112 4542 9 8

xi 34349 34349 309141 114747 8416 44570 52 76

xii 2721 2721 24489 9351 859 2901 7 8

xiii 1352 1352 12168 2456 635 1193 3 4 NOK

xiv 3880 3880 34920 6256 1153 3994 9 9

OK

xv 1641 1641 14769 7092 371 2058 3 4

xvi 8363 8363 75267 15525 2307 9022 207 205

xvii 100949 105132 946188 228892 14890 131995 207 205

xviii 8363 16729 150561 34855 4293 18884 210 219

Legend: “OK” and “NOK” means the simulation finished without or with error, respectively.

The Benchmark Information contains the (a) last tick, (b) sum of all ticks executed

by the processors, (c) total of instructions read and written in bytes, (d) total of data read

95

and written in bytes, and the number of (e) writes and (f) reads to/from memory.

All simulations were performed considering the five following error scenarios: (1)

WithoutError – a straightforward scenario without bitflip occurrence; (2) SingleBitflip – a

minimum error occurrence scenario; (3) One2Many – states a scenario with minimal

occurrence of errors, and after a period, multiple errors occur; (4) RandomNearError – a

scenario with a random number of bitflips placed in a nearby neighborhood; and (5)

RandomArbitratyError – a scenario with a random number of bitflips arbitrarily placed.

Table 7 details the RandomNearError and RandomArbitratyError characteristics,

according to the following: (α) probability of bitflips occurring during each clock; (β) interval

containing the minimum and maximum numbers of bitflips that can occur during each clock

period; (γ) range containing the minimum and maximum distances of the address of the next

bitflip from the occurrence of the previous bitflip – the objective is to explore bitflips inside or

outside the same word; (δ) range containing the minimum and maximum distances of the

bitflip in the same memory address – the objective is to explore bitflips within a memory

module (note that the same word is physically placed in more than one memory module);

(ω) probability of the next bitflips occurring outside the intervals defined in (γ) and (δ).

Table 7. Characterization of bitflip scenarios [Author].

Scenario α β γ δ ω

Bitflips in random places 0.2% [0, 2] - - 100%

Bitflips in a nearby neighborhood 0.2% [0, 2] [0, 3] [1, 16] 0.2%

Additionally, for each one of the five error scenarios, we verified situations Without

ECC (WE) and with Hamming (HM) and Reed Solomon (RS) codes.

Table 7 produces results consistent with the ones explored on Google and Microsoft

servers [3][15], opening opportunities for a vast behavior study of memory devices and

memory controllers. Table 7 highlights two results: (i) the HM encoding increases the correct

execution probability slightly, but it is not acceptable for critical applications, and (ii) the RS

encoding can handle all the scenarios evaluated but with high energy consumption and

memory area costs. Considering the above scenarios, one of the possibilities to increase

the execution quality is to employ ECCs with different correction potentials according to the

occurrence of errors in the memory module.

96

6 EXPERIMENTAL RESULTS

We conducted several experiments assessing the tradeoff between reliability and

power dissipation to validate the dynamic ECC memory controller proposal. Figure 75 shows

that the experimental results encompass four groups of experiments, described next.

Figure 75. Experiments performed to validate the memory controller proposal [Author].

Section 6.1 contains the experiments of Group A, including the main tools and

languages used to describe and validate the basic operations of memory controllers derived

from DFMC. Besides, the ECC dynamic operation is explored using a stimulus tool

emulating a processor reading/written data together with random error rate insertions.

Section 6.2 describes the experiments of Group B, related to evaluations of area

consumption, power dissipation, and latency of all memory controller modules and types for

static and dynamic ECC approaches.

97

The experiments of Group C are described on Section 6.3.2, encompassing

synthetic applications executing in a homogeneous multiprocessor architecture, considering

the static and dynamic approaches of fault tolerance and some error injection scenarios.

Finally, Section 6.3.3 contains the experiments of Group D, which uses the same

target architecture of the experiments of Group C but evaluating a benchmark execution

containing several embedded programs.

This work uses MyHDL resources [114] to implement and test the target architecture

used in the experiments. MyHDL is a framework with a free and open-source package for

using Python as a hardware description and verification language. In addition to having all

the Python ecosystem, MyHDL ensures their hardware designs’ reliability and functionality

through comprehensive unit and integration testing (uncommon in hardware design).

Moreover, MyHDL also supports waveform viewing by tracing signal changes in a Value

Change Dump (VCD) file, enhancing hardware verification.

Figure 76 describes the main activities carried out with MyHDL support. All the

DFMC functionality, highlighting its main modules and interactions, were described in

Python, along with a synthetic set of stimuli representing sequences of writings and

readings, with random bitflip occurrences, in a synthetic memory. The stimulus set was used

to evaluate the behavior of the DFMC and verify if the module description followed the

specification. Likewise, the ECC modules were verified and validated at this same

abstraction level. Once the Python DFMC description was validated, MyHDL generated a

VHDL DFMC version correct by construction.

Figure 76. MyHDL framework using synthetic stimulus sequences for simulating the DFMC behavior
and the dynamic ECC approach – Group A of experiments shown in Figure 75 [Author].

98

 DFMC and RAM Implementation and Basic Assessments

We implemented DFMC containing the following modules, which were assessed

using MyHDL module tester:

i. A reliable Internal memory, consisting of 2048 bits, allows configuring 256

blocks, each one managing 2 million addresses connected with 4 GB RAM.

The internal memory is called reliable because we envision implementing it

with a rad-hard memory to minimize the error occurrence. Therefore, the

simulated model does subject this memory to error injection;

ii. The RAM process, responsible for managing the operation and controlling

which memory receives the information;

iii. The Threshold process to evaluate if the memory block needs to change the

ECC according to the rate of errors;

iv. The Configuration process which allows configuring ECC and the operation

mode;

v. The Recoding process responsible for changing the ECC from an entire

memory block;

vi. The ECC module including Parity, Hamming, and an adapted LPC;

vii. Two Memory Mapping/Command Generators (MMCGs), one for each RAM,

containing the minimum instruction set [115][116]. MMCG is responsible for

communicating with 4 GB RAM, receiving the logical address and converting

it to the physical address, waiting for power-on initialization, precharge

SDRAM banks, and making the memory self-refresh.

Figure 77 illustrates the macro view of the hardware architecture developed and the

environment used for testing8, which encompasses Stimulus Module, DFMC, and RAM. The

frontend content queue messages were not developed.

MyHDL provides the MyHDL Test Module describe in Figure 76, an integrated test

unit for hardware development, where we assessed the DFMC modules and RAM.

RAM was evaluated employing all the commands and steps necessary to read and

write data - i.e., nop, active, delay, post-edge signal, and the sequences of flags like

address_input, read_input, and write_input.

DFMC includes a basic MMCG to perform memory commands and mapping,

enabling reading/writing data in a commercial RAM. Although the MMCG module was

pretested by XESS Corporation [115][116], we performed a sequence of read-and-write

8 The complete architecture and test environment description is at the link described in [117].

99

commands to evaluate if the memory mapping and command generator is converting and

working correctly.

Figure 77. Macro view of the developed architecture [Author].

All encoders and decoders of Parity, Hamming, and LPC, encompassing the ECC

module of DFMC, were tested exhaustively (all 64-bit positions) considering their error

correction capacity.

Finally, DFTM was assessed with some working scenarios described next:

i. A simple read-write operation using DFTM without ECC or bitflip – to guarantee

the most straightforward case;

ii. A single write followed by multiples read on the same address – to evaluate

the synchronism between all modules;

iii. A simple read-write configuration of DFTM with Parity and without bitflip – to

evaluate if DFTM and Parity are working correctly;

iv. With one bitflip and configurated with Parity – to evaluate the Parity when

having one bitflip;

v. Stating with Parity, reading the address with a bitflip, and read-and-writing

again but now in Hamming – to evaluate if DFTM changes the ECC;

vi. Starting with Parity, reading the address with bitflip, reading and writing the

address again but now with Hamming, receiving another bitflip and reading

again to evaluate if it was changed to LPC – to test changing the ECC multiples

times;

vii. Starting with Parity, reading and writing an address receiving bitflips - to

evaluate if DFTM changes to LPC and maintains with this ECC.

100

 Stimulus Module Description

Figure 78 presents the basic behavior of the Stimulus Module, which produces

sequences of address and data ensembling a CPU operation, thus, producing scenarios

that enable assessing the DFMC implementation.

Initially, the module programs how DFMC will operate, for example, configuring the

static or dynamic way to handle ECC, the ECC threshold, and the number of memory blocks.

Once programmed DFMC, Stimulus executes a pre-defined number of ticks

(TicksSimulation); while this number is not reached, Stimulus emulates a PE sending and

receiving random data for a random address to/from the memory controller. A bitflip can

occur in each simulation tick, depending on the error injection probability – a programmed

value. The error injection reads the random data and alters a programmable number of bits

at random positions (the validation process used from 1 to 3 bitflips). The random data with

or without bitflips is written in memory using the produced random address. Subsequently,

the memory controller reads the same address returning the data read. This data is then

evaluated and eventually corrected by DFMC.

Figure 78. Stimulus module for synthetic data production and error injection [Author].

 DFMC Adaptability Assessment

The primary objective of this set of experiments is to evaluate the ECC impact on

DFMC for specific error scenarios, assessing the DFMC adaptability under some error rate

variations. Depending on the NAE of a block during the system execution, DFMC results in

either a low error-correction efficacy but high performance or a high error-correction efficacy

but low performance.

The experiment was conducted using software simulation configured to execute for

20 million ticks, enabling conducting an acceptable timeframe while still capturing

meaningful data. The Threshold process is evaluated at every TCS, decreasing NAE

during the system execution by the programmed NER. To ensure efficiency and minimize

the number of evaluations, we defined TCS as 1 million ticks, resulting in 20 executions of

101

the Threshold process during the evaluation timeframe.

The Stimulus module takes 10 ticks to read and 16 to write, totaling 26 ticks for a

single write-and-read operation. This approach allows each threshold cycle to include up to

38,461 read/write operations, 𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑅𝐴𝑀 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛 =
𝑇𝐶𝑆

𝑇𝑜𝑡𝑎𝑙 𝑜𝑓 𝑇𝑖𝑐𝑘𝑠 𝑓𝑜𝑟 𝑎 𝑤+𝑟 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛
=

1000000

26
= 38461.53. The error injection occurs sequentially after a write operation on the

same address, adding 34 ticks, totaling 60 ticks when a bitflip occurs. In case of have a

bitflip in all operations the minimum read/write operation was 16666,67,

𝑀𝑖𝑛𝑖𝑚𝑢𝑚 𝑅𝐴𝑀 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛 =
𝑇𝐶𝑆

𝑇𝑜𝑡𝑎𝑙 𝑜𝑓 𝑇𝑖𝑐𝑘𝑠 𝑓𝑜𝑟 𝑎 𝑤+𝑟 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑤𝑖𝑡ℎ 𝑏𝑖𝑡𝑓𝑙𝑖𝑝
=

1000000

60
= 16666.67.

Table 8 displays the Stimulus configuration for interacting with a 64-bit DFMC

combined with two modules of 4 GB RAM, each memory module divided into 256 blocks,

giving 2 million addresses for each block. The random address is in the range [0;8000000)

for concentrating the test area in four blocks and minimizing 64 times the time spent on the

simulation with extra memory allocation - i.e., 8 million 64-bit addresses (8 bytes), resulting

in 64 MB, consequently, 64 MB of memory allocation against the total 4 GB RAM. The data

was generated in any random value for 64 bits - i.e., a value in the range [0; 264).

Table 8. Stimulus test configuration [Author].

Description Value

Address range [0, 8000000)

Data range [0, 264)

Error probability (i) 0.004%, (ii) 0.008% (iii) 0.012%, (iv) 0.016%

Number of address per block 2 M

Number of blocks 256

Number of blocks used 4

Threshold Cycle Size (TCS) 1 M

Timeframe size (in cycles) 20

DFMC was evaluated with a minimal yet comprehensive error coverage that

encompasses scenarios with four bitflip rates: (i) 0.004%, (ii) 0.008%, (iii) 0.012%, and (iv)

0.016%, enabling us to explore some error severity levels.

This experiment execution also requires programming DFMC with basic operating

parameters. Table 9 presents the main parameters used in this experiment: Ecout, NER,

and the ECC thresholds used in the simulation.

Table 9. DFMC test configuration [Author].

Description Value

Errors counted for each error detection of the ECC decoder (Ecount) 1

Number of Errors to Reduce (NER) 1

Parity threshold [0, 1]

Hamming threshold [2, 3]

LPC threshold [4, ∞)

102

It is crucial to mention that decoders can often detect an error's occurrence but

cannot extract the precise number of errors that occurred in a given word. For example, a

Parity code detects an odd number of errors but cannot identify this odd number. Other

codes, such as LPC, allow accounting for a certain number of errors; however, numbers of

errors higher than the detection capacity can be captured with values different from those

that occurred. DFMC mitigates this issue by programming a fixed value defined in the Ecount

register each time the decoder reports an error or accepts the number of errors returned by

the encoder. This experiment sets Ecount = 1; thus, DFMC counts a bitflip for each error

occurrence detected by the decoder. Besides, this experiment uses NER = 1 for assessing

the DFMC behavior regarding a fine error grain variation. Finally, we defined the ECC

thresholds considering a very conservative interval that would allow a quick ECC change

according to the dynamicity of the error occurrence computed by the NEA variable. Thus,

we define the intervals [0,1] for Parity and [2,3] for Hamming, and the block starts to have

LPC coding for more than four errors.

All blocks start programmed with Parity. On the one hand, in the case of NAE > 1,

DFMC automatically switches the block to operate with Hamming ECC at the end of the

Threshold process. Similarly, if NAE > 3 inside a block protected by Hamming, DFMC further

switches to LPC at the end of the Threshold process. On the other hand, at the end of the

Threshold process, if NAE < 4 inside a block protected by LPC, DFMC switches to LPC; if

NAE < 2 inside a block protected by Hamming, DFMC switches to Parity.

Figure 79 to Figure 82 depict the four-error probability described in Table 8, showing

the number of bitflips when ECC changes over the Threshold process, which occurs in a

given 𝑐𝑦𝑐𝑙𝑒 =
𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝑇𝑖𝑐𝑘

𝑇𝐶𝑆
, based on the configuration, for the four blocks tested.

Figure 79 shows the simulation configurated with 0.004% probability, having bitflips

in blocks 0 and 2. In Block 0, the issues encountered were insufficient to change the ECC,

maintaining Parity throughout the entire simulation. Block 0 demonstrates the most usual

scenario, where only a few bitflips happen.

The behavior of DFMC works as expected, maintaining the lowest ECC due to the

low error rates. Nevertheless, in Block 2, the ECC changes from Parity to Hamming during

cycle 8, when the number of errors exceeded the threshold configurated for Parity.

Subsequently, in the following cycle evaluation, the ECC reverts to Parity. Note that the

costs of changing the encoding of a block are high, such as energy consumption and latency,

not to mention the computational effects for the application using the block. To mitigate this

problem, the mechanisms proposed in this work use the ECC threshold range, TCS and

103

NER, which can be dynamically adjusted.

Figure 79. (i) Experiment to evaluate the threshold for ECC change according to NAE in each cycle.
Four blocks with 0.004% bitflip probability were evaluated during a 2M tick-timeframe [Author].

Figure 80 shows the operation scenario configurated with 0.008% error probability.

This scenario highlights periods of an aggressive number of errors in a small timeframe,

making DFTM briefly activate the second memory module to use LPC and guarantee data

quality, as demonstrated in Block 0 – cycle 7 and Block 2 – cycle 8.

Figure 80. (ii) Experiment to evaluate the threshold for ECC change according to NAE in each cycle.
Four blocks with 0.008% bitflip probability were evaluated during a 2M tick-timeframe [Author].

104

Figure 81 and Figure 82 demonstrate the most aggressive error scenarios, having

0.012% and 0.016% bitflip probability, respectively. The high number of bitflips rapidly

requires the most effective ECC, enabling the employment of the second RAM.

Figure 81. (iii) Experiment to evaluate the threshold for ECC change according to NAE in each cycle.
Four blocks with 0.012% bitflip probability were evaluated during a 2M tick-timeframe [Author].

Figure 82. (iv) Experiment to evaluate the threshold for ECC change according to NAE in each cycle.
Four blocks with 0.016% bitflip probability were evaluated during a 2M tick-timeframe [Author].

We emphasize that the aggressiveness of Scenario iv in Block 0 implies a high error

rate, requiring the utilization of the most robust ECC and its continuous maintenance. The

105

scenario starts with Parity; during the first cycle, NAE reaches the upper limit of the Parity

threshold, requiring upgrading to the Hamming ECC, which remains in effect for two cycles

until seven bitflips are detected. The ECC is further upgraded to the most robust option,

LPC, to ensure effective error correction, becoming capable of fixing all the next errors.

Note that, due to the high tax of errors, the probability of the Hamming being unable

to handle this amount of errors is very high, showing the high ability of DFMC to increase

the data delivery over static Hamming.

This experiment demonstrates the DFMC adaptation for all proposed scenarios: (i)

keeping a fast ECC without the capacity to fix bitflip under the best environment – i.e.,

without or a few bitflips; (ii) selecting the best ECC encoding for the current situation; and

(iii-iv) under a highly stressed environment changing to a high and secure ECC rapidly and

keeping. Table 10 shows the seven threshold possibility cases, where only scenarios i -

Parity to Parity and iii - Parity to Hamming can recognize errors but not fix them.

Table 10. DFTM threshold possibility cases [Author].

Case Current ECC Next ECC
of errors to

change

Examples in Figure 80 Error correction capacity
of the current ECC Block Cycle

i Parity Parity 1 0 1-2 False

ii Hamming Hamming 1 0 11-12 True

iii Parity Hamming > 1 0 5-6 False

iv Hamming LPC > 1 0 6-7 True

v LPC LPC > 0 0 7-8 True

vi LPC Hamming 0 0 10-11 True

vii Hamming Parity 0 3 14-15 True

MyHDL can convert a design to Verilog or VHDL, allowing rapid circuit/application

development and experimentation. Group B of Figure 75, detailed in Figure 83, displays that

the proposed memory control module described in MyHDL was converted to VHDL, and

subsequently, the VHDL code was synthesized using the Genus synthesis tool [123].

Additionally, the other memory controllers (SL, SH, and WE) are implemented based on the

DFMC description – more details are in Section 4.8.

The Genus was configured to synthesize hardware employing 28nm CMOS

technology with a 2 GHz clock, operating under 1V and 25ºC conditions to estimate the area

consumption, power dissipation, latency, and energy consumption for some timing aspects.

Memory was synthesized to a 4GB RAM with CACTI [124], operating under the same

hardware conditions used in Genus synthesis. The internal DFMC memory also uses CACTI

to drive the general idea of consumption and space of one memory with tolerant

characteristics.

106

Figure 83. MyHDL framework using Python to VHDL converter to generate four memory controller
architectures, which are synthesized with Genus tool to get area usage, power dissipation, energy
consumption and latency– Group B of experiments shown in Figure 75 [Author].

Each module was computed separately on Genus, allowing every part of the

process to be evaluated. Table 11 to Table 14 show the DFMC, SL, SH and WE area

consumptions, respectively. DFMC consumes 8205.67 nm² and SL 5124.51 nm²; i.e.,

60.1% more area than SL. This difference comes from the memory controller dynamicity

requiring to implement more two ECCs – Parity and Hamming that totalize 1167.03nm²

(~22.78%), and DFTM, responsible for the ECC dynamic management with 1914.13nm²

(~37.32%)9. Figure 84 illustrates the area used for all memory controllers.

Table 11. DFMC and RAM area used in nm² [Author].

 Description Sequential Logic Network Total %

D
F

M
C

E
C

C
 Parity 229.79 71.97 87.24 389.00 10.77%

Hamming 245.45 334.23 198.36 778.04 21.55%

LPC 736.35 1075.59 632.19 2444.13 67.68%

Total 1211.59 1481.79 917.79 3611.17 44.01%

D
F

T
M

Internal Memory – 256B 3.90 264.43 124.40 392.73 18.47%

Recoding Process 216.89 140.84 99.05 456.78 21.48%

Threshold Process 120.12 65.28 46.79 232.19 10.92%

Configuration Process 431.66 114.24 180.19 726.09 34.14%

*RAM Process 100.27 117.31 101.45 319.03 15.00%

Total 872.84 702.10 551.88 2126.82 25.92%

2x MMCG 1361.74 521.26 584.69 2467.69 30.07%

Total 3446.17 2705.15 2054.36 8205.68 0.06%

RAM 2x 4 GB DDR4 147740.00 10015340.00 4711550.00 14874630.00 99.94%

Total 151186.17 10018045.15 4713604.36 14882835.68 100.00%

Legend: *RAM Process compose by block finder, ECC evaluator, and R+W process.

9 RAM Process contains the R+W Manager, which should be subtracted, 𝐴𝑑𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙 𝐴𝑟𝑒𝑎 = 𝐷𝐹𝑇𝑀 𝐴𝑟𝑒𝑎 −
𝑅 + 𝑊 𝑀𝑎𝑛𝑎𝑔𝑒𝑟 = 2126.81 − 212.68 = 1914.13𝑛𝑚².

107

Table 12. SL - Memory controller and RAM area used in nm² [Author].

 Description Sequential Logic Network Total %
S

L

LPC 736.35 1075.59 632.19 2444.13 47.69%

R+W Manager 66.85 78.21 67.63 212.69 4.15%

2x MMCG 1361.74 521.26 584.69 2467.69 48.15%

Total 2164.94 1675.06 1284.51 5124.51 0.03%

RAM 2x 4 GB DDR4 147740.00 10015340.00 4711550.00 14874630.00 99.97%

Total 149904.94 10017015.06 4712834.51 14879754.51 100.00%

Table 13. SH - Memory controller and RAM area used in nm² [Author].

 Description Sequential Logic Network Total %

S
H

Hamming 245.45 334.23 198.36 778.04 34.97%

R+W Manager 66.85 78.21 67.63 212.69 9.56%

1x MMCG 680.87 260.63 292.35 1233.85 55.46%

Total 993.17 673.07 558.34 2224.58 0.03%

RAM 1x 4 GB DDR4 73870.00 5007670.00 2355780.00 7437320.00 99.97%

Total 74863.17 5008343.07 2356338.34 7439544.58 100.00%

Table 14. WE - Memory controller and RAM area used in nm² [Author].

 Description Sequential Logic Network Total %

W
E

 R+W Manager 66.85 78.21 67.63 212.69 14.70%

1x MMCG 680.87 260.63 292.35 1233.85 85.30%

Total 747.72 338.84 359.98 1446.54 0.02%

RAM 1x 4 GB DDR4 73870.00 5007670.00 2355780.00 7437320.00 99.98%

Total 74617.72 5008008.84 2356139.98 7438766.54 100.00%

Figure 84 shows that our SH implementation increases the area compared to a

memory controller without ECC by 53.8%, the SL by 254.3% and DFMC by 467.3%.

Figure 84. The used area for all synthesized memory controllers by type and total [Author].

Note that the SL, SH and WE memory controllers are simplified versions of DFMC,

and for this reason they result in lower synthesis costs (such as area) and, in general,

747.72
338.84 359.98

1446.53993.17
673.07 558.34

2224.572164.94
1675.06 1284.51

5124.51

3446.17

2705.15

2054.36

8205.67

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

Sequential Logic Network Total

Memory Controller Area WE SH SL DFMC

Type

A
re

a
(µ

m
)

108

operating costs (such as energy consumption and power dissipation). On the other hand,

DFMC provides a customized ECC operation according to the application needs in the face

of error scenarios, which allows optimizing reliability and energy consumption tradeoff.

Comparisons of memory controllers used in sections 6.3.2 and 6.3.3 are performed

by executing synthetic and embedded applications in the Absimth simulator. These

comparisons require estimating power dissipation, energy consumption and latency costs

obtained with specific operations, such as reading and writing with memory access, data

encoding and decoding for each ECC used and a memory block recoding; these costs are

presented from Table 15 to Table 18, as well as in Figure 85. Additionally, we decided to

program DFMC to operate only with Hamming and LPC, to make a fair comparison with

static controllers that use only Hamming (SH) or only LPC (SL); consequently, the

subsequent tables do not present DFMC costs with parity. The DFMC programmed to

operate only with Hamming and LPC is called DFMC-DHL or just DHL.

Table 15 presents the power dissipation, timing of the critical path, and energy

consumption values for ECC, each memory controller module and RAM. Table 15 also

shows these values divided by reading and writing operations when executing a single

memory address - note that Threshold Process, Recoding Process and MMCG have the

same critical path and energy consumption for both reading and writing operations.

Table 15. Power dissipation, critical path and energy consumption for the ECC encoder/decoder,
DFMC and the 4GB DDR4 RAM [Author].

 Submodule Power (µW) Critical path (ns) Energy (fJ)

D
F

M
C

E
C

C

Encoder

WE 0.000 0.000 0.000

Parity 12.096 0.186 2.245

Hamming 26.082 0.666 17.370

LPC 40.315 0.819 33.026

Decoder

WE 0.000 0.000 0.000

Parity 10.789 0.546 5.891

Hamming 32.283 1.707 55.108

LPC 46.426 2.287 106.194

D
F

T
M

Internal Memory
Read 1817.773 0.050 91.424

Write 924.579 0.129 119.043

R+W Manager
Read 1.803 0.340 0.766

Write 0.756 0.046 0.043

Block Finder
Read 0.180 0.034 0.077

Write 0.076 0.005 0.004

ECC Evaluator
Read 0.270 0.051 0.117

Write 0.113 0.007 0.007

1x Threshold Process Base (R|W) 4.368 1.270 5.548

1x Recoding Process Base (R|W) 11.018 1.615 17.794

1x MMCG (R|W) 13.970 1.657 23.148

RAM 1x 4GB DDR4
Read 168967.170 2.650 447812.000

Write 67602.419 6.785 458665.000

109

Table 16 demonstrates the energy consumption for every single read/write

operation of the WE, SH and SL memory controllers with and without DDR4. The energy

consumption values are the sum of the ECC, R+W manager and MMCG; as these modules

operate in parallel, the table provides the worst-case timing among them. Note that, on the

LPC, MMCG is called twice and operates parallelly; thus, the time is the same, but the

energy consumption is doubled.

Table 16. Energy consumption and critical path for both reading and writing of WE, SH and SL
memory controllers [Author].

Memory

controller

ECC + MC ECC + MC + DDR4

Critical path (ns) Energy (fJ) Critical path (ns) Energy (pJ)

R
e
a
d

 WE 1.657 0.024 2.650 447.836

SH 1.707 0.079 2.650 447.891

*SL 2.287 0.153 2.650 895.777

W
ri
te

 WE 1.657 0.023 6.785 458.688

SH 1.657 0.041 6.785 458.706

*SL 1.657 0.079 6.785 917.409

Legend: * Use a second memory module and MMCG.

Table 17 shows the energy consumption for every single read/write operation for

each DFMC module to calculate the entire circuit in the next table. DFTM was divided into

three submodules: (i) the RAM process is compounded by one read of the internal memory,

R+W manager, block finder and ECC Evaluator; (ii) the Threshold process is combined by

one read-and-write internal memory and the Threshold process base; and (iii) the Recode

process contains one read-and-write internal memory and the Recode process. Only for this

case, it was considered these modules operate sequentially, summing the energy

consumption and critical path.

Table 17. Energy consumption for every single read/write DFTM module, considering ECC and DDR
on the critical path [Author].

Modules
Critical path (ns) Energy (pJ)

Read Write Read Write

D
F

T
M

 1x RAM Process 0.475 0.107 0.092 0.091

1x Threshold Process 1.449 0.216

1x Recode Process 1.794 0.228

Table 18 presents the energy consumption and the critical path for reading and

writing on DFMC. The entire recoding is formed by one Hamming read, six Recode

processes due to the implementation logic and one LPC write; the critical path is the major

of them, while the energy consumption is computing summing all individual circuits.

110

Table 18. Energy consumption and the critical path to read, write and recode on DFMC [Author].

Action ECC
ECC + Memory Controller ECC + Memory Controller + DDR4

Critical path (ns) Energy (pJ) Critical path (ns) Energy (pJ)

Read
Hamming 1.707 0.171 2.650 447.983

LPC 2.287 0.245 2.650 895.869

Write
Hamming 1.657 0.132 6.785 458.797

*LPC 1.657 0.171 6.785 917.501

Recode *Hamming to LPC 10.764 1.882 10.764 1367.024

Legend: * Second memory module use.

These values are used in the subsequent section to compare the energy

consumption of the experiments with dynamic encoding approaches. Figure 85 compares

critical path and energy consumption for each reading and writing operation of the memory

controllers. The comparison is based on the values presented in Table 16 and Table 18. To

improve the comparison between the controllers and allow evaluating the coding effect,

Figure 85 displays the energy consumption and latency costs considering the DFMC

operating with Hamming (DFMC-Hamming) and with LPC (DFMC-LPC).

Figure 85. Comparative of the (a) critical path and (b) energy consumption of reading and writing
operations of each memory controller [Author].

As observed, the inclusion of the extra module in the DFTM does not impact the

critical path. However, the energy consumption of the read/write operation increases by

221% when comparing the SH with DFMC-Hamming and 116.45% when comparing the SL

with DFMC-LPC.

This section compares the memory controllers – WE, SH, SL, and DFMC-DHL, to

evaluate their error correction efficacy and energy consumption efficiency when executing

synthetic and embedded applications on a homogeneous multiprocessor architecture,

regarding several error scenarios.

0.0

0.5

1.0

1.5

2.0

2.5

WE SH SL DFMC - Hamming DFMC - LPC

Critical Path of each Memory Controller read write

Memory Controller

C
ri

ti
ca

l P
at

h
 (

n
s)

0.0

0.1

0.1

0.2

0.2

0.3

0.3

WE SH SL DFMC - Hamming DFMC - LPC

Energy consumption of each Memory Controller read write

Memory Controller

En
er

gy
 (

p
J)

111

 Multiprocessor Architecture Implementation

Chapter 5 presented Absimth [125][126], an extensible fast hardware simulator used

to evaluate the proposed memory controller and understand the application behavior in the

server environment related in [3][15]. Absimth enables us to explore scenarios with several

bitflip probabilities and facilitates the assessment of applications’ behavior under intensive

bitflips while using different ECCs. It also enables configuring and creating custom modules

for processors, memory devices, and memory controllers. The simulator provides error

injection models into memory to assess the system’s behavior in the presence of memory

runtime errors, providing a wide range of metrics for analysis.

To reach the behavior assessment, we built in Absimth a homogeneous

multiprocessor architecture composed of RISC-V 32F [119] processors that access memory

modules from a DDR4 SDRAM, specifically model MT40A1G16 from Micron [120], applying

synthetic applications described in C. The multiprocessor architecture was implemented with

only one memory controller for all processors, accessed through a shared bus-like

communication system, to avoid data synchronization problems in case of simultaneous

access by more than one processor to the same memory location. Additionally, the second

DDR4 memory module is only used in the LPC operation. Figure 86 illustrates that the WE,

SH, SL and DFMC-DHL memory controllers were assessed in this hardware and stressed

by a virtual error injection to simulate error scenarios.

Figure 86. Multiprocessor architecture used to evaluate the memory controllers under evaluation
scenarios - implemented in Absimth [Author].

The target architecture implemented in Absimth comprises four sets: (i) the software

part that executes an operating system kernel of Absimth to manage applications and

interface with memory controllers; (ii) the hardware part that implements the multiprocessor

112

with RISC-V processors, memory modules and includes a memory controller for evaluation;

(iii) an error injection module that produces bitflips on the memory blocks; and (iv) a set of

resources that report on the system operation.

This Thesis evaluates the dynamic memory controller proposal dividing the

assessment into two moments: (i) Section 6.3.2 describes a comprehensive assessment of

the scenario presented by [3][15], using a controlled application to evaluate WE, SH, SL and

DFMC-DHL; (ii) and Section 6.3.3 presents a benchmark to evaluate multiple applications

executing on error scenarios to determine the reliability of the SL, SH and DFMC-DHL

memory controllers.

 DFMC Power Dissipation and Reliability Assessments using Synthetic

Applications

According to [3][15], in a period of eighteen months, approximately 91.78% of

memories never fail, 8% have one bitflip, 0.154% to 0.176% have one bitflip with multiple

bitflips after, and only 0.044% to 0.066% is affected by multiples bitflip at the same time. The

works of Schroeder, Pinheiro and Weber [3] and Nightingale, Douceur and Orgovan [15]

describe that RAM faults have spatial locality with almost 80% chance of failing again at the

same physical address. Based on this scenario, where it is not possible to anticipate where

failures will occur, but it is known that they will be spatially close and that the percentage of

memory blocks that failed is small, a dynamic fault-tolerant approach is crucial to enhance

server reliability, ensure optimal performance, and save energy.

To evaluate this dynamic approach, we chose to program DFMC with Hamming and

LPC only, with Hamming being the initialization ECC. This approach, called DFMC-DHL or

just DHL, allows correcting any single error and detecting double errors in the simplest

configuration, meeting the reliability requirements described in [3][15] with optimized energy

consumption. In DHL mode, all memory blocks start with Hamming and only memory blocks

that have their error rate increased beyond the programmed threshold have their ECC

modified to LPC, increasing the error correction capacity. In the experiments of this section,

we defined a rigorous threshold, where upon encountering one error, the recoding

submodule transitions to LPC without reverting to Hamming.

Figure 87 describes the experiments conducted to evaluate the performance of SL,

SH, and DHL memory controllers in synthetic applications. The simulations performed six

error injection scenarios, exploring different levels of aggressiveness. This evaluation

allowed for assessing the power dissipation and reliability of WE, SH, SL, and DHL memory

controllers.

113

(a) (b)

Figure 87. Details about the experiment conducted in Group C (Figure 75), including the (a)
experimental setup and tools used and (b) the software/hardware interactions performed in the
Absimth simulator [Author].

The DFMC-DHL configuration ensures a robust error detection and correction

mechanism, allowing for more reliable data integrity. The memory block size was configured

with 32000 addresses, totaling 15625 blocks managed by the DFMC – i.e.,

⌈
𝑀𝑒𝑚𝑜𝑟𝑦 𝑆𝑖𝑧𝑒

𝐴𝑑𝑑𝑟𝑒𝑠𝑠 𝑝𝑒𝑟 𝐵𝑙𝑜𝑐𝑘 × 64
⌉ = ⌈

4 𝐺𝐵

32000 × 64
⌉ = ⌈15625⌉ = 15625. This block size allows DFMC

accurately handle the data area in proportion to the 4GB, giving a good tradeoff between

the area size to be recoded and the number of blocks to be evaluated in the Threshold

process.

A specific synthetic application was developed, enabling the evaluating of particular

characteristics, such as read and write access in bursts and/or alternately; exploration of

some access rates for addresses on the same or different blocks; and exploration of several

read and write flows in regions with and without errors. The synthetic programs used in this

experiment start executing a loop to simulate reading and writing data memory allocated for

this task. Each read memory access enables evaluating whether the read address has an

error; according to the number of errors, the dynamic approach implemented into DFTM

changes the encoding model.

Six error scenarios were employed to explore error patterns with some

aggressiveness degrees, the errors are injected in a parameterized spatiotemporal way but

only in data area. The six scenarios are performed according to [3][15]:

i. Without memory error - to evaluate the execution time, amount of data

transferred, and application execution; additionally, it serves as a basis for

comparison with other scenarios, occurring in approximately 91.78% of cases;

114

ii. With one bitflip - to simulate the most common error scenario, occurring in

approximately 8% of cases;

iii. With one bitflip initially and then multiple bitflips - to simulate 0.154% to 0.176%

of the multiple error scenarios;

iv. With multiple bitflips - to simulate pending scenarios with multiple corrupted

bits representing from 0.044% to 0.066%;

v. One bitflip and after multiples bitflips with two applications sharing the same

address – to evaluate the most common error scenario running one application

and then a second application in the same area; and, finally,

vi. Multiple bitflips with two applications sharing the same address – to evaluate

an area constantly receiving multiple errors, executing an application followed

by a second application in the same memory area.

Table 19 summarizes the results obtained in this experiment.

Table 19. Status of execution - scenario versus memory controllers [Author].

Coding approach
Read/Write operation

Scenario

i ii iii iv
v vi

1º Prog. 2º Prog. 1º Prog. 2º Prog.

WE OK ERR ERR ERR ERR ERR ERR ERR

SH OK OK* ERR ERR ERR ERR ERR ERR

SL OK OK* OK* OK* OK* OK* OK* OK*

DHL OK OK* OK* ERR OK* OK* ERR OK*

Legend: OK - programs finish without error;
 OK* - error occurrence but without compromising the execution;
 ERR - error occurrence affecting the execution.

As expected, the four approaches execute the program successfully without error in

Scenario i. In Scenario ii, all three ECCs executed the program successfully. Only the SL

and DHL approaches concluded the application execution in Scenario iii, which starts with

a bitflip, followed by injecting several bitflips. For Scenario iv, which is the worst case, only

the SL memory controller could run the program successfully for a system with multiple

bitflips simultaneously. In Scenario v, SL and DHL could run all the programs; SH fixed the

first bitflip, but when they started receiving multiples bitflip could not fix the errors anymore.

In Scenario vi – several bitflips, DHL started with Hamming, could not correct the data but

changed the ECC to LPC, making the next instruction and application better protected; the

SL was unique to fix both applications. We emphasize that more than one error within the

same word was generated in multiple error scenarios, preventing the Hamming correction.

According to the article [3], a study on Google’s servers for two years and a half

exposed that more than 8% of memories are affected by errors yearly, and 0.22% have

multiple bitflips. Memory errors are highly correlated; their analyses found that the probability

115

of a corrected or nearby address having another error is in the range of 13× to 228×

compared to an address far from a previous error address. Also, 70% to 80% of multiple

bitflip cases had one bitflip in the same address. Based on this information, one of the

benefits of this work is to mitigate approximately 80% of cases of multiple bitflips that

previously had one bitflip. DHL ensures an increase of 0.170% more in the total probability

of the application to continue executing and only 0.043% less than SL, resulting in an

efficacy probability of 99.956%, as shown in Table 20.

Table 20. Application-fail probability according to the fault-tolerant approach in Google’s servers
[Author].

Execution status WE SH DHL SL

Ok 91.780% 99.780% 99.956% ~99.999%

Fail 8.220% 0.220% 0.044% ~0.001%

Note that the approach adopted in the experiments only allows identifying the

occurrence of errors, and consequent correction, when the memory location with error is

accessed. This approach allows parts of memory to be receiving cumulative errors

generated by multiple events over time. Thus, only an ECC with high robustness can

mitigate the problem, enabling very spaced memory accesses. If the access rate to memory

locations is accelerated, even less robust ECCs can achieve acceptable efficiency.

However, there is also a tradeoff here, since scrubbing procedures [10][20] penalize power

dissipation, energy consumption and execution time.

Table 21 demonstrates the application’s total read and write operations executed in

scenarios i to vi obtained with the Absimth.

Table 21. Number of data reading and written, according to the scenario and coding approach
[Author].

Read/Write operations for each
Memory controller approach

Scenario

i ii iii iv v vi

WE
Read 7200083 7200083 7200083 7200083 14400166 14400166

Write 800177 800177 800177 800177 1600354 1600354

SH
Read 7200083 7200083 7200083 7200083 14400166 14400166

Write 800177 800177 800177 800177 1600354 1600354

SL
Read 7200083 7200083 7200083 7200083 14400166 14400166

Write 800177 800177 800177 800177 1600354 1600354

DHL

Hamming
Read 7200083 6094167 6094167 6094167 11081960 11081960

Write 800177 494074 494074 494074 681960 681960

LPC
Read 0 1105916 1105916 1105916 3318206 3318206

Write 0 306103 306103 306103 918394 918394

Recode Hamming to LPC 0 32000 32000 32000 32000 32000

Table 22 presents the number of threshold executions and the total energy

consumed in each scenario. The energy consumed in one Threshold process is 5.548 fJ,

giving the energy consumption of 86.69 pJ per RAM, where 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛 =

116

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑏𝑙𝑜𝑐𝑘𝑠 × 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 𝑒𝑛𝑒𝑟𝑔𝑦 = 15625 × 5.548 𝑓𝐽 = 86687.5 𝑓𝐽.

Table 22. Energy consumption by the Threshold process in DFMC operating with Hamming or LPC,
based on the number of cycles of Scenario ii [Author].

Scenario Number of executions Energy (pJ)

ECC i ii iii iv v vi i ii iii iv v vi

DFMC-Hamming 800 659 659 659 659 659 69350 57127.06 57127.06 57127.06 57127.06 57111.81

DFMC-LPC - 141 141 141 941 941 - 12222.94 12222.94 12222.94 81572.94 81572.94

Table 23 to Table 25 compare the memory controllers’ energy consumption, critical

path, and power dissipation. The data was calculated separately for the Hamming, LPC, and

Recode processes to consider DFMC’s execution with different ECCs and processes. This

approach enables a more comprehensive analysis of the memory controller’s performance

and energy consumption across six error scenarios. The Effective tags described in the last

lines of Table 23 to Table 25 represent the cumulative energy spent, the total time spent on

the critical path, and the average power dissipation for DFMC-DHL.

Table 23. Total energy consumption according to scenarios i to vi and WE, SH, SL, and DHL memory
controllers, with and without the RAM energy consumption [Author].

Coding
approach

Energy Consumption (µJ)

Scenario - Only Memory controller Scenario - Memory controller and RAM

i ii iii iv v vi i ii iii iv v vi

WE 0.19 0.19 0.19 0.19 0.38 0.38 3591.49 3591.49 3591.49 3591.49 7182.97 7182.97

SH 0.60 0.60 0.60 0.60 1.20 1.20 3591.90 3591.90 3591.90 3591.90 7183.80 7183.80

SL 1.17 1.17 1.17 1.17 2.33 2.33 7183.76 7183.76 7183.76 7183.76 14367.52 14367.52

D
H

L
 Hamming 1.40 1.16 1.16 1.16 2.04 2.04 3592.70 2956.82 2956.82 2956.82 5277.46 5277.46

LPC - 0.34 0.34 0.34 1.05 1.05 - 1271.62 1271.62 1271.62 3815.39 3815.39

Recode - 0.06 0.06 0.06 0.06 0.06 - 43.74 43.74 43.74 43.74 43.74

Effective 1.40 1.56 1.56 1.56 3.15 3.15 3592.70 4272.18 4272.18 4272.18 9136.60 9136.60

Table 24. Execution time according to scenarios i to vi and WE, SH, SL, and DHL memory
controllers, with and without the RAM latency [Author].

Coding
approach

Critical path (µS)

Scenario - Only Memory controller Scenario - Memory controller and RAM

i ii iii iv v vi i ii iii iv v vi

WE 13256.43 13256.43 13256.43 13256.43 26512.86 26512.86 24509.42 24509.42 24509.42 24509.42 49018.84 49018.84

SH 13616.43 13616.43 13616.43 13616.43 27232.87 27232.87 24509.42 24509.42 24509.42 24509.42 49018.84 49018.84

SL 17792.48 17792.48 17792.48 17792.48 35584.97 35584.97 24509.42 24509.42 24509.42 24509.42 49018.84 49018.84

D
H

L
 Hamming 13616.43 11221.42 11221.42 11221.42 20046.91 20046.91 24509.42 19501.83 19501.83 19501.83 33994.29 33994.29

LPC - 3036.44 3036.44 3036.44 9110.52 9110.52 - 5007.59 5007.59 5007.59 15024.55 15024.55

Recode - 344.45 344.45 344.45 344.45 344.45 - 344.45 344.45 344.45 344.45 344.45

Effective 13616.43 14602.31 14602.31 14602.31 29501.88 29501.88 24509.42 24853.87 24853.87 24853.87 49363.29 49363.29

Table 23 displays the total energy consumptions in scenarios i to vi for the memory

controller with and without RAM. These energy consumptions are attained with the values

of Table 15, Table 16 and Table 18 multiplied by the read and write numbers described in

Table 21, considering the Recode and Threshold process. The same method was applied

to calculate the execution time using only the critical path in Table 24. The power dissipation

in Table 25 was calculated from Table 23 and Table 24 results. The threshold limits are

evaluated each 10 thousand cycles, having been calculated 800 times; note that the

117

Threshold process can be optimized, stopping it when the memory controller programming

does not allow rolling back to a less-power correction ECC; i.e., the programming used in

DHL. Table 25 shows that the dynamic approach makes DHL more energy intensive than

the other static controllers. However, this consumption is practically neglected when added

the RAM consumption. Also, when considering the memory controller and RAM, even the

SH approach has an energy consumption close to DHL, which is much more energy efficient

than the SL memory controller.

Table 25. Total power dissipation according to scenarios i to vi and WE, SH, SL, and DHL memory
controllers, with and without the RAM power dissipation [Author].

Coding
approach

Power (µW)

Scenario - Only memory controller Scenario - Memory controller and RAM

i ii iii iv v vi i ii iii iv v vi

WE 14.39 14.39 14.39 14.39 14.39 14.39 146534.98 146534.98 146534.98 146534.98 146534.98 146534.98

SH 44.17 44.17 44.17 44.17 44.17 44.17 146551.74 146551.74 146551.74 146551.74 146551.74 146551.74

SL 65.59 65.59 65.59 65.59 65.59 65.59 293102.01 293102.01 293102.01 293102.01 293102.01 293102.01

D
H

L
 Hamming 103.08 103.57 103.57 103.57 101.67 101.67 146584.46 151617.42 151617.42 151617.42 155245.59 155245.59

LPC - 110.44 110.44 110.44 115.36 115.36 - 253938.25 253938.25 253938.25 253943.48 253943.48

Recode - 174.82 174.82 174.82 174.82 174.82 - 126999.61 126999.61 126999.61 126999.61 126999.61

Effective 103.08 106.68 106.68 106.68 106.75 106.75 146584.46 171891.96 171891.96 171891.96 185088.86 185088.86

The energy consumption of memory controllers with RAM described in Table 25

provides the following analyses according to error scenarios:

i. Scenario i – DMFC-DHL consumes 133% and 57% more energy than the SH

and SL controllers, respectively. The energy consumption of the SH and DHL

controllers are practically the same (DHL consumes only 0.02% more) when

evaluating the combined effect of RAM and 49.99% less than the SL memory

controller;

ii. Scenarios ii to iv - the DHL energy consumption increases by 17.29%

compared to the SH energy consumption due to the ECC Recoding cost and

the use of LPC in part of the application execution, but it is still 41.35% lower

than the SL controller consumption;

iii. Scenario v – DMFC-DHL completes the application execution by saving

36.85% of energy compared to SL memory controller, while the SH controller

fails to complete the application execution. Scenario iv was not compared

because DHL and SH failed to execute the application.

It is important to emphasize that server systems are composed of several memory

modules, and the dynamic selective approach allows switching to a higher power encoding

only those modules with a higher error rate. Besides, the proposed approach uses a

threshold that dynamically enables varying to a code with less energy consumption in a

situation with a lesser error rate.

118

Figure 88, Figure 89 and Figure 91 compare execution time, total energy

consumption and power dissipation for all tested scenarios with and without the RAM effect.

(a) (b)

Figure 88. Execution time of the four memory controller architectures (a) without and (b) with the
RAM latency [Author].

Figure 88 and Table 24 show that the execution time for all memory controllers is

similar when considering the RAM effect. In scenarios where a bitflip occurs (except

Scenario i), DFMC-DHL exhibits a slight increase in execution time due to the Recode

process. However, this increase is almost imperceptible due to the small number of

addresses within the block. It is worth noting that in Scenario i, where there is no bitflip, the

additional DFTM module performs practically the same as the SH controller.

(a) (b)

Figure 89. Energy consumption of the four memory controller architectures (a) without and (b) with
the RAM energy consumption [Author].

Figure 89 and Table 23 reveal that when considering a single block and focusing

solely on the memory controller, DFMC consumes more energy than SL, representing the

worst-case scenario for DFMC. However, as DFMC handles multiple blocks with different

ECCs, its energy consumption tends to decrease proportionally and consistently surpasses

both the SH and SL controllers. Furthermore, Figure 90 shows that when considering the

RAM’s energy consumption, the findings align with the theoretical expectations outlined for

memory controllers’ energy consumption in Section 4.8 and Figure 60.

119

Figure 90. Comparative of energy consumption of the four memory controller architectures with the
RAM energy consumption [Author].

(a) (b)

Figure 91. Power dissipation of the four memory controller architectures (a) without and (b) with the
RAM power dissipation [Author].

Figure 91 and Table 25 illustrate that the DFMC power dissipation remains relatively

unchanged when considering the RAM effect in Scenario i (without bitflip). However, in

scenarios ii, iii, and iv, the power dissipation increases due to the Recode process. In

scenarios v and vi, the power dissipation is further amplified by both the Recode process

and the second application execution.

Figure 92 illustrates the average energy consumption over time with DDR4 in

Scenario ii based on the worst operating frequency; the recode stop all the other process

and is calculated separately. Note that the threshold compared to the RAM energy spent is

so small that it can be despised.

It is worth noting that article [3] highlights that 91.78% of servers do not experience

bitflips, while more than 8% of memories are affected by errors annually, as depicted in

Scenario ii. In our evaluation, Scenario i does not provide a representative assessment as

it lacks a bitflip occurrence. Considering that bitflips are crucial factors in evaluating memory

controllers, it is important to ensure that the analyzed scenarios incorporate instances where

bitflips occur. Scenario ii represents more than 8% of cases with one bitflip, providing a

more accurate evaluation of the memory controllers' performance and their ability to handle

120

errors. Conducting an extensive analysis of all other cases was deemed unnecessary due

to their low representation (less than 1%), high complexity in obtaining the values, and their

tendency to be similar to Scenario ii. However, it is worth mentioning that this topic was

extensively discussed in Section 4.8.

Figure 92. Energy consumption of a single memory block over time for all memory controllers in
Scenario ii [Author].

The energy spent demonstrated was for only a memory block; the DHL energy

consumption efficiency becomes even more evident when considering all 15625 blocks.

Regarding the usage of 30% of the memory – i.e., 4687 memory blocks, being one affected

by bitflips as demonstrated in scenario ii and disregarding the leakage memory, we have the

power dissipated for WE, SH and DMFC controllers almost the same, as illustrated in Table

26. In contrast, the SL memory controller is double. This significant energy consumption

difference between LPC and the other ECCs is even more expressive when considering the

energy spent in a year, which is the usual scenario of large server farms [3][15].

Table 26. Power dissipation considering 30% of memory usage with Scenario ii [Author].

Execution status WE SH SL DHL

Power dissipation (W) 686.81 686.89 1373.77 687.08

Norm* 49.99% 50.00% 100.00% 50.01%

Legend: Norm* - Percentage values are normalized regarding the power dissipation of the SL
memory controller.

This section showed that the dynamic fault-tolerant approach, represented by

DFMC-DHL, is crucial for enhancing server reliability, optimizing performance, and saving

energy. DFMC-DHL demonstrated reaching the best tradeoff between error correction

efficacy and energy consumption efficiency by dynamically adjusting the ECC mechanism

from Hamming to LPC based on the error rate. As a result, the DFMC-DHL controller

achieved reliable data integrity while maintaining optimal energy consumption.

0

200

400

600

800

1000

1200

1400

0 5000 10000 15000 20000 25000

Controller WE SH SL DHL

E
n

er
gy

 (
p

J)

Time (ms)

121

 DFMC Reliability Assessments using and Embedded Benchmark

Figure 93 describes a comprehensive benchmark conducted to evaluate the

performance of SL, SH, and DHL memory controllers in multiple applications under different

bitflip probabilities. The simulations inserted bitflips in the instruction area and nearby

regions for various programs, exploring different levels of aggressiveness based on the

number and proximity of bitflips. This evaluation allowed for assessing the error correction

power of SH, SL, and DHL in a benchmark of programs executing on DDR4 memory with

64-bit data words plus ECC.

(a) (b)

Figure 93. Details about the experiment conducted in Group D (Figure 75), including the (a)
experimental setup and tools used and (b) the software/hardware interactions performed in the
Absimth simulator [Author].

The benchmark applications were selected from PARSEC [87][88], BOTS [121], and

HARDINFO [122] to capture a wide range of application behaviors. It comprises 13

applications, including (i) Binary Sort, (ii) Black Scholes, (iii) Bubble Sort, (iv) CRC8, (v)

Factorial, (vi) Fibonacci, (vii) Frequent Pattern Growth, (viii) Greatest Common Divisor, (ix)

Hanoi, (x) Insertion Sort, (xi) JKiss32, (xii) Matrix Multiplication, (xiii) Prime Number. The

experiment also explored the Bubble Sort and CRC8 programs executing (xiv) on the same

processor and (xv) on different processors, and (xvi) three instances of Bubble Sort and

one instance of CRC8 executing on three processors. Roman numerals are used to

represent each application in the Table 27 (a) to (e).

The benchmark evaluated various probabilities of bitflips occurring, initially

identifying the optimal probability and doubling it four times to examine the behavior of DHL

under extreme scenarios. The probabilities of bitflips occurring during each clock period

were found to be 0.1%, 0.05%, 0.01%, 0.001%, and 0.005%. Table 27 (a) to (e) presents

the total number of successful and unsuccessful executions for each application with ten

different seeds at different bitflip probabilities, ranging from 0.001% to 0.1%.

122

Table 27. Number of applications executed (OK) or not executed (NOK) with bitflip rates of 0.001%,
0.005%, 0.01%, 0.05%, and 0.1%. ALL is a table that consolidates all bitflip rates [Author].

0.001% NOK OK

SH DHL SL SH DHL SL

i 50 50 50
ii 50 50 50
iii 50 50 50
iv 1 1 49 49 50
v 50 50 50
vi 50 50 50
vii 4 2 46 48 50
viii 50 50 50
ix 50 50 50
x 50 50 50
xi 50 50 50
xii 50 50 50
xiii 50 50 50
xiv 50 50 50
xv 50 50 50
xvi 50 50 50

Total 5 3 0 795 797 800

0.005% NOK OK

SH DHL SL SH DHL SL

i 50 50 50
ii 50 50 50
iii 50 50 50
iv 7 2 43 48 50
v 50 50 50
vi 50 50 50
vii 16 13 34 37 50
viii 50 50 50
ix 50 50 50
x 50 50 50
xi 50 50 50
xii 50 50 50
xv 50 50 50
xvi 50 50 50
xv 50 50 50
xvi 1 49 50 50

Total 24 15 0 776 785 800

0.01% NOK OK

SH DHL SL SH DHL SL

i 50 50 50
ii 50 50 50
iii 50 50 50
iv 14 5 36 45 50
v 50 50 50
vi 50 50 50
vii 27 20 23 30 50
viii 50 50 50
ix 50 50 50
x 50 50 50
xi 50 50 50
xii 50 50 50
xv 50 50 50
xvi 1 49 50 50
xv 1 49 50 50
xvi 1 1 49 49 50

Total 44 26 0 756 774 800

0.05% NOK OK

SH DHL SL SH DHL SL

i 50 50 50
ii 4 2 46 48 50
iii 3 2 47 48 50
iv 24 4 26 46 50
v 50 50 50
vi 50 50 50
vii 44 36 6 14 50
viii 50 50 50
ix 3 47 50 50
x 1 49 50 50
xi 50 50 50
xii 2 2 48 48 50
xv 50 50 50
xvi 2 1 48 49 50
xv 2 1 48 49 50
xvi 7 3 43 47 50

Total 92 51 0 708 749 800

0.1% NOK OK

SH DHL SL SH DHL SL

i 50 50 50
ii 11 4 39 46 50
iii 3 1 47 49 50
iv 25 4 25 46 50
v 50 50 50
vi 50 50 50
vii 48 42 2 8 50
viii 50 50 50
ix 4 1 46 49 50
x 1 1 49 49 50
xi 50 50 50
xii 3 3 47 47 50
xv 50 50 50
xvi 5 4 45 46 50
xv 5 4 45 46 50
xvi 8 4 42 46 50

Total 113 68 0 687 732 800

ALL NOK OK

SH DHL SL SH DHL SL

i 250 250 250

ii 15 6 235 244 250

iii 6 3 244 247 250

iv 71 16 179 234 250

v 250 250 250

vi 250 250 250

vii 139 113 111 137 250

viii 250 250 250

ix 7 1 243 249 250

x 2 1 248 249 250

xi 250 250 250

xii 5 5 245 245 250

xv 250 250 250

xvi 8 5 242 245 250

xv 8 5 242 245 250

xvi 17 8 233 242 250

Total 278 163 0 3722 3837 4000

The configuration used in the experiment was based on [3][15], considering the

spatial locality of faults in RAM. The number of bitflips that could occur during each clock

period was set to one, and the distances between consecutive bitflips and within the same

memory address were defined within specific ranges. The probability of bitflips occurring

outside the defined intervals was also set to 0.2%. To increase the likelihood of a double

bitflip, the ECC did not fix the affected area, allowing it to remain “dirty” after a successful

correction.

The experiment evaluated the worst-case scenarios for DHL, where the same

application constantly experienced bitflips. The best-case scenario for DHL represents the

most common scenario in servers, where bitflips occur with reasonable intervals between

them. The results demonstrated that the DHL approach was more effective than the SH

123

approach, except in cases where two errors coincided at the same memory address in a

single clock cycle, rendering them unfixable by a SECDED ECC. However, it is essential to

note that the obtained results were influenced by the choice of ECCs employed. The

proposed dynamic approach aims to protect memory modules by utilizing codes that offer

the best tradeoff between error correction efficacy and operational cost.

Figure 94 (a) to (e) graphically represents the total number of successful and

unsuccessful executions. An application that completed its execution was considered

successful, while an unsuccessful application either did not finish execution or encountered

unfixable data, such as two bitflips in the Hamming code. Table 27 (f) and Figure 94

consolidate the previous results.

Figure 94. Total of executions with success (OK) or not (NOK) with 0.001%, 0.005%, 0.01%, 0.05% and
0.1% of bitflip probability. ALL is a table that consolidates all bitflip probabilities [Author].

Figure 95 provides a clear comparison of the reliability of the evaluated ECCs,

illustrating the number of failed cases concerning the bitflip probability. It demonstrates the

superiority of DHL over SH and showcases the increased system reliability across all tested

bitflip rates. In the worst-case scenario, DHL improved reliability from about 60.17% to

80.4%. The green area represents the probability of improving the reliability range between

the worst and best cases. The system effectively selected the optimal tradeoff between

energy efficiency and reliability for other cases.

0

100

200

300

400

500

600

700

800

SH DHL SL

N
u

m
b

er
 o

f
ex

ec
u

ti
o

n
s

ECC

0.001% of error rate OK
NOK

0

100

200

300

400

500

600

700

800

SH DHL SL

N
u

m
b

er
 o

f
ex

ec
u

ti
o

n
s

ECC

0.005% of error rate OK
NOK

0

100

200

300

400

500

600

700

800

SH DHL SL

N
u

m
b

er
 o

f
ex

ec
u

ti
o

n
s

ECC

0.01% of error rate OK
NOK

0

100

200

300

400

500

600

700

800

SH DHL SL

N
u

m
b

er
 o

f
ex

ec
u

ti
o

n
s

ECC

0.05% of error rate OK
NOK

0

100

200

300

400

500

600

700

800

SH DHL SL

N
u

m
b

er
 o

f
ex

ec
u

ti
o

n
s

ECC

0.1% of error rate OK
NOK

0

1000

2000

3000

4000

SH DHL SL

N
u

m
b

er
 o

f
ex

ec
u

ti
o

n
s

ECC

All error rates OK
NOK

124

Figure 95. The number of failed applications versus bitflip probability by ECC.

This section further confirms the superior efficiency and efficacy of DFMC-DHL

compared to SH and SL. The efficacy of the DFMC-DHL approach was demonstrated in

most scenarios, except for instances where a simultaneous bitflip occurred at the same

memory address during a single read using Hamming. These simultaneous bitflips posed a

challenge as they were unfixable by a SECDED ECC.

This chapter presents the benefits of this Thesis through three sets of experiments.

The first set used MyHDL to implement and validate all processes involved in the DFMC

functionality and ECC modules. MyHDL facilitated comprehensive unit and integration

testing. The hardware architecture, consisting of the DFMC, RAM, and related modules,

underwent thorough assessment using synthetic stimuli and diverse scenarios to evaluate

its behavior and adaptability. The experiments showcased the efficacy of the DFMC in

dynamically adjusting the ECC based on the number of errors, ensuring reliable data

delivery even under highly stressed environments.

In the second set, the memory controller developed was converted to VHDL, and

the Genus synthesis tool provided valuable insights into its performance and efficiency. The

synthesis results showcased the area consumption of the WE, SL, SH, and DFMC memory

controllers, with DFMC exhibiting the highest area usage due to its dynamic ECC

capabilities. However, it also offered the advantage of customizing the ECC operation based

on specific error scenarios, optimizing reliability.

Additionally, power dissipation, energy consumption, and critical path were

evaluated for the memory controllers, specifically during read and write operations. It was

observed that including DTMF in the DFMC did not impact the critical path when considering

only the memory controllers. However, the energy consumption of the read/write operation

increased by 221% when comparing SH with DFMC-Hamming and by 116.45% when

0

15

30

45

60

75

90

105

120

0.001 0.005 0.01 0.05 0.1

#
 o

f
a
p
p
lic

a
ti
o
n
s
 f

a
ile

d

Bitflip probability

SH

DHL

SL

125

comparing SL with DFMC-LPC.

This study highlights the significance of a dynamic fault-tolerant approach in

memory controllers, particularly the DFMC-DHL controller, in ensuring server reliability,

energy efficiency, and robust error detection and correction mechanisms. These findings

contribute to advancing memory controller designs and their practical implementation in

server systems, mitigating the impact of memory errors and improving overall system

performance.

126

7 CONCLUSIONS AND FUTURE WORK

ECCs to tolerate memory failures have been widely researched due to the increased

error rate in the latest technologies [22][36][37]. Large servers demand even more of these

requirements as programs have become increasingly dependent on large amounts of data

[77]. This work brings innovative technology to achieve high reliability and low energy

consumption impact. We proposed the Dynamic Fault-Tolerant Memory Controller (DFMC),

a fault-tolerant technology applied to the memory controllers that brings out new possibilities,

providing high reliability due to the strong correlation of memory errors with low energy

consumption and performance for memory areas not affected by errors.

This work presented Absimth [125][126], an extensibility simulation tool for

describing a multiprocessor target architecture that accesses memory modules through a

memory controller. The simulator enables some tools for performing injection error patterns

and evaluating fault tolerance techniques with support for many ECC standards. The fast

memory controller prototyping on Absimth enables lots of research and ideas evaluation

before the hardware prototype and how the application will behave.

To assess this Thesis, DFMC was prototyped and evaluated with MyHDL [114];

posteriorly, the VHDL code was synthesized using the Genus synthesis tool [123] to

estimate power dissipation, area, and energy consumption for some timing aspects.

The first assessment - Section 6.1 - considers the behavior flexibility of DFMC.

DFMC demonstrated an excellent adaptation for all proposed scenarios: (i) keeping a fast

ECC without the capacity to fix bitflip under the best environment – i.e., without or a few

bitflips; (ii) selecting the best ECC encoding for the current situation; and (iii-iv) under a

highly stressed environment changing to a high and secure ECC rapidly and keeping.

The second assessment - Section 6.2 - shows that the area increased by 53.8%,

254.3%, and 467.3% when comparing the SH, SL, and DFMC-DHL to a memory controller

without ECC; the critical path does not have a rise with the extra module included by DFTM;

in contrast, the energy in the instance of read/write increases by 221% when comparing the

SH with DHL using Hamming and 116.45% when comparing the SL with DHL using LPC.

In Section 6.3.2, this Thesis evaluates a wide range of scenarios with the Absimth

tool based mainly on research from Google [3] to understand their behavior. With the

understanding of these scenarios, it was possible to emulate and evaluate DFMC-DHL,

demonstrating a considerable improvement in error correction probability.

Considering an environment without bitflips, DHL consumes 133% and 57% more

when compared to the SH and SL, respectively. Adding the RAM, the energy consumption

127

of the SH and DHL approaches are practically the same, only 0.02% more, and significantly

better than the SL, consuming 49.99% less. In an environment with one or one and after

multiple bitflips, the DHL energy consumption increases by only 17.29% compared to the

SH due to the ECC Recoding cost and the use of LPC in part of the application execution.

However, it is still 41.35% lower than the SL approach. Lastly, in an environment with one

or one and after multiples bitflips, and with two application execution in the same area - one

and after the other, shows that the DHL approach completes in all cases the second

application execution and saves 36.85% of energy compared to the SL approach. In

contrast, the SH approach fails the second application execution in all cases.

When we look based only on the article [3], the proposed approach keeps

approximately 92% of the total memory with a simple encoding – consuming little energy;

for 0.22% of the memories that need a robust ECC, the proposed approach improves

efficiency by at least 70%. It is a crucial approach for servers with thousands of memory

modules, such as servers from Google [3] and Facebook [6]. Additionally, the experimental

results show that the proposed methodology achieves a probability of 99.956% success in

executing applications with multiple bitflips.

Finally, Section 6.3.3 evaluates a benchmark test of the SH, SL, and DHL memory

controllers, where it was explored a series of applications with different probabilities of

bitflips under one of the worse scenarios for DHL - receiving bitflips constantly in the

instruction area, which may receive more than one bitflip. The evaluation demonstrates that

DHL increases reliability in all bitflip rate scenarios tested. The reliability increases according

to the bitflip probability rise, improving between 60% to 80.4% depending on the probability.

As demonstrated, DFMC performs better than a unique ECC method in most

situations with a low energy cost and higher flexibility. We can avoid wasting time and energy

on a high error correction rate and reduce the encoding time for most of the memory through

the proposed dynamism. The proposed approach is even more evident for large servers that

require high reliability and consume enormous energy.

The methodology for the dynamic memory controller brings to light possibilities of

works that were evaluated throughout the doctorate and could be part of the Thesis; the

idealized possibilities are described below:

• Non-Volatile Memory: When the hardware’s energy is lost, it is essential to

keep the previous configuration when the hardware restarts, recommending to

use non-volatile memory.

128

• Scrubbing: As discussed in Section 2.3.2, the scrubbing technique can

increase the hardware’s reliability even more. The threshold evaluation could

be executed at the same of the scrubbing.

• ECC for Common Memories: Personal computers are unprotected because

they do not use ECC memories. A change on the controller can enable

hardware error correction, even if the memory does not have the additional

chip for ECC. The final addresses can be used as ECC areas or after each

page has a block for ECC, reducing the total memory disposed to data. This

technique increases reliability but burdens data access with one more cycle

for writing the ECC. If the computer operates a dual-channel memory, this

operation can be performed in one cycle by writing the ECC in the opposite

memory, which writes the data or can take advantage of the burst read in a

single channel.

• Optimized Technique for Recoding the Page: The critical aspect of this work

lies in modifying the page coding. It is essential to employ an optimized

technique for data recoding without blocking the page by implementing a two-

level approach; the first level manages the page, while the second manages

its addresses. When a specific area needs to undergo migration, the first level

marks it as “in migration”, while the second references all the addresses that

require migration. The recoding process is then executed in parallel,

addressing each address individually. Consequently, if a read or write

operation is requested within an area marked as “in migration”, the second

level is consulted to determine the current ECC. Otherwise, only the first level

is accessed. Once all the addresses have been successfully recoded in the

second level, the first level is updated with the new ECC information, ensuring

a seamless transition and uninterrupted access to the page during the

recoding process.

• Disabling Addresses: After a certain number of errors, even a more robust

coding may be unable to correct the information. Error addresses can be

turned off to avoid it or to avoid using robustness encoding on the page,

optimizing power consumption and latency.

• OS Integration: The OS integration enables awareness of the characteristics

of running programs and the acceptable errors within that specific context. For

instance, it allows for protecting OS or critical applications by employing a

robust encoding scheme while employing a less stringent encoding scheme

129

for non-critical areas such as video storage. The system can optimize

performance and reliability by tailoring the encoding technique based on the

program's requirements, ensuring that resources are allocated efficiently, and

error protection is focused where it matters the most.

• Memory Switch: In our demonstration, the data always utilizes the first RAM,

with the second RAM serving as a backup for ECC purposes. However, in

scenarios where the first RAM experiences more bitflips than the second RAM,

it is possible to switch the roles. The second RAM can become the primary

RAM, while the first RAM is used only when necessary, effectively avoiding

areas prone to bitflips. This approach ensures optimal utilization of memory

resources and enhances the system's reliability by minimizing the impact of

bitflip.

130

8 REFERENCES

[1] A. Teman, G. Karakonstantis, R. Giterman, P. Meinerzhagen, A. Burg, “Energy
versus Data Integrity Trade-Offs in Embedded High-Density Logic Compatible
Dynamic Memories”, Proceedings of the Design Automation & Test in Europe
Conference (DATE), pp. 489-494, 2015.

[2] N. Jouppi, “DRAM Errors in the Wild: Technical Perspective”, Communications of
the ACM, v. 54, n. 2, pp. 99, Feb. 2011.

[3] B. Schroeder, E. Pinheiro, W. Weber, “DRAM Errors in the Wild: A Large-Scale Field
Study”, Communications of the ACM, v. 54, n. 2, pp. 100-107, Feb. 2011.

[4] S. Mittal, “A Survey of Architectural Techniques for Managing Process Variation”,
ACM Computing Surveys, v. 48, n. 4, art. 54, pp. 1-29, May 2016.

[5] A. Rahimi, L. Benini, R. Gupta, “Variability Mitigation in Nanometer CMOS
Integrated Systems: A Survey of Techniques from Circuits to Software”,
Proceedings of the IEEE, v. 104, n. 7, pp. 1410-1448, Jul. 2016.

[6] J. Meza, Q. Wu, S. Kumar, O. Mutlu, “Revisiting Memory Errors in Large-Scale
Production Data Centers: Analysis and Modeling of New Trends from the Field”,
Proceedings of the IEEE/IFIP International Conference on Dependable Systems
and Networks (DSN), pp. 415-426, 2015.

[7] S. Borkar, A. Chien, “The future of microprocessors”, Communications of the ACM,
v. 54, n. 5, pp. 67-77, May 2011.

[8] S. Mittal, M. Inukonda, “A survey of techniques for improving error-resilience of
DRAM”, Journal of Systems Architecture, v.91, pp. 11-40, Nov. 2018.

[9] T. Mittelholzer, M. Stanisavljevic, N. Papandreou, H. Pozidis, “High-Throughput
ECC with Integrated Chipkill Protection for Nonvolatile Memory Arrays”,
Proceedings of the IEEE International Symposium on Circuits and Systems
(ISCAS), pp. 1-5, 2021.

[10] G. He, S. Zheng, N. Jing, “A Hierarchical Scrubbing Technique for SEU Mitigation
on SRAM-Based FPGAs”, IEEE Transactions on Very Large-Scale Integration
(VLSI) Systems, v. 28, n.10, pp. 2134-2145, Oct. 2020.

[11] D. Sorin, “Fault-tolerant computer architecture”, Morgan & Claypool Publishers, May
2009, 104p.

[12] S. Govindavajhala, A. Appel, “Using memory errors to attack a virtual machine”,
Proceedings of the Symposium on Security and Privacy (S&P), pp. 154-165, 2003.

[13] B. Giridhar, M. Cieslak, D. Duggal, R. Dreslinski, H. M. Chen, R. Patti, B. Hold, C.
Chakrabarti, T. Mudge, D. Blaauw, “Exploring DRAM organizations for energy-
efficient and resilient exascale memories”, Proceedings of the International
Conference on High Performance Computing, Networking, Storage and Analysis
(SC), pp. 1-12, 2013.

[14] A. Hwang, I. Stefanovici, B. Schroeder, “Cosmic rays don’t strike twice:
understanding the nature of DRAM errors and the implications for system design”,
Proceedings of the International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS), pp. 111-122, 2012.

131

[15] E. Nightingale, J. Douceur, V. Orgovan, “Cycles, cells and platters: an empirical
analysis of hardware failures on a million consumer PCs”, Proceedings of the
Conference on Computer systems (EuroSys), pp. 343-356, 2011.

[16] PhysOrg, “Samsung First to Mass-produce 1Gb DDR2 Memory with 80nm Process
Technology (2006, August 29)”, available at https://phys.org/news/2006-08-
samsung-massproduce-1gb-ddr2-memory.html, 2023.

[17] Samsung, “Samsung Starts Mass Production of Most Advanced 14nm EUV DDR5
DRAM (2021, October 12)”, available at
https://news.samsung.com/global/samsung-starts-mass-production-of-most-
advanced-14nm-euv-ddr5-dram, 2023.

[18] A. Avizienis, J. Laprie, B. Randell, C. Landwehr, “Basic concepts and taxonomy of
dependable and secure computing”, IEEE Transactions on Dependable and Secure
Computing, v. 1, n. 1, pp. 11-33, Jan.-Mar. 2004.

[19] S. Rehman, M. Shafique, J. Henkel, “Reliable software for unreliable hardware: A
cross layer perspective”, Springer, Apr. 2016, 237p.

[20] A. Chabot, I. Alouani, R. Nouacer, S. Niar, “A Memory Reliability Enhancement
Technique for Multi Bit Upsets”, Journal of Signal Processing Systems, v. 93, pp.
439-459, Apr. 2021.

[21] M.-C. Hsueh, T. Tsai, R. Iyer, “Fault injection techniques and tools”, Computer, v.
30, n. 4, pp. 75-82, Apr. 1997.

[22] R. Baumann, “Soft errors in advanced computer systems”, IEEE Design & Test of
Computers, v. 22, n. 3, pp. 258-266, May-Jun. 2005.

[23] R. Velazco, P. Fouillat, R, Reis. “Radiation effects on embedded systems”, Springer,
Apr. 2007, 259p.

[24] M. Nicolaidis, “Soft Errors in Modern Electronic Systems”, Springer Science, v. 41,
2001.

[25] R. Liu, D. Mahalanabis, H. Barnaby, S. Yu, “Investigation of Single-Bit and Multiple-
Bit Upsets in Oxide RRAM-Based 1T1R and Crossbar Memory Arrays”, IEEE
Transactions on Nuclear Science, v. 62, n. 5, pp. 2294-2301, Oct. 2015.

[26] A. Pérez-Celis, M. Wirthlin, “Statistical Method to Extract Radiation-Induced
Multiple-Cell Upsets in SRAM-Based FPGAs”, IEEE Transactions on Nuclear
Science, v. 67, n. 1, pp. 50-56, Jan. 2020.

[27] W. Wei, K. Namba, Y. Kim, F. Lombardi, “A Novel Scheme for Tolerating Single
Event/Multiple Bit Upsets (SEU/MBU) in Non-Volatile Memories”, IEEE
Transactions on Computers, v. 65, n. 3, pp. 781-790, 1 Mar. 2016.

[28] J. Chen, J. Yu, P. Yu, B. Liang, Y. Chi, “Characterization of the Effect of Pulse
Quenching on Single-Event Transients in 65-nm Twin-Well, Triple-Well CMOS
Technologies”, IEEE Transactions on Device, Materials Reliability, v. 18, n. 1, pp.
12-17, Mar. 2018.

[29] L. Artola, S. Ducret, F. Advent, G. Hubert, J. Mekki, “SEFI Modeling in Readout
Integrated Circuit Induced by Heavy Ions at Cryogenic Temperatures”, IEEE
Transactions on Nuclear Science, v. 66, n. 1, pp. 452-457, Jan. 2019.

[30] P. Wang, A. Sternberg, B. Sierawski, E. Zhang, K. Warren, A. Tonigan, R. Brewer,
N. Dodds, G. Vizkelethy, S. Jordan, D. Fleetwood, R. Reed, R. Schrimpf, “Sensitive-
Volume Model of Single-Event Latchup for a 180-nm SRAM Test Structure”, IEEE
Transactions on Nuclear Science, v. 67, n. 9, pp. 2015-2020, Sep. 2020.

132

[31] V. Sridharan, D. Liberty, “A study of DRAM failures in the field”, Proceedings of the
International Conference on High Performance Computing, Networking, Storage
and Analysis (SC), pp. 1-11, 2012.

[32] V. Sridharan, J. Stearley, N. DeBardeleben, S. Blanchard, S. Gurumurthi, “Feng
shui of supercomputer memory: Positional effects in DRAM and SRAM faults”,
Proceedings of the International Conference on High Performance Computing,
Networking, Storage and Analysis (SC), pp. 1-11, 2013.

[33] V. Sridharan, N. DeBardeleben, S. Blanchard, K. Ferreira, J. Stearley, J. Shalf, S.
Gurumurthi, “Memory errors in modern systems: The good, the bad, and the ugly”,
Proceedings of the International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS), pp. 297-310, 2015.

[34] G. Moore, “Cramming more components onto integrated circuits”, Reprinted from
Electronics (1965), IEEE Solid-State Circuits Society Newsletter, v. 11, n. 3, pp. 33-
35, Sep. 2006.

[35] P. Nair, D.-H. Kim, M. Qureshi, “ArchShield: architectural framework for assisting
DRAM scaling by tolerating high error rates”, Proceedings of the 40th Annual
International Symposium on Computer Architecture (ISCA), pp. 72-83, 2013.

[36] A. Dixit, A. Wood, “The impact of new technology on soft error rates”, Proceedings
of the International Reliability Physics Symposium (IRPS), pp. 5B.4.1-5B.4.7, 2011.

[37] J. Gracia-Morán, L. Saiz-Adalid, D. Gil-Tomás, P. Gil-Vicente. “Improving Error
Correction Codes for Memory-Cell Upsets in Space Applications”, IEEE
Transactions on Very Large Scale Integration (VLSI) Systems. v. 26, n. 10, pp.
2132-2142. Oct. 2018.

[38] M. Kooli,G. Di Natale, “A survey on simulation-based fault injection tools for complex
systems”, Proceedings of the IEEE International Conference on Design &
Technology of Integrated Systems in Nanoscale Era (DTIS), pp. 1-6, 2014.

[39] J. Kim, N. Hardavellas, K. Mai, B. Falsafi, J. Hoe, “Multi-bit Error Tolerant Caches
Using Two-Dimensional Error Coding”, Proceedings of the IEEE/ACM International
Symposium on Microarchitecture (MICRO), pp. 197-209, 2007.

[40] S. Mukherjee, J. Emer, T. Fossum, S. Reinhardt, “Cache scrubbing in
microprocessors: myth or necessity?”, Proceedings of the IEEE Pacific Rim
International Symposium on Dependable Computing (PRDC), pp. 37-42, 2004.

[41] M. Marinescu, “Simple and efficient algorithms for functional RAM testing”,
Proceedings of the International Test Conference (ITC), pp. 1-4, 1982.

[42] P. Joseph, P. Antony, “VLSI design and Comparative Analysis of Memory BIST
controllers”, Proceedings of the International Conference on Computational
Systems and Communications (ICCSC), pp. 272-276, 2014.

[43] EInfochips, “Memory Testing: MBIST, BIRA & BISR | An Insight into Algorithms and
Self Repair Mechanism”, available at https://www.einfochips.com/blog/memory-
testing-an-insight-into-algorithms-and-self-repair-mechanism/, Oct. 2022.

[44] C. Stroud, “A designer’s guide to built-in self-test”, Springer, 2002, 320p.

[45] V. Gupta, G. Singh, A. Asati, “BIST Architecture for combinational circuit”,
International Journal of Electrical, Electronics and Data Communication (IJEEDC),
v. 7, n. 5, pp. 1-8, Jul. 2019.

133

[46] V. Sridhar, M. Prasad, “Built-in self-repair (BISR) technique widely used to repair
embedded random-access memories (RAMs)”, International Journal of Computer
Science Engineering, v. 1. n.1, pp. 42-60, Sep. 2014.

[47] S. Ozdemir, D. Sinha, G. Memik, J. Adams, H. Zhou, “Yield-Aware Cache
Architectures”, Proceedings of the IEEE/ACM International Symposium on
Microarchitecture (MICRO), pp. 15-25, 2006.

[48] R. Zaragoza, “The Art of Error Correcting Coding”, Ed. Wiley, 2nd ed., pp. 170-201,
2006.

[49] D. Freitas, C. Marcon, J. Silveira, L. Naviner, J. Mota, “A survey on two-dimensional
Error Correction Codes applied to fault-tolerant systems”, Microelectronics
Reliability, v. 139, n. 114826, pp.1-16, Dec. 2022.

[50] T. Moon, “Error Correction Coding: Mathematical Methods and Algorithms”, Wiley,
2020, 992p.

[51] I. Alouani, S. Niar, F. Kurdahi, M. Abid, “Parity-based mono-Copy Cache for low
power consumption and high reliability”, Proceedings of the IEEE International
Symposium on Rapid System Prototyping (RSP), pp. 44-48, 2012.

[52] M. Qureshi, Z. Chishti, “Operating SECDED-based caches at ultra-low voltage with
FLAIR”, Proceedings of the IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN), pp. 1-11, 2013.

[53] L.-J. Saiz-Adalid, P. Reviriego, P. Gil, S. Pontarelli, J. Maestro, “MCU Tolerance in
SRAMs Through Low-Redundancy Triple Adjacent Error Correction”, IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, v. 23, n. 10, pp.
2332-2336, Oct. 2015.

[54] C. Shen, H. Li, G. Sahin, H. -A. Choi, Y. Shah, “Golay Code Based Bit Mismatch
Mitigation for Wireless Channel Impulse Response Based Secrecy Generation”,
IEEE Access, v. 7, pp. 2999-3007, Jan. 2019.

[55] I. Reed, G. Solomon, “Polynomial codes over certain finite fields”, Journal of the
society for industrial and applied mathematics, v. 8, n. 2, pp. 300-304, Jun. 1960.

[56] C. Wilkerson, A. Alameldeen, Z. Chishti, W. Wu, D. Somasekhar, S. Lu, “Reducing
Cache Power with Low-cost, Multi-bit Error-Correcting Codes” ACM SIGARCH
Computer Architecture News, v. 38, n. 3, pp. 83-93, Jun. 2010.

[57] B. Day, “The Mathematics of Chipkill ECC”, available at
https://www.keepandshare.com/doc6/18669/the-mathematics-of-chipkill-ecc-txt-9k,
Oct. 2022.

[58] T. Rao, E. Fujiwara, “Error-Control Coding for Computer Systems”, Longman Higher
Education, Jan. 1989, 524p.

[59] C. Benvenuto, “Galois Field in Cryptography”, May 2012, available at
https://sites.math.washington.edu/~morrow/336_12/papers/juan.pdf, Oct. 2022.

[60] J. Zhang, Y. Ma, T. Endoh, “Efficient BCH Code Encoding and Decoding Algorithm
with Divisor-Distance-Based Polynomial Division for STT-MRAM”, IEEE
Transactions on Magnetics, Early access, v. 1, pp. 1-8, Jan. 2022.

[61] D. Yoon, M. Erez, “Memory mapped ECC: low-cost error protection for last level
caches”, Proceedings of the International Symposium on Computer Architecture
(ISCA), pp.116-127, Jun. 2009.

134

[62] D. Yoon, M. Erez, “Virtualized and flexible ECC for main memory”, Proceedings of
the International Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS), pp. 397-408, 2010.

[63] D. Yoon, M. Erez, “Virtualized ECC: Flexible Reliability in Main Memory”, IEEE
Micro, v. 31, n. 1, pp. 11-19, Jan.-Feb. 2011.

[64] A. Udipi, N. Muralimanohar, R. Balsubramonian, A. Davis, N. Jouppi, “LOT-ECC:
LOcalized and Tiered Reliability Mechanisms for Commodity Memory Systems”,
Proceedings of the International Symposium on Computer Architecture (ISCA), pp.
285-296, 2012.

[65] D. Freitas, D. Mota, C. Marcon, J. Silveira, J. Mota, “LPC: An Error Correction Code
for Mitigating Faults in 3D Memories”, IEEE Transactions on Computers, v. 70, n.
11, pp. 2001-2012, Nov. 2021.

[66] C. Argyrides, P. Reviriego, D. Pradhan, J. Maestro, “Matrix-based codes for
adjacent error correction”, IEEE Transactions on Nuclear Science, v. 57, n. 4, pp.
2106-2111, Aug. 2010.

[67] J. Guo, L. Xiao, Z. Mao, Q. Zhao, “Enhanced memory reliability against multiple cell
upsets using decimal matrix code”, IEEE Transaction on Very Large-Scale
Integration (VLSI) Systems, v. 22, n. 1, pp. 127-135, Jan. 2014.

[68] S. Rahman, M. Sadi, S. Ahammed, J. Jurjens, “Soft error tolerance using Horizontal-
Vertical-Double-Bit diagonal parity method”, Proceeding of the International
Conference on Electrical Engineering and Information and Communication
Technology (ICEEICT), pp. 21-23, 2015.

[69] D. Freitas, D. Mota, R. Goerl, C. Marcon, F. Vargas, J. Silveira, J. Mota, “PCoSA: A
product error correction code for use in memory devices targeting space
applications”, Integration, the VLSI Journal, v. 74, pp 71-80, Sep. 2020.

[70] F. Silva, W. Freitas, J. Silveira, C. Marcon, F. Vargas, “Extended Matrix Region
Selection Code: An ECC for adjacent Multiple Cell Upset in memory arrays”,
Microelectronics Reliability, v. 106, pp. 113582:1-9, Mar. 2020.

[71] C. Argyrides, D. Pradhan, T. Kocak, “Matrix codes for reliable and cost-efficient
memory chips”, IEEE Transactions on Very Large-Scale Integration (VLSI)
Systems, v. 19, n. 3, pp. 420-428, Mar. 2011.

[72] A. Dutta, N. Touba, “Multiple bits upset tolerant memory using a selective cycle
avoidance-based SEC-DED-DAEC code”, Proceedings of the IEEE VLSI Test
Symposium (VTS), pp. 349-354, 2007.

[73] D. Freitas, C. Marcon, J. Silveira, L. Naviner, J. Mota, “New decoding techniques
for modified product code used in critical applications”, Microelectronics Reliability,
v. 128, n. 114444, pp. 1-14, Jan. 2022.

[74] JEDEC Global Standards for the Microelectronics Industry - at
https://www.jedec.org/, Dec. 2022.

[75] B. Jacob, S. Ng, D. Wang, “Memory Systems: Cache, DRAM, Disk”, Morgan
Kaufmann Publishers, Sep. 2007, 982p.

[76] C. Ababei, “COEN-4730 Computer Architecture Lecture 5 Main Memory”, available
at http://www.dejazzer.com/coen4730/doc/lecture05_dram.pdf, Apr. 2022.

[77] C. Slayman, M. Ma, S. Lindley, “Impact of Error Correction Code and Dynamic
Memory Reconfiguration on High-Reliability/Low-Cost Server Memory”,

135

Proceedings of the IEEE International Integrated Reliability Workshop (IIRW), pp.
190-193, 2006.

[78] M. Bach, “ECC and REG ECC Memory Performance”, available at
https://www.pugetsystems.com/labs/articles/ECC-and-REG-ECC-Memory-
Performance-560/, Jun. 2022.

[79] S. Goossens, K. Chandrasekar, B. Akesson, K. Goossens, “Memory Controllers for
Mixed-Time-Criticality Systems - Architectures, Methodologies and Trade-offs”,
Springer International Publishing, 2016, 225p.

[80] X. Jian, R. Kumar, “ECC Parity: A Technique for Efficient Memory Error Resilience
for Multi-Channel Memory Systems”, Proceedings of the International Conference
on High Performance Computing, Networking, Storage and Analysis (SC), pp. 1035-
1046, 2014.

[81] H. Duwe, X. Jian, R. Kumar, “Correction prediction: Reducing error correction
latency for on-chip memories”, Proceedings of the IEEE International Symposium
on High Performance Computer Architecture (HPCA), pp. 463-475, 2015.

[82] S. Paul, F. Cai, X. Zhang, S. Bhunia, “Reliability-Driven ECC Allocation for Multiple
Bit Error Resilience in Processor Cache”, IEEE Transactions on Computers, v. 60,
n. 1, pp. 20-34, Jan. 2011.

[83] T. Lin, Y. Li, M. Pedram, L. Chen, “Design Space Exploration of Memory Controller
Placement in Throughput Processors with Deep Learning”, IEEE Computer
Architecture Letters, v. 18, n. 1, pp. 51-54, Jun. 2019.

[84] N. Sadler, D. Sorin, “Choosing an Error Protection Scheme for a Microprocessor’s
L1 Data Cache”, Proceedings of the International Conference on Computer Design
(ICCD), pp. 499-505, 2006.

[85] S. Kim, “Area-Efficient Error Protection for Caches”, Proceedings of the Design
Automation & Test in Europe Conference (DATE), pp. 1-6, 2006.

[86] Standard Performance Evaluation Corporation, "SPEC CPU 2006", available at
https://www.spec.org/cpu2006/, Mar. 2023.

[87] C. Bienia, S. Kumar, J. Singh, K. Li, “The PARSEC benchmark suite:
Characterization and architectural implications”, Proceedings of the International
Conference on Parallel Architectures and Compilation Techniques (PACT), pp. 72-
81, 2008.

[88] PARSEC, “Overview”, available at https://parsec.cs.princeton.edu/overview.htm,
Mar. 2023.

[89] X. Jian, H. Duwe, J. Sartori, V. Sridharan, R. Kumar, “Low-power, low-storage-
overhead Chipkill correct via multi-line error correction”, Proceedings of the
International Conference on High Performance Computing, Networking, Storage
and Analysis (SC), pp. 1-12, 2013.

[90] J. Kim, M. Sullivan, M. Erez, “Bamboo ECC: Strong, safe, and flexible codes for
reliable computer memory”, Proceedings of the IEEE International Symposium on
High Performance Computer Architecture (HPCA), pp. 101-112, 2015.

[91] J. Hsieh, C. Chen, H. Lin, “Adaptive ECC Scheme for Hybrid SSD’s”, IEEE
Transactions on Computers, v. 64, n. 12, pp. 3348-3361, Dec. 2015.

[92] T. Chen, Y. Hsiao, Y. Hsing, C. Wu, “An adaptive-rate error correction scheme for
NAND flash memory”, Proceedings of the IEEE VLSI Test Symposium (VTS), pp.
53-58, 2009.

136

[93] H.-M. Chen, S. Jeloka, A. Arunkumar, D. Blaauw, C.-J. Wu, T. Mudge, C.
Chakrabarti, “Using Low Cost Erasure and Error Correction Schemes to Improve
Reliability of Commodity DRAM Systems”, IEEE Transactions on Computers, v. 65,
n. 12, pp. 3766-3779, Dec. 2016.

[94] S. Wang, F. Wu, Z. Lu, Y. Zhou, Q. Xiong, M. Zhang, C. Xie, “Lifetime adaptive ECC
in NAND flash page management”, Proceedings of the Design Automation & Test
in Europe Conference (DATE), pp. 1253-1556, 2017.

[95] S. Li, D. Yoon, K. Chen, J. Zhao, J. Ahn, J. Brockman, Y. Xie, N. Jouppi, “MAGE:
Adaptive Granularity and ECC for resilient and power efficient memory systems”,
Proceedings of the International Conference on High Performance Computing,
Networking, Storage and Analysis (SC), pp. 1-11, 2012.

[96] A. Basak, S. Paul, J. Park, J. Park, S. Bhunia, “Reconfigurable ECC for adaptive
protection of memory”, Proceedings of the IEEE International Midwest Symposium
on Circuits and Systems (MWSCAS), pp. 1085-1088, 2013.

[97] X. Jian, R. Kumar, “Adaptive Reliability Chipkill Correct (ARCC)”, Proceedings of
the IEEE International Symposium on High Performance Computer Architecture
(HPCA), pp. 270-281, 2013.

[98] J. Park, J. Park, S. Bhunia, “VL-ECC: Variable Data-Length Error Correction Code
for Embedded Memory in DSP Applications”, IEEE Transactions on Circuits and
Systems II: Express Briefs, v. 61, n. 2, pp. 120-124, Feb. 2014.

[99] L. Yuan, H. Liu, P. Jia, Y. Yang, “An adaptive ECC scheme for dynamic protection
of NAND Flash memories”, Proceedings of the IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), pp. 1052-1055, 2015.

[100] D. Shin, J. Park, J. Park, S. Paul, S. Bhunia, “Adaptive ECC for Tailored Protection
of Nanoscale Memory”, IEEE Design & Test, v. 34, n. 6, pp. 84-93, Dec. 2017.

[101] N. Mielke, T. Marquart, N. Wu, J. Kessenich, H. Belgal, E. Schares, F. Trivedi, E.
Goodness, L. Nevill, “Bit error rate in NAND flash memories”, Proceedings of the
IEEE International Reliability Physics Symposium (IRPS), pp. 9-19, 2008.

[102] Y. Cai, E. Haratsch, O. Mutlu, K. Mai, “Error patterns in MLC NAND flash memory:
Measurement, characterization, and analysis”, Proceedings of the Design
Automation & Test in Europe Conference (DATE), pp. 521-526, 2012.

[103] J.-C. Baraza-Calvo, J. Gracia-Morán, L.-J. Saiz-Adalid, D. Gil-Tomás, P.-J. Gil-
Vicente, “Proposal of an Adaptive Fault Tolerance Mechanism to Tolerate
intermittent Faults in RAM”, Electronics, v. 9, n. 12, pp. 2074.1-2074.30, Dec. 2020.

[104] J. Chen, X. Jiang, Y. Zhang, L. Liu, H. Xu and Q. Liu, “CARE: Coordinated
Augmentation for Elastic Resilience on DRAM Errors in Data Centers”, Proceedings
of the IEEE International Symposium on High-Performance Computer Architecture
(HPCA), pp. 533-544, 2021.

[105] Y. Lee, G. Koo, Y.-H. Gong, S. Chung, “Stealth ECC: A Data-Width Aware Adaptive
ECC Scheme for DRAM Error Resilience”, Proceedings of the Design, Automation
& Test in Europe Conference & Exhibition (DATE), pp. 382-387, 2022.

[106] S. Beamer, K. Asanovic, D. Patterson, “The GAP benchmark suite”,
arXiv:1508.03619 [cs.DC], 2015, available at https://arxiv.org/abs/1508.03619, Mar.
2023.

137

[107] J. Bucek, K.-D. Lange, J. Kistowski, “SPEC CPU2017: Next generation compute
benchmark”, Proceedings of the ACM/SPEC International Conference on
Performance Engineering (CPE), pp. 41-42, 2018.

[108] N. Rohbani, T. Maiti, D. Navarro, M. Miura-Mattausch, H. Mattausch, H. Takatsuka,
“NVDL-cache: Narrow-width value aware variable delay low-power data cache”,
Proceedings of the IEEE International Conference on Computer Design (ICCD), pp.
264-272, 2019.

[109] M. Andjelkovic, A. Simevski, J. Chen, Ol. Schrape, Z. Stamenkovic, M. Krstic, S. Ilić,
G. Ristić, A. Jaksic, N. Vasovic, R. Duane, A. Palma, A. Lallena, M. Rodríguez, “A
Design Concept for Radiation Hardened RADFET Readout System for Space
Applications”, Microprocessors and Microsystems, v. 90, pp. 104486:1-18, Apr.
2022.

[110] Everspin Technologies, “16Mb MRAM - Parallel Interface”, available at
https://www.everspin.com/16mb-mram-parallel-interface, Dec. 2022.

[111] JEDEC Global Standards for the Microelectronics Industry, “Low Power Double
Data Rate 5 (LPDDR5)”, available at https://www.jedec.org/standards-
documents/docs/jesd209-5b, Dec. 2022.

[112] M. Patel, G. de Oliveira, O. Mutlu, “HARP: Practically and Effectively Identifying
Uncorrectable Errors in Memory Chips that Use On-Die Error-Correcting Codes”,
Proceedings of the IEEE/ACM International Symposium on Microarchitecture
(MICRO), pp. 623-640, 2021.

[113] P. Nair, V. Sridharan, M. Qureshi, “XED: Exposing On-Die Error Detection
Information for Strong Memory Reliability”, Proceedings of the ACM/IEEE
International Symposium on Computer Architecture (ISCA), pp. 341-353, 2016.

[114] J. Decaluwe, “MyHDL - Design hardware with Python”, available at
https://myhdl.org/, Jun. 2022.

[115] XESS, “XESS Corporation”, available at https://xess.com/, Jun. 2022.

[116] XESS Libraries, “SDRAM controller and dual-port interface”, available at
https://github.com/xesscorp/VHDL_Lib/blob/master/SdramCntl.vhd, Jun. 2022.

[117] M. Stefani, “Dynamic Fault Tolerance Module for Memory Controller”, available at
https://github.com/marcops/dftm_module/, Dec. 2022.

[118] C. Stolze, “DDR5 RAM: Preparing for the Next Generation of Memory”, Corsair,
available at https://www.corsair.com/uk/en/blog/ddr5-primer. Dec. 2022.

[119] RISC-V, “Specifications”, available at https://riscv.org/technical/specifications/, Dec.
2022.

[120] Micron, “DDR4 SDRAM - MT40A4G4, MT40A2G8, MT40A1G16”, available at
https://datasheet.octopart.com/MT40A2G8JC-062E%3AE-Micron-datasheet-
141417503.pdf, Jun. 2022.

[121] A. Duran, X. Teruel, R. Ferrer, X. Martorell, E. Ayguade, “Barcelona OpenMP Tasks
Suite: A Set of Benchmarks Targeting the Exploitation of Task Parallelism in
OpenMP”, Proceedings of the International Conference on Parallel Processing
(ICPP), pp. 124-131, 2009.

[122] Hardinfo, “Benchmark for Linux”, available at https://github.com/lpereira/hardinfo,
Sep. 2009.

138

[123] Cadence, “Genus Synthesis Solution”, available at
https://www.cadence.com/en_US/home/tools/digital-design-and-
signoff/synthesis/genus-synthesis-solution.html, Dec. 2022.

[124] N. Jouppi, A. Kahng, N. Muralimanohar, V. Srinivas, “CACTI-IO Technical Report”,
https://www.hpl.hp.com/techreports/2013/HPL-2013-79.pdf, pp. 1-37, Sep. 2013.

[125] M. Stefani, “Absimth: lA Hardware simulator written in Java”, available at
https://github.com/marcops/Absimth, Apr. 2023.

[126] M. Stefani, F. Silva, C. Marcon, J. Silveira “Assessing Rules in Memory Controllers
with Hardware Simulator Executing Real Programs”, Proceedings of the Brazilian
Symposium on Computing Systems Engineering (SBESC), pp. 1-8, 2022.

[127] M. Stefani, F. Silva, C. Marcon, J. Silveira “Memory Controller with Adaptive ECC
for Reliable System Operation”, Proceedings of the 36th Symposium on Integrated
Circuits and Systems Design (SBCCI), pp. 1-6, 2023.

[128] O. Mutlu, “Memory scaling: A systems architecture perspective”, Proceedings of the
5th IEEE International Memory Workshop (IMW), pp. 21-25, 2013.

