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UM CONTRA MUITOS: EXPLORANDO A GENERALIZAÇÃO DO
APRENDIZADO MULTI-TAREFA EM TAREFAS COM CÓDIGO

FONTE

RESUMO

Engenharia de software é um processo complexo que envolve vários pas-

sos, muitas vezes requerendo um investimento significativo de recursos. Como

resultado, muitas ferramentas para suportar o desenvolvimento surgiram, com

modelos de aprendizado de máquina se tornando cada vez mais populares para

tarefas relacionadas. Recentemente, Transformers, uma classe de modelos, ob-

teve um tremendo sucesso no processamento de linguagem natural e foi adap-

tado para trabalhar com código-fonte, com modelos como o CodeBERT treinado

em texto e código. CodeT5, um desses modelos, emprega uma abordagem

prompt multi-task durante o treinamento para garantir melhor capacidade de ge-

neralização para tarefas-alvo. No entanto, primeiro, é necessário esclarecer qual

é o impacto dessa abordagem de multitarefa em um cenário Big Code. Nesta

dissertação, estudamos as várias vantagens e desvantagens dessa abordagem

de aprendizado para tarefas relacionadas a código-fonte. Usando modelos pré-

treinados de ponta, comparamos métodos específicos de tarefas e de prompt

multi-tarefa, analisando resultados de tarefas específicas para entender sua in-

fluência no desempenho. Também experimentamos diferentes combinações de

tarefas para determinar quais são mais benéficas e se ajudam o modelo a en-

tender melhor o contexto em que está sendo usado. Este trabalho lança luz

sobre a aprendizagem de multitarefa prompt para tarefas de código-fonte, des-

tacando como ela pode melhorar a eficiência de recursos e avançar a pesquisa

em aprendizado multitarefa para Big Code.



Palavras-Chave: multi-tarefa, código-fonte, transformers.



ONE AGAINST MANY: EXPLORING MULTI-TASK LEARNING
GENERALIZATION IN SOURCE-CODE TASKS

ABSTRACT

Software engineering is a complex process that involves several steps,

often requiring a significant investment of resources. As a result, many tools to

support development have emerged, with machine learning models becoming

increasingly popular for related tasks. Recently, Transformers, a class of mod-

els, has achieved tremendous success in natural language processing and has

been adapted to work with source code, with models like CodeBERT trained on

both text and code. CodeT5, one such model, employs a prompt multi-task ap-

proach during training to ensure better generalization capability for target tasks.

First, however, it needs to be clarified what impact this multi-tasking approach

has on a Big Code scenario. In this thesis, we studied the various advantages

and disadvantages of this learning approach for source-code-related tasks. Us-

ing state-of-the-art pre-trained models, we compared task-specific and prompt

multi-task methods, analyzing results on specific tasks to understand their influ-

ence on performance. We also experimented with different task combinations to

determine which are most beneficial and whether they help the model better un-

derstand the context in which it is being used. This work sheds light on prompt

multi-task learning for source-code tasks, highlighting how it can improve re-

source efficiency and advance research in multi-task learning for big code.

Keywords: multi-task, source-code, transformers.
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1. INTRODUCTION

Artificial Intelligence (AI) has emerged as one of the fastest-growing and

most popular areas in Computer Science. Intelligent tools and technologies have

become essential to modern life, automating several tasks and providing cru-

cial assistance across many others [69]. One of the driving forces behind this

advancement is Machine Learning (ML), which is widely used in various appli-

cations, including facial recognition [82], object detection [30], intelligent chat-

bots [13], and many more.

Software engineering is among the many areas that had significant im-

provements due to ML algorithms [7]. The process of documenting, writing, and

testing code during the software development cycle is expensive and challeng-

ing, which motivates the application of many technologies to create productivity

tools. A group of tasks such as Code Summarization [37], Natural Language Code

Search [36], and Code Generation [48] had many advancements in the past few

years due to the progress of ML tools that work with natural language, and more

specific Artificial Neural Networks (ANNs) and Deep Learning (DL).

Since 2012 with AlexNet [40], ANNs and their numerous variations have

had an expressive role in the recent achievements of AI. The use of GPUs to

optimize the training process combined with large-scale datasets allowed the

development of state-of-the-art models in many application domains [27].

An area deeply impacted by ANNs was Natural Language Processing

(NLP), which studies methods to compute, process, and reason over textual

data [22]. A flavor of ANN that became very popular in dealing with sequential

data as text was the Recurrent Neural Network (RNN)[66]. RNNs store relevant

temporal information in a hidden state, directly sent from a previous stage to the

following, together with the network input [27].

A recent neural architecture that has become state-of-the-art for most

NLP tasks is the Transformer [79]. This architecture is heavily based on the at-

tention mechanism, and its capability to have parallelism during training allowed

Transformers to replace the RNNs and rapidly take over the research landscape.

What started as a method for machine translation was soon adapted to several

other tasks and became the primary approach for DL in NLP [71]. Due to the sig-

nificant advancements obtained by this architecture, many different Transformer-

based models arrived and dominated the literature, such as BERT [21], BART [42],

GPT [59], and T5 [61].

Those advancements brought by Transformers are not exclusive to NLP.

Due to the naturalness hypothesis [7], we can assume that numerous natural lan-
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guage patterns are also present in programming languages, allowing us to use

NLP techniques to solve source-code problems. That assumption allowed several

Transformers [2, 25, 28] to be trained on bimodal data (code and natural lan-

guage), permitting them to solve a large group of code-related tasks in the soft-

ware development life cycle. Among bimodal models, CodeT5 [85] joined Multi-

Task Learning (MTL) and Transformers for source code, adapting similar strategies

from those applied in T5, but now to work with programming languages.

As seen in T5 and CodeT5, MTL is one of the implemented strategies to

leverage the success of ML models [19]. The traditional framework to train a

neural network uses only one task during the entire process, leading the model

to become a specialist in that particular task. While effective, it differs enor-

mously from human learning since we can extract information from more than

one exclusive source [14]. Using more than one task during training can improve

the model’s generalization capability, using patterns learned from one task to

improve performance in another [72].

Even with CodeT5 and other source code models, it is unclear how and

when MTL can be a successful approach to Transformers in code-related tasks.

The few studies [44, 85, 81, 56] that bind together these fields do not shed

light on the consequences of MTL regarding single-task performance and gener-

alization ability. Given the many released pre-trained models on programming

language corpora [2, 18, 25, 28, 85], there is still an uncovered area of research

regarding the benefits and struggles brought by MTL.

This work aims to compare single-task and MTL strategies when deal-

ing with source-code tasks. We conduct several experiments to evaluate how

different models perform in a prompt MTL setup for source-code-related tasks.

Specifically, we focus on Natural Language Code Search (NLCS) and Unit Test

Case Generation (UTCG) as evaluation tasks, which require a high level of code

comprehension. We also use six other tasks to aid the learning process.

Our goal is to determine whether MTL can improve the performance of

three different cutting-edge models in these specific tasks. Furthermore, we ex-

plore the influence of each task during training to discover interesting associa-

tions between datasets, tasks, and programming languages.

Although the multi-task models did not outperform the single-task mod-

els in most cases, they achieved comparable results, making them an exciting

option for optimizing resource allocation. Moreover, our study revealed some

curious behaviors, indicating that the pre-training process of the models has a

heavy influence on the posterior adaptation of MTL with prompt modifications.

Through our study, we intend to clarify how MTL can be used to build

better solutions for code-related tasks using deep models, understanding the
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consequences and relationships that can be established from different models in

using multiple tasks during model training. We believe our findings contribute

to developing more effective and efficient deep-learning models for source code-

related tasks and to the research landscape of MTL.

This Master’s thesis focuses on multi-task learning for source code-related

tasks. Section 2 provides background information on software engineering, ma-

chine learning, and multi-task learning, highlighting the importance of these

fields and their intersection. Section 3 presents related work, discussing the

most relevant papers and projects in the area of multi-task learning for source

code tasks. In Section 4, establish the research problem and our research ques-

tions to guide the experiments. Section 5 describes the methodology used in

our experiments, detailing the datasets used, the models trained, and the eval-

uation metrics used to analyze the results. Section 6 presents the results of our

experiments and discusses their implications, highlighting the advantages and

disadvantages of the prompt multi-task approach for source-code tasks. Finally,

in Section 7, we draw our conclusions, summarizing the contributions of our work

and discussing avenues for future research in the area of multi-task learning for

source code tasks.
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2. BACKGROUND

2.1 Machine Learning

Machine Learning (ML) is a sub-field of Artificial Intelligence (AI), and ac-

cording to Arthur Samuel, "Machine Learning (ML) is the field of study that gives

computers the ability to learn without being explicitly programmed" [68]. An-

other interesting definition is from Tom Mitchell, who defines a learning problem

as, "A computer program is said to learn from experience E with respect to some

class of tasks T and performance measure P, if its performance at tasks in T, as

measured by P, improves with experience E." [53].

This learning process is only possible with the help of many mathematical

tools that allow algorithms to discover complex patterns. Such discoveries permit

fitted models to predict behaviors or even describe events, becoming essential

tools in the decision-making process [53].

The learning process with data-driven ML models is usually divided into

two main steps: training and testing. At first, the algorithm learns patterns from

a dataset, optimizing them to approximate the data distribution. During the test

phase, we use a different data set that follows the same distribution from the

training set since our objective is to validate if the learned patterns generalize

knowledge rather than memorize what was seen.

If the model memorizes the training data, it becomes susceptible to

model noise, thus performing poorly in test data. This phenomenon is called

overfitting. The opposite occurs when the model cannot properly learn the data

complexity, underfitting [76].

ML algorithms are usually divided into two main groups, defined by how

the learning process occurs: supervised and unsupervised [76, 53] learning. The

main difference between these two groups is the presence of a label (or target)

that the model learns to associate with the features received as inputs. There

are numerous other learning procedures besides those previously mentioned, like

reinforcement learning [74], imitation learning [41], and others which we won’t

explain in detail since they don’t relate to the theme of this work.
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2.1.1 Supervised Learning

The objective of supervised learning is to predict the target variable

(or label) y given an input x. During the training process, given a dataset

D = {(xi , yi)}N
i=1 the algorithm will learn how to correlate a set of inputs X to

a group of corresponding target variables Y [57, 52]. Each instance xi will com-

monly be a D-dimensional vector, and each vector value is called a feature or

attribute. The idea behind supervised learning is that a teacher would carefully

manage the learner, providing the correct answer for every input, thus guiding

the model in the right direction to learn patterns that better predict the target

variable based on the input features.

Two classical tasks commonly seen as supervised learning examples are

classification and regression, where the main difference between them is the tar-

get variable data type [53]. For classification, each yi will be a categorical value

that belongs to a finite set of possibilities, yi ∈ {1, ..., C} [52]. Based on previous

patient data, a classification model could predict whether a patient develops a

specific disease. Regression is a slightly different task, where the target variable

yi is a real value, such as house prices or the temperature of some environment.

2.1.2 Unsupervised Learning

In unsupervised learning, the scenario is quite different from the previ-

ous one. There are no target variables, and the training process learns relations

between the input data itself, D = {xi}N
i=1. Such algorithms are used for expla-

nations and discovery scenarios, focusing on uncovering patterns that are not

easily obtainable from more straightforward analysis methods. Due to that char-

acteristic, a good knowledge of the problem context is desired to interpret the

outputs correctly [57].

A classic example of this type of learning is the k-Means algorithm [47],

which learns the best way to group the data into a specific number of clusters

defined by the users following arbitrary criteria. Unlike supervised learning, there

is no easy way to measure the quality of a model since there is no target label

(ground truth) to compare the results with [53].
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2.1.3 Self-Supervised, Few-Shot and Zero-Shot Learning

A significant problem in supervised learning is the need to label all data, a

process that becomes very expansive when building large datasets. Considering

the amount of available data that does not have target labels, an alternative

to train them is by using a self-supervised learning approach. In this learning

procedure, a model will learn the data distribution by comparing or predicting

parts of the data using its data as the source [46]. A relevant example of self-

supervised learning is language modeling. A model learns the token distribution

(words or part of words) from a corpus and can suggest words based on the

known distribution.

Another way to counter the lack of sufficient data to cover all cases in the

dataset is to train the model to learn how to predict or do a task with little or no

data. We call few-shot learning when a trained or fine-tuned model is expected

to predict a group of instances based on a few labeled examples [73]. When no

example is available during training, and we expect the model to generalize still

and successfully predict the instance, we are dealing with zero-shot learning [89].

2.2 Artificial Neural Networks

Artificial Neural Networks are ML algorithms inspired by the functioning

of the human brain. Introduced in 1943 by McCulloch and Pitts [49], the idea was

to mathematically simulate a neuron, a main cellular component of the human

brain. This idea gained life in 1958 with Rosenblatt’s Perceptron [64], a simple

structure that connects a set of input nodes to a group of output nodes [76].

Such nodes are commonly called neurons.

Each input node in the perceptron is connected to an output node by a

weight wi , where the weight w0 is the bias term and x0 = 1. The entering values

in each neuron are multiplied by their respective weights and summed. The

resulting value passes through a signal function that saturates to 0 for negative

values or 1 otherwise. A mathematical notation for a single neuron perceptron

can be seen in Equation 2.1:

h(x) = signal(w0 +
n
∑

i=1

wixi). (2.1)
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A problem with the perceptron is the limitation of the algorithm to solve

only linearly separable issues since it is only a linear combination of the inputs.

Figure 2.1 exemplifies the linear decision boundary that makes it impossible for

the model to solve problems like the logic XOR.

Figure 2.1: Perceptron’s linear decision boundary [76].

Due to limitations of dealing with non-linear problems, the Multi-Layer

Perceptron (MLP) arises, bringing hidden layers between input and output lay-

ers [52]. Besides new layers that already add some non-linearity to the model,

another component was added: activation functions. These functions took the

place of the signal function and replaced it with non-linear functions, helping the

model to identify even more complex patterns in data. One of the most popular

functions in contemporary architectures is the ReLU [1] function, shown in Equa-

tion 2.2, and those resulting from it, such as PReLU [31], GELU [33], CELU [10],

and others. This multi-layered architecture with non-linear activation functions is

usually called Feed Forward Network [27].

ReLU(x) = max(0, x) (2.2)

The training process of a neural network is based on three components:

loss function, forward pass, and backward pass. The loss function is responsible

for guiding the optimization process of the network weights, changing accord-

ingly to the more suitable function for the problem being learned. Usually, in a

supervised learning scheme, the loss function will receive the predicted output

ŷ and compare it with the original labels y , estimating how far the model’s pre-

diction was from the real values. An example of a loss function for a regression

problem is the Mean-Squared Error Loss (MSE), shown in Equation 2.3.
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J(w) =
1

2

N
∑

i=1

(yi − ŷi)2 (2.3)

The forward pass is when the model, given an input, uses the weights to

try to predict the correct output for a specific task. With the predicted output,

the loss function will evaluate how close to the objective the model is, and then,

based on that evaluation, the resulting value is used to perform the backward

pass.

The backward pass is the practical learning step, where the model uses

the backpropagation algorithm to discover the weights’ gradients for updating

them, thus optimizing the loss function. Backpropagation is the step of com-

puting the chain rule of multivariate derivatives, which is used to optimize the

network weights, often in conjunction with an optimization procedure called Gra-

dient Descent. The goal here is that one can minimize the loss function by iter-

atively making steps in the opposite direction of the gradient vector (vector of

partial derivatives of the loss function with respect to each network’s weight),

thus reducing the difference between predictions and expected outputs.

2.3 Deep Learning

Deep Learning (DL) is the name of the sub-field of ML that studies large

and complex neural networks that are used to build good feature representations

during the training process [27, 11]. This field achieved high popularity due

to the tremendous success of the so-called deep models in complex tasks with

non-structured data such as image classification [32], object detection [30], and

neural machine translation [9].

The main difference between DL and simpler neural networks, or other

ML models, relies on generating features (or feature engineering), a process

needed especially when working with non-structured data like images, audio,

or text. Standard ML algorithms struggle when the input contains a high dimen-

sional space due to the curse of dimensionality, which necessitates an efficient

feature engineering [27] procedure. In DL, the network is responsible for the

feature extraction phase, hierarchically discovering patterns in a composite way.

For instance, in the first layers of a convolutional network, we see the emergence

of more general representations, while in the deeper layers, the network learns

more refined representations emerge [23].
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Besides amplifying the number of hidden layers and making the network

deeper, we got distinct architectures specified in DL to process different data. For

images, convolutional networks achieved State-of-the-Art for a long period [32,

27]. These networks apply a sequence of filters (kernels) in the image, processing

groups of pixels and extracting patterns from them, becoming a more elegant

approach to many tasks with image processing.

2.3.1 DL for NLP

A common unstructured kind of data in which DL has excelled is natural

language, becoming a valuable tool in the research area called Natural Language

Processing (NLP). NLP is responsible for researching how machines can process

and extract useful information from plain text data [22]. Usual Feed-Forward Net-

works cannot sufficiently represent sequential information, leading to problems

when using them to understand text, where the order of words in the sequence

is crucial for conveying the semantics of what is written. To overcome that prob-

lem, a different architecture called Recurrent Neural Networks (RNNs) [66] was

proposed and started to be used for temporal series.

RNNs use parameter sharing to apply the update on the same group of

parameters in different time steps, allowing them to generalize across multiple

input forms and sequence lengths. By receiving a hidden state with the input,

the network can keep the essential information from the past seen entries, build-

ing a structure similar to a memory. A problem emerges when we must keep

long-term relations between the inputs due to the vanishing gradient problem,

which limits RNNs to very short-term memory [34]. Two other recurrent archi-

tectures were proposed as alternatives to the vanilla RNN to solve the previously

mentioned situation: Long-Short Term Memory (LSTM) and Gated-Recurrent Units

(GRUs). Both architectures introduced different gates as alternatives to keep

longer memories in the recurrent networks, achieving great success for various

tasks such as text classification [4], neural machine translation [9, 16], and lan-

guage modeling [51].

Another significant improvement in NLP was proposing a new vectorized

way to represent words, word pieces, or characters in a sentence, namely Word

Embeddings. They are dense vectors that, through a self-supervised learning ap-

proach, encode the semantic meaning of a token (usually a word or word piece)

in a multi-dimensional space. Such representations can be used by neural net-

works when working with text, replacing other representation strategies such as

Bag-of-Words (BoW) [22] or Term Frequency–Inverse Document Frequency (TF-
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IDF) [67]. Two popular algorithms to generate word embeddings were proposed

by Mikolov et al. [50]: Continuous Skip-Gram and Continuous Bag-of-Words. In

contemporary architectures, these representations are trained together with the

model itself in the embedding layer, usually seen among the initial layers of the

model.

The difference between word embeddings and more straightforward fea-

ture extraction techniques is that instead of only counting the frequencies of

terms, the algorithm tries to learn the semantics of a token by comparing how it

relates to other tokens. By mapping the semantics, an exciting property arises

from these dense vectors allowing us to analyze the relation between tokens

arithmetically. With such properties, we can make analogies like vking − vman +
vwoman ≈ vqueen, where vx represents the embedding of a word x [50].

2.4 Attention

Between the innovations to improve the performance of recurrent neural

networks, the attention mechanism was one of the most prominent. It started as

a way to solve the existing bottleneck between the encoder-decoder architecture,

commonly used for the Neural Machine Translation (NMT) problem, where one

network (e.g., an LSTM) would encode the textual representation and send the

final hidden state to the decoder (e.g., another LSTM). In this architecture, the

encoder is responsible for comprehending the data and compressing the valuable

information of the input in one context vector. The decoder would use this vector

to generate the output sequence sequentially [17].

Attention solves the previously mentioned bottleneck by measuring the

relevance of each encoder’s hidden state with the actual hidden state of the

decoder. The decoder receives not only an input token and the previous hidden

state but also a context vector ci

ci =
Tx
∑

j=1

αijhj (2.4)

Where the value of αij is given by a softmax operation, evaluating how relevant

each encoder’s hidden state is for the decoder’s current hidden state

αij =
exp(eij)
∑Tx

k=1 exp(eik )
(2.5)

eij = a(si−1, hj) (2.6)
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In this case, a is an alignment function that computes the attention scores for

the current decoder’s hidden state si−1 concerning each encoder’s hidden state

hj . In the original paper, a is a feed-forward neural network [9].

The attention mechanism helped not only in matters of performance but

also with the problem of the vanishing gradients since now the gradients can

reach the early stages of the encoder network. Also, the attention scores can be

used as an explainability tool to comprehend which words the model relied on

when predicting a specific output word.

2.5 Transformer Networks

Entirely based on the attention mechanism, the Transformer network,

introduced by Vaswani et al. [79], became a popular alternative to RNNs to work

with sequential data. Initially proposed for NMT, the architecture relies mainly on

attention blocks to identify the language patterns, allowing the model to leverage

parallelism during training and thus replace the sequential RNNs. This difference

not only allows the transformer model to train faster but also allows another way

to capture language features.

The Transformer architecture is divided into two main blocks: an encoder

and a decoder, and both are composed of smaller blocks called sub-layers. Each

sub-layer output is given by LayerNorm(x + Sublayer (x)), where LayerNorm is a

normalization layer, and the summation with x is a residual connection. The

encoder is responsible for extracting a rich feature representation from the input,

and the decoder uses the extracted features to build the output.

The model receives as input a group of embedded tokens that are summed

with the positional encoding, a function responsible for keeping track of the tem-

poral aspect of the model while still allowing for parallel computation.

The authors call their attention function "Scaled Dot-Product Attention",

which receives as input a group of query and key values with dimension dk and a

set of values with dimension dv . The final equation is similar to the dot-product

attention function but scaled by the factor
p

dk , as can be seen below

Attention(Q, K , V ) = softmax
�QK T

p

dk

�

V (2.7)
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This function is used in the Multi-Head Attention layers, which apply it to the

input itself multiple times (different views of what can be learned).

MultiHead(Q, K , V ) = Concat(head1, ..., headh)W O (2.8)

headi = Attention(QW Q
i , KW K

i , VW V
i ) (2.9)

Each parameter matrix W is learned during the train, and the number h is a

hyper-parameter called attention heads [79]. The Masked Multi-Head Attention

layer is similar to the previous one, with the difference that subsequent tokens

are masked, and the last sub-layer is a simple feed-forward network. The com-

plete Transformer representation can be seen in Figure 2.2.

Figure 2.2: The Transformer’s architecture is divided into an encoder and a de-
coder. Both parts comprise other functions, mainly based on the attention mech-
anism [79].

2.5.1 BERT, GPT, and T5

Besides the original transformer architecture, other Transformer-based

architectures achieved success in a wide range of natural language tasks [12,
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63, 61], adapting the NMT structure to new different forms of processing data.

These new architectures brought the possibility of pre-training the model in large

corpora and thus made it available for fine-tuning, following the transfer learning

scheme [91].

Introduced by Delvin et al. [21], BERT stands for Bidirectional Encoder
Representations from Transformers. BERT is a Transformer-like model that en-

codes a given sentence into a dense representation, becoming very useful for

extracting rich textual features. BERT’s architecture is based only on the encoder

block of the original Transformer [79], and due to that architecture, observed in

Figure 2.3, it is easily adapted to solve different natural language tasks after the

appropriate pre-training process, becoming an excellent textual encoder.

BERT’s main innovations were in the model’s architecture, as already

mentioned, and in the training process. Instead of the simple conditional lan-

guage modeling, where the model should predict the next token for the given

context, BERT is trained with Masked Language Modeling (MLM). In MLM, the

model receives a group of WordPiece [88] tokens, and 15% of the tokens are

replaced at each iteration. The objective of the model, then, is to predict the

replaced words. But if every replaced token were replaced with a mask token,

there would be a big difference between pre-training and fine-tuning, where the

model does not have masked tokens. The alternative is not always to be replaced

by a mask, from the 15%, 80% are masked as [MASK ], 10% are replaced by a

random token, and the remaining 10% remain unchanged. With this approach,

the model can learn bidirectional representations from the input itself, without

limitations to processing the text only left-right or vice-versa [21].

Together with the MLM, Next Sentence Prediction (NSP) is also used dur-

ing training to allow the model to understand the relationship among different

sentences. A [SEP] token is used in the input to indicate the division between

the first and second sentences. The output then comprises a token to indicate

whether the second sentence is the continuity of the first. This task is added to

allow BERT to learn downstream tasks such as Question Answering (QA), where

the model needs to receive two input sentences instead of one.

BERT also uses a different way to embed the tokens for the input. In ad-

dition to the composition of token embedding and positional embedding, already

seen in the original Transformer paper, due to the NSP task, segment embedding

is also summed to the dense representation. With that, the model can identify

which tokens belong to the first sentence and which belong to the second [21].

Another famous Transformer-based architecture is the GPT family [59,

60, 12], composed only by decoder blocks. Released by OpenAI and distinct from

BERT, GPT does not create bidirectional representations from words since it works
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Figure 2.3: BERT has specific pre-training tasks that allow the model to learn gen-
eral characteristics of the natural human language. After pre-training, the model
can be adapted to a large number of different tasks by a fine-tuning process [21].

autoregressively. That characteristic makes it great at conditional generation

tasks such as conditional language modeling or text generation. The most recent

model following that architecture was GPT-3 [12], a large language model trained

in massive corpora and responsible for exploring the limits of what language

models can do.

Differently from both previous architectures, T5 [61] follows a more ap-

proximate architecture from the original Transformer, composed of a group of

encoder and decoder blocks. The central aspect behind T5 is the natural capa-

bility of the model to be trained in a multi-task learning paradigm. Every task

is treated as a sequence-to-sequence problem and distinguished by a prefix at-

tached to the prompt input, as seen in Figure 2.4.

Figure 2.4: The text-to-text framework proposed to train T5 in the multi-task
learning setup. The prefix identifies which task should be performed by the
model [61].
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2.6 Source Code

Every software developed follows a Programming Language (PL) in the

form of source code. We can define source code as "any fully executable descrip-

tion of a software system. It is therefore so construed as to include machine

code, very high-level languages, and executable graphical representations of

systems" [29]. Thus, source code is responsible for defining the behavior of a

computer program by putting together a group of logical arguments, operations,

and rules in a static human-readable structured sequence of steps to build an

algorithm. The term big code refers to performing statistical analysis or train-

ing machine learning models with huge programming language corpora [7, 5].

Most ML tasks in big code are related to software development necessities and

productivity tools.

Although programming languages are written using natural language

terms and can be analyzed as textual documents, there are some differences

between both. Ren et al. [62] enumerates three major differences:

• Number of Words: We have a selected and limited number of words in a pro-

gramming language, a direct contrast to natural language. When analyzing

source code, a group of specific words has more meaning and relevance

than others, which implies different learning and evaluation approaches.

• Document Structure: reading code is not as simple as reading any English

text. Since we cannot simply go from left to right, we must obey the nat-

ural tree structure of code composed of variables, loops, and conditional

commands. This tree structure is called the Abstract Syntax Tree (AST) [3].

• Semantic Structure: while the natural language may have ambiguous ex-

pressions, in source code, each instruction must be unique, objective, and

specific on what should happen.

The AST representation holds code-specific information that cannot be

understood by analyzing the tokens and their order in the source code. In an

AST, each part of the code is detailed in a tree-like structure, where each node

contains relevant details, such as whether the node is an identifier. Using this

representation is said to improve the performance of a neural model [28, 8, 58,

85] since they can use not only syntax information but also semantics.

It is important to notice that even with those relevant differences, a hy-

pothesis considers coding as a form of human communication. Therefore, a

group of statistical properties in source code should be similar to natural lan-

guage [7]. The Naturalness Hypothesis, as it is called, allows us to explore these
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patterns and extend many of techniques used with natural text to the program-

ming domain without significant complications. Following the trend in NLP, the

most recent approaches for source code tasks are Transformer-based [79], fol-

lowing the scheme of pre-training and fine-tuning.

A publicly-available benchmark for source code tasks is called CodeXGLUE [48],

inspired by the original GLUE [80], a popular benchmark for NLP models. The idea

of such benchmarks is to group tasks and corresponding datasets that can be

used to evaluate how well a model can understand complex aspects of a specific

area. CodeXGLUE splits 10 tasks into 4 distinct categories based on the input

and output modalities, establishing and keeping a list of best-performing models

for each.

2.7 Multi-task Learning

Unlike typical ML models commonly trained as task specialists, humans

learn multiple tasks simultaneously. For instance, babies learn how to walk iso-

lated from other activities and leverage information from other motor skills that

are being developed simultaneously to help in the learning process [19]. Relying

on that principle, Multi-Task Learning (MTL) is a learning paradigm where more

than one task is used during training, expecting the model to generate better

feature representation by using different knowledge sources.

MTL is a solid approach to improving the generalization capabilities of a

model [65]. NotIt is not only an alternative to leverage performance but can be

a tool for lowering the computational resource cost since instead of training one

model for each task, we can use only one model for multiple objectives [72, 93].

A formal definition of MTL can be found in the work of Zhang and Yang [93],

where:

Given m learning tasks {Ti}
m
i=1 where all the tasks or a subset of them

are related, MTL aims to learn the m tasks together to improve the

learning of a model for each task Ti by using the knowledge contained

in all or some of other tasks.

Recent work divides MTL into two categories: hard and soft parameter

sharing [19]. In hard parameter sharing, all or the majority of the layers from

the network are shared across tasks. A standard option with neural networks is

to share the hidden layers and keep a task-exclusive head to generate the task-

specific outputs [19]. Differently, soft parameter sharing is a paradigm where
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each task has its model with its weights. Then, regularization is applied to the

model, inducing the parameters to be as similar as possible.

For Transformers, a relevant strategy to MTL that becomes popular with

T5 [61] is to use the prompt to warn the model about which task should be

executed for a specific input. With that premise, it adds a task prefix to the

input signaling to the model in which the task should be executed. Manipulating

the input’s behavior to lead the model toward a specific output or objective has

recently become popular, especially after GPT-3 [12] and the area of prompt

engineering [43, 92].

A critical aspect to pay attention to when following an MTL paradigm in

which tasks should be learned together. The tasks used during training must

have some level of similarity; otherwise, that strategy can lead to poor perfor-

mance and the phenomenon called negative transfer [72]. In fact, different de-

tails besides the relationship of the tasks need to be taken into account when

training, such as the frequency at which each task will appear, which datasets

to use, and which general strategy training will follow (hard or soft parameter

sharing). Such points are necessary to avoid negative transfer and stop the

knowledge obtained from one task harms another [72].

It is essential to distinguish between MTL [14] and transfer learning [91]

since that, in both paradigms, more than one task is used. Besides being a widely

adopted strategy to speed up and improve the generalization process [21, 25,

61, 48, 32], transfer learning has two different moments: pre-training and fine-

tuning. During pre-training, a task such as language modeling is used to induce

the model to learn general aspects of a particular field or context (e.g., general

semantics and syntactic). The pre-trained model is then used in the fine-tuning

step, which focuses on specifying the weights for solving a target task. In MTL, we

focus on using more than one task in the training process without distinguishing

the number of steps or methodology.

Some recent models are pre-trained with multiple tasks, such as BERT,

which uses MLM and NSP [21]. In these cases, the literature does not commonly

refer to the pre-training tasks as an MTL scenario, even with more than one

task guiding the optimization of the training. T5 [61] and similar models are

exceptions; once the pre-train with many tasks is the

Recently Google Research introduced Pathways Language Model (PaLM) [?],

a 540-billion parameter, dense decoder-only Large Language Model (LLM) trained

with Pathways [20], a distributed system to train machine learning models effi-

ciently. The paper claims that the more parameters the LLM has, the more knowl-

edge it can extract from the dataset, learning how to do more distinct tasks with-

out explicit training. Unfortunately, the proportion of resources to train an LLM
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such as PaLM or GPT-3 [12] is unrealistic to most research laboratories or any

practitioner’s available machinery, leading the community to search for ways to

optimize the usage of available hardware.
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3. RELATED WORK

3.1 Source Code Models

The first proposed models for source code tasks were RNN based, such

as LSTMs [35], following the idea of adapting natural language solutions for pro-

gramming languages. Code-NN [37] was one of the most relevant neural-based

models proposed for source code tasks. The proposed model achieved interest-

ing results in Code Summarization, where for a given code snippet, the model

should output its corresponding natural language description. For example, in

Natural Language Code Search (NLCS), given a natural language description, the

model should find the most similar code snippet according to a score function

and a previous database. Using a dataset based on StackOverflow1 posts, they

trained an LSTM with attention for each task as encoder and an LSTM as decoder

for summarizing source code.

Code2Seq, proposed by Alon et al. [8] is another relevant work based on

RNNs. In addition to the natural sequential information, an AST [3] representation

is used to extract code-specific structural details. The proposed model follows the

encoder-decoder framework, with a fully-connected layer in the middle. Each AST

path is encoded by an LSTM and summed with the code embeddings, creating a

combined representation used as input for the fully-connected layer. The output

of the fully-connected layer will feed an LSTM decoder cell with attention. The

authors prove that their model performs better than previous baselines in both

tested tasks, Code Summarization and Code Captioning2.

3.1.1 Transformer Models for Code

Following the general NLP research landscape, large pre-trained Transformer-

based models like CodeBERT [25] and CodeGPT [48] achieved great success in

source code tasks. They usually pre-train the models on a large code corpus col-

lected from GitHub 3 using language modeling as the training objective to cap-

1https://stackoverflow.com/
2In this work, the authors treat Code Summarization as discovering the name of a function

and Code Captioning as finding a natural language description from a code repository to match
a code snippet.

3https://github.com/,

https://stackoverflow.com/
https://github.com/
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ture general code information and be successfully fine-tuned to a downstream

task like Code Summarization or Code Generation.

CodeBERT [25] was the most relevant BERT-like model released for code

tasks. It was pre-trained on the CodeSearchNet dataset (CSN) [36] with masked
language modeling, and replaced token detection tasks using code and natural

text as bimodal data, and only code as unimodal data. After pre-training, the

model is fine-tuned to Code Summarization and Code Search, both tasks that re-

quire learning programming and natural language. Even without a code-specific

representation such as AST, seen in Code2Seq [8], CodeBERT effectively learns

how to extract meaningful dense representations out of code and text, allowing

it for further adaptations.

As an improvement to CodeBERT, GraphCodeBERT [28] goes beyond the

syntactic level and implements two data-flow pre-training tasks, capturing the

semantics and code structure. With edge prediction, the model can learn about

the relationship between the variables themselves, and with node alignment,
the model learns how these variables behave on the code snippet. Another

CodeBERT-based improved model is SynCoBERT [84], which also uses two pre-

training tasks specific for code: identifier prediction, which tries to predict, for

each code token, whether it is an identifier, and AST edge prediction, very simi-

lar to GraphCodeBERT’s edge prediction.

Based on GPT-2 [60] architecture, CodeGPT [48] was released as an au-

toregressive model for Code Completion and Code Generation tasks. More re-

cently, Codex [15] was released by OpenAI as an LLM for code, serving as the

base for GitHub Copilot 4, a service to help programmers with code completion in

daily tasks. Some other models were also released and evaluated for generation-

focused tasks, some trying to beat Codex, and some released as experiments or

tutorials like CodeParrot [90].

Following the original Transformer encoder-decoder structure, two pro-

posed models were PyMT5 [18] and PLBART [2], based on T5 [61] and BART [42]

architectures, respectively. Both models were pre-trained only on masked lan-

guage modeling tasks, without any code-specific task, and then are fine-tuned

on downstream tasks: PyMT5 in Docstring and Code Generation (defined by the

prefix attached in the input) while PLBART in Code Summarization, Code Gener-

ation, Code Translation, and Code Classification.

4https://github.com/features/copilot

https://github.com/features/copilot
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3.2 MTL for source code Tasks

Following the idea of using deep learning and MTL to increase productiv-

ity in development tools, CugLM [44] was proposed as the first Transformer-based

code completion model. Three tasks are used during model pre-training. Bidirec-

tional MLM and Next Code Segment Predicting are similar to the tasks used for

BERT [21] pre-train but adapted to source code context, one for token level and

another for sentence level. The third task is unidirectional LM, which is the same

technique in autoregressive models like GPT-2 [60].

Interestingly, only identifier tokens with type information are masked for

bidirectional MLM. Identifier tokens are variables or function names, often con-

taining relevant information about the code snippet. The authors claim these to-

kens contain relevant information to help the model understand the source code.

As in BERT, the loss of the model is a sum of the three cross-entropy losses.

A limitation of this work is that for weakly-typed programming languages,

the first pre-training task becomes a regular masked language modeling task.

Thus, the model loses all code-specific information it could understand, becoming

just an adaptation of natural language tasks to a different context. Moreover,

significant structural information is lost without a specific method to extract it.

Another MTL approach for source code tasks is MulCode [81], a model

that combines a pre-trained BERT [21] and a Tree-LSTM [75] to extract code-

based embedding and an AST representation, respectively, acquiring and using

sequential and structural information. The model contains three layers: (i) a

universal representation layer responsible for receiving the inputs and extracting

the features to be used in the tasks; (ii) the task-specific input layer that uses two

attention modules to give the necessary importance to sequential and structural

information, which changes from task to task; (iii) and finally, a task-specific

output layer to compute the outputs and losses in the training step.

MulCode itself is not pre-trained due to its general architecture, just a

combination of other pre-trained models. The model is trained on three different

downstream tasks:

• Comment classification (classifying whether a statement is good or not).

• Author attribution (discovering the author of a given code snippet).

• Duplicated function detection (identifying whether two functions have the

same functionality).
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Those tasks were selected due to the small size of the datasets available for

each, an exciting scenario where MTL can improve the model’s generalization

capability by combining information from all datasets and tasks. Another impor-

tant aspect is the usage of the AST representation, which provides the model

with code-specific information for all tasks.

The authors tested the approach with three other distinct tasks: library

classification, algorithm classification, and bug detection to show that the method

generalizes well for source code. These three tasks were chosen given their dis-

similarity in terms of complexity and dataset sizes.

CoTexT [56] comes as the first multi-task approach to combine the Code-

SearchNet dataset [36], and T5 [61] checkpoints as initialization configuration.

They use a self-supervised pre-training strategy and then fine-tune the model on

four downstream tasks from the CodeXGLUE benchmark [48]: Code Summariza-

tion, Code Generation, Code Refinement, and Defect Detection.

The MTL approach followed by the authors uses prefixes to specify in

which language the input is, similar to T5 [61]. That method is only used for

fine-tuning tasks that contain more than one language or possible configuration.

Hence, for a task like Code Summarization on CodeSearchNet, the input got a

prefix containing the name of the programming language, treating each different

PL as another task. This multi-task approach was used for only two tasks between

the four downstream previously discussed.

Another T5-based [61] model was CodeT5, proposed by Wang et al. [85],

a transformer model trained for better code understanding and generation. Since

it relies on T5 architecture, the authors claim that the encoder extracts useful

source code knowledge into a dense representation while the decoder handles

generation tasks. The main difference from CoTexT is the pre-training process,

where besides the ordinary self-supervised learning method, they use a combi-

nation of source-code-focused tasks to enhance model comprehension and un-

derstanding. Further, the model is fine-tuned to a group of six tasks to evaluate

its performance.

During pre-training, besides the usual MLM (a denoising objective), CodeT5

implements two tasks to help the model encode code-specific properties based

on information extracted from the AST representation. The first is identifier tag-
ging, where the model tries to discover which tokens are identifiers, and masked
identifier prediction, where all identifiers receive a specific unique token, and

the model needs to discover the tokens based on their occurrences in the code

snippet. The combination of these three approaches together is called Identifier-
aware Denoising Pre-training.
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Another pre-training task tested in a few experiments is bimodal dual
generation, which is the translation from code to comment and vice-versa. The

entire pre-training scheme of CodeT5 can be seen in Figure 3.1.

Figure 3.1: The complete pre-training scheme of CodeT5, bounding together all
four tasks. Important to mention that Bimodal Dual Generation is not always
used [85].

An MTL approach was tested and compared with the typical singular-task

protocol for fine-tun downstream tasks. In the multi-task scenarios, the authors

used the same strategy from CoTexT and T5 to add prefixes indicating to the

model which task should be performed to get the correct output. A difference

between CodeT5 and CoTexT is that were not only the PLs appended at the input

but also the task that the model should perform. Especially for Code Summariza-

tion, the multi-task approach achieves the best scores.
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4. RESEARCH PROPOSAL

Though sharing similarities with natural language, source code is an es-

sentially different data modality, with specific traits and characteristics [7]. With

the rise and success of large pre-trained Transformers that work with both pro-

gramming and natural language modalities [2, 18, 25, 28, 85], one can study

how the application of different training techniques and methods may affect the

behavior of a model for helping in source-code tasks.

MTL is undoubtedly a powerful strategy to optimize resources and in-

crease the generalization capability of ML models [19]. By learning a group of

related tasks together, the model can leverage information from different per-

spectives and sources to enhance its overall performance. In recent years, the

approach of adding prompt prefixes as a way to induce MTL in language mod-

els [61, 85, 56] has emerged as a simple yet effective way to boost model

performance. Despite its benefits, there is still a lack of exploration about the

possibilities of exploiting MTL for source-code-related tasks.

A good example is CodeT5 [85], which only applies MTL as an attempt

to improve performance without considering a further analysis of the tasks or a

more detailed exploration. That shows the current lack of understanding on how

multi-task can increase or decrease model performance, especially when using

multi-task via prompt modifications.

In addition to improving performance, MTL is a particularly attractive op-

tion for reducing the computational resources required for training models [14].

In today’s era of large language models, practitioners without access to power-

ful hardware need to explore alternative strategies for optimizing available re-

sources. One such strategy is to solve multiple tasks using a single model, which

can significantly reduce the computational burden of training and deploying ML

models.

Our focus in this work is to explore prompt multi-task learning for source-

code tasks and analyze its effect on the generalization ability of a model. To

achieve this goal, we will compare various neural architectures and evaluate

our models on two specific tasks: Natural Language Code Search (NLCS) and

Unit Test Case Generation (UTCG). Notably, UTCG has not yet been evaluated or

experimented within the MTL approach, making this study a novel contribution

to the field.

Our objective is to address the lack of exploration in using MTL for source-

code tasks by adopting the idea of using a prefix attached to the beginning of

the input to determine the model’s intended task [85, 61]. We aim to investigate
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not only whether a multi-task model can surpass its single-task counterparts

but also understand the relationship between tasks and datasets, and how each

contributes to the overall training procedure. It is worth noting that due to com-

putational constraints, some compromises will be made for model training, such

as limiting the number of experiments and reducing batch sizes.

4.1 Research Questions

Aligned with the objective detailed above, we have built a group of re-

search questions we answer in this thesis, followed by the methods used to

achieve those answers.

• RQ1: Does prompt MTL improve the generalization ability of a model in

UTCG and NLCS? If so, by how much?

• RQ2: Some tasks in our prompt MTL setup have a major influence on the

training process. Is the same behaviour observed for both UTCG and NLCS

and between the models?

• RQ3: Will a model trained with MTL have better zero-shot performance in

UTCG and NLCS than models trained for single tasks?

To answer our research questions, we will follow a specific methodology.

First, we will train three state-of-the-art architectures for big code learning in

both multi-task and single-task approaches for two downstream evaluation tasks

while comparing the scores on specific metrics for each task. This will allow us

to determine whether there are direct improvements or undesired consequences

achieved by using the multi-task learning paradigm. Throughout these compar-

isons, the single-task models will be considered as baselines.

In order to address RQ2, we will train models with different combinations

of tasks using a multi-task learning approach and evaluating the impact of each

task on the overall model performance. For example, we may train a model with

only sequence-to-sequence tasks and compare its performance to that of a full

multi-task model, analyzing whether tasks that do not follow such a framework

have a bad influence in the training process. This will allow us to determine

whether certain tasks can help the model encode code-specific information more

effectively than others and shed light on the relationship between the tasks and

the overall performance of the model.

Finally, for answering RQ3, we will first train the models in a MTL setup

using all tasks described previously, except by the evaluation ones, and then
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without any other adjustment we will measure their zero-shot performance. Re-

call that zero-shot learning is the practice of using a model to infer or recognize

patterns and classes not seen during training [89], and in NLP we can use zero-

shot inference to have a good notion about the generalization capability of a

model [12]. Our objective with this question is to check whether MTL improves

the model overall knowledge about the domain.
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5. METHODOLOGY

5.1 Evaluation Tasks and Metrics

Our evaluation will focus on being fair and resource-optimized. For such,

we will focus on two downstream source code tasks, namely Unit Test Case Gen-

eration (UTCG) and Natural Language Code Search (NLCS). We will train baseline

single-task models to ensure a fair evaluation. By limiting our focus to two tasks,

we intend to facilitate our analysis at this moment of the research and also save

us computational time.

UTCG is a fundamental part of software development. It can help prevent

numerous problems and also the necessity of exhaustive refactoring. Neverthe-

less, it is a complicated and time-consuming task, mainly due to the nature of

implementing the functions and attending to all points that need to be tested.

Hence, the use of machine learning models to help in this process comes in

handy. In UTCG, we aim to create unit tests for source code methods: given a

function (method) coded in a particular programming language, return a func-

tional unit test for that function.

To evaluate the performance of the generated tests, we will use two main

metrics: Bilingual Evaluation Understudy (BLEU) [54], commonly used in Neural

Machine Translation and also for other sequence-to-sequence tasks, and Code-

BLEU [62], an adaptation of BLEU for source-code tasks.

In order to compute BLEU, a candidate sentence is compared with a

group of references in different n-gram levels. Equation 5.1 demonstrates the

general approach to compute the metric, where pn is the modified precision ob-

tained with the n-grams, N is the number of n-grams that will be used (commonly

set to 4), and wn is the weight (usually we use uniform weights, where wn =
1
N ).

As described in Equation 5.2 and used to penalize short translations, BP is the

brevity penalty, where c is the size of the candidate and r is the size of the

reference.

BLEU = BP · exp
� N
∑

n=1

wn logpn

�

(5.1)

BP =







1 ifc > r

exp
�

1 − r
c

�

ifc ≤ r
(5.2)
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Unfortunately, BLEU is not enough to measure the quality of the gener-

ated source code. Since BLEU only measures n-gram matches, it only considers

the sequential structure of the evaluated text, thus not evaluating more rele-

vant aspects of source code. To capture code-specific information and properly

measure the quality of the generated tests, we will also use CodeBLEU [62], a

metric that evaluates the tree structure and AST representation of code to mea-

sure quality. CodeBLEU uses, besides n-gram matching, a weighted version that

considers relevant words more important than others, a syntactic AST matching

procedure, and a data-flow match.

As seen in Equation 5.3, each criterion is weighted by a specific term that

provides its importance. In this work, both α, β, γ, and δ are set to 0.25, which

means we are giving equal importance to all terms.

CodeBLEU = α · BLEU + β ·Weighted BLEU + γ · Syntatic AST Match + δ · Semantic Data-flow Match

(5.3)

In NLCS, given a natural language function description such as “how to
multiply matrices?”, the model should retrieve the corresponding code snippet

that performs the described behaviour, or at least the most similar behaviour to

that description. Since it is a retrieval task, a common metric used to evaluate

ranking systems is the Mean Reciprocal Rank (MRR), which evaluates the cor-

rectness of ordered lists for a group of queries. Equation 5.4 details how MRR is

calculated, with Q representing the queries and ranki the place where the most

relevant value appeared on the list for the i-th query.

MRR =
1

|Q|

|Q|
∑

i=1

1

ranki
(5.4)

5.2 Datasets and Tasks

This study consists of eight tasks, each with its respective dataset. Two

tasks will be used for training and evaluation, while the other six will serve as

support for the training process, and we will not measure model performance on

them. In the following, we will provide details about each dataset, the associated

task, and general information such as size and structure.

Two large datasets will be used to train and evaluate most models for

this work: CodeSearchNet (CSN) [36] and Methods2Test [77]. The CSN dataset

was first introduced as a challenge for the code retrieval task. Given a natural
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language description of a function as input, the model should output a code

snippet that performs that function. Since this dataset is the same one used to

train CodeBERT [25], we can use the already cleaned version, available on the

project’s GitHub Repository1.

# Train Input

def file_handle(fnh, mode="rU"):

handle = None

if isinstance(fnh, file):

if fnh.closed:

raise ValueError("Input file is closed.")

handle = fnh

elif isinstance(fnh, str):

handle = open(fnh, mode)

return handle

# Train Output

"""Takes either a file path or an open file handle, checks validity and

returns an open

file handle or raises an appropriate Exception.

:type fnh: str

:param fnh: It is the full path to a file, or open file handle

:type mode: str

:param mode: The way in which this file will be used, for example to

read or write or

both. By default, file will be opened in rU mode.

:return: Returns an opened file for appropriate usage."""

Methods2Test is a dataset released by Microsoft that contains a group

of focal methods and their respective unit tests. In addition to the focal meth-

ods, the dataset also contains the context in which the methods are inserted,

so they can be used to improve results. The dataset is available on the GitHub

Repository in https://github.com/microsoft/methods2test, and we exemplify one

instance from the dataset in the source code below.

// Train Input

public static String getThreadId() {

Instant now = Instant.now();

1https://github.com/microsoft/CodeBERT

https://github.com/microsoft/methods2test
https://github.com/microsoft/CodeBERT
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long nano = now.getNano();

long remainder = nano - (nano / 1000 * 1000);

if (remainder == 0) {

int rndNano = random.nextInt(1000);

nano = nano + rndNano;

}

return now.getEpochSecond() + "-" + nano;

}

// Train Ground Truth

@Test public void testGetThreadId() {

String threadId = Utils.getThreadId();

assertNotNull(threadId);

}

A fundamental cleaning step to prepare the datasets is the removal of

duplicated instances. As seen in the work of Allamanis [6], the presence of du-

plicated code snippets can lead to an overestimation of the actual model perfor-

mance, which is currently one of the major problems when evaluating very large

models that are trained on big code. Also, for CodeSearchNet, we removed the

docstrings present inside the source code snippets to avoid performance overes-

timation of the retrieval task.

Each of the six aiding tasks that were used exclusively for multi-task

training has a distinct dataset with its own programming languages, input, and

outputs. We use the same pool of tasks from CodeT5 [85], so the datasets are

used as provided in the repository. Code Summarization is the only task for

which we did not download a specific dataset; instead, we adapted the code to

load different information from CSN, already used for NLCS.

We introduce a brief description of the datasets and the associated task

below:

• Translation: this task involves translating a code snippet from one program-

ming language to another. The dataset contains pairs of Java/C# code snip-

pets, where one is used as source and the other as target for model train-

ing [85].

• Refinement: in this task, the model is given a buggy code snippet and should

output its fixed version. The dataset contains pairs of buggy and fixed Java

functions [78].
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• Generation: the task is to generate a code snippet based on a given natural

language description. The dataset includes natural language descriptions

and contexts as input, and the output is a source code function [38].

• Defect Detection: this task involves analyzing whether a function is vulnera-

ble to external attacks from other systems. The dataset includes C functions

and their corresponding vulnerability labels (true or false) [94].

• Clone: the task is to determine whether two code snippets have the same

semantic meaning. The dataset contains pairs of Java functions and a label

indicating whether they are clones or not [83].

All datasets statistics are shown in Table 5.1.

Table 5.1: Statistics of each dataset used in the experiments, considering the
absolute number of instances and the relative percentage. For Code Search Net
datasets we consider their percentage doubled since they are used in two tasks
(Code Summarization and NLCS).

Task Name Train Size % Train Valid Size % Valid Test Size % Test Language(s)

Clone 901.028 25.59 415.416 69.89 415.416 68.05 Java
Code Search 167.288 9.50 7.325 2.46 8.122 2.66 Go
Code Search 164.923 9.37 5.183 1.74 10.955 3.59 Java
Code Search 58.025 3.30 3.885 1.31 3.291 1.08 Javascript
Code Search 241.241 13.71 12.982 4.37 14.014 4.59 PHP
Code Search 251.820 14.31 13.914 4.68 14.918 4.89 Python
Code Search 24.927 1.42 1.400 0.47 1.261 0.41 Ruby
Defect 21.854 0.62 2.732 0.46 2.732 0.45 C
Generation 100.000 2.84 2.000 0.34 2.000 0.33 Java
Methods2Test 624.022 17.73 78.534 13.21 78.388 12.84 Python
Refine 46.680 1.33 5.835 0.98 5.835 0.96 Java
Translate 10.300 0.29 500 0.08 1.000 0.16 Java/C#

5.3 Models and Baselines

To answer the research questions, we will primarily make use of three

models detailed in the related work section: CodeBERT [25], GraphCodeBERT [28],

and CodeT5 [85]. Only CodeT5 is naturally suited to be used in a multi-task learn-

ing setup by adding prefixes in the input. Therefore, we had to adapt the other

models for the multi-task training setup.

To adapt both BERT-like models to an encoder-decoder setup, like CodeT5,

we used a specific module from HuggingFace’s hub [87] called “EncoderDecoder-

Model”. That module can receive two BERT models and use the first as encoder
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and the second as decoder, adding Cross-Attention layers [26] and a head that

adapts the model from Masked Language Modeling to Causal Language Model-

ing. When using BERT-based models with the “EncoderDecoderModel” class, the

weights of the added layers and modules are initialized from scratch.

We use more than one model in our experiments for two reasons. First,

we want to analyze how generalizable the models are to receive prompt modifica-

tions and comprehend them as instructions, regardless of their architecture. Sec-

ond, we want to validate the prompting multi-task learning framework in more

than one architecture, analyzing how easily it can be adapted to other scenarios.

Regarding overall training configurations, we used the following strategy:

all models were trained for 10 epochs with an early stop of two epochs with no

improvement in validation loss, batch sizes of 12 for CodeT5 and 10 for both

BERT-based models, tokenization max limit of 128 tokens, the learning rate of

2−5 with Adam [39] as the optimizer and scheduler to reduce the learning rate

at each epoch. Some hyperparameters were set based on hardware or time

limitations, while others on a small round of tests performed during the creation

of the baseline models. We use the same Cross-Entropy Loss for all tasks and

update only the weights involved in the forward process.

Unlike usual dataset configurations, we followed the same training pro-

cedure than CodeT5 [85]. Each epoch contains a limited number of iterations,

and each iteration consists of a batch of samples from the same task, extracted

from the task’s respective dataset in random order. The number of iterations is

configured when starting an experiment, and we used 100,000 for all executed

experiments. The training instances are sampled from the training split while

training the model. For validation, we sample from the validation splits. At the

end of training, we use the test split to report our results in data the model has

never seen.

In this work, to serve as baselines, we train all three models for each one

of the evaluation tasks using a single-task approach, using all available data for

that given task. While for UTCG one model is enough to generate the data for

all evaluation metrics, in NLCS we must train one model for each programming

language. For instance, to obtain the CodeT5 baseline, we trained one model

for UTCG and six models for NLCS, one for each programming language. We use

the available pre-trained weights as the training starting points and then directly

fine-tune them into the target tasks, extracting the required metrics. We achieve

a fairer scenario by training the models in our computational environment since

the same computational constraints will be equally applied to all models.

For both multi-task and single-task training procedures, we executed

steps of hyper-parameter tuning. Our objective was to adjust our scenarios to
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a more realistic situation, where we would look for the best model that could

solve a specific problem.

For our implementation, we relied on the PyTorch framework [55], which

served as the backbone of our project. We also leveraged PyTorch Lightning [24]

to train and evaluate all of our models, which streamlined our workflow and

improved efficiency. To conduct our experiments, we utilized as hardware two

Nvidia GeForce GTX 1080 Ti graphics cards, an AMD Threadripper with 32 cores,

and 126GB of RAM.
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6. RESULTS

6.1 Baseline Models

We trained baseline models for each task as explained in Section 5.

These models were trained using a single-task modality and evaluated using

the exclusive task dataset. We present the results for the baseline models in Ta-

ble 6.1 for UTCG and Table 6.2 for NLCS. Additionally, we tested the attachment

of a prefix to the prompt to inform the model which task to perform in UTCG.

However, we only tried this approach in UTCG due to the high number of models

required for NLCS.

Table 6.1: Baseline results for UTCG, with and without prefix.

Model BLEU WBLEU ASTM DFM CodeBLEU

CodeBERT 7.47 8.54 34.62 32.66 20.82
GraphCodeBERT 7.26 8.19 34.54 33.44 20.85

CodeT5 8.35 9.20 36.09 31.89 21.38

CodeBERT+Prefix 8.36 9.24 35.40 32.45 21.36
GraphCodeBERT+Prefix 6.27 7.05 35.41 32.76 20.37

CodeT5+Prefix 8.66 9.54 36.16 31.86 21.55

Table 6.2: Result for baselines in all programming languages from CodeSearch-
Net.

Model go java javascript php python ruby overall
CodeBERT 0.894 0.781 0.747 0.856 0.695 0.742 0.785

GraphCodeBERT 0.909 0.786 0.570 0.847 0.750 0.704 0.763
CodeT5 0.865 0.772 0.710 0.807 0.720 0.646 0.753

In the following sections, note that we will refer to the best baselines as

the one with highest score achieved for each metric, regardless of the model that

achieved it.

6.2 RQ-1 Models

Our first research question focused on discovering whether a model trained

with a prompt MTL procedure can achieve comparable results or surpass its
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single-task counterpart. As mentioned in Section 5, we trained three different

architectures using all 8 tasks.

In addition to our preliminary experiments, we conducted two configu-

rations to explore whether they could enhance model performance. The first

configuration involved incorporating a language prefix along with the task prefix,

which we used in all cases. We aimed to determine whether this could improve

the model’s understanding by indicating the task and language used. The second

configuration assigned equal importance to all tasks using the same probability

for all datasets. Note that this does not mean all datasets had an equal number

of instances in the training dataset, just that the weights were the same for all

tasks when sampling instances. Table 6.3 and Table 6.4 present the results of our

experiments for UTCG and NLCS, respectively. When comparing a model with a

baseline in answer to our second research question, we use the baseline model

that matches the architecture and achieves higher results in overall MRR and

CodeBLEU. We also refer to the best score obtained for each metric as the best
baseline, regardless of the model it came from.

Table 6.3: Results for multi-task training in UTCG with all three models. SP stands
for "same probabilities" and LP stands for "language prefix". In bold, are the best
results for each metric, and underlined are the second-best results.

Multi-task Model BLEU WBLEU ASTM DFM CodeBLEU

Best Baselines 8.66 9.54 36.16 33.44 21.55

CodeBERT 5.32 6.06 31.21 30.38 18.24
GraphCodeBERT 4.88 5.72 31.03 32.72 18.59

CodeT5 6.59 7.73 33.38 29.15 19.11

CodeBERT+SP 4.30 5.06 29.11 30.76 17.30
GraphCodeBERT+SP 4.55 5.09 30.15 27.86 16.91

CodeT5+SP 6.48 7.20 32.81 28.56 18.76

CodeBERT+LP 4.98 5.87 30.10 32.22 18.29
GraphCodeBERT+LP 4.93 5.70 31.35 31.66 18.41

CodeT5+LP 6.59 7.31 33.40 28.97 19.06

CodeBERT+SP+LP 4.51 5.10 28.77 29.07 16.86
GraphCodeBERT+SP+LP 4.46 5.00 29.84 28.72 17.01

CodeT5+SP+LP 6.47 7.18 32.76 28.60 18.75

In UTCG, none of the multi-task models achieved better results than our

best baselines or their direct single-task counterparts. All the models signifi-

cantly reduced their capabilities due to prompt MTL across all configurations we
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Table 6.4: Results for multi-task training in NLCS. SP stands for "same probabil-
ities" and LP stands for "language prefix". In bold, are the best results for each
metric, and underlined are the second-best results.

Model go java javascript php python ruby overall

Best Baselines 0.909 0.786 0.747 0.856 0.750 0.742 0.785

CodeBERT 0.626 0.447 0.433 0.453 0.374 0.563 0.482
GraphCodeBERT 0.162 0.294 0.328 0.278 0.206 0.417 0.280

CodeT5 0.784 0.686 0.651 0.739 0.604 0.714 0.696

CodeBERT+SP 0.803 0.687 0.623 0.740 0.557 0.640 0.675
GraphCodeBERT+SP 0.034 0.046 0.103 0.058 0.015 0.076 0.055

CodeT5+SP 0.809 0.728 0.696 0.766 0.635 0.738 0.728

CodeBERT+LP 0.679 0.556 0.541 0.669 0.494 0.565 0.697
GraphCodeBERT+LP 0.240 0.028 0.024 0.016 0.008 0.066 0.063

CodeT5+LP 0.789 0.685 0.650 0.736 0.612 0.715 0.697

CodeBERT+SP+LP 0.719 0.584 0.539 0.690 0.515 0.544 0.598
GraphCodeBERT+SP+LP 0.103 0.047 0.047 0.051 0.186 0.062 0.082

CodeT5+SP+LP 0.809 0.708 0.694 0.748 0.631 0.738 0.721

tested. CodeBERT was the model that suffered the most, with a 21.07% reduc-

tion in CodeBLEU in the worst-performing model, while CodeT5 fared better with

only an 11.32% reduction in the best model. This difference between CodeT5

and the other models in UTCG, a task that requires both an encoder and de-

coder, was already expected due to the model’s architecture and natural ability

to comprehend prompt modifications.

Upon closer examination of each term of CodeBLEU, it becomes apparent

that no metric suffered a disproportionate loss in performance when compared

to the others. This finding suggests that tvhe models do not selectively unlearn

only code or natural language information. Another important outcome is that

none of our tested configurations outperformed the base multi-task model, which

solely employs the task prefix and probabilities based on dataset size.

Something relevant is that BERT-like models not trained with any prompt-

specific technique learned how to extract knowledge in a prompt MTL setup. That

finding is interesting because it demonstrates that MTL by prompt is a viable

approach even for models not trained in that setup.

In NLCS, while most multi-task models did not perform better than their

single-task counterparts or the baselines, some exciting observations should be

made. Although none of the best baselines was surpassed by multi-task mod-

els, specific combinations of architectures and languages achieved better MRR

scores than their direct counterparts. Notably, with CodeT5, using the same

probabilities for all tasks in the training dataset resulted in multi-task models
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(a) CodeBERT

(b) CodeT5

Figure 6.1: Comparison of multi-task learning methods in NLCS.
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achieving MRR scores close to their single-task counterparts. Furthermore, all

multi-task CodeT5 models for Ruby surpassed the single-task MRR score, as seen

in Figure 6.1b. These results are significant because training only one multi-task

model achieved closer results to training six specialists for NLCS.

The same cannot be said with CodeBERT, in which the single-task mod-

els invariably maintained the best MRR scores, as seen in Figure 6.1a. However,

for some languages the results with CodeBERT (specifically with the same prob-

abilities) got close to CodeT5, which again indicates that, under some configu-

rations, models that are not naturally adapted for prompt MTL can learn how to

extract useful information during fine-tuning. For the BERT-Like models, even af-

ter adding and training a new module, the model can still keep its capability of

producing good feature representations.

In the case of Ruby, where all multi-task CodeT5 models were better than

the baseline, we see a point where MTL shines by countering the small number of

instances by extracting knowledge from other sources. A curious aspect is that

BERT-like models could not leverage the numerous datasets to improve over ruby

MRR scores. A possible explanation is the natural ability of CodeT5 to work with

MTL, inherited from T5, which is a clear advantage against BERT-based models,

in which decoders were not present in the original pre-training.

GraphCodeBERT was the only model among the tested ones that exhib-

ited a significant forgetting problem. While in UTCG the model performance de-

creased similarly to the other models, in NLCS GraphCodeBERT lost almost all of

its ability to perform the task. This is surprising, considering that GraphCode-

BERT has the same architecture as CodeBERT but with a different pre-training

strategy. One possible explanation for this behavior is that the pre-training tasks

that GraphCodeBERT was trained on may have limited its ability to generalize in

a multi-task setting. Unlike CodeBERT, which uses more generalist tasks, Graph-

CodeBERT leverages dataflow information to aid in code comprehension, which

may restrict the model when creating the dense representations in the encoder.

Constraining the model adaptability to specific tasks may have hindered its abil-

ity to adapt to multi-task scenarios and other training approaches.

It is important to remember that such a downgrade happened while using

prompting MTL and attaching a decoder block to the model, which does not mean

that the model cannot support other multi-task approaches.

In conclusion, after comparing the results obtained from both tasks and

considering the most stable models, we have observed that it is possible to

achieve results comparable to or even better than the single-task counterparts

for NLCS. However, none of the multi-task models managed to surpass the base-

line results. Despite this, multi-task CodeT5 stands out as a competitive model
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that can execute seven tasks simultaneously and perform similarly to the base-

lines that use the same pre-trained model. For example, by using CodeT5 with

the same probabilities, we can obtain a single model with a performance loss as

little as 12.93% for UTCG and 3.32% for NLCS instead of training seven separate

models. Therefore, we emphasize the importance of CodeT5 due to its ability to

achieve results competitive to the baseline models.

6.3 RQ-2 Models

To address our second research question, we conducted experiments that

involved removing specific tasks or combinations of tasks from our general train-

ing procedures. Given the reliability and consistency observed in our previous

experiments, we mainly relied on CodeT5 [85] for our experimentation but ex-

tended our analysis to CodeBERT [25] where possible. Our experimental sce-

narios were designed to consider common relationships between tasks, such as

sharing the same programming language, using the same part of the model, or

utilizing the same dataset.

6.3.1 Removing One Task

In our first experiment, we aimed to analyze the impact of each task,

thus isolating them by testing six multi-task scenarios where we removed only

one helper task from the training procedure. For comparison, we used the base

multi-task models trained and analyzed in the previous research question. The

results of each training scenario are presented in Tables 6.5 and 6.6 for CodeT5

and CodeBERT, respectively.

Table 6.5: Concatenated results from experimenting with how each task would
affect the training procedure using CodeT5 model. We did not highlight the best
results from the baseline once our focus with this experiment is the task re-
movals.

Removed Task
NLCS Metrics UTCG Metrics

go java javascript php python ruby overall BLEU WBLEU ASTM DFM CodeBLEU

CodeT5 Baseline 0.865 0.772 0.710 0.807 0.720 0.646 0.753 8.66 9.54 36.16 31.86 21.55
None (Base Multi-Task Model) 0.784 0.686 0.651 0.739 0.604 0.714 0.696 6.59 7.73 33.38 29.15 19.11

Clone 0.827 0.736 0.694 0.779 0.643 0.735 0.735 6.60 7.32 33.38 29.28 19.15
Defect Detection 0.804 0.685 0.653 0.725 0.600 0.716 0.697 6.60 7.32 33.41 29.24 19.14
Generation 0.773 0.693 0.657 0.732 0.614 0.715 0.697 6.55 7.26 33.34 29.14 19.07
Refinement 0.800 0.704 0.647 0.738 0.609 0.716 0.702 6.58 7.29 33.40 29.18 19.11
Summarization 0.697 0.662 0.638 0.685 0.568 0.695 0.657 6.67 7.39 33.49 29.19 19.19
Translation 0.764 0.700 0.665 0.744 0.609 0.714 0.699 6.59 7.30 33.39 29.21 19.12
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When analyzing the results obtained with CodeT5, we observe that the

influence of each task during training is distinct. When we remove the “Clone”

dataset, for example, it causes an increase in every NLCS metric. This effect

is intriguing because the “Clone” dataset makes up a significant portion of the

training dataset (25.59%), and its absence suggests that it could negatively im-

pact the training. On the other hand, “Code Summarization” appears to be an

essential task for multi-task training with the CodeT5 model, and its removal

leads to lower performance in every NLCS metric. However, that same relevant

task for NLCS in CodeT5 has the opposite effect on UTCG, where its absence im-

proves the result of every term in CodeBLEU. This situation is counter-intuitive

and illustrates the complexity of training multi-task models. For example, a task

that works with sequence-to-sequence modeling is responsible for lowering the

model capability in our evaluation task, which only uses the encoder, while si-

multaneously improving the results of NLCS.

Suppose we consider the model obtained by excluding “Clone” from the

training procedure. In that case, we can diminish the difference between our

baseline and a multi-task model, achieving an even higher overall MRR and Code-

BLEU. That result exemplifies that, by finding the proper configuration, we can

train a single multi-task model that is competitive with a group of specialist mod-

els. Also, we tested only excluding a single task at a time. Based on our results,

where the absence of a task in most cases improves model performance, we

hypothesize that some specific combination would achieve a potential optimal

point for the problem. Unfortunately, in terms of available time for experiments,

it was impractical for us to test every possible combination.

Table 6.6: Concatenated results from experimenting with how each task would
affect the training procedure using CodeBERT model. We did not highlight the
best results from the baseline once our focus with this experiment is the task
removals.

Removed Task
NLCS Metrics UTCG Metrics

go java javascript php python ruby overall BLEU WBLEU ASTM DFM CodeBLEU

CodeBERT Baseline 0.894 0.781 0.747 0.856 0.695 0.742 0.785 8.36 9.24 35.40 32.45 21.36
None (Base Model) 0.626 0.447 0.433 0.453 0.374 0.563 0.482 5.32 6.06 31.21 30.38 18.24

Clone 0.815 0.742 0.648 0.785 0.629 0.681 0.716 4.78 5.47 31.17 30.82 18.06
Defect Detection 0.028 0.018 0.033 0.029 0.016 0.053 0.029 2.21 2.45 26.15 28.38 14.77
Generation 0.160 0.131 0.154 0.201 0.202 0.173 0.170 4.86 5.57 30.97 30.93 18.08
Refinement 0.768 0.709 0.650 0.760 0.579 0.664 0.688 5.39 6.11 31.38 30.49 18.34
Summarization 0.565 0.510 0.502 0.681 0.449 0.553 0.543 4.82 5.48 31.44 30.75 18.12
Translation 0.642 0.659 0.571 0.697 0.599 0.691 0.643 4.82 5.48 31.44 30.72 18.11

Upon comparing how both models react to the removal of the tasks, it

becomes clear how each model captures knowledge differently. In fact, “Clone”

removal outperforms the base multi-task model and all other task removals in

most MRR values for the CodeBERT model. This suggests that the “Clone” task

harms the NLCS task, similarly to what we saw in CodeT5. But, while for CodeT5
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no task was essential to the multi-task training process (causing a strong de-

crease in performance), for CodeBERT the scenario was significantly different.

The removal of “Defect Detection” had great importance during CodeBERT train-

ing, and its absence leads the model to inferior performance in both tasks, es-

pecially in NLCS. Such a model’s need to rely on “Defect Detection” to NLCS is

also counter-intuitive if we consider that it is the second less-frequent task in the

dataset and uses a programming language (C) that does not appear for any other

task, thus being present in only a few instances. Also, “Generation” holds a high

significance for the model performance in NLCS, but the same does not hold to

UTCG. It seems that, for CodeBERT, some tasks are required to help the model

in keeping the knowledge needed to create the dense representations used for

NLCS.

6.3.2 Only Seq2Seq Tasks

Another hypothesis of ours was to use only tasks that require a similar

level of behavior from the model. Since NLCS uses only the encoder to generate

the dense representations used to align NL and PL snippets, optimizing only one

part of the model for some instances can bring the results down on UTCG. With

that in mind, we ran an experiment removing NLCS from the multi-task training

procedure since all other tasks require the decoder portion of the model.

Another hypothesis we raised was that the model could perform better

by using only tasks where the input and output were written in PLs. That way,

we emphasize the model to focus on understanding source code and to not learn

how to build representations for NL inputs or outputs. The results for both tests

are shown in Table 6.7.

Table 6.7: Testing only tasks using both parts of the model (sequence to se-
quence tasks). We trained Seq2Seq with all tasks except NLCS, and Code2Code
we trained with “Translation“, “Refinement“, and UTCG.

Experiment BLEU WBLEU ASTM DFM CodeBLEU

Baseline 8.66 9.54 36.16 31.86 21.55
Multi-Task CodeT5 6.60 7.32 33.38 29.28 19.1

Seq2Seq 6.80 7.53 33.91 29.41 19.41
Code2Code 7.72 7.99 34.56 29.93 19.93
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As observed, the focus on only using sequence modeling tasks can in-

crease the performance of CodeT5 multi-task models for UTCG. The results do not

outperform the baseline models but are better than the base multi-task model,

although in this case we sacrifice the range of tasks to increase quality. We also

analyze that training using only code-exclusive tasks provides better results than

considering all sequence-to-sequence tasks. A possibility for that improvement

may be because for some tasks, such as “Clone”, which are quite frequent in the

dataset, the output is “True” or “False”, which is very different from the expected

output for UTCG, a unitary test.

Among all experiments, including measuring UTCG, our Code2Code multi-

task model achieved the highest scores, even though it could not reach the base-

line model. We see by that experiment that a more limited group of tasks, with a

more explicit focus, can indeed improve model performance.

6.3.3 Language-Exclusive Tasks

Another hypothesis we raised was reducing tasks according to the pro-

gramming language. We tested using two languages shared by more than two

tasks (which happens with all languages in the CodeSearchNet dataset): Java and

Python. In the case of Python, we trained the model with “Code Search”, “Code

Summarization”, and UTCG, while for Java, we trained with “Code Search”, “Code

Summarization”, “Code Generation”, “Code Translation” and “Code Refinement”.

Results are presented in Table 6.8

Table 6.8: Experiments training models only with tasks that share the same PL.
While with Java we could only evaluate on NLCS, for Python we could obtain
metrics for both our evaluation tasks.

Experiment
NLCS Metrics UTCG Metrics
java python BLEU WBLEU ASTM DFM CodeBLEU

Baseline 0.772 0.720 8.66 9.54 36.16 31.86 21.55
Multi-task CodeT5 0.686 0.604 6.59 7.73 33.38 29.15 19.11

Java Tasks 0.734 - - - - - -
Python Tasks - 0.654 7.01 7.76 34.20 29.66 19.66

By grouping the tasks by PL, we can see that both models are better

than the multi-task base model but still cannot outperform the baseline. In these

cases, the number of tasks our model can handle is inferior to the base multi-

task, but that reduction provides notable gains. For both languages, we achieved
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better MRR than the base multi-task CodeT5, but note that they have not become

the best multi-task results.

6.3.4 CodeSearchNet-Exclusive Tasks

One last hypothesis we wanted to validate was to analyze the usage of

different tasks sharing the same dataset. In that way, we can evaluate whether

the model can perform better in both tasks by extracting and sharing different

information obtained from the same source. Results are introduced in Figure 6.2

Our training set contained all instances available in the datasets for those mod-

els.

Figure 6.2: Comparison of our base multi-task CodeT5 and multi-task mod-
els trained solely using CodeSearchNet (Code Search and Code Summarization
tasks).

In terms of performance, the CodeSearchNet models showed better re-

sults for Go, Java, PHP, and Python, while Multi-Task CodeT5 performed better in

Javascript and Ruby. However, when considering the overall performance, Code-

SearchNet Models achieved a lower score than Multi-Task CodeT5. Such behavior

tells us that, except for Ruby and Javascript, the presence of more tasks tends to

harm the model capability of learning good feature representations.

For the four programming languages with larger datasets, the results

using only “CodeSearch” and “Code Summarization” were the best among all

multi-task models from previous experiments, indicating that extracting informa-

tion from the same source may be a better option than just aggregating more

tasks from distinct sources.

By looking at such a scenario, it becomes even more apparent that com-

bining tasks and datasets is not an easy thing. For Ruby and Javascript, adding

knowledge from other sources helped the model improve its performance. This
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effect may be due to the small dataset size for those languages, which causes

the model to benefit from other data sources to get better results. However,

improving the dataset size is not a guaranteed solution, bearing in mind that

Go is the second language with higher improvement (9.69%) and has a smaller

dataset than PHP, which is almost double the size.

6.4 RQ-3 Models

To answer our last research question, we trained three language models

with prompt multi-task learning, leaving the evaluation tasks out of the process.

Our objective was to compare them with the base pre-trained models, as they are

available in the Hugging Face Hub, by evaluating them without ever seeing the

evaluation tasks. With this zero-shot modality, we expect to understand whether

multi-task learning can help the models acquire knowledge about source code

and generalize to completely new tasks within the same context. We show the

results in Table 6.9.

Table 6.9: Results for the experiments comparing the base pre-trained models
and the multi-task models in zero-shot learning. We see that while CodeBERT
and CodeT5 benefit from the multi-task training, GraphCodeBERT suffers a down-
grade. The evaluation tasks were not used during training.

Model
NLCS Metrics UTCG Metrics

go java javascript php python ruby overall BLEU WBLEU ASTM DFM CodeBLEU

Base CodeBERT 0.001 0.001 0.003 0.0008 0.001 0.007 0.0023 0 0 3.76 6.23 2.50
Base GraphCodeBERT 0.050 0.044 0.065 0.024 0.037 0.115 0.055 0 0 6.25 7.43 3.43
Base CodeT5 0.001 0.001 0.003 0.0006 0.0004 0.005 0.0018 0 0 3.19 11.84 3.76

Multi-Task Pre-Trained CodeBERT 0.002 0.001 0.005 0.004 0.0009 0.007 0.003 0.01 0.02 6.25 7.41 3.42
Multi-Task Pre-Trained GraphCodeBERT 0.002 0.009 0.009 0.005 0.003 0.012 0.006 0 0 3.76 6.23 2.50
Multi-Task Pre-Trained CodeT5 0.003 0.003 0.004 0.001 0.001 0.011 0.003 0.27 0.36 8.96 14.08 5.92

As we can see, for CodeT5 and CodeBERT, the multi-task models achieved

a better score for most metrics, both for NLCS and UTCG. The improvements in-

dicate that the models learn more about tasks not ever seen by acquiring knowl-

edge from multiple sources. That result is similar to what is explored by Google

with PaLM [20], where increasing the data used to learn the model also increases

its generalization capacity over unseen tasks. The increase in NLCS shows that

the models learn how to build better representations by the encoder. In contrast,

the improvement in CodeBLEU terms shows that the models start learning how

to formulate and interpret code snippets.

Again, GraphCodeBERT is the only model that shows different behavior. It

starts as the base model with more prior knowledge about code, generating bet-

ter dense representations, thus achieving the best overall score for NLCS among

all experiments. The results for UTCG calls our attention, mainly because the
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decoder is a module not involved in the original model and which we adapted,

causing some of the weights to be randomized in the base model. Neverthe-

less, it achieves relatively good results for ASTM and DFM. We believe it happens

because its pre-training tasks mostly rely on understanding data flow, which is

highly relevant for both terms.

6.5 Dataset Size Ablation

After analyzing GraphCodeBERT’s performance in the first research ques-

tion, we were puzzled by its significant drop in results despite its similarity to

CodeBERT. This led us to conduct a series of experiments to analyze the point in

the fine-tuning process where the model began to lose its ability to generalize

for NLCS while also comparing its performance to that of UTCG. Our approach

involved modifying the number of iterations in the same experiment configura-

tion used to train our base multi-task models, thereby enabling us to determine

how much fine-tuning was necessary for the model to perform poorly in NLCS.

We also conducted the same experiments using CodeT5 to compare both models

in the same process.

Figure 6.3: CodeT5 MRR for each
PL in CodeSearchNet as we improve
the number of training iterations.

Figure 6.4: GraphCodeBERT MRR for
each PL in CodeSearchNet as we im-
prove the number of training itera-
tions.

As we can see by comparing Figures 6.3 and 6.4, each model has a very

distinct behavior as we increase the number of iterations in our experiment (ana-

log to the dataset size) in the NLCS task. While CodeT5 almost always ben-

efits from increasing the dataset size (and when it does not, the drop in MRR

is not high), GraphCodeBERT has pretty inconsistent behavior. GraphCodeBERT
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Figure 6.5: CodeT5 scores for each
term in the CodeBLEU formula as we
improve the number of training iter-
ations.

Figure 6.6: GraphCodeBERT scores
for each term in the CodeBLEU for-
mula as we improve the number of
training iterations.

achieves the highest MRR values when training for less than 50,000 iterations;

from that point forward, the scores mostly decrease. We can see a trace of im-

provement in the final experiment, but we could not do further experimentation

due to the cost related to increasing even more the dataset size.

Regarding UTCG, the scenario is more stable for GrahpCodeBERT and re-

mains unchanged for CodeT5, as demonstrated in Figures 6.5 and 6.6. Again,

CodeT5 tends to improve with more data, while GraphCodeBERT has one de-

creasing point at 150,000 instances in the training dataset. For UTCG, the sce-

nario is less inconsistent than for NLCS, not reaching the point of losing almost

all capability of performing the task. In this aspect, our research reaches one

of its limitations since we do not analyze the models behavior in other tasks

to understand whether this phenomenon happens only in NLCS or also in other

tasks.

6.6 Discussion

Previous experiments show that prompt multi-task learning is not a sim-

ple strategy to optimize results. While answering our first research question, we

saw that no multi-task model could outperform the baselines, and only in one PL

the multi-task models were better than the singular-task counterparts. Even with

the performance degradation, we trained only one model for seven tasks, and in

cases such as CodeT5+SP, we got very close to the CodeT5 baselines.
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A fact that drew our attention was that while CodeBERT could handle

prompt MTL, even when not pre-trained similarly, GraphCodeBERT with the same

architecture could not achieve the same performance. That fact indicates that

the tasks used during pre-training have significant relevance for posterior fine-

tuning capabilities.

When comparing the tasks and their relationships along the training pro-

cedure, we saw in practice what the literature had quickly mentioned [72]. We

observed that “Clone” has a negative impact in most metrics and for both mod-

els, and its absence can lead to better performance for both models we tested.

But the relevance of “Defect Detection” and “Generation” for CodeBERT was sur-

prising, mainly because they do not constitute a large proportion of the total

dataset. Also, we observe that, for both models, “Code Summarization” is a

relevant task for extracting good representations used in NLCS.

Upon analyzing the results obtained for validating all research questions,

we can state that multi-task learning can increase the capabilities of the mod-

els to understand more about source code-related tasks. Unfortunately, such

understanding seems to be affected by other aspects, such as the pre-training

tasks used when adapting the models for MTL. In such a sizeable experimental

landscape, we observe that some configurations can help the models to achieve

better results. Good examples were the usage of the same probabilities to have

a more balanced dataset, which leverages the results of CodeT5 in multi-task

training, and the removal of “Clone”, which also substantially improved model

performance.
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7. CONCLUSION

As software engineering becomes increasingly complex, artificial intel-

ligence (AI) is becoming an essential tool for automating tasks and improving

the quality of software products. DL models are the main piece of that improve-

ment, using robust neural networks to build solutions that address complex prob-

lems [37, 8]. With the rise of pre-trained language models, numerous tasks in

NLP achieved a new state of the art, leading to the adaptation of that strategy to

other modalities.

One of the modalities these transformer language models boosted was

big code, where many software development-related tasks have started to be

supported by applications that leverage these models [25, 85, 48]. These models

are trained with textual and code data, helping them to extract valuable knowl-

edge from both sources. A problem emerges when these models become larger

and larger, and training, storing, and serving them become complex issues.

One approach to solve resource allocation problems and also attempt at

improving generalization is MTL. By training a model with more than one task,

we can extract different knowledge from multiple sources and possibly achieve

better performance in the focused task [14, 93]. Among the many alternatives

to implement MTL, using prompt engineering to induce behaviors becomes a

reliable method for language models [61, 12, 85].

Leveraging the recent ability of language models to understand prompt

entries, we explored multi-task prompting methods for source-code-related tasks

using three cutting-edge models, CodeT5, CodeBERT, and GraphCodeBERT, which

have yielded promising results. We have demonstrated that MTL can achieve re-

sults comparable to, if not better, single-task baselines. Furthermore, besides

reaching competitive results, we also reduce the cost by training only one model

instead of seven, demonstrating the benefits of MTL.

This research has also uncovered evidence that the pre-training task may

lead the model to certain limitations during fine-tuning. These limitations are

particularly apparent in the case of GraphCodeBERT. By better understanding

the relationship and interaction between tasks, as well as through careful config-

uration tuning during training, we can address these limitations and improve the

performance of multi-task models in the future.

When exploring the tasks and datasets relationship, we saw that a more

restricted or focused group of tasks could be a better idea, where we see a trade-

off between the number of tasks and performance. Unfortunately, as observed

when comparing CodeT5 and CodeBERT, each model reacts differently to the
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multi-task training, creating many possibilities to be explored in order to find the

better combination. Also, we showed that for some pre-trained models MTL could

increase the capabilities of zero-shot inference, even if by small margins.

The research landscape is very large. MTL provides a lot of possibilities

and methods that can be combined with the several pre-trained language models

that are open-sourced. We could not cover all those possibilities for this work, but

we uncovered some interesting behaviours and statements regarding prompting

MTL and some recent state-of-the-art models.

Overall, this work provides good insight into the use of AI in software

engineering. Automating and optimizing software development processes have

become increasingly important as the demand for software grows. With its abil-

ity to learn from multiple tasks simultaneously, MTL represents an area that ap-

proximates the learning method to how humans actually learn. By continuing

to explore and refine this approach, we believe we can develop more power-

ful and effective AI systems to support software engineering and other complex

domains.

7.1 Limitations

Due to this work’s vast research landscape, many limitations must be

pointed out, which were responsible for reducing our scope. We enlist them

next.

7.1.1 Evaluation tasks

In this work, we decided to evaluate the trained models in only two tasks,

NLCS and UTCG, which are tasks that require a considerable understanding of

source-code-specific traits. The main reason for that decision was the available

time and resources to invest in implementing the code to evaluate our models

in all available tasks. However, as done in other multi-task studies [61, 56, 85,

44], all tasks should be evaluated for a holistic and complete analysis. That

interpretation is needed, especially due to the absence of a specific answer for

how each task will influence each other. By analyzing only two tasks, we lose

much of what we could learn about each models’ generalization capability.
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7.1.2 Evaluated models

The number of evaluated models is another limitation of this work. Due

to scope constraints, we only evaluated three models: CodeT5, CodeBERT, and

GraphCodeBERT. While those models have shown cutting-edge results in previous

studies, they may only represent some possible models that could be evaluated

for multi-task learning in software engineering.

Also, the hyper-parameters of the models were not extensively searched.

Although we have explored some possible values for the hyper-parameters, many

others could have been tested to improve the performance of the models. Fur-

thermore, different combinations of hyper-parameters could lead to different re-

sults and conclusions. Therefore, future work should explore a more extensive

hyperparameter search to determine the optimal configuration for the models in

the evaluated tasks.

7.1.3 Multi-task learning methods

We tested only one of the multiple multi-task learning approaches, using

prompt modifications to induce the model to learn all tasks. As described in

Section 2, multiple ways to implement and train multi-task models are available,

each with singular limitations and capabilities [19]. We recognize that those

other multi-task learning methods could have further improved our research, but

we could not test them due to time restraints. Therefore, we plan to expand

future research to explore these methods and compare their effectiveness with

the already tested multi-task prompting method.

7.1.4 Hardware and time limitations

Most transformer networks used in this work are expensive regarding

computational resource cost. Given such limitations, our model configurations

were directly affected, forcing us to reduce batch sizes or the max size in of the

tokenizer. For instance, each epoch for our multi-task models took approximately

8 hours, one of the reasons that led us to use early stop. Also, such limitations

prevented us to look forward to hyper-parameter tuning, which could be another

approach to finding ideal multi-task models or better configuration setups.
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Additionally, the limited computational resources for this work forced us

to use smaller models and shorter training configurations, which may have im-

pacted the final results. In future work, it would be interesting to explore the

use of more powerful hardware to allow for larger models and extended training

configurations, potentially leading to better performance in the tasks that were

evaluated. Besides, other multi-task approaches such as adding extra layers for

each task, require more memory to store the weights.

The hardware also implies time constraints that we had during the re-

search. As mentioned, one epoch for a multi-task model takes about 8 hours,

and complete training takes, on average, 40 hours (using early stop). Based on

that factor, some of our explorations, especially for our research questions, could

not be executed on time, leading us to focus on the most promising alternatives

to explore the task relationships.

7.2 Future Work

This work begins an extensive study of multi-task learning methods for

source-code tasks. As previously mentioned, the research landscape contains

many variables that demand time, resources, and knowledge to be explored.

We have already established some tasks and experiments as future steps of this

research.

Studying different combinations of tasks for at least CodeT5 and Code-

BERT, or using the same model but with other seeds, would give us an even

better understanding of how each model behaves during the learning process.

Our idea to study with different random seeds comes directly from the paper we

published about models for Code Search [86], where we discovered that under-

specification is a relevant problem for this task, leading to distinct behaviors

when training with different seeds.

Another group of possible relations that we need to map or explore is how

programming languages interact with each other during multi-task training. We

plan to explore such relations, mainly due to the nature of the languages, where

low-level languages like Java and C share more similarities than with Python or

Javascript.

To fulfill one of the previously discussed limitations, we have plans to

implement and evaluate the trained models in all tasks we consider during the

training process. That way, we will obtain a complete and concrete overview of

the capacities obtained (or lost) during multi-task training. Another limitation we

want to fill is expanding the research landscape by including new models and
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multi-task learning approaches. Recently a large group of pre-trained language

models focused on source code tasks has been released and studied [90], but

they focus solely on language modeling capabilities.

Also, we tested only a single option of prompting method: to append spe-

cific words to the model’s input. A new area of prompting engineering research is

arising with recent language models [45]. Methods have been proposed and de-

bated, especially with models such as GPT-3 [12], which can easily follow prompt

instructions. A mechanism we already idealized to implement and test is using

universal adversarial triggers [70]. These adversarial triggers are slight prompt

modifications that can lead a model to specific outputs without any further archi-

tectural change or new training procedure. We hypothesize that since T5 models

use small prompt indicators to induce a task, we could use a more intelligent

approach to optimize performance in different tasks by discovering ideal triggers

during the training procedure.

7.2.1 Published Work

During this Master’s, we have had the opportunity to conduct research

in our field of study and contribute to the scientific community by publishing and

submitting papers. The following discussion will briefly overview these publica-

tions and submissions, highlighting their main contributions and findings.

International Joint Conference on Neural Networks (IJCNN 2022)
(Qualis A2): We published the paper “COBE: A Natural Language Code Search

Robustness Benchmark” that proposes a benchmark to evaluate Code-Search

models regarding their robustness. The framework linearly adds noise to the

model input and considers how such modifications change the output.

Brazilian Conference on Intelligent Systems (BRACIS 2022) (Qualis

A4): We published the paper “Leveraging Textual Descriptions for House Price

Valuation”, which proves that textual data can significantly improve the quality

of house price valuation. Also, we do a qualitative analysis to understand how

textual information increases model performance.

7.2.2 Submitted Work

ACM Computing Surveys Special Issue on Trustworthy AI (2022):
We submitted the paper “Debiasing Methods for Fairer Neural Models in Vision
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and Language Research: A Survey”, a survey on fairness and bias in deep learn-

ing models. We reviewed metrics and methods to achieve fairer models, a rele-

vant topic in modern data-based AI. The paper is also available on ArXiv1.

1https://arxiv.org/abs/2211.05617

https://arxiv.org/abs/2211.05617
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