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APLICAÇÃO DE INTELIGÊNCIA ARTIFICIAL EM DISPOSITIVOS COM
RECURSOS LIMITADOS PARA RECONHECIMENTO DE ATIVIDADES

HUMANAS

RESUMO

A inteligência artificial (IA) tem se mostrado eficaz na resolução de tarefas comple-
xas, como o reconhecimento de atividades humanas e de fala. No entanto, a introdução de
modelos de IA orientados para a precisão trouxe novos desafios em relação à sua aplica-
bilidade em sistemas com recursos limitados. No reconhecimento de atividades humanas
(RAH), as abordagens estado-da-arte frequentemente dependem de redes complexas com
múltiplas camada, do tipo LSTM. A literatura sugere que as redes LSTM são adequadas
para tratar dados de séries temporais, um aspecto crucial do RAH. A maioria dos traba-
lhos na literatura se concentra principalmente em alcançar a maior precisão possível, com
apenas alguns considerando o custo computacional associado à execução da fase de infe-
rência. No RAH, dispositivos de Internet das Coisas (IoT) de baixo consumo, como matrizes
de sensores vestíveis, são frequentemente usados como dispositivos de coleta de dados.
No entanto, observamos um esforço limitado para implantar a tecnologia de IA diretamente
nesses dispositivos. Em vez disso, a abordagem predominante envolve o uso de arquitetu-
ras de computação em borda ou em nuvem, em que o papel do dispositivo final é coletar
e enviar dados para dispositivos em borda/nuvem. Assistentes de voz populares, como o
Alexa da Amazon e o Assistente do Google, comumente empregam essa abordagem arqui-
tetural. No entanto, em aplicações do mundo real, especialmente em setores como saúde,
depender exclusivamente de dispositivos em borda/nuvem muitas vezes não é viável, pois
esses dispositivos nem sempre estão disponíveis ou acessíveis. Este trabalho tem como
objetivo fornecer uma Rede Neural Convolucional ajustada para uso em sistemas embar-
cados com recursos limitados, utilizando técnicas de otimização e modelagem eficiente de
redes neurais. Após ajustar o modelo de CNN no framework PyTorch, apresentamos um
modelo equivalente em C. Utilizamos técnicas de otimização, como representação inteira
para evitar unidades de ponto flutuante (FPUs), quantização de parâmetros e compressão
de conjunto de dados. Os resultados mostram que, em comparação com a CNN de referên-
cia, o modelo otimizado reduziu o tamanho do modelo de CNN em 2,34 vezes e melhorou
a precisão de 74% para 85,2%. Este modelo otimizado pode ser executado em dispositivos
com recursos limitados sem exigir FPUs e grandes memórias para armazenar os parâme-
tros da CNN.

Palavras-Chave: Inteligência Artificial, Aprendizado de Máquina, Reconhecimento de Ati-
vidades Humanas, Sistemas Embarcados, Dispositivos com Restrições de Recursos.



DEPLOYING ARTIFICIAL INTELLIGENCE IN
RESOURCE-CONSTRAINED DEVICES FOR HUMAN ACTIVITY

RECOGNITION

ABSTRACT

Artificial intelligence (AI) has proven highly effective in solving complex tasks such
as human activity and speech recognition. However, introducing accuracy-driven AI models
has brought new challenges regarding their applicability in resource-constrained systems. In
Human Activity Recognition (HAR), current state-of-the-art approaches often rely on com-
plex multi-layer LSTM networks. The literature suggests that LSTM networks are well-suited
for handling temporal-series data, a crucial aspect of HAR. Most existing works in the litera-
ture focus primarily on achieving the highest possible accuracy, with only a few considering
the overall computational cost associated with running the inference phase. In HAR, low-
power IoT devices, such as wearable sensor arrays, are frequently used as data-gathering
devices. However, we observed a limited effort to deploy AI technology directly on these
devices. Instead, the prevailing approach involves using edge or cloud computing architec-
tures, where the end device’s role is to collect and send data to edge/cloud devices. Popular
voice assistants like Amazon’s Alexa and Google Assistant commonly employ this architec-
tural approach. However, in real-life applications, especially in industries like healthcare, re-
lying solely on edge/cloud devices is often not feasible, as these devices may not always be
available or accessible. This work aims to provide a Convolutional Neural Network tuned for
resource-scarce embedded systems, using optimization and efficient neural network mod-
eling techniques. After tuning the CNN model in the Pytorch framework, we present an
equivalent C model. We employ optimization techniques such as integer representation to
avoid floating point units (FPUs), parameter quantization, and dataset compression. The
results show that compared to the baseline reference CNN, the optimized model reduced
the CNN model 2.34 times and improved accuracy from 74.9% to 85.2%. Such an optimized
model may run on resource-constrained devices without requiring FPUs and large memories
to store the CNN parameter.

Keywords: Artificial Intelligence, Machine Learning, Human Activity Recognition, Embed-
ded Systems, Constrained Devices.
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1. INTRODUCTION

With the ever-increasing elderly population, falls were accepted as an illness for
older adults in the International Classification of Disease-9 (ICD-9) and ICD-10 [Zeng et al.,
2014]. Monteiro et al. [2021] mention that in Brazil, more than 30% of death along people
older than 60 are due to a hard fall. Much is done to prevent emergencies in elderly homes,
from bathroom hold bars to 24/7 nurse care. In a real-world environment, it’s impossible
to prevent all emergencies, thus the need to detect these situations in real time and act
accordingly.

Human Activity Recognition (HAR) is a research area that has received significant
attention in recent years, thanks in part to the proliferation of mobile phones and IoT sensors
equipped with complex sensor arrays such as accelerometers and magnetometers. Embed-
ded devices have been identified as crucial components in HAR. Data gathering for HAR
can be conducted through wearable sensors like smartwatches and smart bracelets. With
the ubiquity of smartphones, even within the elderly demographic, recent studies have used
these devices to record and categorize human activity [Zeng et al., 2014].

Artificial intelligence (AI) has effectively solved various tasks in industries, espe-
cially areas with complex correlations, such as speech recognition and medical diagnosis.
Recent studies proposed different neural network models applied in HAR tasks, including
complex architectures that presented low real-life applicability due to the computational costs
demanded [Park et al., 2023]. This is an issue in various AI tasks. More complex tasks such
as speech recognition for virtual assistants are mainly cloud-based [Janak et al., 2021],
where local devices only function is to work as input data for the neural network located
off-site in a dense server dedicated to AI.

Speech recognition is similar to HAR since both contain high temporal correlation,
where past processed data affect the current output. LSTM neural networks have been
widely used in these tasks and currently represent the state-of-the-art accuracy in speech
recognition and HAR. LSTM contains complex dependencies that require resources scarce
in most embedded systems. Recent approaches using battery-powered devices suggest us-
ing Edge Computing concepts to transfer the task of processing the inference to devices with
more power availability, using embedded devices only for data gathering [Zeng et al., 2014].
This proposal neglects the situation where edge devices are unavailable, consequently cre-
ating gaps in the processed data array, increasing the chance of the system not detecting
emergencies in real time.

Recent advances in Convolutional Neural Networks (CNN) extended the usability
of AI powered-devices. Person detection can be found inside various camera surveillance
systems (CCTV). Even though running the inference algorithm is commonly done on Digital
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Video Recorders (DVR), which are high-powered devices, modern cameras use embedded
AI for better response times [Intelbras, 2020].

1.1 Motivation

The motivation for this work arises from two primary sources: (i) the Author’s prior
experience with embedded devices and their inherent limitations; (ii) the challenges posed
by current state-of-the-art approaches for HAR.

The Author’s background in embedded systems, particularly in the healthcare sec-
tor, revealed that many systems fall short in terms of real-world applicability due to the lack
of robust and scalable architectures. AI implementations on resource-constrained systems
often resolve this issue by offloading the processing step to edge or cloud devices, but this
solution imposes severe limitations on system robustness, especially in critical fields such
as healthcare.

The prevailing focus in HAR research is accuracy. While most studies use embed-
ded systems for data recording, many fail to assess resource requirements and the suitability
of different embedded devices for AI deployment.

1.2 Objectives

The strategic objective of this work is to provide a Convolutional Neural Network
tuned for use in resource-scarce embedded systems, using optimization and efficient neural
network modeling techniques. The specific objectives of this work consist of:

1. Optimize the accuracy of a reference 1D CNN Model for HAR.

2. Develop a C model for the reference CNN. The C language is a common choice for
programming embedded systems due to the high degree of control over system re-
sources, the small memory footprint, and the fact that C compilers create compact and
efficient code.

3. Optimize the CNN C model for power-constrained embedded devices, targeting pro-
cessors not requiring floating point units.

4. Optimize the CNN C model in terms of memory footprint.
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1.3 Methodology

The Pytorch framework, described in Section 4.1, is used as the modeling Neural
Network tool for the present work. This work adopts as a baseline model a 1D CNN. This
reference model, described in Section 4.2, is modified to achieve the strategic objective of
this work. Using the C language to model the CNNs, we evaluate the computational cost
of the inference phase using a RISC-V processor in a virtual platform (OVP). The profile of
the execution of the CNN model guides the optimizations, such as the adoption of integer
representation, quantization, and parameter compression.

1.4 Document organization

This work is organized as follows:

• Chapter 2 describes basic concepts related to AI and HAR, required to follow this work.

• Chapter 3 presents the state-of-the-art of machine learing in HAR tasks, positioning
this work w.r.t. the literature.

• Chapter 4 presents the CNN reference model and optimizations made using the Py-
torch framework. This chapter meets the first specific goal.

• Chapter 5 presents the C model and the evaluation of using integer representation.
This chapter meets the second and third specific goals.

• Chapter 6 presents the method adopted to compress the CNN parameters, weights
and bias, to reduce the CNN model size. This chapter meets the fourth specific goal.

• Chapter 7 concludes this work, pointing out directions for future work.
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2. BASIC CONCEPTS

Activity recognition is a research field that can directly impact areas such as senior
care and fitness monitoring. It is one of the most contemporary research topics, which is not
surprising considering the growth of the senior population worldwide. Artificial intelligence is
a promising way to deal with the activity recognition complexity.

This chapter introduces concepts related to Human Activity Recognition (HAR) and
methods adopted to treat this research field. Section 2.1 defines HAR, presenting treat-
ment approaches. Section 2.2 introduces Machine Learning (ML) techniques used in HAR.
Section 2.3 presents Convolutional Neural Networks with their phases and layers.

2.1 Human Activity Recognition (HAR)

Human Activity Recognition is the process in which data is analyzed and processed
to determine the person’s activities, such as walking, running, sitting, and showering. Histor-
ically, sensor data of human activity was scarce, and retrieval was expensive and complex.
Currently, where smartphones and wearable devices are affordable and filled with different
sensors such as accelerometers and gyroscopes, data can be easily obtained and recorded
[Mekruksavanich and Jitpattanakul, 2021].

There are two approaches to solve the HAR problem:

• Vision-based: usage of devices such as cameras or other image-sensing equipment;

• Sensor-based: most common approach, processing data from sensors such as ac-
celerometer, gyroscope, and magnetometer.

The activities to be recognized, known as Activities of Daily Living, first defined
by [Katz et al., 1970], can be used in eldercare and healthcare when combined with IoT
devices to detect and prevent an emergency like a fall detection. HAR also includes medical
diagnosis and smart home automation. Activity data can be obtained from wearable devices
such as smartwatches, other devices type such as smartphones, or specific IoT sensors.
Shi et al. [2020] show that combining these devices can improve accuracy.

2.2 Machine Learning for HAR

HAR is essentially a time series classification problem in which data should be pro-
cessed in time frames, resembling signal processing problems. The classification involves
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predicting the movement of a person based on raw sensor data. In traditional AI approaches,
it requires knowledge of signal processing to correctly extract features from data to use it as
input to a machine learning model.

HAR can also be treated as a pattern recognition problem using ML approaches.
Examples of ML approaches used for HAR include decision trees, support vector machines
(SVM), and Markov models. Nowadays, three main types of supervised machine learning
techniques are used to implement pattern recognition solutions (https://www.ncbi.nlm.nih.
gov/pmc/articles/PMC8372231/):

• Multi-Layer Perceptrons (MLP) - is a class of a feedforward artificial neural network
(ANN). MLP models are the most basic deep neural network, which is composed of a
series of fully connected layers.

• Convolutional Neural Networks (CNN) - in CNN models, one or multiple convolution
layers extract simple features from input by executing convolution operations. CNNs
are detailed at Section 2.3.

• Recurrent Neural Networks (RNN) - use sequential data feeding. RNNs have been
developed to address the time-series problem of sequential input data. Examples of
RNN include Long short-term memory (LSTM), LSTM Bidirectional, and Gated recur-
rent units (GRUs). LSTM are detailed in the next paragraphs.

These techniques can be implemented using a large number of layers, which is
called DNN approach. Also, according to Hayat et al. [Hayat et al., 2022], the following ML
methods applied to HAR, besides MLP:

• Decision Trees. A “random forest” (RF) is a collection of decision trees aggregating
partial results into one final result. RF has a similar concept to Multi-Class SVM (Sup-
port Vector Machines), using a sequence of decision trees to give a multi-class result.
RF requires larger labeled training data to increase the prediction precision than other
traditional approaches.

• k-NN (k-nearest neighbors). It is a supervised learning method used for classification
and regression where the neural network searches for the most similar data points
to classify. The distance between points is commonly calculated using the Euclidean
distance formula. The nearest points are considered to be in the same class.

• SVM. This method is applied to binary problems. Studies have shown good accuracy
to create Multi-Class SVMs. This method divides the Multi-Class SVM into multiple
small binary problems.

• LSTM. Has advantages when used in time-series problems due to their ability to store
past information. This storage of past information enables LSTM to capture temporal

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8372231/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8372231/
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information from sequential data inputs. This feature allowed great accuracy compared
to other approaches [Hayat et al., 2022]. Figure 2.1 shows a LSTM unit. It contains a
cell with input, output, and forget gates. This cell is responsible for storing and reading
values over time, working as shared memory.

Section II introduces the mathematical background of the
LSTM architecture. Section III gives details on our parameter
settings for the implemented network and testing methods,
and the classification performance results shown in Sec-
tion IV.

II. MATHEMATICAL BACKGROUND

RNNs such as Long-Short Term Memory (LSTM) net-
works can learn very long-term dependencies [7], which
makes them well suited to model temporal dynamics in
activity time-series. They retain important data from the
previous inputs and use that information to modify the
current output. In this section we introduce the fundamental
components and mathematical model of a generic LSTM
unit, and our used batch normalization approach.

A. LSTM architecture

The fundamental LSTM unit is shown in Fig. 1, and is
composed of a cell with an input gate, output gate, and
forget gate. LSTMs use the concept of gating to deal with
the vanishing or exploding gradient problem [11]. The cell
is responsible for remembering values over arbitrary time
intervals, and each of the three gates can be thought of as a
conventional artificial neuron, computing an activation (using
an activation function) of a weighted sum of the current data
xt, a hidden state ht�1 from the previous time step, and any
bias b. Intuitively, the gates can be thought as regulators of
the flow of values through the connections of the LSTM [5],
[11]. At each time step they control which operation is
performed by the cell as defined below. In (1) to (6), wi

are the weights associated with each multiplication at gate i,
and � and tanh are options for the activation functions.

In Fig. 1 the input gate controls the extent to which a new
value flows into the cell, known as a write operation:

it = �(wi[ht�1, xt] + bi). (1)

The forget gate performs a similar operation, controlling the
extent to which the current cell value is kept, doing a reset
operation:

ft = �(wf [ht�1, xt] + bf ). (2)

The candidate memory cell is updated similarly as

fCt = tanh(wc[ht�1, xt] + bc) (3)

and by combining these different internal values the internal
long-term memory or the next cell memory is generated as:

ct = ft � ct + it � fCt. (4)

From this, the cell output is generated by the output gate
to control the extent to which the value in the cell is used
to compute the output activation, doing a read operation:

ot = �(wo[ht�1, xt] + bo). (5)

Finally the cell’s hidden output is found as

ht = ot � tanh(ct) (6)

Fig. 1. Illustration of a Long-Short Term Memory (LSTM) unit.

for passing to other cells in the deep network. Each of the
gates has parameters for its weights and biases, giving a
large number of parameters for deep networks with many
units present. The weights of these connections are learned
or updated during the training of the network.

B. Batch normalization

Training LSTMs is complicated by the fact that the statisti-
cal distribution of each layer’s inputs changes during training,
as the parameters of the previous layers change. This slows
down the training by requiring lower learning rates and
careful parameter initialization, and makes it extremely hard
to train models with saturating non-linearities [12]. Batch
normalization has recently been introduced to overcome this
by normalizing the xt and ht�1 activations going into each
layer by applying a covariate shift. This enforces the means
and variances of xt and ht�1 to be invariant to changes
in the parameter distributions of the underlying layers and
effectively decouples each layers parameters from those of
other layers, leading to a better-conditioned optimization
problem [12]. We have embedded the batch normalization
technique in our proposed model discussed in the next
section.

III. METHODS

A. Proposed LSTM model

A schematic diagram of our multi-layer stacked architec-
ture LSTM network for multi-class HAR classification is
presented in Fig. 2. The model architecture is novel in its
use of longer temporal sequences in the LSTM and its use
of batch normalization for HAR with the RNN architecture
when compared to ones reported in the literature [8], [9].

As activity data is recorded from the sensor as a time-
series, preparing the training data as per the requirements of
the LSTM is crucial for building and training. In our LSTM
implementation the data input xt is multi-dimensional, con-
taining three channels from a 3-axis accelerometer, and three
from a 3-axis gyroscope. We needed to reshape these six
parallel 1-D time series data into the 3-D structure required
by an LSTM with the specific number of neurons in one
dimension, the number of memory steps to process per time
step in another dimension, and different sensor channels on
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Figure 2.1 – LSTM unit [Zebin et al., 2018].

Table 2.1 [Hayat et al., 2022] compares the accuracy of the previously mentioned
methods. The complexity and overhead of the LSTM implementations, which is composed
by the processing time and memory footprint, lead to hybrid approaches mixing CNNs with
LSTMs [Xu et al., 2019]. The goal is to combine the CNN feature extraction properties with
the time series processing ability of LSTM.

Table 2.1 – Accuracy of ML methdos applied to HAR [Hayat et al., 2022].
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From Tables 1 and 2, it is clearly visible that the LSTM approach outperformed all the
other methods in most of the cases; the ANN gave the best accuracy in classifying “sitting”
for both 2-fold and 10-fold cross-validation. If we compare deep learning methods (ANN
and LSTM) with all the other methods, it is clearly depicted that deep learning methods
outperformed other conventional machine learning methods in terms of accuracy. The
overall accuracy of LSTM (95.05%) was the highest.

Table 1. Accuracy table of all the algorithms for each activity using 2-fold cross-validation.

Activity RF (%) k-NN (%) SVM (%) ANN (%) LSTM (%)

Walking 85.60 86.31 89.47 93.78 95.08
Going Upstairs 76.02 78.88 82.84 86.50 92.78

Going Downstairs 76.54 75.42 80.10 86.55 94.75
Sitting 87.62 93.81 93.92 95.57 96.85

Standing 87.22 90.54 91.54 94.88 95.94
Laying 83.10 87.34 89.50 90.10 91.77

Overall Performance 82.68 85.38 87.90 91.23 94.53

Table 2. Accuracy table of all the algorithms for each activity using 10-fold cross-validation.

Activity RF (%) k-NN (%) SVM (%) ANN (%) LSTM (%)

Walking 86.60 88.50 91.37 94.67 96.12
Going Upstairs 80.12 81.62 83.45 88.92 93.18

Going Downstairs 78.45 79.53 81.88 87.15 95.57
Sitting 92.76 94.16 95.89 97.22 97.11

Standing 90.14 91.12 92.14 95.14 96.12
Laying 85.70 88.16 89.73 90.38 92.18

Overall Performance 85.63 87.18 89.08 92.25 95.05

Additionally, from Figure 5 and Tables 1 and 2, it is observed that most of the misclas-
sified records came from “going upstairs” and “going downstairs”, as both activities are
somewhat similar, and the model had problems separating these two activities. Now, it is
possible to verify the performance of the system in terms of the other parameters as well.

Tables 3 and 4 show that the best precision, recall, accuracy, and F1-score values were
92.87%, 85.32%, 95.05%, and 88.94%, respectively, and were achieved by the LSTM classifier
using 10-fold cross-validation. However, SVM showed the best processing time of 0.08 and
0.42 min in both 2-fold and 10-fold cross-validation. Considering the overall performance
of the methods, it is clearly visible that the proposed LSTM’s overall performance was
better than other machine learning or deep learning models.

Table 3. Overall performance assessment using 2-fold cross-validation.

Model Avg. Precision (%) Avg. Recall (%) Avg. Accuracy (%) F1-Score (%) Time (min)

RF 81.40 78.41 82.68 79.88 0.53
k-NN 83.57 81.71 85.38 82.63 0.92
SVM 87.14 85.62 87.90 86.37 0.08
ANN 88.81 89.11 91.23 88.96 1.22
LSTM 90.78 92.62 94.53 91.69 0.72

Table 4. Overall performance assessment using 10-fold cross-validation.

Model Avg. Precision (%) Avg. Recall (%) Avg. Accuracy (%) F1-Score (%) Time (min)

RF 82.22 80.10 85.63 81.15 2.24
k-NN 85.41 82.30 87.18 83.83 4.20
SVM 88.98 87.80 89.08 88.39 0.42
ANN 89.20 91.78 92.25 90.47 3.78
LSTM 92.87 94.32 95.05 93.59 2.92

Recent advances in AI adopt CNN-only approach to various problems, seeking the
overhead reduction during the inference phase while maintaining a state-of-the-art accuracy.
CNNs have shown promising results in applications such as image processing in battery-
powered devices. In a sensor-based HAR scenario, battery-powered devices are the only
option, and only a few studies evaluate how a low-power CNN-only approach would perform
in this scenario.
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2.3 Convolutional Neural Network

A Convolutional Neural Network (CNN) is a feed-forward neural network. One of
the CNNs main goals is to reduce data pre-processing. CNN specializes in processing data
with a grid-like topology, such as images. This characteristic leads to the adoption of CNNs
by the industry, especially in the health and image-processing areas. Sarvamangala and
Kulkarni [2021] presented in his work that CNNs are efficient for the analysis of medical
images.

Figure 2.2 shows an example of a CNN, with its phases and operations. According
to Figure 2.2, an image classification comprises two phases:

8Introducing Deep Learning with MATLAB

About Convolutional Neural Networks

A convolutional neural network (CNN, or ConvNet) is one of the 
most popular algorithms for deep learning with images and video. 

Like other neural networks, a CNN is composed of an input layer, 
an output layer, and many hidden layers in between. 

Feature Detection Layers
These layers perform one of three types of operations on the data: 
convolution, pooling, or rectified linear unit (ReLU).

Convolution puts the input images through a set of convolutional 
filters, each of which activates certain features from the images.

Pooling simplifies the output by performing nonlinear 
downsampling, reducing the number of parameters that the 
network needs to learn about.

Rectified linear unit (ReLU) allows for faster and more effective 
training by mapping negative values to zero and maintaining 
positive values.

These three operations are repeated over tens or hundreds of 
layers, with each layer learning to detect different features.
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Figure 2.2 – Convolutional Neural Network example [Mathworks, 2021].

• Feature Detection: Convolution, ReLu and Pooling layers extract key points of the
input data, using a set of filters.

• Classification: Flatten, Fully-Connected and Softmax Layers classifies the input data
using the extracted features. This phase returns the result of the classification.

The most common used layers in a typical CNN implementation includes:

• Convolution Layer. This is the first CNN layer. The convolution layer performs a
mathematical operation of convolution between the input data and a set of filters. By
moving and performing the operation along the input data, a set of features is obtained,
called Feature Map. Figure 2.3 shows the first convolution in a 8x8 image, using a 3x3
filter.

• Activation Layer. Activation functions introduce non-linearity to the model which al-
lows it to learn complex functional mappings between the inputs and response vari-
ables. In most CNN Implementations, the Rectified Linear Unit (ReLu) is used in the
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2.3. Convolutional based algorithms
A convolutional neural network [102] is an ANN architecture that uses the convolution operator (see Figure 3)
in one of its layers. That is, two functions produce a third that describes how the shape of one is changed by the
other. Commonly this is used as an encoding of some input space (e.g. images), with regularized linear activations
and uses several layers of the same encoding (i.e. convolutional filters) and pooling layers (e.g. max pooling, see
Figure 4) to define an information hierarchy. In practice convolutional layers tend to also be used for reducing
the total number of connections needed by a layer as that can easily be overwhelming for a fully connected layer,
especially in the case of inputs with large dimensions.

Figure 3. Schematic illustration of a convolutional operation. The convolutional kernel
shifts over the source layer, filling the pixels in the destination layer.

Figure 4. Schematic illustration of a max pooling operation with 2 × 2 filter and stride of 2.

Most of the use-cases in the last chapter of this guide employ convolutional based algorithms. For the reader’s
convenience we have listed the most utilized architectures: MobileNets, ResNeXt, Xception, DenseNet, ResNet,
Inception-ResNet, SqueezeNet, Inception-v3, GoogLeNet, VGG, AlexNet, SENet, LeNet, DPN, NASNet. How-
ever, there are many more candidates.

The number of neurons determines (through the associated number of weights and activations) the memory foot-
print of the network, this can lead to several implementation and design decisions. Please refer also to the section
“Model parallelism” in the chapter “HPC and Scaling”.

Currently, most deep learning software stacks have efficient implementations for convolutional kernels by ex-
ploiting hardware features through algebra libraries like cuDNN [5] and MKL-DNN [6].

2.3.1. Residual neural networks
Residual networks are networks that contain connections that skip one (or multiple) layers (Figure 5) [7] [103].
Normal ANNs suffer from the so-called vanishing gradients problem when they contain too many layers [8]. The

Figure 2.3 – Illustration of a convolution process [Podareanu et al., 2019].

Activation Layer. RelU function is a piecewise linear function that outputs the input
directly if is positive, i.e. > 0, otherwise, it will output zero.

• Pooling Layer. Its goal is to reduce the size of the feature map, reducing the compu-
tational cost of the subsequent layers. There is various pooling methods such as: (i)
Max Pooling, (ii) Average Pooling, (iii) Sum Pooling.

• Fully Connected Layer (FC). This layer has two hidden neuron layers, where each
neuron is connected to every other neuron in the other hidden layer, where each con-
nection has its respective weight. When needed, a Flatten layer is used before the FC
to convert a two dimensional array into a single dimension, as required by the input
dimension of the FC.
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3. RELATED WORK

Table 3.1 summarizes the related work, where each row color corresponds to an
ML method: LSTM in red, CNN in green, and hybrid approaches of CNN and LSTM in blue.
The last row presents our work compared to the literature.

Table 3.1 – Related works on ML applied for HAR.

Work Model Modeling Goals

LSTM Networks Using Smartphone Data for
Sensor-Based Human Activity Recognition in
Smart Homes [Mekruksavanich and
Jitpattanakul, 2021]

LSTM TensorFlow Compare different LSTM
approaches

Human activity recognition from inertial sensor
time-series using batch normalized deep LSTM
recurrent networks [Zebin et al., 2018]

LSTM Keras Python LSTM accuracy for temporal
correlation analysis

Convolutional Neural Networks for Human
Activity Recognition using Mobile Sensors
[Zeng et al., 2014]

CNN not defined by the
Authors

Novel CNN approach to achieve
state-of-the-art accuracy in
HAR problem

A Fully Onchip Binarized Convolutional Neural
Network FPGA Implementation with Accurate
Inference [Shimoda et al., 2017]

Binarized CNN Pytorch
State-of-the-art accuracy in a
FPGA using low-power and
low-area techniques

Human Activity Recognition Using Cascaded
Dual Attention CNN and Bi-Directional GRU
Framework [Ullah and Munir, 2023]

CNN + GRU TensorFlow Human activity recognition in
video streams

Inception inspired CNN-GRU hybrid network for
human activity recognition [Dua et al., 2023] CNN + GRU TensorFlow

Develop a HAR model that is
reasonably accurate and less
complex so that it can be later
deployed in embedded devices

Deep Convolutional and LSTM Recurrent
Neural Networks for Multimodal Wearable
Activity Recognition [Ordóñez and Roggen,
2016]

CNN + LSTM Lasagne
Improve accuracy of LSTM
approach using CNN as
Feature Extractor

Towards effective detection of elderly falls with
CNN-LSTM neural networks [García et al.,
2022]

CNN + LSTM not defined by the
Authors

Accurate fall detection using
wearable sensors in the elderly
population

MultiCNN-FilterLSTM: Recognition of human
activity based on sensor-based resources in
IoT applications Park et al. [2023]

CNN + LSTM Pytorch
Support IoT systems that
require a resource-efficient
model

A novel vision-based fall detection scheme
using keypoints of human skeleton with long
short-term memory network Inturi et al. [2023]

CNN + LSTM not defined by the
Authors

Solution for fall detection using
vision-based approaches

This work 1D CNN Pytorch and C models

Integer representation with
reduced model size targing
processors with limited
resources

Section 3.1 overviews feature extraction methods for activity recognition. Sec-
tion 3.2 and Section 3.3 present LSTM and CNN approaches, respectively. Hybrid ap-
proaches are described in Section 3.4. Section 3.5 presents optimization techniques in
neural networks. Finally, Section 3.6 presents the related work final remarks and how this
work fills the gaps observed in the literature.
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3.1 Feature Extraction for Activity Recognition

Zeng et al. [2014] classifies Activity Recognition (AR) as a classification problem,
where inputs are frames with time-series data, and the output is an activity class. Many fea-
tures such as mean, standard deviation, and correlation coefficients are widely used [Figo
et al., 2010]. More complex hand-crafted features include Fourier and wavelet transforms,
and more recent proposals also include time-delay embeddings. According to the authors,
this more recent method adopts a nonlinear time series analysis, with good results, in peri-
odic activities such as cycling or walking [Frank et al., 2010]. However, the approach lacks
performance in non-periodic activities. Figure 3.1 shows an example of an activity recogni-
tion workflow.

II. RELATED WORK

A. Feature Extraction for Activity Recognition

AR can be consider as a classification problem, where the
input are time series signals and the output is an activity class
label. Fig 1 shows the activity recognition process, which is
divided into training phase and classification phase. In the
training phase, we extract features from the raw time series
data. These features are then used to train a classification
model. In the classification phase, we first extract features from
unseen raw data and then use the trained prediction model to
predict an activity label.

Fig. 1. Feature extraction is one of the key components of activity recognition.

Feature extraction for AR is an important task, which has
been studied for many years. Statistical features such as mean,
standard deviation, entropy and correlation coefficients, etc.
are the most widely used hand-crafted features in AR [8].
Fourier transform and wavelet transform [27] are another two
commonly used hand-crafted features, while discrete cosine
transform (DCT) have also been applied with promising re-
sults [11], as well as auto-regressive model coefficients [12].
Recently, time-delay embeddings [10] have been applied for
activity recognition. It adopts nonlinear time series analysis to
extract features from time series and shows a significant im-
provement on periodic activities recognition (cycling involves
a periodic, roughly two-dimensional leg movement). However,
the features from time-delay embedding are less suitable for
non-periodic activities.

In the recent years, some approaches such as principal com-
ponent analysis (PCA) [11] or restricted Boltzmann machine
(RBM) [23] were applied to adapt the feature extraction to
the dataset, i.e. the mapping from raw signals to features is
not predefined, but rather automatically learned from the train-
ing dataset. PCA is a well-established technique to discover
compact and meaningful representations of raw data without
relying on domain knowledge. The PCA feature extraction is
conducted in discrete cosine transform (DCT) domain [11].
After conducting PCA, the most invariant and discriminating
information for recognition is maintained. The PCA based
on empirical cumulative distribution function (ECDF) is pro-
posed [23] to preserve structural information of the signal.

B. Deep Learning for Feature Learning

Although PCA can learn features in an unsupervised man-
ner, its linear combination of raw features does not have
sufficient capability to model complex non-linear dependen-
cies [4]. Therefore, deep neural networks (DNN)1 have been
proposed to extract more meaningful features [23]. The one
key difference between traditional neural networks and deep
neural networks is that DNNs can have many layers in the
networks while traditional neural networks contain three layers
at most. A key advantage of DNN is its representation of input
features. DNN can model diverse activities with much less
training data, it can share similar portions of the input space
with some hidden units, while keeping other units sensitive to
a subset of the input features that are significant to recognition.

DNN in recent made many breakthroughs in many research
areas. The deep architectures can represent complex function
compactly, which have been shown to outperform state-of-the-
art machine learning algorithms in many applications (such as
face detection, speech recognition.) [4]. Fig 2 compares a DNN
model with existing approaches.

A statistic feature model can be considered as a model of
depth 1, where the output nodes represent pre-defined function
such as mean, variance, etc. PCA can be also considered as a
model with depth 1, where the output nodes represents the k
principal components outputted as a linear combination of the
input data. DNN is a model with a a depth of n layers, where
the complex dependencies of the input data can be captured
through hidden layers with non-linear mapping in layers.
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The Restricted Bozltman Machine (RBM), a particular
form of log-linear Markov Random Field (MRF) [13], was
proposed as a DNN technique to extract features for AR [23]. It
employed Gaussian visible units for the first level and trained
the network in a supervised manner. Another DNN model,
Shift-Invariant Sparse Coding [29], [5] was used to perform
unsupervised learning to train an autoencoder network.

However, RBM [23] and Sparse Coding [29], [5] are fully
connected DNN models (as shown in Fig 2(c)). Therefore, they
do not capture local dependencies of the time series signals [1].
Convolution Neural Network (CNN) [20] consists of one or
more pairs of convolution and pooling layers2. The small local

1The deep neural networks is built from traditional artificial neural networks
(ANN) but conquer its shortcoming. The term “deep” is gained because
each layer can be stacked layer by layer. And Geoffrey Hinton and Ruslan
Salakhutdinov showed how a many-layered feedforward neural network could
be effectively pre-trained one layer at a time [14]. But the traditional ANNs
only have three layers at most

2The terms will be defined and discussed in the Section 3
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Figure 3.1 – Overview of an activity recognition workflow [Zeng et al., 2014].

Other approaches, such as principal component analysis (PCA), are also com-
monly used. While other methods have fixed feature extraction techniques, studies have
shown that PCA can adapt its feature extraction to the dataset, improving performance.

CNNs have been proposed to extract more meaningful features from raw input data.
CNN does not require a hand-crafted method or statistical analysis to retrieve key features
from the input dataset. Furthermore, CNN requires much less training data to accurately
adapt its feature extraction based on the input data [O’Shea and Nash, 2015].

Traditional statistical feature extraction methods can be considered single-depth,
where the output nodes represent the correlation between the predefined methods. Zeng
et al. [2014] defines PCA as a single-depth method. Although this approach can find complex
correlations in the dataset, the output nodes are still one layer after the features. DNN has a
depth of n layers, allowing the model hidden layers to find complex dependencies inside the
input data. Figure 3.2 compares statistical, PCA, and DNN topology.
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II. RELATED WORK

A. Feature Extraction for Activity Recognition

AR can be consider as a classification problem, where the
input are time series signals and the output is an activity class
label. Fig 1 shows the activity recognition process, which is
divided into training phase and classification phase. In the
training phase, we extract features from the raw time series
data. These features are then used to train a classification
model. In the classification phase, we first extract features from
unseen raw data and then use the trained prediction model to
predict an activity label.

Fig. 1. Feature extraction is one of the key components of activity recognition.
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The Restricted Bozltman Machine (RBM), a particular
form of log-linear Markov Random Field (MRF) [13], was
proposed as a DNN technique to extract features for AR [23]. It
employed Gaussian visible units for the first level and trained
the network in a supervised manner. Another DNN model,
Shift-Invariant Sparse Coding [29], [5] was used to perform
unsupervised learning to train an autoencoder network.

However, RBM [23] and Sparse Coding [29], [5] are fully
connected DNN models (as shown in Fig 2(c)). Therefore, they
do not capture local dependencies of the time series signals [1].
Convolution Neural Network (CNN) [20] consists of one or
more pairs of convolution and pooling layers2. The small local

1The deep neural networks is built from traditional artificial neural networks
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Figure 3.2 – (a) Statistical feature computation, (b) PCA model, (c) DNN model [Zeng et al.,
2014].

3.2 LSTM Approaches

Table 2.1 (page 19) presented the accuracy superiority of LSTM over other ML
methods for HAR. Standard Recurrent Neural Networks (RNNs) suffer from short-term mem-
ory due to a vanishing gradient problem that arises when working with longer data se-
quences [Zebin et al., 2018]. More advanced versions of RNNs, such as Long Short-Term
Memory (LSTM) and Gated Recurrent Units (GRU), can preserve information from earlier
sequence parts and carry it forward. LSTM contains “memory cells”, allowing predictions to
be made based on prior information [Mekruksavanich and Jitpattanakul, 2021].

Mekruksavanich and Jitpattanakul [2021] compared LSTM architectures in activi-
ties of daily living recognition: (i) Vanilla LSTM; (ii) 2-stacked LSTM; (ii) 3-stacked LSTM.
The original LSTM model (Vanilla LSTM) consists of an individual LSTM layer followed by
a classifier with of a Dropout Layer, a Fully Connected Layer, and a SoftMax layer. The
stacked LSTM architectures contain the same classifier layers but include more LSTM lay-
ers, taking advantage of the temporal feature extraction of each layer. Figure 3.3 shows
these architectures.
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3.2. LSTM Architectures

The following LSTM network architectures are used in this work: Vanilla LSTM net-
work, 2-Stacked LSTM network, and 3-Stacked LSTM network, as illustrated in
Figures 10–12, respectively. The original LSTM model (or Vanilla LSTM network) comprises
an individual hidden layer of LSTM, followed by a common feedforward output layer. The
Stacked LSTM networks are upgraded versions of the original model with multiple hidden
LSTM layers. Each layer of the Stacked LSTM network contains multiple memory cells. A
Stacked LSTM structure can be technologically defined as an LSTM model, consisting of
multiple LSTM layers to take advantage of the temporal feature extraction obtained from
each LSTM layer.

Figure 10. Vanilla LSTM network architecture.

Figure 11. 2-Stacked LSTM network architecture.

Figure 12. 3-Stacked LSTM network architecture.

The CNN-LSTM architecture employs CNN layers in the feature extraction process
of input data incorporated with LSTMs to support sequence forecasting, as shown in
Figure 13. The CNN-LSTMs are built to solve forecasting problems in visual time series
and applications to achieve textual descriptions from image sequences. This architecture is
appropriate for issues involving a temporal input structure or requiring output generation

(a) Vanilla LSTM
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The CNN-LSTM architecture employs CNN layers in the feature extraction process
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Figure 13. The CNN-LSTMs are built to solve forecasting problems in visual time series
and applications to achieve textual descriptions from image sequences. This architecture is
appropriate for issues involving a temporal input structure or requiring output generation
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Figure 3.3 – Vanilla and 3-Stacked LSTM Network architectures [Mekruksavanich and Jit-
pattanakul, 2021].
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Mekruksavanich and Jitpattanakul [2021] proposes a sampling rate of 2.56 sec-
onds with a fixed-width sliding window. Each window overlaps each other by 50%. Fig-
ure 3.4 presents this process. These values are empirical, designed to detect repetitive rate
activities, such as walking. More work is done reshaping the input to allow a 3D input as
required for the first LSTM layer. Mekruksavanich and Jitpattanakul [2021] also proposes
a 4-layer CNN-LSTM, later discussed in Section 3.4, presenting the best performance of
all evaluated networks with the UCI-HAR dataset. The model achieved 99.39% accuracy,
improving 2.24% from the baseline LSTM.
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the elderly and those with disabilities. A minimum speed equal to 50% of the average
human cadence was assumed by the researchers [36]. (4) Signals were also mapped via the
Fast Fourier Transform (FFT) in the frequency domain, optimized for two-vector control
(2.56 s ⇥ 50 Hz = 128 cycles). The available dataset contains 10,299 samples, split into two
classes (i.e., two sets of training and testing). The former has 7352 samples (71.39%), while
the latter has the remaining 2947 samples (28.61%). The dataset is imbalanced, as shown in
Figure 8. Since the use of accuracy only is insufficient for analysis and fair comparison, we
additionally apply the F1-score to compare the performance of LSTM-based networks in
this work.

Figure 7. Data segmentation process by a sliding window.

Figure 8. Activity label distribution of UCI-HAR dataset.

Figure 3.4 – Sliding-Window method [Mekruksavanich and Jitpattanakul, 2021].

Zebin et al. [2018] proposed a stacked LSTM approach, with 2 LSTM layers added
before the classifier. Differently from Mekruksavanich and Jitpattanakul [2021], this archi-
tecture uses Batch Normalization inside the classifier to reduce training epochs needed to
increase the accuracy, as demonstrated by Mekruksavanich and Jitpattanakul [2021]. This
work uses a waist-worn sensor with two sensors: (i) accelerometer; (i i) gyroscope. Each
sensor contains three axes. Sensors data are recorded at a 50 Hz sampling frequency. The
raw data from the dataset was reshaped to allow a 3-D structure, as required for the LSTM
Layer 1 input shape. In this work, 128 1D samples of each sensor axis are grouped. Fig-
ure 3.5 shows the proposed LSTM architecture. This work achieved a 92% average recog-
nition accuracy for 6 daily-life activities. The authors highlighted the reduction in training
epochs and added robustness due to the Batch Normalization and Dropout layers.
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Fig. 2. Proposed deep LSTM network architecture for HAR classification.

the third dimension. For the architecture shown in Fig. 2 we
prepared a reformatted matrix of shape: No. of data rows ⇥
128 samples/sequence ⇥ 6 channels. In every data row 127
previous samples were arranged to work as a memory for
the current data.

The model is implemented using the Keras open source
library in Python [13], and we have utilized the sequential
model and with Dense, LSTM, Dropout, and Batch Nor-
malization layers. The input layer has 30 neurons using
the 128 previous data points. A second LSTM layer was
stacked in our model to utilize a deeper time dependency in
predicting the next value. Finally, the network was converted
into a classifier using a fully connected hidden Dense layer
with 15 neurons followed by an output Dense layer of six
neurons with a soft-max classifier to provide probabilistic
assignments of labels/classes from the raw data. The final
model was trained with an Adam optimizer with a learning
rate of 0.002 and binary cross-entropy [13].The training of
the model is done offline without any GPU, on a conventional
computer with a 2.4GHZ CPU and 16GB memory.

B. Dataset Preparation

To evaluate the performance of the model, we processed
the time series data from a waist mounted inertial sensor
recorded at 50 Hz sampling frequency containing both
accelerometer and gyroscope measurements. Data for 20
subjects is present, described in detail in [14]. The dataset

Fig. 3. Confusion matrix for the test set, and per-class sample numbers.

contains six everyday activities: 0–walk on level surface;
1–walk upstairs; 2–walk downstairs; 3–sitting; 4–standing;
5–lying. We kept the data from 14 volunteers, with approxi-
mately 7500 labeled activities as training data, and data from
6 volunteers, 3000 labeled activities, as a test dataset. The test
set was separated entirely from the training dataset during
our experiments. Also to avoid over-fitting the model with
training data, 20% of the training dataset was held back as
a validation set.

IV. RESULTS AND DISCUSSION

A. Performance Evaluation

To verify the performance of our LSTM model Fig. 3
shows the full confusion matrix of the test set. Some misclas-
sifications are present, but overall the classification is highly
accurate. This is quantified in Fig. 4 the via precision and
F1 score. For activities such as walking level, walking up
and walking down the average precision is over 95%. These
time-dependent dynamic activities benefited from the LSTM
memory processing for highly accurate classification. In
contrast, from Fig. 3 and Fig. 4 it is clear that in our test data
set most of the misclassifications are for static activities such
as sitting and standing. These have less temporal correlations
and repetitive components for learning by the LSTM.

Fig. 4. Class-wise performance on the test data set assessed via precision
and F1 score for a generic LSTM and a batch normalized LSTM.

Figure 3.5 – Zebin et al. [2018] LSTM network architecture.

3.3 CNN Approaches

The feature extraction is a key component of CNN approaches to the HAR problem.
Zeng et al. [2014] proposed in his work a traditional CNN approach using one Convolutional
Layer, a Max-Pooling layer, and two fully connected layers (hidden layers). Figure 3.6 shows
the proposed architecture.

Similarly to Mekruksavanich and Jitpattanakul [2021], Zeng et al. [2014] use a slid-
ing window of 64 samples with a certain percentage of overlap to extract input data for the
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parts of the input were captured by the convolutional layer with
a set of local filters. And the pooling layer can preserver the
invariant features. Top fully connected layer finally combine
inputs from all features to do the classification of the overall
inputs. This hierarchical organization generates good results
in image processing [18], [16] and speech recognition [1]
tasks. In the next section, we will present details of CNN and
describe our proposed CNN-based AR approach.

III. CNN-BASED ACTIVITY RECOGNITION

In this section, we discuss our CNN-based feature
extraction approach. Fig 3 shows the structure of the
proposed approach. Following the settings of [23], given a
3D acceleration time series we use a sliding window with a
length of w values and with a certain percentage of overlap
to extract input data for the CNN.

Our L-layer CNN-based model has three kinds of layers:
1) An input layer (with units h0

i ) whose values are fixed by the
input data; 2) hidden layers (with units hl

i) whose values are
derived from previous layers l − 1; 3) and output layer (with
units hL

i ) whose values are derived from the last hidden layer.
The network learns by adjusting a set of weights wl

i,j , where
wl

i,j is the weight from some input hl
i’s output to some other

unit hl+1
j . We use xl

i to denote the total input to unit ul
i (ith

unit in layer l), and yl
i denotes the output of unit hl

i.

Fig. 3. Structure of CNN for Human Activity Recognition. The dimension
of input data is 64, the dimension convolutional output is 12, the dimension
max-pooling output is 4. The dimension of two hidden layers is 1024 and 30,
respectively. The top layer is a Softmax classifier.

A. Convolutional Layer

In the following we describe how CNN captures local de-
pendencies and the scale invariant characteristics of the activity
signals. In order to capture the local dependencies of the data,
one can enforce a local connectivity constraint between units
of adjacent layers. For example, in Fig 4 the units (neurons)
in the middle layer are only connected to a local subset of
units in the input layer. From biology, we know that there
are complex arrangement of cells in visual cortex, which are
sensitive to small regions of the input, called a receptive field,
and are tiled to generate the entire visual field. These filters

are local in input space and are thus suited to exploit local
correlation hidden in the data, so we also call it local filter. In
terms of local filter, the weight of edge connected ith unit with
jth, wi,j can be reduced by wa, and wi,j = wi,j+m = wa,
where m is the width of the local filter. In Fig 4, the 1D
vector [w1, w2, w3] represents three local filters denoted by
different line style, where wi is weight of edge connecting
in two layers. The convolution operation is conducted over
the local subset. This topological constraint corresponds to
learning a weight matrix with sparsity constraint, which is not
only good for extracting local dependencies, but also reduces
the computational complexity. The output of such a set of
local filters constitute a feature map (Fig 5). At each temporal
position, different types of units in different feature maps
compute different types of features.
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Fig. 4. Left) Traditional weight sharing CNN, Right) Partial weight sharing
CNN. Weights denoted by the same line style are shared

Moreover, in order to form a richer representation of
the data, the convolutional layers are composed of a set of
multiple feature maps (Fig 5), x(·,j), j = 1...J . The following
Fig 5 shows two layers of CNN, containing three feature
maps (x(0), x(1)) at the left layer and two feature maps at
the right layer. Unit’s outputs in x(0) and x(1) are computed
by convolution operation from units of left layer which fall
within their local filter (shown as rectangles in Fig 5). Suppose
we have some N unites layer as input which is followed
by convolutional layer. If we use m width filter w, the
convolutional output will be (N − m + 1) unites. Then the
output of convolutional layer l is:

xl,j
i = σ

(
bj +

m∑

a=1

wj
axl−1,j

i+a−1

)
(1)

where xl,j
i is the l convolution layer’s output of the jth feature

map on the ith unit, and σ is a non-linear mapping, it usually
uses hyperbolic tangent function, tanh(·). Take Fig 4 as an
example, the first hidden unit of the first local filter is

x1
1,1 = tanh(w1,1

1 x0,1
1 + w1,1

2 x0,1
2 + w1,1

3 x0,1
3 + b1)

and the second hidden unit of the second local filter is

x2
1,1 = tanh(w1,1

1 x0,1
2 + w1,1

2 x0,1
3 + w1,1

3 x0,1
4 + b1)

.

In traditional CNN model [18], each local filter is addi-
tionally replicated across the entire input space. That means
the weights of local filters are tied and shared by all positions
within the whole input space. For example, in Fig 4, weights
denoted by the same line style are shared (forced to be
identical). The replicated weights allow the features to be
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Figure 3.6 – Zeng et al. [2014] proposed CNN Network architecture.

CNN. Differently from other works, the authors use only one sensor: an accelerometer with
3 axes. Input data is shaped into a two-dimensional array with 64 samples of each of the
three axes. Zeng et al. [2014] compared its proposal accuracy to other methods like a PCA-
variant and a statistical method. Figure 3.7 presents this comparison. This work showed the
superiority of the CNN approach over other traditional methods. The authors highlighted that
their results are experimental, and more experiments with larger datasets, such as MobiAct
[Vavoulas et al., 2016], are needed to study the robustness of the proposed architecture.
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Fig. 6. Accuracy of classification for experimental evaluation of learned fea-
tures. The Statistical, RBM and PCA-ECDF do not consider local dependency
or scale invariant, but CNN-based model take account of local dependency and
scale invariant.

Sensors were either worn or embedded into objects that
subjects manipulated. The sensor data was segmented using a
sliding window with a size of 64 continuous samples with 50%
overlap. The acceleration values were normalized to have zero
mean and unit standard variance for CNN-based approach. All
the deep learning based algorithms (CNN-based, and RBM)
are performed on a server, equipped with a Tesla K20c GPU
and 48G memory. The traditional learning algorithms (PCA,
statistics) are run on the same server with an Intel Xeon E5
CPU.

• Opportunity (Opp) [25], [6] The dataset contains
activities performed in a home environment (kitchen)
using multiple worn sensors. The dataset records ac-
tivities of multiple subjects on different days with
64Hz. The activities contain “open then close the
fridge”, “open then close the dishwasher”, “drink
while standing”, “clean the table”, etc. Our settings
on this dataset is the same with [23]: only using
one sensor on the right arm, and we consider 11
activities categories, including 10 low-level activities
and 1 unknown activity. The dataset contains around
4,200 frames.

• Skoda [33] The Skoda Mini Checkpoint dataset de-
scribes the activities of assembly-line workers in a
car maintenance senario. The dataset records a worker
wearing 20 accelerometers in both arms while per-
forming 46 activities in the factory at one of the qual-
ity control checkpoint. The activities include “open
hood”, “close left hand door” “check steering wheel”,
etc. The frequency of sampling is 96Hz resulting
around 15,000 frames. The settings of CNN on this
data follows that of [23]: use only one accelerometer
on the right arm to identify all 10 activities related to
right arm and perform 4-fold cross validation.

• Actitracker [21] This dataset contains six daily activi-
ties collected in an controlled laboratory environment.
The activities includes “jogging”, “walking”, “ascend-
ing stairs”, and “descending stairs”, etc., which are
recorded from 36 users collected using a cell phone in
their pocket with 20Hz sampling rate resulting around
29,000 frames. 10-fold cross validation is conducted
on this dataset.

B. Classification Accuracy

In the first experiment, we evaluate the activity recognition
results presented in Fig 6. The CNN is composed of a
convolution layer with the partial weight sharing, with the
filter size set to 20 and max-pooling size set to 3. The top two
fully connected hidden layer have 1024 nodes and 30 nodes
respectively. One additional softmax top layer is used to
generate state posterior probabilities. All the other compared
algorithms used the same settings as [23]: calculating 23
dimension statistical value (mean, standard deviation energy,
etc.) as statistical feature; PCA (ECDF prepossessed) with 30
principal component (30 dimension); the structure of RBM
is 192-1024-1024-30. KNN is used as the label predictor. To
show the general applicability of the methods, the learning
parameters and the network layout were tuned on the Skoda
dataset via cross-validation and then applied as is for the
remaining datasets.

From Fig 6 we can observe that CNN+partial weight
sharing could improve the classification accuracy (with 95%
confidence) for all the three datasets. This CNN-based model
achieves classification accuracy of 88.19%, 76.83% 96.88%
on Skoda, Opp, Antitracker respectively, which is 4.41%,
1.2%, 9.02% higher than the best algorithm (PCA-ECDF)[23].

To analyze the results in more detail, we show the
confusion matrix for the Actitracker dataset using PCA
(Table I) and CNN (Table II). The two confusion matrices
indicate that many of the prediction error are due to
confusion between these three activities: ”walking”, ”walking
down”, ”walking up”. This is because these three activities
are relatively similar [19]. However, from the results we
can observe that the CNN+partial weight sharing model
outperforms the PCA-ECDF due to the two characteristics
of CNN+partial weight sharing. Note that in the PCA-ECDF
confusion matrix, the confusion in (up,walk) and (down,walk)
is high. This is because the signal vibration of ”walking
up” and ”walking down” activities are like ”walking”. But
CNN-based models performs well in these two cases, which
indicates CNN could extract better representative features for
”walking down” and ”walking up”.

Predict Class
Jog Walk Up Down Sit Stand

A
ct

ua
l Jog 649 13 8 3 0 7

Walk 2 1146 7 1 2 5
Up 5 42 187 30 2 48

C
la

ss Down 0 44 65 101 3 42
Sit 0 0 0 0 166 0

Stand 0 0 0 0 0 133

TABLE I. CONFUSION MATRIX FOR PCA-ECDF ON ACTITRACKER
DATASET

C. Sensitivity of Parameters

We evaluate the sensitivity of varies pooling window size,
the weight decay, momentum and dropout. In the following, we
vary the width of pooling window, weight decay, momentum,
and dropout respectively while keeping the other parameters
as the best settings.
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Figure 3.7 – Accuracy comparison between different methods [Zeng et al., 2014].

Shi et al. [2020] propose a similar architecture, with three 1D convolutional layers
with 32 output channels, 64 and 128 channels, respectively. The classifier contains a pooling
layer, a fully connected layer, and a SoftMax layer. Figure 3.8 shows the proposed architec-
ture. The author’s goal is to detect pre-impact movement using the MobiAct dataset, with
a sensor worn on the waist, with a sampling rate of 200 Hz. In the training and validation
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phases, Shi et al. [2020] used data of falls and frequent ADLs, such as walking, jumping, and
jogging. This work does not use all MobiAct classes because there are activities unrelated to
falls, such as elevator riding. This work achieved an accuracy of 95% using a combination of
CNN and Class Activation Mapping (CAM). Unlike other articles that used private datasets,
this study used the MobiAct, a publicly available dataset upon request.
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Figure 2. The acceleration data of the complete falling action. The x, y, z, and SVM labels represent
x-axis, y-axis, z-axis, and sum vector magnitude of acceleration, respectively. (a) A fall backward
sample. (b) A fall forward sample. (c) A fall laterally sample.

2.1. Network Architecture

We propose a CNN-based architecture, shown in Figure 3, which consists of three 1D convolutional
layers with 32 output channels, 64 channels, and 128 channels, respectively, one global average pooling
layer, one linear fully-connected layer, and one softmax layer. The convolutional layers are with (1, 3)
filters and ReLu activation functions, which focus on the discriminative features for classification.
The first two convolutional layers are followed by max pooling layers, while the last ones are not, in
order to keep the data length for class activation mapping. The global average pooling (GAP) layer
outputs the average of each channel at the third convolutional layer, and reduces the dimension of
feature map from (1, 12) to (1, 1), which is followed by one single linear fully-connected. Finally, we
use cross-entropy loss to judge classification quality, which guides training.Sensors 2020, 20, x FOR PEER REVIEW 5 of 12 

�

 

Figure 3. CNN network architecture: The network consists of three 1D convolutional layers with 32 
output channels, 64 channels, and 128 channels, respectively, one global average pooling layer, one 
linear fully-connected layer, and one softmax layer. The input data dimension is (6, 100), and the 
output is the classification result of falls or non-falls. 

To detect a person’s pre-impact fall, we construct an input tensor of six channels, which consist 
of tri-axial acceleration and tri-axial angular velocity. Raw data are time series data acquired from an 
inertial sensor worn on the human body and recorded as nx6-dimension tensor. Since data come from 
multimodal sensors (accelerometer and gyroscope) which need to be fused, we use early fusion [12], 
where the filter’s first dimension of the first convolutional layer is equal to the number of input 
channels. After the first convolution, all channels are fused into one dimension. 

2.2. Training 

We demonstrated our network on MobiAct [13], which consists of falls and several ADL data, 
acquired by inertial sensors worn on the waist with a sampling rate of 200 Hz. Here, we used data of 
falls and frequent ADLs, including standing, walking, jumping, and jogging. Since the network 
requires input data with the dimension of (6, 100), we intercepted the corresponding region from 
each sample and formed our training dataset. In order to detect a pre-impact fall, instead of using 
complete fall data to train our fall detection model, we used short snippets of falls around the fall-
start frame, and short snippets of ADLs as training samples. One great advantage of MobiAct is that 
the sensor data series is labeled at each time frame. We intercepted the original data in a time window 
of 200 length (the data in one second) after each activity-start frame and then subsampling to 100 to 
meet the input dimension. 

We implemented our model in PyTorch. For all trainings, the model was trained with the Adam 
optimizer with a 0.0001 learning rate, a 2.3:1 training set (1047 samples) to test set (449 samples) ratio, 
and a 4 batch size. The training runs on a desktop with a 1060Ti card. There were 219 fall samples 
and 230 ADL samples in the test dataset. Our model correctly identified 207 (94.52%) fall samples 
and 222 (96.52%) ADL samples, achieving accuracy of 95.55%. 

2.3. Class Activation Mapping Method 

Many previous studies based on artificial intelligence (AI) algorithms mostly focused on the fall 
detection results, but lacked a description of the characteristics of the fall data. This means that fall 
detection is not fundamentally different from classification of other time series data. Due to that, we 
wanted to investigate the contribution of different segments of fall inertial data to the detection 
results, and we incorporated the CAM method. The CAM method was successfully used to highlight 
the class-specific region, which the network learned from the data, to sort different classes [14]. 
Namely, it could show the region that contributes to classification results. After the convolutional 
network was well-trained, we could visualize the class-specific region detected by convolutional 
networks to understand how the CNN works on classification, and what features the CNN had 
extracted. Through weighting the sum of the last convolutional layer, we can obtain a hot map of the 
contribution of the original data to the classification result. 

We obtained a discrete set of fall inertia data to describe the fall. However, we were not sure 
what interval data can best predict the occurrence of a fall. In this work, we exploited the CAM to 
explore this problem. The network architecture that can apply the CAM method is shown in Figure 

Figure 3. CNN network architecture: The network consists of three 1D convolutional layers with 32
output channels, 64 channels, and 128 channels, respectively, one global average pooling layer, one
linear fully-connected layer, and one softmax layer. The input data dimension is (6, 100), and the output
is the classification result of falls or non-falls.

To detect a person’s pre-impact fall, we construct an input tensor of six channels, which consist of
tri-axial acceleration and tri-axial angular velocity. Raw data are time series data acquired from an
inertial sensor worn on the human body and recorded as nx6-dimension tensor. Since data come from
multimodal sensors (accelerometer and gyroscope) which need to be fused, we use early fusion [12],

Figure 3.8 – Shi et al. [2020] proposed CNN Network architecture.

Hayat Ullah and Arslan Munir [Ullah and Munir, 2023] propose a dual attentional
convolutional neural network (DA-CNN) architecture that leverages a unified channel–spatial
attention mechanism to extract HAR features in video frames. The dual channel–spatial
attention layers and the CNN layers learn to be more selective in the spatial receptive fields
that have objects within the feature maps. The extracted features are then forwarded to
a stacked bidirectional gated recurrent unit (Bi-GRU) for long-term temporal modeling and
recognition of HAR features.

Figure 3.9 shows the proposed architecture. It contains the modules: (i) CNN
architecture; (ii) Dual channel; (iii) Spatial attention module; (iv) bidirectional GRU network.
The CNN module utilizes a dual-attention mechanism to extract salient CNN features from
video frames effectively. The bi-directional GRU network learns the activity representation
for hidden sequential patterns, which is the temporal modeling of long-term human action
sequences. This architecture is modeled using TensorFlow.

Figure 3.9 – Ullah and Munir [2023] DA-CNN+Bi-GRU architecture.
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The experiments use YouTube action, UCF50, HMDB51, UCF101, and Kinetics-
600 datasets. The results are compared with the state-of-the-art methods regarding ac-
curacy and inference runtime. Results show that the DA-CNN+Bi-GRU framework has im-
proved execution time up to 167 times in terms of frames per second compared to most
of the contemporary action-recognition methods. Future work includes using the temporal
attention mechanism together with spatial attention to improve human activity-recognition
performance.

Nidhi Dua et al. [Dua et al., 2023] propose a HAR classifier called ICGNet, a hybrid
of Convolutional Neural Network (CNN) and Gated Recurrent Unit (GRU). It uses multiple-
sized convolutional filters simultaneously over the input, allowing to capture the information
in the data at multiple scales, which helps to compute more abstract features for local data
patches. The proposed classifier can capture the multivariate time series data’s local fea-
tures and long-term dependencies of the multivariate time series data. Figure 3.10 shows
the complete classifier.

Figure 3.10 – Dua et al. [2023] ICGNet architecture.

The classifier is implemented using TensorFlow. The first block captures activity
data through wearable body sensors. The captured human activity sequence data is in time-
series format and is segmented using the sliding window technique. The segmented data
frames are then forwarded to the CNN and GRU for feature extraction, and finally, the dense



30

classifier layer with SoftMax activation classifies the data. The overall accuracies achieved
on two benchmark datasets, MHEALTH and PAMAP2, are 99.25% and 97.64%, respectively.
The results indicate that the proposed network outperformed similar architectures proposed
for HAR in the literature.

3.4 Hybrid CNN+LSTM Approaches

Implementations that combine CNN and LSTM are common in many areas, such
as video classification and fall detection [Ng et al., 2015; García et al., 2022]. This hybrid
approach combines the feature extraction of CNNs, with the temporal analysis of LSTMs.

García et al. [2022] uses this approach to detect elderly falls effectively. Their
model includes two CNN layers and one LSTM layer. Figure 3.11 shows the proposed
network. An accelerometer sensor worn in the waist area produces data. The raw data are
processed using a sliding window of 1.28 seconds with 50% overlap to extract time frames
from time-series raw sensor data. Figure 3.12 illustrates the process of extracting time-
frames from raw sensor data. Using the UCI-FALL [Podareanu et al., 2019] dataset, García
et al. [2022] concluded that combining CNN and LSTM improves accuracy compared to
standalone models, achieving 95% in the test dataset. The authors highlighted that accuracy
improvement could be obtained in the raw data processing phase.

TS

IN
PU

T 
(d

 x
 w

)

C
N

N

TA
N

H

Po
ol

in
g

C
N

N

TA
N

H

Po
ol

in
g

LS
TM

D
en

se

D
en

se
TA

N
H

S
of

tM
ax

Figure 2: The architecture of the LSTMFD model [10]. The constants w and d refer to
the size of the multivariate TS window and the number of features, correspondingly.

Each CNN stage includes a convolutional, an activation layer and a pool-
ing layers. A convolutional layer includes of 64 nodes with kernel of size 5 and
stride 1, an activation layer includes hyperbolic tangent activation functions;
finally, a pooling layer includes max kernels of size 2 and stride 2. The aim
of these pooling layers is to avoid overfitting as they decrease the spatial size
and, consequently, the number of parameters in the network. As explained in
[10], these layers e↵ectively reduce spatial size by applying a max operation
independently for each depth slice.

The LSTM layer includes 64 nodes and the Dense layers include 32 nodes
each. In this study, three di↵erent versions of this model are used. Whenever
an univariate TS is used, the CNN becomes 1D-CNN of 64 filters, just exactly
the same approach as in [10].

4. Materials and Methods

4.1. Staged Falls Data sets

Several staged fall data sets have been published in the literature [51],
each data set include a set of sensors located in one or more places of a body.
From all the data sets in the literature ([52, 39] among others), this study
choses the UCI-FALL [53], which gathered data with a 3DACC (sampling
frequency of 25 Hz, with a 12 g sensors) placed on a wrist with a su�cient
number of participants (17, all of them performing the same number of ADL
and staged falls) and TS (1843 staged falls and 3326 ADL recordings). Up to
20 di↵erent staged fall types are considered (Forward, Lateral and Backwards
falls among them), and 16 ADL such as running, walking, squatting, bending,
sitting down, stumbling, lying on bed, etc.
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Figure 3.11 – García et al. [2022] proposed CNN+LSTM network
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Ordóñez and Roggen [2016] proposed a new Deep Neural Network framework de-
signed for activity recognition using wearable sensors. This architecture, named DeepCon-
vLSTM, combines convolutional and recurrent layers. Similarly to other implementations,
this work uses the convolutional layer as the automated feature extractor, and the recurrent
layer analyses the temporal dynamics of the feature maps created by the convolutional layer.
Figure 3.13 presents the proposed network. Layers 2 to 5 are convolutional layers. Layers
6 and 7 are the dense layers with LSTM cells, thus composing the hybrid architecture. The
authors highlight that the proposed framework improved the accuracy by 4% on average
compared to a baseline CNN approach. The paper did not discuss power and memory
overheads when comparing the hybrid approach with the standalone CNN approach.

Sensors 2016, 16, 115 8 of 25

Spl`1q “ Sl ´ Pl ` 1 (10)

where Pl is the length of kernels in layer l. The length of the kernels is the same for every convolutional
layer, being defined as Pl “ 5, @l “ 2, . . . , 5.

Figure 3. Architecture of the DeepConvLSTM (Conv, convolutional) framework for activity recognition.
From the left, the signals coming from the wearable sensors are processed by four convolutional
layers, which allow learning features from the data. Two dense layers then perform a non-linear
transformation, which yields the classification outcome with a softmax logistic regression output layer
on the right. Input at Layer 1 corresponds to sensor data of size D ˆ S1, where D denotes the number
of sensor channels and Sl the length of features maps in layer l. Layers 2–5 are convolutional layers. Kl

denotes the kernels in layer l (depicted as red squares). Fl denotes the number of feature maps in layer
l. In convolutional layers, al

i denotes the activation that defines the feature map i in layer l. Layers 6
and 7 are dense layers. In dense layers, al

t,i denotes the activation of the unit i in hidden layer l at time
t. The time axis is vertical.

3.1. DeepConvLSTM

DeepConvLSTM is a DNN, which comprises convolutional, recurrent and softmax layers.
Firstly, sensor data are transformed through four convolutional operations, as defined in Equation (9).
Convolutional layers process the input only along the axis representing time. The number of
sensor channels is the same for every feature map in all layers. In Figure 3, convolution operators
are displayed as ‘˚’, which is applied to a kernel whose size is delineated by the red rectangles.
These convolutional layers employ rectified linear units (ReLUs) to compute the feature maps, whose
non-linear function in Equation (9) is defined as spxq “ maxp0, xq. Layers 6 and 7 are recurrent dense
layers. The choice of the number of recurrent layers is made following the results presented in [33],
where the authors showed that a depth of at least two recurrent layers is beneficial when processing
sequential data. Recurrent dense layers adapt their internal state after each time step. Here, the inputs
of Layer 6 at time t are the elements of all of the feature maps at Layer 5 at time t, with t “ 1 . . . T and
T “ S5. The activation of the recurrent units is computed using the hyperbolic tangent function. The
output of the model is obtained from a softmax layer (a dense layer with a softmax activation function),
yielding a class probability distribution for every single time step t. Following the notation in [22], the
shorthand description of this model is: Cp64q ´ Cp64q ´ Cp64q ´ Cp64q ´ Rp128q ´ Rp128q ´ Sm, where
CpFlq denotes a convolutional layer l with Fl feature maps, Rpnlq a recurrent LSTM layer with nl cells
and Sm a softmax classifier.

3.2. Baseline Deep CNN

The baseline model is a deep CNN, which comprises convolutional, non-recurrent and softmax
layers. This approach shares the convolutional layers of DeepConvLSTM. It receives the same
input, a D ˆ S1 sensor data sequence, and the features maps are extracted in the same way as in
the DeepConvLSTM architecture. In this model, Layers 6 and 7 are non-recurrent dense layers,

Figure 3.13 – Ordóñez and Roggen [2016] proposed hybrid network architecture.

Hyunseo Park et al. [Park et al., 2023] propose a deep learning-based HAR model
called MultiCNN-FilterLSTM, which is a combination of a multi-head CNN with an LSTM
through a residual connection that processes the feature vectors in a hierarchical order.
Also, they propose a new LSTM cell, called filter-wise LSTM (FilterLSTM), allowing to learn
the HAR model features based on hierarchical levels.

Figure 3.14 shows the proposed model. This model is implemented using Pytorch.
A two-dimensional multi-head CNN extracts feature maps from the preprocessed accelerom-
eter data. The multi-head CNN consists of multiple independent convolutional heads, where
each head captures different levels of information from the data. Thus, each convolutional
head in the proposed HAR model uses different filter sizes to extract feature maps in differ-
ent hierarchical levels. The model also presents a fully-connected layer at the end of each
head. The different filter sizes in each CNN head have different receptive fields, making the
extracted from each CNN head have diverse hierarchical feature levels. Thus, the FilterL-
STM hierarchically integrates the features in different levels to generate additional contexts
that the multi-head CNN could not capture through the convolutional filters with the given
sizes, learning the causal effects from the low-level to high-level features extracted from a
multi-head CNN.
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Figure 3.14 – Park et al. [2023] proposed hybrid MultiCNN-FilterLSTM network architecture.

The proposed HAR model was evaluated on two publicly available datasets, WISDM
and UniMiB SHAR. The results show that the proposed HAR model achieved a classifica-
tion accuracy of 94.59% and an F1 score of 92.50%, enhancing the classification accuracy
by 2.3%–4.4%, while requiring 21%–70% fewer operations than the state-of-the-art mod-
els. Additionally, the proposed model is deployed to a Raspberry Pi 4 for further analysis in
terms of deployment, achieving 4.2% improvement in classification performance with UniMiB
SHAR while achieving approximately 34% and 38% reductions in inference time.

Anitha et al. [Inturi et al., 2023] present a new solution for fall detection using vision-
based approaches. For this method, a set of key points of the subject is acquired by applying
the AlphaPose pretrained network, which is the joint points. A CNN process the acquired
key points, while an LSTM architecture preserves the long-term dependencies. Figure 3.15
shows the proposed CCN plus LSTM architecture. The CNN comprises a window of size 64
and an overlap of size 48. The input feature map has a dimension of 17×3.

The results were validated using the UP-FALL detection dataset and achieved com-
mendable results compared to the state-of-the-art approaches, achieving an accuracy of
98.59%. The OpenPose network is used for key point detection to perform a comparison,
and the results show that the AlphaPose network is more precise.

3.5 Optimization Techniques

Battery-powered embedded processors, such as those in smartwatches, have a
small memory footprint (few kilobytes), low-clock frequencies, and low power availability.
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Figure 3.15 – Inturi et al. [2023] proposed hybrid CNN and LSTM network architecture.

Some techniques have been developed to reduce the power and memory footprint of re-
cent neural network approaches. This section discusses some of the available optimization
techniques.

Pruning. Pruning is a compression technique, first mentioned in LeCun et al. [1989]. The
basis of the method is the fact that many parameters in the network are redundant or do not
have any significant contribution to the output. Two pruning methods may be used:

• Unstructured Pruning: this method removes individual parameters. It is also known
as Weight Pruning, meaning that individual weights could be set to zero, essentially
deleting the connection of the respective nodes.

• Structured Pruning: This method considers parameters as groups, removing filters
and channels, to reduce the overall computational costs related to these layers.

Gholami et al. [2021] presents a method to determine which filters can be removed
from the CNN without significant loss in the original accuracy. VGGNet running CIFAR-
10 inference reduced the computational cost by 30%, when using the proposed pruning
technique.

Quantization. Quantization techniques are used when the target implementation platform
has resource limitations, such as battery-powered processors. This technique reduces the
cost of the numerical representation of weights in the Neural Network.
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The first naive quantization technique replaces the floating point representation with
a fixed point representation, using only integer values. This method enables the usage of
simpler processors. The authors in [Gholami et al., 2021] reported a minimal accuracy loss.

Longguang Wang et al. [Wang et al., 2022] propose a quantization process using
lookup operations and propose to learn lookup tables as quantizers. The method proposes
using differentiable lookup tables and several training strategies for optimization. Results
show that, compared to other methods such as QIL [Jung et al., 2019], the quantized net-
works using lookup tables achieve state-of-the-art performance on image classification, im-
age super-resolution, and point cloud classification tasks.

Other quantization methods map an interval of values to a certain value, which
may be uniform [Yang et al., 2020] or non-uniform [Yamamoto, 2021]. Figure 3.16 compares
uniform quantization (left) and nonuniform quantization (right). Values in the continuous
domain r are mapped to discrete lower precision values in the quantized domain Q [Gholami
et al., 2021]. With this technique, floating-point values can be converted to 8-bit integers,
reducing the memory area required to store the neural network parameters (weights and
features).

A. Quantization in Neural Nets

No doubt thousands of papers have been written on
these topics, and one might wonder: how is recent work
on NN quantization different from these earlier works?
Certainly, many of the recently proposed “novel algo-
rithms” have strong connections with (and in some cases
are essentially rediscoveries of) past work in the literature.
However, NNs bring unique challenges and opportunities
to the problem of quantization. First, inference and
training of Neural Nets are both computationally intensive.
So, the efficient representation of numerical values is
particularly important. Second, most current Neural Net
models are heavily over-parameterized, so there is ample
opportunity for reducing bit precision without impacting
accuracy. However, one very important difference is
that NNs are very robust to aggressive quantization and
extreme discretization. The new degree of freedom here
has to do with the number of parameters involved, i.e.,
that we are working with over-parameterized models. This
has direct implications for whether we are solving well-
posed problems, whether we are interested in forward
error or backward error, etc. In the NN applications
driving recent developments in quantization, there is not
a single well-posed or well-conditioned problem that
is being solved. Instead, one is interested in some sort
of forward error metric (based on classification quality,
perplexity, etc.), but due to the over-parameterization,
there are many very different models that exactly or
approximately optimize this metric. Thus, it is possible
to have high error/distance between a quantized model
and the original non-quantized model, while still attaining
very good generalization performance. This added degree
of freedom was not present in many of the classical
research, which mostly focused on finding compression
methods that would not change the signal too much,
or with numerical methods in which there was strong
control on the difference between the “exact” versus
the “discretized” computation. This observation that has
been the main driver for researching novel techniques for
NN quantization. Finally,the layered structure of Neural
Net models offers an additional dimension to explore.
Different layers in a Neural Net have different impact on
the loss function, and this motivates a mixed-precision
approach to quantization.

III. BASIC CONCEPTS OF QUANTIZATION

In this section, we first briefly introduce common
notations and the problem setup in Section III-A, and
then we describe the basic quantization concepts and
methods in Section III-B-III-F. Afterwards, we discuss the
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Figure 1: Comparison between uniform quantization
(left) and non-uniform quantization (right). Real values in
the continuous domain r are mapped into discrete, lower
precision values in the quantized domain Q, which are
marked with the orange bullets. Note that the distances
between the quantized values (quantization levels) are
the same in uniform quantization, whereas they can vary
in non-uniform quantization.

different fine-tuning methods in Section III-G, followed
by stochastic quantization in Section III-H.

A. Problem Setup and Notations

Assume that the NN has L layers with learnable pa-
rameters, denoted as {W1, W2, ..., WL}, with ✓ denoting
the combination of all such parameters. Without loss of
generality, we focus on the supervised learning problem,
where the nominal goal is to optimize the following
empirical risk minimization function:

L(✓) =
1

N

NX

i=1

l(xi, yi; ✓), (1)

where (x, y) is the input data and the corresponding label,
l(x, y; ✓) is the loss function (e.g., Mean Squared Error
or Cross Entropy loss), and N is the total number of data
points. Let us also denote the input hidden activations of
the ith layer as hi, and the corresponding output hidden
activation as ai. We assume that we have the trained
model parameters ✓, stored in floating point precision. In
quantization, the goal is to reduce the precision of both
the parameters (✓), as well as the intermediate activation
maps (i.e., hi, ai) to low-precision, with minimal impact
on the generalization power/accuracy of the model. To
do this, we need to define a quantization operator that
maps a floating point value to a quantized one, which is
described next.

B. Uniform Quantization

We need first to define a function that can quantize
NN weights and activations to a finite set of values. This
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Figure 3.16 – Quantization techniques [Gholami et al., 2021].

Binarization. Binarization is a quantization method where values are limited to a 1-bit rep-
resentation, drastically reducing memory requirements. This technique achieves significant
acceleration even against dedicated hardware using 8-bit representation [Gholami et al.,
2021]. The disadvantage of binarization is accuracy degradation. Recent proposals use a
hybrid binarized approach, where only the first CNN layer uses binarized weights, achieving
1.2 times more efficiency than the conventional approach. Shimoda et al. [2017] in his work
achieved 0.3 watts of power consumption while achieving 82.8% accuracy in the CIFAR-10
dataset.
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3.6 Final Remarks

This chapter presented works related to ML frameworks and models, almost all
using IoT sensors to capture data. We observe a lack of studies using IoT devices as the
target device for ML inference. Optimization techniques were proposed, for example, by
Gholami et al. [2021], focusing on minimizing accuracy loss without power and memory foot-
print analyses, key parameters for embedded systems. Mekruksavanich and Jitpattanakul
[2021] mention the use of smartphones as a data capture source, but little effort is made to
use the smartphone as the target for the inference phase.

Many of the proposed models [Zebin et al., 2018; Xu et al., 2019; Ordóñez and
Roggen, 2016; García et al., 2022; Park et al., 2023; Inturi et al., 2023] consist of complex,
stacked, LSTM structures, which require the use of resources that are scarce in embedded
systems, such as volatile memory area. On the one hand, these works achieved state-of-
the-art accuracy for many datasets. The same occurs for [Ullah and Munir, 2023] and [Dua
et al., 2023], but using a combination of CNN and GRU. On the other hand, they do not apply
to battery-powered devices that require an edge or cloud device to process this information.
In practice, edge or cloud devices are not available everywhere and at all times, creating the
risk of not detecting an emergency, such as a hard fall event.

Chapters 5 and 6 present how this work contributes to the research topic of opti-
mizing an ML model for the inference phase, specifically for devices with limited resources.
Our objective is to combine optimization techniques with efficient neural network modeling,
evaluating not only accuracy but also the costs associated with the processor ISA and the
memory requirements during the inference phase.
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4. CNN REFERENCE AND OPTIMIZED MODELS

This chapter presents the CNN reference model [Chiang, 2022], and optimizations
made to this model. Section 4.1 presents the Pytorch framework, the ML framework that the
reference model uses. Section 4.2 shows the neural network architecture of the reference
model. Section 4.3 presents optimizations made in the reference model to assess the impact
of the CNN components on accuracy. Section 4.4 presents and discusses the obtained
results. Section 4.5 concludes this chapter, summarizing the main contributions.

4.1 PyTorch Framework

PyTorch is a machine learning framework based on the Torch library, used for ap-
plications such as computer vision and natural language processing. Paszke et al. [2019]
introduced the Pytorch framework. It is an open-source Python library that performs tensor
computation with GPU acceleration capability. The main goal of Pytorch is to accelerate the
path from research prototyping to production deployment, while maintaining a performance
comparable to the fastest current libraries for deep learning [Paszke et al., 2019]. Despite
Pytorch being a Python framework, most of this library is written in C++ to improve perfor-
mance. It is compatible with most commonly used GPU technologies such as CUDA and
recently received support for Apple Silicon GPU.

One of the key features of the Pytorch framework is the ability to execute dataflow
on the GPU asynchronously. Figure 4.1 presents a timeline execution of the first operation
of a ResNet-50 model.

Figure 1 shows a representative timeline of execution for the first few operations of a ResNet-50
model. The host CPU which queues the work quickly outpaces the execution of the operators on
the GPU. This allows PyTorch to achieve almost perfect device utilization. In this example, GPU
execution takes around three times longer than CPU scheduling. The exact ratio depends on the
relative performance of the host CPU and the GPU, as well as the number of elements in each tensor
and the average arithmetic complexity of the floating point computations to be performed on the
GPU.

Figure 1: A trace of the first few operators of Resnet-50. The top row depicts the execution of the control
flow running on the host CPU. The gray areas are Python code executed by its interpreter. The colored areas
correspond to the work done on the host CPU to queue various operators (convolution, batch normalization, and
so on). The bottom row shows the corresponding execution of those operators on the GPU. The arrows pair the
two events in time.

6.2 Memory management

We used the NVIDIA profiler to trace the execution of the CUDA runtime as well as the execution
of the CUDA kernels launched during one training iteration of the ResNet-50 model. As shown in
Figure 2, the behavior of the first iteration differs significantly from that of subsequent ones. At
first, calls to the CUDA memory management functions (cudaMalloc and cudaFree) slow down the
execution quite dramatically by blocking the CPU thread for long periods of time, hence lowering
the utilization of the GPU. This effect disappears in subsequent iterations as the PyTorch caching
memory allocator starts reusing previously allocated regions.

Figure 2: Annotated traces of the execution of ResNet-50 on GPU.

6.3 Benchmarks

Finally, we can get an overall sense of single-machine eager mode performance of PyTorch by com-
paring it to three popular graph-based deep learning frameworks (CNTK, MXNet and TensorFlow), a
define-by-run framework (Chainer), and production oriented platform (PaddlePaddle). The Appendix
details all the steps needed to reproduce our setup.

Our results are summarized in Table 1. On all the benchmarks, the performance of PyTorch is within
17% of that of of the fastest framework. We attribute this result to the fact that these tools offload
most of the computation to the same version of the cuDNN and cuBLAS libraries.

Framework Throughput (higher is better)
AlexNet VGG-19 ResNet-50 MobileNet GNMTv2 NCF

Chainer 778 ± 15 N/A 219 ± 1 N/A N/A N/A
CNTK 845 ± 8 84 ± 3 210 ± 1 N/A N/A N/A
MXNet 1554 ± 22 113 ± 1 218 ± 2 444 ± 2 N/A N/A
PaddlePaddle 933 ± 123 112 ± 2 192 ± 4 557 ± 24 N/A N/A
TensorFlow 1422 ± 27 66 ± 2 200 ± 1 216 ± 15 9631 ± 1.3% 4.8e6 ± 2.9%
PyTorch 1547 ± 316 119 ± 1 212 ± 2 463 ± 17 15512 ± 4.8% 5.4e6 ± 3.4%

Table 1: Training speed for 6 models using 32bit floats. Throughput is measured in images per second for the
AlexNet, VGG-19, ResNet-50, and MobileNet models, in tokens per second for the GNMTv2 model, and in
samples per second for the NCF model. The fastest speed for each model is shown in bold.

8

Figure 4.1 – Timeline of CPU and GPU computation of the first operands of ResNet-50.
Colored areas on the CPU correspond to the work done to queue operators and to load on
the GPU. Colored areas on GPU correspond to operators being computed. Gray areas are
Python code executed by its interpreter [Paszke et al., 2019].

The CPU queues the tasks before sending them to the GPU, allowing Pytorch to
achieve almost 100% GPU utilization. This asynchronous parallelism avoids GPU stalls,
increasing the overall PyTorch performance.
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4.2 CNN Reference Model

The CNN reference model contains three convolutional layers and two fully con-
nected layers [Chiang, 2022]. It is a relatively simple architecture by today’s standards. Its
goal is not to achieve state-of-the-art accuracy, but to demonstrate the effectiveness of sim-
ple CNN models in HAR tasks. Figure 4.2 presents the network architecture. Code 4.1
presents the reference CNN modeled using the Pytorch framework.
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Figure 4.2 – 1D CNN Reference Model.

Code 4.1 – Pytorch network modeling.

1 def __init__(self, input_size, num_classes):
2 super().__init__()
3

4 # Extract features, 1D conv layers
5 self.features = nn.Sequential(
6 nn.Conv1d(input_size, 64, 5),
7 nn.ReLU(),
8 nn.Dropout(),
9 nn.Conv1d(64, 64, 5),

10 nn.ReLU(),
11 nn.Dropout(),
12 nn.Conv1d(64, 64, 5),
13 nn.ReLU(),
14 )
15 # Classify output, fully connected layers
16 self.classifier = nn.Sequential(
17 nn.Dropout(),
18 nn.Linear(1792, 128),
19 nn.ReLU(),
20 nn.Dropout(),
21 nn.Linear(128, num_classes),
22 )
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Line 6 to 13 of Code 4.1 present the Feature Extractor. Each line corresponds to
a specific layer inside this network. Some layers, such as ReLu and Dropout, are hidden
in Figure 4.2. Convolutional layers accept many parameters. In this implementation, the
parameters used are: (i) input size; (ii) number of filters; (iii) kernel size. Line 17 to 21
model the classifier. Lines 18 and 21 declare the Fully Connected layers, called “Linear” by
Pytorch. The parameters are: (i) input size; (ii) output size.

As discussed in Section 3.3, activation layers follow the convolutional layers. The
reference model adopts ReLu as the activation function. The dropout layer reduces the
probability of overfitting by adding noise to the ReLu output. This last layer is useful in
models that use a low volume of sensors on each training iteration [Chiang, 2022].

This CNN uses a public dataset, similar to the MobiAct dataset, containing 20,000
sensor readings from 6 people, each performing five different actions. Appendix A presents
a partial snippet fo the adopted dataset. Each sensor reading has 3 axes (roll, pitch, yaw)
of 3 sensors (accelerometer, gyroscope, magnetometer). A total of 4 sensor positions are
included (belt, arm, dumbbell, forearm). Magnetometers are often used to normalize the raw
data of other sensors. This CNN model does not include it as an input feature, using the
accelerometer and gyroscope inputs. The division between training and evaluation data is
as follows: 80% for training and 20% for evaluation.

Unlike other implementations, the 1D CNN presented in this reference model can
only process single timesteps, resulting in a 1x40 unidimensional input. Figure 4.3 shows
the input shape of the reference model.
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Figure 4.3 – Reference CNN input shape.

Although processing single timesteps do not allow precise temporal analysis, ac-
celerometer and gyroscope sensors contain temporal characteristics embedded in raw data,
thus allowing the model to detect human activities with 74% accuracy.

In this model, the training parameters are set in a class named params and later
inserted into the training function. Code 4.2 presents this class.

The method pytorch.train is responsible for starting the training phase. It receives
the model defined in Code 4.1, training parameters, and training and evaluation data from
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Code 4.2 – Pytorch network parameters.

1 class params:
2 def __init__(self):
3 self.params = {
4 "root": "data/pml-training.csv",
5 "test": "data/pml-testing.csv",
6 "resume": None,
7 "input_dim": 1,
8 "num_classes": 5,
9 "workers": 0,

10 "batch_size": 32,
11 "epochs": 300,
12 "lr": 0.003,
13 "momentum": 0.9,
14 "weight_decay": 1e-4,
15 "split": 0.2,
16 "use_cuda": torch.cuda.is_available(),
17 }

the dataset. Other fields include the optimizer to be used and the training criterion to be
respected. Code 4.3 presents the call of the training function.

Code 4.3 – Pytorch training function call.

1 train(train_loader=train_loader,
2 val_loader=val_loader,
3 model=model,
4 criterion=criterion,
5 optimizer=optimizer,
6 params=params,
7 logger=logger,
8 )

4.3 Optimization of the Reference Model

A simple 1D CNN model has benefits, such as reduced processing power require-
ments during training and evaluation, and reduced memory usage. The reference CNN
does not provide complex optimization methods, such as pruning and quantization, neither
it is optimized to achieve state-of-the-art accuracy. This model achieves 74% accuracy in
randomly selected activities from the dataset.
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Our optimization process aims to improve accuracy without substantially increasing
the CNN complexity. The following subsections present the modifications done to the model
and evaluated in the sequel.

4.3.1 Classifier Changes

The Fully Connected (FC) layer is present before the flatten layer. The FC has
an important effect on accuracy and computational cost. The first layer of the FC nodes
is a function of the number of output nodes from the previous layer. While changing the
number of output nodes is possible, increasing it may improve the accuracy with the cost of
increasing the number of weights. Initially, the number of output nodes was changed from
128 to 256 and later to 512.

4.3.2 Feature Extraction Changes

The reference model has 3 1D convolutional layers. Ordóñez and Roggen [2016]
proposed a hybrid approach that included four CNN layers, taking advantage of its feature
extraction capabilities. We modified the reference model using this knowledge to include a
fourth convolutional layer. This modification results in a smaller output feature map at the
end of the feature extraction phase, requiring adaptation on the FC layer to be compatible
with the new feature map input.

4.3.3 Kernel size

The reference model adopts a kernel size equal to 1x5 (Figure 4.3). With the
stride1 defined at its default value (1), the convolution calculation generates 64 filters with
this kernel. The selection of the kernel size is commonly determined during the training
phase. We evaluated the impact on the accuracy using 1x3, 1x5, and 1x7 kernels.

4.3.4 Extended 1D Model

The major disadvantage of this 1D CNN model is the lack of temporal analysis.
Human activities are highly related to previous and future movements. Although temporal

1Stride in convolutional neural networks is the step size by which the filter slides over an input image.
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characteristics are embedded in sensor data, it is insufficient to detect complex human activ-
ities accurately. Recent approaches [Zeng et al., 2014; Xu et al., 2019; García et al., 2022]
process data in time frames extracted from raw sensor data with a sliding-window method.
Each work uses a different window width and overlap percentage. These approaches in-
crease accuracy by reducing the effect of unintended data (noise or random human motions)
on the readings.

To add temporal awareness to the reference model while keeping its reduced com-
plexity, the convolutional layer was modified to allow multiple time steps to be included simul-
taneously in a modified input vector. Most HAR datasets use a time-per-row topology. Thus,
a single row in the dataset contains the sensor data of this single time step, together with the
activity label. A Python data repackager algorithm was written to convert the dataset into a
timeframe-per-row topology. The data repackager joins a parameterizable number of time
steps in a single row, adding a temporal correlation to the CNN without modifying its topol-
ogy. This process is done for training and inference data at runtime, loaded to the GPU via
PyTorch’s data loader. Figure 4.4 presents how the 120-width array is created using three
different time steps.

Using a single time step as input (40-with array), the resulting feature map size
is 1x28 (3rd convolutional layer), combined with the number of filters (64), the flatten layer
transforms these multiple arrays into a single 1x1792 vector (Figure 4.2). In the Extended
1D Model, the newly formed 120-width timeframe requires the input shape to be changed to
accommodate the new array size. One of the benefits of using a 1D Convolution is that the
input array can be increased without increasing the number of weights, reducing memory
area, but that is not true for the classifier. Using the proposed model, the resulting feature
map size is 1x108, containing roughly 3.8 times more information than the reference model,
consequently improving accuracy. To accommodate the larger feature map, the new fully
connected (FC) input size is 1x6912. Despite the increased number of weights in the FC
layer, it requires fewer weights than other 1D CNN evaluated optimizations while achieving
higher accuracy.
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Figure 4.4 – Extended 1D Model.
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4.3.5 Temporal-Extended 1D Model

This Section optimizes the Extended 1D Model, to provide better accuracy without
increasing the weights array size, using a data preprocessing techniques.

The Extended 1D Model added temporal awareness to the reference model, thus
significantly improving accuracy. The limitation of this proposal is that in the convolution lay-
ers, the same sensor cannot be processed in different timesteps simultaneously. Figure 4.5
illustrates this issue.
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Figure 4.5 – Current Extended 1D Model.

A possible solution to this problem is to increase the kernel size, but as discussed
in Section 4.4, the increase in the kernel size reduces the accuracy. The 2D model can use a
square kernel, allowing input data to be arranged as a grid, solving the issue. Unfortunately,
this approach is not easily modeled using the current dataset.

The Temporal-Extended 1D Model consists of a refactoring of the current data
preprocessing algorithm used in the Extended 1D Model proposal, with the addition of an
rearrange technique to group sensor data from different timesteps. Figure 4.6 illustrates the
proposal.
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Figure 4.6 – Proposed Temporal-Extended 1D Model

This proposal allows the neural network to process different timesteps of the same
sensor, allowing the network to identify mathematical trends in the input data during the
feature extraction phase while maintaining the low complexity of the 1D CNN Model. This
proposal effectively works by simulating a 2D network by actively preprocessing the input
data in real time.
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4.4 Results

The training and evaluation phases were performed using PyTorch using a CUDA-
enabled GPU. This model is cross-compatible with the new Apple Silicon (arm64) architec-
ture. The design phase was done in an ARM-powered MacBook Pro and the training and
evaluation phase was done on a PC equipped with 16GB RAM, processor i7 7700k, and a
GTX 1080.

Table 4.1 presents results using the optimizations made in the reference model,
evaluating the number of parameters, the model size (i.e., memory footprint), and accuracy.
The 2nd row presents results related to the baseline 1D model.

Table 4.1 – Reference and optimized models accuracy.

Model Number of
Params

Model Size
(MB) Accuracy

2 Baseline 1D model 271,621 1.18 74%

3 FC - 256 output nodes 501,765 2.06 76%

4 FC - 512 output nodes 962,053 3.82 79%

5 Kernel size = 7 238,981 1.04 72%

6 Kernel size = 3 304,261 1.32 76%

7 Added Convolutional Layer 259,397 1.17 70%

8 Extended 1D Model - Accurate 926,981 4.03 89%

9 Extended 1D Model - Reduced 484,229 2.34 85%

10 Temporal Extended 1D Model 926,981 4.03 89.5%

T. S. Jordan CNN Jordan [2016] 738,000 - 78%

ResNet-18 Du et al. [2018] 11,000,000 - 94.8%

The 3rd and 4th rows evaluate the impact of increasing the fully connected (FC)
layer. The accuracy increases by increasing the number of output nodes of the first fully
connected layer at the cost of raising the number of weights in this layer. The number
of weights in the fully connected layer doubled and quadrupled using 256 and 512 output
nodes, respectively. The quadrupled memory area is hardly justified by just a 5% accuracy
increase in a memory-constrained device.

The 5th and 6th rows evaluate the impact of the kernel size. Increasing the kernel
size results in a smaller output feature map, consequently with less information and reduced
accuracy. A smaller kernel produces larger feature maps and allows a better feature ex-
traction phase, resulting in an accuracy increase at the cost of a larger output feature map
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and increased computational cost. More study needs to be made to decide if the memory
overhead increase justifies small increments in performance.

Increasing the convolutions, 7th row, while not changing the kernel size could result
in a smaller feature map to be used in the classifier, negatively affecting the accuracy. It
is not clear the reason explaining the accuracy reduction to 70%. One reason may be the
unbalanced ratio between the feature extraction and the classification. It is necessary to
further investigate the model to take advantage of this extra convolutional layer.

The 8th and 9th rows present the accuracy of the proposed extended 1D models.
This result corroborates how relevant the time-series analysis is to HAR. The accuracy im-
proved 15% when adding two extra time steps in the input shape. Even though the number
of weights increased due to the change on the FC layer, it is roughly 5% smaller than the FC
with 512 output nodes approach, with 10% higher accuracy.

The FC is responsible for more than 95% of the total number of weights in the
model. We evaluated a reduced version of the proposed model by minimizing the number of
weights in the FC layer. This version consists of changes in the classifier, focusing on reduc-
ing the number of parameters and model size while achieving similar accuracy. Compared
to the “accurate” version, the number of parameters and model size was reduced by roughly
50%, with only a 4% accuracy reduction. Both extended 1D models increased the accuracy
at the cost of a larger number of parameters and model size than the baseline model.

The 10th row presents the accuracy of the Temporal Extended 1D Model. Although
this model replies the processing of more accurate 2D neural networks, this technique does
not improve accuracy significantly in our model. It is unclear why no improvement was seen
on this model. One possibility is that the Extended 1D model has the best possible accuracy
given the input size, which means more timesteps would need to be added to increase
accuracy significantly.

For comparison purposes, the network proposed in Jordan [2016], contains 5 2D
layers (64x64x128, 32x32x128, 16x16x128, 8x8x64, 4x4x64) and 2 FC (256 and 6 classes).
This network achieves an overall accuracy of 78% in all activities, achieving 94% in specific
test sets, using 738,000 parameters. State-of-the-art CNNs, as ResNet-18 [Du et al., 2018],
achieves 94.79% with 11M parameters.

4.5 Final Remarks

Using the PyTorch framework, this chapter introduced and optimized the CNN ref-
erence model for HAR. Although relatively simple, the reference model demonstrated the ef-
fectiveness of CNN models in HAR tasks. The accuracy of the model was improved through
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various optimizations, such as modifying the classifier, exploring different kernel sizes, and
adding convolutional layers.

One significant enhancement was the introduction of the Extended 1D Model,
which added temporal awareness to the reference model. The model achieved higher accu-
racy by incorporating multiple time steps in the input data without significantly increasing its
complexity. This approach proved effective in capturing temporal correlations embedded in
sensor data. Additionally, the Temporal Extended 1D Model further refined the preprocess-
ing algorithm, allowing the neural network to process different timesteps of the same sensor,
resulting in improved accuracy.

Overall, the optimizations made to the reference model demonstrated the impor-
tance of fine-tuning architecture and parameters to achieve better accuracy in HAR tasks,
corresponding to the first contribution of this MSc work. The results showed the trade-offs
between model complexity, number of parameters, model size, and accuracy. The Extended
1D Model, in particular, showed the potential to incorporate temporal analysis while main-
taining a relatively simple architecture.

The next chapters adopted as reference the Extended 1D Model - Accurate, nam-
ing it as Ext1D.
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5. CNN C MODEL

This chapter presents the second contribution of this MSc work: converting the
PyTorch reference model to a C model using integer representation, avoiding floating point
representation. The C language is a common choice for programming embedded systems
due to: (i) efficiency and control: C is a low-level language that provides a high degree
of control over system resources; (ii) small memory footprint: embedded systems often
have limited resources, and C compilers create compact and efficient code. Floating point
units (FPUs) are costly cores in processors and should be avoided in energy- and area-
constrained devices. Table 5.1 presents the silicon area required to implement an integer
core versus an FPU core [Ness, 2018], demonstrating the cost induced by FPU cores.

Table 5.1 – Area consumption of the RISC-V Rocket SoC [Ness, 2018].

Module Area (Equivalent Gates) Area %
Integer Core 43,729 2.0
FPU Core 73,582 3.4
Caches (I&D) 1,972,361 92.4
Others 44,750 2.2

The FPU core can be completely removed from the processor with optimized integer-
only software. The removal of the FPU core also has a major impact on energy consumption
and thermal characteristic. Works such as [Yu et al., 2019] show that changing the floating
point by integer representation can significantly reduce power dissipation.

This chapter is organized as follows:

• Section 5.1 presents the modifications made in the Pytorch Model to enable parameter
export. Additionally, this section details the scripts to process the data exported from
Pytorch.

• Section 5.2 presents the CNN C model.

• Section 5.3 details the method employed in the C Model to quantize the CNN for integer
representation instead of floating point numbers.

• Section 5.4 evaluates the performance of the models considering accuracy, number of
executed instructions (profiling), execution time, and energy consumption.

• Section 5.5 concludes this chapter.
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5.1 Exportation and Conversion of Parameters

This step corresponds to the link between the Pytorch model and the model de-
scribed in C language. This step has two functions: (i) generate files with the input features,
weights, and bias in C header files; (ii) provide the reference accuracy.

Although Pytorch does not officially support the execution of the inference phase
outside its environment, significant efforts have been made to extract values (weights and
bias) from the Pytorch training algorithm. Juracy et al. [2021] suggest a method for extracting
parameters after the training phase in TensorFlow. This work proposes a similar method to
be used with Pytorch. Upon completing the training phase, we observed that the trained
parameters were preserved within the model structure. This work proposes the method
presented in Code 5.1 to read the parameters of the first layer and export them to two files.

Code 5.1 – Pytorch layer parameters extraction.

1 torch.set_printoptions(profile="full")
2 original_stdout = sys.stdout #
3 with open('0_bias.txt', 'w') as f:
4 sys.stdout = f
5 print(model.features[0].bias)
6 sys.stdout = original_stdout
7

8 with open('0_weight.txt', 'w') as f:
9 sys.stdout = f

10 print(model.features[0].weight)
11 sys.stdout = original_stdout

We observed that PyTorch uses a preprocessing algorithm in the dataset input.
Therefore, extracting the dataset after processing it in the training phase is necessary, as
presented in Code 5.2. Firstly, Lines 2 and 3 set the parameters to configure the print
statements to write the data to a txt file instead of the terminal. Lines 5 to 9 present a
loop that iterates through all the inference data, named val_loader, writing a combination
of sensor data (steps) and labels (targets) to the output file. Pytorch’s algorithm is designed
to optimize the internal training and inference phase, making running inference difficult in a
separate environment.

Codes 5.1 and 5.2 generate a file similar to the one presented in Code 5.3. PyTorch-
generated files cannot be directly included in the C model. It would be necessary to parse
them, incurring an overhead for the C model. Thus, a Python script, “ConvertTensor.py”,
reads the generated files and creates C header files, which are included directly in the C
model. Code 5.4 presents an example of a header file created by the “ConvertTensor.py”
script.
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Code 5.2 – Pytorch normalized dataset extraction.

1 if (os.path.isfile("inputOutTraining_evaluation.txt") == False):
2 torch.set_printoptions(precision=16,sci_mode=False)
3 original_stdout = sys.stdout #
4 with open('inputOutTraining_evaluation.txt', 'w') as f:
5 for iteration, (steps, targets, _) in enumerate(tqdm(val_loader)):
6 sys.stdout=f # Change the standard output to the file we created.
7 print( steps )
8 print( str(targets.item()) + "," )
9 print( "};" )

10 sys.stdout = original_stdout

Code 5.3 – Output from Code 5.1.

tensor([-0.0317, -0.3036, -0.0525, -0.1189, -0.1458, 0.0667, 0.2298, -0.2369,
-0.2612, 0.3024, 0.2583, 0.3375, -0.4156, 0.0210, 0.4200, -0.4175,
0.3598, 0.0619, 0.3964, -0.1526, -0.4423, 0.2947, -0.2718, -0.0208,
0.2301, 0.3514, 0.1893, 0.2788, 0.3751, -0.0169, -0.4218, -0.0517,

-0.1678, -0.3444, 0.4381, -0.0477, -0.0077, -0.2968, -0.0628, 0.3663,
-0.1707, 0.0942, -0.2148, -0.1124, -0.1517, 0.1301, 0.0936, -0.1396,
-0.3354, -0.0221, -0.1553, -0.0620, -0.1392, 0.4240, 0.2299, 0.0107,
-0.2744, -0.2092, -0.0731, -0.3572, 0.0859, 0.2750, -0.2670, 0.3482],

requires_grad=True)

Code 5.4 – Output from ConvertTensor.py.

extern const float conv0_bias[64] = {
-0.0317,
-0.3036,
-0.0525,
-0.1189,
-0.1458,
....
0.3482 };

The model described in C language (C model) executes only the inference phase
using the header files created by “ConvertTensor.py”. The goal is to have a code in C lan-
guage that executes only the CNN model without preprocessing files or performing normal-
ization computations. In this way, the evaluation of the C model corresponds only to the
execution of the inference phase. The C model generates for each inference the tuple {cor-
rect class, inferred class}. An auxiliary program, “Evaluator.c”, reads the generated data,
computes the accuracy, and generates the confusion matrix1, as presented in Code 5.5.

1A confusion matrix is a table that is used to describe the performance of a classification model on dataset
for which the true values are known. Informally, a confusion matrix shows where the model is getting confused,
i.e., which classes the model predicts correctly and which classes the model predicts incorrectly
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The report presented in Code 5.5 initially provides the number of samples evaluated
in the inference phase. PyTorch’s reference model considers the batch size to compute the
accuracy value, which contains 32 samples. Thus, for this example, we obtain 123 sets
(⌈3923

32 ⌉ = 123). As a result, the maximum number displayed in the confusion matrix is 123
because, out of the 123 evaluated sets, there was at least one correct prediction for a given
class in one of the 32 samples. For example, in Code 5.5, the horizontal row for class 1
shows the detection of 29 sets (17 + 6 + 6) of a class different than 1, but in all sets, there
was at least one correct detection in this class. Thus, the maximum accuracy is achieved
when the diagonal line has the number of sets without any incorrect prediction. PyTorch
computes the accuracy using the formula ( correct predictions

correct pred . + wron pred . ), resulting in this example in
an accuracy of 88.5% ( 615

615+80 ).

Code 5.5 – Accuracy evaluation and confusion matrix generated after the inference phase
for 3,923 samples, with a batch size equal to 32, using the floating point C model.

TOTAL SAMPLES: 3923
----------------------
Accuracy: 88.5
-----------------------
Correct predictions: 615
Wrong predictions: 80
----------------------
Confusion Matrix:

0 1 2 3 4
0: 123 1 1 0 0
1: 17 123 6 0 6
2: 0 5 123 2 0
3: 0 0 33 123 2
4: 0 0 3 4 123

5.2 Description of CNN Layers

We implemented the C model without using standard libraries or function calls.
The goal is to improve the performance of the C model. The training phase uses layers
not required during inference, such as the Dropout Layer. Therefore, we did not include
these layers in the C model. Subsequent subsections detail the implementation of the layers
required to model the CNN in C language.
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5.2.1 Convolution

Code 5.6 shows how to invoke a convolution in Pytorch. The complete model was
previously presented in Code 4.1

Code 5.6 – Pytorch layers.

nn.Conv1d(input_size, 64, 5),
nn.ReLU()
nn.Dropout()
nn.Conv1d(64, 64, 5)
nn.ReLU()
nn.Dropout()
nn.Conv1d(64, 64, 5)
nn.ReLU()

We implemented two convolution models. The first model, presented in Code 5.7,
receives a unidimensional vector corresponding to the raw data extracted from the dataset as
input. This raw data input has a shape of 1×120. In Code 5.7, the outer loop (starting at line
1) iterates through the output filters, whose value is defined by NUM_FILTERS parameter. In
our model, all convolution layers use NUM_FILTERS equal to 64. The code segment between
Lines 4 and 9 searches for the weights and bias related to the currently processed filter (k ).
Then, the loop from lines 12 to 18 executes the kernel operation.

Note the MAC (multiply-accumulate) operation in line 16. Considering that the input
vector has 120 entries, and the KERNEL_SIZE equal 5, this first layer executes 37,120 MAC
operations (64 × 116 × 5).

The second and third layers use the second convolution model, detailed in Code 5.8.
This model uses a bidimensional input shape of 64 × 116, and 64 × 112 in the second
and third layers. The first dimension, 64, corresponds to the number of filters. The sec-
ond parameter corresponds to the input features size minus (kernelsize − 1). The external
loops (lines 1 and 2) iterate through the output filters (filterToGenerate) and output vectors
(inputOffset). Line 3 initializes the counter used to generate one result (conv3_featureMap
[filterToGenerate][inputOffset]). The two inner loops (lines 4 and 5) execute the kernel
operation.

The number of MAC operations is equal to 2,293,760 (64 × 112 × 64 × 5) and
2,211,840 (64 × 108 × 64 × 5) for the second and third layers, respectively.
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Code 5.7 – 1D convolution layer, using values from the dataset.

1 for (int k = 0; k < NUM_FILTERS; k++)
2 {
3 // Load Current Weights
4 for (i = 0; i < KERNEL_SIZE; i++)
5 {
6 conv0_currentKernel[i] = conv0_weights[i + (k * KERNEL_SIZE)];
7 }
8 // Load Current Bias
9 conv0_current_bias = conv0_bias[k];

10

11 // Perform Kernel operation
12 for (i=0; i<=sizeof(input_vector)/sizeof(input_vector[0])-KERNEL_SIZE; i++)
13 {
14 float totalSum = 0;
15 for (int j = 0; j < KERNEL_SIZE; j++)
16 totalSum += input_vector[i+j] * conv0_currentKernel[j]; // MAC oper.
17 conv0_featureMap[k][i] = totalSum + conv0_current_bias;
18 }
19 }

Code 5.8 – 1D convolution layer, using a bidimensional input shape as input.

1 for (int filterToGenerate=0 ; filterToGenerate<NUM_FILTERS ; filterToGenerate++ ){
2 for (int inputOffset = 0 ; inputOffset < CONV3_INPUT_SIZE-4 ; inputOffset++){
3 conv3_totalSum = 0;
4 for (int filterIn = 0 ; filterIn < NUM_FILTERS ; filterIn++){
5 for (int kernelIndex = 0 ; kernelIndex < KERNEL_SIZE ; kernelIndex++){
6 int weightIndex = kernelIndex + (filterIn * KERNEL_SIZE) +

(filterToGenerate * NUM_FILTERS * KERNEL_SIZE) ;↪→

7 int indexIn = kernelIndex + inputOffset;
8 conv3_totalSum += conv0_featureMap[filterIn][indexIn] *

conv3_weights[weightIndex];↪→

9 }
10 }
11 conv3_totalSum += conv3_bias[filterToGenerate];
12 conv3_featureMap[filterToGenerate][inputOffset] = conv3_totalSum;
13 }
14 }

5.2.2 Activation Layer

The reference CNN model uses the rectified linear activation function (ReLU) as
the function of the activation layer. The ReLU [Keras, 2023] is a piecewise linear function
that outputs the input directly if it is positive. Otherwise, it outputs zero. It is a function
used in many types of neural networks due to its simplicity of implementation. Code 5.9
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presents the ReLU implementation. The outside loop iterates through all filters generated in
the convolution, while the internal loop iterates through the feature map for each filter.

Code 5.9 – ReLu layer modeled in C language.

1 for (int i = 0; i < NUM_FILTERS; i++)
2 for (int j = 0; j < CONV0_INPUT_SIZE-4; j++)
3 if (conv0_featureMap[i][j] <= 0)
4 conv0_featureMap[i][j] = 0;

5.2.3 Fully Connected Layer

The reference model uses two Fully Connected (FC) layers with the same input
shape. Code 5.10 presents the implementation of the FC layer. The external loop, starting
at line 1, iterates according to the FC size (FC1_OUTPUT_SIZE=128 and FC2_OUTPUT_SIZE=5).
The inner loop iterates through the input vector, performing MAC operations. The input
vector of the first LC layer (LC1) has 6,192 elements, corresponding to the flattened output
of the third convolutional layer (112 × 64). Thus, LC1 executes 884,736 MAC operations
(6192 × 128). The LC2 executes 640 MAC operations (128 × 5).

Code 5.10 – Fully Connected C implementation.

1 for (int outputIndex = 0; outputIndex < FC_OUTPUT_SIZE; outputIndex++){
2 totalValue = 0;
3 for (int i = 0; i < fc1_inputSize; i++)
4 {
5 totalValue += flatten1_vector[i] * fc1_weights[(fc1_inputSize*outputIndex)+i];
6 }
7 fc1_out_vector[outputIndex] = totalValue + fc1_bias[outputIndex];
8 }

5.2.4 Summary of the CNN Parameters and MACs Operations per Inference

Table 5.2 summarizes the CNN main parameters and the number of MAC oper-
ations per inference. Note that it is necessary to execute 5,428,096 MAC operations per
inference.

Given the number of mathematical operations, evaluating the adoption of integer
representation is important to reduce processor complexity and execution time. Using sim-
pler processors also reduces the power dissipation of the device running the CNN model.
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Table 5.2 – CNN main parameters and number of MAC operations per inference.

Input Size Output Size # of filters kernel size MAC operations
CONV 1 120 116 64 5 37,120
CONV 2 116 112 64 5 2,293,760
CONV 3 112 108 64 5 2,211,840
FC 1 6,192 128 128 – 884,736
FC 2 128 5 5 – 640

Total: 5,428,096

5.3 Quantization Process for 32-bit Integer

The Pytorch framework is compatible with multiple quantization methods. It is im-
portant to emphasize that all quantization methods in Pytorch are currently in the beta stage
(https://pytorch.org/docs/stable/quantization.html).

In the Extended 1D Model, two quantization modes were evaluated:

1. Post-Training Dynamic Quantization - this mode changes the types of the weight from
32-bit floating point to 8-bit integers after the training. This quantization was applied
to the Extended 1D Model presenting accuracy varying from 60% to 70%. A negative
effect on performance was expected, but in our analysis, considering the variance in
the accuracy during testing, we assume that the PyTorch Beta Quantization method is
not entirely stable in its current form.

2. Quantization Aware Training for Static Quantization - this mode simulates the quanti-
zation effect during the training phase. The values in training still operate in a 32-bit
floating point, but PyTorch performs mathematical rounds to simulate an 8-bit integer
operation. We could not successfully apply this quantization to our model, as it needs
significant changes in our current stable training phase.

We concluded that the quantization process should not be executed in the PyTorch
framework. We propose to validate the CNN model described in C, first using floating point
types. The equivalence between the PyTorch and floating point C models provides the gold
model for further development using quantization and memory compression methods.

The exported weights and bias, as presented in Section 5.1, always use a floating
point representation. A Python script, “Quantizator.py” converts all floating-point values to a
fixed point by multiplying them by a constant, as illustrated in Figure 5.1. Despite simple to
implement, the method requires the definition of the multiplication value to avoid overflow in
the convolution or fully connected layers. We evaluated different values, observing that larger
values, such as 10,000, reduce accuracy due to overflow in fully connected layers. Thus,
empirically, we define 1,000 as the multiplier for weights and bias. This multiplier factor can

https://pytorch.org/docs/stable/quantization.html
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be easily modified, as it is an input for the “Quantizator.py”. The output of “Quantizator.py” is
C-Header files used by the integer C implementation.

0.123456890  *   1000   =   123,456789 
MULTFLOAT FLOAT INTEGER

123

Figure 5.1 – Converting floating point numbers to integers.

Using a multiplication factor M for the IFMAP values, weights and bias requires
attention when connecting the output of one layer to the next one. Given that the weights
are multiplied by the input data, we have the values generated in the outputs multiplied by
M2. So, before starting a new layer, we must divide all results by M, as shown in Figure 5.2.
The final results must be divided by M2 to generate values equivalent to the floating point
before quantization.

LAYER 1 LAYER n

Weights * M Weights * M

IFMAP * M Output * MOutput * M2

÷" ÷"!Output * M2
Final

Result

Figure 5.2 – Connection between layers using a multiplication factor.

5.3.1 CNN Integer C Model

The C model is the same with representation in floating point and integers, not
requiring changes in the previously presented codes. Only two changes are needed in
the code. The first is to change the data type from float to int. The second change is to
include the header files with integers using the “Quantizator.py” script. Code 5.11 displays
variables of the first layer in a CNN with floating point presentation and in a CNN with integer
presentation.

5.4 Results

This Section evaluates four performance figures for the three models: accuracy,
number of executed instructions (profiling), execution time, and energy consumed.
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Code 5.11 – Changes in the C code for floating point and integer representations.

1 // Float
2 float conv0_currentKernel[KERNEL_SIZE];
3 float conv0_current_bias = 0;
4 float conv0_featureMap[NUM_FILTERS][CONV0_INPUT_SIZE-4];
5

6 // Integer
7 int INTconv0_featureMap[NUM_FILTERS][CONV0_INPUT_SIZE-4];
8 int INTconv0_currentKernel[KERNEL_SIZE];
9 int INTconv0_current_bias = 0;

5.4.1 Model Accuracy

Initially, to validate the correctness of the C model, we tested each layer individ-
ually using controllable inputs. This validation used Excel spreadsheets, comparing the
results against Pytorch. Minimal differences in accuracy were observed due to the Python
internal parameter normalization. After validating the method to compute the CNN outputs
analytically, we implemented the script to extract the data from Pytorch (Section 5.1) and the
C models (Section 5.2).

Table 5.3 and Code 5.12 present the model size and accuracy for the three models,
using the testing dataset (3,923 samples). The reference model showed a slight increase
in accuracy (0.9%). This occurs because the testing dataset used by PyTorch (20%) and
C models may differ. The accuracy values in PyTorch correspond to an average of several
executions of the inference phase. The Ext1D FP model increased the accuracy by 13.6%
(88.5 − 74.9) due to the reduction in the wrong predictions, from 207 to 80. The Ext1D INT
model slightly reduced accuracy, 1.3%, due to an increase in wrong predictions, from 80 to
90.

Table 5.3 – Model size (number of parameters) and accuracy comparison between Pytorch
and C models, using the reference and optimized models (Ext1D).

Model Model Size Accuracy (%)

Pytorch - Reference 271,621 74.0

Pytorch - Ext1D 926,981 89.0

Reference Model (C) 271,621 74.9

Ext1D FP (C) 926,981 88.5

Ext1D INT (C) 926,981 87.2
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Code 5.12 – Confusion matrices for the C models.
---------------------- ---------------------- ------------------
Accuracy: 74.9 - Reference Accuracy: 88.5 - Ext1D FP Accuracy: 87.2 - Ext1D INT
----------------------- ----------------------- ------------------
Correct predictions: 613 Correct predictions: 615 Correct predictions: 615
Wrong predictions: 207 Wrong predictions: 80 Wrong predictions: 90
---------------------- ---------------------- ------------------
Confusion Matrix Confusion Matrix Confusion Matrix

0 1 2 3 4 0 1 2 3 4 0 1 2 3 4
0: 123 4 6 2 0 0: 123 1 1 0 0 0: 123 20 9 3 0
1: 47 122 42 2 5 1: 17 123 6 0 6 1: 35 122 55 3 10
2: 0 9 123 6 3 2: 0 5 123 2 0 2: 0 7 123 21 6
3: 0 0 64 123 8 3: 0 0 33 123 2 3: 0 0 41 123 18
4: 0 2 10 7 122 4: 0 0 3 4 123 4: 0 0 6 5 123

This result shows the effectiveness of the quantization method presented in Sec-
tion 5.3, which allows using this CNN model on processors without FPU cores.

5.4.2 Instruction Profiling

To evaluate the implementations made in the C language, we used the OVP simu-
lator [Imperas, Software Ltd, 2023], with the RISCV32IMF processor (RISCV32I: Base 32-bit
Integer Instruction Set, M: Integer Multiplication and Division, F: Single-Precision Floating-
Point) [RISC-V Foundation, 2019]. We partitioned the instruction set according to Table 5.4,
instrumenting the OVP simulator through callbacks that evaluate each instruction fetched
from memory. The compilation parameters use the OVP cross compiler for RISCV32IMF,
with O2 optimization.

Table 5.4 – Partition of the RISCV32IMF processor for instruction profiling.

Instruction Class Opcodes
LOAD LB, LH, LW, LBU, LHU, FLW
STORE SB, SH, SW, FSW
IMM LUI, AUIPC, SLTI, SLTIU, XORI, ORI, ANDI, SLLI, SRLI, SRAI
REG SLL, SLT, SLTU, XOR, SRL, SRA, OR, AND
ADDSUB ADD, ADDI, SUB
MULT MUL, MULH, MULHSU, MULHU
DIV DIV, DIVU, REM, REMU
BRANCH BEQ, BNE, BLT, BGE, BLTU, BGEU
JUMP JAL, JALR

FP_MUL FMUL.S, FMADD.S, FMSUB.S, FNMSUB.S, FNMADD.S
FP_DIV FDIV.S
FP_AddSub FADD.S, FSUB.S
FP_OP all other floating point operations
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The RISCV32IMF processor has instructions that implement the MAC function,
called “single precision fused multiply addition”: FMADD.S, FMSUB.S, FNMSUB.S, FNMADD.S.
These instructions reduce the number of instructions when executing floating point models.

In addition to accounting for the number of executed instructions, instruction profil-
ing is used to:

1. evaluate the number of memory accesses (LOAD/STORE), which implies energy con-
sumption and processing time due to the memory access latency;

2. quantify the number of executed arithmetic operations, integer (ADDSUB, DIV, DIV) or
floating point (FP_AddSub, FP_MUL, FP_DIV).

Table 5.5 presents the profiling for the reference, Ext1D FP and Ex1D INT models.
This Table shows that:

1. Memory Access: increased by 3.7 times. Expected increase since the Ext1D model
increases the model size (refer to Table 5.3) by 3.4 times. The increase in model size
also implies an increase in the total number of executed instructions by 3.7 times.

2. Arithmetic Operations: the number of multiplications (FP and INT) is equal to that
obtained in Table 5.2 (5,428,096), showing that the C implementation did not perform
unnecessary multiplications.

3. The FP implementation does not require division operations, while INT does, given the
need for divisions in the quantization adjustments between the layers.

4. Integer addition/subtraction operations. In the INT model, we observe an increase of
5,507,305 operations. This is due to the MAC instructions in the FP instruction set.
This increase reflects the number of instructions executed in the INT model.

Table 5.5 – Instruction profiling of the CNN models using the RISC-V processor.

Instruction Class Reference Model Ext1D FP Ext1D INT
LOAD 2.945.844 10.871.684 10.893.314
STORE 12.179 41.946 63.668
IMM 90 53 46
REG 0 0 0
ADDSUB 4.944.252 18.196.854 23.704.159
MULT 0 0 5.428.096
DIV 0 0 21.637
BRANCH 1.737.527 6.401.926 6.423.755
JUMP 242.376 887.496 887.496

FP_OP 16.406 57.358 0
FP_MUL 1.470.336 5.428.096 0
FP_DIV 0 0 0
FP_AddSub 6.277 21.637 0

Total 11.375.287 41.907.050 47.422.171



58

The summary of this table is: (1) an increase in the number of executed instructions
to increase the accuracy, 13.6%, at the cost of 3.7 times more executed instructions; (2) a
loss of only 1.3% in accuracy when using the Ext1D INT model.

5.4.3 Execution Time

We evaluated the three models executing 3,923 inferences on an Apple M2 proces-
sor (16GB of SRAM, 2.4 GHz), using a clang 14.0.3 compiler with O2 optimization. Table 5.6
presents the time to execute the 3,923 inferences and the time per inference. This is an av-
erage result over five executions of each model.

Table 5.6 – Execution time to execute the models (Apple M2 processor).

Reference Model Ext1D FP Ext1D INT

Total time (sec) 7.885 28.568 4.175

Time per inference (ms) 2.010 7.282 1.064

The time per inference increased by 3.6 times due to the increased model size
(Ext1D FP). The Ext1D INT model is 6.84 times faster than the FP model (the only modifica-
tion in the C code is the type of the variables and the added division layers), and despite the
increase in model size, the Ext1D INT model is 1.9 times faster than the reference model.

To illustrate the influence of processor architecture on execution time, Table 5.7
displays the execution time for an Intel i7 Quad-Core processor (16GB of SRAM, 2.8 GHz),
using the clang version 11.0.0 compiler (clang-1100.0.33.8). We observe that this CISC
architecture operates more efficiently with floating point (FP), with the ratio between FP and
INT operations being 3.25 times instead of 6.84 times in the M2 processor (RISC ARM
cores). We keep the M2 architecture for the other results due to its RISC architecture and
more efficient integer operations handling.

Table 5.7 – Execution time to execute the models (Intel i7 processor).

Reference Model Ext1D FP Ext1D INT

Total time (sec) 6.252 21.743 6,694

Time per inference (ms) 1.594 5.542 1.706

This result demonstrates the significant latency of floating-point operations. Al-
though the integer representation executes 47.4 million instructions, compared to 11.4 mil-
lion in the reference model (4.17 times more instructions), the integer representation is 1.9
times faster in the M2 processor and 7% slower in the i7 processor. Despite accounting for
instructions on the RISC-V processor and execution time on the other processors, [Ness,
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2018] shows that the latency is 2 to 8 times higher for floating-point instructions than for
integer instructions, which is consistent with the obtained results.

5.4.4 Energy Consumption

The energy consumption evaluation should be considered cautiously, as the data
are obtained from different sources. In [Zaruba and Benini, 2019], the average cost for
executing integer operations is 20pJ@1.7GHz, at 22nm. BOOM-2w [Celio et al., 2015]
and Shakti [Shakti, 2023], both with a RISCV-IMAFD ISA, the energy cost per floating point
operation is 133pJ and 122 pJ, respectively. In [Ness, 2018], the FMAC operation consumes
16.519 pJ@100Mz, for a 55nm technology. Considering that the 55nm is two technological
nodes above 22nm (0.72) and that the frequency is 17 times lower, we transpose the energy
value to 1.7GHz at 22nm by computing energy = 16.519 × (0.72) ∗ 17 = 137.6pJ, a value
close to that obtained in the literature. Thus, we use 20pJ for integer instructions and 131pJ
(average of 133, 120, 137.6) for floating point instructions.

Table 5.8 presents the estimated energy for the three models. To estimate the
energy we used Table 5.5 (instruction profiling). Integer instructions were multiplied by 20pJ,
and floating point instructions by 131pJ. Consistently, the energy consumed by the FP model
concerning the reference model increases by 3.7 times due to the model size. However,
due to the lower energy cost of INT operations than the cost of FP operations, the energy
consumed by the integer model is only 2.41 times higher.

Table 5.8 – Energy consumption to execute the models (20pJ for integer operations and
131pJ for floating point operations).

Reference Model Ext1D FP Ext1D INT

Energy (pJ) 393 1,449 948

5.5 Final remarks

We may summarize the comparison of the reference C model, which uses floating
point, with the Ext1D INT implementation as follows:

• Model Size: 3.41 times larger (in terms of the number of parameters)

• Accuracy: 12.3% better, reaching 87.2%

• Number of executed instructions (from the instruction profiling): 4.17 times higher
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• Execution time: 47% faster (Apple M2 processor)

• Energy: 2.41 times higher (estimated from the instruction profiling and energy values
from the literature)

• Instruction set: integer

The Ext1D INT successfully achieved its main goal: improve accuracy without using
floating point representation. However, one challenge remains, the model size. The mem-
ory footprint is a critical parameter in embedded systems with limited resources. The next
chapter presents a technique to reduce the memory footprint without sacrificing accuracy,
keeping the use of integer representation. On the other hand, the reduction in the memory
footprint will come at the cost of increased processing requirements, which will negatively
affect instruction profiling, execution time, and energy.
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6. MODEL OPTIMIZATION AIMING MEMORY USAGE REDUCTION

This chapter corresponds to the third contribution of this MSc work, which is the
reduction of the CNN model to use it on devices with memory restrictions. The previous
chapter presented the feasibility of representing data for a Convolutional Neural Network
(CNN) using integer representation (32 bits), allowing the use of processors without a Float-
ing Point Unit (FPU). This chapter aims to meet another design requirement: reducing the
CNN model size and consequently decreasing the amount of memory required to model the
CNN.

Reducing the number of bits to represent the data is a method many researchers
use, where the extreme case is binary networks where weights and biases have 1 bit [Shi-
moda et al., 2017]. Considering that we are working on a processor without an FPU, an
alternative would be an 8-bit representation (char type). We discarded this option due to
the overflow occurring in arithmetic operations, which would negatively impact accuracy. An
option is to train the CNN model using 8-bit representation precision, which was not done in
this work.

Another option is the use of Lookup Tables (LUTs). The original values of the
weights and biases are grouped into bins. A LUT with n bins contains the model values,
replacing the original values with indexes pointing to a position in the LUT [Wang et al.,
2022]. Consider, for instance, a CNN layer with 100,000 parameters, partitioning these
values into 32 bins (LUT with 1024 bits). Each parameter previously represented by 32 bits
is now represented by 5 bits. The original parameters require 3,200,000 bits, while index
representation requires 501,024 bits, representing a memory requirement reduction of 6.38
times.

Initially, in this chapter, we do not consider memory reduction as a primary goal but
rather assess the impact of quantization on the CNN model, and the selection of a bin value
that does not negatively impact accuracy. Section 6.1 presents the quantization methods
adopted in this work. Section 6.2 evaluates the quantization methods in terms of accuracy
and selects a bin size to be used by the CNN model. Section 6.3 evaluates the impact of
quantization on the number of executed instructions, execution time, and consumed energy.
Section 6.4 corresponds to the main contribution of this chapter by presenting the method
to achieve the goal of memory reduction. Section 6.5 concludes this chapter.

6.1 Quantization Model

A Look-Up Table (LUT) is a simple and efficient method for performing quantiza-
tion. When performing quantization using LUTs, the input values are the indices of the LUT.
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The corresponding quantized values are the entries stored in the LUT. This way, quantiza-
tion becomes as simple as accessing an array element. In this work, we adopt two LUT
quantization methods, fixed and variable:

• Fixed quantization employs bins of fixed size. To find the bin widths, the maximum and
minimum values of the input values are calculated and then divided by the number of
bins. Equations 6.1 and 6.2 show the computation of the lower and upper limits of
each bin i . Once the intervals are defined, each parameter is assigned the index of the
interval into which it falls. Fixed bin sizes provide a consistent and easy-to-interpret
data representation. However, it may not be optimal for datasets with varying densities
or when important features are masked by bin size selection.

Lower Bin Limiti = Minimum Value + i ×
(

Maximum Value − Minimum Value
Number of Bins

)
(6.1)

Upper Bin Limiti = Minimum Value + (i + 1) ×
(

Maximum Value − Minimum Value
Number of Bins

)
(6.2)

• Variable quantization seeks to have an equal number of elements in all bins. Equation
n_elem = #parameters

nbins gives the number of elements in each bin. To execute a variable
quantization, the input parameters are sorted, inserting n_elem parameters into each
bin. This approach offers flexibility in capturing distribution details and is useful for
parameters with varying densities or outliers. In a normal distribution, the tails (the
extreme ends) have a lower density than the central region. Using variable bin sizes
allows for allocating larger bins to the tails where data points are sparser, thus capturing
the distribution shape more accurately in these regions. Another advantage of variable
bin sizes is outlier detection, with smaller bins allocated around outlier regions, making
them more distinguishable.

The value used in each bin is the central value of the bin. We evaluate in Sec-
tion 6.2.2 the mean or median value of the bin and find no advantages in using these loca-
tions for the bin. Thus, we decided to use the central value of the bin.

To visualize the impact of quantization, we present histograms, considering 32 bins
as an example. Histograms are graphical representations of the parameters distribution.
They consist of a series of bars, each representing a range of values, and the height of the
bar represents the frequency or number of values within that range. Figures 6.1, 6.2, 6.3,
and 6.4 present distributions for weights and biases for the three convolutional layers and
the two fully connected layers.

Fixed-width bin histograms capture the original parameter distribution; we note his-
tograms with a clearly defined normal distribution (weights of the 2nd and 3rd convolutions –



63

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20

-6
1
4
 to

 -5
7
5

-5
7
5
 to

 -5
3
6

-5
3
6
 to

 -4
9
7

-4
9
7
 to

 -4
5
9

-4
5
9
 to

 -4
2
0

-4
2
0
 to

 -3
8
1

-3
8
1
 to

 -3
4
3

-3
4
3
 to

 -3
0
4

-3
0
4
 to

 -2
6
5

-2
6
5
 to

 -2
2
7

-2
2
7
 to

 -1
8
8

-1
8
8
 to

 -1
4
9

-1
4
9
 to

 -11
0

-11
0
 to

 -7
2

-7
2
 to

 -3
3

-3
3
 to

 5

5
 to

 4
3

4
3
 to

 8
2

8
2
 to

 1
2
1

1
2
1
 to

 1
6
0

1
6
0
 to

 1
9
8

1
9
8
 to

 2
3
7

2
3
7
 to

 2
7
6

2
7
6
 to

 3
1
4

3
1
4
 to

 3
5
3

3
5
3
 to

 3
9
2

3
9
2
 to

 4
3
1

4
3
1
 to

 4
6
9

4
6
9
 to

 5
0
8

5
0
8
 to

 5
4
7

5
4
7
 to

 5
8
5

5
8
5
 to

 6
2
4

F
re
q
u
e
n
c
y

Histogram 0 weight FIXED 32 BINS

(a) CONV 1 - 32 bins - fixed quantization.

 0

 2

 4

 6

 8

 10

 12

-6
1
4
 to

 -5
3
8

-5
3
8
 to

 -5
0
6

-5
0
6
 to

 -4
7
5

-4
7
5
 to

 -4
3
4

-4
3
4
 to

 -3
9
4

-3
9
4
 to

 -3
4
8

-3
4
8
 to

 -3
3
8

-3
3
8
 to

 -3
0
4

-3
0
4
 to

 -2
6
9

-2
6
9
 to

 -2
4
5

-2
4
5
 to

 -2
2
2

-2
2
2
 to

 -2
0
3

-2
0
3
 to

 -1
8
0

-1
8
0
 to

 -1
4
5

-1
4
5
 to

 -11
8

-11
8
 to

 -7
1

-7
1
 to

 -2
9

-2
9
 to

 2
0

2
0
 to

 4
5

4
5
 to

 8
2

8
2
 to

 1
4
3

1
4
3
 to

 1
8
6

1
8
6
 to

 2
3
0

2
3
0
 to

 2
8
3

2
8
3
 to

 3
1
5

3
1
5
 to

 3
6
8

3
6
8
 to

 4
1
6

4
1
6
 to

 4
5
1

4
5
1
 to

 4
7
3

4
7
3
 to

 5
0
2

5
0
2
 to

 5
4
7

5
4
7
 to

 6
2
4

F
re
q
u
e
n
c
y

Histogram 0 weight VARIABLE 32 BINS

(b) CONV 1 - 32 bins - variable quantization.
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(c) CONV 2 - 32 bins - fixed quantization.
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(d) CONV 2 - 32 bins - variable quantization
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(e) CONV 3 - 32 bins - fixed quantization.
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(e) CONV 3 - 32 bins - variable quantization.

Figure 6.1 – Quantization of the weights for the convolutional layers - number of parameters:
320 – 20480 – 20480.

Figures 6.1(c) and 6.1(d)). However, clearly defined distributions are absent in other fixed-
width histograms, such as the 1st fully connected layer weights, with about 350,000 param-
eters concentrated in a single bin (Figure 6.3(a)).

Observe the histograms with variable bin widths. The width of the bin is inversely
proportional to the number of values in the original distribution. The tails, which have fewer
parameters, present wider bins, whereas regions with more parameters have thinner bins.
The most representative example of this behavior is observed in the weights of the 1st fully
connected layer, concentrating most parameters in a small region, now equally distributed in
the variable bin distribution (Figure 6.3(b)).
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(a) CONV 1 - 32 bins - fixed quantization.
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(b) CONV 1 - 32 bins - variable quantization.
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(c) CONV 2 - 32 bins - fixed quantization.
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(d) CONV 2 - 32 bins - variable quantization
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(e) CONV 3 - 32 bins - fixed quantization.

 0

 0.5

 1

 1.5

 2

 2.5

 3

-1
9
5
 to

 -1
0
6

-1
0
6
 to

 -9
8

-9
8
 to

 -9
3

-9
3
 to

 -8
8

-8
8
 to

 -8
6

-8
6
 to

 -8
5

-8
5
 to

 -7
4

-7
4
 to

 -5
8

-5
8
 to

 -5
0

-5
0
 to

 -4
1

-4
1
 to

 -3
6

-3
6
 to

 -2
7

-2
7
 to

 -2
2

-2
2
 to

 -1
5

-1
5
 to

 -1
3

-1
3
 to

 -11
-11

 to
 -9

-9
 to

 -1

-1
 to

 7
7
 to

 1
2

1
2
 to

 1
3

1
3
 to

 1
9

1
9
 to

 2
3

2
3
 to

 2
7

2
7
 to

 3
7

3
7
 to

 5
3

5
3
 to

 6
5

6
5
 to

 7
7

7
7
 to

 8
4

8
4
 to

 1
0
3

1
0
3
 to

 1
5
2

1
5
2
 to

 1
7
4

F
re
q
u
e
n
c
y

Histogram 6 bias VARIABLE 32 BINS

(e) CONV 3 - 32 bins - variable quantization.

Figure 6.2 – Quantization of the bias for the convolutional layers - number of parameters:
64 – 64 – 64.

All these histograms are generated per layer. Another option studied is to use a
single LUT for the entire CNN. The issue with this approach is the minimum and maximum
ranges of each layer [Xu et al., 2021], as shown in Table 6.1. There would be a problem
with elements per bin since quantization should occur between all layers’ minimum and
maximum values. There would be layers where all values fall into a single bin. Given that
the memory consumption of LUTs is much smaller than the parameter vectors, quantizing
the entire model in a single LUT was not considered.

There is also the possibility of using a different number of bins per layer to maximize
accuracy. This is a suggestion for future work and was not covered in this MSc due to time
constraints.
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(a) Fully connected 1 - 32 bins - fixed quantization.
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(b) Fully connected 1 - 32 bins - variable
quantization.
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(c) Fully connected 2 - 32 bins - fixed quantization.
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(d) Fully connected 2 - 32 bins - variable
quantization

Figure 6.3 – Quantization of the weights for the fully connected layers - number of parame-
ters: 884,736 – 640.
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(a) Fully connected 1 - 32 bins - fixed quantization.
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(b) Fully connected 1 - 32 bins - variable
quantization.
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(c) Fully connected 2 - 32 bins - fixed quantization.

 0

 0.5

 1

 1.5

 2

-4
1
0
 to

 -4
1
0

-2
3
1
 to

 -2
3
1

-1
3
 to

 -1
3

2
4
7
 to

 2
4
7

2
7
8
 to

 2
7
8

F
re
q
u
e
n
c
y

Histogram classifier 2 bias VARIABLE 32 BINS

(d) Fully connected 2 - 32 bins - variable
quantization.

Figure 6.4 – Quantization of the bias for the fully connected layers - nb. parameters: 64 - 5.
The number of parameters of the second fully connected layer is smaller than the number of
bins.
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Table 6.1 – Minimal and maximum values per layer (integer quantization.

Layer Minimal Value Maximum Value
CONV weight 0 -614 624
CONV weight 1 -179 153
CONV weitht 3 -164 165
CONV bias 0 -115 151
CONV bias 1 -195 174
CONV FC1 weight -226 167
CONV FC2 weight -394 357
CONV FC1 bias -37 36
CONV FC2 bias -410 278

6.2 Quantization Evaluation and Bin Selection

Table 6.2 displays the accuracy data, varying: (1) bin size, (2) data representation,
and (3) the type of quantization. The quantization method uses one LUT per layer.

Table 6.2 – Accuracy per bin size, varying the quantization method. Reference values:
88.5% for floating point representation and 87.2% for integer representation.

Accuracy Float representation % Integer representation %

Number of bins Fixed Variable Fixed Variable

256 89.20 87.50 87.4 87.0

128 88.20 88.40 86.9 86.0

64 88.10 87.10 87.1 86.7

32 88.20 86.70 86.5 86.7

16 88.00 86.90 86.0 87.1

8 47.30 85.80 38.9 85.5

4 28.50 75.70 28.2 75.7

2 20.00 47.90 22.3 41.6

Note that the loss of accuracy is minimal with LUTs containing up to 16 positions
(bin size equal to 16). The most significant difference for floating-point representation is
1.6%, with a slight advantage for fixed quantization. The same behavior is observed for inte-
ger representation, with the most significant difference being 1.2%. This is a surprising result
considering that there is a layer with 884,736 parameters, and it is possible to represent it
with just 16 values, with minimal loss in accuracy. Another unexpected data is the equiva-
lence between fixed and variable quantizations, given how the quantization is executed. The
most significant difference observed in the floating-point representation was 1.73% between
the quantization methods; for the integer representation, it was 1.26%. This result suggests
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that the number of bins equal to 16, for this CNN model, is the value to be adopted for the
remainder of this work.

It is also worth noting the limits these quantization methods have. For fixed quanti-
zation in this CNN, 16 bins is the minimum value. Quantizations with 8, 4, and 2 bins fail to
generate an acceptable accuracy value. However, with variable quantization, we can have
an aggressive quantization, with only eight bins, with little loss of accuracy (-2.7% for float
and -1.7% for integer). Therefore, when adopting quantization methods, it is recommended
to adopt variable quantization, especially if the designer adopts an aggressive strategy for
value reduction.

6.2.1 Model-wise quantization

We also evaluated the use of a single LUT for the entire CNN. We call this model
model-wise quantization. Table 6.3 displays the accuracy data, varying: (1) bin size, (2) data
representation, and (3) the type of quantization, using a single LUT with all weights and bias
of all layers.

Table 6.3 – Accuracy per bin size, varying the quantization method, using the model-wise
quantization. Reference values: 88.5% for floating point representation and 87.2% for inte-
ger representation.

Accuracy Float representation % Integer representation %

Number of bins Fixed Variable Fixed Variable

256 89.10 39.70 86.4 20.0

128 88.20 27.80 85.3 20.0

64 89.10 20.00 86.7 20.0

32 79.40 20.00 75.3 20.0

16 24.60 20.00 20.0 20.0

8 20.00 20.00 20.0 20.0

4 20.00 20.00 20.0 20.0

2 20.00 20.00 20.0 20.0

Observe that this CNN has five possible output classes, and hence, the accuracy
equal to 20% presented in many data points in Table 6.3 corresponds to a random predic-
tion. The model-wise quantization method yields mixed results. As expected, the accuracy
was negatively affected due to the increase in the parameters represented in each LUT. As
discussed in Section 6.1, quantization should occur between the minimum and maximum
values. However, as Figures 6.1, 6.2, 6.3, and 6.4 illustrate, the values exhibit different
distributions and values, leading to an unequal representation of all layers in the LUTs. In
a feedforward neural network, a misparameterized layer can significantly impact accuracy
[Goodfellow et al., 2016]. This issue can be mitigated by using a fixed bin size that does not
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rely on the population size of each layer to define the boundaries. This approach prevents a
layer with a larger population, such as the first fully connected layer, from significantly influ-
encing the computation. It is important to note this effect when using LUTs containing up to
256 bins. Accuracy becomes unusable when using variable bin sizes, which is the case for
both floating and fixed point representations.

Note that there are two highlighted values in Tables 6.2 and 6.3. These values
indicate quantization options using integer representation, with an accuracy close to the
reference accuracy (87.2%). For quantization using one LUT per layer, we can use 16 bins
with variable quantization (87.1%), and for the model-wise method, we can use 64 bins
with fixed quantization (86.7%). We decided to use one LUT per layer because this model
does not rely on the values of the entire CNN. If another CNN model is adopted, it may
be necessary to use larger LUTs, or it may not even be possible to achieve high accuracy
values, as observed with variable quantization.

6.2.2 Bin Position Selection

The accuracy values presented so far use the central value of the bin. In Tables 6.4
and 6.5, we evaluate the impact of using the median and average values inside the bin using
the model-wise quantization. The “central” values correspond to the accuracy obtained in
Table 6.3.

Table 6.4 – Effect of the value selected inside the bin (central, median, mean) for fixed
quantization.

Accuracy Float representation, model-wise fixed quantization

Number of bins Central Median Mean

256 89.1 89.0 84.2

128 88.2 88.5 81.5

64 89.1 82.3 77.7

32 79.4 55.7 67.3

16 24.6 20.0 20.0

8 20.0 20.0 20.0

4 20.0 20.0 20.0

2 20.0 20.0 20.0

For fixed quantization, using mean or median values does not bring accuracy ben-
efits. On the other hand, in variable quantization, we obtained a significant improvement for
256 bins. This improvement is explained by the larger number of elements in each bin, and
using the mean or median better captures the behavior of the parameters distribution. An
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Table 6.5 – Effect of the value selected inside the bin (central, median, mean) for variable
quantization.

Accuracy Float representation, model-wise variable quantization

Number of bins Central Median Mean

256 39.7 76.2 71.4

128 27.8 69.1 35.0

64 20.0 59.8 20.0

32 20.0 20.0 20.0

16 20.0 20.0 20.0

8 20.0 20.0 20.0

4 20.0 20.0 20.0

2 20.0 20.0 20.0

in-depth study to select the value position in each bin is a suggestion for future work.

In conclusion of this Section, for this CNN, we adopted in the remainder of this
chapter: (i) integer representation; (ii) one LUT per layer; (iii) variable quantization; (iv ) 16
bins per LUT; (v ) the central bin value.

6.3 Quantization Profiling

Tables 6.6 and 6.7 present the instruction profile, execution time, and estimated
energy, comparing the standard models to those using LUTs with 16 bins. The use of quan-
tization implies a larger number of memory accesses (LOAD instructions), a larger number
of executed instructions, and consequently, an increase in the time to execute the inference
and energy consumption. Note that the increase in the number of executed instructions is
roughly the same for the float (17,026,844) and integer representations (17,026.644).

To understand the reason for the increase in memory accesses and the number of
executed instructions, we present in Code 6.1 the same convolution presented in Code 5.8,
but now using LUTs. Observe lines 8 and 11 of Code 6.1. On these lines, we are first
accessing the LUT index and then accessing the value in the LUT. Thus, we execute two
memory accesses instead of just one and add IMM-type instructions to access the LUT in-
dexes. Note that the number of IMM mode operations roughly corresponds to the number of
MULT operations.

The results obtained in this section suggest that there is no benefit in using LUTs
when running the CNN model in software, as the performance figures are worse compared
to the standard model. Using quantization and LUTs is appropriate for hardware imple-
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Table 6.6 – Instruction profiling of the CNN models using the RISC-V processor.

Instruction Class Ext1D FP Ext1D 16bins FP Ext1D INT Ext1D 16bins INT

LOAD 10,871,684 16,249,344 10.893.314 16,270,975

STORE 41,946 41,756 63.668 63,187

IMM 53 5,377,703 46 5,377,697

REG 0 0 0 0

ADDSUB 18,196,854 24,468,579 23.704.159 29,975,949

MULT 0 0 5,428,096 5,428,096

DIV 0 0 21.637 21,637

BRANCH 6,401,926 6,401,926 6.423.755 6.423,755

JUMP 887,496 887,496 887.496 887.496

FP_OP 57,358 57,358 0 0

FP_MUL 5,428,096 5,428,096 0 0

FP_DIV 0 0 0 0

FP_AddSub 21,637 21,637 0 0

Total 41,907,050 58,933,895 47,422,171 64,448.792

Table 6.7 – Execution time to execute the models (Apple M2 processor), and estimated
energy (20pJ for integer operations and 131pJ for floating point operations).

Ext1D FP Ext1D 16bins FP Ext1D INT Ext1D 16bins INT

Total time (sec) 28.568 34.230 4.175 11.860

Time per inference (ms) 7.282 8.725 1.064 3,023

Energy (pJ) 1,449 1,790 948 1,289

Code 6.1 – 1D convolution layer code, using LUTs to access the model parameters.
1 for (int filterToGenerate=0 ; filterToGenerate<NUM_FILTERS ; filterToGenerate++ ){
2 for (int inputOffset=0 ; inputOffset<CONV3_INPUT_SIZE-4 ; inputOffset++){
3 INTconv3_totalSum = 0;
4 for (int filterIn=0 ; filterIn<NUM_FILTERS; filterIn++){
5 for (int kernelIndex = 0 ; kernelIndex < KERNEL_SIZE ; kernelIndex++){
6 int weightIndex = kernelIndex + (filterIn * KERNEL_SIZE) + ( filterToGenerate * NUM_FILTERS *

KERNEL_SIZE ) ;↪→
7 int indexIn = kernelIndex + (inputOffset);
8 INTconv3_totalSum +=INTconv0_featureMap[filterIn][indexIn] *

conv3_weights_lut[conv3_weights_indices[weightIndex]];↪→
9 }

10 }
11 INTconv3_totalSum += conv3_bias_lut[conv3_bias_indices[filterToGenerate]];
12 INTconv3_featureMap[filterToGenerate][inputOffset] = INTconv3_totalSum;
13 }
14 }

mentation since the parameters can be represented with fewer bits, and the LUTs can be
stored in registers, avoiding unnecessary memory accesses. However, employing a tech-
nique for packing indices into a single 32-bit word can significantly reduce the model size,
as we demonstrate in the next section.
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6.4 Compressed Model

The compressed model modifies the weight and bias files, which have already been
quantized, by “packing” eight values into a single value. Code 6.2 shows an example of the
compression method for the weights of the first fully connected layer. Note that the number
of parameters has been divided by 8, and each vector position packs eight indices. For
instance, the first value, 26144250 or 0x018EEDFA, corresponds to the first eight parameters
(10, 15, 13, 14, 14, 8, 1, 0). A script executes this data packaging for the compressed model.

Code 6.2 – Original parameter array and compressed array.

1 const char fc1[884,736] = {10, const int fc1_comp[110,592] = {26144250,
2 15, 1903744351,
3 13, 3782813254,
4 14, 1041166782,
5 14, 4016513328,
6 8, 2493242926,
7 1, 1960532140,
8 0, 1951286549,
9 15, 1232396650,

10 5, 2139000964,
11 5, ...
12 13, ...
13 8, 3521681353,
14 7, 2336831745};
15 1,
16 7,
17 6,
18 4,
19 6,
20 2,
21 9,
22 7,
23 1,
24 14,
25 14,
26 11,
27 1,
28 15,
29 14,
30 ...
31 4,
32 11,
33 8};

The compressed model requires more computational effort to execute the CNN.
Code 6.3 describes a convolutional layer. In this code:
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• The variable realIndex (weightIndex or filterToGen) – lines 9 and 19, corresponds
to the address in the original dataset vector.

• Lines 11 and 21 compute the address in the compressed dataset (realIndex >> 3).
As we are using 16-bin LUTs, it is necessary to use 4 bits to encode an index. Thus,
each 32-bit word encodes eight 4-bit indices, as presented in Code 6.2.

• Lines 10 and 20 isolate the three least significant bits of the current address. Memory
is only accessed when this value is zero, resulting in one memory access for every
eight addresses of the compressed vector. This procedure is responsible for reducing
the number of LOAD operations.

• Lines 15 and 25 access the LUT. The operation weightDecompIndex*4 defines how
many bits the read word should be shifted (0, 4, .. 28) to obtain the LUT index. Ad-
ditional masking (& 0x0F) is necessary to ensure that the index corresponds to one of
the 16 positions in the LUTs. Once the LUT index is obtained, the LUT is accessed.

Code 6.3 – 1D convolution layer code, using for the compressed model.
1 for (int filterToGen=0; filterToGen<NUM_FILTERS ; filterToGen++){
2 for (int inputOffset=0 ; inputOffset<CONV3_INPUT_SIZE-4 ; inputOffset++){
3 totalSum = 0;
4 for (int filterIn = 0 ; filterIn < NUM_FILTERS ; filterIn++){
5 for (int kernelIndex = 0 ; kernelIndex < KERNEL_SIZE ; kernelIndex++){
6 int weightIndex = kernelIndex + (filterIn * KERNEL_SIZE) + ( filterToGen * NUM_FILTERS *

KERNEL_SIZE ) ;↪→
7 int indexIn = kernelIndex + (inputOffset);
8

9 int realIndex = weightIndex;
10 weightDecompIndex = realIndex & 7;
11 weightCompressedIndex = realIndex >> 3;
12 if (!weightDecompIndex)
13 weightCompData = conv3_weights_indices_compressed[weightCompressedIndex];
14

15 totalSum += conv0_featMap[filterIn][indexIn] *
(weights_lut[(weightCompData>>(weightDecompIndex*4)) & 0x0F]);↪→

16 }
17 }
18

19 int realIndex = filterToGen;
20 biasDecompIndex = realIndex & 7;
21 biasCompressedIndex = realIndex >> 3;
22 if (!biasDecopmIndex)
23 biasCompData = bias_indices_compressed[biasCompressedIndex];
24

25 totalSum += conv3_bias_lut[ (biasCompData>>(biasDecompIndex * 4)) & 0x0F ];
26

27 INTconv3_featureMap[filterToGen][inputOffset] = totalSum;
28 }
29 }

Table 6.8 presents the instruction profile, comparing the standard integer model,
the model with 16-bin LUTs, and the compressed one. The increased complexity of the
code increased REG – shift operations, IMM – logical operands such as AND, and BRANCH

instructions. Comparing the number executed of instructions, the compressed model dou-
bled the number of instructions compared to the standard model with integer representation.
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Despite the increase in the number of instructions, an important gain must be highlighted,
the number of memory accesses. The compressed model has almost the same memory
accesses as the standard model.

Table 6.8 – Instruction profiling of for the compressed model.

Instruction Class Ext1D INT Ext1D 16bins INT Ext1D 16bins
Compressed

LOAD 10.893.314 16,270,975 11,575,297

STORE 63.668 63,187 50,637

IMM 46 5,377,697 32,377,317

REG 0 0 5,405,573

ADDSUB 23.704.159 29,975,949 30,853,867

MULT 5,428,096 5,428,096 5,428,096

DIV 21.637 21,637 9,084

BRANCH 6.423.755 6.423,755 11.807.503

JUMP 887.496 887.496 201

Total 47,422,171 64,448.792 97.507.575

Table 6.9 presents the execution time, and estimated energy, including the standard
floating point model. Note the compressed model, besides the larger number of instructions,
is still faster than the float model. On the other hand, the estimated energy presents the
higher values among the evaluated models.

Table 6.9 – Execution time to execute the models (Apple M2 processor) and estimated en-
ergy.

Ext1D Float Ext1D INT Ext1D 16bins
INT

Ext1D 16bins
Compressed

Total time (sec) 28.568 4.175 11.860 18.734

Time per inference (ms) 7.282 1.064 3.023 4.765

Energy (pJ) 1,449 948 1,289 1,950

Remember that the accuracy and profiling results reflect the CNN model without
considering estimates. However, the inference time and energy results are estimates. The
inference time is obtained with the Apple M2 processor and the energy from data collected
from the literature. An important future work involves evaluating these metrics on a processor
described at the RTL level, allowing accurate performance (number of clock cycles), power,
and energy estimates. Another relevant future work is to assess hardware acceleration,
such as the extensions available in the RISC-V ISA.



74

Table 6.10 summarizes the results and presents the most significant result of this
chapter in its 2nd row, the memory requirements to store the model (number of parameters).
Since the index vectors are reduced by a factor of 8, a reduction in memory usage of this
proportion is expected. According to the table, the reduction is 7.99, given the need to
store the LUTs. Note that the compressed model requires less memory than the reference
model, which has an accuracy of 74.9%, compared to 87.1% for the proposed model. Thus,
we have achieved the second goal for resource-constrained devices: reduce the memory
footprint for storing the CNN model.

Table 6.10 – Summary of the results. Emphasis on the model size. The presented values in
the table correspond to the number of parameters required by the CNN model.

Reference 1D Ext1D Float Ext1D Int Ext1D Float
LUT 16

Ext1D Int
LUT 16 Compressed

Model size
(#param) 271,621 926,981 926, 981 927,061 927,061 115,953

Accuracy % 74.9 88.5 87.2 87.2 87.1 87.1

LOAD
instructions (106) 2.95 10.87 10.89 16.25 16.27 11.58

Total inst. (106) 11.38 41.91 47.42 58.94 64.45 97. 51

Energy (pJ) 393 1,449 948 1,790 1,289 1,950

Time per
inference (ms) 2.01 7.28 1.06 8.73 3.02 4.77

6.5 Final Remarks

We may summarize the comparison of the Compressed with the Ext1D Int LUT
16 implementation as follows:

• Model Size: 7.99 times smaller

• Accuracy: 87.1% for both models

• LOAD instructions 29% reduction

• Number of executed instructions (from the instruction profiling): 1.5 times higher

• Energy: 1.5 times higher (estimated from the instruction profiling and energy values
from the literature)

• Execution time: 58% slower (Apple M2 processor)

• Instruction set: integer

Although the number of instructions increased 50%, the main goal of the Com-
pressed model was achieved: reduce memory accesses with a smaller model size. Note
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that the compression method has only 6% more LOAD instructions than the simpler, non-
quantized Ext1D INT. Conversely, the reduction in memory footprint comes with the cost of
increased total instructions, thus increasing execution time and estimated energy consump-
tion.
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7. CONCLUSION

The standard 1D CNN model used as reference in this research lacks temporal
awareness in its implementation, a crucial aspect for accurately detecting patterns in sensor
data, especially for HAR. Despite its simplicity and modest hardware requirements in terms
of computation, the model has trade-offs. It only achieves a 74% accuracy level in the testing
dataset, making it an inefficient model for practical applications.

The MSc’s first contribution was optimizing the reference CNN model. This re-
search improved the reference model, naming it “Extended 1D Model” – Ext1D. This model
was designed to incorporate temporal awareness while preserving the inherent simplicity
of the original model (three convolutional layers and two fully connected layers). This in-
clusion of temporal awareness resulted in a significantly improved accuracy, with the new
model reaching an 89% accuracy level in the same dataset. Furthermore, we evaluated a
variant of the Ext1D model, referred to as the ”Reduced Model”. This model was designed
to decrease the number of parameters while maintaining accuracy. It reduced the model
size by half, incurring only a modest 4% decrease in performance. We selected the origi-
nal Ext1D, named “Accurate Model” for its accuracy, to evaluate the deployment of CNNs in
resource-constrained devices.

This contribution was published in:
Assessment and Optimization of 1D CNN Model for Human Activity Recognition.
REUSCH, Rafael; JURACY, Leonardo R.; MORAES, Fernando Gehm.
In: SBESC, 2022. – https:// ieeexplore.ieee.org/ document/ 9964520

The MSc’s second contribution was deploying a C model equivalent to the Pytorch
model, using integer and floating point representations. The goal of the C model is to avoid
FPUs and reduce the memory footprint. To enable the development of the C model, we in-
troduced a novel approach for exporting Pytorch’s parameters using parameterized scripts.
This integer-only model incurred only a 1.3% accuracy loss compared to its floating-point
counterpart. Although the number of instructions increased compared to the floating-point
model, the execution time was more than eight times faster. The integer model also outper-
formed the reference model, which has a smaller input size and was 13.2% slower.

The third contribution of this MSc is the reduction of the CNN model to use it on de-
vices with scarce resources. After validating the integer-only model, we reduced the model
size by using quantization and LUTs. We observed that the CNN model could use 16-bin
LUTs, causing only a 1.6% decrease in accuracy. We proposed the “Compressed Model”
to effectively reduce the model size by packing the indexes of 8 parameters (weight or bias)
into a single integer word. This model reduced the number of LOAD instructions by 29% and
minimized the model size by almost eight times, keeping the accuracy of the integer model.
However, this model increased the number of executed instructions, increasing execution
time and energy consumption.

https://ieeexplore.ieee.org/document/9964520
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7.1 Future Work

This research paves the way for several future work. The following points highlight
the key areas of interest for future research:

1. Pruning techniques. Pruning was initially considered during this research but had to
be deferred due to time constraints. Future studies could delve into these techniques
to enhance the efficiency of the proposed models.

2. Accuracy improvement using a 2D model with temporal awareness. Building upon
the Extended 1D Model developed in this research, future studies could explore a
2D model with temporal awareness. This may provide further improvements to the
accuracy of the model.

3. Public dataset. Future research could employ a publicly available dataset for model
training and validation. This could improve the applicability and comparability of the
results.

4. Impact of the compiler in instruction profiling. This work used O2 optimization to obtain
results. More aggressive optimization techniques, such as O3, could be investigated
in future research. Preliminary results suggest that such optimization can reduce the
number of executed instructions by 30%, reducing execution time and energy con-
sumption.

5. Representation of values within each bin. This research introduced a quantization
method that uses a minimal LUT. Future work could focus on developing better ways
to represent the values within each bin, potentially allowing for more aggressive quan-
tization. We only evaluated central, mean, and average positions, keeping the central
position. The preliminary results showed that selecting the correct values inside each
box could increase accuracy.

6. Bin optimization per layer. Future work could explore the possibility of using a different
number of bins per layer to maximize accuracy and reduce the model size.

7. Evaluate 8-bin LUTs. We observed that variable quantization maintained an accuracy
of 85.5% using 8-bin LUTs. This aggressive quantization can potentially reduce the
model size further (10x), but it is necessary to evaluate the impact in terms of executed
instructions and execution time.

8. Evaluation at the Register-Transfer Level (RTL). Future research could involve evaluat-
ing the inference time and energy metrics on a processor described in RTL. This would
allow for accurate performance estimates (number of clock cycles), power, and energy.
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9. Assessment of Hardware Acceleration: Considering the extensions available in the
RISC-V Instruction Set Architecture (ISA), future research could evaluate the impact of
hardware acceleration on the model’s performance.

10. Hardware Accelerator. Apply the proposed software implementation methods to a ded-
icated HAR IP, having energy consumption reduction as its main design goal.
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APPENDIX A – HAR DATASET

The following table consists of randomly selected data extracted from the training
dataset used in the reference model. Each line represents a single timestep and columns
represent features extracted from the sensors. The original training file is presented in CSV
format. The reference model only uses 40 features of various sensors, and many more
features, such as magnetometer sensors, are also available in the dataset.
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