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“Like everything metaphysical the harmony be-
tween thought and reality is to be found in the
grammar of language”
(Ludwig Wittgenstein, philosopher)
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ORCA RT-TOOLS - UMA SUITE DE FERRAMENTAS PARA AUXILIAR A
ANÁLISE DE TEMPO-REAL EM SISTEMAS MANYCORE

RESUMO

A pandemia de COVID-19 permitiu que muitas empresas entrassem no mercado
oferecendo soluções para auxiliar no combate contra o vírus SARS-CoV-2, incluindo robôs
para desinfecção por UV-C e veículos autônomos. Com o crescimento na demanda de
recursos computacionais nestes sistemas, a comunidade passou a explorar recursos de
plataformas manycore, que possuem um maior potencial de paralelismo quando compa-
radas às plataformas single- e multi-core utilizadas atualmente. Entretanto, sistemas da
missão-crítica necessitam de suporte para vários requisitos não-funcionais para comunica-
ção e computação, incluindo tempo-real (TR). Ao longo dos anos, garantias de TR para
comunicação e computação foram abordadas por diferentes comunidades de pesquisa. De
um lado, a pesquisa sobre computação de TR avançou significantemente para plataformas
single- e multi-core. Do outro lado, a pesquisa em comunicação de TR originou as cha-
madas redes intra-chip de tempo-real (RT-NoCs). Como resultado, a literatura carece de
uma abordagem que trata ambas as perpectivas destes sistemas, majoritariamente negli-
genciando uma análise combinada de computação e comunicação. Esta tese apresenta
uma abordagem para a análise de tempo-real em systemas manycore baseados em redes
intra-chip, tratando tanto computação quanto comunicação. Nós usamos nossa abordagem
para garantir os requisitos de tempo-real para computação e comunicação de um sistema
sem uma NoC de tempo-real, usando uma NoC open-hardware de baixo custo. Nós valida-
mos nossa abordagem em ambiente de simulação RTL, usando tanto aplicações sintéticas
quanto benchmarks.

Palavras-Chave: Redes intrachip, Sistemas de Tempo-Real, Manycores.



ORCA RT-TOOLS - A SUITE OF TOOLS TO SUPPORT REAL-TIME
ANALYSIS ON MANYCORE SYSTEMS

ABSTRACT

The COVID-19 pandemic allowed plenty of companies to enter the market offer-
ing solutions to help fight the SARS-CoV-2 virus, including robots for UV-C disinfection and
autonomous vehicles. With the demand for computational resources growing in the critical-
mission systems domain, the community began exploring resources from manycore plat-
forms, which have a potential for parallelism compared to the single- and multi-core platforms
currently used. However, critical-mission systems need support for several non-functional
requirements for communication and computation, including real-time (RT). Over the years,
different research communities have addressed RT guarantees for communication and com-
putation. On the one hand, research on RT computing has advanced significantly for single-
and multi-core platforms. On the other hand, RT communication research developed the so-
called real-time intra-chip networks (RT-NoCs). As a result, the literature lacks an approach
that tackles both perspectives of a system, mostly neglecting the joint analysis of computing
and communication operations synchronization. This Thesis presents an approach to RT
analysis in NoC-based manycores, which tackles computation and communication jointly.
We used our approach to guarantee the RT requirements for computation and communica-
tion on a system without an RT-NoC, using a low-cost, open-source NoC. We validate our
approach for synthetic and benchmark applications in an RTL simulation environment.

Keywords: Network-on-chip, real-time systems, manycores.
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1. INTRODUCTION

Critical-mission applications struggle with legacy single- and multi-core platforms
[Chakaravarthy et al., 2021] due to their limited scalability as the demand for computation
and communication performance increases, propelled by applications such as delivering
drones [Chen, 2023], autonomous cars [Cellan-Jones, 2020], and service robots [UVD
Robots, 2024]. As an alternative to single- and multi-core platforms, the manycore tech-
nology gathered attention from the industry in the last decades due to its potential for
parallelism, reduced area, low energy consumption, attractive fabrication cost, and scala-
bility [Wolf et al., 2008]. However, adopting manycores imposes challenges, mainly due to
their inherently distributed programming model [Nürnberger et al., 2014]. Besides, strict non-
functional requirements of applications such as real-time (RT) require native support from
the target platform, often requiring custom hardware solutions, e.g., field programmable gate
array (FPGA), to supply applications needs.

In this Thesis, we present approaches for preventing violations of hard real-time
constraints in applications running on network-on-chip-based (NoC) manycores, approach-
ing both computation and communication. We dedicate the remainder of this chapter to
present motivation (Section 1.1), research context (Section 1.2), thesis statement (Sec-
tion 1.3), goals (Section 1.4), scope (Section 1.5), our contributions (Section 1.6), and orga-
nization of the remainder of the Thesis (Section 1.7).

1.1 Motivation

Since late 2019, the world has faced a Covid-19 pandemic, whose worldwide vic-
tims are countless. In response to the pandemic, the government and health organizations
implemented new protocols to mitigate the SARS-CoV-2 contamination. The adopted strate-
gies range from social distancing to heavy disinfection procedures, including using robots to
replace humans as an alternative to avoid potential contamination. Even with the global
economy bending to the effects of the pandemic, many corporations have seized opportuni-
ties within the robotics and embedded system markets, providing products such as delivering
drones, disinfection robots, and personal assistant robots, augmenting the fight against the
pandemic [Seidita et al., 2021].

The demand for critical-mission applications soared since the beginning of the pan-
demic [Berreby, 2020], whose dates nearly match with Amazon’s announcements for new ef-
forts in drone delivering [Lardinois, 2019]. For instance, the Bishan-Ang Moh Kio Park [BBC,
2020a] have tested in the field Spot [Boston Dynamics, 2020], a dog-like robot from Boston
Dynamics used to warn people about the social distancing policy in the park. Disinfection



19

robots from UVD [UVD Robots, 2024] have been used in Chinese hospitals to disinfect
rooms without human intervention [Ackerman, 2020]. The Brazilian company Instor has
worked on Jaci [Instor – Projetos e Robótica, 2020], another robot for disinfection by UV-C
(Ultraviolet, class C) [GLA, 2021]. Robots such as Temi [Temi USA, 2020] and ARI [PAL
Robotics, 2020] help hospitalized patients get in touch with relatives, as well as they help
hospital staff to interact with patients from a distance [BBC, 2020b]. Finally, Pfizer, one of
the corporations producing Sars-CoV-19 vaccines, contacted WeRobotics to boot up a new
delivering drone model project [WeRobotics, 2021]. Many more applications such as Moxi,
from Diligent Robotics [Diligent Robotics, 2021]; Alexia, from Cocuus [Branco, 2020]; Rudy,
from INF Robotics [INF Robotics, 2020]; and PP, ROC, and K9 from AIS [NIUS, 2020] could
be herein enlisted.

A second wave of investments in critical-mission application rose right after the
pandemic1, a few months after the announcement of OpenAI’s ChatGPT [OpenAI, 2023] first
open demonstration, in November 30, 2022 [Marr, 2023]. Since the launching of ChatGPT,
big-techs such as Microsoft [Microsoft, 2023] and Google [DeepMind, 2020] have made
investments into applying ChatGPT technology into robotics. Also, a not-so-surprising out-
come is the announcement of products with “embodied” language models (as in ChatGPT’s
technology). For instance, 1X Technologies, a company reportedly partnered with OpenAI,
announced NEO [1X Technologies, 2023] – an android capable of learning – to be available
by the end of 2023.

As more and more applications enter the market, the challenge of delivering reliable
hardware-software systems to these products increases. The need for optimized embedded
systems is even more demanding in specific applications such as UAV (Unmanned Aerial
Vehicles [Sandamirskaya, 2022]. With the recent advancements of the artificial intelligence
(AI) field regarding language models, such systems are expected to have dedicated hard-
ware accelerators interacting with the core system to boost applications such as inference
in deep neural networks (DNN) [Juracy, 2022].

1.2 Research Context

Re-engineering some state-of-the-art applications from multi-core to manycore ar-
chitectures seems imminent [Azumi et al., 2020, Chitchian et al., 2013, Haggui et al., 2018,
Minozzo et al., 2017, Zhang, 2014, Paul et al., 2014]. As an alternative to the multi-
core architectures, manycores try to alleviate the communication throughput by introducing
networks-on-chip (NoCs) in the design. Compared to buses, NoCs offer scalable support
for massive parallel communication as wire length and clock frequency are unrelated to the
number of cores [Heisswolf et al., 2013].

1The Sars-CoV-19 pandemic officially ended in May 5, 2023 [WHO, 2023].
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Applications such as autonomous vehicles run real-time software [Saeedi et al.,
2018]. Eventually, the uncontrolled execution of real-time applications may put human lives
at stake, as robots can operate, for example, UV-C lights, which inappropriate manipula-
tion may result from eye damage to ozone intoxication [GLA, 2021]. In manycores, the
message-passing programming model [Nürnberger et al., 2014] requires both software and
hardware to be adapted to guarantee the RT properties of applications. This is aggravated
in applications that have strict bandwidth requirements, e.g., due to a large amount of sen-
sors [Molom-Ochir, 2020, Yeong et al., 2021, Jeon et al., 2021]. Performing RT analysis on
manycores requires the analysis of the underlying connection media delays, as well as the
analysis of the individual processing elements (PE). However, studies approaching both the
computation and communication aspects of manycores rarely appear in the literature.

1.3 Thesis Statement

The community proposed Real-Time NoCs (RT-NoCs) to tackle real-time traffic in
NoCs. However, current RT-NoCs mostly require custom routers to achieve RT guaran-
tees. Guarantees appear as worst-case transmission time (WCTT) models [Chen et al.,
2021] or schedulability analyses [Picornell et al., 2019]. In both cases, some hardware im-
plementation must support the controlled execution of the schedule or prioritize packets at
the runtime, resulting in area and power consumption overheads. The overhead generated
by implementing RT routers sums to the realization of other non-functional requirements,
leading to an unnecessarily complex NoC design.

Nevertheless, the literature treats non-functional requirements as isolated. Most
studies approach at most one or two non-functional requirements and most techniques are
bound to the baseline design and are unlikely to be employed in other projects. In such a
scenario, this Thesis aims to answer the following research question:

“Can we guarantee the real-time properties of an application running on a manycore,
from both communication and computation perspectives, using pre-runtime methods,
on a non-RT manycore architecture? ”

1.4 Goals

The main goal of this Thesis is to “provide real-time guarantees for manycore appli-
cations with no interference in the target hardware architecture, focusing mainly on mitigat-
ing hardware complexity growth due to the accumulated implementation of non-functional
requirements.” We present the specific goals of the Thesis below.
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1. Propose a framework instead of a NoC-specific solution: One of the goals of this The-
sis is to propose a framework that can be adapted to suit the needs of different NoCs.
Although we acknowledge the variety of router designs, we can set a base framework
that one can extend to handle different architectures. We highlight several opportuni-
ties for using our approaches in different contexts throughout the Thesis.

2. Enable NoCs to run RT traffic even if they do not have native support: We construct a
baseline manycore architecture using open-hardware and open-source software com-
ponents, favoring the reproducibility of our study. Besides the operating system kernel,
none of the software or hardware components supports RT2. We use the platform to
validate our approaches.

3. Provide a scalable method: Scalability is one of the main concerns in NoC technology.
For this reason, approaches must scale with the NoC size (i.e., number of routers).
We achieve this goal by using heuristics to reduce the complexity of the associated
algorithms, whenever the performance of the frameworks becomes intractable. Most
of the algorithms discussed in this Thesis aim for a linear performance model.

4. Develop tools to automate the analysis, reducing human error: One of the key features
of the herein proposed frameworks is automation. During the development of the The-
sis, we had to develop a set of tools, called ORCA RT-TOOLS (ORT). The tools are the
main contribution of the Thesis, along with the underlying frameworks.

5. Contribute to lower the overall cost of designs: We contribute to lower overall design
cost by employing only open-software and open-hardware technologies. The ORT
suite is open-source and ships a base implementation in Python. All tools and libraries
that interact with our tool suite are open-source. The adopted baseline platform has
open-source software and open hardware modules only. Adopting open-source and
open hardware components also contributes to the reproducibility of our study.

1.5 The Scope

Although we believe our approaches can be applied to a wide range of systems,
we had to make assumptions as we could validate our approaches only for a few scenarios.
We guarantee our approaches to work in a system where:

2The word “timing” has different definitions. In software engineering, it relates to the real-time properties of
systems. In the digital and circuit systems area, it relates to the propagation of signals. To avoid misunder-
standings, we couple to the term “real-time” when discussing software engineering, leaving the term “timing”
only for hardware-level signal analysis.
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1. Application-level properties:

(a) Tasks have a WCET (worst-case execution time) model.

(b) Packets are periodic, and provide either a rate model (e.g., bytes per second) or
a PCD description (period, capacity, and deadline).

(c) There is no priority between tasks, and all tasks have hard deadlines.

2. System-wide properties:

(a) Application tasks are statically mapped into cores.

(b) Task admission cannot occur at runtime, i.e., static workload.

(c) The whole architecture runs at the same frequency.

(d) Cores can be asymmetric.

(e) Processing elements may have at most one central processing unit (A-CPU) core.

(f) Communication between tasks in the same core is allowed.

3. NoC-Level Properties:

(a) Routing algorithm must be deterministic and deadlock-free.

(b) The NoC must provide a zero-load latency model, i.e., analytical latency in the
absence of contention.

(c) Topology must be described as a directed graph.

1.6 Contributions

This Thesis presents approaches for preventing violations of hard real-time con-
straints in applications running on NoC-based manycores. We propose three approaches,
presented throughout the Thesis, where one approach supersedes the previous approach,
the latter being our final proposal. The approach does not impose any hardware imple-
mentation on the manycore. Instead, we present a pre-runtime approach based on both
scheduling through optimization and discrete-event simulation. The problem of real-time
guarantees is approached both from computation and communication perspectives.

This Thesis encompasses the following contributions:

• Novel Contributions

– A method based on discrete-event simulation to model kernel execution, focusing
on mono-processing systems (Chapter 4).
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– A model for the characterization of periodic, real-time flows in NoCs; a method for
scheduling that flows (Chapter 5).

– Another model for the characterization of RT flows in NoCs, targeting workflow
applications; a heuristic algorithm for scheduling traffic; and a method for finding
the minimum frequency necessary for such a schedule to work (Chapter 6).

– A heuristic method for clustering task graphs (Chapter 7).

– A mixed method for guaranteeing the execution time of real-time tasks and flows
in manycore systems (Chapter 8).

• Other Contributions

– A manycore design on the top of Hermes NoC and HFRisCV CPU (Chapter 3).

– A NoC driver for the UCX-OS kernel (microcontroller execute)

– A network interface module to asynchrnous packet transmission in direct memory
access (DMA) mode.

– A set of tools that automatize the herein presented approaches.

During the development of this Thesis, the author published the following studies.
All studies sum contributions to this Thesis3:

• ORCA RT-Bench: A Reference Architecture for Real-Time Scheduling Simulators [Do-
mingues et al., 2021] (SBESC 2021): This work presents a reference architecture for
a real-time scheduling simulator. The goal of the study is to deliver a software envi-
ronment in which a single task set could be submitted to the several scheduling while
offering parameters to tune the environment to mimic the task system underlying to
several operating systems (OS). We later renamed the tool to ORT/BENCH, presented
in depth in Chapter 4 and adopted in one of our frameworks, in Chapter 8.

• Design-time Analysis of Real-Time Traffic for Networks-on-Chip using Constraint Mod-
els [Domingues et al., 2022a] (ICECS 2022): In this work, we present our first attempt
of scheduling network flows at the pre-runtime. We adapt the abstract notion of re-
source occupation to networks links, inspired by the job-shop problem and its variants.
With the aid of Minizinc [MiniZinc Team, 2024], we search the solution space in a rea-
sonable computing time for small problems. Chapter 5 discusses this work in depth.

• Design-time Scheduling of Periodic, Hard Real-Time Flows for NoC-based Systems [Do-
mingues et al., 2022b] (SBCCI 2022): In this work, we represent a process for finding
a network schedule bounded to the target NoC clock speed. By replacing Minizinc by

3Although the title of the papers contains the term “design-time”, the term “pre-runtime” would be correct
as the approaches consider that the manycore hardware cannot be changed. The methods proposed in the
papers only define the scheduling of flows and tasks prior to the execution of the application.
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a custom search algorithm we could achieve better execution speed while searching
the solution space for valid schedules. Then, we used the searching algorithm as a
part of an iterative search process to evaluate the real-time communication flows and
find a minimum operating frequency for the target NoC such that packets do not miss
any deadline. We discuss this work in Chapter 6.

1.7 Document Organization

Figure 1.1 presents the organization of the manuscript.

BENCH
(Chapter 4)

NS
(Chapter 5)

FNS
(Chapter 6)

Graph Tools 
(Chapter 7)

Computation- and Communication-
Aware RT Analysis (Chapter 8)

ORCA RT-TOOLS (ORT)

Conclusion
(Chapter 9)

Integer Linear 
Programming and 
Optmization

Discrete-Event 
Simulation

Graph Analysis
ORCA2: Baseline Platform

(Chapter 3)
validation

Introdution
(Chapter 1)

RT NoCs
(Chapter 2)

GCM

GCPA

RGG

GFF

GDE

GSL

SM

Figure 1.1 – Organization of the Thesis.

• Chapter 2 presents the background and the state-of-the-art approaches for guarantee-
ing real-time in NoCs, mostly referring to real-time NoCs. We also present a taxonomy
on approaches for guaranteeing real-time constraints in NoCs.

• Chapter 3 introduces the ORCA2 manycore, our baseline platform. We discuss both
hardware and software components and design decisions.

• Chapter 4 presents the ORT/BENCH tool. The tool is a scheduling simulator focusing
on real-time scheduling modeling for mono-processed systems.

• Chapter 5 presents the ORT/NS tool. The tool introduces a real-time flows analysis
framework, relying on the concept of the network resources. We present a proof-of-
concept using Minizinc to find valid schedules and prevent packet collisions.

• Chapter 6 presents the ORT/FNS tool that finds the minimum frequency necessary to
schedule a set of flows in a NoC system using an iterative process and an optimized
search algorithm.
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• Chapter 7 presents the ORT/GCM, a tool for fast application graph clustering.

• Chapter 8 presents a combined approach for determining the minimum frequency nec-
essary for scheduling both traffic and tasks in manycore systems.

• Finally, Chapter 9 presents the final thoughts and concludes this Thesis.
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2. REAL-TIME NOCS

NoCs are attractive options to system interconnection in manycores due to their
potential for massively parallel communication and scalability while inserting low overhead
for area and energy consumption to the design [Kumar et al., 2002, Benini and De Micheli,
2002, Jantsch et al., 2005]. In a typical NoC, routers provide the communication infras-
tructure, allowing multiple data streams to traverse the system simultaneously. As routers
represent only a tiny portion of the chip area, NoCs can suit the communication needs of
high-end and resource-constrained systems.

Quality-of-Service NoCs (QoS-NoCs) regard the guarantee of non-functional re-
quirements of the communication sub-system, including security and safety [Charles and
Mishra, 2020, Guo et al., 2020, Daoud, 2018]. Real-time is another non-functional re-
quirement and the primary concern of RT-NoCs: a particular case of QoS-NoCs in which
determinism of the system is critical to guarantee predictability. RT-NoCs are particularly im-
portant in application domains such as control-theoretic systems, cyber-physical systems,
and robotics applications such as autonomous driving systems that must comply with strin-
gent safety constraints and rules [AUTOSAR, 2021, ISO, 2020, VDA, 2024]. For instance,
the failing operation of a self-driving car system may result in catastrophic outcomes such as
financial loss, environmental damage, and risk to human lives [Cellan-Jones, 2020]. In such
a scenario, RT-NoCs are alternatives to guarantee real-time requirements in manycores.

The community proposed plenty RT-NoCs in the last two decades. NoCs real-time
behavior is generally difficult to predict due to the non-determinism imposed by several com-
ponents such as buffers, arbiters, and routing algorithms. Although one may predict the
behavior of some individual components, representation models rarely correctly represent
applications [Renfa et al., 2008]. The community tackles the challenge of real-time commu-
nication in manycore systems by employing RT-NoCs, in which the behavior of the external
behavior can be predicted, mainly adopting a non-optimal, worst-case scenario [Bjerregaard
and Sparso, 2005, Bolotin et al., 2004, Diemer et al., 2010, Göhringer et al., 2011, Heisswolf
et al., 2013, Heisswolf et al., 2013, Liu et al., 2012, Zhan et al., 2014].

We discuss RT-NoCs throughout the remainder of this chapter. Section 2.1 presents
classifications of RT-NoCs. Section 2.2 discusses mechanisms for resource allocation,
mainly concerning real-time traffic scheduling. Section 2.3 discusses the techniques pro-
posed so far in the literature. Section 2.4 discusses requirements for resource allocation.
Finally, we discuss the contributions of this Thesis and how they fit gaps in the literature in
Section 2.5.



27

2.1 Classifications of RT-NoCs

We dedicate this section to discuss the classification of RT-NoCs, which Figure 2.1
briefly illustrates. Hesham et al. [Hesham et al., 2017] proposed most of the classification,
including studies on RT-NoCs up to 2017. We refer to more recent work when convenient.
It is important to note that RT-NoCs may adopt the same classification employed to NoCs,
although discussing general classification for NoCs is beyond the scope of the chapter. We
emphasize hard real-time networks-on-chips (HRT-NoCs).

Quality-of-Service 
(QoS-NoCs)

Safety

Security

…

Real-Time NoCs
(RT-NoCs)

Netwoks-on-Chips 
(NoCs)

Best-Effort NoCs 
(BE NoCs)

Soft Real-Time NoCs 
(SRT-NoCs)

Hard Real-Time 
NoCs (HRT-NoCs)

Guaranteed 
Service NoCs 

(GS NoCs)

Real-Time NoCs
(RT-NoCs)

Packet 
Switching 

With Priorities

Circuit 
Switching

Synchronous 
TDM

Asynchronous 
TDM

Time-Division 
Multiplexing

Ad Hoc

Architecture

Prioritization

(Weight) 
Round-Robin

Scheduling 
Mechanisms
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Figure 2.1 – A general taxonomy for NoCs, showing HRT-NoCs a subclass of RT-NoCs and
QoS-NoCs (a), and a classification schema for RT-NoCs comprising architecture, scheduling
mechanisms, and resource allocation classification (b).

2.1.1 RT-NoCs Architectures

Hesham et al. [Hesham et al., 2017] categorize NoC architectures into Best-Effort
NoCs (BE-NoCs) and Guaranteed Service NoCs (GS-NoCs). While BE-NoCs focus on de-
livering correctness and completion of transmission, GS-NoCs have performance bounds
and predictability as their primary concern. GS-NoCs are referred to as quality-of-service
NoCs (QoS NoCs). QoS NoCs are further classified as RT-NoCs when concerning timing
guarantees. RT-NoC architectures are classified into (i) ad hoc, (ii) packet-switching net-
works with priorities, (iii) circuit-switching (CS), and (iv) time-division multiplexing. Designs
falling into more than one category are often referred to as hybrid NoCs [Hesham et al.,
2017]. We briefly describe these categories below.
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• Ad Hoc1 NoCs: A first approach for achieving guaranteed response time in NoCs is to
handcraft the design to meet specific real-time requirements of applications, e.g., di-
mensioning parameters such as buffer width and depth. Xpipes [Bertozzi and Benini,
2004] is known to be one of the first studies to explore the design of ad hoc NoCs.
Although the authors could successfully demonstrate the technique for an MPEG4 ap-
plication, the approach may require additional effort due to the increased number of
tasks and flows in modern applications [Shi et al., 2010, Paul et al., 2014]. The main
advantage of this approach is the near-optimal utilization of network bandwidth. Disad-
vantages include the lack of support for scalability and composability, and susceptibility
to human error.

• Packet-Switched NoCs (PS-NoCs) with Priorities: Packet-switching is a connection-
less communication schema in which data traverses the network fragmented into one
or more packets [Harmanci et al., 2005, Hesham et al., 2017, Mello et al., 2009]. In PS-
NoCs, the path and transmission time of a packet are bound to the control flow mech-
anism, routing algorithm, arbitration rules, and current network traffic [Hesham et al.,
2017]. Since the behavior of PS-NoCs is hard to predict [Hesham et al., 2017], the
community proposed prioritization mechanisms [Balakrishnan and Ozguner, 1998, Hy-
ojeong Song et al., 1997, Jong-Pyng Li and Mutka, 1994, Shi and Burns, 2008]. These
mechanisms permit high-priority flows to preempt low-priority flows and commonly im-
plement virtual channels (VCs) [Mesidis and Indrusiak, 2011]. Advantages of PS-NoCs
include (i) none or low set-up time for transmission and (ii) robustness against network
congestion and failure [Millberg et al., 2004a]. Disadvantages include (i) VCs perform-
ing worse than multi-plane NoCs for non-regular (aperiodic) traffic [Yoon et al., 2010],
(ii) an increased number of VCs per physical channel negatively impact the overall
buffer utilization, throughput, and latency of the network [Avani and Agrawal, 2018].

• Circuit-switched NoCs (CS-NoCs): Circuit-switched NoCs (CS-NoCs): In circuit switch-
ing, the network establishes a dedicated connection between source and destination
routers so that packets can freely traverse the network without interruptions [Wiklund
and Dake Liu, 2003, Wolkotte et al., 2005]. Three phases depict the circuit-switching
process [Hesham et al., 2017]: (i) path setup – the network checks for path availability,
allocating the necessary resources –, (ii) data transfer, and (iii) path release. An-
other noteworthy concept in CS-NoCs lies in spatial-division multiplexing (SDM). SDM
physically isolates flows, occupying one or more lanes: a subdivision of the communi-
cation channel between two routers [Wolkotte et al., 2005]. Advantages of CS-NoCs
include low area overhead of routers as buffering becomes unnecessary [Wolkotte
et al., 2005], and (ii) data transferring depends only on the topological distance be-

1The term ad hoc (Latim) means “for a particular purpose”. We adopt the term to denote NoCs not meant
to be adapted to situations other than the ones depicted in their debut paper. Alternatively, the term also
denotes projects targeting restrict application domains.



29

tween routers [Wiklund and Dake Liu, 2003]. Disadvantages include the costs of es-
tablishing and managing circuit connections, e.g., connection setup time and resource
reservation [Bolotin et al., 2004].

• Time-Division Multiplexing NoCs (TDM-NoCs): TDM-NoCs combine virtual channel
and CS/PS techniques in a single approach, supporting best-effort and real-time flows
to traverse the network concurrently [Millberg et al., 2004a, Ye et al., 2005]. In this
approach, the reservation of routers in a path affects only a couple of virtual channels,
so the path is still available to handle other flows. In TDM-NoCs, link sharing occurs
through time slots, whose assignments are kept in slot tables. Each router has its slot
table, updated through configuration messages. These tables store information about
paths and packets and the required path. TDM-NoCs forward packets using either
circuit- or packet-switching [Yin et al., 2014]. Advantages of TDM-NoCs include the
low buffer requirements at the router level [Stefan et al., 2012]. As a disadvantage,
mechanisms required for time slot synchronization makes the implementation of TDM-
NoCs prohibitively difficult for large chips [Hansson et al., 2009].

2.1.2 Scheduling Mechanisms in RT-NoCs

Heisswolf et al. [Heisswolf et al., 2013] classify scheduling mechanisms as (i) syn-
chronous TDM, (ii) asynchronous TDM, (iii) prioritization, (iv) round-robin, and (v) weighted
round-robin. Except for synchronous TDM, all other mechanisms perform asynchronous
scheduling, which requires routers to implement buffering [Heisswolf et al., 2013]. Tech-
niques for implementing arbitration are discussed elsewhere [Rao and Sarma, 2017].

• Synchronous TDM (S-TDM): In S-TDM scheduling, path allocation occurs on the same
virtual channel address (index) for all routers in the path. S-TDM has simpler hardware
when compared to asynchronous TDM (A-TDM), although reducing the number of path
possibilities, i.e., reduced degrees of freedom. However, S-TMD has reduced overall
NoC utilization compared to A-TDM.

• Asynchronous TDM: A-TDM scheduling allows distinct virtual channels for path alloca-
tion. Consequently, the A-TDM overhead tends to be higher than the S-TDM, although
it has better overall utilization due to its flexibility in the path allocation.

• Prioritization: Prioritization is an asynchronous scheduling mechanism in which the
VCs do not need to be reserved in advance, as the higher-priority VCs will preempt
lower-priority VCs. However, one disadvantage of prioritization is the lack of guaran-
tees for resource isolation [Heisswolf et al., 2013], a requirement for QoS NoCs [Grot
et al., 2009].
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• Round-robin (RR) and Weighted Round-Robin (WRR): RR serves VCs one after an-
other in a fair bandwidth distribution [Heisswolf et al., 2013]. WRR breaks service
fairness and allows some VCs to be scheduled more often than others, using a weight
parameter.

2.2 Resource Allocation for Hard Real-time NoCs

Heisswolf et al. [Heisswolf et al., 2013] categorize resource allocation in NoCs as (i)
dynamic and (ii) static [Brandner and Schoeberl, 2012, Picornell et al., 2019, Picornell et al.,
2020, Schoeberl et al., 2012]. Dynamic allocation refers to the allocation of resources at the
run-time, usually considering dynamic task allocation and non-periodic flows. In contrast to
dynamic allocation, static allocation refers to the design-time allocation (DTA) of resources,
primarily considering fixed task mapping and periodic flows. We extend their classification
to further categorize static resource allocation into three other categories: (i) pre-runtime
(PRT), (ii) design-time configuration, and (iii) design-time generation (DTG). The approaches
proposed in this Thesis focus on static resource allocation. Thus, we do not discuss dynamic
resource allocation in depth. Figure 2.2 illustrates our classification schema.

Real-Time 
NoCs

(RT-NoCs)

… …

Static

Dynamic

Resource 
Allocation

Runtime

Pre-Runtime

Design-time 
Configuration

Design-time 
Generation

Figure 2.2 – The proposed classification schema, depicting dynamic resource allocation
(performed at the runtime) and static resource allocation (performed at the pre-runtime or
design-time). Design-time refers to configuration or generation of NoCs hardware.

• Dynamic Resource Allocation (DRA) — Runtime: Runtime allocation includes tech-
niques to configure the network traffic during the execution of applications. We do
not explore this classification further due to we propose only static, pre-runtime ap-
proaches. Besides, the literature indicates that a static resource allocation approach is
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necessary for the system to operate as close to the maximum theoretical bandwidth in
the hard real-time domain as possible. For instance, Wiklund et al. [Wiklund and Dake
Liu, 2003] write that “[...] a pre-runtime static scheduling of communications approach
is necessary for a hard real-time embedded system to be able to use a significant
percentage of the theoretical maximum bandwidth”.

• Static Resource Allocation (SRA): In contrast to DRA, the SRA approach rarely can
adapt to different workloads or even overcome unexpected events in the network traffic,
e.g. sporadic control traffic.

– Pre-runtime: Pre-runtime SRA approaches allow for (i) a more straightforward
assertion of deadline and constraints of the target application, (ii) reduced or no
runtime overhead, and (iii) a vast number of techniques for scheduling generation
at disposal when compared to runtime scheduling [Xu and Parnas, 2000]. Pre-
runtime scheduling was introduced as a technique for process scheduling (static
schedule), later appearing in the RT-NoCs domain. Wiklund et al. [Wiklund and
Dake Liu, 2003] and Wolkotte et al. [Wolkotte et al., 2005] were the first authors
to apply SRA approaches to control RT traffic. Pre-runtime approaches require
mature modeling of the target system and minimal hardware support for arbitrating
flows. In contrast to other SRA approaches, pre-runtime approaches require no
modification to the hardware, mostly requiring software updates in a production
setting. However, pre-runtime approaches rarely achieve the best resource usage
due to idle hardware in the project. The approaches proposed in chapters 5, 6,
and 8 fit in this classification.

– Design-time Hardware Configuration: Some NoCs may allow for configuration at
the design time, e.g., VCs routing [Millberg et al., 2004a]. Approaches in this
group present a fixed hardware implementation that can be adjusted to serve
different application workflow profiles. Configurations can be performed by hard-
writing to flash memories, for example. These approaches differ from design-time
generation as the network design does not change as the system parameters
change, e.g., one cannot change buffer depth [Moraes et al., 2004]. This classifi-
cation relates to performance-bound and delay-bound approaches [Bolotin et al.,
2004, Diemer et al., 2010, Göhringer et al., 2011, Heisswolf et al., 2013, Heisswolf
et al., 2013, Liu et al., 2012].

– Design-time Hardware Generation: Design-time hardware generation approaches
modify the design to match the needs of the application workflow [Diguet, 2014,
Goossens et al., 2005b, Hansson et al., 2009, He et al., 2014, Millberg et al.,
2004a, Stefan et al., 2014]. For instance, Evgeny et al. proposed QNoC [Bolotin
et al., 2004]. Their approach aims to minimize the design cost by trimming un-
used hardware and allocating resources through optimization. Since changes in
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the application requirements may require re-running hardware generation, some
approaches may rely on FPGA platforms. Compared to application-specific inte-
grated circuits (ASIC), FPGAs can only achieve lower clock frequencies, which
can be a barrier to adopting such platforms for the hard real-time domain [Paul
et al., 2014].

2.3 RT-NoCs: Proposed Approaches

We extended the list of RT-NoCs implementations presented by Hesham et al. [He-
sham et al., 2017] in their survey, adding approaches up to February 2024. We removed
some studies from the list, considering only studies on hard real-time. Also, we removed
NoC targeting restrict application domains [Li et al., 2016]. Table 2.1 shows an overview
of the approaches regarding the adopted switching technique, evaluation metrics for RT,
and resource allocation approach (RAT). We emphasize static analytical approaches (see
Section 2.2).

1. PCC (SoCBus) [Wiklund and Dake Liu, 2003]: SoCBus addresses RT communication
through a run-time, 5-phase circuit-switching (CS) protocol. They claim their approach
to be deadlock-free, requiring no VC implementation or specific routing algorithm. They
call their approach Packet Connected Circuit (PCC), resembling their CS protocol. The
authors did not report information on the scheduling or application characterization.

2. SDM-CCN [Wolkotte et al., 2005]: The study mitigates the configuration issue reported
in SoCBus [Wiklund and Dake Liu, 2003] by inserting dedicated links between routers
while isolating configuration packets from payload transferring. They introduce the
concept of lanes, where a single data path is split into several lanes, regulating lane
usage according to the bandwidth needs of the system by a central coordination node
(CNN). Although the authors present energy/power results for a set of benchmarks,
they did not report information on the characterization of applications and scheduling.

3. Parallel Probe [Liu et al., 2012]: The authors propose a parallel probing method for path
setup in CS networks. They claim to achieve reduced area overhead and reduced path
setup time. One advantage of this method over previous CS is the predictable setup
time. However, the path between transmitting and receiving nodes may vary according
to the selected path. However, the authors present no real-time workload to validate
their approach or suggest any technique to ensure real-time guarantees in their design.

4. Service Levels [Bolotin et al., 2004]: The study proposes a design-time NoC genera-
tion approach in which the parameters of the NoC are tailored according to the target
application requirements while minimizing design area and power dissipation. They
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generate QoS requirements for four classes of traffic: (i) Signaling, (ii) RW/WR, (iii)
real-time, and (iv) block. The authors provide benchmarks on uniform and non-uniform
traffic scenarios to validate hardware cost minimization.

5. Traffic Shapers [Diemer et al., 2010]: This work presents an approach for optimizing
network traffic during runtime. The author argues that pre-run-time analysis can gener-
ate optimal routing at reservation time, although it cannot guarantee optimal routing in
changing workload scenarios. Although validating their approach with synthetic flows,
the authors do not present a WCTT model or RT benchmark experimentation.

6. Loop Containers [Millberg et al., 2004a]: In contrast to previous work, the author adapts
a packet-switched network, Nostrum, to provide guaranteed service through virtual
channels. They introduce the concept of loop containers, in which the VC enables the
path reservation between source and target nodes. The reservation occurs in both
directions, where a container (a packet with special flagging) loops in a virtual circuit.
Routing resolves at the design time. The authors do not provide a WCTT model or
validation using RT workload.

7. Contention-Free [Goossens et al., 2005b]: This work introduces Æthereal NoC, a CS
network with TDM mechanisms. Slot tables regulate the connection between inputs
and outputs for each router. Each input can be mapped to only an output for a single
time slot, enabling contention-free traffic by construction. The behavior of the connec-
tions progresses with time, according to the configuration of the slots. The configura-
tion of slot tables occurs at the runtime. The work showed no WCTT model.

8. Flit-Synchronous TDM [Hansson et al., 2009]: The authors propose a light version
of the previously introduced Æthereal NoC. In this version, the authors explore TDM-
based arbitration without requiring global synchronicity within the NoC, a limitation to
TDM scalability. The authors provide no validation for RT workload or a WCTT model.

9. Setup-Tree/Multi-cast [Stefan et al., 2014]: This work extends a previous implementa-
tion of Æthereal NoC[Goossens et al., 2005b] to reduce chip area and packet header
overhead. The authors report 10% to 91% of reduced area compared to other NoCs.
Although the authors demonstrate that dÆlite surpasses Æthereal regarding connec-
tion setup time and traversal latency, they provide no validation for RT workload.

10. SurfNoC TDM [Wassel et al., 2013a, Wassel et al., 2013b]: The author presents
SurfNoC, a dimension-ordered routing NoC. The work presents non-interference (se-
curity) and scalability as the primary concerns. Regarding scalability, the authors pro-
vide a WCTT model on their network, supporting a minimum latency overhead. The
authors support their approach by demonstrating experiments for latency and band-
width overhead. The author did not present validation for RT workload.
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11. PhaseNoC TDM [Psarras et al., 2015]: PhaseNoC also has non-interference as a pri-
mary concern, introducing the concept of explicit pipelining. Their approach maximizes
router utilization because different parts of the router work on different activities, e.g.,
VC allocation, switch allocation (SA), and switch traversal (ST). The authors did not
present validation for RT workload.

12. Clockless VC NoCs [Bjerregaard and Sparso, 2005]: The authors present MANGO
(Message-passing Asynchronous Network-on-Chip), providing guaranteed services
through OCP (open core protocol) interfaces [Accellera, 2024]. The authors claim
their NoC to be the first clockless NoC that supports the scalable implementation of
independent buffering. The authors did not present results regarding RT workload.

13. WRR VC-Based TDM [Heisswolf et al., 2013]: This work propose a weighted round
robin (RR) scheduling mechanism for a packet switching (PS) NoC. This mechanism
provide fairness as no high priority packet preempts lower priority packets. The author
provide WCTT models for their network and validate delay and throughput models
using four RT applications.

14. Adaptive TDM & FIFOs [Diguet, 2014]: The authors present a self-adaptive approach
for GS in NoCs in this study. Their approach consists of attaching a self-adaptive
network-interfaces (SANIs) to the network. Their routers use reconfigurable TDM ta-
bles configured by local manager nodes. The authors do not provide experimentation
results for RT workload.

15. Rerouting of Flits [Heisswolf et al., 2013]: The paper presents a mechanism for rerout-
ing packets in intense load situations. The authors validate their work for random
traffic scenarios, demonstrating that their approach increases up to 24% of successful
GS connections, increasing the overall NoC utilization. However, the authors do not
present validation for RT workload.

16. Adapting NoC Size [Göhringer et al., 2011]: The authors extend Star-Wheels NoC to
support deterministic worst-case latency analysis in this work. They provide a method
for design-time task mapping, although they adopt a greedy algorithm strategy. The
work presents no validation for RT workloads.

17. Time Slack-Hetero-VFS [Zhan et al., 2014]: The authors adopt network calculus to
model worst-case delay. They use a WCTT model combined with an algorithm to min-
imize the total communication energy of communication, switching between dynamic
voltage-frequency scaling (DVFS) zones while maintaining time correctness.

18. ILP, Heuristics [He et al., 2014]: This work proposes an algorithm to achieve power effi-
ciency in TDM-based NoCs. The authors claim to achieve 25% less energy dissipation
with their proposed ILP (integer linear programming) approach approximating optimal
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solutions. The authors validate their approach using random test cases generated by
Task Graphs For Free (TGFF) [Rhodes et al., 2021].

19. DCFNoC [Picornell et al., 2019]: The DCFNoC uses a channel dependency graph
to generate layers that map packet collision. Their approach uses the layers to insert
delays at the output of routers, mapping layers to TDM channels and preventing packet
overlapping. The author validates area and delay, comparing a couple of TDM NoCs,
although they do not mention the RT applications they used.

20. Argo 2.0 TDM [Sørensen, 2016]: The author modified the Argo 1.0, adding DMA con-
trollers to the network interface. The routers store the configuration of the DMA within
the TDM tables. The author presents a comparison demonstrating reduced scheduling
entries in the TDM table. A case study appears in a later study [Rocha et al., 2016].

21. Communication Patterns [Brandner and Schoeberl, 2012]: The study explores core
symmetry to provide a static schedule to a TDM NoC implementing VCs. The VCs
deliver periodic messages through a fixed routing schedule computed off-line. The
authors apply heuristics to reduce schedule length while adopting a constraint model
for schedule construction.

22. Temporal Isolation [Perret et al., 2016]: This work constraint programming for a custom
execution model, applied to the Kalray Mppa-256 [Kalray, 2024]. The execution model
assumes TDM scheduling and relies on a hypervisor architecture running in privileged
mode. The authors validate the study for a flight controller [Pagetti et al., 2014].

23. WCA (Worst-Case Analysis) [De Liz Bomer et al., 2023]: The study perform a worst-
case analysis on a wormwhole, 2-D mesh NoC, with VCs named SoCIN-Q [Zeferino
and Susin, 2003]. The authors provide a model for bound network performance, al-
though the model is architecture-specific. The study is evaluated using a System-C
simulator named RedScarf [da Silva et al., 2019].

24. Management of In-Flight Deflection [Wasly et al., 2017]: The authors modify the Hoplite
Noc [Kapre and Gray, 2015] to achieve determinism, bound to in-flight latency and
queuing time at the source. The study present models for estimating delays with a
reduction of 2% in area (LUTs) when compared to Hoplite.

25. Marathon NoC [Kapre, 2016]: The authors present a modification set on the Hoplite
NoC to achieve reduced area overhead while targeting FPGA environments. The study
discusses the expensive storage requirements as a challenge when deploying TDM
techniques to FPGAs.

26. IPDeN NoC [González et al., 2022]: The study presents an approach that inserts small
buffers in the network routers to avoid reordering flits in a deflection-based environ-
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ment. The authors claim that inserting these buffers into routers reduces the overall
response time and requires less hardware than VCs.

27. SHARP NoC [Chen et al., 2021]: SHARP NoC employs a priority-preemptive schedul-
ing mechanism implemented within the router. They also propose an analysis model
for worst-case latency predictability, also promoting single-cycle multihop as an alter-
native to the hop-by-hop NoCs.

28. Channel Mapping [Koenen et al., 2020]: The authors present a fault-tolerant hybrid
TDM and PS NoC. The performance of the NoC is bound to the channel mapping,
where nonoptimal mappings may compromise the NoC performance. They evaluate
their NoC for two synthetic applications and several channel mapping scenarios.

29. SP2 [Ueter et al., 2020]: The authors propose a switching mechanism named SP2 in
which either all the links in the flow path transmit one flit in that cycle or none of the
links transmit. By doing so, the authors present the reduction of the NoC schedulability
problem to the uniprocessor self-suspension problem.

30-32. Constraint Models [Domingues et al., 2022a, Domingues et al., 2022b]: This Thesis
present 3 approaches for scheduling RT traffic in NoCs (see chapters 5, 6, 8). These
approaches rely on the occupancy of network links and use optimization techniques to
generate schedules at the pre-runtime. We validate the approaches at the end of the
corresponding chapters.

30. The ORT/NS tool (Chapter 5) guarantees deadlines for RT traffic in non-RT NoC
(e.g., Hermes). However, it depends on an injection mechanism (Section 3.1.5).
Configuring the schedule into the injection mechanism can be costly for exten-
sive schedules, e.g., requiring additional memory space. Hardware-only injection
mechanisms may require additional buffer space for storing the schedule. The
approach also has impractical computing time for extensive schedules due to im-
plementing ILP. ORT/NS does not account for CPU workload (traffic only).

31. The ORT/FNS tool (Chapter 6) improves the ORT/NS tool performance, allowing
for more extensive schedules. Given an application, the tool can determine the
minimum required frequency of the target NoC to run the application. Neverthe-
less, ORT/FNS does not account for CPU workload (traffic only).

32. Finally, we combine the ORT/NFS tool with other tools (Chapter 5) to achieve RT
guarantees for both computation and communication. The framework relies on
simulation to determine the release time of packets, based on the behavior of the
task scheduler. The tool can determine the minimum system frequency necessary
to achieve both CPU and network RT guarantees, requiring no specif hardware
implementation. We validate the approach on the ORCA2 manycore (Chapter 3).
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Table 2.1 – Overview of Proposed Techniques for Guaranteeing RT Traffic in NoCs (Thesis contributions in green).
# Base NoC Technique SWT RT Evaluation Metrics RAT CLA

1 SoCBus PCC [Wiklund and Dake Liu, 2003] CS Design-time Setup [Xu and Parnas, 2000] PRT
2 — SDM-CCN [Wolkotte et al., 2005] CS Design-time Setup [Xu and Parnas, 2000] PRT
3 — Paralell Probe [Liu et al., 2012] CS Bounded Latency SP RUN
4 QNoC Service Levels [Bolotin et al., 2004] PS Bounded Latency SP DTG
5 — Traffic Shapers [Diemer et al., 2010] PS Bounded Performance [Diemer and Ernst, 2009] RUN
6 Nostrum [Millberg et al., 2004b] Loop Containers [Millberg et al., 2004a] PS Design-time Allocation – DTC
7 Ætheral Contention-Free [Goossens et al., 2005b] TDM Design-time Allocation [Goossens et al., 2005a] DTG
8 Ælite Flit-Synchronous TDM [Hansson et al., 2009] TDM Design-time Allocation [Hansson et al., 2007a] DTG
9 dÆlite Setup-Tree/Multi-cast [Stefan et al., 2014] TDM Design-time Allocation [Hansson et al., 2007b] DTG

10 — SurfNoC TDM [Wassel et al., 2013a, Wassel et al., 2013b] TDM Static Scheduling SP DTG
11 — PhaseNoC TDM [Psarras et al., 2015] TDM Static Scheduling SP DTG
12 Mango Clockless VC NoCs [Bjerregaard and Sparso, 2005] Hybrid Bounded Performance [Zhang, 1995] RUN
13 — WRR VC-Based TDM [Heisswolf et al., 2013] Hybrid Bounded Latency, Schedulability Analysis SP RUN
14 Self-adaptive Adaptive TDM & FIFOs [Diguet, 2014] TDM Design-time Allocation – RUN
15 — Rerouting of Flits [Heisswolf et al., 2013] Hybrid Bounded Latency, Schedulability Analysis [Heisswolf et al., 2013] RUN
16 Star-Wheels Adapting NoC Size [Göhringer et al., 2011] Hybrid Bounded Latency, Schedulability Analysis – DTC
17 Mango

[Bjerregaard and Sparso, 2005]
Time slack-hetero-VFS [Zhan et al., 2014] Hybrid Bounded Latency, Design-time Allocation SP DTG

18 — ILP, Heuristics [He et al., 2014] TDM Design-time Allocation SP DTG
19 — DCFNoC TDM and Channel Dependency

[Picornell et al., 2019]
TDM Bounded Performance SP DTC

20 Argo NoC 1.0 [Kasapaki et al., 2016] Argo 2.0 TDM [Sørensen, 2016] TDM Design-time Allocation, Schedulability Analysis — DTC
21 S4NoC [Schoeberl et al., 2012] Communication Patterns [Brandner and Schoeberl, 2012] TDM Design-time Allocation, Schedulability Analysis SP DTC
22 Kalray Mppa (R)-256 dual NoC Temporal Isolation TDM [Perret et al., 2016] TDM Design-time Allocation — DTC
23 SoCIN-Q [Zeferino and Susin, 2003] Worst-Case Analysis [De Liz Bomer et al., 2023] TDM Schedulability Analysis SP DTC
24 Hoplite [Kapre and Gray, 2015] HopliteRT [Wasly et al., 2017] – Bounded Latency SP DTC
25 Hoplite [Kapre and Gray, 2015] Marathon NoC TDM [Kapre, 2016] TDM Schedulability Analysis SP DTC
26 — IPDeN [Ribot González and Nelissen, 2020] TDM Bounded Latency SP DTC
27 SMART [Asgarieh and Lin, 2019],

SSR-Net [Chen and Jha, 2016]
SHARP NoC [Chen et al., 2021] — Schedulability Analysis SP RUN

28 [Koenen et al., 2019] Channel Mapping [Koenen et al., 2020] Hybrid Bounded Latency [Goossens et al., 2005b] RUN
29 — SP2 [Ueter et al., 2020] — Schedulability Analysis SP RUN
30 Hermes [Moraes et al., 2004] Constraint Models [Domingues et al., 2022a] PS Schedulability Analysis SP, ITT PRT
31 Hermes [Moraes et al., 2004] Constraint Models [Domingues et al., 2022b] PS Schedulability Analysis SP, ITT PRT
32 Hermes [Moraes et al., 2004] Constraint Models, Graph Analysis, and Simulation PS Schedulability Analysis ITT PRT

“–” : Not informed, “SWT”: Switching Technique, “CS”: Circuit Switching, “PS”: Packet Switching, “TDM”: Time-Division Multiplexing
“RAT”: Resource Allocation Technique, “SP”: Same paper, “ITT”: In This Thesis
“CLA”: Static Resource Allocation Classification (Section 2.2)
“RUN ”: runtime allocation, “PRT”: pre-runtime, “DTC”: design-time configuration, “DTG”: design-time generation
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2.4 Requirements for Resource Allocation

When allocating network resources (e.g., scheduling), algorithms and techniques
might observe some properties that would be useful in practice. It is worth mentioning
that these properties appear individually discussed in recent work, although their discussion
dates from former publications on QoS NoCs [Grot et al., 2009, Stiliadis and Varma, 1996,
Demers et al., 1989]. We discuss these properties below while presenting their alignment to
this Thesis and the literature.

1. Isolation of flows and Fairness: Flows must be isolated from each other to avoid bursti-
ness in the network, i.e., the system must preserve the behavior of other flows in the
presence of a misbehaving flow. In the hard real-time domain, a failing flow results in
a total failure of the application. However, when multiple applications share the same
system, one application failing may cause no impact on the other applications running
in that system. Approaches that run flows in separated channels, e.g., VCs, favor the
isolation of flows. However, the cost of implementing physical flow separation may
conflict with other system non-functional requirements, including cost and area over-
head. Due to their adaptation features, approaches that fall in the dynamic resource
allocation category are less successful in violating flow isolation. However, approaches
relying on design-time hardware generation and configuration adopt pessimistic mod-
els. Pessimistic models may represent a waste of system resources, although they
add possibilities for recovery in case of stuttering. We conclude that the isolation of
flows is unbound to the resource allocation time, i.e., each technique must handle it
individually. In this Thesis, we guarantee flow isolation by multiplexing the access to
the network by flows, like most TDM approaches (chapters 5, 6, and 8).

2. Low end-to-end latency and delay proportional to bandwidth usage: RT-NoCs insert
performance overhead into the design due to the complexity of their mechanisms. For
example, TDM techniques often rely on VCs to control traffic, and VC orchestration
requires a more robust router. Approaches relying on design-time hardware genera-
tion and configuration can generate near-optimal delays due to offline analysis. On the
other hand, runtime approaches generate the worst delays due to the unpredictability
of the traffic, usually adopting complex worst-case models for guaranteeing RT. Fi-
nally, approaches based on contention-free traffic can present no added delay, where
most of the analysis is performed offline. One of the drawbacks of contention-free ap-
proaches is the requirement for an injection mechanism, as packets must enter the
network in an exact cycle to avoid packet collisions. In this Thesis, we guarantee no
added delays by implementing a contention-free approach. The approach in Chapter 5
requires an injection mechanism, while we lift this restriction in approaches presented
by chapters 6 and 8.
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3. Efficient bandwidth utilization: Efficient bandwidth utilization corresponds to the capac-
ity of the approach to reduce bandwidth waste. For example, the SP2 [Ueter et al.,
2020] approach retains flits in the buffer unless all routers in the path can forward flits
to the next router (store-and-forward). The all-win behavior of the approach increases
the number of cycles in which flits reside in the network, thus reducing the overall net-
work utilization. On the other hand, approaches such as contention-free uses only the
necessary network time to transfer packets. However, other packets, e.g., best-effort
traffic or control packets, cannot use the idle bandwidth, representing waste in practice.
The approaches of this Thesis (chapters 5, 6, and 8) focus on hard real-time applica-
tions only, so we are aware that the unused network bandwidth cannot be claimed by
sporadic traffic.

4. Low performance overhead: Approaches should reduce resource provisioning over-
head to a minimum. In a circuit-switching network, the channel reservation phase
requires the setup of all routers in the path. During the setup, part of the routers in the
path become occupied, even without data to transfer, until the setup has finished. After
the transfer, there is also a release phase. Waste of bandwidth also happens between
the transferring and the releasing of network resources. Waste also happens in TDM
networks due to the effort necessary to manage VCs. The approaches presented in
this thesis (chapters 5, 6, 8) employ offline provisioning of resources, thus requiring no
setup time during the operation of the system.

5. Flexible bandwidth allocation: There is a trade-off between the grain of resource alloca-
tion and resource utilization. On the one hand, a coarse allocation grain may represent
a waste of network bandwidth, although simplifying provisioning. On the other hand, a
fine grain can present near-optimal resource utilization at the cost of a complex anal-
ysis framework. Approaches such as TDM allow for a configured allocation grain, i.e.,
time slots. The frameworks proposed in this Thesis employ a minimal constraint model
while delegating the solving efforts to either ILP (chapters 5) or custom searching al-
gorithms (chapters 6 and 8). This separation of concerns enables practitioners to use
our frameworks through a full-automated process, even without deep knowledge of the
underlying analysis.

6. Simplicity of Implementation: Most of the approaches in Table 2.1 require modifica-
tions to the design of the NoC. As one adds more and more features to the NoC, e.g.,
support for security, real-time, and energy savings, the more complex the design be-
comes. Approaches must consider making fewer modifications to the design, avoiding
interference in the implemented features and favoring the implementation of new ones,
reducing the complexity of the design. We observed that this requirement is discussed
in very few papers. One of the most significant contributions of this Thesis is the pro-
posal of approaches that cause no interference at the hardware level.
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7. Scalability: Scalability is one of the key points of the NoC technology. Thus, ap-
proaches dealing with RT must scale up to the size of the NoC without compromising
the performance of the system. Fortunately, most of the RT approaches in the liter-
ature prioritize scalability. Our first approach (Chapter 5) has scalability issues due
to the adoption of ILP. Although not directly impacting the NoC performance, the ap-
proach cannot deal with larger problems due to the size of the search space. Our later
approaches (chapters 6 and 8) surpass the scalability and performance issues of our
first approach, employing an heuristic algorithm to accelerate the optimization.

8. Low energy and area overhead: Area and power consumption of the system increases
with the size (number of routers) and complexity (kind of router) of the NoC. For in-
stance, larger buffers in PS NoC lower network congestion at the cost of chip area
overhead. We observed that most studies calculate the area and energy consumption
increasing on the actual parameters of the baseline platform. However, most adopted
baseline platforms present one or another features that approaches can take advan-
tage. Our approaches consider no special feature from the baseline NoC, although
the underlying models must consider the behavior of routing, switching and other parts
of the NoC. Even without taking advantage of the baseline platform hardware, our ap-
proaches run offline (chapters 6 and 8), representing no energy or area overheads.

2.5 Final Remarks

This chapter presented a taxonomy on RT-NoCs, summarizing the state-of-the-art
contributions of RT-NoCs and discussing requirements for resource allocation in manycores.
Table 2.1 synthesizes studies on RT in manycores, where all approaches (1 to 29) require
hardware support for their approach to work. Likewise, our first approach (30, Chapter 5)
also requires hardware support.

Our approaches, 31 and 32, present similar benefits to the contention-free ap-
proaches while requiring no intervention at the hardware level, relying only on an offline
optimization process. The approaches are novel contribution to the literature and, as far
as we know, the only frameworks directed to general-purpose NoCs. As discussed in Sec-
tion 2.4, our approach presents most of the guarantees regarding resource allocation at the
advantage of enabling low-cost NoC projects to run RT applications, e.g., Hermes [Moraes
et al., 2004].

As a future work, we intend to extend this chapter to a systematic review of the
literature on real-time NoCs and other approaches for guaranteeing RT in manycores. One
concern to address in the review is to extend the classification of NoCs, mainly providing
a clear separation of ad hoc studies from general approaches. Other classifications may
apply, such as the target technology, e.g., FPGA vs. ASIC.
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3. THE ORCA2 MANYCORE - BASELINE PLATFORM
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We developed the ORCA2 many-
core to experiment with the proposed ap-
proaches in a real-world environment, adopt-
ing production-ready technology as much as
possible. As explained throughout this chap-
ter, the manycore redesigns the ORCA many-
core [Domingues, 2020], comprising updates
in several platform components. To keep the
reproducibility of our study, we adopt only open hardware and open-source software com-
ponents. The ORCA2 manycore is available at https://github.com/andersondomingues/
orca-rt-tools and partakes in the following chapters:

• Chapter 4: The ORT/BENCH implements discrete event simulation for a scheduling
simulator. Although we do not run RTL simulations in the Chapter, the characteriza-
tion of applications and kernel follow the configuration of the ORCA2 platform, e.g.,
scheduling and interruption handling model.

• Chapters 5 and 6: We evaluate the approaches by simulating our platform while re-
placing the CPU by the TCNI (Time-Controlled Network Interface) module (Section
3.1.5). A software-generated test-bench provides the interface between the TCNI and
the NoC and controls the configuration of the TCNI.

• Chapter 8: We run full system simulations at the register-transfer level (RTL) level,
including all hardware and software components discussed in this Chapter with excep-
tion to the TCNI.

To trim the time spent on building hardware from scratch, we adopted a couple
of hardware modules from other projects. From the GAPH/PUCRS group, we adopted the
Hermes NoC, which is a well-established project developed in 2004 [Moraes et al., 2004].
Since then, the project has received contributions from many MsC. and Ph.D. projects within
the lab. From the GSE/GAPH group, we adopted the HFRISC processor core due to its
compatibility with the RISCV32e instruction set architecture (ISA). Hardware developed in
the context of this Thesis includes behavioral models for a dual-port scratchpad memory
and TCNI (time-controlled network interface), as well as synthesizable modules, e.g., DDMA
(Dual-Mode DMA). The TCNI, DDMA, and top-level design are novel contributions to this
Thesis. We conduct all RTL simulations using Siemens’ Modelsim SE-64 (Standard Edition),
version 2021.07 (July 13, 2021) [Siemens, 2024]. We present the hardware of the ORCA2
platform in Section 3.1.

https://github.com/andersondomingues/orca-rt-tools
https://github.com/andersondomingues/orca-rt-tools
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As for the software, we mainly relied on software from the GSE/PUCRS lab. We
adopted the UCX-OS kernel [Johann, 2024d] due to its compatibility with the HFRISC CPU
core, and it ships necessary automation scripts to compile and run applications out-of-the-
box, requiring only the GNU toolchain cross-compiler targeting the RISCV-32e instruction
set. Our contributions regarding software include a network driver (upper and lower-level),
applications, and HAL (hardware abstraction layer) configuration, as Section 3.2 details.

3.1 The Hardware Stack: ORCA2 Manycore Architecture

The adopted baseline platform is a many-core system implemented on top of the
Hermes [Moraes et al., 2004] network-on-chip (NoC). The many-core is organized in tiles,
displaying a mesh-like topology, where routers connect to at most four neighbor routers
(north, south, west, and east directions), forming a 2D discrete Cartesian plane of tiles.
Routers also has a local port that connects each router to a PE. The hardware of PEs follow a
fixed configuration, consisting of a DMA-like network interface (DDMA), the HFRISC/Riscv32-
e CPU [Johann, 2024b], scratchpad memories (SPM) for boot ROM and RAM, and peripher-
als support (e.g., programmable counters). Figure 3.1 shows an overview of the many-core
organization.
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Figure 3.1 – Illustration of the tile-based architecture of the ORCA2 platform (left), depicting
communication channels (red lines), routers (R), and processing elements (PE). PE tiles
(magnification, right) comprise memory cores (ROM/RAM), CPU, router, and DDMA.
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3.1.1 Hermes NoC and Communication Infrastructure

PE tiles communicate through packets. A packet is a sequence of flits. A flit cor-
responds to a fixed-length string of bits and represents the smaller data chunk transferable
through the NoC. In Hermes, the length of a flit is configurable, although we adopted a 4-byte
(32 bits) flit width. The depth of input buffers is also configurable, yet we choose a depth of 8
flits per buffer (one buffer per input port). Also, the number of routers in the NoC corresponds
to the number of tiles, allowing for a theoretical value of 216 = 65536 tiles, i.e., a 256 × 256
dimension mesh. The maximum packet size is 232 − 1 flits (approximately 4GB).

The leading flit of a packet identifies the address of the target router. We con-
figure the address of routers at the design time following the physical addressing schema
presented in Figure 3.2. When a router receives a packet whose destination address is the
same as its address, it forwards the packet to its LOCAL port. When the destination address
differs from the address of the router, the packet gets routed to one of the neighbor routers
(NORTH, SOUTH, EAST, or WEST) using the XY algorithm, which is deterministic and deadlock-
free [Glass and Ni, 1992]. In the algorithm, routers push flits in the X-axis of the NoC until
they reach the same Y-coordinate of the destination router. Then, the router pushes flits
toward the Y-axis until it reaches its final destination. In Hermes, the leading flit (address flit)
takes up to 7 cycles to route from one port to another. The remaining flits — address flit and
beyond — follow the same path, one flit per cycle (contention-free environment).
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y-
ax
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12 13 14 ...
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Figure 3.2 – Network addressing system used within ORCA2. The physical layer addressing
(a) follows a 2D Cartesian plan system to map the coordinate of tiles, whereas the software
layer addressing (b) follows a sequential pattern (adapted from [Domingues, 2020]).

The second flit of a packet is the size flit; it carries the size of the packet (in flits).
The theoretical maximum packet size is 232 − 1 flits. Flits arrive at the input buffers in the
same order they leave the output buffer (in-order flit delivery). Routers implement the worm-
hole strategy for packet switching, transferring flits without data interleaving. The router
serves ports following a round-robin policy in a circular queue fashion. Finally, the switch
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control component performs routing and packet switching, while the crossbar component
establishes the connection between ports. Figure 3.3 shows the Hermes router interface.
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Figure 3.3 – A router (left) and its components (right) (adapted from [Domingues, 2020]).
The interface of the five ports (North, South, East, West, and Local) is the same.

The interface of buffers is the same for all ports. Four signals control the receiving
of new flits at each port: clock_rx, rx, data_in, and credit_o. Although Hermes individual
clock domains per port, we assume the same clock signal for all modules; thus, the signal
clock_rx of all routers is the same as the global clock signal. The signal rx (receive) raises
when new data is available at data_in. Data stays at the buffer until routed to another port.
When the buffer becomes full, the credit_o raises, preventing senders from injecting new
data into the buffer [Moraes et al., 2004].

3.1.2 The HFRISC/rv32e Processor

The HFRISCV core is a 32-bit processor targeting the rv32e Risc-V standard [RISC-
V International, 2023, Waterman and Asanović, 2017], in a 3-stage pipelined architecture
(stages: fetch, decode, and execute), machine mode only. The architecture accounts for 32
user-level registers and four instruction formats (R, I, S, and U-type instructions). Instruc-
tions take 2 to 4 cycles to traverse the pipeline: (i) branches not taken spend 2 cycles, (ii)
memory operations take 4 cycles, and (iii) the remaining operations take 3 cycles. Table 3.1
shows the instructions available in the architecture [Domingues, 2020].

The HFRisc/rv32e processor has two interface groups. The first group matches the
wiring of the memory module (Mem. I/F, Figure 3.4). Although we could connect the proces-
sor directly to the RAM, we instead insert an intermediary multiplexer to resolve memory-
mapped I/O registers (MMIO). The multiplexer switches between ROM, RAM, DDMA, and
peripherals memory spaces (Figure 3.1, pink and blue busses). Figure 3.5 shows the mem-
ory zones (memory map) that our platform adopts.
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There are two pins for external I/O, which we connect to the peripherals module.
The peripherals module orchestrates incoming interruption requests, acting as a PIC (pro-
grammable interruption controller). The platform has three interruption lines attached to the
processor: one for a programmable counter interruption (e.g., used by the scheduler) and
two for the DDMA to use during packet reception.

Table 3.1 – Instructions of the HFRISC (rv32e) core.
Instruction Type Subclass Available Instructions

Non-IMM Arith. ADD, SUB
Logical XOR, OR, AND
Shifts SLL, SLR, SLA
Comparison SLT, SLTU

R-Type

M extension MUL, MULH, MULHSU, MULHU, DIV, DIVU, REM, REMU
IMM Arith. ADDI
Logical XORI, ORI, ANDI,
Comparison SLTI, SLTIU, SLLI, SLRI, SLAI, SLTI, SLTIU
Loads LB, LH, LW, LBU, LHU
Synchronization FENCE, FENCE.I
System SYSCALL, SBREAK

Counters RDCYCLE, RDCYCLEH, RDTIME, RDTIMEH,

I-Type

RDINSTRET, RDINSTRETH
Stores SB, SH, SWS-Type Braches (B-Type) BEQ, BNE, BLT, BGE, BLTU, BGEU

U-Type Addressing LUI, AIUPC
Jump-and-Link (J-Type) JAL, JALR
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Figure 3.4 – The HFRISC processor interface (adapted from [Domingues, 2020]).
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3.1.3 DDMA - A Custom Network Interface featuring DMA

We avoid CPU stalls during data transferring by adopting a dual-port memory model
within the PE. One memory port attaches to the CPU, while the other attaches to a DMA-like
network interface module called DDMA (Dual-Mode DMA). The DDMA module implements
an asymmetric DMA (direct memory access) mechanism, allowing the processor core to
push/pull data from the underlying networking system asynchronously. In other words, the
DDMA can transfer CPU-to-network (and network-to-CPU) data while minimizing CPU inter-
ruptions. Figure 3.6 shows the interface of the DDMA module.
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Figure 3.6 – The DDMA module and its interface. Arrows represent signals, where arrows
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character. Finally, memory-mapped registers are identified by squared shapes.

The DDMA attaches to the CPU, memory, and router modules. On the CPU side,
the DDMA interface provides controls for configuring send and receive operations. To send
a packet, the network driver has to write to the following four registers: send_addr_in,
send_size_in, send_dest_in, and send_cmd_in. The former three registers store informa-
tion about the data to be copied (memory pointer, data size in bytes, and destination node
number). The driver raises the command register flag (send_cmd_in) to confirm the sending
operation. The command register flag is sensitive to the state of the internal sending pro-
cess. Thus, the driver reads the status registers before confirming the sending operation.
When the sending operation finishes, an interruption request signal rises.

When a packet reaches the local router (router tx signal), the DDMA raises an
interruption request asking the CPU to generate a valid memory location to store the packet
in, also informing the length of the incoming packet (recv_addr_out). Then, the CPU writes
the address for the packet to the recv_addr_in and confirms the operation writing to the
recv_cmd_in register. The DDMA discards the first two incoming flits (header and size),
copying the following flits into the memory space. After the copy, another interruption request
tells the CPU that the packet is ready to be delivered to the software. The address of the
received packet is pushed into the recv_addr_in to confirm the operation.
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The status registers include three interruption request pins and two 8-bit registers
to indicate the state of the send and receiving processes (one-hot). Receiving and sending
operations only occur if the corresponding state machine resides at the IDLE_STATE (state
zero). Finally, a fully combinational module, the arbiter, controls the access to the mem-
ory port. Since the memory port is shared by the send and receive processes, the arbiter
implements a configurable (through the i_grain parameter) interleaving logic.

3.1.4 Scratchpad Cores

Our platform uses two scratchpad memory cores within its tile architecture, one
for the ram (random access memory) and another for the ROM (read-only memory). By
design, the ROM memory resembles the RAM module, although the writing pin is disabled
in port A to avoid overwriting the ROM. Also, port B is wholly unused and removed from the
design. The ROM memory is connected to the CPU through a multiplexer through port A.
The multiplexer performs address space translation, connecting the Port A of the RAM to the
CPU. Thus, the CPU core can read from both memory cores through the multiplexer (and
other memory zones). Finally, port B of the RAM module connects to the DDMA module.
Figure 3.7 shows the interface of the scratchpad memory core.
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Figure 3.7 – The scratchpad memory core, displaying two ports (A and B).

3.1.5 TCNI - Time-Controlled Network Interface

The TCNI is a behavioral module that times the injection of packets in the network.
The approaches presented in Chapters 5 and 6 rely on a constraint model to calculate the
time in which packets must enter the network, guaranteeing that packets will meet their dead-
line. The TCNI module is our design proposal to employ such approaches in the ORCA2
platform. Figure 3.8 shows the interface of the TCNI module.
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Since our platform relies on the DDMA to push packets into the network, we insert
the TCNI in the design between the MMIO multiplexer and the DDMA modules. The goal is to
intercept the configuration of the DDMA, delaying it until the release time of packets. For this
reason, the interface of the TCNI includes the pointer_in and size_in registers, resembling
the send_addr_in and send_size_in registers of the DDMA module. The time_in register
indicates the cycle in which the TCNI must activate the DDMA. Finally, the status_out re-
ports the status of the DDMA, and the valid_in register activates the configuration of the
TCNI. Figure 3.9 shows the positioning and interaction of the TCNI in the PE architecture.
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Figure 3.8 – The TCNI module interface.

We designed the TCNI module only at the behavioral level to use some high-level
abstractions in the design, such as priority queues. Since the TCNI has no interaction with
the task scheduler, we could not guarantee that the software would activate the TCNI by
the order of packets. Ideally, we could sort activations in the software drive, although this
could cause a possible delay in the operation of the TCNI. To keep the injection of packets
strict to their release time, we discarded the out-of-order software driver. Another possibility
is to implement a priority queue in hardware. In this case, we would have to determine the
number of configurations to reside in the TCNI simultaneously, which would also require
some sorting mechanism at the hardware level.
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3.2 Software Stack: Operating System, Drivers, and Applications

We reduce the compilation time of the software image by compiling only a single
binary for all PE. When simulating at the RTL (register-transfer level), we use a behavioral
scratchpad that loads the image into the memory space for the multiple PE. As a result,
we must include all application tasks and necessary software libraries in the same image.
Memory-mapped registers generated at elaboration time indicate the X and Y coordinates
of each PE. During the boot of the kernel, the OS selects tasks to run accordingly to the XY
coordinate of the PE.

We compiled all software using a cross-compiler GNU’s C Compiler (GCC) version
12.2.0 targeting the riscv32e architecture. The whole software is written in C, with minimal
assembly coding at the HAL level.

3.2.1 The UCX-OS Kernel

The UCX-OS Kernel (µ-Controller eXecutive) is a lightweight kernel targeting mi-
crocontroller and embedded devices [Johann, 2024d]. The kernel is organized into 4 blocks:
(i) user tasks, (ii) devices and I/O components, (iii), kernel, and (iv). Figure 3.10 shows
the organization of the UCX-OS kernel and its main components. Noteworth components
include a simplified standard C library, a preemptive scheduler for best-effort and real-time
application, and ports for a couple of processor cores — including the RISC-V/32i, RISC-
V/32e, and MIPS1 standards. We adopt the RISC-V/32e port, mainly due to its compatibility
with the HFRISC/32e processor core.
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3.2.2 Task Scheduler

We perform a couple of modifications to the UCX-OS kernel. First, we implement a
blocking mechanism considering the dependency between tasks to avoid unnecessary task
preemption. If two tasks communicate and they do not reside in the same CPU, we say
that the receiving tasks depend on the sender task. In other words, the receiving task must
receive one or more packets from the sender to start processing. We use this rationale to put
tasks without the required input packets in a blocked state and avoid scheduling the tasks
unnecessarily. Once the receiving task tries to receive a packet, it looks at the packet queue
of the network driver. If the queue is empty, the task will voluntarily put itself in a blocked
state. Once that task receives a packet, the network driver changes the task state to ready
so the scheduler can elect it to run in the next scheduling activity. If no task is able to run, the
scheduler will artificially schedule the idle task, powering down the CPU. Also, we added an
interruption to enable input tasks periodically as if the application were receiving data from
outside the system, enabling us to control the rate of workflow applications.

In addition to the above features, our scheduler implements the SIARR (Selective
Iteration-Aware Round-Robin) algorithm. The algorithm aims to mitigate momentarily per-
formance slowdowns. In SIARR, the scheduler stores the current iteration number for each
task. As tasks advance towards higher value iterations, tasks with lower ones get priority. If
two non-blocked tasks share the priority, the successor tasks get priority over the predeces-
sor tasks. The SAIRR extends the PBRR scheduling technique [Nithya and Itapu, 2023] and
is a novel contribution to this Thesis.

3.2.3 The Network Driver

The UCX-OS has no native support for networking. We ported the network layer
we used in previous work [Domingues, 2020] within the HellfireOS kernel [Johann, 2024a],
performing a few modifications:

1. We split the driver into two layers: (i) upper-level network driver and (ii) lower-level
network driver.

2. We dramatically reduced the driver size by removing the shared packet queue and
dynamic port mapping features.

3. We moved the interruptions call to the upper-level driver. The goal is to make the
interruption handling implementation device-specific.
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The lower-level network driver is responsible for interacting with the underlying net-
work hardware. In this Thesis, the lower-level driver commands the DDMA attached to the
NoC. Table 3.2 shows the application programming interface (API) for the lower-level net-
work driver. The send operation relies solely on the _ddma_send_status and _ddma_send

operations. Once the driver calls _ddma_send, the operation will internally call _ddma_send
to check on the status of the sending state machine. Even if multiple tasks invoke the send
operation, only one task can pass through the checking at a time, creating a virtual queue in
the stack. Please note that tasks will not become blocked to avoid deadlock situations.

Table 3.2 – Operations of the Lower-Level Network Driver
Operation Alias Parameters Function

_ddma_init none Reset DDMA state machines and print configured node in-
formation, including node XY coordinates and NoC dimen-
sions.

_ddma_send destination,
size, payload

Configures the DDMA to produce header flit equals to desti-
nation and size flit equals to size, also informing the DDMA
that the beggining of data is at address equals to payload.
After configuring the parameters, it activates the DDMA to
send the packet.

_ddma_send_status none Report the status of the sending state machine. A zero
value means that the state machine resides at the idle
state. Non-zero values means that the state machine is
busy.

_ddma_recv_size none Returns the size of an incoming packet. Called form the
upper-level network driver once an incoming packet triggers
an interruption.

_ddma_set_recv_addr address Set the address to which the DDMA must store the incom-
ing packet. The address is generated by the upper-level
network driver.

_ddma_get_recv_addr none Returns the last address used by the DDMA to store pack-
ets.

_ddma_recv_ack none Acknowledges to the DDMA that the received packet is
stored into the packet queue and the driver is ready to re-
ceive more packets.

_ddma_recv_status none Report the status of the receiving state machine. A zero
value means that the state machine resides at the idle
state. Non-zero values means that the state machine is
busy.

_ddma_node_addr none Return the software layer address of the current network
node (PE). Nodes are adressed as explained in Sec-
tion 3.1.1.

_ddma_atox address Converts the software layer address to a hardware layer ad-
dress and returns the X-axis component of the converted
address.

_ddma_atoy address Converts the software layer address to a hardware layer ad-
dress and returns the Y-axis component of the converted
address.

_ddma_xyta xcoord, yco-
ord

Converts the hardware layer address (X = xcoord , Y =
ycoord) into the corresponding software layer address.

The DDMA activates the receive operation once a packet hits the input port of
the router. First, the DDMA receives the first flit in the network and checks whether the
packet arrived at the right destination, dropping malformed packets. Then, the second re-
ceived flit informs the size of the incoming packet in bytes. The DDMA forwards this infor-



52

mation to the upper-level network driver, which accesses the internal register through the
_ddma_recv_size operation. Then, the upper-level driver allocates enough memory to store
the packet using the _ddma_set_recv_size, informing the DDMA where to store the packet.

As the lower-level network driver can only handle sending and receiving packets
atomically, the upper-level driver aids the kernel in controlling the lower-level driver while
providing an API for tasks to use the underlying network. Table 3.3 shows the operations of
the upper-level network driver. The send operation occurs asynchronously due to the DDMA
capabilities. The receive operation occurs asynchronously as well.

Table 3.3 – Operations of the Upper-Level Network Driver
Operation Alias Parameters Function

_ddma_init none Reset DDMA state machines and print configured node in-
formation, including node XY coordinates and NoC dimen-
sions.

_ddma_send destination,
size, payload

Configures the DDMA to produce header flit equals to desti-
nation and size flit equals to size, also informing the DDMA
that the beggining of data is at address equals to payload.
After configuring the parameters, it activates the DDMA to
send the packet.

_ddma_send_status none Report the status of the sending state machine. A zero
value means that the state machine resides at the idle
state. Non-zero values means that the state machine is
busy.

_ddma_recv_size none Returns the size of an incoming packet. Called form the
upper-level network driver once an incoming packet triggers
an interruption.

_ddma_set_recv_addr address Set the address to which the DDMA must store the incom-
ing packet. The address is generated by the upper-level
network driver.

_ddma_get_recv_addr none Returns the last address used by the DDMA to store pack-
ets.

_ddma_recv_ack none Acknowledges to the DDMA that the received packet is
stored into the packet queue and the driver is ready to re-
ceive more packets.

_ddma_recv_status none Report the status of the receiving state machine. A zero
value means that the state machine resides at the idle
state. Non-zero values means that the state machine is
busy.

3.3 Final Remarks

This chapter presented ORCA2, the baseline manycore architecture adopted within
this Thesis. We built the platform considering the reuse of components and the low cost of
implementation. In the future, we intend to augment the platform to work with the rest of the
tools presented in the next chapters of this Thesis out-of-the-box. The goal is to create an en-
vironment for fast inspection of the system, e.g., scheduler status and debugging interface.
The environment would include simulating the system in a coarser abstraction grain, e.g.
instruction-level.
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4. ORT/BENCH: PREDICTING THE BEHAVIOR OF TASK
SCHEDULERS WITH DISCRETE-EVENT SIMULATION
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This Chapter presents ORT/BENCH,
a software reference architecture and task
scheduler simulator tool targeting mono-
processing systems, part of the ORT suite.
We use the tool as a part of the approach pre-
sented in Chapter 8. The following publication
relates to the tool:

ORCA RT-Bench: A Reference Architecture for Real-Time Scheduling Simulators
Domingues, A. R. P; Benno, J.; Amory, A. M.; Moraes, F. G.
XI Brazilian Symposium on Computing Systems Engineering (SBESC). 2021.
https://ieeexplore.ieee.org/document/9628369

We organize the rest of the Chapter as follows. Section 4.1 discusses scheduling
tools available in the literature and the motivations for developing our tool. We present the
architecture of our tool and its components in Section 4.2. Section 4.3 presents the user
interface and trace file format. Finally, Section 4.4 concludes this Chapter by validating the
proposed model.

4.1 Motivation and Related Works

Among the challenges we encountered when experimenting with the baseline plat-
form was predicting the behavior of the scheduler. Studies in the literature discuss a variety
of scheduler algorithms while presenting proof of their correctness, performance, and other
guarantees. However, real-world systems have plenty of points of non-determinism and do
not reflect some of the simplifications presented in the literature, e.g., scheduler time equals
zero, absence of system interruptions, and absence of voluntary task preemption [Li et al.,
2019, Xia et al., 2021, Doan and Tanaka, 2019].

Before developing our tool, we searched the literature for other tools to simulate
scheduling. Although we have found a couple of references to tools, we were unable to
download any of the tools from the corresponding source. However, the associated studies
could have hinted at the performance of the tools and the internal structures of their software
implementation. We briefly discuss these studies as follows.

https://ieeexplore.ieee.org/document/9628369
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• [Yaashuwanth and Ramesh, 2010]: The authors propose an academic tool for teach-
ing real-time scheduling, implementing a couple of scheduling algorithms, e.g., Earliest
Deadline First (EDF) [Liu et al., 2012], Least Laxity First (LLF), Rate Monotonic (RM),
and Deadline Monotonic (DM) [Buttazzo, 2011, Laplante and Ovaska, 2011]. The tool
relies on a GUI (general user interface) environment focusing on teaching, with no
reported automation capabilities, e.g., batch execution.

• [Casile et al., 1998]: The authors propose a tool for dealing with distributed real-
time scheduling. They provide trace files as output, a GUI arrangement displaying
simulation steps, and an uncoupled backend. However, they do not discuss simulation
performance or the characterization of the task set.

• [RETIS Lab, 2013]: The RTSim tool is a simulator based on Metasim, a discrete-
event simulation (DES) library. They provide a GUI tool for visualizing simulation traces
called RTTracer. Unfortunately, the RTSim website is outdated (the last update was in
2011). The last public version of their tool was released in 2007. We could not find any
documentation supporting the installation or extension of the tool.

• [Manacero et al., 2001, GSPD Lab, 2021]: RTsim (lowercase S) is another academic
simulator. Their website reports that the simulator supports RM scheduling for sin-
gle processors and other multiprocessor systems algorithms. However, we could not
evaluate the simulator as the download link is broken.

Even if we could access the tools from their corresponding source, the tools, as
reported in the corresponding references, lack some key features that we consider to be
requirements of a simulation environment: (i) performance is essential when collecting data
for multiple system executions; (ii) the possibility of operating the command line is also de-
sirable to enable automation in the project; and (iii) exporting the results as trace files allows
for data visualization. Table 4.1 compares the tools regarding these features, positioning the
ORT/BENCH tool in the literature.

We first developed the ORT/BENCH tool in C++, aiming for performance while
adopting the DES engine we proposed in a previous work [Domingues, 2020]. Later, we
created another version of the tool in Python. We noticed that the performance of both tools
was nearly the same. For this reason, we kept the Python version, developing a custom DES
engine for the tool and ceasing the development of the C++ version. We believed that the
Python version would be more accessible to students to modify and experiment with, and it
would have a more straightforward setup.

During the development of the second version of the tool (Python), we were chal-
lenged by the complexity of extension points, i.e. the software interfaces that allows for the
extension of the tool. We wanted to make the tool easily extendable so one could add more
scheduling algorithms, modify the characterization of the task sets, and introduce interrup-
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Table 4.1 – Comparison of scheduling simulators.
Features* **

Tool A B C D

[Yaashuwanth and Ramesh, 2010]
[Casile et al., 1998] + +
[RETIS Lab, 2013] + + +
[Manacero et al., 2001]
ORT/BENCH (this thesis) + + + +
(*) Features are the following: (A) command line execution,
(B) performance analysis, (C) trace files, (D) allows for exten-
sion, e.g., new scheduling algorithms.
(**) The ’+’ denotes that the authors somehow claim their tool
to have the said feature.

tion mechanisms. For this reason, it sounded reasonable to create a reference architecture
(RA) [Taylor et al., 2007, Galster, 2015] instead of simply a tool. In practice, we created both
as the ORT/BENCH tool follows the namesake reference architecture.

4.2 The ORT/BENCH Reference Architecture

A reference software architecture is a collection of architectural design decisions
and building blocks that targets a single application domain [Galster, 2015]. In other words,
an RA groups the knowledge of several projects in the domain, serving as a reference for
building new software. Since our RA aims to enable the development of new scheduling
simulators, our goal is to define models and building blocks that can be reuse along multiple
simulator projects. Due to the variety of scheduling algorithms, we limit the scope of our RA
to the simulation of algorithms targeting mono-processed systems.

Our RA comprises five building blocks: (i) event model, (ii) system model, (iii) simu-
lation model, (iv) scheduling algorithm, and (v) performance model. We split the event model
further into the (a) task model and (b) interruption model. Both the interruption model and
the performance model are optional. Figure 4.1 summarizes the building blocks of our RA.

Simulation Model

System ModelEvent Model Scheduling 
AlgorithmTask Model

Interruption Model Performance 
Model optional block

required block

Figure 4.1 – Building blocks of the proposed reference architecture, comprising optional and
mandatory blocks (adapted from [Domingues et al., 2021]).



56

The ORT/BENCH tool is an open-source scheduling simulator written in Python,
developed following the principles of the namesake reference architecture. The tool was
firstly distributed as a stand-alone application, and now it is part of the ORT suite, available
for download at https://github.com/andersondomingues/orca-rt-tools/. We dedicate the rest
of the Chapter to explain the decisions made in during the development of the ORT/BENCH.

4.2.1 Event Model

In our RA, we use a DES engine to mimic the behavior of real-time schedulers.
Thus, we describe the behavior of schedulers as events. In the context of our Thesis, we
explore two types of events. First, we look into events triggered by tasks, e.g., system calls.
The second kind of event relates to interruptions. A minimal scheduler must model at least
one event, preferably to invoke a task scheduler, which we call IRQ_SCHED. In an actual
kernel, the scheduler to elect the next executing task at each interruption, and the peri-
odic calls to the scheduling give the system the possibility for multitasking. With that single
interruption, we can trace the execution of most mono-processor scheduling algorithms. Fig-
ure 4.2 shows an example of a schedule trace for the EDF algorithm, where a IRQ_SCHED
event occurs at each time unit. Tasks modeling follow the PCD (Period, Capacity, Deadline)
model [Williams, 2006, Laplante and Ovaska, 2011, Berger, 2020, Kerrisk, 2021], where a
task is T =< P, C, D >, where P is the task period, C is the capacity, and D is the task
deadline.

Task A

Task B

Task C

Task D

Task E
0 5 10

Task A = {10, 1, 2}
Task B = {10, 2, 5}
Task C = {10, 2, 4}
Task D = {10, 2, 10}
Task E = {10, 2, 9}

Task Set

(a)

(b)

time

ta
sk

s

Figure 4.2 – Example of a simulation trace for the EDF algorithm (a) and the corresponding
task set (b) (adapted from [Ali and Zakarya, 2020]).

Optionally, schedulers may implement voluntary task preemption. In this case,
tasks can deliberately invoke the scheduler, giving up its execution time. We call this event
TASK_END. Such an event can be helpful when tasks require a blocking resource (e.g., disk)
or even during I/O (input and output) events. Figure 4.3 shows an example of an application
using voluntary preemption. Please note that calling the scheduler in between two calls of

https://github.com/andersondomingues/orca-rt-tools/
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the IRQ_SCHED event may require a more precise simulation time scale. Besides, voluntary
task preemption allows for better CPU usage, although increasing the number of calls to the
scheduler and overall scheduling time.
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Figure 4.3 – Example of a simulation trace for the EDF algorithm with voluntary preemption
(a) and the characterization of the simulated task set (b).

Task Model

The task model corresponds to the representation of tasks within the simulator. For
instance, a minimal task model would model the workload of the applications, i.e. the CPU
time allocation of tasks. One may extend the model to admit other events, e.g., I/O simulation
and system calls. In cases where resource-aware scheduling is necessary [Tillenius et al.,
2015], one may add events for modifying counters to the model or even emulate sensor data.

We describe applications as sets of independent and periodic real-time tasks T =
{t0, ...tn} running in a mono-processed system. Each task is a 3-tuple ti =< p, c, d >, where
p is the period, c is the capacity, and d is the deadline, all them expressed in discrete time
units (u). This model is a simplification over other models [Williams, 2006, Laplante and
Ovaska, 2011, Berger, 2020], also inspired in the Linux kernel [Kerrisk, 2021].

The ORT/BENCH tool implements a parser in which applications are described
as directed graphs G =< V , E >, where vertices represent tasks, and edges represent
task communication. To vertices, we attach the parameters required by the task model,
i.e. period, capacity, and deadline. Edges are unused in this Chapter, although we keep
the graph structure for use in later Chapters. Also, some approaches may consider task
dependency and real-time communication [Al-Kadi, 2009]. Our parser also allows for more
information to be added to the file without much effort. Figure 4.4 shows an example of an
application description file.
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Figure 4.4 – Example of an application description file depicting an application taken
from [Laplante and Ovaska, 2011] (adapted from [Domingues et al., 2021]).

Interruption

We implement the IRQ_SCHED interruption inside a execution looping. The user
can inform the period of the interruption as a parameter. By default, the simulator calls
the scheduler each 1 time unit, simulating the behavior of a system without voluntary task
preemption. May the user define another period for the IRQ_SCHED interruption, voluntary
task premption will be used whenever a task workload finishes before the scheduling period.
The model can be extended to admit the simulation of other interruptions, peripheral I/O and
watchdogs.

4.2.2 System Model and Scheduling Algorithms

The system model orchestrates the state of tasks within the system. One may
implement the system model as a list of tasks in which a simplified task control block rep-
resents each task, mirroring the task abstractions of an actual real-time kernel. Another
possibility is having individual lists, each storing tasks according to their state. If going for
individual lists, one must consider that at least two lists are necessary, as the system must
distinguish between running and idling tasks. Formally, the adopted model is a system of
interconnected lists of tasks Q = {q1, q2, ..., qn}, where |Q| ≥ 2 (because the system must
distinguish between running and idle tasks). One may add more lists if necessary (like we
did in ORT/BENCH). A graph G = V × E represents the transition system (movement of
tasks between lists), i.e., the set of edges E represents the possibilities for tasks to move
from one list to another, and the set of vertices V represents the lists. Finally, a scheduling
algorithm is a function Φ : Qi → Qi that sorts the ready list, putting the next task to run at the
top. After the sorting, the system exchanges the top tasks of the ready and executing lists.
Figure 4.5 shows an example of a simulation model, depicting the trace in Figure 4.2.

In the FreeRTOS kernel [FreeRTOS, 2024], tasks can assume one of the follow-
ing four states: (i) suspended, (ii) blocked, (iii) running, and (iv) ready. For the Linux ker-
nel [Babar, 2012], it uses four states: (i) runnable, (ii) interruptable sleeping, (iii) uninter-
ruptable sleeping, (iv) zombie. In ORT/BENCH, we implements three lists: (i) executing, (ii)
ready, and (iii) blocked, as shown in Figure 4.6.
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Figure 4.5 – An example of simulation model (a), and the corresponding simulation trace (b).
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Figure 4.6 – System model implemented as an interconnected list system. Arrows indicate
the direction in which tasks can move between lists. The sorting algorithm (scheduling)
applies only to the ready list.

Our interconnected list system has four transitions: (i) scheduled, (ii) preempted,
(iii) blocked, and (iv) unblocked:

• Scheduled : The running list stores the only executing task in the system, if any. Every
time a task leaves the running list, another one (can be the same task) must take its
place. The scheduling algorithm has to sort the ready list and move one task from the
ready list to the running list. If no suitable task exists, the simulator introduces an idle
task until it moves another task into the ready list.

• Preempted : A task moves from the running list to the ready list if its execution time
window is over, i.e. IRQ_SCHED event. May the task finishes before the IRQ_SCHED
event, it moves to the blocked list instead.
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• Blocked : A task may block in two situations. First, when a resource blocks its execu-
tion, e.g. I/O. Second, when it finishes before the next period. In both cases, the task
is moved into the blocked list.

• Unblocked : Tasks in the blocked list move to the ready list if they are within their release
time window (period) and there is no resource blocking its execution.

4.2.3 Simulation Model

The simulation model is the method used by the simulator to generate the simu-
lation trace. The simulation trace corresponds to the result of a simulation session, usually
including the name of events and annotations indicating the time they would occur. The
number of events that can occur in parallel is bound to the number of simulated CPUs; for
mono-processor systems, two events cannot occur simultaneously.

One important aspect of the simulation model is its determinism. In some situ-
ations, events can occur simultaneously, even when considering a mono-processing envi-
ronment. For instance, one interruption can occur at the same time as a task triggers the
voluntary preemption mechanism. Consequently, the simulation model must adhere to an
order of precedence that determines which event executes first in case of a conflict –— fail-
ing to resolve conflicts leads to non-deterministic behavior. A simulation model describes
a function F : s → s′, s ̸= s′, where s corresponds to the current simulation state and s′

corresponds to the next simulation state.

In ORT/BENCH, the implemented simulation model relies on the discrete-event
simulation [Fishman, 2001, Kofman et al., 2019, Domingues, 2020]. In this model, events
are pushed into a list and sorted by their release time (priority queue). Events occur instan-
taneously, allowing the simulation to skip the remaining simulation time until the next event.
For this reason, simulating a discrete-event system is indeed faster than executing any op-
erating system kernel or scheduler. Figure 4.7 shows a comparison of a kernel with 10ms
tick and a DES engine running tasks as events, assuming a performance of 1ms per event.

The simulation engine, a component of our simulator, implements the F function
as an algorithm, which takes the current state of the simulation as input and updates that
state, generating the next state. This operation repeats until the end of the simulation. We
represent events as 3-tuples e =< t , f , T >, where t is the release time of that event, f is an
activation function, and T is a period increment. For periodic events, T adds to t at each
successive release of e (period). The simulation function f : Q → Q corresponds to the
movement of tasks in the system model, where Q is the set of all lists in that model. A
simulation (Equation 4.1) is represented by a 5-tuple, where t0 is the initial simulation time
(usually equals to zero), n is the maximum simulation time, P is a priority-queue of events,
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Figure 4.7 – Comparison between a kernel run and a DES engine simulating the same trace.

E is the set of all events, and g is the computation function. The next state of the simulation
can be achieved by applying g over the current state. Successive applications of g generate
a trace of computation steps, ending when tm ≥ n, at the mth step. We have applied a similar
simulation model in our previous work [Domingues, 2020].

SIM =< t0, n, P, E , g > | SIM ′ = g(SIM) (4.1)

4.2.4 Performance Model

A performance model is a tool for assessing the simulation performance. This
model must include the timing evaluation of events, as well as the scheduling algorithm.
The goal of the performance model is to predict how much time the simulation will take to
simulate a given task set. Formally, we describe a generic performance model as P :<
s′, s′′, F >→ N | s′ ̸= s′′, where P maps the transition of states s′ and s′′, from a simulation
model F to a number of time units.

Our performance model (Equation 4.2) can estimate the time taken to simulate a
task set for a given hyper-period. Our estimation relies on the fact that we can predict the
effort of the simulation model if we know the task set a priori. We must calculate the number
of events to be simulated for that task set and multiply the resulting value for the effort of
simulating a single event. In this case, our simulator must be deterministic, and the effort to
simulate one event must be constant.

(O(Sortn) + k ) ×

(
n∑
i

HP
Pi

+
HP

time slice

)
(4.2)

Our simulator implements a routine that generates a trace of computation steps for
a given initial simulation state. In that routine, the effort to simulate one event is constant (k ),
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corresponding to moving the running task from the running list to another list and moving one
task from the ready list to the running list. Before moving the one task back to the running
list, the scheduling algorithm sorts the ready list. The cost of sorting the ready list is bound
to the execution of the underlying sorting algorithm, which we denote O(Sortn), where n is
the number of tasks in the ready list. A conservative approach would take n as the number
of tasks in the whole system, which is always greater than the size of the ready list. In a few
words, the effort of calling the scheduler once is given by O(Sortn) + k .

The last component of our performance model corresponds to the number of sim-
ulated events, that is, the number of calls to the scheduler during the hyper-period (HP),
which corresponds to the “the smallest interval of time after which the periodic patterns of all
tasks is repeated” [Ripoll and Ballester-Ripoll, 2013]. The number of events must be at least
HP/time slice, as the simulator calls the scheduler at the end of each time slice (IRQ_SCHED).
Finally, we must consider the invocation of the scheduler at the end of each task, equals to∑n

i
HP/Pi , where n is the number of tasks in the model and Pi is the period of the i th task.

4.3 Other Features

Our tool implements the DM, EDF, LLF, RM, and Least Slack Time First (LSTF)
algorithms. One may select the algorithm by entering the corresponding acronym of the
algorithm as a parameter, e.g., -EDF selects the Earliest Deadline First algorithm. The algo-
rithm will be used by the simulation engine to sort the ready list at each scheduling event.

Due to performance reasons, our simulator runs in console mode, producing a
trace file as output. The trace file stores a list of events produced during the simula-
tion, indicating the time in which tasks enter and leave the running list and their deadline.
Our trace file can serve as input for two visualization tools: KProfiler [Johann, 2024c] and
ORB_KProfiller [Benno, 2024]. The former is a tool for visualizing system events for the Hell-
fireOS operating system. Calling our tool with the -kprofiler parameter format the trace file
to match the input of KProfiler. The latter, ORB_KProfiller, is a front end to our tool, capable
of interactively generate information on the simulation, e.g., number of missed deadlines,
schedulability tests, multiple simulation charts. Figure 4.8 shows an example of trace file.
Figure 4.9 displays ORB_Kprofiller.

Figure 4.8 – Trace file reporting the result of a simulation. The id field matches the one in
the input file. Other fields are presented in discrete time units.
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Figure 4.9 – ORB_Kprofiller interface depicting a simulation trace. Horizontal axis repre-
sents time, while vertical axis represents tasks. Performance estimation result (pink) and
schedulability test (gray) are shown at the right-upper corner.

4.4 Performance Model Validation

This Section validates the performance model presented in Section 4.2.4. We sim-
ulated seven applications, 30 times each, collecting their execution time. Table 4.2 shows the
characterization of applications, the simulated hyper-period, and their mean execution time.
The hyper-period is given by HP = lcm(Tp), where Tp is the set of all periods of all tasks in
application T , and lcm is the least common multiplier function. We arbitrarily choose EDF as
the scheduling algorithm for the experiment, and the value of O(Sortn) depends only on the
number of tasks of each application. To eliminate noise during the experiment, we config-
ured the simulator to collect the time tags (in milliseconds) in which the first and last events
left the event queue for each run. Subtracting both tags give us the amount of time spent by
the simulator to process the simulation events, ignoring file manipulation and startup routines
in the process.

4.4.1 Results

As discussed in Section 4.2.4, the performance of our simulator is bound to the
number of simulated events. When simulating shorter time slices, the number of calls to
the scheduler (IRQ_SCHED) increases. Consequently, the number of events to be simulated
increases, degrading the performance of the simulation. The worst performance is achieved
when time slice is 1 time unit. For the experiment, we applied a normalized time slice of 1
time unit for all applications.
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Table 4.2 – Characterization of applications A to G.

Task Info.

Application Label Period Capacity Hyperperiod Avg. Exec. Time (ms)

T1 90 1
T2 4 2A
T3 21 5

1260 3.406

B

T1 4 1

1540 8.438
T2 14 2
T3 28 7
T4 10 1
T5 44 11
T1 10 2
T2 12 2
T3 16 2
T4 18 2
T5 20 2

C

T6 200 2

3600 11.689

D

T1 90 10

6300 42.372
T2 60 12
T3 105 19
T4 50 25
T5 150 5
T1 30 5
T2 35 9
T3 45 15
T4 100 10

E

T5 800 40

50400 218.885

F
T1 24 8

840 3.737T2 30 10
T3 7 2
T1 64 8
T2 80 10
T3 20 2
T4 30 5

G

T5 60 20

960 4.192

Execution time increases linearly to the number of events. This is true as long the
number of tasks remains the same. The time taken to simulate a single event depends only
on the number of tasks in the ready list. We observe that the ratio ET

HP grows linearly on the
number of events, where ET is the execution time of the simulation. Figures 4.10 and 4.11
show the approximation of collected data to a power series and linear functions, respectively.
The average time to simulate one event roughly approximates 0.00448ms. Please note
that this time is bound to the performance of the machine in which the experiments were
executed, as well as the configuration of the installed tool-chain and compilation scripts.

The ratio ET
e , where e is the number of simulated events, presents the same linear

behavior as the ET
HP ratio. In this case, for a constant number of events, the time to simulate

an application grows linearly to the number of tasks. This is true as long as the time slice is
1u and HP = e. We omit the charts as they would be trivially similar to the ones shown in
Figures 4.10 and 4.11.
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Figure 4.10 – Approximation of the collected data to a power series function. Points are
sorted by execution time (ascending).

Figure 4.11 – Approximation of the collected data to a linear function. Points are sorted by
execution time (ascending).

4.5 Final Remarks

This chapter presented ORT/BENCH, a tool for predicting the behavior of task
schedulers. The main contribution of the chapter is to provide a method for collecting data
from the scheduler without having to execute a whole system setup. The tool surpasses the
performance of actual kernels due to the application of discrete-event simulation, providing
a faster way of collecting results. Besides, our reference architecture introduces a novel
contribution to the Thesis, allowing practitioners to create their own simulator based on our
building blocks. We employ the ORT/BENCH tool in the approach discussed in Chapter 8.
Finally, as a feature work, we intend to extend the simulator to adhere to other system param-
eters, e.g., voluntary task preemption. Besides, we want to create a more comprehensive
user interface to allow using the tool in undergraduate courses.
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5. ORT/NS: DESIGN-TIME ANALYSIS OF REAL-TIME TRAFFIC IN
NOCS USING CONSTRAINT MODELS
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This Chapter presents our first effort
at modeling network traffic using constraint
models to generate valid traffic schedules.
As a result, we developed the ORT/NS tool,
part of the ORT suite. The tool is a cycle-
accuracte, offline network scheduler. The fol-
lowing publication relates to the tool:

Design-time analysis of real-time traffic for networks-on-chip using constraint models
Domingues, A. R. P; Johann Filho, S., Amory, A. D. M., and Moraes, F. G.
35th SBC/SBMicro/IEEE/ACM Symposium on Integrated Circuits and Systems Design (SBCCI). 2022.
https://ieeexplore.ieee.org/document/9893222

We organize the rest of the Chapter as follows. Section 5.1 briefly presents the
*-shop problems we used to model network traffic. We present Net-Shop, our variant of the
*-shop problem and network model, in Section 5.2. We developed a tool named ORT/NS
(network scheduler) to automatize the execution of the Net-Shop model. We present the ar-
chitecture of the ORT/NS tool in Section 5.3. We demonstrate the application of the ORT/NS
tool over a synthetic application in Section 5.4. Finally, we discuss the research outlook on
the ORT/NS tool in Section 5.5.

5.1 The *-Shop Problems

We name *-shop the family of problems that comprise the job shop, flow shop, and
permutation shop problems, as well as many other variants in the literature. These problems
have many applications, including manufacturing processes (process engineering) and task
scheduling (computing). Regardless of the variant, such problems involve allocating jobs
to resources, often called machines. Jobs represent sets of self-contained, smaller parts
called tasks; each task has its execution parameters, e.g., minimum and maximum execu-
tion time. Also, tasks can be bound to specific machines, i.e., require particular machine
features for execution. Other characteristics of tasks include task dependency or even a re-
quirement for finishing before a specific due time. Although our goal is not to discuss *-shop
comprehensively, we advise one to see Garey and Johnson [Michael R. Garey, 1979] for a
comprehensive description of some *-shop variants and their proof for NP-completeness.

https://ieeexplore.ieee.org/document/9893222
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Formally, a *-shop problem P =< M, J, T ,ϕ,ψ > is a 5-tuple where M is the set of
machines, J is the set of jobs, ϕ is the cost function (schedule length), T is the discrete time
domain, and ψ is the set of constraints in the problem (variant specific). The solution space,
i.e., the set of all possible solutions, represents the relation S : T × M × J. Any solution
s ∈ S indicates the time and machine that each job must be released to minimize C. The
difference between two arbitrary variants of the *-shop problem usually lies in the definition
of constraint set ψ and rarely relates to the structure of the problem.

5.2 Net-Shop: Network Scheduling as a *-Shop Problem

To model network scheduling as a *-shop problem, we need to adjust the *-shop
problem structure. First, we rename machines to “links” and jobs to “packets.” Since we are
interested in NoCs, we must also rename tasks to “flits.” We formally describe our variant of
the *-shop problem as: “Given a set of packets (J) consisting of a set of flits each, find an
allocation (s ∈ S) of packets for links (M) such that all flits traverse all the links in accordance
to their route, in order.” Of course, we must define the route of packets a priori, and we
assume the XY routing algorithm for the rest of the Chapter. For readability, we name our
problem variant the “Net-Shop” problem, formally P =< M, J, T ,ϕ,ψ >. We detail the parts
of the problem as follows:

• M is the set of network links (previously, machines). For readability, we name links after
their connecting routers, e.g., link 1–3 departs from router 1 and arrives at router 3. This
naming convention is topologic agnostic and one may change it as necessary. Please
note that links 1–3 and 3–1 are not the same link as they transfer data in opposite
directions. The input and output links are named on the local port, e.g., L-5 links the
local port of the 5th PE and router 5. Similarly, link 5-L connects router 5 to the local
port of the 5th PE in the opposite direction. Figure 5.1 shows a 2D-mesh NoC topology,
and the name given to its links.
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2-3
3-2

6-5
5-6

2-5
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2

5-4
4-5

1-L
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1-
4

2-L

1 2
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L-1
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L-6

6-L

L-5
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Figure 5.1 – Example of a NoC (a) and the names of links in the *-shop problem (b).
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• J is the set of packets (previously, jobs). A packet has a sequence of flits, which can
occupy any link of the network. However, since packets have source and destination
nodes, the underlying routing algorithm limits the set of links that packets can traverse.
In our problem variant, two flits cannot occupy the same link at the same time.

• T is the discrete time domain. We measure time in cycles instead of taking seconds
or milliseconds as units. By doing so, we eliminate any dependency on the frequency
of the target system.

• We measure solutions efficiency by ranking them by their schedule length, often called
makespan, where the lower the value, the better. Let ϕ = C : s ∈ S → Z+ be a cost
function that measures the schedule length of a single solution (in time units). The best
solution is the one that matches min(Cs).

• S is the solution space, and s ∈ S is an M × T relation denoting which flit (or packet)
occupies each link. An instance of the problem has no solution if S = ∅.

• ψ is the set of constraints on the problem.

1. For any packet, all links in its path remain occupied for the same time during the
traversal. Thus, ∀(ti , tj ∈ jk ).(p(ti) = p(tj)), where pi is the capacity of each task.
This is equivalent to the processing time in *-shop problems.

2. We set a constraint on task release time r (ti) such that ∀(ti , tj ∈ jk ).(r (ti) = r (tj)),
indicating that packets will allocate all links in their path, from the source router
to their destination. This simplification slightly degrades the performance of the
network, as it keeps links allocated until the last flit arrives at its destination. In
practice, the maximum delay introduced is not greater than the dimension of the
number of hops of the packet. We claim this delay to be negligible for a wormw-
hole NoC as the number of cycles to push packets from one router to another
approximates 1 cycle as the length of the packet increases.

K =



M = {0-1, 1-0, 1-3, 3-1, 2-3, 3-2, 0-2, 2-0, L-0, 0-L, L-1, 1-L, L-2, 2-L, L-3, 3-L}

J = {j1 = {L-0, 0-1, 1-L},

j2 = {L-0, 0-1, 1-3, 3-L},

j3 = {L-2, 2-3, 3-L},

j4 = {L-2, 2-3, 3-1, 1-L},

j5 = {L-3, 3-2, 2-0, 0-L}}

(5.1)

Equation 5.1 shows an example (K ) and its components. The M comprises all
network links for a 2x2 dimension NoC, and the J set has all the packets in the network.
Packets carry information on which links they need to occupy during traversal. Figure 5.2
shows an illustration of the problem in a more intuitive drawing.



69

2 3

0 1
1-L

L-1

L-2
2-L

3-L
L-3

L-0
0-L

0-2 2-0 1-3 3-1

2-3
3-2

0-1
1-0

0 1L L

0 1L 3

2 3L L

2 3L 1

3 2L 0

j1

j2

j4

j3

j5

L

L

L

L-0 0-1

L-0

L-2

L-2

L-3

2-3

2-3

0-1

3-2

1-L

1-L

0-L

3-L1-3

3-L

3-1

2-0

Figure 5.2 – Links of a 2x2 NoC instance (left), and an instance of Net-Shop (right).

5.3 Scheduling packets with the ORT/NS tool

As Chapter 2 presents, TDM is an approach for guaranteeing real-time traffic in
NoCs [Picornell et al., 2019, Picornell et al., 2020]. The TDM approach relies on the analy-
sis of conflicting packets in the network. Two packets conflict if they share resources, getting
separated into different TDM slots. Although we assume NoCs without virtual channels, we
borrow the concept of conflicting packets, which we generalize to what we name occupancy.
Occupancy corresponds to a relation O : J × M × T . We propose an approach in which
a resource conflict corresponds to simultaneously using a single link by at least two differ-
ent packets. Our approach aims to prevent conflicts by assigning packets to resources by
controlling the injection time of packets in the network. The result of the approach is a table
of injection time, to be used within the source of the packet (e.g., TCNI, Chapter 3). Fig-
ure 5.3 shows the five steps of our approach: (i) flow characterization, (ii) flow unwrapping,
(iii) network delay analysis, (iv) schedule generation, and (v) configuration.

5.3.1 Flow Characterization

In our approach, a flow is the representation of an infinite set of packets, whose
model is a 5-tuple f =< p, c, d , s, t >, where p is the flow period, c is the amount of data to
traverse the network for each packet in that flow (worst-case assumption constant), d is the
relative deadline, and s and t are the source and destination tasks for that flow. In practice,
the flow set F = {f0, f1, ..., fn} is an extension of the J set, carrying now information about the
periodic behavior of flows. Period and deadline can be represented in discrete time units,
although one can easily assume any other time-measure unit (we use cycles for the rest
of the Chapter). The same applies to data size (we use bits for the rest of the Chapter).
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Figure 5.3 – The steps of our method (blue rectangles), their inputs and outputs (white
shapes) and the tools that automatizes the steps (represented by different background col-
ors). Arrows connect inputs to the corresponding steps. User inputs are represented by the
yellow shapes at the top of the image.

We label both source and target tasks according to their position in the topology, so our
approach requires task mapping to be performed a priori.

Our analysis extends to the hyperperiod, as we are interested in the periodic exe-
cution of tasks. The hyperperiod corresponds to “the smallest interval of time after which the
periodic patterns of all tasks repeats” [Ripoll and Ballester-Ripoll, 2013]. We borrow this def-
inition while replacing the word “tasks” with “flows.” In our context, the optimal hyperperiod
is the least common multiplier among the periods of all flows, i.e., H = lcm(Fp). As the lcm
function tends to “misbehave” for larger sets, we suggest practitioners manipulate packets
period to reduce the value of H as much as possible, e.g., rounding periods to the critical
path or artificially increasing messages payload. Finally, we assume that the network state
resets at the end of the hyperperiod, so any chances for error propagation by accumulated
delay are eliminated.

We express traffic characterization using a cyclic direct graph (digraph). Also, we
label edges on flow data and nodes on tasks, as Figure 5.4 shows. Information on their
period, capacity (worst-case data size), and deadline must be present for each flow.
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f3
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Task B Task C
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f5

(a)

FLOW PERIOD SIZE D.LINE

f1 55 160 55

f2 55 416 55
f3 55 192 55
f4 55 256 55
f5 55 128 55

(b)

Figure 5.4 – Example of application characterization using a digraph. The application
synthetic-flow-A comprises four tasks, labeled from A to D and represented by nodes in
the graph. Arrows indicate flows (a). In this application, flow have their period equals to their
relative deadline (b), although this is not a limitation of our approach.

5.3.2 Flow Unwrapping

The set of all packets injected into the network during the hyperperiod is given by P.
Equation 5.2 determines |P|, where n is the number of flows and f p

i is the period of each flow
f ∈ F . Each flow unwraps to generate a finite number of packets for the given hyperperiod.
Packets originating from the same flow have the same data size (worst case data size),
although they necessarily differ in their minimum release time (MRT) and absolute deadline
(AD). A packet p ∈ P is given by p =< f ∈ F , r , a >, where f is the corresponding flow, r
is the minimum release time, and a is the absolute deadline. By unwrapping all flows, we
achieve the set of packets P = {p0, p1, ..., pk}, k = |P| − 1.

|P| =
n∑

i=0

f p
i

H
(5.2)

For example, one flow with a period equal to 10 time units (u) would generate three
packets for a hyperperiod of 30u. The first packet enters the network at the startup (time =
zero), i.e., the minimum release time (pr ) for that packet is zero. The second packet enters
the network after 10u, and the last packet enters the network after 20u. We assume packets
are evenly distributed within the hyperperiod. Their absolute deadline is given by f d + pr ,
their minimum release time, plus the relative deadline of the corresponding flow. Thus, the
deadline of packets p1, p2, and p3 would be 10u, 20u and 30u, respectively. Figure 5.5
presents an example of unwrapped flow.
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time

Packet allocation space
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Figure 5.5 – Example application and flow unwrapping for a hyperperiod of 30u (a). Three
packets were generated: p1, p2, and p3 (c). Packets are evenly distributed in time (b).

It is worth highlighting that flow unwrapping is automated by the NS tool. The result
of the flow unwrapping step is a list of packets. Each packet is P = <MRT, CP, AD>, where
MRT is the minimum release time, CP is the capacity, and AD is the absolute deadline.
Please note that CP is the same as the capacity of the corresponding flow.

5.3.3 Table Generation

In this step, the process crosses the requirements of packets with the available sys-
tem resources (R). The result of this step is three tables: (i) absolute deadline, (ii) minimum
start, and (iii) capacity. Each table has one dimension representing the network resources
(links) and another representing the corresponding packet attribute.

• Occupancy represents the relation O : R × P → N, where R is the set of resources
(links) and P is the set of all packets. The relation O represents the time each packet
requires from each resource during transmission. We calculate occupancy on the
WCTT of the target NoC.

• The minimum release time represents the relation M : R ×P → N, where A is the time
each resource can be allocated to a packet. This table corresponds to the occurrence
of periods in the timeline.

• Deadline: represents the relation D : R × P → N, where D is the upper-bound time
limit for a packet to use a link. If one packet keeps any link allocated further than the
intended, the application may fail due to starvation.
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5.3.4 Optimization

This step determines the time allocated to resources for each packet traversing the
network during the hyperperiod. For example, each resource r ∈ R can represent a link
or router. In this Thesis, we consider only links due to the capabilities of the target NoC
architecture [Moraes et al., 2004]. The optimization step aims to determine a combination
of time spans such that no packet misses any deadline. The following constraints describe
this rationale:

(C1) Packet release time must be greater or equals to their minimum release time (5.3).
Since packets (P) are evenly distributed in the hyperperiod, packets cannot enter the
network until the last packet of that flow reaches its destination. Please note that our
approach treats resources (R) individually, and one packet may require more than one
resource simultaneously. For this reason, we represent min_release as a matrix.

∀(r ∈ R, p ∈ P)(release[r , p] ≥ min_release[r , p]) (5.3)

(C2) Two packets cannot share the same resource simultaneously (5.4). We call this con-
straint the “non overleap constraint,” as it enforces resources to be allocated only to
a single packet. We write this constraint as a predicate (5.5) on the release time and
occupancy of packets.

∀(p1, p2 ∈ P).(nonoverlap(p1, p2)) (5.4)

nonoverlap(pa, pb ∈ P) = ∀(r ∈ R)(

release[r , pa] + occupancy [r , pa] ≤ release[r , pb] ∨

release[r , pb] + occupancy [r , pb] ≤ release[r , pa] )

(5.5)

(C3) Each packet must meet its deadline (5.6). Since we treat resources individually, each
pair of a packet and a resource (p, r ) has its deadline and must be released before the
allocation of that resource by other packets.

∀(r ∈ R, p ∈ P)(release[r , p] + occupancy [r , p] ≤ deadline[r , p]) (5.6)
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(C4) A packet must allocate all the required resources for its transmission during the whole
transmission (optional). This constraint forks our analysis into two possibilities. First,
we create a strict network model with information on each link. This model will generate
no waste of network bandwidth, although it can be tricky to develop depending on
the target NoC. The second possibility is to design a heuristic constraint, accepting
some waste of network bandwidth. In the former case, the constraint carries out the
complexity of the network, and the allocation time for all packets is only the necessary
time for the packet to traverse without congestion. In the second case (5.7), we assume
that packets allocate all the necessary links simultaneously, roughly corresponding to
the circuit-switching situation (even for a wormhole network). For simplicity, we assume
the latter case for the rest of the Chapter.

∀(ra, rb ∈ R, p ∈ P)(release[ra, p] = release[rb, p]) (5.7)

We state the Net-Shop problem as “Given the relations occupancy, minimum re-
lease time, and deadline over P × R, determine a relation S : P × R → T that satisfies
C1, C2, C3, and C4.” Since occupancy gives us the time each packet requires from each
of the links in the subject system, solving the problem involves optimization. However, we
cannot compare two solutions regarding their quality at the time, so we take that any solu-
tion is valid. In other words, we approach our optimization problem as a decision problem,
although still NP-complete. The solver finds multiple solutions in most cases, and the set of
all valid solutions is not countable, although finite.

5.4 Proof of Concept and Discussion

We evaluate our approach for two applications targeting our baseline platform (NoC
only). The goal is to find when packets must be injected into the network so they will not
collide. Equation 5.8 presents the WCTT model of the Hermes [Moraes et al., 2004] NoC.
The network protocol adds two extra flits to the payload (p), where the first flit (header) takes
up to 7m cycles to route, with m corresponding to the Manhattan distance between source
and target routers (5.9). Flits from the 3rd and beyond take one cycle to perform a hop.

WCTT (cycles) = 7m + p + 1 (5.8)

m = |xb − xa| + |yb − ya| (5.9)
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5.4.1 Application A — Synthetic Flow B

We use the Synthetic-Flow-B application to demonstrate the basic mechanics of
our approach. Figure 5.6 shows the application characterization and task mapping for this
application for a 2x2 NoC instance. Please note that our analysis is sensitive to task mapping
performed before characterization. Discussing task mapping is out of the scope of this
proposal as task mapping is a well-established field of study.

f1

f2f4

Task ATask C

Task B Task C

f3
f5

0 1

2 3

Task A Task B

Task C Task D

(a) (b)

FLOW PERIOD SIZE D.LINE

f1 608 160 608

f2 608 416 608
f3 608 192 608
f4 608 256 608
f5 608 128 608

(c)

Figure 5.6 – The Synthetic-flow-B application task graph depicting flows interaction (a), the
tasks mapped onto a 2 × 2 NoC (b), and the characterization of flows (c).

With the aid of Minizinc [MiniZinc Team, 2024], we developed a constraint model
description using Minizinc language. The inputs for the model consist of three tables (occu-
pancy, minimum start time, and deadline), as summarized in Table 5.1. We removed unused
links from the tables to increase the performance of the solver. The tables will likely repre-
sent a sparse matrix as the number of links traversed by flows is less than the total number
of links in the network. In this application, flows Fi unwrap to a single packet Pi each.

The configuration of the injectors resets at the beginning of each hyperperiod. For
this reason, the deadline of packets must be less than the hyperperiod, guaranteeing that
the state of the network will reset when packets reach their destination. The hyperperiod for
the application is 608u (cycles), and all tasks share the same period.

Table 5.2 shows the results generated by the Minizinc solver (Gecode 6.3). Oc-
cupation and minimum start values for all links in the same packet are the same, and the
results showed that all resources (links) necessary for each packet were allocated simulta-
neously and at the right time. Although the target NoC does not implement a mechanism
for allocating links, the packets enter the network at the time indicated in the results for the
first link in the path, as there is no congestion in the network. The non-overleap constraint
in the model guarantees congestion avoidance. Thus, the path is accessible for packets to
traverse the network during the allocation time.
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Table 5.1 – Synthetic-flow-B characterization.

Links

Pck. L-0 0-1 1-L 1-3 3-L L-2 2-3 3-1 L-3 3-2 2-0 0-L

P1 160 160 160 – – – – – – – – –
P2 416 416 – 416 416 – – – – – – –
P3 – – – – 192 192 192 – – – – –
P4 – – 256 – – 256 256 256 – – – –

oc
cu

pa
nc

y

P5 – – – – – – – – 128 128 128 128

P1 0 0 0 – – – – – – – – –
P2 0 0 – 0 0 – – – – – – –
P3 – – – – 0 0 0 – – – – –
P4 – – 0 – – 0 0 0 – – – –m

in
.s

ta
rt

P5 – – – – – – – – 0 0 0 0

P1 608 608 608 – – – – – – – – –
P2 608 608 – 608 608 – – – – – – –
P3 – – – – 608 608 608 – – – – –
P4 – – 608 – – 608 608 608 – – – –de

ad
lin

e

P5 – – – – – – – – 608 608 608 608
Note A: All units represented in cycles; Note B: Dash lines represent sparse matrix emptiness.

Table 5.2 – Optimization results for Synthetic-flow-B

Links

Pck. L-0 0-1 1-L 1-3 3-L L-2 2-3 3-1 L-3 3-2 2-0 0-L

P1 416 416 416 – – – – – – – – –
P2 0 0 – 0 0 – – – – – – –
P3 – – – – 416 416 416 – – – – –
P4 – – 0 – – 0 0 0 – – – –

in
je

ct
io

n
tim

e

P5 – – – – – – – – 256 256 256 256
Note A: All units represented in cycles; Note B: Dash lines represent sparse matrix emptiness.

As one can observe from Table 5.1, the solver suggests that packets P1 and P3
must enter the network at cycle 416. Packet P5 enters the network at cycle 256, and other
packets enter the network at cycle zero. Flows that conflict enter the network one after
another, i.e., packets that share at least one link. In Figure 5.6 (a), we observe that flow F3

conflicts with flows F2 (on link 3-L) and F4 (on links L-2 and 2-3). The same stands for flow
F1, which also conflicts with flows F2 (links L-0 and 0-1) and F4 (on link 1-L). One possibility
(the one generated by Minizinc) consists of injecting P2 and P4 before P1, P3, and P5.

We configure behavioral injectors (TCNI, Chapter 3) with the results generated by
Minizinc (Table 5.2), delaying the injection of packets in the network. We designed our
project to output the time in which packets enter and leave routers. Then, we simulated
the behavioral design for 608 cycles (the hyperperiod) using the ModelSim tool, achieving
the results shown in Figure 5.7. From the simulation, we can observe that packets did not
overlap or arrive at their destination after the corresponding deadline. However, as expected,
packets are assumed to have all the links allocated along their path.
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Figure 5.7 – Results of the simulation with the Synthetic-Flow-B application, depicting the
spam lifetime of packets (a) and the usage of network links (b).

5.4.2 Application B — DCT-verify

We reproduced the same steps for Application A to characterize Application B.
Figure 5.8 shows the application graph (a) and the corresponding task mapping (b). We
applied our approach to the DCT-verify application (Discrete Cosine Transform), taken from
the STR2RTS benchmark [Rouxel and Puaut, 2017]. Unlike Application A, this application
is a workflow application with more strict deadlines for the tasks — tasks depend on the
previous task in the workflow. Figure 5.8 (c) shows the characterization of Application B.

f7

f2

JOIN AFB

f6 f3

f1 DCTSPL

IDNT IDC
f4

0 1

2 3

AFA IDNT

DCT
SPL

FLOW PERIOD SIZE D.LINE

f1 78651 4096 36627

f2 78651 4096 37346
f3 78651 4096 53521
f4 78651 64 69632
f5 78651 8192 78607
f6 78651 4096 53521
f7 78651 4096 70253

(a) (b) (c)

AFA

f5 2 3

IDC JOIN

AFB

Figure 5.8 – The DCT-Verify task graph (a), the corresponding mapping to a 2x3 NoC (b),
and the characterization of flows (c).
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Table 5.3 shows the optimization result gathered from Minizinc. We observed that
the results took more time (0.523s) to generate compared to Application A (0.013s). We
expected this behavior due to the size of the problem, i.e., more links. It is important to note
that Minizinc will keep running until it finds a solution (table) or a counter-proof of the model.
For this reason, we may take any output result as a valid schedule.

Figure 5.9 shows the results of the RTL simulation collected from Modelsim. We
configured the injector following Table 5.3, simulating the design for 78607 cycles (the hyper-
period). Once again, packets do not overlap, and their deadlines are less or equal to the one
in the characterization. It is important to note that packets P4 and P5 could overleap as we
did not restrict the routers regarding sending and receiving packets in parallel. However, we
could, for instance, model local links (e.g., L-2 and 2-L) as the same link, preventing them
from having two packets allocated at the same time.

Table 5.3 – Optimization results for DCT-Verify
Links

Pkts. L-0 0-1 1-2 2-L L-3 3-2 L-2 2-4 4-L L-4

P1 29154 29154 29154 29154 – – – – – –
P2 – – – 33250 33250 33250 – – – –
P3 – – – – – – 49425 49425 49425 –
P4 – – – – – – – – – 69568
P6 – – – – 49425 – – – – –

4-5 L-5 5-3 3-L 3-1 1-L L-1 1-3 3-5 5-L

P4 69568 – – – – – – – – 69568
P5 – 70415 70415 70415 – – – – – –
P6 – – – – 49425 49425 – – – –

in
je

ct
io

n
tim

e

P7 – – – – – – 65472 65472 65472 65472
Note A: All units represented in cycles.
Note B: Dash lines represent sparse matrix emptiness.
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Figure 5.9 – Results of the simulation for the DCT-Verify application, depicting the spam
lifetime of packets (a) and the usage of network links (b).
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5.5 Final Remarks

This Chapter presented a novel approach for scheduling packets using a constraint
model and the Minizinc solver. Our tool ORT/NS implements five steps to transform user
inputs into a table of injection times. For the discussed applications, we achieved results in
hundreds of milliseconds. Still, we did not apply the approach to larger hyperperiod (e.g.,
70, 000 cycles) values due to the extensive solving time; the solver took more than 48 hours
to compute the injection times of the Car Application [Shi et al., 2010] (Intel® Xeon® CPU
E3-1220 v5 @3.00GHz, 32GB memory). One drawback of our tool is the need for a syn-
chronization mechanism; we suggested the TCNI module (Section 3.1.5) as a solution.

Chapter 6 discusses strategies to tune our approach for larger applications, mainly
by implementing a custom solver. Besides, our approach does not consider computing time
(we assumed the task with WCET equals zero). Chapter 8 shows how we include compu-
tation in our analysis using an improved ORT/NS tool version as part of a more extensive
analysis framework.
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6. ORT/FNS: FINDING THE MINIMUM FEASIBLE FREQUENCY FOR
A VALID NETWORK TRAFFIC SCHEDULE

BENCH
(Chapter 4)
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This chapter presents the Fast Net-
work Schedule tool (ORT/FNS), made on the
top of the ORT/NS tool (presented in Chap-
ter 5). The tool can find feasible schedules
faster (F) than the ORT/NS tool due to a plenty
of improvements. The following publication re-
lates to the tool:

Design-Time Scheduling of Periodic, Hard Real-Time Flows for NoC-based Systems
Domingues, A. R. P. ; Johann Filho, S.; Amory, A. D. M. ; Ost, L.; Moraes, F. G.
29th IEEE International Conference on Electronics, Circuits and Systems (ICECS). 2022.
https://ieeexplore.ieee.org/document/9970868

Figure 6.1 shows the building blocks of our improved framework, where we re-
placed three building blocks of the ORT/NS, including the desired target frequency as a user
input (Section 6.1). The goal of the new framework is to generate a traffic schedule while
considering the target frequency. As the platform frequency influences the network through-
put, we scale the application parameters (e.g., period) to match the target frequency using
an instantiator component (Section 6.2). To improve the tool performance, we replaced the
ILP solver with a new heuristic-based search engine (Section 6.3). A last modification uses
binary search to find the minimum frequency required for the traffic to schedule (Section 6.4).
We present results on the new framework in Section 6.5.

6.1 Application Model

In the ORT/NS tool (Chapter 5), we described applications using direct graphs
G = V × E , where vertices (V ) model tasks and edges (E) model flows. A flow is a 5-tuple
f =< p, c, d , s, t >, where p, c, and d correspond to the period, capacity, and deadline of
flows, and s and t are the source and destination tasks. We measure components p and d
in discrete time units, which we previously considered simply as cycles. Consequently, our
tool could generate a valid schedule or output that the schedule is unfeasible. However, we
know that increasing the system frequency also increases the NoC bandwidth. Thus, if we
measure p and d in standard time units (e.g., milliseconds), we try to schedule the traffic
targeting different frequencies. Figure 6.2 shows an example of task characterization.

https://ieeexplore.ieee.org/document/9970868
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Figure 6.1 – The building blocks of the modified framework. The green color represents the
newly added blocks. The red line is the optimization path for the target frequency.

Our modified application model allows for workflow applications. In such applica-
tions, the whole application is bound to a single period. We assume the application deadline
equals its period, and all tasks have the same period and deadline. The hyperperiod be-
comes the critical path execution time, comprehending from the beginning of the input task
to the end of the output task. In a manycore environment, input and output tasks receive
and send data from/to outside the system. In some applications, there can be multiple input
and output tasks. Example applications include those processing data from sensors [Vancin
et al., 2020].

Other Tasks

Input Task
Output Task

CMPX
61760

1600 SASC
361

GATH
202

ANON
60

1024 1024

CMPX: Complex Source 14
SASC: Square and Scale 16
GATH: CFAR Gather 17
ANON: Anon Filter A0 18

Task Description:

123: Task WCET
123: Packet Payload Size

Target Performance: 
15x iterations per second

Figure 6.2 – Constant False Alarm Rate (CFAR) Detection application, from the STR2RTS
benchmark [Rouxel and Puaut, 2017]. Green values represent tasks WCET, in cycles. Blue
values represent network load, in bytes. The application period is 1/15 seconds. Deadline is
assumed to be equal to the period.
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Regarding flows, we assume the period of flows to be equals to the period of the
application. In the CFAR application [Rouxel and Puaut, 2017], the period is 66.666ms (i.e.,
1/15 seconds, rounded down). Consequently, the period of all flows is the same. At this
moment, we are still not considering the application CPU load.

6.2 Instantiator

The instantiator module adjusts the application parameters to match a given fre-
quency. Although tasks WCET and flows payload size will not be modified, we must adjust
the application period and deadline. By increasing the target frequency, we increase the
number of cycles in the hyperperiod and the chances of finding a valid traffic schedule.
Figure 6.3 shows an example of frequency scaling for the CFAR application. The CFAR
application running in 1GHz manycore with a period equal to 1/15 seconds executes in ∼65M
instructions per iteration. By decreasing the frequency to 500MHz, the number of instruc-
tions will be ∼32M for the same period of 1/15 seconds (1/15 seconds ≃ 66.666ms). Since
the frequency of the target NoC is the same as the CPU, the number of flits per iteration
does not change with the frequency. Table 6.1 and Table 6.2 show the characterization of
the CFAR application for 1GHz and 500Mhz frequencies, respectively.

f1 = {33.333 M, 1600, 33.333 M, 2, 3}
f2 = {33.333 M, 1024, 33.333 M, 3, 1}
f3 = {33.333 M, 1024, 33.333 M, 1, 0}

f1 = {66.666 M, 1600, 66.666 M, 2, 3}
f2 = {66.666 M, 1024, 66.666 M, 3, 1}
f3 = {66.666 M, 1024, 66.666 M, 1, 0}

(a)

2 3

(b)

(c)

CMPX SASC

GATH

1

ANON

0

Figure 6.3 – CFAR application [Rouxel and Puaut, 2017] mapped to a 2x2 NoC (a), and
application instances targeting frequencies 1GHz (b) and 500MHz (c).

6.3 Scheduling Packets with a Custom Solver

In our approach, the goal of the ILP solver, e.g., Gecode [Gecode, 2024], is to
search the solution space for a feasible schedule, given our constraint model. The solu-
tion space corresponds to the intervals in which packets can be injected into the network,
bound by their minimum and maximum release times. The maximum release time is given
by deadline minus occupancy , and the minimum release time is zero. Table 6.3 shows the
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solution space for the CFAR application. The number of possible schedules is given by
31733 × 32309 × 32309 ∼= 33.125 × 109, i.e., 33+ trillions of alternatives. For instance,
Minizinc and Gecode can search such a solution space for hours. Assuming larger appli-
cations, e.g., the CAR application [Shi et al., 2010], the number of possible schedules can
be up to ≃ 7 × 10206. The scheduling problem is intractable, and an exhaustive search is
impractical except for tiny problem instances. We developed a custom solver to address
larger applications.

Table 6.1 – CFAR application characterization for 1GHz.

Links

Pkts. L-2 2-3 3-L L-3 3-1 1-L L-1 1-0 0-L

P1 1600 1600 1600 – – – – – –
P2 – – – 1024 1024 1024 – – –

oc
cu

p.

P3 – – – – – – 1024 1024 1024

P1 0 0 0 – – – – – –
P2 – – – 0 0 0 – – –

m
in

.s
ta

rt

P3 – – – – – – 0 0 0

P1 66.666 66.666 66.666 – – – – – –
P2 – – – 66.666 66.666 66.666 – – –

de
ad

lin
e

P3 – – - – – – 66.666 66.666 66.666
Note A: All units represented in cycles; Note B: Dash lines represent sparse matrix emptiness.
Note C: Deadline appear multiplied by 10−6.

Table 6.2 – CFAR application characterization for 500MHz.

Links

Pkts. L-2 2-3 3-L L-3 3-1 1-L L-1 1-0 0-L

P1 1600 1600 1600 – – – – – –
P2 – – – 1024 1024 1024 – – –

oc
cu

p.

P3 – – – – – – 1024 1024 1024

P1 0 0 0 – – – – – –
P2 – – – 0 0 0 – – –

m
in

.s
ta

rt

P3 – – – – – – 0 0 0

P1 33.333 33.333 33.333 – – – – – –
P2 – – – 33.333 33.333 33.333 – – –

de
ad

lin
e

P3 – – - – – – 33.333 33.333 33.333
Note A: All units represented in cycles; Note B: Dash lines represent sparse matrix emptiness.
Note C: Deadline appear multiplied by 10−6.
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Table 6.3 – Search space for the CFAR application (at 500MHz).

Links

Pkts. L-2 2-3 3-L L-3 3-1 1-L

P1 [0;31733] [0;31733] [0;31733] – – –
P2 – – – [0;32309] [0;32309] [0;32309]

L-1 1-0 0-L

se
ar

ch
sp

ac
e

P3 [0;32309] [0;32309] [0;32309]

6.3.1 Collision Checking

Our first effort while developing our solver was to develop a method for validating
arbitrary solutions. Given an arbitrary solution, we had to decide whether the given solution
was a valid schedule. Regardless of the search strategy, the verification of the solution would
run for every solution during the search. Developing a CPU-intensive verification method
could jeopardize the performance of the solver. We aimed to perform the least number of
checks possible, eliminating invalid schedules as quickly as possible. Our solution included
traversing the resulting matrix and searching for links shared by two or more packets. We use
the non-overleap constraint for these links to ensure that packets do not collide. Table 6.4
shows the result matrix for the Synthetic-Flow-B application, where colored numbers indicate
colliding links. We implemented the collision detection on the one-dimensional plane, as
Equation 6.1, where A and B are the colliding packets, Art is the release time of A, and Aat

is the arrival time of A (Aat = Art + Aoccupancy ).

Table 6.4 – Optimization results for Synthetic-flow-B. Values with the same colors represent
colliding links (total of 6 collisions).

Links

Pck. L-0 0-1 1-L 1-3 3-L L-2 2-3 3-1 L-3 3-2 2-0 0-L

P1 416 416 416 – – – – – – – – –
P2 0 0 – 0 0 – – – – – – –
P3 – – – – 416 416 416 – – – – –
P4 – – 0 – – 0 0 0 – – – –

in
je

ct
io

n
tim

e

P5 – – – – – – – – 256 256 256 256
Note A: All units represented in cycles; Note B: Dash lines represent sparse matrix emptiness.
Note C: Colliding links are L-0, 0-1, 1-L, 3-L, L-2, and 2-3.

1D_collision(Art , Aat , Brt , Bat ) ⇒ Max(Art , Brt ) ≤ Min(Aat , Bat ) (6.1)
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Figure 6.4 – Our custom solver performing the schedule of the Synthetic-Flow-B application.
The algorithm takes 230 steps to find a feasible schedule.
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6.3.2 Traversing the Search Space

To mitigate the collision checks during the search, we developed an algorithm that
progressively adds packets to the solution. The goal is to add all packets such that there is no
packet conflict. At the beginning, the solver adds a packet and checks for the consistency of
the solution. If the solution is inconsistent, the algorithm backtracks, increasing the release
time of the added packet. The algorithm progresses to another packet once the packet fits in
the solution. If the packet does not fit, the algorithm backtracks to change the release time
of the previous packet. If there are no packets to backtrack, the schedule is unfeasible.

Figure 6.4 shows our algorithm generating a schedule for the Synthetic-Flow-B.
The resulting schedule differs from the one presented in Section 5.4.1 because our algo-
rithm searches all possibilities for the release time, from the minimum release time to the
maximum release time. Minizinc starts in the opposite direction, allocating packets as close
to the hyperperiod as possible. Since we cannot compare solutions regarding quality, both
solutions represent valid schedules.

6.3.3 The Pruning Factor

In the example of Figure 6.4, it took 192 steps to allocate a single packet in the
solution. As one may have noticed, this number of steps is as large as the number of
allocation possibilities for that packet. To accelerate the algorithm, we designed a pruning
factor (PF) parameter. Instead of incrementing the release time by one cycle in each step,
the increment is performed on the PF, skipping neighbor solutions unlikely to fit. For instance,
if an allocation attempt just failed, we can skip ahead a couple of cycles as neighbor solutions
are likely to fail. A PF of 1 matches has no effect, while any PF n ∈ N+ reduces the size of
the search space n times. Figure 6.5 shows our custom solver adjusting the release time
of packet P2 in the schedule of the Synthetic-Flow-B for a PF of 10 cycles. The number of
steps for allocating packet P2 was reduced from 31 to 4 steps due to the number of skipped
neighbor solutions. Please note that a large PF may skip over valid solutions, making the
solver flag the schedule as unfeasible.

6.3.4 Guided Search

Pruning the search space reduces the number of alternatives for medium-to-small-
sized problems. However, it is of little use in larger problems. For instance, it reduces
the solution space of the Shi et al. [Shi et al., 2010] problem from ≃ 7 × 10206 to only
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Figure 6.5 – Our custom solver performing the schedule of the Synthetic-Flow-B application
using a Prune Factor of 10 cycles.

7× 10204 if using a PF of 100, i.e., skipping 99 alternatives ahead in each step. We optimize
our algorithm even further by selecting which packets to allocate first. In the example of
Figure 6.4, finding the feasible schedule would take more steps if we tried to fit P2 prior to
packet P1. To avoid such a situation, we sort a list of packets so that the solver will try to
allocate packets using one of the following criteria:

• LSTF (Least Slack-Time First): We call the slack-time of a packet the number differ-
ence between its maximum release time and its minimum release time. The LSTF cri-
terion tries to allocate packets with the least number of alternatives first. Equation 6.2
shows the LSTF function.

LSTF (pkt) = pktperiod − pktsize (6.2)

• MBCF (Most Bandwidth Consuming First): Allocates packets that consume more band-
width first. The amount of bandwidth is given the size of the packet multiplied by the
number of times it is injected during the hyperperiod, as Equation 6.3 shows.

MBCF (pkt) = pktsize ×
HP

pktperiod
(6.3)

• MCPF (Most Critical Path First): The MCPF function gives each packet a score based
on the links they traverse. First, we sort links by usage. We give each link a “usage
ratio,” given by the time the link is occupied during the hyperperiod (in cycles). Then,
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for each packet, we sum the usage ratio of all links they traverse. This criterion aims to
allocate packets in the network hotspots first.

With the guided search, our solver now performs a two-step algorithm. First, it uses
LSTF, MCPF, or MBCF to generate an ordered list of packets. Then, it proceeds to try to add
packets to the solution, as Section 6.3.2 discusses. Finally, the pruning factor is applied to
reduce the number of tries per packet. Regardless of the chosen criteria, the guided search
algorithm performs as Equation 6.4 shows, where O(nlogn) is the effort for sorting the list of
packets (e.g., using Quick Sort), O(|P|×HP/PF) is the effort for finding the release time of all
packets, P is the number of packets, and PF is the pruning factor. Please note that this is
a very pessimistic analysis, as the effort for allocating a packet depends on the number of
alternatives for that packet, not the length of the hyperperiod.

O(nlogn) + O
(
|P| × HP

PF

)
(6.4)

6.3.5 Adaptive Guided Search

The guided search (LSTF, MBCF, and MCPF) may eventually fail to allocate one or
more packets if “critical packets” were left to be allocated lastly. Critical packets may cause
link collision due to their increased period-size ratio. Allocating such packets early in the
algorithm reduces the exploration of local minima in the solution space.

We tweaked the guided search algorithm, developing a new version called Adaptive
Guided Search (AGS). Initially, we include a threshold to limit the number of tries when
scheduling packets. Once the allocation of a packet fails, the algorithm resets, putting the
failed packet on the top of the packet list (initially generated by LSTF, MBCF, or MCPF).
Figure 6.6 shows the pseudo-code for the AGS algorithm.

The AGS algorithm generates an ordered list R of packets using LSTF, MBCF, or
MCPF (line 3). The goal is to remove all packets from R and either schedule them (line 15)
or flag them as critical (line 21). Every time the algorithm flags a packet as critical, it incre-
ments the number of tries for that packet (line 16). When the number of tries surpasses the
configured threshold, the algorithm returns the generated schedule and the set of packets
that could not be scheduled (line 22). The algorithm pushes the failed packet to the top of
the list of packets, restarting.
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 Algorithm Adaptive Guided Search

1.
2.
3.
4.
5.
6.
7.
8.
9.

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.

Inputs: the set of packets to be scheduled, P.
Begin
         Let R ← lstf(P) or mbcf(P) or mcpf(P)
         Let Q ← an empty ordered set
         Let S ← { } // the skipped packets
         Let F ← the prunning factor, 
         Let G ← threshould (max. tries per packet)
         Let T ← [ zeroes ] // tries per packet (critical pkts.)
         While |R| ≠ 0:
                Let schedule ← { }, temp_schedule ← { }
                For q in Q:      // partial schedule
                       schedule ← allocate(schedule, q, F)
                temp_schedule ← schedule
                For r in R:      // adaptive permutation
                       If not allocate(temp_schedule, r, F) Then
                               T[r] ← T[r] + 1
                               If  T[r] < G Then
                                      R.push_front(r) // next to be tried
                                     Goto Line 7
                               Else // packet could not be scheduled
                                     R.remove(r), S.push(r) 
                Return  temp_schedule, S
End                              

Figure 6.6 – Adaptive guided search algorithm. Packets that could not be scheduled will
be selected to be tried first at the next algorithm reset. The output is the set of scheduled
packets and a list of packets that could not be scheduled.

6.4 The Minimum Frequency Required for a Feasible Schedule

We could use our solver to find the minimum frequency necessary to schedule
applications. Our instantiator module scales the application to the given tentative frequency.
Then, the AGS algorithm tries to generate a schedule. We configure the number of tries per
packet and the pruning factor per application. The result is either a full schedule (all packets
successfully added to the schedule) or a partial schedule (when at least one packet could
not be scheduled).

We added a wrapper over the FNS tool (FNS-Wrapper) to perform a binary search
on the tentative frequency (Tt ). First, we apply the tentative frequency to the AGS algorithm.
We should reduce the tentative frequency by half if we get a full schedule. If the schedule is
partial, we multiply the tentative frequency by two. At this point, we keep track of the last two
tentative frequencies, defining the search range as [Tf ; Tc] , where Tf is the lower frequency
among the two last tentative frequencies, and Tc is the higher frequency among the two last
frequencies. We update the search range using the formula in Equation 6.5, applying the
AGS algorithm to Tt at each iteration.
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[T ′
f ; T ′

c] =


[Tc ; 2 × Tc], if half schedule

[Tf ;
Tf + Tc

2
], if full schedule

(6.5)

The FNS-Wrapper stops searching for a frequency when the difference between
Tf and Tc is lower or equals the inverted tolerance factor (ITF). For instance, the algorithm
would stop for search interval [98MHz ; 100MHz] with an ITF = 98%, taking 100MHz as
the minimum frequency. We adopt ITF = 98% for the remainder of the Thesis. In practice,
this means that the frequencies found for all applications can be 0 − 2% lower than the fre-
quencies reported in the results. We avoided ITF ≥ 99% because we experienced rounding
errors in preliminary runs (the algorithm hangs indefinitely as it never reaches the condition
to quit). Thus, we assume the theoretical ITF = 100% to be impractical.

6.5 Proof of Concept and Discussion

We evaluate the performance of our search engine for the following applications: (i)
Synthetic-Flow-D, (ii) DCT-Verify (see Section 5.4.2), and (iii) CAR [Shi et al., 2010]. We ex-
ecute these applications for the different packet allocation criteria (LSTF, MBCF, and MCPF)
using pruning factors of 10, 20, and 40. For the CAR application, we had to increase the
PF 100 times due to the length of the hyperperiod. The threshold is equal to the PF. Ta-
ble 6.5 shows the number of visited solutions (actual algorithm effort). Table 6.6 displays
the number of skipped solutions in each run (saved effort). Lower values represent the best
algorithm performance, where the execution time is given by the number of visited solutions
divided by the number of alternative (discrete time). Our framework reduced the time to find
solutions by 70.58%, 95.18%, and 95.38% for the aforementioned applications, respectively.

Table 6.5 – Execution Performance (visited solution).
LSTF MBCF MCPF

Apps.** 10 20 40 10 20 40 10 20 40

Synthetic-Application D 40 16 6 40 16 6 6 6 10
DCT-Verify 8 8 8 8 8 8 214 111 60

Car application* 660 660 660 660 660 660 660 660 660
* : Pruning Factor ×100

The AGS algorithm performed better with the MCPF criteria for the Synthetic-
Application-D. Since the application has just a few packets, solutions that allocate critical
packets first outperform other solutions, i.e., LSTF PF = 40, MBCF PF = 40, and MCPF
PF = 20. The MCPF criteria outperforms other criteria when PF = 10. The DCT-Verify appli-
cation has more flows and a lengthened hyperperiod compared to Synthetic-Application-D.
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Table 6.6 – Execution Performance (skippped solutions).
LSTF MBCF MCPF

Apps.** 10 20 40 10 20 40 10 20 40

Synthetic-Application D 96 12 2 96 12 2 4 2 3
DCT-Verify 158 314 80 416 209 105 8970 2322 626

Car application* 13629 7267 3683 13641 7282 3684 5073 3002 1762
* : Pruning Factor ×100

The number of possibilities for allocating packets was also higher. For this reason, the AGS
algorithm could find a valid schedule in fewer steps. However, the MCPF criteria for the
application did not work as expected. Allocating P6 (see Table 5.3) early in the algorithm
generated many backtrack operations as P2 had fewer possibilities for allocation. Finally, the
CAR application had the larger hyperperiod, number of packets, and allocation possibilities
per packet from all evaluated applications. One may observe that, regardless of the chosen
criteria, the number of steps to find a valid schedule was the same in all situations (660). The
number matches the number of packets in the application. However, the number of skipped
solutions was higher in the LSTF and MBCF criteria.

We observe that a higher PF helps the AGS algorithm to converge faster. However,
an increased PF may have negative results depending on the number of packet allocation
possibilities. For instance, Table 6.7 shows the minimum frequency required for a feasible
schedule for the evaluated applications. For Synthetic-Application-D, a PF = 40 forced the
AGS algorithm to skip too many allocation possibilities, leading to a sub-optimal solution.
However, the solution is optimal for PF = 10 and PF = 20. Similarly, a PF = 10 is associated
with the optimal frequencies in the DCT-Verify and CAR applications.

Table 6.7 – Minimum scheduling frequency (MHz) using the AGS algorithm.
Criteria and Pruning Factor

Applications PF* LSTF MBCF MCPF

10 1, 929 1, 929 1, 929
20 1, 929 1, 929 1, 929Synthetic-Application-D
40 2, 183 2, 183 2, 183

DCT-Verify [Rouxel and Puaut, 2017]
10 793 1701 792
20 795 1707 795
40 800 1707 800
10 2, 813 2, 438 4, 219
20 2, 813 2, 438 4, 219Shi et al. [Shi et al., 2010]
40 2, 813 2, 813 4, 688

PF*: Prunning Factor, ||| : Optimal frequency, ||| : Worst resulting frequency

We observed that the pruning criteria had no effect on the quality of the frequency
for the Synthetic-Application-D. Since packets had only a few alternatives for allocation, the
AGS algorithm fit them in almost the same place for all criteria.
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For the DCT-Verify application, the MCBF criterion showed the worst result among
the criteria. The MCBF criterion prioritized packet P6 over packet P2, leading to an increased
number of tries while fitting P2. With the MCPF criterion, packet P2 gets prioritized, resulting
in fewer tries while fitting P6. For this application, the MCPF criterion presented the best
frequency, slightly outperforming the LSTF criterion.

Contrarily to the DCT-Verify application, the MBCF presented the best frequency
for the CAR application. Since the application has a more significant number of conflicting
packets, prioritizing the packets in the critical path increases the number of backtrack opera-
tions in the algorithm. Since we adopt a threshold equal to the PF (1000 for this application),
most of the packets “timed out” before AGS found a fit for them, generating many resets in
the algorithm.

6.6 Final Remarks

We presented a custom solver that replace ILP solvers by the AGS algorithm,
increasing the performance when searching the solution space for schedules. The FNS-
Wrapper uses the AGS algorithm to perform a binary-like search to find the minimum fre-
quency to schedule applications. Both the solver and wrapper are novel contribution to
this Thesis. We demonstrated the performance of our solver on a synthetic application
(Synthetic-Application-D) and two other applications from the literature: DCT-Verify, from
the STR2RTS benchmark [Rouxel and Puaut, 2017], and the CAR application [Shi et al.,
2010]. Our framework reduced the time to find solutions by 70.58%, 95.18%, and 95.38%
for the aforementioned applications, respectively. Finally, we use the ORT/FNS tool later in
Chapter 8 as part of a larger real-time analysis framework.
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7. ORT/GCM: COMMUNICATION PARTITIONING IN
SHARED-MEMORY AND I/O SPACES
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This Chapter presents the graph
package included within the ORT suite, most
notably the implementation of the Graph Col-
lapse Method algorithm (ORT/GCM). We use
the GCM algorithm to create task clusters
from applications graphs while partitioning the
communication load between the memory and
I/O spaces. This part of the Thesis has yet to be published.

We organize the chapter as follows. Section 7.1 overviews our graph package.
Section 7.2 presents background on graph clustering and the GRAPH-COLLAPSE method.
We discuss the cutting criteria of our method in Section 7.3. We evaluate our method in
Section 7.4. Section 7.5 show the application of our method to an application from the
literature. We conclude the chapter in Section 7.6, discussing the proposed method.

7.1 The Graph Package and Minor Tools

The approaches we present in Chapters 4, 5, 6, 7 and 8 require the manipulation
of application graphs by software. To support the process of parsing and transformation of
application graphs, we developed a couple of tools, enlisted below. All these tools use our
Graph Standard Library (ORT/GSL), which provides data structures for manipulating graphs.

• Graph File Formatter (ORT/GFF): The ORT/GFF tool allows for converting between
multiple graph representations, including the ones provided by GraphViz [Graphviz,
2024] and NetworkX [NetworkX, 2024] libraries. The tool also provides parsing for
several file formats, as well as a wrapper to export graphs through GraphViz.

• Graph Data Extractor (ORT/GDE): The ORT/GDE tool can extract metrics values from
graphs, e.g., metrics M1, M2, and M3 presented in Section 7.4.

• Random Graph Generator (ORT/RGG) TheORT/RGG tool is a random graph gen-
erator in which one can generate graphs by adjusting (i) the number of vertices, (ii)
edge density, and (iii) minimum and maximum values for values tagged in vertices and
edges. The tool expresses edge density and limits for tagged values through normal
distribution curves with configurable parameters σ and µ.
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• Graph Collapse Method (ORT/GCM): The ORT/GCM tool implements our method for
graph clustering, discussed in remainder of this Chapter.

• Graph Critical Path Analysis (ORT/GCPA): The ORT/GCPA tool implements the critical
path analysis method, part of the approach presented in Section 8.1.4.

7.2 ORT/GCM and Graph Clustering

For applications where the number of tasks exceeds the number of available com-
puting nodes (CPUs) in the target system, one must adopt some scheduling strategy to
guarantee CPU time sharing. Since we focus our frameworks on the static analysis of flows
at the pre-runtime, we need to group tasks into different task sets and further map these sets
into processing elements, assuming a manycore architecture. Tasks mapped to the same
CPU communicate through shared-memory spaces, while tasks mapped to different CPUs
will use the underlying network to communicate. Consequently, we must consider the bene-
fits of mapping specific tasks together and the penalties of not doing so. For this reason, we
develop a strategy for task clustering. As a requirement, the task clustering strategy must
be scalable, i.e., capable of clustering graphs regardless of the application and NoC size.

Task set clustering consists of splitting a task set into multiple subsets, so one
can eventually map each subset set to a different CPU core. Ideally, the strategy to group
tasks for each CPU core relates to some aspects of the target system. For instance, one
may group tasks targeting objective functions such as network cost reduction, minimizing
or maximizing CPU usage, or even reducing overall communication cost. Regardless of
the objective function, one may adopt algorithms such as HCS (Highly Connected Sub-
graphs) [Hartuv and Shamir, 2000] if clustering for vertices similarity. Other strategies for
graph clustering include those based on MIN-CUT and MAX-CUT (see [Goldberg and Tarjan,
1988]). For example, the Stoer–Wagner algorithm [Stoer and Wagner, 1997] can solve MIN-
CUT in polynomial time for undirected, weighted graphs. Nevertheless, we could not locate
an algorithm for clustering directed graphs in polynomial time complexity in the literature.

7.2.1 The GRAPH-COLLAPSE Algorithm

We developed a greedy algorithm for clustering application graphs that targets di-
rected, weighted graphs. Figure 7.1 shows the pseudo-code for our GRAPH-COLLAPSE
algorithm, whose implementation resulted in the ORT/GCM tool. The rationale behind the
GRAPH-COLLAPSE algorithm is to remove edges from the graph until we find a given num-
ber of vertices. At each iteration, the algorithm removes at least one edge from the graph,
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merging their connecting vertices (destination and departure vertices). At the end of the
algorithm, the graph will collapse into a couple of vertices, each vertex representing a sub-
graph (cut). Our algorithm can be seen as a variation of the Stoer–Wagner algorithm, al-
though we choose to eliminate edges (not vertices) from the graph. Instead of cutting the
graph at each iteration, our algorithm greedily selects edges for removal. The selection
occurs according to a cutting criterion.

←
←

←
←

∈

Figure 7.1 – The GRAPH-COLLAPSE algorithm.

The GRAPH-COLLAPSE algorithm has two main components. First, the algorithm
uses the input criterion to select an edge from the graph, remove the edge, and make the
necessary adjustments to preserve vertices and edge properties. Regardless of the chosen
criterion, the algorithm modifies the input graph to generate an in-place solution with space
complexity of O(1). For a graph containing |V | vertices, it takes at most (|V |−N) iterations for
the algorithm to complete, where N is the number of clusters (vertices in the resulting graph).
The second part of our algorithm is the cutting criteria. At each iteration, the time complexity
of applying the criterion sums to the graph maintenance operations: vertex merging, edge
removals, adding new vertices to the graph, and cleanup. Since ORT/GCM implements
the graph model using arrays to store vertices and edges data, the time complexity of our
algorithm is linear on the number of edges. Equation 7.1 shows the time complexity of our
algorithm, where C is the time complexity of the selected criterion.
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O(C × |E |
2

) (7.1)

7.3 Cutting Criteria

In the context of this Thesis, application graphs are models representing whole
task sets. As such, removing edges from a graph is the same as removing communication
between tasks, which may sound odd in the context of manycores. However, since we group
tasks in the same CPU core, removing edges means that we are not using the underlying
NoC to transmit application data. Instead, the software writes the payload of removed links
to the memory space. Due to the functioning of our network driver, packets transferred from
one task to another in the same CPU core will use the memory space. The network driver
pushes the packet pointer into the receiving task packet queue; this operation takes only a
couple of instructions (see Section 3.2.3).

Selecting cutting criteria means we select which part of task communication will
transfer through the underlying NoC and which part will transfer through the shared memory
space. Removing edges with the most network payload may sound natural, leaving the
system with the minimum network load possible. In our first attempt to create clusters with
fair usage of system resources, we developed two criteria: MIN-COMM and MAX-COMM.
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Figure 7.2 – The GRAPH-COLLAPSE algorithm applied to a graph using the MIN-COMM
criterion and N = 4. The input graph is shown at the left-top corner (yellow background).
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The MIN-COMM criterion keeps the edges with the minimum communication load
and eliminates edges with the most communication load from the graph. Figure 7.2 shows
the application of the MIN-COMM criterion over a random graph. The GRAPH-COLLAPSE
algorithm removes the edge with the most network load from the graph at each iteration.
The algorithm also merges the vertices before connected by the removed edge, reducing
the size of the graph. Although the resulting clustering optimally reduces the communication
load, the processing load of the clusters is unbalanced.

The MAX-COMM criterion acts similarly to the MIN-COMM criterion, except it re-
moves edges with the minimum network load while keeping the edges with the most network
load. Figure 7.3 shows the application of the GRAPH-COLLAPSE algorithm for the MAX-
COMM criterion over the same graph as the MIN-COMM example. In practice, the MAX-
COMM criterion generates the worst solution when considering network usage. We quickly
observe that graphs generated from MIN-CONN and MAX-CONN criteria do not offer any
balance between computation workload among the tasks. The reason for such results lies in
the lack of relation between computation and communication in the criteria, which removes
edges from the graph regardless of which vertices will be merged.
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Figure 7.3 – The GRAPH-COLLAPSE algorithm applied to a graph using the MAX-COMM
criterion and N = 4. The input graph is shown at the left-top corner (yellow background).
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Figure 7.4 – The GRAPH-COLLAPSE algorithm applied to a graph using the MIN-PROC
criterion and N = 4. The input graph is shown at the left-top corner (yellow background).
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Figure 7.5 – The GRAPH-COLLAPSE algorithm applied to a graph using the MAX-PROC
criterion and N = 4. The input graph is shown at the left-top corner (yellow background).
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The MIN-PROC criterion selects edges whose sum of the CPU load of connected
vertices is the highest among all pairs. In other words, our algorithm merges vertices with
the highest CPU load first. Figure 7.4 shows an example of the GRAPH-COLLAPSE algo-
rithm using the MIN-PROC criterion. Unfortunately, we observed that the vertex with the
highest value absorbs almost all the vertices in the graph, making the MIN-PROC criterion
of little use in a practical scenario. Contrarily, the MAX-PROC provides the most balanced
resulting graph among the criteria discussed so far by first merging the vertices with the
lower CPU load. Figure 7.5 shows an example of the GRAPH-COLLAPSE algorithm using
the MAX-PROC criterion. However, the MAX-PROC criterion neglects the communication
load, creating unbalanced clustering from the communication viewpoint.

7.4 Criteria Evaluation

To better understand the effects of criteria in the graph clustering process using
the GRAPH-COLLAPSE algorithm, we experimented by running our algorithm over a set of
randomly generated graphs. To generate the graphs, we use the ORT/RGG tool, applying
parameters σ = 10, 000 and µ equals the number of edges in the graph. We collect data
from the original graphs generated by the ORT/RGG tool and the resulting graph from the
GRAPH-COLLAPSE algorithm (ORT/GCM) to evaluate the criteria. Finally, we automate
the evaluation using the ORT/GDE tool (Graph Data Extractor), implementing the following
metrics.

M1) Standard Deviation of Edge Values. This metric represents the distribution of the traffic
in the network links. Higher values may indicate network hotspots. This metric is as
Equation 7.2 shows, where xi is the value tagged in the i th vertex of the graph, and µ

is the average vertex tagged value.

M1 =

√
Σ(xi − µ)2

|E |
(7.2)

M2) Standard Deviation of Vertex Values. This metric measures the homogeinity of the
CPU load in the graph application. Lower values represent near-optimal CPU usage,
while higher values represent unbalanced CPU usage among the clusters, assuming
symmetric CPU cores. This metric is as Equation 7.3 shows, where xi is the value
tagged in the i th edge of the graph, and µ is the average edge tagged value.

M2 =

√
Σ(xi − µ)2

|V |
(7.3)
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M3) Normalized Computation/Communication Rating. This metric indicate whether the ap-
plication is computation-dominated (M3 > 1) or communication dominated (M3 < 1),
assuming the instruction throughput of one CPU core aproximates a single 32-bit in-
struction per cycle (IPC) and the network link throughput approximates 32-bit per cycle.
This metric is as Equation 7.4 shows, where xi is the tagged value of the ith vertex in
the graph, and yj is the tagged value of the jth edge in the graph.

M3 =

 |V |∑
i=0

xi

 |E |∑
j=0

yj

−1

(7.4)

We use the ORT/RGG tool to generate 17 random graphs, varying the number of
nodes for 10% of the scale factor, for |V | from 20 to 90, and from 100 to 900. We applied
the MIN-COMM and MAX-PROC criteria to minimize the graph targeting a number of nodes
equals to 16 (e.g., a 4×4 mesh dimension NoC). The number of edges relates to the number
of vertices in the original graph, where we generate graphs in which vertices is connected
to 60% of other vertices in the graph. We use the ORT/GDE tool to automate the analysis
of the resulting graphs and collecting metrics. Values tagged on edges and vertices follow a
normal distribution of center (loc) equals to zero and width equals to 1 (scale), adjusted to
the interval [200; 2000]. Table 7.1 show the results for the evaluation.

Table 7.1 – Results for the evaluation of the MIN-COMM and MAX-PROC criteria, applied to
a 4 × 4 NoC (N = 16). Lines represent graphs and columns represent metrics.

Input Graph Output Graph (MIN-COMM) Output Graph (MAX-PROC)

# |E| |V| ⌊M1⌋ ⌊M2⌋ M3 |E| ⌊M1⌋ ⌊M2⌋ M3 |E| ⌊M1⌋ ⌊M2⌋ M3

1 228 20 3440.995 4232.595 0.089 55 2327 74797 0.390 180 3413 12074 0.113
2 522 30 2706.639 3874.520 0.070 97 2350 157437 0.379 378 2752 22097 0.096
3 936 40 3136.718 3947.190 0.043 128 2976 183704 0.335 724 3142 19479 0.056
4 1470 50 2660.779 4310.756 0.040 167 2473 229173 0.365 1122 2683 28083 0.052
5 2124 60 2634.919 4034.489 0.023 193 2480 225930 0.261 1616 2644 30693 0.031
6 2898 70 2405.791 4266.827 0.025 260 2176 346929 0.283 2198 2382 40310 0.034
7 3792 80 2525.702 3863.026 0.023 330 2338 378513 0.265 2838 2543 43878 0.031
8 4806 90 2167.588 3662.968 0.019 377 1998 389270 0.260 3622 2190 46176 0.027
9 5940 100 2483.120 3326.092 0.015 722 2288 433947 0.132 4401 2486 54298 0.021

10 23880 200 2375.536 3223.859 0.008 732 2231 932012 0.264 17612 2382 114144 0.011
11 53820 300 2195.770 3121.223 0.005 1030 2044 1504970 0.313 40015 2195 157841 0.008
12 95760 400 2150.283 3284.168 0.003 1429 2110 1667189 0.242 70363 2143 192568 0.005
13 149700 500 2013.879 3229.622 0.003 1805 1948 2232758 0.266 111938 2014 254529 0.004
14 215640 600 1986.697 2906.002 0.002 2188 1919 3059979 0.288 160464 1990 311619 0.004
15 293580 700 2062.924 2977.308 0.002 3309 1951 3424459 0.216 215048 2062 396542 0.003
16 383520 800 1913.514 2490.328 0.002 2860 1848 3598534 0.252 281927 1913 446394 0.003
17 485460 900 1882.212 2790.095 0.002 3123 1802 4080599 0.284 358667 1882 482700 0.002
Note A: Measures in blue depict gains over the input graph, while red values depict a worse achieved value.
Note B: Values of M1 and M2 of output graphs rounded up to the nearest integers.
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M1) Standard Deviation of Edge Values:

– Since MIN-COMM removes edges with higher values, the sum of edges values
decreases at each iteration of the algorithm, reducing the overall network load. As
the number of edges in the input graph increases, the lower is M1. This behavior
repeats for the output graph. Since the value of edges is limited to the interval
[200; 2000], the limit of M1 for infinite number of edges is 1.

– The MAX-PROC had little influence on M1, with low variations upper and lower the
baseline value. This explains the lack of relation between computation and com-
munication in the graphs, as the ORT/RGG tool sets edges and vertices based
on a normal distribution with random assignment.

M2) Standard Deviation of Vertex Values:

– The MIN-COMM criterion had little effect on M2, similarly to MAX-PROC in M1.
Once more, the assignment of values to the input graph is random; there is no
association between the value of a vertex and the edges connected to it. However,
as the algorithm removes edges, the values of vertices increases. By the end of
the algorithm, the value of each vertex is either their initial value or the sum of a
set of merged nodes, explaining the increase of M2 values.

– The MAX-PROC criterion also suffers from the increased M2 due to the merging
of vertices. However, the algorithm merges vertices with the least value, leaving
only the vertices with the most value in the graph. Also, newly added vertices has
the sum of the merged vertices as values, reducing the value of M2 in comparison
to MIN-COMM. To add, none of the criteria can generate a graph whose M2 is
lower in comparison to the input graph. However, we observe that MAX-PROC
present a better balance regarding CPU load.

M3) Normalized Computation/Communication Rating:

– The M3 metric indicates that all applications become more computation-dominated
as they are clustered. Since eliminated edges carry communication load, it is ex-
pected the computation-communication rating to increase towards computation.
As the number of vertices increases in the input graph, the clustering process
causes less impact in M3, i.e. M3 is the same for the input and output graph if
the input graph has infinity vertices (limit). The M3 metric increases more in MIN-
COMM as it removes edges with the most communication load from the graph.
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7.5 Proof of Concept

As a proof of concept, we apply our algorithm to the CAR application, a stereo pho-
togrammetry application, used by a car system to detect obstacles and populate a database.
Figure 7.6 shows the application as presented in the reference publication [Shi et al., 2010].
Figure 7.7 shows the graph we build from the scratch. In the paper, the authors provide no
characterization of tasks, i.e. WCET. However, the author present a mapping of the applica-
tion on e 4 × 4 mesh manycore. We consider that their map is at most “perfect balanced”,
i.e. the CPU usage is the same for all CPU, regardless of the task set. We also consider the
theoretical safe limit of 70% CPU usage [Laplante and Ovaska, 2011]. Finally, the WCET of
tasks is the division of the CPU usage (70% for all CPU) by the number of tasks mapped to
that CPU. The informed hyperperiod for the application is 1 second. Assuming an arbitrary
frequency of 1MHz, the extrapolated number of cycles available for tasks is 700, 000 per
second (70% of 1MHz).

  

    

    

    

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

POSI
FBU1

BFE1
VOD1

BFE5
VIBS

FBU5
TPRC

FBU2
OBMG

BFE2
NAVC

BFE6
FDF1

FBU6
STAC

FBU3
OBDB

BFE3
FDF2

BFE7
STPH

FBU7
SPES

FBU4
TPMS 

BFE4
THRC 

USOS

BFE8
VOD2

FBU8
DIRC 

Figure 7.6 – Clustering of the CAR application (Adapted from [Shi et al., 2010]).

We run the ORT/GCM tool to cluster the application (Figure 7.7) using the MAX-
PROC criterion. Figure 7.8 shows the resulting graph. The reference clustering (Figure 7.6)
has a standard deviation of vertices equals zero, as we assumed an optimal use of CPU. The
clustered application, generated by the ORT/GCM tool has a standard deviation of vertices
(M2) equals to 221, 360, rough representing 31% of CPU time waste. Regarding communi-
cation, the reference graph has a standard deviation of edges (M1) equals 410, 267, while
the generated graph has 215, 206. On the one hand, our clustering process increased the
CPU usage in 21%. On the other hand, our method reduced the network usage by 52.45%.
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Figure 7.7 – The CAR Application.
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Figure 7.8 – CAR application, clustered with N=16 and MAX-PROC criteria.

Figure 7.9 shows the result for the MIN-COMM criterion. The M2 of the resulting
graph is 1, 101, 867. As expected, the criterion eliminated edges with the least value from
the graph, collapsing most of the tasks in a single cluster, increasing the CPU usage by
157%. Regarding the communication, the M1 value is 19, 165.638, rough corresponding to
0, 004% of the baseline value.
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7.6 Final Remarks

This chapter presented a method for clustering graphs whose performance is linear
to the number of edges in the application graph. Our method is fully automated by the OR-
T/GCM tool, allowing for fast analysis and clustering of application graphs. One drawback of
our method is the lack of computation balance, as the approach does not support executing
multiple criteria. As a result, the output graph can be unrealistic, either surpassing the CPU
or network capacities of the target system.

One may notice that the clustering criteria aggressively balance the computation or
communication at the cost of unbalance the other. Although the algorithm can solve clus-
tering in linear speed, adjustments must be made to generate realistic clusters. As a future
work, we intend to create new criteria targeting the generation of more balanced graphs,
minimizing both the distance (standard deviation) of edges and vertices of the application
graph.
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8. ORCA RT-TOOLS: SCHEDULING PERIODIC, REAL-TIME
WORKFLOW APPLICATIONS IN NOC-BASED MANYCORE SYSTEMS
USING THE ORT SUITE
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This Chapter discusses the last of
our three approaches for scheduling network
traffic. It also accounts for CPU time and uses
most of the tools presented before. The re-
sults from this part of the Thesis have yet to
be published.

We organize the Chapter as follows.
Section 8.1 presents the overview of our approach, presenting the building blocks of our
approach. In Section 8.2, we present a proof of concept, evaluated in Section 8.3. Finally,
Section 8.4 concludes the chapter while presenting the limitations of our approach.

8.1 The Approach

We propose an approach to deal with applications in which tasks and communi-
cation have real-time constraints. Handling computation and communication in the same
approach is not novel [Khare et al., 2019, Benchehida et al., 2020]. However, the literature
relies on hardware modules to control the time to inject packets into the network, leading
to undesired area overhead and energy overhead. The main contribution to the Chapter
is to show that we can perform RT analysis statically without modifying the underlying ar-
chitecture. To achieve such a result, we use the tools presented in former chapters of this
Thesis. Please note that the tools presented in past chapters automate their corresponding
frameworks. The approach that use that tools, although we could not automate the log-
ging parsing; we had to collect results from the individual tools, doing part of the analysis
manually. However, we included the automation of the approach as a future work.

When developing this approach, our first attempt would include computation and
communication constraints in a single model to generate a single schedule. However, in the
last chapters, we demonstrated that generating a network schedule via constraint models
requires heuristics to handle the search complexity. Also, we demonstrated that a mecha-
nism to enforce the behavior of the schedule is needed. On the one hand, the time that task
schedulers take to switch tasks during the runtime is negligible. On the other hand, the NoC
cannot switch flows from links unless it implements a mechanism such as VCs.

We relied on the distributed programming model property of manycores as an al-
ternative to handle both computation and communication RT requirements. Even sharing
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the same underlying network media, the processing elements of the many-core have indi-
vidual task schedulers that handle a fraction of the application each. The core idea of our
approach lies in predicting the time in which tasks will release packets into the network. If we
can collect the release time of packets, we can also generate a valid network schedule con-
sidering a contention-free environment. The goal is to determine the minimum frequency so
the system can schedule computation (tasks) and communication (flows). Figure 8.1 shows
an overview of our approach and its building blocks.
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Figure 8.1 – The proposed real-time analysis framework for computation and communica-
tion. Blue shapes represent the building blocks (processes). Yellow shapes represent user
inputs. The candidate frequency (green shape) changes during the execution of the work-
flow. Finally, the result of the workflow is the minimum frequency (orange shape). Purple
labels (PO1-PO5) represent partial outcomes.

8.1.1 Task Clustering

We adopt the ORT/GCM tool to cluster tasks targeting the number of PEs of the
baseline platform (Figure 8.1, process 1). The result of the process is an application graph
whose number of vertices is equal to the number of PEs (PO1). To balance the CPU load
between the PEs, we run the ORT/GCM tool using all the criteria discussed in Chapter 7,
picking the result with the slightest standard deviation between vertices values. Due to the
complexity of the GCM algorithm, the time to run all the criteria is negligible (see Section 8.2).
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8.1.2 Task Mapping

Task mapping is a well-developed topic in the manycore literature [Singh et al.,
2013]. One notorious application of task mapping in manycores is energy consumption sav-
ings [Maqsood et al., 2018, Quan and Pimentel, 2015], although other applications such
as network throughput reduction, temperature reduction, and multiple resource optimization
also apply. Task mapping becomes more challenging as the number of tasks, the number of
processing elements, and the complexity of the mapping criteria increase, requiring heuris-
tics to achieve solutions in a feasible time. Thus, most task mapping methods rely on genetic
algorithms, integer linear programming, or simulated annealing search [Singh et al., 2013].

We map clusters to nodes after we merge vertices (tasks), reducing the number
of mapping possibilities. By the end of the clustering process, the resulting graph has the
number of vertices equal to the number of CPUs in the target system. In the worst case,
a brute-force search would take up to n! steps to find the optimal solution by exploring the
whole search space, where n is the number of CPUs. For a 3 × 3 dimension manycore,
it would take 9! = 362, 880 steps. We developed a custom heuristic algorithm called spiral
mapping, which targets mesh-topological manycores. Exploring task mapping is beyond the
scope of the Thesis, and choosing the spiral mapping algorithm was merely due to its linear
performance. However, studies on the spiral algorithm may appear as a future work.

The ORT/SM (Spiral Mapping) tool implements the spiral mapping algorithm. The
algorithm greedily selects task clusters whose communication load is the least. Then, it
allocated that cluster as far as possible from the middle of the NoC. The “middle of the NoC”
refers to the coordinates with the least variation from the middle value of axes. For example,
the middle values of an 8 × 10 NoC are (x = 4, y = 5). Figure 8.1 shows the spiral algorithm
applied to the CAR-APP (see Figure 8.2) on a 4 × 4 manycore. For the sake of readability,
Table 8.1 shows the task clusters. In the example, the algorithm selects the cluster with
the least volume (Figure 8.2, a). It repeats the same until it fills the outer border of the
mesh (b-d). The behavior repeats until all clusters become mapped to the manycore (e-f).
The algorithm performs O(n) on the number of clusters, plus the cost of sorting clusters by
communication volume.

8.1.3 Instantiation

Our approach is iterative, similar to the approach in Chapter 6. At the beginning,
the user informs a tentative frequency. After mapping tasks to the manycore, our approach
requires an application instance targeting a candidate frequency (Figure 8.1, process 3). We
use the tentative frequency value as the candidate frequency during the first iteration.
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Table 8.1 – Network volume of the clustered CAR application (MAX-PROC).
# Cluster Volume # Cluster Volume

1 SPES 15360 9 FBU7:BFE7 51200
2 TPRC 2048 10 FBU8:BFE8 51200
3 THRC 20480 11 BFE3:FDF1 1164800
4 FBU1:BFE1 51200 12 FDF2:STPH 358400
5 FBU2:BFE2 51200 13 POSI:NAVI:DIRC 56832
6 FBU4:BFE4 51200 14 FBU3:VOD1:VOD2 972800
7 FBU5:BFE5 51200 15 USOS:OBDB:OBMG 141312
8 FBU6:BFE6 51200 16 VIBS:TPMS:STAC 22528
NOTE: Network volume is the sum of the weights of all incoming
and outgoing edges of each cluster.
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Figure 8.2 – Application of the the SM algorithm to the clustered CAR application (MAX-
PROC). Numbers represent tasks and blue squares represent CPUs.

For the communication load, the instantiation of flows occur as describe in Chap-
ter 6, except that we leave the minimum release time of flow as a variable (we assumed zero
before). For the computation, our analysis fork into two possibilities: (i) tasks workload is
describe as cycles, or (ii) tasks WCET is expressed in standard time units, e.g., seconds,
milliseconds. In the former case, no modification is necessary, as the next processes treat
time as cycles of the target architecture. In the latter case, we need to scale the application
to the frequency of the system and adjust the number of cycles, i.e. cycles = time

frequency .

8.1.4 CPU time boundary analysis

This step performs schedulability tests on each task set produced by the clustering
process. We perform the test using ORT/GCPA and ORT/BENCH tools, which we used for
scheduling simulation in Chapter 4. We prefer to run the ORT/GCPA test first because it
is faster than the ORT/BENCH test, although the order has no impact on the results. Also,
there is no dependency on the tests, so one may run the entire test set in parallel. To simplify
the automation of the step, we run tests sequentially.
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ORT/GCPA - Graph Critical Path Analysis

The ORT/GCPA tool implements the critical path analysis method (CPA) [Kelley
and Walker, 1959]. The goal of the tool is to find whether the system has enough CPU time
to run the task sets. For this reason, we must apply the method for each task set. The CPA
method calculates the critical path of a task set and appears in other contexts, e.g., logistics
and manufacturing. In our Thesis, the method finds the minimum CPU time required to run
a task set based on the WCET of tasks and the WCTT of communication.

The critical path of an application is the worst-case time to finish processing the
last task in the workflow. Since CPUs carry only subsets of the application task set, we must
account for internal communication (task-to-task communication through memory spaces)
and external communication (through the NoC). Due to the capabilities of our network driver
(see Chapter 3.1), internal communication always takes 10 cycles to occur. Please note that
we model the number of cycles our network driver takes to move packets. If considering
other platforms, one must account for the worst-case operation time of the driver.

The algorithm proceeds as Djkistra’s algorithm for finding the shortest path between
two nodes in a graph [Dijkstra, 1959], except that we multiply the weights of edges (commu-
nication load) by −1. Please note that we cannot apply topological sort to cyclic graphs, so
the application graph must be a directed acyclic graph (DAG). To lift such a restriction, we
use depth-first search (DFS) to find and remove cycles, adding the weight of the removed
edge to all edges pointing to the vertex pointed by the cycle. Since cycles can only occur
locally, we always add 10 cycles, i.e., the worst-case execution time of the NoC driver rou-
tine to move packets between applications in the same CPU. Since NoC driver operations
cannot occur in parallel, we need to sum the value of vertices instead of choosing the one
with the lowest value. Figure 8.3 shows an example of the adapted CPA method.
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10. Indirect communication appear as dashed arrows. Green boxes represent the time to
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A final step in the method is calculating the CPU time spent by interruptions. In our
baseline platform, two kinds of interruption concerns us: (i) task scheduling interruptions,
and (ii) network interruptions. We perform the characterization on interruptions and the
driver considering a worst-case scenario. Equation 8.1 gives the number of cycles required
to run the task set (cluster), where tcluster is the execution time of the cluster, epkts is the
number of incoming external packets, tdriver_irq is the amount of cycles to handle the driver
interruption (incoming packets), tcpa is the result of the CPA method (Figure 8.3), sched_t is
the schedule period in cycles, and tsched_irq is the schedule interruption processing time.

tcluster = (epkts × tdriver_irq) + (tcpa/sched_t) × tsched_irq (8.1)

The tcluster value is the amount of cycles for the cluster to processing. We convert
the application period, (e.g., Figure 6.2) to cycles, using the candidate frequency. The result
is the amount of cycles necessary to run an application iteration, titeration. If tcluster < titeration,
the CPU can schedule the task set. Otherwise, the schedule is unfeasible.

ORT/BENCH - Extracting Packets Release Time from Simulated Scheduling

In Chapter 4, we proposed a scheduling simulator architecture named ORT/BENCH.
The tool can simulate scheduling algorithms using discrete-event simulation, whose simu-
lation speed surpasses the execution of actual kernels. Besides the performance, another
advantage of adopting such a tool is configuring the execution time of system events. For
instance, we can tune the ORT/BENCH tool to simulate multiple system events while setting
an upper-bound execution time for them. In other words, the performance of the tool will
remain the same regardless of the length of events. We can use the ORT/BENCH tool in
parallel to the ORT/GCPA tool, as previously suggested. The ORT/GCPA tool implements
an analytic model, and the performance of the model is bound to the size of the input sys-
tem. Oppositely, the performance of the ORT/BENCH tool is bound to the number of events
under simulation. Nevertheless, increasing the frequency of scheduling interruption in the
system does not affect ORT/GCPA performance, although increasing the number of events
for simulations in ORT/BENCH degrades simulation performance.

To use the ORT/BENCH tool, we need to characterize the system a priori. The
parameters are the same as for the ORT/GCPA method (epkts, tdrive_irq, schedt , and tsched_irq),
except for tcpa. To add, we need to know the scheduling algorithm and the characterization
of tasks, e.g., WCET model or PCD description, — period, capacity, and deadline. After
the simulation, the ORT/BENCH tool indicates the number of cycles taken to process the
entire cluster, i.e. tcluster . Once again, if tcluster < titeration, the schedule is feasible; otherwise,
unfeasible.
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8.1.5 Network Scheduling

Due to the voluntary preemption mechanism implemented by our network driver
(see Section 3.2.3), we enforce the behavior of tasks to follow the Logical Execution Time
(LET) model [Gemlau et al., 2021]. For this reason, we can use the ORT/BENCH to collect
the time in which tasks release packets in the network. The release time of packets is a
requirement for this step of our approach, so using ORT/BENCH to simulate scheduling is
mandatory. We use the LET model to enforce the behavior of tasks, thus allowing us to
predict the access to the memory. In our framework, we adapt the concept to predict the
behavior of packets. Thus, application tasks can only start processing after receiving all
required packets. Analogously, tasks send packets at the end of their processing phase.

8.2 Proof of Concept: The Synthetic Application E

We demonstrate our approach on the Synthetic Application E, shown by Figure 8.4.
We scaled the application in Chapter 7 to make the application CPU dominated, increasing
the WCET of tasks 100 times and the size of packets 10 times.
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Figure 8.4 – The Synthetic Application E.

8.2.1 Task Clustering and Task Mapping

We perform task clustering on the Synthetic Application targeting a 2 × 2 instance
of our baseline platform. For the criteria, we adopt the same strategy we described in Sec-
tion 8.1.1, where we run the ORT/GCM for all the criteria presented in Chapter 7. Figure 8.5
shows the results of the clustering process for the Synthetic Application E. We select the
clustering criterion whose result represents the slightest standard deviation between the
total WCET of clusters, i.e., the most balanced CPU load.
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MIN_PROC, and MAX_PROC criteria. Task colors represent the clusters. Legend shows
the sum of CPU load for each cluster, followed by the standard deviation CPU load.
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We map the selected clustering (Figure 8.5, bottom-right) to our manycore using
the SM algorithm. The map is as Figure 8.6 shows. We name clusters on the tasks they
include; the application has the following clusters: ABDF, C, EHI, and GJ. Cluster C is a
trivial example of a cluster, including only the task C. Cluster ABDF has the most tasks,
although cluster GJ has the most CPU load (peak CPU time requirement of 1, 791, 000
cycles). The total network load per iteration is 237, 800 bytes (communication between
tasks from different clusters), representing 45% of total system communication.

8.2.2 Task Instantiation and Searching for the Minimum Frequency

The number of iterations our approach takes to find the least suitable system fre-
quency depends on two factors. First, the larger the difference between the tentative and
final frequencies, the more steps the approach takes. The performance of our binary-search-
like algorithm (see Section 6.4) is O(log n). Due to knowing the behavior of the application
a priori, we informed 1.5Ghz as the tentative frequency, hoping to shrink the size of the
demonstration presented herein. Second, due to the behavior of the binary search algo-
rithm, the algorithm may not converge without a tolerance factor. For this application, we set
a tolerance factor of 1%; the algorithm will converge once it finds a candidate frequency with
less than 1% difference from the lowest frequency found so far. Figure 8.7 demonstrates the
algorithm results.
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Figure 8.7 – Results of our binary-search-like algorithm. The tentative frequency is 1.5GHz.
The algorithm converges at step 10, finding 500.488MHz as the final frequency.
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In the proposed pre-runtime approach, the algorithm starts with the nominal fre-
quency (1.5GHz) of the platform. The goal is to adjust the platform frequency to minimize
power consumption while meeting RT constraints. If scheduling at the nominal frequency
proves infeasible, the algorithm considers alternative clustering options. In scenarios where
no viable solution emerges, the application is deemed unsuitable for execution on the cur-
rent platform. In this case, the designer may opt for another platform supporting a higher
operation frequency to satisfy the constraints.

8.2.3 ORT/GCPA and the CPA method

We use the ORT/GCPA to find the required number of cycles per iteration. In the
case of the Synthetic Application E, cluster GJ demands the most CPU time. Due to all
CPUs running in parallel, the GJ cluster becomes the bottleneck of the system, limiting the
number of iterations from the CPU perspective. Figure 8.8 synthesizes the results of the
GCPA analysis. Our tool indicates that cluster GJ requires at least 2, 174, 500 cycles to run
one iteration with a CPU load of 86.98%. Note that, at this point, our analysis extends to each
CPU. We discuss the interaction between tasks of different clusters later in Section 8.2.4.

We used the following process to characterize the kernel. First, instead of count-
ing instructions from the assembly, we inserted counters in the hardware to capture kernel
events. We introduced macros in the source code that unwraps to assembly code. The as-
sembly code has an overhead of two instructions. Given our simplifications regarding CPU
time, we understand that accounting for such cycles in our analysis is unnecessary. We use
the counters in two situations: (i) to characterize the number of instructions of the network
driver and scheduler; and (ii) to capture the scheduling events during the RTL simulation.

The result of our characterization is as follows. Scheduling takes at most 110, 000
cycles to occur. We account for clock interruptions, dispatcher time, context switching, and
the scheduling algorithm, considering the worst-case execution time of each part. Our net-
work driver consumes 20, 000 cycles to send packets and 20, 000 cycles to receive packets
(assuming the DMA has already transferred them to the memory). Both values are rough
simplifications of the behavior of dynamic memory allocation (i.e., malloc), which consumes
most of the time in both operations.

ORT/BENCH and Task Scheduling Simulation

We use the ORT/BENCH tool to simulate the behavior of clusters and assert their
schedulability. The characterization of interruptions is the same as that of the ORT/GCPA
tool. We simulate for 5ms (application response rate), i.e., 2, 500, 000 instructions. Fig-
ure 8.9 shows the results of the simulation.
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Figure 8.8 – The CPA method applied to the Synthetic Application E.

Since we provided the exact characterization for the ORT/GCPA and ORT/BENCH
tools, the number of cycles computed by both tools is the same. Besides, the workload
of most tasks is shorter than the scheduling tick, i.e., 5ms, resulting in a fixed number of
calls to the scheduler during each application iteration. Task execution follows a round-robin
algorithm because task scheduling uses data dependency to determine the next task to
run. The system will schedule a task only if all data dependencies are met, i.e., received
necessary packets.

A noteworthy feature of our baseline platform is voluntary preemption. When a
task misses any data dependency, it puts itself in a blocked state to save CPU time through
voluntary preemption. Although of utility in practice, this feature is challenging to simulate.
For ORT/BENCH and ORT/GCPA, we added a worst-case arrival time to tasks to mimic
the behavior of a late packet. Considering that the application will fail if one of the clusters
misses their deadline, we consider that dependencies will always meet their deadlines, and
the cluster will start processing once the input data is available. In the case of Synthetic
Application E, tasks from cluster ABDF will execute one after another in pipeline-fashion ex-
ecution, taking at most 20ms to execute. However, the response time rate of the application
is 5ms.
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Given that the application follows the LET model [Gemlau et al., 2021], tasks only
release packets into the network at the end of their execution. We collect the time the
schedule switches applications from the ORT/Bench tool simulation results and subtract
the network driver time. Then, we use the resulting value as the minimum release time of
packets in the ORT/FNS tool.
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Figure 8.9 – ORT/Bench simulation results for the Sythetic Application E, including the sim-
ulation log (right) and the simulation trace (left).
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8.2.4 Network Scheduling

As we demonstrate in Chapter 6, the ORT/FNS tool can find network schedules
given the characterization of the network traffic using the parameters: (i) minimum release
time, (ii) packet length in bytes, and (iii) a deadline value. Table 8.2 shows the parameters
for the Synthetic Application E.

• We can obtain the length of packets from the application graph. Assumptions on the
network are the same as in Chapter 5 and Chapter 6.

• We set the flow deadline to the time the destination task is scheduled (from OR-
T/BENCH) minus the network driver time. From the resulting value, we subtract the
packet occupancy (same as in Chapter 5).

• The minimum release time of packet, which we once assumed equals zero, now comes
from the ORT/BENCH simulation. We take the time that tasks leave the CPU as the
worst-case release time.

Table 8.2 – Characterization of flows for the Synthetic Application E.
Flow Minimum Release Time Source Destination Volume Deadline

F1 285300 + (phase × pv ) A C 12300 110000 + (phase × pv )
F2 1819300 + (phase × pv ) F G 67800 110000 + (phase × pv )
F3 963300 + (phase × pv ) C E 12000 110000 + (phase × pv )
F4 1280700 + (phase × pv ) I J 56700 1208800 + (phase × pv )
F5 1733700 + (phase × pv ) H J 89000 1208800 + (phase × pv )
pv: phase time (5ms).

We must also adjust the release times and deadlines, accounting for temporal de-
pendency between tasks. For instance, task C is scheduled simultaneously with task A in
a different CPU (see Figure 8.9), so a packet cannot reach C from A in time. To fix the
problem, we introduce a parameter named phase, representing the period in which a task
waits for previous tasks in the workflow to finish. Since the scheduler only elects task C to
run once each 5ms (schedule interruption time), we set the application phase to 5ms. In
practice, the kernel will set the status of the receiving task to READY as soon as a packet
is received. However, the task enters the CPU only in the next scheduling event. A phase
of 5ms corresponds to 2, 500, 000 cycles given a 500MHz frequency. Figure 8.10 illustrates
the concept of a phase.

The Synthetic Flow E application has 4 phases. In practice, due to the missing data
dependencies, the scheduler will not schedule the last task in the graph (output, J) to run in
less than three phases. In phase 1, the scheduler of CPU 0 executes tasks A, B, D, and F
in order. While task B enters the CPU, the network transfers a packet from task A to C. The
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packet will arrive before the end of the phase, flagging task C as READY. However, the CPU
will schedule task C only at the following scheduling event, i.e., at the beginning of the next
phase. The same occurs for all clusters. The message from task C arrives at CPU 1 before
the end of the phase, although the scheduler will schedule task E only at the beginning of
the next phase. The packet from task F to G is ready by the end of the first phase, and task
G will enter the CPU only in the next phase. Task C entered the CPU in phase 2, and Task
E entered in phase 3. Finally, packets from tasks H and I will be ready by the end of phase
3. Task J enters the CPU in phase 4, the last phase.
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Figure 8.10 – Phases of the Synthetic Application E (a) and an example of phase (b), col-
lected from RTL simulation. Blue lines represent scheduling activity (amortized).

8.3 Approach Evaluation

We evaluate our approach by simulating our baseline platform at the register-
transfer level (RTL). We use ModelSim 2021.1 on a computer Intel® Xeon® E3-1220 v5 CPU
@3.00GHz with 32GB RAM. The RTL project mixes VHDL and SystemVerilog languages.
Additional configurations of the project include:

• A 2ns clock period, i.e. the system runs at 500MHz.

• We artificially release task A iterations each 5ms, following the application expected
response rate of 200 iterations per second.

• Due to the configuration of the network driver at the startup, we delayed the execution
of the first iteration of task A to occur at 30ms (warm-up time).

• We set the number of scheduling interruptions per second to 200, i.e., a 5ms task
execution window. The scheduling algorithm selects tasks based on their data depen-
dency; only tasks that meet data dependencies can enter the CPU.
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We could capture the scheduling behavior during the RTL simulation with the coun-
ters we used during kernel characterization. A memory-mapped register stores the identifier
of the running tasks (i.e., an integer number). Once the schedule changes the running task,
the register captures the value from the software. Figure 8.11 shows the results of the sim-
ulation for the Synthetic Application E. In the Figure, tasks receive colors according to their
identifier. The kernel adds the IDLE task to occupy CPU time when no task can run, having
the identifier 0. The rest of the tasks receive numbers from one up to the limit of tasks in the
system.

Figure 8.11 – Results of the RTL simulation for the Synthetic Application E. Colors follow
tasks identifiers, where 0 is red, 1 is green, 2 is orange, 3 is light blue, and 4 is blue. Lanes
represent the CPUs of the manycore.

The system will only schedule the task IDLE if no other task can run. A task can
only run by meeting its data dependencies. Task A is a particular case, as its run condition is
bound to time (5ms), which we artificially control by hardware. In the case of cluster ABDF,
we observe that all tasks run in the same order as the task graph. The last task to run is Task
F, leaving the rest of the CPU time to the IDLE task. Cluster ABDF executed in 1, 439, 000
cycles. Our analysis indicated a requirement of 1, 819, 300 cycles, 126% of the actual value
(≃ 26% overestimation). Table 8.3 presents the results for all clusters.
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Table 8.3 – Results of RTL simulation for Synthetic Application E (CPU).
Cluster Execution Time* Estimation** Difference Difference %

ABDF 1, 439, 000 1, 819, 300 +380, 300 +26.428%
C 801, 300 963, 300 +162.000 +20.217%
EHI 2, 174, 500 2, 667, 895 +493, 395 +22.690%
GJ 2, 384, 400 3, 014, 400 +630.000 +26.421%
* Execution time in cycles, measured from RTL simulation in ModelSim.
** Estimated execution time in cycles, taken from ORT/GCPA tool.
NOTE 1: “Difference %” takes execution time as 100%.

3 4 5 6 11 12 13 14

40,027,390

56,820,530

16,793,140

Figure 8.12 – Phases of the Synthetic Application E, collected from the RTL simulation.
Colored rectangles represent phases of the same iteration. Interaction between tasks F and
G is showed at the right for the sake of readability (phases 9 to 12). Other interactions
appear at the left (phases 3 to 6). Arrows indicate the direction of the workflow. The yellow
rectangle represents a phase overlapping. Phase 3 took 16, 793, 140 cycles to complete.

Regarding CPU time, our approach overestimated the execution time of all clus-
ters by an average of 23.934%. This overestimation represents a waste of ≃ 24% of CPU
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time in all CPUs. Cluster ABDF had the worst estimation, representing ≃ 26% of CPU time
waste. However, please note that our worst estimation is within the limits of CPU utilization
suggested by the literature, where a CPU utilization of ≥ 70% is often considered question-
able [Laplante and Ovaska, 2011].

Figure 8.12 shows the phases of Synthetic Application E. We assert phases by
collecting the beginning and end times of iterations, using the same hardware we used to
collect the execution time of tasks. The hyperperiod of the application is 20ms, with the
four iterations in the hyperperiod having a different behavior (e.g. iteration 4 took 3, 994, 080
cycles to complete). For instance, task C processes packets from the first and second
iterations in the same phase. Since task C will be preempted only at the end of the phase,
it checks for the queue and finds the packet from the second iteration. The same occurs in
cluster EIH, where task E received two packets from task C. Task J enters the CPU with one
packet in the queue, receiving a second packet during the processing. Task J processes
iterations one and two after another, leaving the CPU afterward. Later, the task processes
iteration 3, leaving the CPU once more. The task processes the later iteration while entering
the CPU the third time. During the hyperperiod, iterations 1 and 3 took 16.793ms and
16.438ms to run. iterations 2 and 4 took 12.799ms and 12.486ms to run. None of the
iterations took more than the 20ms response time limit. As no deadline violation occurred,
the application has successfully met its real-time requirements.

8.4 Final Remarks

In this chapter, we propose an approach for asserting the real-time properties of
applications, considering computation and communication aspects of the system. The pro-
posed approach relies on tools presented in earlier chapters of the Thesis. We demonstrate
our our proposal for a synthetic application, which could guarantee both response time and
response rate. We evaluate our approach using RTL simulation and our baseline manycore.

Our approach is novel as it approaches computation and communication without
requiring modifications to the system and applies to general-purpose NoCs. We did not
intervene with the manycore at the hardware level, preserving the same baseline platform
described in Chapter 3. For the software, the only modification we made concerns the
controlled execution of task A, guaranteeing its execution rate of 5ms. In a real-world system,
the rate of the task would be controlled by the input, e.g., a sensor or other source from
outside the system.

One drawback of our application is the lack of automation, which prevented us from
experimenting with more applications. However, we want to use a single tool to group the
tools presented throughout this Thesis in the future. We also want to apply our approach to
real-world applications. Unfortunately, larger applications are rarely found in the literature.
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9. CONCLUSION

This Thesis presented an approach for guaranteeing real-time properties of appli-
cations in manycores, considering computation and communication aspects of the system.
We had to develop an initial approach from scratch, as presented in Chapter 5, evolving it
several times until we achieved a more comprehensive framework (Chapter 8). During the
development of the Thesis, we employed techniques that included system simulation (Chap-
ter 4), constraint programming (Chapter 5), and problem optimization (Chapter 6). By the
end of the Thesis, we mixed all these techniques in a single framework (Chapter 8), which
we could demonstrate using the ORCA2 manycore as the baseline platform (Chapter 3).

9.1 Discussion

In Chapter 1, we introduced the Thesis by questioning whether we could guarantee
the real-time properties of an application, approaching both communication and computa-
tion aspects of the system, without making incursions into the manycore architecture. The
questioning was propelled by a gap in the literature, whose approaches (Chapter 2) rely on
specific features of the underlying hardware. The approaches in the literature were too spe-
cific and rarely applicable to other systems but the ones discussed in their demonstrations.
Although unlikely to meet the requirements of all possible manycores, our approach has no
hardware requirements that bind it to a single platform and is generic enough to be applied
to a wide range of systems. Consequently, we can perform RT analysis on general-purpose
NoCs despite properties such as routing algorithm, buffer size, and switching, requiring such
properties to be abstracted in the RT model.

We achieved all the secondary goals of the Thesis. First, we could perform RT
analysis on a manycore whose hardware has no native support for RT (subgoal 1). As
we do not modify the hardware of the system, we understand that the area and energy
requirements of the design are preserved. We programmed a suite of tools — ORT — to
automate most of the analysis, except for a part of the approach in Chapter 8 (subgoal
4, partial fulfillment). The models used within the tools serve no specific system and have
room for modifications, requiring no modifications to the tools in most cases (subgoal 2). Our
approach is scalable due to the custom search method we developed in Chapter 6 (subgoal
3). Lastly, our tools and the baseline platform are open hardware and open source, requiring
no commercial technology to run (subgoal 5).
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9.2 Lessons Learned and Future Works

1. We initially proposed the ORT/BENCH tool as an academic tool, but later, we repur-
posed the tool to simulate our system as part of the herein-proposed approach. While
experimenting with the tool, we struggled to model some characteristics of our system,
notably the behavior of packets and the effect of interruption in the schedule. We solved
the issue by characterizing the system, assuming a pessimistic worst-case execution
time for the software components. As a future work, we would like to improve the tool,
mainly providing support for the voluntary preemption mechanism of our manycore. In
addition, we would like to experiment with a compiled model as an alternative to the
discrete-event model, making the tool closer to the execution of an actual kernel.

2. One advantage of the constraint model from our initial approach is its optimization
accuracy. Although the performance of ILP solvers is poor compared to our AGS al-
gorithm, our constraints can deliver cycle-accurate network analysis. Automating the
constraint generation from a higher-level model could help analyze smaller parts of
the system, e.g., buses. The AGS algorithm, implemented in the ORT/FNS tool, over-
comes the performance problem of constraint models. Unfortunately, we should have
modeled the CPU using constraints. If we include the CPU models in the constraint
set, an alternative for the analysis of Chapter 8 could be another heuristic-based tool,
replacing both the ORT/GCPA and ORT/BENCH tool in the approach.

3. The graph tools in Chapter 7 are a promising approach for clustering tasks in many-
cores. However, the lack of a criterion to contemplate computation and computation
makes the resulting graph unbalanced. In future work, we want to explore the al-
gorithm, electing edges to remove from the graph based on other decision-making
algorithms, e.g., simulated annealing.

4. The ORCA2 platform, used as the baseline platform in our studies, could be better
integrated with the tools we developed. To make our approach independent of the
platform, we collected data from the system through simulation logs, special registers
in the architecture, and software output. We intend to create interfaces to ease runtime
data gathering from the platform. One option could be to use SystemVerilog interfaces
to avoid tampering with the hardware.

5. We intend to perform a systematic review of the literature to document and discuss
the references of Chapter 2. As far as we know, the last review on RT NoCs dates
from 2017 [Hesham et al., 2017] (almost seven years as of March 2024). Besides
including newer studies in the review, we intend to include other studies on RT directed
to manycores. The approaches presented in this Thesis, for instance, have the same
purpose of RT NoCs, although they approach the problem from a different perspective.
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6. Finally, we can improve the approach presented in Chapter 8 in several ways. One pos-
sible direction could be narrowing the scope of the approach, contemplating a smaller
set of systems, e.g., only packet switching NoCs. However, one of the goals of the
Thesis is the development of a generic approach. To keep the approach as generic as
possible, we intend to work on a formal way to describe the approach inputs. Another
future work includes the componentization of the approach, allowing fast switching of
components specific to certain NoC features. For example, two components could be
used in the same part of the workflow, one for PS networks and another one for CS
networks. Another opportunity would be exploring the reuse of components to create
different tools from a single tooling platform. One of the goals of creating custom tools
is to reduce the waste of the system resources. Although our tool achieved < 30% of
CPU waste, we can improve the results through model specialization. As for the NoC,
a network utilization waste is acceptable as long as the application is computation-
dominated like most of the applications herein discussed.

9.3 Final Thoughts

This thesis explored the domain of manycore systems, focusing on realizing real-
time application requirements. We presented the evolution of our approach while discussing
its applicability in a low-cost manycore. Our approach is novel, as other approaches in the
literature require specific hardware on target platforms. Although requiring some polishing,
the approach allowed for exploring RT analysis at the pre-runtime without overfitting our
models to specific platforms. We plan to keep exploring the field in the future, helping to
promote manycores in the hardware-software, critical-mission, and embedded applications
domain.
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