PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO GRANDE DO SUL FACULDADE DE ENGENHARIA PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA

ANÁLISE DE DESEMPENHO E PERDAS EM MÁQUINAS PENTAFÁSICAS COM CAMPO TRAPEZOIDAL NO ENTREFERRO COMPARADAS COM MÁQUINAS CONVENCIONAIS

RICARDO SCHÄFFER DA ROSA

Porto Alegre, Março de 2010

RICARDO SCHÄFFER DA ROSA

ANÁLISE DE DESEMPENHO E PERDAS EM MÁQUINAS PENTAFÁSICAS COM CAMPO TRAPEZOIDAL NO ENTREFERRO COMPARADAS COM MÁQUINAS CONVENCIONAIS

Dissertação apresentada para obtenção do grau de Mestre, pelo Programa de Pós-graduação em Engenharia Elétrica da Faculdade de Engenharia Elétrica da Pontifícia Universidade Católica do Rio Grande do Sul.

Orientador: Prof. Dr. Luís Alberto Pereira

Porto Alegre, Março de 2010

Dedicatória

Dedico este trabalho aos meus pais, que sempre me incentivaram nas minhas escolhas e me proporcionaram estudos de qualidade.

Agradecimentos

Às agências de fomento à pesquisa, CNPq e Capes, por possibilitarem a realização do mestrado através da concessão de bolsas de estudos.

Ao Professor Luís Alberto Pereira, que muito me ensinou sobre máquinas elétricas nestes seis anos em que foi meu orientador, iniciando na graduação até a finalização do presente trabalho de mestrado.

Aos meus pais, Adalberto Santos da Rosa e Elisabeth Schäffer da Rosa, e ao meu irmão, André Schäffer da Rosa, que sempre estiveram ao meu lado.

Resumo

Resumo da Dissertação apresentada a PUCRS como parte dos requisitos necessários para obtenção do grau de Mestre em Engenharia Elétrica.

ANÁLISE DE DESEMPENHO E PERDAS EM MÁQUINAS PENTAFÁSICAS COM CAMPO TRAPEZOIDAL NO ENTREFERRO COMPARADAS COM MÁQUINAS CONVENCIONAIS

RICARDO SCHÄFFER DA ROSA

Março/2010.

Orientador: Prof. Dr. Luis Alberto Pereira Área de Concentração: Sistemas de Energia Linha de Pesquisa: Planejamento e Gestão de Sistemas de Energia Palavras chave: Máquinas Elétricas, máquinas pólifásicas, perdas magnéticas

Neste trabalho é realizado um estudo dos mecanismos de perdas magnéticas em máquinas pentafásicas com campo magnético trapezoidal no entreferro. A indução magnética trapezoidal no entreferro pode ser obtida pela inclusão de uma componente de 3° harmônica no campo magnético, o qual pode ser proveniente da saturação magnética do ferro ou da injeção de corrente com componente de 3° harmônica. Sendo as perdas no ferro do estator relacionadas à variação do campo magnético nos dentes e na coroa deste, relações entre os harmônicos do campo do entreferro e do campo dos dentes e da coroa do estator são estudados. As perdas magnéticas no ferro são divididas em perdas por histerese, perdas por corrente parasita e perdas por excesso, sendo que, para cada uma destas o equacionamento das perdas foi expandido de modo a considerar a inclusão do efeitos de harmônicos, em especial do 3° harmônico, no campo magnético. São realizadas simulações para diversos materiais, para o modelo de um protótipo utilizando campo magnético senoidal e trapezoidal no entreferro a fim de se comparar o comportamento das perdas e a influencia dos harmônicos. Por fim são realizados ensaios no protótipo para comprovação experimental dos resultados.

Abstract

Abstract of Dissertation presented to PUCRS as one of the requirements to obtain Masters Degree in Electrical Engineering.

LOSSES AND PERFORMANCE ANALYSIS IN FIVE-PHASE MACHINES WITH TRAPEZOIDAL FIELD IN THE AIRGAP COMPARED TO CONVENTIONAL MACHINES

RICARDO SCHÄFFER DA ROSA

March/2010.

Advisor: Prof. Dr. Luis Alberto Pereira Concentration Field: Power Systems Line of Research: Planning and Management of Energy Systems Keywords: Electrical Machines, multiphase machines, magnetic losses

This work presents a study on the magnetic losses in five-phase machines with a trapezoidal magnetic induction in the airgap. A trapezoidal magnetic induction in the airgap can be obtained by means of a third harmonic component in the magnetic induction, which can be generated by magnetic saturation of iron or by the injection of a stator current with third harmonic component. Being the iron losses of stator related to the magnetic field variation on teeth and stator core, relations between the harmonics in the airgap, teeth and stator core fields are derived and presented. The magnetic losses in the iron parts can be divided into three components: hysteresis losses, eddy currents losses and excess losses. The loss model of each loss component is extended to consider the inclusion of harmonic effects, especially those related to the third harmonic of the magnetic induction. Simulations have been performed for four different kinds of magnetic material using the finite element method and the data of a five phase prototype with trapezoidal and sinusoidal magnetic fields in airgap in order to compare the losses behavior and harmonics influence. The losses for the prototype considering a trapezoidal and sinusoidal magnetic fields in airgap in other to test results.

Índice

1. Intr	odução	31
1.1	Objetivos da Dissertação	36
1.2	Motivação	36
1.3	Organização da Dissertação	36
1.4	Publicações Relacionadas	37
1.5	Protótipo	37
1.5	Volume de Material dos Dentes do Estator	39
1.5	5.2 Volume de Material da Coroa do Estator	39
2. Gen	ração de 3° Harmônico na Indução Magnética no Entreferro de Máquinas Elétricas	41
3. Per	das em Máquinas Elétricas	47
3.1	Indução Magnética	47
3.1	.1 Indução Sobre a Seção da Coroa do Estator	50
3.1	.2 Indução no Dente do Estator	54
3.2	Mecanismos de Perdas	55
3.2	Perdas Mecânicas, Joule e Adicionais	55
3.2	2.2 Perdas por Histerese	58
3.2	2.3 Perdas Parasitas	60
3.2	Perdas por Excesso	63
3.3	Conclusão do Equacionamento de Perdas Magnéticas	64
4. Mo	delos computacionais	65
4.1	Cálculo dos Harmônicos de Indução	65
4.1	.1 Indução nos dentes do Estator	68
4.2	Cálculos das Perdas Magnéticas	72
4.2	Parâmetros A	74
4.2	Parâmetros B	77
4.2	Parâmetros C	83
4.2	2.4 Parâmetros D	86
4.2	2.5 Simulações em Frequência	89
4.3	Conclusão das Simulações	92
5. Ens	saios	95
5.1	Determinação das Perdas Mecânicas	95
5.2	Induções magnéticas	97
5.3	Perdas Magnéticas	.100

5.4 Concl	usão dos Ensaios	
6. Conclusão		
6.1 Traba	lhos Futuros	
7. Referência	15	
Anexo A – T	abelas de Dados	113
Anexo A.1	– Tabelas de Harmônicos	113
Anexo A.2	– Tabelas de Perdas: Parâmetros A	116
Anexo A.3	– Tabelas de Perdas: Parâmetros B 8065	
Anexo A.4	– Tabelas de Perdas: Parâmetros B 5365	
Anexo A.5	– Tabelas de Perdas: Parâmetros B 3565	
Anexo A.6	– Tabelas de Perdas: Parâmetros C	141
Anexo A.7	– Tabelas de Perdas: Parâmetros D	148
Anexo A.8	- Tabelas de Perdas: Perdas em Função da Frequência	155
Anexo B – G	ráficos	173
Anexo B.1	– Gráficos de Perdas: Parâmetros A	173
Anexo B.2	– Gráficos de Perdas: Parâmetros B 8065	177
Anexo B.3	– Gráficos de Perdas: Parâmetros B 5365	
Anexo B.4	– Gráficos de Perdas: Parâmetros B 3565	
Anexo B.5	– Gráficos de Perdas: Parâmetros C	
Anexo B.6	– Gráficos de Perdas: Parâmetros D	
Anexo C – A	rtigos Submetidos	195
Anexo C.1 of Five Phas	 Analysis of the Influence of Saturation on the Airgap Induction Induction Machines 	Waveform
Anexo C.2 Induction W	– Magnetic Losses of Five Phase Induction Machines with Optimiz aveform	zed Airgap 201

Índice de Figuras

Figura 1 – Corte transversal de dois pólos da máquina pentafásica	
Figura 2 – Dimensões do dente do estator	
Figura 3 – Diagramas fasorias de tensão fundamental (setas vazadas) e corrente de 3° harm	nônico
(setas cheias): (a) máquina trifásica; (b) máquina pentafásica	41
Figura 4 - Curva de indução magnética no entreferro para injeção de corrente senoida	al. (a)
Corrente nominal - 3º harmônico de indução próximo de 0,870%; (b) Corrente de 3 ve	ezes a
nominal – 3º harmônico de indução próximo de 15%	42
Figura 5 – Curva de indução magnética no entreferro para injeção de corrente com 3° harm	ônico,
3º harmônico com valor de 38% da fundamental (a) Corrente nominal – 3º harmônico de in	dução
próximo de 13%; (b) Corrente de 3 vezes a nominal – 3º harmônico de indução próximo de	20%.
	43
Figura 6 - Curva de tensão induzida em uma bobina de prova no entreferro do protótipo	o para
injeção de corrente senoidal: (a) Corrente nominal, componente de 3° harmônico de in	dução
magnética menor de 1%; (b) Corrente de 190% da nominal, componente de 3° harmôni	ico de
indução magnética de aproximadamente 13%.	44
Figura 7 - Curva de tensão induzida em uma bobina de prova no entreferro do protótipo	o para
injeção de corrente com componente de 3° harmônico: (a) Corrente nominal, componente	de 3°
harmônico de indução magnética de aproximadamente 7%; (b) Corrente de 190% da nor	minal,
componente de 3° harmônico de indução magnética de aproximadamente 16%	44
Figura 8 – Corte de dois pólos do protótipo com a secção da coroa reduzida à metade da or	iginal.
	45
Figura 9 - Curva de indução magnética no entreferro para injeção de corrente senoidal e	coroa
reduzida a metade da secção original. (a) Corrente nominal - 3º harmônico de indução pro	óximo
de 7,8 %; (b) Corrente de 3 vezes a nominal – 3º harmônico de indução de 21%	46
Figura 10 – Indução no entreferro sobre um pólo da máquina pentafásica, componentes ra	adial e
tangencial	47
Figura 11 - Indução nos dentes sobre um pólo da máquina pentafásica, componentes ra	idial e
tangencial	48
Figura 12 – Indução na coroa do estator para diferentes raios, componente radial	49
Figura 13 – Indução na coroa do estator para diferentes raios, componente tangencial	49

Figura 14 – Curvas de indução no entreferro: (a) Curva obtida pelo FEM2000 e curva gerada por
série de Fourier utilizando 30 harmônicos; (b) Curva obtida pelo FEM2000, curvas da
fundamental, 3° harmônico e resultante
Figura 15 - Mapa de linhas equipotenciais de indução magnética sobre dois pólos de uma
máquina pentafásica
Figura 16 – Detalhe do corte do estator, com a medida da altura da coroa
Figura 17 - Curvas de indução magnética na coroa do estator para diferentes raios, componente
tangencial
Figura 18 – Comparativo da curva de indução magnética média com as curvas de menor e maior
raio, componente tangencial
Figura 19 – Comparativo da curva de indução magnética média com a curva calculada a partir
dos harmônicos de indução do entreferro pelas equações (26), (27) e (28)54
Figura 20 – Formas de onda de indução no entreferro e no dente para uma máquina pentafásica
alimentada com fundamental e 3º harmônico no nível de 38% da fundamental calculado com o
FEM2000
Figura 21 - Gráfico normalizado da variação das perdas por histerese na coroa e nos dentes do
estator em função de α para 3º harmônico de indução magnética com valor de 15% da
fundamental nos dentes e 5% da fundamental na coroa do estator
Figura 22 – Lamina fina imersa em campo magnético, [15]60
Figura 23 – Corrente na placa da Figura 22, [15]60
Figura 24 – Relação entre a variação de indução magnética e a densidade de corrente induzida,
[15]60
Figura 25 - Análise harmônica realizada pelo FEM2000 para a indução no entreferro com
corrente nominal sem componente de 3º harmônico66
Figura 26 – Variação da componente fundamental de indução no entreferro em função do nível
de corrente injetado para corrente senoidal e correntes com 3° harmônico66
Figura 27 – Variação da componente de 3° harmônico de indução no entreferro em função do
nível de corrente injetado para corrente senoidal e correntes com 3° harmônico66
Figura 28 – Variação da componente fundamental de indução na coroa do estator em função do
nível de corrente injetado para corrente senoidal e correntes com 3° harmônico68
Figura 29 – Variação da componente de 3º harmônico de indução na coroa do estator em função
do nível de corrente injetado para corrente senoidal e correntes com 3° harmônico68

Figura 38 – Perdas magnéticas no estator: superior: perdas absolutas; inferior: perdas em percentual, normalizadas em função das perdas com corrente senoidal – Parâmetros B 536581 Figura 39 – Percentual de perdas em relação ao total de perdas magnéticas – Parâmetros B 5365

Figura 56 – Perdas por histerese na coroa do estator: superior: perdas absolutas; inferior: perdas em percentual, normalizadas em função das perdas com corrente senoidal – Parâmetros A 173 Figura 57 – Perdas por histerese nos dentes do estator: superior: perdas absolutas; inferior: perdas em percentual, normalizadas em função das perdas com corrente senoidal – Parâmetros A

Figura 58 – Perdas por corrente parasita na coroa do estator: superior: perdas absolutas; inferior: perdas em percentual, normalizadas em função das perdas com corrente senoidal – Parâmetros A

Figura 60 – Perdas por excesso na coroa do estator: superior: perdas absolutas; inferior: perdas em percentual, normalizadas em função das perdas com corrente senoidal – Parâmetros A 175 Figura 61 – Perdas por excesso na coroa do estator: superior: perdas absolutas; inferior: perdas em percentual, normalizadas em função das perdas com corrente senoidal – Parâmetros A 175 Figura 62 – Perdas magnéticas na coroa do estator: superior: perdas absolutas; inferior: perdas em percentual, normalizadas em função das perdas com corrente senoidal – Parâmetros A 176 Figura 63 – Perdas magnéticas nos dentes do estator: superior: perdas absolutas; inferior: perdas em percentual, normalizadas em função das perdas com corrente senoidal – Parâmetros A 176 Figura 64 – Perdas por histerese na coroa do estator: superior: perdas absolutas; inferior: perdas em percentual, normalizadas em função das perdas com corrente senoidal – Parâmetros B 8065 Figura 65 – Perdas por histerese nos dentes do estator: superior: perdas absolutas; inferior: perdas em percentual, normalizadas em função das perdas com corrente senoidal – Parâmetros B Figura 66 – Perdas por corrente parasita na coroa do estator: superior: perdas absolutas; inferior: perdas em percentual, normalizadas em função das perdas com corrente senoidal – Parâmetros B Figura 67 – Perdas por corrente parasita nos dentes do estator: superior: perdas absolutas; inferior: perdas em percentual, normalizadas em função das perdas com corrente senoidal -Figura 68 – Perdas magnéticas na coroa do estator: superior: perdas absolutas; inferior: perdas em percentual, normalizadas em função das perdas com corrente senoidal - Parâmetros B 8065 Figura 69 – Perdas magnéticas nos dentes do estator: superior: perdas absolutas; inferior: perdas em percentual, normalizadas em função das perdas com corrente senoidal - Parâmetros B 8065 Figura 70 – Perdas por histerese na coroa do estator: superior: perdas absolutas; inferior: perdas em percentual, normalizadas em função das perdas com corrente senoidal - Parâmetros B 5365 180 Figura 71 – Perdas por histerese nos dentes do estator: superior: perdas absolutas; inferior: perdas em percentual, normalizadas em função das perdas com corrente senoidal - Parâmetros B Figura 72 – Perdas por corrente parasita na coroa do estator: superior: perdas absolutas; inferior: perdas em percentual, normalizadas em função das perdas com corrente senoidal - Parâmetros B

Figura 73 – Perdas por corrente parasita nos dentes do estator: superior: perdas absolutas; inferior: perdas em percentual, normalizadas em função das perdas com corrente senoidal -Figura 74 – Perdas magnéticas na coroa do estator: superior: perdas absolutas; inferior: perdas em percentual, normalizadas em função das perdas com corrente senoidal - Parâmetros B 5365 Figura 75 – Perdas magnéticas nos dentes do estator: superior: perdas absolutas; inferior: perdas em percentual, normalizadas em função das perdas com corrente senoidal - Parâmetros B 5365 Figura 76 – Perdas por histerese na coroa do estator: superior: perdas absolutas; inferior: perdas em percentual, normalizadas em função das perdas com corrente senoidal - Parâmetros B 3565 Figura 77 - Perdas por histerese nos dentes do estator: superior: perdas absolutas; inferior: perdas em percentual, normalizadas em função das perdas com corrente senoidal - Parâmetros B Figura 78 – Perdas por corrente parasita na coroa do estator: superior: perdas absolutas; inferior: perdas em percentual, normalizadas em função das perdas com corrente senoidal – Parâmetros B Figura 79 – Perdas por corrente parasita nos dentes do estator: superior: perdas absolutas; inferior: perdas em percentual, normalizadas em função das perdas com corrente senoidal -Figura 80 – Perdas magnéticas na coroa do estator: superior: perdas absolutas; inferior: perdas em percentual, normalizadas em função das perdas com corrente senoidal - Parâmetros B 3565 Figura 81 – Perdas magnéticas nos dentes do estator: superior: perdas absolutas; inferior: perdas em percentual, normalizadas em função das perdas com corrente senoidal - Parâmetros B 3565 Figura 82 – Perdas por histerese na coroa do estator: superior: perdas absolutas; inferior: perdas em percentual, normalizadas em função das perdas com corrente senoidal - Parâmetros C 186 Figura 83 – Perdas por histerese nos dentes do estator: superior: perdas absolutas; inferior: perdas em percentual, normalizadas em função das perdas com corrente senoidal - Parâmetros C

Figura 84 – Perdas por corrente parasita na coroa do estator: superior: perdas absolutas; inferior: perdas em percentual, normalizadas em função das perdas com corrente senoidal – Parâmetros C

Figura 86 – Perdas por excesso na coroa do estator: superior: perdas absolutas; inferior: perdas em percentual, normalizadas em função das perdas com corrente senoidal – Parâmetros C 188 Figura 87 – Perdas por excesso na coroa do estator: superior: perdas absolutas; inferior: perdas em percentual, normalizadas em função das perdas com corrente senoidal – Parâmetros C 188 Figura 88 – Perdas magnéticas na coroa do estator: superior: perdas absolutas; inferior: perdas em percentual, normalizadas em função das perdas com corrente senoidal – Parâmetros C 189 Figura 89 – Perdas magnéticas nos dentes do estator: superior: perdas absolutas; inferior: perdas em percentual, normalizadas em função das perdas com corrente senoidal – Parâmetros C 189 Figura 89 – Perdas magnéticas nos dentes do estator: superior: perdas absolutas; inferior: perdas em percentual, normalizadas em função das perdas com corrente senoidal – Parâmetros C 189 Figura 90 – Perdas por histerese na coroa do estator: superior: perdas absolutas; inferior: perdas em percentual, normalizadas em função das perdas com corrente senoidal – Parâmetros D 190 Figura 91 – Perdas por histerese nos dentes do estator: superior: perdas absolutas; inferior: perdas absolutas; inferior: perdas absolutas; inferior: perdas das perdas com corrente senoidal – Parâmetros D 190

Figura 92 – Perdas por corrente parasita na coroa do estator: superior: perdas absolutas; inferior: perdas em percentual, normalizadas em função das perdas com corrente senoidal – Parâmetros D

Figura 97 – Perdas magnéticas nos dentes do estator: superior: perdas absolutas; inferior: perdas em percentual, normalizadas em função das perdas com corrente senoidal – Parâmetros D 193

Índice de Tabelas

Tabela 1 – Dados do protótipo extraídos de [16]	
Tabela 2 – Dados do protótipo e materiais	
Tabela 3 – Valores da previsão de perdas por histerese normalizadas em função das per	das com
indução magnética senoidal.	59
Tabela 4 - Previsão de variação das perdas magnéticas com utilização de indução m	agnética
trapezoidal no entreferro, comparado à utilização de indução magnética senoidal no en	treferro.
Considerando $\alpha = 1.7 \text{ e Bg3/Bg1} = 15\%$	64
Tabela 5 – Harmônicos de indução magnética espacial no entreferro e nos dentes do estat	or69
Tabela 6 – Parâmetros da referência [15]	75
Tabela 7 – Perdas magnéticas utilizando os parâmetros A, referência [15], e corrente nom	ninal .75
Tabela 8 – Parâmetros da referência [33]	77
Tabela 9 - Perdas magnéticas utilizando os parâmetros B 8065, referência [33], e	corrente
nominal	79
Tabela 10 - Perdas magnéticas utilizando os parâmetros B 5365, referência [33], e	corrente
nominal	
Tabela 11 - Perdas magnéticas utilizando os parâmetros B 3565, referência [33], e	corrente
nominal	
Tabela 12 – Parâmetros da referência [35]	
Tabela 13 – Perdas magnéticas utilizando os parâmetros C, referência [35], e corrente	nominal
Tabela 14 – Perdas magnéticas utilizando os parâmetros D e corrente nominal	
Tabela 15 – Coeficientes das curvas de potência ajustada	97
Tabela 16 - Resultados dos ensaios e comparação de perdas para o protótipo alimenta	ado pelo
inversor	101
Tabela 17 - Perdas magnéticas totais considerando fator de perdas rotacionais - referên	ncia [36]
– Parâmetros D	102
Tabela 18 – Perdas magnéticas totais para nível nominal – Parâmetros B8065	102
Tabela 19 – Comparativo das perdas simuladas para o material B8065 e as perdas	medidas
utilizando o conversor eletromagnético de fases	103

Tabela 20 - Comparação de perdas para acionamento com inversor PWM e diretamente
conectado a rede elétrica trifásica por meio de um conversor eletromagnético de fases103
Tabela 21 – Harmônicos de indução magnética no entreferro113
Tabela 22 - Harmônicos de indução magnética na coroa do estator
Tabela 23 – Harmônicos de indução magnética nos dentes do estator
Tabela 24 – Perdas por histerese na coroa e nos dentes do estator – Parâmetros A116
Tabela 25 – Perdas por corrente parasita na coroa e nos dentes do estator – Parâmetros A 117
Tabela 26 – Perdas por excesso na coroa e nos dentes do estator – Parâmetros A118
Tabela 27 – Perdas magnéticas na coroa e nos dentes do estator – Parâmetros A119
Tabela 28 – Perdas magnéticas no estator – Parâmetros A120
Tabela 29 – Perdas percentuais na coroa do estator dadas em função das perdas totais –
Parâmetros A
Tabela 30 - Perdas percentuais nos dentes do estator dadas em função das perdas totais -
Parâmetros A
Tabela 31 – Perdas por histerese na coroa e nos dentes do estator – Parâmetros B 8065123
Tabela 32 - Perdas por corrente parasita na coroa e nos dentes do estator - Parâmetros B 8065
Tabela 33 – Perdas magnéticas na coroa e nos dentes do estator – Parâmetros B 8065125
Tabela 34 – Perdas magnéticas no estator – Parâmetros B 8065 126
Tabela 35 – Perdas percentuais na coroa do estator dadas em função das perdas totais –
Parâmetros B 8065
Tabela 36 - Perdas percentuais nos dentes do estator dadas em função das perdas totais -
Parâmetros B 8065
Tabela 37 – Perdas por histerese na coroa e nos dentes do estator – Parâmetros B 5365129
Tabela 38 - Perdas por corrente parasita na coroa e nos dentes do estator - Parâmetros B 5365
Tabela 39 – Perdas magnéticas na coroa e nos dentes do estator – Parâmetros B 5365131
Tabela 40 – Perdas magnéticas no estator – Parâmetros B 5365
Tabela 41 – Perdas percentuais na coroa do estator dadas em função das perdas totais –
Parâmetros B 5365
Tabela 42 – Perdas percentuais nos dentes do estator dadas em função das perdas totais –

Tabela 43 – Perdas por histerese na coroa e nos dentes do estator – Parâmetros B 3565135
Tabela 44 - Perdas por corrente parasita na coroa e nos dentes do estator - Parâmetros B 3565
Tabela 45 – Perdas magnéticas na coroa e nos dentes do estator – Parâmetros B 3565137
Tabela 46 – Perdas magnéticas no estator – Parâmetros B 3565
Tabela 47 - Perdas percentuais na coroa do estator dadas em função das perdas totais -
Parâmetros B 3565
Tabela 48 - Perdas percentuais nos dentes do estator dadas em função das perdas totais -
Parâmetros B 3565
Tabela 49 – Perdas por histerese na coroa e nos dentes do estator – Parâmetros C
Tabela 50 – Perdas por corrente parasita na coroa e nos dentes do estator – Parâmetros C 142
Tabela 51 – Perdas por excesso na coroa e nos dentes do estator – Parâmetros C
Tabela 52 – Perdas magnéticas na coroa e nos dentes do estator – Parâmetros C144
Tabela 53 – Perdas magnéticas no estator – Parâmetros C
Tabela 54 - Perdas percentuais na coroa do estator dadas em função das perdas totais -
Parâmetros C
Tabela 55 - Perdas percentuais nos dentes do estator dadas em função das perdas totais -
Parâmetros C
Tabela 56 – Perdas por histerese na coroa e nos dentes do estator – Parâmetros D
Tabela 57 – Perdas por corrente parasita na coroa e nos dentes do estator – Parâmetros D 149
Tabela 58 – Perdas por excesso na coroa e nos dentes do estator – Parâmetros D
Tabela 59 – Perdas magnéticas na coroa e nos dentes do estator – Parâmetros D151
Tabela 60 – Perdas magnéticas no estator – Parâmetros D
Tabela 61 - Perdas percentuais na coroa do estator dadas em função das perdas totais -
Parâmetros D
Tabela 62 - Perdas percentuais nos dentes do estator dadas em função das perdas totais -
Parâmetros D
Tabela 63 - Perdas na coroa do estator em função da frequência para corrente nominal -
Parâmetros A
Tabela 64 - Perdas nos dentes do estator em função da frequência para corrente nominal -
Parâmetros A

Tabela 65 - Perdas magnéticas no estator em função da frequência para corrente nominal -
Parâmetros A
Tabela 66 - Perdas na coroa do estator em função da frequência para corrente nominal -
Parâmetros B 8065
Tabela 67 - Perdas nos dentes do estator em função da frequência para corrente nominal -
Parâmetros B 8065
Tabela 68 - Perdas magnéticas no estator em função da frequência para corrente nominal -
Parâmetros B 8065
Tabela 69 - Perdas na coroa do estator em função da frequência para corrente nominal -
Parâmetros B 5365161
Tabela 70 - Perdas nos dentes do estator em função da frequência para corrente nominal -
Parâmetros B 5365
Tabela 71 - Perdas magnéticas no estator em função da frequência para corrente nominal -
Parâmetros B 5365
Tabela 72 - Perdas na coroa do estator em função da frequência para corrente nominal -
Parâmetros B 3565
Tabela 73 - Perdas nos dentes do estator em função da frequência para corrente nominal -
Parâmetros B 3565
Tabela 74 - Perdas magnéticas no estator em função da frequência para corrente nominal -
Parâmetros B 3565
Tabela 75 - Perdas na coroa do estator em função da frequência para corrente nominal -
Parâmetros C
Tabela 76 - Perdas nos dentes do estator em função da frequência para corrente nominal -
Parâmetros C
Tabela 77 - Perdas magnéticas no estator em função da frequência para corrente nominal -
Parâmetros C
Tabela 78 - Perdas na coroa do estator em função da frequência para corrente nominal -
Parâmetros D
Tabela 79 - Perdas nos dentes do estator em função da frequência para corrente nominal -
Parâmetros D
Tabela 80 - Perdas magnéticas no estator em função da frequência para corrente nominal -
Parâmetros D

Índice de Equações

(1)	
(2)	
(3)	
(4)	
(5)	
(6)	
(7)	
(8)	
(9)	
(10)	
(11)	
(12)	
(13)	49
(14)	49
(15)	50
(16)	51
(17)	51
(18)	51
(19)	51
(20)	51
(21)	51
(22)	51
(23)	
(24)	
(25)	
(26)	
(27)	
(28)	
(29)	54
(30)	54

(31)	
(32)	
(33)	
(34)	
(35)	56
(36)	56
(37)	
(38)	
(39)	
(40)	
(41)	
(42)	
(43)	
(44)	
(45)	
(46)	
(47)	
(48)	
(49)	
(50)	
(51)	
(52)	
(53)	60
(54)	61
(55)	61
(56)	61
(57)	61
(58)	61
(59)	61
(60)	61
(61)	61
(62)	61

XXVIII

(63)	61
(64)	
(65)	
(66)	
(67)	
(68)	
(69)	
(70)	
(71)	
(72)	63
(73)	63
(74)	
(75)	63
(76)	63
(77)	63
(78)	67
(79)	67
(80)	67
(81)	67
(82)	67
(83)	67
(84)	71
(85)	71
(86)	71
(87)	71
(88)	73
(89)	73
(90)	73
(91)	73
(92)	73
(93)	73
(94)	73

(95)	73
(96)	73
(97)	74
(98)	
(99)	
(100)	
(101)	
(102)	
(103)	
(104)	
(105)	
(106)	
(107)	
(108)	
(109)	
(110)	
(111)	

1. INTRODUÇÃO

Motores elétricos são largamente utilizados nos mais diversos processos graças a sua versatilidade, robustez e confiabilidade. Nos últimos anos, com o advento dos inversores de frequência, e sua redução de custo, os motores de indução vêm tomando cada vez mais espaço em aplicações que requerem variação de velocidade.

Em sua grande maioria, atualmente são utilizados motores de indução trifásicos, uma vez que os sistemas de alimentação de energia elétrica são trifásicos. Entretanto, para motores que não são diretamente alimentados da rede, como é o caso dos motores alimentados por inversores de frequência, não há essa limitação do número de fases do motor. A única limitação é que o número de fases do motor seja igual ao número de fases de saída do inversor.

Diversos trabalhos demonstram as vantagens de motores com número elevado de fases sobre os motores trifásicos [1], [2], [3], [4]. Em [2] é feito um estudo das características de motores com mais de três fases e apresentados resultados de ensaios com protótipos. Em [3] é realizada uma revisão do estado da arte em motores com número de fases maior que 3, trazendo o que há de mais atual (até o ano de 2007) no tema. Dentre as vantagens destes motores estão uma menor geração de harmônicos no *link DC*, redução da corrente por fase sem ter de aumentar a tensão, redução da pulsação do torque, aumento da relação torque por corrente *RMS* para um mesmo volume e maior tolerância a falhas. Motores com maior número de fases são capazes de partir e operar mesmo com fases sob falta. Em [4] é demonstrado que com a devida estratégia de controle do inversor de frequência, um motor pentafásico pode continuar operando mesmo com três fases sob falta. Esta última vantagem em especial faz com que motores com número elevado de fases sejam mais indicados para aplicações que requerem um elevado grau de confiabilidade, tais como aplicações aeroespaciais, veículos híbridos ou elétricos e para a propulsão de embarcações.

Com o desenvolvimento tecnológico dos dispositivos semicondutores utilizados nos inversores de frequência e as diversas pesquisas que já foram realizadas focando no desenvolvimento e aperfeiçoamento de aplicações com motores polifásicos [5], [6], [7], [8], [9], [10], [11], [12], já é possível, atualmente, utilizar na prática as vantagens deste tipo de máquina.

Em [5], [6] são apresentadas transformações de coordenadas dos eixos a-b-c-d-e para eixos direto, quadratura e zero, considerando o terceiro harmônico no entreferro, para máquinas síncronas de relutância. É apresentado um circuito equivalente similar ao modelo de eixos direto e transverso (dq0) para máquinas trifásicas. Em [7], [9] e [12] são apresentados estudos a cerca

da otimização de máquinas pentafásicas (de indução em [7] e de relutância em [9] e [12]). Em [7] mostram-se equações para obter a melhor geometria das ranhuras do estator de uma máquina de indução a fim de se obter níveis similares de indução nos dentes e na coroa do estator. Em [9] é demonstrado que um motor de relutância pentafásico de pólos salientes produz mais torque do que um de rotor laminado axial quando utilizado terceiro harmônico e em [12] são equacionados os parâmetros de arco polar do rotor, ângulo de corrente e porcentagem de 3º harmônico de corrente ideais para obter mais torque em um motor síncrono de relutância pentafásico.

Em [8] foi realizado um estudo comparativo de máquinas polifásicas com 3, 4, 6 e 12 fases, o qual demonstrou um decréscimo nas perdas do estator e perdas joule com o aumento de fases, assim como um decréscimo na amplitude do torque pulsante. Em [10] é apresentado o desenvolvimento de uma máquina polifásica para uma aplicação específica, no caso, veículos elétricos. Em [11] é estudada uma máquina de indução alimentada por inversor de frequências operando de vários modos.

Em máquinas com número de fases maior do que 3 certos harmônicos da indução magnética também geram torque útil que se soma ao torque produzido pela fundamental, aumentando assim o torque resultante da máquina. Um motor de indução pentafásico pode utilizar a fundamental e o 3º harmônico do campo do entreferro para gerar torque, um motor de 7 fases pode utilizar os 1º, 3º e 5º harmônicos e assim por diante. Em [13] avaliou-se o desempenho dos motores de indução em relação ao seu número de fases. Este estudo concluiu que os motores pentafásicos têm melhor relação torque/volume entre motores com 3, 5, 7 e 9 fases.

Existem duas formas pelas quais pode ser gerado um terceiro harmônico na indução magnética do entreferro da máquina de indução pentafásica. A primeira das formas é o método utilizado em [14], onde é injetada uma corrente com terceira harmônica utilizando-se um inversor de frequência. A segunda forma é através da saturação magnética do ferro da qual resulta a geração de uma componente de terceira harmônica. O efeito de saturação magnética do ferro deforma a onda da indução, podendo gerar uma onda com um pico maior se o efeito de saturação for predominante na coroa do estator, ou uma forma de onda achatada se o efeito da saturação for predominante nos dentes do estator, conforme demonstrado no capítulo 2 desta dissertação

Em [14] foi realizada a avaliação de desempenho de uma máquina de indução pentafásica alimentada por corrente com componente de 3º harmônico de modo que se obtivesse uma

indução magnética com forma trapezoidal no entreferro – similar a forma de onda apresentada na Figura 5 (a). Neste trabalho, com a utilização de 3º harmônico na indução magnética, obteve-se um ganho significativo de torque – em torno de 10% – o qual pôde ser comprovado experimentalmente através de protótipo. Entretanto, em [14] não foi realizado um estudo dos efeitos dos harmônicos sobre as perdas geradas na máquina com a utilização do 3º harmônico.

Nos diversos estudos sobre máquinas polifásicas [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11] e [12], o aspecto das perdas geradas pela utilização de harmônicos de ordem superior é desprezada. Geralmente é assumido que, se mantidas as correntes nominal e o fluxo no entreferro em níveis similares aos de máquinas trifásicas de igual potência, as perdas magnéticas serão similares as encontradas nas máquinas trifásicas.

Porém, em motores de indução o simples aumento do torque não representa, em si, uma grande melhoria, visto que o torque nominal destes é inferior ao torque máximo de que dispõe, sendo este em valores entre 2 e 3 vezes superior ao torque nominal. Um dos fatores que limita a utilização do torque superior ao nominal em um motor de indução é o aumento de temperatura que isto acarretará. O aumento de temperatura em motores de indução leva a uma rápida degradação dos materiais e poucas horas de trabalho em temperaturas acima da nominal podem acarretar reduções drásticas do tempo de vida da máquina.

O aumento de temperatura dos motores de indução em torques superiores ao nominal se deve ao aumento das perdas provocadas pelo aumento de corrente de alimentação e subsequente aumento da saturação magnética do ferro.

Em motores de indução pentafásicos foi obtido – como demonstrado em [14] – um aumento do torque mantendo-se as correntes de entrada em nível nominal, mas com a inclusão de componente de 3º harmônico. Deste modo mantêm-se as perdas pelo efeito joule nos mesmos patamares das perdas joule que em um motor alimentado com corrente senoidal. Entretanto, as perdas magnéticas geradas pela utilização de uma densidade de fluxo magnético trapezoidal não foram contabilizadas, assim como não foi quantificado o aumento de temperatura que isto acarretará na máquina.

As perdas em um motor de indução podem ser divididas em quatro tipos conforme mostrado na equação (1), onde P_t é o somatório das perdas mecânicas (P_{mec}), perdas joule ou no cobre (P_j), perdas magnéticas (P_{mag}) e perdas adicionais (P_a). Sendo que as perdas magnéticas podem ser subdivididas em perdas por histerese (P_h), perdas parasitas (P_p) e perdas por excesso

ou anômalas (P_e) [15], como na equação (2). Deste modo, o total de perdas do motor pode ser expresso pela equação (3).

$$P_t = P_{mec} + P_j + P_{mag} + P_a \tag{1}$$

$$P_{mag} = P_h + P_p + P_e \tag{2}$$

$$P_t = P_{mec} + P_j + P_h + P_p + P_e + P_a \tag{3}$$

As perdas mecânicas (P_{mec}) compreendem perdas por atrito, ventilação e imperfeições e tolerâncias de fabricação. As perdas joule (P_j) se devem ao efeito joule nas resistências elétricas dos enrolamentos do estator e da gaiola do rotor e podem ser calculadas multiplicando-se as respectivas resistências pelo quadrado da corrente *RMS* que circula nos condutores. As perdas adicionais (P_a) compreendem pulsações de campo de alta frequência, efeito corona nos condutores, efeito pelicular, entre outros.

As perdas magnéticas se devem ao ciclo de histerese (perdas de histerese – P_h), às correntes parasitas induzidas no ferro do estator e do rotor (perdas parasitas – P_p) e ao movimento de deslocamento em bloco dos domínios magnéticos da microestrutura dos materiais ferromagnéticos (perdas por excesso ou anômalas – P_e) [15].

Diversos trabalhos foram realizados demonstrando métodos de determinação e predição das perdas magnéticas para induções não senoidais em amostras de material ferromagnético [23], [24], [25], [26] e em máquinas elétricas considerando os harmônicos de indução [27], [28], [29], [30]. De [15] se têm que das perdas magnéticas, as perdas por histerese (P_h) são dependentes somente do valor máximo da indução – se não houver laços de histerese menores em um ciclo. As perdas parasitas (P_p) são dependentes da forma da onda de indução, logo dos componentes harmônicos. As perdas por excesso (P_e) dependem do movimento em bloco dos domínios magnéticos do material, que são dependentes da variação da indução e, por consequência, dos componentes harmônicos da indução.

As perdas por histerese (P_h) e parasitas (P_p) são tradicionalmente definidas pelas equações (4) e (5), respectivamente, para induções senoidais [27]. Sendo k_h , k_p e α em geral obtidos experimentalmente para o material magnético. f é a frequência e B_m é o valor máximo da densidade magnética.

As perdas por excesso (P_e) são definidas pela equação (6) para indução senoidal [15], onde σ é a condutividade do material, S é a secção transversal submetida à indução alternada B(t) de frequência f e amplitude B_m . V_0 é um parâmetro do material e G é o coeficiente de fricção do Objeto Magnético – os quais são porções do material com campo magnético alinhado e que apresentam influência no campo magnético externo.

$$P_h = k_h \cdot f \cdot B_m^{\alpha} \tag{4}$$

$$P_p = k_p \cdot f^2 \cdot B_m^2 \tag{5}$$

$$P_e = 8,76 \cdot \sqrt{\sigma \cdot G \cdot V_0 \cdot S} \cdot f^{1,5} \cdot B_m^{1,5} \tag{6}$$

Nesta dissertação será realizada uma avaliação de desempenho e perdas do motor pentafásico com densidade de fluxo trapezoidal alimentado conforme mostrado em [14]. Em especial, será avaliada a influência da utilização do terceiro harmônico sobre as perdas e o ganho de torque que pode ser obtido mantendo-se a temperatura em níveis semelhantes ao obtido com acionamentos convencionais.

Neste estudo, as perdas de maior interesse são as perdas por histerese, parasitas e anômalas, as quais dependem da intensidade da indução e da frequência, e, portanto, são afetadas pela injeção de terceiro harmônico de corrente.

As perdas joule são de menor importância, pois o efeito dos harmônicos de corrente já se faz presente no valor *RMS*, sendo assim facilmente quantificável e controlável, isto é, mantendose a corrente *RMS* em igual patamar à corrente *RMS* de um motor convencional, tem-se os mesmos níveis de perdas joule.

As perdas mecânicas podem ser desconsideradas neste estudo, uma vez que elas dependem de parâmetros mecânicos que não são influenciados pelas características de harmônicas da densidade de fluxo magnético. Assim, é razoável considerar que estas perdas estão em nível semelhante para motores com características mecânicas – velocidade, coeficiente de atrito, etc – semelhantes.

Uma vez que máquinas elétricas são projetadas para operar em uma determinada temperatura e que a operação em temperaturas acima desta acarreta uma diminuição significativa do tempo de vida da máquina, é necessário relacionar os resultados obtidos em [14] com o quanto esta operação aumenta as perdas do motor e, consequentemente, sua temperatura.

Na introdução acima foi apresentado um resumo da divisão de perdas e do equacionamento das perdas magnéticas. O estudo das perdas, suas divisões e um equacionamento mais detalhado para uma máquina pentafásica alimentada por corrente não senoidal será apresentado no capítulo seguinte desta dissertação.

1.1 OBJETIVOS DA DISSERTAÇÃO

Esta dissertação tem como objetivo principal a avaliação do desempenho e perdas de um motor pentafásico com indução trapezoidal no entreferro.

Visa-se determinar, principalmente, os efeitos que o terceiro harmônico causa nas perdas da máquina, tanto no cobre como no ferro e também o quanto de ganho de torque pode ser obtido mantendo-se os níveis de temperatura similares aos alcançados em um motor convencional.

Mais especificamente o trabalho visa:

- realizar análise de perdas estudo do mecanismo das perdas;
- desenvolver modelo de perdas desenvolver um modelo que permita quantificar as perdas utilizando dados de materiais disponíveis na literatura;
- realizar um estudo do efeito dos harmônicos sobre as perdas;
- realizar simulações computacionais do modelo desenvolvido;
- comprovação experimental através de ensaios para validação do modelo desenvolvido;
- analisar teórica e experimentalmente como uma indução trapezoidal pode ser obtida em máquinas pentafásicas.

1.2 MOTIVAÇÃO

O estudo de máquinas com número de fases maior que 3, em especial pentafásicas, tem mostrado uma crescente relevância nos últimos anos, conforme demonstra a quantidade de material publicado sobre o tema, veja-se por exemplo [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14], [16], [17], [18], [19], [20], [21], [22], seja sobre o desenvolvimento das máquinas em si, seja sobre o desenvolvimento de inversores de frequência para seu acionamento.

Com a recente utilização de componentes harmônicas [14] na tensão de alimentação de forma a obter uma melhor utilização magnética do ferro das máquinas pentafásicas, faz-se necessário um estudo das perdas geradas por esta utilização de harmônicos.

1.3 ORGANIZAÇÃO DA DISSERTAÇÃO

A dissertação está organizada em 5 capítulos, que são:

Capítulo 1: Introdução, onde são apresentadas as motivações e objetivos do trabalho, assim como uma revisão bibliográfica sobre máquinas polifásicas, focando principalmente nas máquinas pentafásicas.
Capítulo 2: Geração de 3° harmônico na indução magnética do entreferro. É dada uma breve explicação dos métodos pelos quais podem ser produzidos componentes de 3° harmônico na indução magnética do entreferro de máquinas elétricas.

Capítulo 3: Conceitos de separação de perdas em motores de indução. São apresentados os diversos tipos de perdas e as teorias matemática para seus cálculos. Foca especialmente nas perdas magnéticas.

Capítulo 4: Modelos computacionais. São descritos métodos computacionais utilizados para o cálculo das perdas. São apresentados resultados de simulações realizadas com as rotinas desenvolvidas.

Capítulo 5: São apresentados os resultados de ensaios realizados em laboratório com um protótipo de máquina pentafásica utilizando indução no entreferro trapezoidal.

Capítulo 6: Conclusão. Neste capítulo final são apresentadas as conclusões do trabalhos e propostas de continuidade e trabalhos futuros.

1.4 PUBLICAÇÕES RELACIONADAS

Durante a realização desta dissertação, foram elaborados os seguintes artigos, os quais são apresentados no Anexo C:

- L. A. Pereira, L. F. A. Pereira, C. C. Scharlau, R. S. da Rosa e S. L. Haffner, "Analysis of the Influence of saturation on the airgap induction waveform of five phase induction machines". Artigo submetido ao CBA 2010, XVIII Congresso Brasileiro de Automática;
- L. A. Pereira, L. F. A. Pereira, C. C. Scharlau, R. S. da Rosa e S. L. Haffner, "Magnetic Losses of five phase induction machines with optimized airgap induction waveform". Artigo submetido ao CBA 2010, XVIII Congresso Brasileiro de Automática.

1.5 PROTÓTIPO

As simulações computacionais, e os ensaios, foram desenvolvidos utilizando-se o protótipo descrito em [16]. Este protótipo é o mesmo onde foram realizados os testes e ensaios de [14]. O protótipo foi construído no chassi de um motor de indução fechado 3/4 cv com enrolamento integral e duas ranhuras por pólo e fase.

A Tabela 1 traz os dados do protótipo extraídos de [16] para o motor com as bobinas do estator ligadas em série. A Tabela 2 traz outros dados do protótipo e dos materiais utilizados na

sua fabricação que serão utilizados nas simulações. A Figura 1 apresenta o desenho em corte de dois pólos da máquina e a Figura 2 apresenta o detalhe de um dente do estator com as medidas de altura e largura.

Diâmetro externo do estator	$2 \cdot r_e$	130,3 mm		
Diâmetro interno do estator	$2 \cdot r_i$	80 mm		
Comprimento axial	l	64 mm		
Entreferro	δ	0,3 mm		
Espiras por enrolamento no estator		90		
Número de ranhuras do estator		40		
Número de ranhuras do rotor		30		
Número de pólos	$2 \cdot p$	4		
Tensão de fase		220 V		
Potência nominal		550 W		
Corrente nominal		0,8 A		

Tabela 1 – Dados do protótipo extraídos de [16]

Figura 1 – Corte transversal de dois pólos da máquina pentafásica

Figura 2 – Dimensões do dente do estator

Altura do dente do estator	h _t	12 mm
Largura do dente do estator	l _t	3,2 mm
Espessura da chapa do estator	d	0,68 mm
Condutividade elétrica do FeSi	σ	$8,33 \cdot 10^6 S/m$
Densidade específica do FeSi	m_v	7800 kg/m ³
Resistência de uma fase	R	7,25 Ω

Tabela 2 – Dados do protótipo e materiais

A seguir são apresentadas os cálculos dos volumes dos dentes e da coroa do estator que serão utilizados mais adiante para o cálculos das perdas magnéticas.

1.5.1 Volume de Material dos Dentes do Estator

Dos dados da Tabela 1 e da Tabela 2 é possível calcular o volume de cada dente do estator – equação (7), onde V_{t1} é o volume de um dente, l é o comprimento axial da máquina, h_t é a altura do dente e l_t é a espessura do dente. O volume de todos os dentes (V_t) é dado simplesmente multiplicando-se o volume de um dente pela quantidade de dentes (n_t) – equação (8).

$$V_{t1} = l \cdot h_t \cdot l_t \quad [m^3] \tag{7}$$

$$V_t = n_t \cdot V_{t1} \quad [m^3] \tag{8}$$

Assim:

$$V_{t1} = (64 \cdot 10^{-3}) \cdot (12 \cdot 10^{-3}) \cdot (3, 2 \cdot 10^{-3}) = 2,4576 \cdot 10^{-6} \quad [m^3]$$
(9)

$$V_t = 40 \cdot 2,4576 \cdot 10^{-6} = 9,8304 \cdot 10^{-5} \quad [m^3] \tag{10}$$

1.5.2 Volume de Material da Coroa do Estator

O volume a coroa pode ser determinado pelo volume de um cilindro oco – equação (11) – onde r_e é o raio externo da coroa e r_i é o raio interno da coroa, logo acima dos dentes, e l é o comprimento axial da máquina.

$$V_c = \pi \cdot [r_e^2 - (r_i + h_t)^2] \cdot l \quad [m^3]$$
(11)

Assim, dos dados da Tabela 1, obtém-se:

$$V_c = \pi \cdot \left[\left(\frac{130, 3 \cdot 10^{-3}}{2} \right)^2 - \left(\frac{80 \cdot 10^{-3}}{2} + 12 \cdot 10^{-3} \right)^2 \right] \cdot 64 \cdot 10^{-3} = 3,0974 \cdot 10^{-4} \quad [m^3] \quad (12)$$

2. Geração de 3º Harmônico na Indução Magnética no Entreferro de Máquinas Elétricas

Em máquinas pentafásicas, depois do fundamental da indução magnética no entreferro, o 3° é o mais significante harmônico de indução que pode gerar torque útil. Existem basicamente dois métodos para a geração deste 3° harmônico na indução do entreferro: por efeito de saturação magnética do ferro e por injeção de corrente.

Quando ocorre a saturação magnética do ferro em uma máquina de indução alimentado por tensão senoidal, a forma de onda da indução magnética é distorcida, gerando assim um componente de 3° harmônico na indução. Este componente induz uma tensão de 3° harmônico nos enrolamentos da máquina. Havendo a possibilidade de circulação de corrente de 3° harmônico, esta será gerada de forma a induzir um campo magnético que tende a anular a componente de 3° harmônica da indução.

Em máquinas trifásicas, onde as tensões e correntes fundamentais estão defasadas de ângulos de 120° entre si, as tensões e correntes de 3° harmônico estarão em fase, conforme apresentado na Figura 3 (a). Deste modo se a máquina estiver ligada em estrela (Y) com neutro ou em triangulo, a corrente de 3° harmônico poderá fluir e o efeito da saturação do ferro na indução tenderá a ser anulado.

Entretanto, em uma ligação em estrela sem neutro, não há por onde fluir a corrente de 3° harmônico, de modo que não será gerada uma tensão de terceiro harmônico contrária à criada pela saturação. Assim, tanto a indução magnética quanto a tensão serão distorcidas pela presença de uma componente de terceiro harmônico.

Figura 3 – Diagramas fasorias de tensão fundamental (setas vazadas) e corrente de 3º harmônico (setas cheias): (a) máquina trifásica; (b) máquina pentafásica

Para máquinas pentafásicas, as tensões e correntes fundamentais das fases estão defasadas por ângulos de 72° entre si, enquanto os terceiros harmônicos terão defasagem de 216° entre si, conforme mostrado na Figura 3 (b). Sendo assim, sempre haverá, independente do tipo de conexão utilizado, um caminho para a corrente de 3° harmônico fluir e gerar uma tensão de 3° harmônico para balancear o campo magnético e trazê-lo, junto com a tensão, para a forma senoidal da tensão de alimentação.

Na Figura 4 é demonstrada a geração de 3º harmônico na indução magnética do entreferro de uma máquina de indução pentafásica pelo efeito de saturação, mais especificamente do protótipo apresentado na seção 1.5. Em (a) é injetada corrente senoidal em nível nominal na máquina e percebe-se que a onda resultante é praticamente idêntica a fundamental e que a 3ª harmônica tem amplitude menor de 1% da fundamental. Em (b) é injetada corrente de três vezes a nominal. Neste caso, é possível observar que a curva da indução magnética sofre um achatamento e que o 3º harmônico agora possui um valor próximo a 15% da fundamental.

Figura 4 – Curva de indução magnética no entreferro para injeção de corrente senoidal. (a) Corrente nominal – 3º harmônico de indução próximo de 0,870%; (b) Corrente de 3 vezes a nominal – 3º harmônico de indução próximo de 15%

No segundo método de geração de 3° harmônico, a máquina é alimentada por uma tensão contendo 3° harmônico. Esta tensão fará fluir uma corrente tal que o campo magnético induzido apresente uma forma semelhante à tensão de alimentação, possuindo, assim, um componente de terceiro harmônico.

Uma variação deste método é alimentar a máquina por corrente controlada com 3° harmônico, ajustando-se a amplitude e fase para gerar a forma de onda desejada no campo magnético induzido da máquina. Este é o método que foi estudado em [14].

Figura 5 – Curva de indução magnética no entreferro para injeção de corrente com 3º harmônico, 3º harmônico com valor de 38% da fundamental (a) Corrente nominal – 3º harmônico de indução próximo de 13%; (b) Corrente de 3 vezes a nominal – 3º harmônico de indução próximo de 20%.

Na Figura 5 é demonstrada a geração de 3º harmônico na indução magnética pela injeção de corrente com 3ª harmônica e também pela combinação de saturação e injeção de corrente. A corrente injetada apresenta 3º harmônico com 38% do valor da fundamental. Em (a) é injetada corrente nominal e a curva de indução magnética no entreferro já é notadamente achatada apresentando componente de 3ª harmônica com valor próximo a 13% da fundamental. Em (b) é novamente apresentada uma curva com injeção de corrente de três vezes a nominal. É perceptível que a curva é novamente achatada e que houve um aumento na componente de 3º harmônico para um valor próximo a 20% da fundamental.

Em ambas as figuras, Figura 4 e Figura 5, os harmônicos mais salientes, notadamente visíveis pelos vales que formam na onda de indução magnética, são causado pelos chamados *harmônicos de ranhura*, que neste caso são de 19^a e 21^a ordens, considerando-se que a máquina possui 2 ranhuras por pólo e fase.

Na Figura 6 é apresentado o resultado dos ensaios e o comparativo com os valores simulados para a tensão induzida em uma bobina de prova posta no entreferro do protótipo. Em (a) é injetada corrente senoidal em nível nominal e a indução apresenta um componente de 3º

harmônico de razão $\hat{B}_{g3}/\hat{B}_{g1} = 0,87\%$ e em (b) é injetada corrente senoidal em nível de 190% da nominal, e observa-se agora a presença de um componente de 3° harmônico de razão $\hat{B}_{g3}/\hat{B}_{g1} = 12,81\%$, onde \hat{B}_{g1} e \hat{B}_{g3} são as amplitudes da fundamental e 3° harmônico do campo magnético no entreferro, respectivamente.

Figura 6 – Curva de tensão induzida em uma bobina de prova no entreferro do protótipo para injeção de corrente senoidal: (a) Corrente nominal, componente de 3° harmônico de indução magnética menor de 1%; (b) Corrente de 190% da nominal, componente de 3° harmônico de indução magnética de aproximadamente 13%.

Figura 7 – Curva de tensão induzida em uma bobina de prova no entreferro do protótipo para injeção de corrente com componente de 3° harmônico: (a) Corrente nominal, componente de 3° harmônico de indução magnética de aproximadamente 7%; (b) Corrente de 190% da nominal, componente de 3° harmônico de indução magnética de aproximadamente 16%.

Na Figura 7 é apresentado o resultado dos ensaios e o comparativo com os valores simulados para a tensão induzida em uma bobina de prova posta no entreferro do protótipo para uma corrente com componente de 3° harmônico. Em (a) é injetada corrente com 3° harmônico em nível nominal e a indução apresenta um componente de 3° harmônico de razão $\hat{B}_{g3}/\hat{B}_{g1} = 6,98\%$ e em (b) é injetada corrente em nível de 190% da nominal contendo componente de 3° harmônico, e observa-se um aumento do componente de 3° harmônico do campo magnético para a razão de $\hat{B}_{g3}/\hat{B}_{g1} = 16,03\%$.

As induções no entreferro mostradas na Figura 4, Figura 5, Figura 6 e Figura 7 se referem, todas, ao caso em que o dente do estator satura antes da coroa do estator. A saturação dos dentes antes ocasiona o achatamento da indução no entreferro, como pode ser visto nas figuras citadas.

Por outro lado, se a coroa saturar magneticamente antes dos dentes, então o 3° harmônico de indução magnética sofre uma inversão de fase e consequentemente a indução magnética no entreferro irá apresentar um pico na sua forma de onda. Entretanto, a saturação relativa das partes do estator dependem do projeto específico de cada máquina, sendo impossível saturar a coroa sem saturar em algum grau os dentes.

Deste modo, para que a coroa saturasse antes dos dentes, sua secção foi reduzida para a metade do tamanho original - conforme apresentado na Figura 8. A Figura 9 apresenta o resultado da análise de elementos finitos para o caso de injetar-se corrente senoidal em nível de 3 vezes a nominal no modelo da Figura 8. Percebe-se que a curva de indução nos dentes apresenta um pico, resultado da inversão de fase do 3° harmônico de indução magnética no entreferro. Como na Figura 4 e Figura 5, os vales são resultado dos harmônicos de ranhura.

Figura 8 - Corte de dois pólos do protótipo com a secção da coroa reduzida à metade da original.

Figura 9 – Curva de indução magnética no entreferro para injeção de corrente senoidal e coroa reduzida a metade da secção original. (a) Corrente nominal – 3º harmônico de indução próximo de 7,8 %; (b) Corrente de 3 vezes a nominal – 3º harmônico de indução de 21%.

Mas a configuração que propicia a saturação da coroa antes de os dentes saturarem não é utilizada, pois reduziria o torque e aumentaria as perdas. Tal pode ser visto comparando-se os gráficos (b) da Figura 4 com os gráficos da Figura 9. Ambos representam a indução no entreferro para a injeção de corrente senoidal. Percebe-se que em nível nominal a saturação da coroa já produz um nível considerável de 3° harmônico. Para o caso de injeção de corrente de 3 vezes a nominal pode-se perceber que a amplitude dos harmônicos fundamental e 3° são menores para o caso em que a coroa do estator satura antes – Figura 9 – entretanto a amplitude da indução magnética total é superior. Com 1° e 3° harmônicos menores, haverá uma menor geração de torque útil, enquanto que uma maior amplitude da onda resultante representa aumentos de perdas magnéticas, especialmente perdas por histerese e por excesso, como poderá ser visto pelo equacionamento apresentado no capítulo seguinte.

As análises feitas permitem concluir que a influência dos harmônicos de saturação só tem importância significativa para níveis elevados saturação, sendo o seu efeito dependente do projeto específico da máquina.

3. PERDAS EM MÁQUINAS ELÉTRICAS

Máquinas elétricas são dispositivos que convertem energia mecânica em energia elétrica e vice-versa através da ação de um campo magnético. Como toda a máquina e modo de conversão de energia, há um percentual da energia que é perdida, energia que não é convertida para o tipo desejado de energia e que faz com que a máquina não tenha um rendimento de 100%. Estas perdas podem ser das mais variadas formas, desde atrito nos rolamentos de um motor e a força necessária para mover o ventilador de resfriamento, até a energia utilizada para magnetizar o núcleo da máquina.

A seguir, são apresentados os mecanismos de perdas em um motor elétrico de indução, detendo-se mais nas perdas magnéticas e fazendo uma análise dos efeitos que a utilização de harmônicos apresenta sobre estas.

Uma vez que as perdas magnéticas são fortemente dependentes do comportamento da indução magnética nas diversas partes – dentes e coroa do estator – torna-se imprescindível a determinação do comportamento da indução magnéticas nestas partes. Assim, a primeira seção deste capítulo é dedicada à determinação do comportamento da indução magnética na coroa e nos dentes do estator, suas relações com a indução no entreferro e a determinação do equacionamento dos harmônicos destas formas de onda.

3.1 INDUÇÃO MAGNÉTICA

A indução magnética em máquinas elétricas pode ser decomposta em componentes vetoriais. A Figura 10 traz um exemplo de decomposição da indução magnética no entreferro do protótipo apresentado na seção 1.5, para um pólo, em componentes radial e tangencial.

Figura 10 - Indução no entreferro sobre um pólo da máquina pentafásica, componentes radial e tangencial

Também é possível utilizar componente nos planos ordenados x-y, onde se torna mais visível a presença de campos magnéticos rotacionais e alternados, em determinadas partes das máquinas. Campos rotacionais apresentam perdas magnéticas maiores, já tendo sido objeto de estudos, [31] e [32].

Entretanto, neste trabalho não são considerados as perdas rotacionais e os campos magnéticos são considerados apenas pulsantes, uma vez que no entreferro e nos dentes a componente tangencial do campo é bastante baixa – Figura 10 e Figura 11 – e a componente radial na indução magnética na coroa do estator é, em média, bastante baixa – Figura 12 – quando comparado com o valor médio da componente tangencial na coroa – Figura 13.

Figura 11 - Indução nos dentes sobre um pólo da máquina pentafásica, componentes radial e tangencial

A Figura 12 e Figura 13 apresentam, respectivamente, as componentes radial e tangencial da indução magnética na coroa do estator, sobre um pólo do protótipo, calculadas por elementos finitos pelo programa FEM2000. As curvas de indução magnética foram obtidas para diversos raios, os quais são apresentados, em mm, na legenda.

A indução no entreferro do motor pode ser decomposta em uma série de Fourier de senos, visto que a função da indução é caracteristicamente uma função ímpar. Deste modo, a indução magnética no entreferro é descrita genericamente pela equação (13), onde \hat{B}_{gn} é a amplitude do harmônico de ordem n e θ é o ângulo periférico no entreferro. Considerando apenas a fundamental e o 3º harmônico, a função indução magnética no entreferro pode ser escrita de forma expandida como na equação (14), sendo \hat{B}_{g1} e \hat{B}_{g3} as amplitudes da fundamental e do 3º harmônico, respectivamente.

$$B_g(\theta) = \sum_{n=1,n \text{ impar}}^{\infty} \hat{B}_{gn} \cdot sen(n \cdot \theta)$$
(13)

$$B_g(\theta) = \hat{B}_{g1} \cdot sen(\theta) + \hat{B}_{g3} \cdot sen(3 \cdot \theta)$$
(14)

Figura 13 - Indução na coroa do estator para diferentes raios, componente tangencial

A Figura 14 traz um exemplo da decomposição da indução no entreferro do protótipo de motor pentafásico em termos de senos de uma série de Fourier. A decomposição em séries de Fourier da curva de indução magnética se faz necessário para possibilitar o trabalho com funções

conhecidas – no caso da série de Fourier utilizada aqui, senos. As curvas foram geradas pelo programa de cálculo numérico por elementos finitos FEM2000. Em (a) é apresentada a curva da indução no entreferro obtida pelo FEM2000 e a curva gerada pela equação (13) utilizando-se os harmônicos até 30^a ordem calculados com base na curva de indução no entreferro. Em (b) são apresentadas as curvas da fundamental e 3^a harmônicas e a resultante gerada pela equação (14), além da curva de indução no entreferro obtida do FEM2000.

Figura 14 – Curvas de indução no entreferro: (a) Curva obtida pelo FEM2000 e curva gerada por série de Fourier utilizando 30 harmônicos; (b) Curva obtida pelo FEM2000, curvas da fundamental, 3º harmônico e resultante.

3.1.1 Indução Sobre a Seção da Coroa do Estator

A indução magnética média na coroa do estator (B_c) será dada pela divisão do fluxo que atravessa a coroa (ϕ_c) e a área da secção A – Figura 15 – conforme equação (15), onde *l* é o comprimento axial da máquina e h_c é a altura da coroa.

Figura 15 - Mapa de linhas equipotenciais de indução magnética sobre dois pólos de uma máquina pentafásica

Figura 16 – Detalhe do corte do estator, com a medida da altura da coroa.

A indução na coroa do estator pode ser calculada com base na indução do entreferro, visto que o fluxo que atravessa a coroa do estator é a metade do fluxo que atravessa o entreferro sobre um pólo, a menos de uma porcentagem de fluxo disperso, equação (16). $K_{\delta c}$ é o fator de dispersão do fluxo do entreferro para a coroa do estator.

$$\phi_c = \frac{K_{\delta c} \cdot \phi_g}{2} \tag{16}$$

Sendo o fluxo magnético no entreferro (ϕ_g) a integral da indução magnética. Desenvolvendo a equação (17) obtém-se a equação (19), onde l é o comprimento axial, r é o raio, p é o número de pares pólos e \hat{B}_{g1} e \hat{B}_{g3} são as amplitudes da fundamental e 3^a harmônica de indução magnética no entreferro, respectivamente, e α_g é o ângulo da posição do rotor, sendo igual a frequência angular elétrica multiplicada pelo tempo ($\omega \cdot t$).

$$\phi_g(\alpha_g) = \int_{\alpha}^{\alpha+\pi} B_g(\theta) \cdot l \cdot r \cdot \frac{d\theta}{p}$$
(17)

$$\phi_g(\alpha_g) = \int_{\alpha}^{\alpha+\pi} \left[\hat{B}_{g1} \cdot sen(\theta) + \hat{B}_{g3} \cdot sen(3 \cdot \theta) \right] \cdot l \cdot r \cdot \frac{d\theta}{p}$$
(18)

$$\phi_g(\alpha_g) = \frac{l \cdot r}{p} \cdot \left\{ \left[-\hat{B}_{g1} \cdot \cos(\theta) \right]_{\alpha_g}^{\alpha_g + \pi} + \left[-\frac{\hat{B}_{g3} \cdot \cos(3 \cdot \theta)}{3} \right]_{\alpha_g}^{\alpha_g + \pi} \right\}$$
(19)

$$\phi_g(\alpha_g) = \frac{l \cdot r}{p} \cdot \left\{ 2 \cdot \hat{B}_{g1} \cdot \cos(\alpha_g) + \frac{2 \cdot \hat{B}_{g3} \cdot \cos(3 \cdot \alpha_g)}{3} \right\}$$
(20)

A partir da equação do passo polar (σ_p) – equação (21), pode-se obter a relação apresentada na equação (22) para a relação de raio e número de pares de pólos da máquina.

$$\sigma_p = \frac{2 \cdot \pi \cdot r}{2 \cdot p} = \frac{\pi \cdot r}{p} \tag{21}$$

$$\frac{r}{p} = \frac{\sigma_p}{\pi} \tag{22}$$

Substituindo a equação (22) em (20), tem-se a equação (23) do fluxo no entreferro da máquina em função de α_g . Aplicando-se a equação (16) em (23), obtem-se o fluxo médio na coroa do estator, expresso pela equação (24). Então, utilizando a relação dada pela equação (15), obtem-se a indução magnética na coroa do estator, equação (25).

$$\phi_g(\alpha_g) = 2 \cdot \frac{\sigma_p}{\pi} \cdot l \cdot \left\{ \hat{B}_{g1} \cdot \cos(\alpha_g) + \frac{\hat{B}_{g3}}{3} \cdot \cos(3 \cdot \alpha_g) \right\}$$
(23)

$$\phi_c(\alpha_g) = 2 \cdot \frac{K_{\delta c}}{2} \cdot \frac{\sigma_p}{\pi} \cdot l \cdot \left\{ \hat{B}_{g1} \cdot \cos(\alpha_g) + \frac{\hat{B}_{g3}}{3} \cdot \cos(3 \cdot \alpha_g) \right\}$$
(24)

$$B_c(\alpha_g) = K_{\delta c} \cdot \frac{\sigma_p}{\pi} \cdot \frac{1}{h_c} \cdot \left\{ \hat{B}_{g1} \cdot \cos(\alpha_g) + \frac{\hat{B}_{g3}}{3} \cdot \cos(3 \cdot \alpha_g) \right\}$$
(25)

Agrupando os termos, pode-se reescrever a indução magnética da coroa em termos das amplitudes dos harmônicos de indução magnética da coroa do estator, conforme expresso na equação (26). As equações (27) e (28) expressam a relação entre as amplitudes dos harmônicos de indução no entreferro e na coroa do estator.

$$B_c(\alpha_g) = \hat{B}_{c1} \cdot \cos(\alpha_g) + \hat{B}_{c3} \cdot \cos(3 \cdot \alpha_g)$$
(26)

$$\hat{B}_{c1} = \left(K_{\delta c} \cdot \frac{\sigma_p}{\pi} \cdot \frac{1}{h_c}\right) \cdot \hat{B}_{g1}$$
(27)

$$\hat{B}_{c3} = \left(K_{\delta c} \cdot \frac{\sigma_p}{\pi} \cdot \frac{1}{h_c}\right) \cdot \frac{1}{3} \cdot \hat{B}_{g3}$$
(28)

Da equação (26) também é possível notar que a densidade de fluxo na coroa do estator é representada por uma função par com termos em cosseno.

Através do programa de elementos finitos FEM2000 foram calculadas as curvas de indução magnética da coroa do estator do protótipo – Figura 17 – para diferentes raios e obtidos seus harmônicos. Fazendo-se a média dos valores da fundamental e do 3° harmônico de indução para a coroa do estator e utilizando a equação (26), foi grafada a curva de indução média apresentada na Figura 18. Pode-se notar que ela apresenta uma boa aproximação do valor médio da componente tangencial da indução magnética na coroa do estator.

Figura 17 - Curvas de indução magnética na coroa do estator para diferentes raios, componente tangencial.

Para confirmar os cálculos, obtiveram-se as amplitudes da fundamental e do 3° harmônico da indução no entreferro da máquina e, aplicando as equações (27) e (28), calculou-se os valores dos harmônicos da indução na coroa. A Figura 19 traz um comparativo entre a onda de indução magnética calculada utilizando as equações (27) e (28) e as amplitudes dos harmônicos do entreferro e a onda de indução magnética obtida com os harmônicos de indução calculados pelo FEM2000.

Pela Figura 19 pode-se constatar a validade das equações (26), (27) e (28) para descrever a média da indução magnética na coroa a partir dos valores de harmônicos do entreferro.

Figura 18 - Comparativo da curva de indução magnética média com as curvas de menor e maior raio, componente tangencial.

Figura 19 – Comparativo da curva de indução magnética média com a curva calculada a partir dos harmônicos de indução do entreferro pelas equações (26), (27) e (28).

3.1.2 Indução no Dente do Estator

A indução magnética nos dentes do estator tem forma similar a indução no entreferro, conforme pode ser visto na Figura 20, podendo ser descrita também por uma série de Fourier de senos, uma vez que também é uma função impar, equação (29).

$$B_t = \hat{B}_{t1} \cdot sen(\theta) + \hat{B}_{t3} \cdot sen(3 \cdot \theta)$$
⁽²⁹⁾

Figura 20 – Formas de onda de indução no entreferro e no dente para uma máquina pentafásica alimentada com fundamental e 3° harmônico no nível de 38% da fundamental calculado com o FEM2000.

A variação temporal da indução sobre a secção média do dente pode ser aproximada pela variação espacial da indução no entreferro para um dado instante de tempo conforme equação (30). ω é a frequência, σ_n é o passo de ranhura, b_t é a largura média de um dente.

$$B_t = \left\{ \hat{B}_{g1} \cdot sen(\omega \cdot t) + \hat{B}_{g3} \cdot sen(3 \cdot \omega \cdot t) \right\} \cdot \left(\frac{o_n}{b_t}\right)$$
(30)

3.2 MECANISMOS DE PERDAS

As perdas em um motor de indução podem ser divididas em quatro grandes categorias: perdas mecânicas (P_{mec}); perdas no cobre ou joule (P_j); perdas magnéticas (P_{mag}); e perdas adicionais (P_a). Conforme apresentado nas equações (1), (2) e (3), e reescrito abaixo nas equações (31), (32) e (33), o total de perdas geradas (P_t) é o resultado do somatório destas quatro parcelas – equação (31). As perdas magnéticas podem ser subdividas em perdas por histerese (P_h), perdas parasitas (P_p) e perdas por excesso ou anômalas (P_e) – equação (32) – sendo assim, o total das perdas geradas pode ser expresso pelo somatório destas seis parcelas – equação (33).

$$P_t = P_{mec} + P_j + P_{mag} + P_a \tag{31}$$

$$P_{mag} = P_h + P_p + P_e \tag{32}$$

$$P_{t} = P_{mec} + P_{j} + P_{h} + P_{p} + P_{e} + P_{a}$$
(33)

Para um motor de 50 cv, as perdas mecânicas (P_{mec}) representam tipicamente em torno de 1,1% da potência nominal, as perdas no cobre (P_j) algo entre 0 e 6% da potência nominal, as perdas adicionais (P_a) são uma parcela de 0 a 2% da potência nominal e as perdas magnéticas representam algo em torno de 1,4% da potência nominal. Entretanto estes valores variam com a potência da máquina, a tecnologia empregada na sua manufatura e com o fabricante.

Destas seis parcelas de perdas, as parcelas relativas às perdas magnéticas são as de maior interesse nesta dissertação. Isto se deve ao fato de serem elas as mais afetadas pela utilização de alimentação com terceiro harmônico em um motor pentafásico, enquanto que as perdas mecânicas sofrem pouca ou nenhuma influência da composição harmônica da alimentação e as perdas joule são facilmente computadas.

A seguir se dá uma breve descrição sobre as perdas joule, mecânicas e adicionais e depois se apresenta o desenvolvimento das equações para as perdas magnéticas considerando indução com harmônicos.

3.2.1 Perdas Mecânicas, Joule e Adicionais

As perdas mecânicas (P_{mec}) compreendem perdas por atrito, ventilação e provocadas por imperfeições e tolerâncias de fabricação. Assim sendo, tomando-se um motor de indução pentafásico alimentado por tensão não senoidal e um motor de indução trifásico alimentado por tensão senoidal, ambos tendo características similares e a mesma frequência de alimentação e mesmo número de pólos, os dois motores apresentarão perdas mecânicas similares.

As perdas adicionais (P_a) compreendem perdas provocadas por pulsações de campo de alta frequência devido às ranhuras, efeito corona nos condutores, efeito pelicular, entre outros.

Tais efeitos são geralmente negligenciados nos cálculos por constituírem valores bastante baixos e principalmente por serem difíceis de determinar, sendo estimados como um percentual do total de perdas.

As perdas joule (P_j) são o resultado do efeito joule nas resistências elétricas dos enrolamentos do estator e da gaiola do rotor. Estas perdas são diretamente proporcionais ao quadrado da corrente eficaz que circula pelos condutores da máquina, conforme equação (34), para uma fase.

$$P_j = R \cdot I_{RMS}^2 \quad [W] \tag{34}$$

A corrente eficaz, ou *RMS* (I_{RMS}), é expressa genericamente pela equação (35), onde T é o período da corrente. A função da corrente do motor pode ser expressa por uma série de Fourier conforme equação (36), onde *n* é a ordem do harmônico, \hat{I}_n é a amplitude do *n*-ésimo harmônico e ω é a frequência elétrica fundamental.

$$I_{RMS} = \sqrt{\frac{1}{T} \cdot \int_0^T i(t)^2 \cdot dt}$$
(35)

$$i(t) = \sum_{n=1,n \text{ impar}}^{\infty} \hat{l}_n \cdot sen(n \cdot \omega \cdot t)$$
(36)

Se considerados somente a fundamental e a 3° harmônica, a função da corrente pode ser simplificada conforme equação (37). Inserindo a equação (37) na equação (35), obtém-se a forma particular para a corrente eficaz da máquina pentafásica, expressa na equação (38), onde \hat{I}_1 e \hat{I}_3 são as amplitudes da fundamental e 3° harmônico, respectivamente, *T* é o período da onda e ω é a frequência fundamental.

$$i(t) = \hat{l}_1 \cdot sen(\omega \cdot t) + \hat{l}_3 \cdot sen(3 \cdot \omega \cdot t)$$
(37)

$$I_{RMS} = \sqrt{\frac{1}{T} \cdot \int_{0}^{T} \left(\hat{I}_{1} \cdot sen(\omega \cdot t) + \hat{I}_{3} \cdot sen(3 \cdot \omega \cdot t) \right)^{2} \cdot dt}$$
(38)

Expandindo a equação (38), chega-se a equação (39).

$$I_{RMS} = \sqrt{\frac{1}{T}} \cdot \int_0^T \{ \hat{I}_1^2 \cdot sen^2(\omega \cdot t) + \hat{I}_3^2 \cdot sen^2(3 \cdot \omega \cdot t) + \hat{I}_1 \cdot \hat{I}_3 \cdot sen(\omega \cdot t) \cdot sen(3 \cdot \omega \cdot t) \} \cdot dt \quad (39)$$

Aplicando-se as igualdades trigonométricas apresentadas nas equações (40) e (41) na equação (39), pode-se simplificá-la para a equação (42), que pode ser reescrita com os termos melhor distribuídos como na equação (43).

$$a \cdot sen^{2}(\theta) = a \cdot \frac{1 - \cos(2 \cdot \theta)}{2}$$
(40)

$$a \cdot sen(\theta_1) \cdot sen(\theta_2) = \left(\frac{a}{2}\right) \cdot cos(\theta_1 - \theta_2) - \left(\frac{a}{2}\right) \cdot cos(\theta_1 + \theta_2)$$
(41)

$$I_{RMS} = \begin{cases} \frac{1}{T} \cdot \int_{0}^{T} \begin{pmatrix} \frac{\hat{l}_{1}^{2} - \hat{l}_{1}^{2} \cdot \cos(2 \cdot \omega \cdot t)}{2} + \frac{\hat{l}_{3}^{2} - \hat{l}_{3}^{2} \cdot \cos(2 \cdot 3 \cdot \omega \cdot t)}{2} + \\ \frac{1}{T} \cdot \int_{0}^{T} \begin{pmatrix} \frac{\hat{l}_{1} \cdot \hat{l}_{3}}{2} \end{pmatrix} \cdot \cos(\omega \cdot t - 3 \cdot \omega \cdot t) - \\ \frac{\hat{l}_{1} \cdot \hat{l}_{3}}{2} \end{pmatrix} \cdot \cos(\omega \cdot t - 3 \cdot \omega \cdot t) - \\ \end{pmatrix} \cdot dt \end{cases}^{\frac{1}{2}}$$
(42)

$$I_{RMS} = \left\{ \frac{1}{T} \cdot \int_{0}^{T} \left(\frac{\hat{l}_{1}^{2}}{2} + \frac{\hat{l}_{1}^{2}}{2} - \frac{\hat{l}_{1}^{2} \cdot \cos(2 \cdot \omega \cdot t)}{2} - \frac{\hat{l}_{3}^{2} \cdot \cos(2 \cdot 3 \cdot \omega \cdot t)}{2} + \left(\frac{\hat{l}_{1} \cdot \hat{l}_{3}}{2} \right) \cdot \cos(-2 \cdot \omega \cdot t) - \left(\frac{\hat{l}_{1} \cdot \hat{l}_{3}}{2} \right) \cdot \cos(4 \cdot \omega \cdot t) \right) \cdot dt \right\}^{\frac{1}{2}}$$
(43)

Como a integral de uma senóide em seu período completo resulta em zero, equação (44), tem-se que os quatro últimos termos desta equação se anulam. Deste modo, a equação (43) é reescrita conforme a equação (45).

Resolvendo-se a integral da equação (45), equação (46), chega-se a equação (47), que, simplificados os fatores, resulta na equação (48) a qual demonstra que a corrente *RMS* pode ser calculada a partir das amplitudes dos harmônicos da corrente.

$$\int_{0}^{2\cdot\pi} a \cdot sen(\theta) \cdot d\theta = 0 \tag{44}$$

$$I_{RMS} = \sqrt{\frac{1}{2 \cdot \pi} \cdot \int_{0}^{2 \cdot \pi} \left(\frac{\hat{I}_{1}^{2}}{2} + \frac{\hat{I}_{3}^{2}}{2}\right) \cdot dt}$$
(45)

$$I_{RMS} = \sqrt{\frac{1}{2 \cdot \pi} \cdot \left[\frac{\hat{I}_1^2}{2} + \frac{\hat{I}_3^2}{2}\right]_0^{2 \cdot \pi}}$$
(46)

$$I_{RMS} = \sqrt{\frac{\left[\hat{I}_1^2 \cdot \pi + \hat{I}_3^2 \cdot \pi\right]}{2 \cdot \pi}} \tag{47}$$

$$I_{RMS} = \sqrt{\frac{\hat{I}_1^2 + \hat{I}_3^2}{2}}$$
(48)

Como pode ser visto pelas equações (34) e (48) as perdas joule são influenciadas pelo conteúdo harmônico da corrente. Entretanto, a corrente nominal da máquina é expressa em valores de corrente eficaz. Desta forma, uma máquina alimentada com corrente puramente

senoidal ou alimentada com corrente com conteúdo harmônico, mas mantendo o mesmo nível de corrente *RMS*, apresenta o mesmo nível de perdas joule.

3.2.2 Perdas por Histerese

As perdas por histerese são geradas pela energia gasta para mudar a orientação magnética dos domínios magnéticos dos materiais da máquina sob influência de uma campo magnético. Esta perda é proporcional à área do laço de histerese na curva BxH do material.

Em [26] é apresentada equação (49), equivalente a equação (4), reescrita abaixo na equação (51), para um η descrito pela equação (50). α é geralmente obtido experimentalmente para cada tipo de chapa.

$$P_h = \eta \cdot B_m^{\alpha} \tag{49}$$

$$\eta = k_h \cdot f \tag{50}$$

$$P_h = k_h \cdot f \cdot B_m^{\alpha} \quad \left[\frac{W}{m^3}\right] \tag{51}$$

Salienta-se que B_m é o valor máximo da indução magnética, e não a amplitude de seus harmônicos.

$$P_h^{norm} = \frac{P_h^{harm}}{P_h^{sen}} \tag{52}$$

A Figura 21 mostra o gráfico da perda por histerese normalizada P_h^{norm} , equação (52), para diferentes valores de α e 3° harmônico de indução com valor de 15% da fundamental nos dentes e 5% da fundamental na coroa.

Tais valores foram utilizados para que se obtivesse uma indução trapezoidal no entreferro, a qual necessita que a amplitude do 3º harmônico de indução deve ter um valor em torno de 15% do valor fundamental. Conforme equação (30), a proporção entre fundamental e terceiro harmônico de indução magnética nos dentes do estator é da mesma ordem da proporção entre fundamental e terceiro harmônicos de indução no entreferro. De forma similar, pelas equações (26), (27) e (28), na coroa do estator a proporção entre a fundamental e o terceiro harmônico é de aproximadamente 1/3 desta proporção no entreferro, para uma máquina com q = 2 (sendo q o número de ranhuras por pólo e fase da máquina), como é o caso do protótipo utilizado.

 P_h^{harm} é a perda por histerese considerando a fundamental e 3º harmônico, P_h^{sen} é a perda por histerese para uma indução magnética senoidal e P_h^{norm} é a perda normalizada, que pode ser expressa em percentuais se multiplicada por 100.

Figura 21 – Gráfico normalizado da variação das perdas por histerese na coroa e nos dentes do estator em função de *a* para 3º harmônico de indução magnética com valor de 15% da fundamental nos dentes e 5% da fundamental na coroa do estator.

A Figura 21 mostra que há um aumento de 5 a 10,2% das perdas por histerese na coroa e uma redução de 13,2 a 24,7% das perdas por histerese nos dentes para valores de α entre 1 e 2.

A Tabela 3 apresenta os valores das perdas normalizadas que foram grafados na Figura 21. Também são apresentados os valores em percentuais, onde valores negativos representam redução nas perdas.

α	P_h^{no}	orm	P ^{norm%}			
	Coroa	Dente	Coroa	Dente		
1.0	1.0500	0.8676	5.0000	-13.2390		
1.1	1.0551	0.8554	5.5135	-14.4624		
1.2	1.0603	0.8433	6.0296	-15.6686		
1.3	1.0655	0.8314	6.5482	-16.8577		
1.4	1.0707	0.8197	7.0693	-18.0301		
1.5	1.0759	0.8081	7.5930	-19.1860		
1.6	1.0812	0.7967	8.1192	-20.3255		
1.7	1.0865	0.7855	8.6480	-21.4490		
1.8	1.0918	0.7744	9.1794	-22.5567		
1.9	1.0971	0.7635	9.7134	-23.6487		
2.0	1.1025	0.7527	10.2500	-24.7253		

Tabela 3 - Valores da previsão de perdas por histerese normalizadas em função das perdas com indução magnética senoidal.

3.2.3 Perdas Parasitas

As perdas parasitas são resultado das correntes parasitas induzidas no material ferromagnético que compõe o rotor e estator dos motores. Sendo o material laminado e as placas estando imersas em um campo magnético criado pelas correntes do estator e rotor, Figura 22, correntes serão induzidas nas placas, Figura 23 e Figura 24. Tais correntes parasitas geram perdas joule no material ferromagnético da máquina.

Figura 22 – Lamina fina imersa em campo magnético, [15]

Figura 23 – Corrente na placa da Figura 22, [15]

Figura 24 - Relação entre a variação de indução magnética e a densidade de corrente induzida, [15]

Em [26] é demonstrado que a média no tempo da perda parasita pode ser expressa pela equação (53) e sendo a indução representada por uma série de Fourier conforme equação (26) ou equação (29) para a coroa e os dentes, respectivamente.

$$P_p = \frac{\sigma \cdot d^2}{12} \cdot \frac{1}{T} \cdot \int_0^T \left(\frac{\partial B}{\partial t}\right)^2 dt \quad \left[\frac{W}{m^3}\right]$$
(53)

Utilizando a expressão de indução na coroa, equação (26), na equação (53), obtém-se a equação descrita em (54) e derivada e expandida nas equações (55) e (56), respectivamente.

$$P_{p} = \frac{\sigma \cdot d^{2}}{12} \cdot \frac{1}{T} \cdot \int_{0}^{T} \left\{ \frac{\partial \left[\hat{B}_{c1} \cdot \cos(\omega \cdot t) + \hat{B}_{c3} \cdot \cos(3 \cdot \omega \cdot t) \right]}{\partial t} \right\}^{2} dt$$
(54)

$$P_{p} = \frac{\sigma \cdot d^{2}}{12} \cdot \frac{1}{T} \cdot \int_{0}^{T} \left\{ -\omega \cdot \hat{B}_{c1} \cdot sen(\omega \cdot t) - 3 \cdot \omega \cdot \hat{B}_{c3} \cdot sen(3 \cdot \omega \cdot t) \right\}^{2} dt$$
(55)

$$P_{p} = \frac{\sigma \cdot d^{2}}{12} \cdot \frac{1}{T} \cdot \int_{0}^{T} \left\{ \begin{aligned} \omega^{2} \cdot \hat{B}_{c1}^{2} \cdot \operatorname{sen}^{2}(\omega \cdot t) + 9 \cdot \omega^{2} \cdot \hat{B}_{c3}^{2} \cdot \operatorname{sen}^{2}(3 \cdot \omega \cdot t) + \\ 3 \cdot \omega^{2} \cdot \hat{B}_{c1} \cdot \hat{B}_{c3} \cdot \operatorname{sen}(\omega \cdot t) \cdot \operatorname{sen}(3 \cdot \omega \cdot t) \end{aligned} \right\} dt$$
(56)

Aplicando propriedades trigonométricas apresentadas nas equações (40) e (41), chega-se a expressão da equação (57). Como a integral de uma senóide no período é zero, conforme equação (44), reduz-se a integral aos termos da equação (58) que é integrada conforme equação (59) e resolvida chegando à equação (60).

$$P_{p} = \frac{\sigma \cdot d^{2}}{12} \cdot \frac{1}{T} \cdot \int_{0}^{T} \begin{cases} \omega^{2} \cdot \hat{B}_{c1}^{2} \cdot \left(\frac{1 - \cos(\omega \cdot t)}{2}\right) + \\ 9 \cdot \omega^{2} \cdot \hat{B}_{c3}^{2} \cdot \left(\frac{1 - \cos(3 \cdot \omega \cdot t)}{2}\right) + \\ \left(\frac{3 \cdot \omega^{2} \cdot \hat{B}_{c3} \cdot \hat{B}_{c1}}{2}\right) \cdot \cos(\omega \cdot t - 3 \cdot \omega \cdot t) - \\ \left(\frac{3 \cdot \omega^{2} \cdot \hat{B}_{c3} \cdot \hat{B}_{c1}}{2}\right) \cdot \cos(\omega \cdot t + 3 \cdot \omega \cdot t) \end{cases} dt$$

$$(57)$$

$$P_{p} = \frac{\sigma \cdot d^{2}}{12} \cdot \frac{1}{T} \cdot \int_{0}^{T} \left\{ \frac{\omega^{2} \cdot \hat{B}_{c1}^{2}}{2} + \frac{9 \cdot \omega^{2} \cdot \hat{B}_{c3}^{2}}{2} \right\} dt$$
(58)

$$P_{p} = \frac{\sigma \cdot d^{2}}{12} \cdot \frac{1}{T} \cdot \left[\frac{\omega^{2} \cdot \hat{B}_{c1}^{2} \cdot t}{2} + \frac{9 \cdot \omega^{2} \cdot \hat{B}_{c3}^{2} \cdot t}{2}\right]_{0}^{T}$$
(59)

$$P_p = \frac{\sigma \cdot d^2 \cdot \omega^2}{24} \cdot [\hat{B}_{c1}^2 + 9 \cdot \hat{B}_{c3}^2]$$
(60)

Utilizando a expressão de indução no dente, equação (29), na equação (53), obtém-se a equação descrita em (61) e derivada e expandida nas equações (62) e (63), respectivamente.

$$P_{p} = \frac{\sigma \cdot d^{2}}{12} \cdot \frac{1}{T} \cdot \int_{0}^{T} \left\{ \frac{\partial \left[\hat{B}_{t1} \cdot sen(\omega \cdot t) + \hat{B}_{t3} \cdot sen(3 \cdot \omega \cdot t)\right]}{\partial t} \right\}^{2} dt$$
(61)

$$P_p = \frac{\sigma \cdot d^2}{12} \cdot \frac{1}{T} \cdot \int_0^1 \left\{ \omega \cdot \hat{B}_{t1} \cdot \cos(\omega \cdot t) + 3 \cdot \omega \cdot \hat{B}_{t3} \cdot \cos(3 \cdot \omega \cdot t) \right\}^2 dt \tag{62}$$

$$P_{p} = \frac{\sigma \cdot d^{2}}{12} \cdot \frac{1}{T} \cdot \int_{0}^{T} \left\{ \frac{\omega^{2} \cdot \hat{B}_{t1}^{2} \cdot \cos^{2}(\omega \cdot t) + 9 \cdot \omega^{2} \cdot \hat{B}_{t3}^{2} \cdot \cos^{2}(3 \cdot \omega \cdot t) + }{3 \cdot \omega^{2} \cdot \hat{B}_{t1} \cdot \hat{B}_{t3} \cdot \cos(\omega \cdot t) \cdot \cos(3 \cdot \omega \cdot t)} \right\}^{2} dt$$
(63)

Aplicando propriedades trigonométricas apresentadas nas equações (64) e (65) obtém-se a equação (66)

$$a \cdot \cos^2(\theta) = a \cdot \frac{1 + \cos(2 \cdot \theta)}{2} \tag{64}$$

$$a \cdot \cos(\theta_1) \cdot \cos(\theta_2) = \left(\frac{a}{2}\right) \cdot \cos(\theta_1 - \theta_2) + \left(\frac{a}{2}\right) \cdot \cos(\theta_1 + \theta_2) \tag{65}$$

$$P_{p} = \frac{\sigma \cdot d^{2}}{12} \cdot \frac{1}{T} \cdot \int_{0}^{T} \begin{cases} \omega^{2} \cdot \hat{B}_{t1}^{2} \cdot \left(\frac{1 + \cos(\omega \cdot t)}{2}\right) + \\ 9 \cdot \omega^{2} \cdot \hat{B}_{t3}^{2} \cdot \left(\frac{1 + \cos(3 \cdot \omega \cdot t)}{2}\right) + \\ \left(\frac{3 \cdot \omega^{2} \cdot \hat{B}_{t1} \cdot \hat{B}_{t3}}{2}\right) \cdot \cos(\omega \cdot t - 3 \cdot \omega \cdot t) + \\ \left(\frac{3 \cdot \omega^{2} \cdot \hat{B}_{t1} \cdot \hat{B}_{t3}}{2}\right) \cdot \cos(\omega \cdot t + 3 \cdot \omega \cdot t) \end{cases} dt$$

$$(66)$$

Novamente, como a integral de uma senóide no período é zero, conforme equação (44), a equação (66) é reduzida aos termos da equação (67). Integrando esta última, chega-se a equação (68), a qual resolvida resulta na equação (69).

$$P_{p} = \frac{\sigma \cdot d^{2}}{12} \cdot \frac{1}{T} \cdot \int_{0}^{T} \left\{ \frac{\omega^{2} \cdot \hat{B}_{t1}^{2}}{2} + \frac{9 \cdot \omega^{2} \cdot \hat{B}_{t3}^{2}}{2} \right\} dt$$
(67)

$$P_{p} = \frac{\sigma \cdot d^{2}}{12} \cdot \frac{1}{T} \cdot \left[\frac{\omega^{2} \cdot \hat{B}_{t1}^{2} \cdot t}{2} + \frac{9 \cdot \omega^{2} \cdot \hat{B}_{t3}^{2} \cdot t}{2}\right]_{0}^{T}$$
(68)

$$P_p = \frac{\sigma \cdot d^2 \cdot \omega^2}{24} \cdot [\hat{B}_{t1}^2 + 9 \cdot \hat{B}_{t3}^2]$$
(69)

Nota-se que as equações (60) e (69) apresentam o mesmo formato, o qual pode ser expandido para uma série de termos infinita conforme expressa na equação (70). Nesta equação d é a espessura das chapas e σ a condutividade.

$$P_p = \frac{\sigma \cdot \omega^2 \cdot d^2}{24} \cdot \sum_{n=1,n \text{ impar}}^{\infty} n^2 \cdot \hat{B}_n^2 \quad \left[\frac{W}{m^3}\right]$$
(70)

Para efeitos de comparação da variação das perdas parasitas com a utilização de 3º harmônico na indução magnética, pode-se normalizar as perdas parasitas conforme a equação (71).

$$P_p^{norm} = \frac{P_p^{harm}}{P_p^{sen}} \tag{71}$$

Se considerado um campo de indução magnética com 3º harmônico na ordem de 15% da fundamental nos dentes e 5% da fundamental na coroa, pode-se prever um aumento de 20,3% nas perdas por correntes parasitas nos dentes e 2,3% na coroa.

3.2.4 Perdas por Excesso

As perdas por excesso também são resultantes do movimento em bloco dos domínios magnéticos dos materiais que compõe o núcleo do estator e rotor da máquina sob ação de uma indução magnética alternada. Em [26] é apresentada a equação (6) para a perda por excesso provocada por uma onda de indução senoidal. Porém tal equação não é valida para uma onda composta por harmônicos pois não há como integrar os termos da somatória.

Deste modo, volta-se a descrição integro-diferencial das perdas por excesso apresentadas em [26], equação (72). Se consideradas as representações por série de Fourier da indução magnética na coroa e nos dentes do estator descritas pelas equações (26) e (29), respectivamente, pode-se expandir a equação (72) nas equações (73) e (74).

$$P_e = \sqrt{\sigma \cdot G \cdot V_0 \cdot S} \cdot \frac{1}{T} \cdot \int_0^T \left(\frac{\partial B}{\partial t}\right)^{3/2} dt \quad \left[\frac{W}{m^3}\right]$$
(72)

$$P_{ec} = \sqrt{\sigma \cdot G \cdot V_0 \cdot S} \cdot \frac{1}{T} \cdot \int_0^T \left| \frac{\partial}{\partial t} \left(\hat{B}_{c1} \cdot \cos(\omega \cdot t) + \hat{B}_{c3} \cdot \cos(3 \cdot \omega \cdot t) \right) \right|^{3/2} dt$$
(73)

$$P_{et} = \sqrt{\sigma \cdot G \cdot V_0 \cdot S} \cdot \frac{1}{T} \cdot \int_0^T \left| \frac{\partial}{\partial t} \left(\hat{B}_{t1} \cdot sen(\omega \cdot t) + \hat{B}_{t3} \cdot sen(3 \cdot \omega \cdot t) \right) \right|^{3/2} dt$$
(74)

Resolvendo-se as equações (73) e (74), obtêm-se as equações (75) e (76) que representam as perdas por excesso na coroa e nos dentes do estator, respectivamente, e que podem ser resolvidas numericamente.

$$P_{ec} = \sqrt{\sigma \cdot G \cdot V_0 \cdot S} \cdot \frac{1}{T} \cdot \int_0^T \left| -\omega \cdot \hat{B}_{c1} \cdot sen(\omega \cdot t) - 3 \cdot \omega \cdot \hat{B}_{c3} \cdot sen(3 \cdot \omega \cdot t) \right|^{3/2} dt \quad \left[\frac{W}{m^3}\right]$$
(75)

$$P_{et} = \sqrt{\sigma \cdot G \cdot V_0 \cdot S} \cdot \frac{1}{T} \cdot \int_0^T \left| \omega \cdot \hat{B}_{t1} \cdot \cos(\omega \cdot t) + 3 \cdot \omega \cdot \hat{B}_{t3} \cdot \cos(3 \cdot \omega \cdot t) \right|^{3/2} dt \quad \left[\frac{W}{m^3} \right]$$
(76)

Para efeitos de comparação da variação das perdas por excesso com a utilização de 3º harmônico na indução magnética, pode-se normalizar as perdas parasitas conforme a equação (77).

$$P_e^{norm} = \frac{P_e^{harm}}{P_e^{sen}} \tag{77}$$

Considerado um campo de indução magnética com 3º harmônico na ordem de 15% da fundamental nos dentes e 5% da fundamental na coroa e resolvendo numericamente as equações (75) e (76) para uma frequência angular $\omega = 2 \cdot \pi \cdot 60$, pode-se prever um acréscimo de 4,2% nas perdas por excesso na coroa e 2% nos dentes do estator.

3.3 CONCLUSÃO DO EQUACIONAMENTO DE PERDAS MAGNÉTICAS

Neste capítulo foram apresentados um estudo das ondas de indução magnética no entreferro, na coroa e nos dentes do estator, tendo sida estabelecidas relações entre as amplitudes dos harmônicos de indução magnética do entreferro e da coroa e dentes do estator. Foi visto que a indução magnética no entreferro e nos dentes é bem representada por uma série de Fourier de senos, sendo que a variação temporal da indução nos dentes pode ser obtida da variação espacial da indução no entreferro. De forma similar, foi constatado que a variação temporal da indução magnética na coroa pode ser obtida da variação espacial da indução no entreferro, porém, na coroa o campo magnético é melhor descrito por uma série de Fourier de cossenos.

Em seguida foi demonstrada como as perdas no cobre são dependentes apenas do valor eficaz da corrente que circula pelos condutores do motor. Por fim, foram equacionadas as perdas magnéticas para a coroa e os dentes do estator, dividindo-se estas em perdas por histerese, perdas por correntes parasita e perdas por excesso, cada qual com seu equacionamento específico.

Com base no equacionamento apresentado na seção 3.2 pode-se prever o comportamento esperado das perdas magnéticas com a inclusão do 3° harmônico no campo de indução do entreferro, o que é apresentado na Tabela 4. Se considerado que as perdas mecânicas são constantes e a corrente *RMS* da máquina operando com indução senoidal ou trapezoidal serão as mesmas, pode-se prever um aumento nas perdas totais da máquina.

Perdas	Histerese [%]	Corrente Parasita [%]	Excesso [%]
Coroa	+ 8,6	+ 20,3	+ 4,2
Dentes	-21,4	+ 2,3	+ 2

Tabela 4 – Previsão de variação das perdas magnéticas com utilização de indução magnética trapezoidal no entreferro, comparado à utilização de indução magnética senoidal no entreferro. Considerando $\alpha = 1,7 \ e \ \hat{B}_{g3}/\hat{B}_{g1} = 15\%$

4. MODELOS COMPUTACIONAIS

Este capítulo traz os métodos computacionais e os resultados das simulações realizadas com base no protótipo desenvolvido em [16] e no equacionamento das perdas magnéticas desenvolvidas e apresentadas no capítulo 3 desta dissertação.

Nas sessões a seguir são apresentadas as rotinas de computacionais desenvolvidas e utilizadas e os resultados obtidos das simulações.

Para a obtenção das curvas de indução nos dentes do estator e no entreferro foi utilizado o programa de cálculo por elementos finitos FEM2000. As demais rotinas computacionais foram implementadas em MatLab.

4.1 CÁLCULO DOS HARMÔNICOS DE INDUÇÃO

Os harmônicos de indução magnética na máquina foram calculados através da utilização do programa de cálculos por elementos finitos FEM2000, visto que não há uma mudança significativa no campo magnético da máquina operando sob carga ou a vazio, e que em vazio as correntes no rotor são bastante baixas – podendo ser desprezadas, foram considerados para os cálculos os valores de corrente do estator operando a vazio. A análise foi realizada no instante em que a corrente da fase A encontra-se em seu pico.

Calculou-se a indução magnética no entreferro sob um pólo da máquina, gerando gráficos como o apresentado na Figura 10, a partir dos quais o programa calcula o conteúdo harmônico, gerando tabelas como a apresentada na Figura 25.

Esta análise foi realizada para 30%, 50% e de 80% a 300% com acréscimos de 10% da corrente nominal da máquina para três casos: injeção de corrente senoidal; injeção de corrente com conteúdo de 3° harmônicos com razão $\hat{I}_3/\hat{I}_1 = 20\%$; e injeção de corrente com conteúdo de 3° harmônico com razão $\hat{I}_3/\hat{I}_1 = 38\%$. A análise com tais percentuais de corrente destina-se a possibilitar uma análise da saturação magnética do ferro.

Na Tabela 21, em anexo, estão os valores da fundamental e 3° harmônicos da indução no entreferro da máquina obtidos pelo programa FEM2000. A Figura 26 e a Figura 27 trazem os valores da Tabela 21 em gráficos comparativos. A Figura 26 apresenta a variação da componente fundamental em função do percentual de corrente nominal, enquanto a Figura 27 traz o comparativo dos 3° harmônicos para os três casos descritos acima.

	Termos em Seno			Termos em Cosseno	
ordem normal 01 +100.000 03 +0.870 05 -0.306 07 +0.098 09 +1.913 11 -1.699 13 -0.060 15 +0.109 17 -0.195 19 -20.276 21 +9.846 23 +0.007 25 +0.030 27 -0.012 29 -0.325	ordem tangencial 01 -90.849 03 -3.178 05 +7.607 07 +1.092 09 -27.297 11 +16.145 13 +12.827 15 +25.283 17 -29.003 19 -93.108 21 +100.000 23 -3.336 25 -10.817 27 +0.334 29 29.995	ordem módulo 01 +100.000 03 +0.913 05 -0.243 07 +0.183 09 +2.055 11 -1.581 13 +0.070 15 +0.249 17 -0.045 19 -20.000 21 +9.821 23 +0.137 25 +0.155 27 +0.098 29 +0.304	ordem normal 01 +2.292 03 +31.203 05 -64.768 07 -16.157 09 -24.643 11 -7.302 13 -50.097 15 -100.000 17 +84.330 19 +25.667 21 +7.845 23 +0.104 25 +14.658 27 +11.041 29 +2.577	ordem tangencial 01 -31.180 03 +0.527 05 -0.032 07 -0.511 09 -27.395 11 +31.206 13 +0.475 15 -0.572 17 +0.533 19 +100.000 21 -57.521 23 -0.277 25 -0.498 27 +0.683 29 +10.799	ordem módulo 01 +38.752 03 +64.343 05 -35.068 07 +14.327 09 +6.668 11 +11.600 13 -30.897 15 84.069 17 +100.000 19 +29.122 21 +15.749 23 +2.905 25 +13.080 27 +5.356 29 5.274
val. ref : 0.58	val. ref : 0.00157	val. ref : 0.581	val. ref : 0.00253	val. ref : 0.0101	val. ref : 0.00247

Figura 25 – Análise harmônica realizada pelo FEM2000 para a indução no entreferro com corrente nominal sem componente de 3º harmônico.

Figura 26 – Variação da componente fundamental de indução no entreferro em função do nível de corrente injetado para corrente senoidal e correntes com 3° harmônico

Figura 27 – Variação da componente de 3º harmônico de indução no entreferro em função do nível de corrente injetado para corrente senoidal e correntes com 3º harmônico

Para a determinação das amplitudes médias dos harmônicos de indução na coroa do estator foram utilizadas as relações desenvolvidas na seção 3.1.1 e expressas pelas equações (26), (27) e (28).

Considerando um fator $K_{\delta c} = 0,95$, e os dados presentes na Tabela 1, pode-se calcular o passo polar pela equação (21):

$$\sigma_p = \frac{\pi \cdot r}{p} = \frac{\pi \cdot 40 \cdot 10^{-3}}{2} = 62,8319 \cdot 10^{-3}$$
(78)

$$\sigma_p = 62,8319 \cdot 10^{-3} \tag{79}$$

O qual aplicado nas equações (27) e (28), permite obter as relações entre as amplitudes dos harmônicos do entreferro e da coroa:

$$\hat{B}_{c1} = \left(0.95 \cdot \frac{62.8319 \cdot 10^{-3}}{\pi} \cdot \frac{1}{13.15 \cdot 10^{-3}}\right) \cdot \hat{B}_{g1} = 1.4449 \cdot \hat{B}_{g1} \tag{80}$$

$$\hat{B}_{c3} = \left(0,95 \cdot \frac{62,8319 \cdot 10^{-3}}{\pi} \cdot \frac{1}{13,15 \cdot 10^{-3}}\right) \cdot \frac{1}{3} \cdot \hat{B}_{g3} = 0,4816 \cdot \hat{B}_{g3}$$
(81)

$$\hat{B}_{c1} = 1.4449 \cdot \hat{B}_{g1} \tag{82}$$

$$\hat{B}_{c3} = 0,4816 \cdot \hat{B}_{g3} \tag{83}$$

Aplicando as relações (82) e (83) nos valores de harmônicos do entreferro apresentados na Tabela 21 em anexo, obtêm-se os valores dos harmônicos na coroa do estator, apresentados na Tabela 22, em anexo. A Figura 28 mostra um comparativo do crescimento do fundamental da indução magnética na coroa do estator em função do percentual de corrente nominal injetado para os casos de corrente senoidal e correntes com componente de 3° harmônico nos níveis de $\hat{l}_3/\hat{l}_1 = 20\%$ e $\hat{l}_3/\hat{l}_1 = 38\%$. A Figura 29 mostra o comparativo do crescimento do 3° harmônico para os mesmos casos.

Como era de se esperar, pela relação linear entre os harmônicos de indução na coroa do estator e no entreferro, o formato das curvas dos gráficos apresentados na Figura 26 e Figura 28, para a fundamental, e na Figura 27 e Figura 29, para o 3° harmônico, são bastante semelhantes em formato, tendo apenas amplitudes diferentes.

Figura 28 – Variação da componente fundamental de indução na coroa do estator em função do nível de corrente injetado para corrente senoidal e correntes com 3º harmônico

Figura 29 – Variação da componente de 3º harmônico de indução na coroa do estator em função do nível de corrente injetado para corrente senoidal e correntes com 3º harmônico

4.1.1 Indução nos dentes do Estator

Os harmônicos de indução magnética nos dentes necessitaram de um pós-processamento dos dados obtidos da análise de elementos finitos. Isto por que o FEM2000 só permite a obtenção de curvas de indução espacial, ou seja, para um dado instante de tempo, tem-se a curva de indução sobre uma determinada linha.

Entretanto, para a determinação das perdas magnéticas são necessárias as curvas de indução no tempo. Isto porque estas perdas dependem da variação no tempo da indução magnética, como fica explícito pelas derivadas presentes nas equações (53) e (72) para perdas por corrente parasita e por excesso, respectivamente.

Para o caso da coroa do estator, isto não chega a ser um problema, pois conforme demonstrado na seção 3.1.1, os harmônicos de indução na coroa do estator no tempo podem ser

obtidos através dos harmônicos de indução no entreferro no espaço. Portanto, a análise harmônica da curva de indução no entreferro no espaço é suficiente.

Entretanto, o mesmo não se aplica aos dentes do estator. Isto por que as curvas de indução obtidas no espaço sobre um pólo contêm harmônicos de ranhura, os quais são ainda mais pronunciados quando a curva é traçada no meio dos dentes do estator. A Tabela 5 traz os harmônicos do entreferro e dos dentes do estator obtidos pelo FEM2000 para o protótipo alimentado com corrente nominal com componente de 3° harmônico de $\hat{l}_3/\hat{l}_1 = 38\%$.

Como é possível notar na Tabela 5, os harmônicos de ranhura, 19° e 21° são muito mais pronunciados nos dentes. Isto se deve ao fato de que a indução magnética cai a zero quando a curva passa pelas ranhuras e fica em um determinado patamar quando a curva passa sobre o dente. Tal aspecto pode ser mais bem visualizado na Figura 30 (a).

n	Entreferro	Dente	n	Entreferro	Dente	n	Entreferro	Dente
1	0,5820	0,5090	9	0,0115	0,0162	19	-0,1179	-0,3770
2	0,0004	0,0004	10	-0,0001	0,0000	21	0,0572	0,3483
3	0,0746	0,0702	11	-0,0103	-0,0157	23	0,0009	0,0447
4	0,0015	0,0018	12	0,0002	0,0002	25	-0,0001	-0,0005
5	0,0010	0,0009	13	-0,0104	-0,0177	27	-0,0019	0,0102
6	-0,0003	-0,0001	14	-0,0004	0,0003	29	-0,0023	0,0071
7	0,0159	0,0197	15	-0,0005	-0,0004			
8	-0,0003	0,0003	17	-0,0239	-0,0567			

Tabela 5 - Harmônicos de indução magnética espacial no entreferro e nos dentes do estator

Figura 30 – Curvas de Indução nos dentes: (a) Curva obtida pelo FEM2000 e curva gerada pelos harmônicos obtidos do FEM2000; (b) Curva Obtida pelo FEM2000 e curvas considerando apenas a fundamental e 3° harmônicas, obtidas do FEM2000 e calculadas.

Também na Figura 30 (a) pode ser visto que os harmônicos obtidos pelo FEM2000 reproduzem bem a curva de indução magnética espacial nos dentes. Mas, como se vê na linha tracejada da Figura 30 (b), utilizar somente a fundamental e o 3° harmônico para representar a indução magnética no tempo nos dentes não gera um bom resultado. Assim, foi desenvolvido um método simples de cálculo que resulta em uma aproximação melhor, representada pela linha traço-ponto na Figura 30 (b).

Assumindo que a indução magnética no interior de um dente varia suavemente, sem descontinuidades, no tempo pode-se pensar que o no instante (t) o valor da indução será B(t), e no instante $(t + \Delta t)$ o valor da amplitude será $B(t + \Delta t)$ e assim por diante, onde Δt é o tempo necessário para que o campo magnético gire o espaço de um dente. Deste modo, o valor de indução em um dente, será o valor da indução do dente vizinho Δt segundos depois, e o valor do próximo dente para 2 · Δt segundos depois e assim por diante.

Figura 31 - Curvas de Indução magnética nos dentes: (a) Indução no espaço e pontos da curva de indução no tempo; (b) Indução no espaço, pontos usado para calculo da curva de indução no tempo.

Para o protótipo, há 10 ranhuras por pólo, logo 10 dentes por pólo. Assim, lembrando que a análise por elementos finitos é feita sobre dois pólos, e que há dois dentes cortados a metade, é possível de serem obtidos até 21 pontos para a curva de indução no dente no tempo. Entretanto, considerando que a onda tenha simetria impar de meia onda, o calculo pode ser feito sob apenas um pólo e utilizando 11 pontos. Na Figura 31 (a) estão representados estes pontos. Na Figura 31 (b) são grafados os pontos e a curva obtida com a fundamental e 3° harmônico calculados a partir destes.

Pela teoria de Nyquist, é preciso ter uma frequência de amostragem pelo menos o dobro da frequência do maior harmônico. Assim, com 21 amostras por ciclo de onda, é possível se calcular frequências de até 10,5 vezes a fundamental. Porém, como três destes pontos caem em zonas em que o valor da indução magnética é nula, o método desenvolvido calcula corretamente até o 9° harmônico.

Por simplificação, a onda fundamental é considerada de 1 Hz, assim sobre cada pólo estão 180° da onda e 11 amostras espaçadas de ângulos iguais ao passo polar (σ_p).

O sistema a ser resolvido é um sistema linear matricial expresso na (84), onde x é o vetor de amplitudes dos harmônicos de 1 à n e A e b são formados conforme equações (85) e (86). k é a quantidade de harmônicos que se deseja calcular e m a quantidade de amostras disponíveis.

$$A_{k,k} \cdot x_{k,1} = b_{k,1} \tag{84}$$

$$A_{k,k} = F'_{m,k} \cdot F_{m,k} \tag{85}$$

$$b_{k,1} = F'_{m,k} \cdot d_{m,1} \tag{86}$$

 $d_{m,1}$ é o vetor de amplitudes, onde estão armazenados os valores de indução em cada um dos dentes. $F_{m,k}$ é uma matriz formada conforme equação (87), onde n(k) é um vetor com a ordem dos harmônicos considerados.

$$F_{m,k} = \begin{bmatrix} sen(1 \cdot 0 \cdot \sigma_p) & sen(2 \cdot 0 \cdot \sigma_p) & \cdots & sen(k \cdot 0 \cdot \sigma_p) \\ sen(1 \cdot \sigma_p) & sen(2 \cdot \sigma_p) & \cdots & sen(k \cdot \sigma_p) \\ sen(1 \cdot 2 \cdot \sigma_p) & sen(2 \cdot 2 \cdot \sigma_p) & \cdots & sen(k \cdot 2 \cdot \sigma_p) \\ \vdots & \vdots & \ddots & \vdots \\ sen(1 \cdot (m-1) \cdot \sigma_p) & sen(2 \cdot (m-1) \cdot \sigma_p) & \cdots & sen(k \cdot (m-1) \cdot \sigma_p) \end{bmatrix}_{m,k}$$
(87)

Para este trabalho, foram considerados apenas o fundamental e o terceiro harmônico e as 11 amostras conforme exemplificado nos gráficos da Figura 31. Assim, $d_{m,1}$ é um vetor de 11 posições e a matriz $F_{m,k}$ é uma matriz 11x2. $b_{k,1}$ é um vetor 2x1 e $A_{k,k}$ é uma matriz 2x2. É interessante notar que a matriz $A_{k,k}$ é uma matriz diagonal, uma vez que os elementos fora da diagonal principal representam a soma de senos de frequências diferentes, a qual resulta em zero.

A Tabela 23, em anexo, traz os 1° e 3° harmônicos nos dentes do estator calculados pelo método descrito acima para os casos de injeção de corrente senoidal e correntes com componente de 3° harmônico nos níveis de $\hat{l}_3/\hat{l}_1 = 20\%$ e $\hat{l}_3/\hat{l}_1 = 38\%$. A Figura 32 apresenta o gráfico da evolução da fundamental em função do percentual de corrente nominal e a Figura 33 mostra este comparativo para o 3° harmônico.

É possível se observar uma semelhança no formato das curvas da Figura 32 e Figura 33 com aquelas apresentadas na Figura 26, Figura 27, Figura 28 e Figura 29.

Figura 32 – Variação da componente da fundamental de indução nos dentes do estator em função do nível de corrente injetado para corrente senoidal e correntes com 3º harmônico

Figura 33 – Variação da componente de 3° harmônico de indução nos dentes do estator em função do nível de corrente injetado para corrente senoidal e correntes com 3° harmônico

4.2 CÁLCULOS DAS PERDAS MAGNÉTICAS

Para o cálculo das perdas magnéticas, foram utilizadas as equações desenvolvidas anteriormente: perdas por histerese, equação (51); perdas por corrente parasita, equação (70); e perdas por excesso, equações (75) e (76), para a coroa e o dente, respectivamente.

De modo geral, as perdas magnéticas dependem de características magnéticas – indução magnética máxima (B_m) , amplitude dos harmônicos de indução magnética (\hat{B}) , frequência das ondas de indução magnética, corrente e tensão $(f e \omega)$ – de características construtivas dos materiais da máquina – espessura das chapas do motor (d) e secçao transversal de material que o fluxo magnético corta $(S_c e S_t)$ – e das propriedades magnéticas dos materiais da máquina – condutividade elétrica (σ) , coeficientes $G e V_0$.
Enquanto que as características construtivas são facilmente obtidas do protótipo, ou de suas especificações, e as características magnéticas são conhecidas (frequências) ou obtidas por métodos de simulações por elementos finitos (harmônicos de indução magnética) as propriedades magnéticas das chapas do estator são conhecidas de forma global (entre 7 e 8 W/kg).

Deste modo, para a realização das simulações foram utilizados parâmetros e coeficiente obtidos nas referências [15], [33], [34] e [35].

Para as rotinas de cálculo, alguns termos das equações (70), (75) e (76) foram agrupadas em coeficientes que representam os mesmos coeficientes obtidos dos artigos. A equação (51), por já estar em termos dos fatores k_h e α não precisou de alterações – ela é reapresentada na equação (88) abaixo.

$$P_h = k_h \cdot f \cdot B_m^{\alpha} \quad \left[\frac{W}{m^3}\right] \tag{88}$$

A equação (70) foi reescrito em termos do fator k_p , conforme apresentado nas equações (89), (90) e (91) abaixo.

$$P_p = \frac{\sigma \cdot \omega^2 \cdot d^2}{24} \cdot \sum_{n=1,n \text{ impar}}^{\infty} n^2 \cdot \hat{B}_n^2 \quad \left[\frac{W}{m^3}\right]$$
(89)

$$P_p = k_p \cdot \omega^2 \cdot \sum_{n=1,n \text{ impar}}^{\infty} n^2 \cdot \hat{B}_n^2$$
⁽⁹⁰⁾

$$k_p = \frac{\sigma \cdot d^2}{24} \tag{91}$$

De modo similar, as equações (75) e (76) foram reescritas em função dos fatores k_{ec} e k_{et} conforme demonstrado nas equações (92), (93), (94), (95), (96) e (97).

$$P_{ec} = \sqrt{\sigma \cdot G \cdot V_0 \cdot S} \cdot \frac{1}{T} \cdot \int_0^T \left| -\omega \cdot \hat{B}_{c1} \cdot sen(\omega \cdot t) - 3 \cdot \omega \cdot \hat{B}_{c3} \cdot sen(3 \cdot \omega \cdot t) \right|^{3/2} dt \quad \left[\frac{W}{m^3}\right] \tag{92}$$

$$P_{et} = \sqrt{\sigma \cdot G \cdot V_0 \cdot S} \cdot \frac{1}{T} \cdot \int_0^T \left| \omega \cdot \hat{B}_{t1} \cdot \cos(\omega \cdot t) + 3 \cdot \omega \cdot \hat{B}_{t3} \cdot \cos(3 \cdot \omega \cdot t) \right|^{3/2} dt \quad \left[\frac{W}{m^3} \right]$$
(93)

$$P_{ec} = k_{ec} \cdot \frac{1}{T} \cdot \int_0^T \left| -\omega \cdot \hat{B}_{c1} \cdot sen(\omega \cdot t) - 3 \cdot \omega \cdot \hat{B}_{c3} \cdot sen(3 \cdot \omega \cdot t) \right|^{3/2} dt \quad \left[\frac{W}{m^3}\right]$$
(94)

$$P_{et} = k_{et} \cdot \frac{1}{T} \cdot \int_0^T \left| \omega \cdot \hat{B}_{t1} \cdot \cos(\omega \cdot t) + 3 \cdot \omega \cdot \hat{B}_{t3} \cdot \cos(3 \cdot \omega \cdot t) \right|^{3/2} dt \quad \left[\frac{W}{m^3} \right]$$
(95)

$$k_{ec} = \sqrt{\sigma \cdot G \cdot V_0 \cdot S_c} \tag{96}$$

$$k_{et} = \sqrt{\sigma \cdot G \cdot V_0 \cdot S_t} \tag{97}$$

Salienta-se que nos artigos referenciados estes dois fatores k_{ec} e k_{et} são tratados como um único fator k_e , não apresentando a variação para dente ou coroa do estator que é levada em conta neste trabalho. Tal fato se deve aos fatores serem obtidos de ensaios realizados com amostras de material e não diretamente na máquina. Como nota-se, a única diferença entre os fatores k_{ec} e k_{et} é a secção de área do material que o fluxo magnético corta S_c e S_t .

Uma vez que a comprovação experimental da separação das perdas magnéticas é difícil de ser realizada e exigiria a utilização de equipamentos não se tem disponibilidade, ela não foi feita neste trabalho, nas sessões seguintes são apresentados apenas os resultados das perdas magnéticas totais do estator, as quais podem ser comparadas com os resultados dos ensaios que foram realizados. Os dados da separação de perdas magnéticas e os gráficos gerados constam no Anexo A e Anexo B, respectivamente, desta dissertação.

Nas sessões a seguir são apresentadas as simulações com os parâmetros obtidos.

4.2.1 Parâmetros A

Na referência [15] é apresentada um exemplo que utiliza os parâmetros apresentados na Tabela 6. O exemplo trata do cálculo de perdas magnéticas em um motor trifásico de imãs permanentes com rotor externo. Não são considerados harmônicos na referência [15].

Como se vê na Tabela 6, os parâmetros são apresentados em função do peso específico do material magnético, de modo que as perdas sejam dadas em $\frac{W}{kg}$ e não em $\frac{W}{m^3}$ como nas equações desenvolvidas e utilizadas nesta dissertação.

Assim, o resultados das equações da seção anterior devem ser multiplicados pela densidade específica do FeSi – Tabela 2 – e pelo volume dos dentes – equação (9) ou (10) – e da coroa – equação (12) – para que as perdas sejam expressas em watts. Ainda, o fator k_p apresentado em [15] difere do utilizado neste trabalho de um fator de 1/2 pois em [15] a equação é deixada em função da integral. Assim k_p apresentado na Tabela 6 deve ser dividido a metade.

Calculando-se as perdas magnéticas, têm-se que as perdas por corrente parasita são predominantes, seguido das perdas por histerese e por fim uma pequena contribuição das perdas por excesso.

A Tabela 7 apresenta os valores de perdas para corrente nominal para os casos de injeção de corrente senoidal e com componente de 3° harmônicos nos níveis de $\hat{I}_3/\hat{I}_1 = 20\%$ e $\hat{I}_3/\hat{I}_1 =$

38%. Verificando-se os valores, percebe-se que é esperado um acréscimo de 6% nas perdas magnéticas com a utilização do 3° harmônico com a relação $\hat{I}_3/\hat{I}_1 = 38\%$, que é a mesma relação utilizada em [14].

k _h	$k_p \cdot 2$	k _e	α
$\frac{k_h}{m_v} = 0,0371$	$\frac{1}{m_v} \cdot \frac{\sigma \cdot d^2}{12} = 0,187 \cdot 10^{-3}$	$\frac{1}{m_v} \cdot \sqrt{\sigma \cdot G \cdot V_0 \cdot S} = 0.11 \cdot 10^{-3}$	<i>α</i> = 1,58

Tabela 6 – Parâmetros	da referência [15]
-----------------------	--------------------

Tabe	la 7	— F	Perdas	s magn	éticas	utilizanc	lo os	parâme	tros A	, refei	rência	[15],	ес	corrent	e no	omin	al
------	------	-----	--------	--------	--------	-----------	-------	--------	--------	---------	--------	-------	----	---------	------	------	----

Absolutas Normaliz			alizada 6]	Absolutas [W]			Normalizada [%]			
Senoidal	20%	38%	20 %	38 %	Senoidal	20%	38%	20 %	38 %	
Scholdar	2070	5070	Sen	Sen	Scholdar	2070	3070	Sen	Sen	
Perdas	por Hister	ese na Cor	oa do Est	tator	Perdas	por Histere	ese nos Den	tes do Es	stator	
4,08650	4,24460	4,36940	103,87	106,92	2,07400	1,86130	1,70010	89,74	81,97	
Perd	Perdas Parasitas na Coroa do Estator				Perdas Parasitas nos Dentes do Estator					
22,54800	22,81700	23,07500	101,19	102,34	13,28900	14,06900	15,70600	105,87	118,19	
Perda	s por Exces	sso na Coro	a do Esta	ator	Perdas	por Excess	so nos Dent	es do Est	tator	
0,83194	0,84930	0,86362	102,09	103,81	0,41750	0,41181	0,42531	98,64	101,87	
Perda	s Magnétic	as na Coro	a do Esta	ator	Perdas	Magnética	s nos Dent	es do Est	ator	
27,46700	27,91100	28,30800	101,62	103,06	15,78100	16,34200	17,83100	103,56	112,99	
P	erdas Mag	néticas no l	Estator							
43,24700	44,25300	46,13900	102,33	106,69						

A Figura 34 ilustra as perdas magnéticas totais no estator para os três casos de injeção de corrente, e também um gráfico do percentual das perdas corrente com terceiro harmônico em relação as perdas com corrente senoidal. Percebe-se que as perdas com a utilização de terceiro harmônico não excedem os 14% de acréscimo em relação às perdas com corrente senoidal, em toda faixa de correntes simulada.

No Anexo A.2 estão as tabelas com os dados das perdas para corrente senoidal e com componente de 3° harmônicos nos níveis de $\hat{I}_3/\hat{I}_1 = 20\%$ e $\hat{I}_3/\hat{I}_1 = 38\%$. A Tabela 24 traz as perdas por histerese, a Tabela 25 apresenta as perdas por corrente parasita, a Tabela 26 traz as perdas pro excesso, a Tabela 27 apresenta o somatório das perdas magnéticas para a coroa e os dentes e a Tabela 28 traz os dados das perdas totais do estator. No Anexo B.1 estão os gráficos comparativos obtidos com os dados das tabelas do Anexo A.2, a exceção das perdas magnéticas totais, que são apresentadas na Figura 34.

Figura 34 – Perdas por magnéticas no estator: superior: perdas absolutas; inferior: perdas em percentual, normalizadas em função das perdas com corrente senoidal – Parâmetros A

Figura 35 - Percentual de perdas em relação ao total de perdas magnéticas - Parâmetros A

A Figura 35 apresenta a contribuição de cada perda para as perdas totais, e também a contribuição das perdas na coroa e nos dentes (gráficos superiores) na perda total. A Tabela 29 e Tabela 30 do Anexo A.2 trazem os dados dos gráficos da Figura 35.

4.2.2 Parâmetros B

Na referência [33] são realizados testes de perdas magnéticas com alimentação *PWM* (*pulse width modulation*) para materiais de diversas espessuras e qualidades. Em [33] são apresentados três equacionamentos para o cálculo destas perdas e determinados coeficientes para estas equações.

Apesar de as equações apresentadas em [33] não levarem em consideração os harmônicos, um dos equacionamentos é bastante similar ao equacionamento desenvolvido nesta dissertação. Assim, os coeficientes apresentados para este equacionamento em [33] serão utilizados para as simulações.

Dentre os diversos tipos de FeSi testados em [33] três possuem espessura de 0,65 mm, três de 0,50 mm e dois de 0,35 mm. Uma vez que as chapas utilizadas no protótipo desenvolvido em [16] foi construído com chapas de espessura de 0,68 mm, os materiais de maior espessura foram escolhidos para serem utilizados nesta simulação.

A Tabela 8 apresenta os coeficientes para as chapas escolhidas da referência [33]. Pelas mesma razões apresentadas em [33], os materiais aqui estão listados de acordo com a codificação italiana, ou seja, por que os materiais são codificados com quatro dígitos, sendo que os dois primeiros representam dez vezes a perda específica em $\frac{W}{kg}$ para uma frequência de 50 Hz e indução magnética de 1,5 T, enquanto os dois últimos representam 100 vezes a espessura da chapa em mm. Tal representação torna fácil identificar a qualidade (nível de perdas) e a espessura das chapas utilizadas.

Material	k _h	α	$k_p \cdot (2 \cdot \pi)^2$	k _e
Material	a	X	b	e
8065	0,0331	1,74	0,000344	0,00
5365	0,0202	1,81	0,000266	0,00
3565	0,0143	1,85	0,000206	0,00

Tabela 8 – Parâmetros da referência [33]

A Tabela 8 apresenta os coeficientes retirados da referência [33] e sua correspondência aos coeficientes do equacionamento desta dissertação. Assim os coeficientes "a", "x" e "e" são diretamente equivalentes aos coeficientes k_h , $\alpha \in k_e$, respectivamente. Como neste artigo usa-se a frequência ω e em [33] utiliza-se a frequência f para o cálculo das perdas por corrente parasita, o coeficiente "b" deve ser dividido por $(2 \cdot \pi)^2$ para que represente o coeficiente k_p .

Salienta-se aqui, que pelos coeficientes "b" apresentados em [33], não há perdas por excesso. Entretanto, em [33] é realizado um teste de perdas com um motor de indução trifásico e os resultados apresentam um erro razoável. Por este motivo, na próxima subseção (4.2.3) será utilizado um coeficiente k_e diferente.

Chama-se atenção novamente para o fato de os coeficientes da referência [33] resultarem em perdas especifica em $\frac{W}{kg}$, sendo necessário multiplicar os resultados pela densidade do material para serem obtidas perdas em $\frac{W}{m^3}$. Apesar de a referência [33] apresentar uma tabela com as densidades dos diferentes materiais, nesta dissertação será utilizada uma densidade média apresentada na Tabela 2.

Nas subseções 4.2.2.1, 4.2.2.2 e 4.2.2.3 são apresentados os resultados das simulações utilizando os coeficientes da Tabela 8. Para facilitar a localização e entendimento dos dados, estes parâmetros foram nomeados de "B" seguidos da codificação do material utilizado na simulação, assim B 8065 utiliza os dados do material 8065, B 5365 utiliza os dados do material 5365 e B 3565 utiliza os dados do material 3565 da Tabela 8.

4.2.2.1 Parâmetros B 8065

A Tabela 9 traz os dados das perdas magnéticas utilizando corrente nominal. Pode-se perceber que as perdas por histerese são predominantes na coroa do estator, enquanto nos dentes, para corrente com 3° harmônico de $\hat{l}_3/\hat{l}_1 = 38\%$ as perdas por histerese e por corrente parasita apresentam níveis muito próximos. De modo geral, por esta simulação, é esperado um acréscimo em torno de 2% nas perdas magnéticas quando da utilização de corrente com 3° harmônicos e relação $\hat{l}_3/\hat{l}_1 = 38\%$.

A Figura 36 mostra gráficos da evolução das perdas magnéticas totais no estator em função do percentual de corrente nominal. Pelo gráfico inferior, é claramente visível que não é esperado um acréscimo maior de 10% para as perdas quando da injeção de corrente com 3° harmônico de $\hat{l}_3/\hat{l}_1 = 38\%$ mesmo para elevados níveis de corrente, quando comparado as perdas geradas por uma corrente senoidal

A Figura 37 apresenta gráficos do percentual que cada perda representa nas perdas totais. Nota-se que, ao contrário de quando utilizado corrente senoidal, quando é utilizada corrente com 3° harmônico na razão $\hat{l}_3/\hat{l}_1 = 38\%$ as perdas magnéticas nos dentes têm uma participação crescente nas perdas totais (gráficos superiores) com o aumento da densidade de corrente. É interessante notar, que para uma razão $\hat{l}_3/\hat{l}_1 = 20\%$ a participação nas perdas é aproximadamente constante com a densidade de corrente.

Absolutas [W]			Norma [%	lizada 6]	Absolutas [W]			Norma [%	Normalizada [%]	
Senoidal	20%	38%	20% Sen	38% Sen	Senoidal	20 %	38%	20% Sen	38% Sen	
Perdas	Perdas por Histerese na Coroa do Estator					or Hister	ese nos De	ntes do E	stator	
3,54590	3,69720	3,81710	104,27	107,65	1,88730	1,67520	1,51620	88,77	80,34	
Perda	is Parasita	is na Coro	a do Esta	itor	Perda	s Parasitas	s nos Dent	es do Est	ator	
2,10130	2,12640	2,15040	101,19	102,34	1,23850	1,31110	1,46370	105,87	118,19	
Perdas	Magnétic	as na Cor	oa do Est	tator	Perdas	Magnética	as nos Den	tes do Es	tator	
5,64720	5,82370	5,96760	103,12	105,67	3,12570	2,98630	2,97990	95,54	95,33	
P	erdas Mag	gnéticas no	Estator							
8,77300	8,81000	8,94750	100,42	101,99						

Tabela 9 - Perdas magnéticas utilizando os parâmetros B 8065, referência [33], e corrente nominal

Figura 36 – Perdas magnéticas no estator: superior: perdas absolutas; inferior: perdas em percentual, normalizadas em função das perdas com corrente senoidal – Parâmetros B 8065

O Anexo A.3 apresenta as tabelas com os dados de perdas em função da densidade de corrente para os parâmetros B 8065. O Anexo B.2 traz os gráficos comparativos para cada tipo de perda nos dentes e na coroa do estator para os parâmetros B 8065.

Figura 37 - Percentual de perdas em relação ao total de perdas magnéticas - Parâmetros B 8065

4.2.2.2 Parâmetros B 5365

A Tabela 10 mostra os dados das perdas para corrente nominal nos modos senoidal, e com 3° harmônico nas razões de $\hat{I}_3/\hat{I}_1 = 20\%$ e $\hat{I}_3/\hat{I}_1 = 38\%$. Comparando ao material 8065, percebe-se um aumento nos níveis de perdas, mas uma similaridade no que diz respeito ao percentual de aumento das perdas quando injetada corrente com 3° harmônico em comparação as perdas com corrente senoidal.

Absolutas [W]			Norma [%	alizada 6]	Absolutas Norm [W]			Norma [%	alizada ⁄6]	
Senoidal	20 %	38%	20% Sen	38% Sen	Senoidal	20%	38%	20% Sen	38% Sen	
Perdas	Perdas por Histerese na Coroa do Estator					oor Hister	ese nos De	ntes do E	stator	
2,13780	2,23280	2,30820	104,44	107,97	1,16170	1,02630	0,92513	88,34	79,63	
Perda	s Parasita	is na Coro	a do Esta	tor	Perdas Parasitas nos Dentes do Estator					
1,62490	1,64430	1,66280	101,19	102,34	0,95765	1,01380	1,13180	105,87	118,19	
Perdas	Perdas Magnéticas na Coroa do Estator				Perdas	Magnética	as nos Den	tes do Es	stator	
3,76270	3,87710	3,97100	103,04	105,54	2,11940	2,04010	2,05690	96,26	97,05	
P	erdas Mag	gnéticas no	Estator							
5,88210	5,91720	6,02790	100,60	102,48						

Tabela 10 - Perdas magnéticas utilizando os parâmetros B 5365, referência [33], e corrente nominal

Na Figura 38 e Figura 39 pode-se perceber novamente um comportamento semelhante dos materiais 8065 e 5365 no tocante ao acréscimo percentual de perdas e a distribuição do percentual de cada perda nas perdas magnéticas totais do estator. A grande diferença está nos níveis de perda menores do material de melhor qualidade, ou seja, o material 5365.

As tabelas com os dados completos das perdas magnéticas em função da densidade de corrente para o material 5365 são apresentadas no Anexo A.4. Os gráficos obtidos destes dados são apresentados no Anexo B.3.

Figura 38 – Perdas magnéticas no estator: superior: perdas absolutas; inferior: perdas em percentual, normalizadas em função das perdas com corrente senoidal – Parâmetros B 5365

Figura 39 - Percentual de perdas em relação ao total de perdas magnéticas - Parâmetros B 5365

4.2.2.3 Parâmetros B 3565

A Tabela 11 traz os dados de perdas com corrente nominal para o material 3565. Este material apresentou as menores perdas entre os três materiais retirados da referência [33]. Percebe-se novamente que os percentuais de acréscimo, ou redução, das perdas quando da injeção de corrente com 3° harmônico tem patamares bastante próximos aos outros dois materiais.

A similaridade nos percentuais de acréscimo nas perdas pode ser mais bem visualizada nos gráficos da Figura 40, especialmente quando comparados com os gráficos da Figura 36 e Figura 38. Fica evidente também, por esta análise, a influência da qualidade do material nas perdas.

A Figura 41 mostra os gráficos do percentual de contribuição de cada tipo de perda nas perdas magnéticas totais do estator. Quando comparado com os gráficos da Figura 37 e Figura 39 percebe-se que a distribuição da contribuição das perdas é bastante similar para os três materiais retirados da referência [33].

Absolutas [W]			Norma [%	alizada ⁄6]		Absolutas [W]		Normalizada [%]		
Senoidal	20 %	38%	20% Sen	38% Sen	Senoidal	20%	38%	20% Sen	38% Sen	
Perdas	por Hister	ese na Co	roa do Es	stator	Perdas p	oor Hister	ese nos De	ntes do E	stator	
1,50290	1,57120	1,62540	104,54	108,15	0,82648	0,72812	0,65485	88,10	79,23	
Perda	s Parasita	s na Coro	a do Esta	tor	Perdas Parasitas nos Dentes do Estator					
1,25840	1,27340	1,28780	101,19	102,34	0,74164	0,78514	0,87651	105,87	118,19	
Perdas	Magnétic	as na Cor	oa do Est	tator	Perdas	Magnétic	as nos Den	tes do Es	stator	
2,76130	2,84460	2,91320	103,02	105,50	1,56810	1,51330	1,53140	96,50	97,66	
P	erdas Mag	néticas no	Estator							
4,32940	4,35790	4,44450	100,66	102,66						

Tabela 11 - Perdas magnéticas utilizando os parâmetros B 3565, referência [33], e corrente nominal

As tabelas com os dados completos para cada tipo de perda em função da densidade de corrente para o material 3565 são apresentadas no Anexo A.5. No Anexo B.4 são apresentados os gráficos obtidos destes dados.

Figura 40 – Perdas magnéticas no estator: superior: perdas absolutas; inferior: perdas em percentual, normalizadas em função das perdas com corrente senoidal – Parâmetros B 3565

Figura 41 - Percentual de perdas em relação ao total de perdas magnéticas - Parâmetros B 3565

4.2.3 Parâmetros C

Na referência [35] é apresentado um estudo de perdas magnéticas em lâminas de aço silício de grão não orientado (GNO) que traz os coeficiente de perdas apresentados na Tabela 12.

Estes parâmetros são de interesse aqui, pois em [35] são utilizadas chapas de aço utilizadas por fabricantes de motores nacionais. Assim, as chapas testadas em [35] são similares as utilizadas na construção do protótipo utilizado nesta dissertação.

Tabela 12 – Parâmetros da referência [35]

$k_h \cdot f$	α	$k_p \cdot (2 \cdot \pi)^2 \cdot f$	$k_e \cdot (2 \cdot \pi)^{1.5} \cdot f \cdot \sqrt{50}$
0,015	1.6543	0.0061	0.0027

Salienta-se que as perdas em [35] são apresentadas em $\frac{J}{kg}$, e que os coeficientes não representam os mesmos coeficientes utilizados nesta dissertação. Assim, k_h precisa ser dividido por f, k_p deve ser dividido por $(2 \cdot \pi)^2 \cdot f$ e k_e deve ser dividido por $(2 \cdot \pi)^{1.5} \cdot f \cdot \sqrt{50}$ para que os coeficientes apresentados na Tabela 12 sejam equivalentes aos utilizados nas equações desta dissertação. Para obter as perdas em W, será necessário ainda multiplicar o resultado pela massa específica e pelo volume da coroa e dos dentes, para cada caso.

Tabela 13 - Perdas magnéticas utilizando os parâmetros C, referência [35], e corrente nominal

Absolutas [W]			Norma [%	alizada ⁄6]	Absolutas [W]			Normalizada [%]	
Senoidal	200%	38 0%	20 %	38 %	Senoidal	20%	38 0%	20 %	38 %
Scholuar	20 70	3070	Sen	Sen	Scholuar	20 70	3070	Sen	Sen
Perdas	por Hister	ese na Cor	oa do Est	tator	Perdas	por Histere	ese nos Den	tes do Es	stator
0,027184	0,028286	0,029157	104,05	107,26	0,014104	0,012593	0,011454	89,29	81,21
Perd	as Parasita	s na Coroa	do Estat	tor	Perda	ns Parasitas	nos Dente	s do Esta	tor
0,62104	0,62846	0,63554	101,19	102,34	0,36602	0,38749	0,43258	105,87	118,19
Perda	s por Exces	so na Coro	a do Est	ator	Perdas	por Excess	so nos Dent	es do Est	tator
0,00306	0,00312	0,00317	102,09	103,81	0,00153	0,00151	0,00156	98,64	101,87
Perda	Perdas Magnéticas na Coroa do Estator					Magnética	as nos Dent	es do Est	ator
0,65128	0,65986	0,66787	101,32	102,55	0,38166	0,40160	0,44560	105,22	116,75
P	Perdas Mag	néticas no	Estator						
1,03290	1,06150	1,11350	102,76	107,80					

Na Tabela 13 são mostrados os valores das perdas com corrente nominal. Percebe-se que as perdas por corrente parasita representam a maior parte das perdas, seguida das perdas por histerese e das perdas por excesso. Nota-se também que utilizando os coeficientes da referência [35] os valores das perdas magnéticas são extremamente baixos.

A Figura 42 mostra um gráfico da evolução das perdas magnéticas com o incremento de corrente. Nota-se que para toda a faixa de correntes não é esperado uma elevação nas perdas superior a 14% quando da utilização de 3° harmônico.

A Figura 43 traz gráficos do percentual de representatividade de cada tipo de perda nas perdas magnéticas totais do estator.

Figura 42 – Perdas magnéticas no estator: superior: perdas absolutas; inferior: perdas em percentual, normalizadas em função das perdas com corrente senoidal – Parâmetros C

Figura 43 – Percentual de perdas em relação ao total de perdas magnéticas – Parâmetros C

No Anexo A.6 estão as tabelas com os valores das perdas para os diversos níveis de corrente. No Anexo B.5 são apresentados gráficos comparativos das perdas para os parâmetros C retirados da referência [35].

4.2.4 Parâmetros D

Como visto na subseção 4.2.2, os coeficientes obtidos da referência [33] acabam por desconsiderar os efeitos das perdas por excesso nas perdas magnéticas. Como também visto, é dito na referência que os testes realizados com um motor de indução trifásico apresentaram um erro razoável entre as predições e os ensaios.

Na subseção 4.2.3 são utilizados dados da referência [35] que resultaram em perdas baixíssimas, ao contrário dos dados da referência [15] que resultaram em altas perdas. Enquanto na referência [15] são apresentados dados de chapas utilizadas em uma máquina de imãs permanentes, sem apresentar dados como a espessura das chapas, na referência [35] foi desenvolvido um equacionamento muito similar ao apresentado aqui, sendo os fatores C_h , C_p e C_e idênticos aos fatores $k_h e k_p e k_e$ utilizados no equacionamento nesta dissertação. Porém, na figura de onde foram retirados coeficientes, a referência [35] utiliza fatores $k_h e k_p e k_e$ diferentes dos fatores C das equações, apresentando, nesta figura, inclusive equações das perdas diferentes. Como não é apresentada nenhuma conversão entre os fatores k e C na referência [35], não há uma certeza se a conversão dos coeficientes da referência [35] foram feitas corretamente para os coeficientes $k_h e k_p e k_e$ usados nesta dissertação, visto também os valores baixíssimos de perdas que resultaram.

Assim, um quarto conjunto de coeficiente será utilizado para esta simulação. Assim, serão utilizados os coeficientes k_h e α da referência [33], mais especificamente do material 8065, pois é o material de mais baixa qualidade e com espessura mais próxima das chapas utilizadas no protótipo.

Os fatores k_p e k_{ec} e k_{et} serão calculados pelas equações (91), (96) e (97), respectivamente para as perdas por corrente parasita, e as perdas por excesso na coroa e nos dentes do estator. Visto que todas as rotinas de cálculo foram implementadas utilizando os fatores para resultados em $\frac{W}{kg}$ e posterior conversão para perdas em W. Os coeficientes k_p , k_{ec} e k_{et} serão também calculados para resultar em $\frac{W}{kg}$. Assim:

$$k_p = \frac{1}{m_v} \cdot \frac{\sigma \cdot d^2}{24} \tag{98}$$

$$k_{ec} = \frac{1}{m_{v}} \cdot \sqrt{\sigma \cdot G \cdot V_{0} \cdot S_{c}} \tag{99}$$

$$k_{et} = \frac{1}{m_v} \cdot \sqrt{\sigma \cdot G \cdot V_0 \cdot S_t} \tag{100}$$

Utilizando os valores da Tabela 2:

$$k_p = \frac{1}{7800} \cdot \frac{8,33 \cdot 10^6 \cdot (0,68 \cdot 10^{-3})^2}{24} \tag{101}$$

$$k_p = 2,0584 \cdot 10^{-5} \tag{102}$$

Para o cálculo dos coeficientes k_{ec} e k_{et} serão utilizados valores retirados da referência [34]. Nesta referência é apresentado um valor para o coeficiente de atrito G de 0,1356 que será utilizado nos cálculos. Também é demonstrado que várias ligas de FeSi possuem coeficiente V_0 aproximadamente fixo em 0,07 ou 0,12, deste modo, foi utilizado o valor de 0,07 para V_0 neste trabalho. Assim, utilizando os valores da Tabela 2:

$$k_{ec} = \frac{1}{7800} \cdot \sqrt{8,33 \cdot 10^6 \cdot 0,1356 \cdot 0,07 \cdot (64 \cdot 10^6 \cdot 13,15 \cdot 10^{-3})}$$
(103)

$$k_{et} = \frac{1}{7800} \cdot \sqrt{8,33 \cdot 10^6 \cdot 0,1356 \cdot 0,07 \cdot (64 \cdot 10^6 \cdot 3,2 \cdot 10^{-3})}$$
(104)

 $k_{ec} = 10,4603 \cdot 10^{-4} \tag{105}$

$$k_{et} = 5,1601 \cdot 10^{-4} \tag{106}$$

A Tabela 14 traz os resultados das perdas magnéticas para corrente nominal. Percebesse que as perdas por excesso na coroa tem uma importância muito maior com este conjunto de parâmetros, enquanto as perdas por corrente parasita e histerese apresentam valores similares. Já nos dentes as perdas por histerese e por excesso apresentam valores similares.

	Absolutas [W]		Norma [%	alizada ⁄6]	1	Absolutas [W]		Normalizada [%]	
Senoidal	20 %	38%	20% Sen	38% Sen	Senoidal	20%	38 %	20% Sen	38% Sen
Perdas	por Hister	ese na Cor	oa do Es	tator	Perdas p	or Histere	ese nos De	ntes do I	Estator
3,54590	3,69720	3,81710	104,27	107,65	1,88730	1,67520	1,51620	88,77	80,34
Perdas Parasitas na Coroa do Estator					Perdas Parasitas nos Dentes do Estator				
4,96400	5,02330	5,07990	101,19	102,34	2,92560	3,09720	3,45770	105,87	118,19
Perda	s por Exces	sso na Coro	a do Est	ator	Perdas	por Excess	so nos Der	ntes do E	stator
7,91120	8,07630	8,21250	102,09	103,81	1,95850	1,93180	1,99510	98,64	101,87
Perda	Perdas Magnéticas na Coroa do Estator					Magnética	as nos Den	tes do E	stator
16,42100	16,79700	17,11000	102,29	104,19	6,77140	6,70430	6,96900	99,01	102,92
Perdas Magnéticas no Estator									
23,19200	23,50100	24,07900	101,33	103,82					

Tabela 14 – Perdas magnéticas utilizando os parâmetros D e corrente nominal

A Figura 44 mostra um gráfico das perdas em função da corrente e um gráfico do percentual de perdas relativo as perdas com corrente senoidal. Percebe-se que não há um acréscimo superior a 10% com a injeção de 3° harmônico.

A Figura 45 traz gráficos do percentual das parcelas de perdas relativo as perdas magnéticas em função da corrente. Percebe-se que a parcela de perdas por histerese é praticamente fixa e também que com o aumento de percentual da corrente nominal, há um incremento da participação das perdas nos dentes, sendo este mais acentuado para maiores quantidades de componente de 3° harmônico.

Figura 44 – Perdas magnéticas no estator: superior: perdas absolutas; inferior: perdas em percentual, normalizadas em função das perdas com corrente senoidal – Parâmetros D

Figura 45 - Percentual de perdas em relação ao total de perdas magnéticas - Parâmetros D

No Anexo A.7 estão as tabelas com os valores das perdas para os diversos níveis de corrente para os parâmetros D. No Anexo B.6 são apresentados gráficos comparativos das perdas para os parâmetros D.

4.2.5 Simulações em Frequência

Finalmente, para se analisar a evolução das perdas magnéticas com o aumento da frequência foram realizadas simulações com cada conjunto de material considerando-se a corrente nominal para os casos de injeção de corrente senoidal e com corrente com componente de 3° harmônico na razões de $\hat{I}_3/\hat{I}_1 = 20\%$ e de $\hat{I}_3/\hat{I}_1 = 38\%$.

A Figura 46, Figura 47, Figura 48, Figura 49, Figura 50 e Figura 51 trazem os gráficos das perdas magnéticas totais no estator para os parâmetros A, B 8065, B 5365, B3565, C e D, respectivamente.

Figura 46 – Evolução das perdas com a variação da frequência – Parâmetros A

Enquanto se nota que os valores das perdas variam bastante com os coeficientes dos materiais, percebe-se que há uma tendência a ser menor o acréscimo das perdas com o aumento da frequência quanto utiliza-se o 3° harmônicos.

Figura 47 – Evolução das perdas com a variação da frequência – Parâmetros B 8065

Figura 48 – Evolução das perdas com a variação da frequência – Parâmetros B 5365

Figura 49 – Evolução das perdas com a variação da frequência – Parâmetros B 3565

Figura 50 – Evolução das perdas com a variação da frequência – Parâmetros C

Figura 51 – Evolução das perdas com a variação da frequência – Parâmetros D

No Anexo A.8 são apresentadas as tabelas com cada tipo de perda – por histerese, por corrente parasita, por excesso – nos dentes e na coroa e também o somatório de perdas magnéticas na coroa e nos dentes e o total de perdas magnéticas no estator para cada um dos conjuntos de parâmetros utilizados nas simulações.

4.3 CONCLUSÃO DAS SIMULAÇÕES

Da análise das diversas simulações apresentadas na seção 4.2 podem-se tirar algumas conclusões. Primeiramente, fica evidente que a correção das previsões das perdas magnéticas depende de um bom conhecimento das características dos materiais utilizados, o que em geral não é possível devido à variabilidade das características das chapas. A variação nos coeficientes utilizados nas equações geram grandes diferenças no total de perdas magnéticas previstas, e mesmo na contribuição que cada parcela de perda têm neste total.

Apesar da variação dos valores das perdas, uma análise da relação das perdas percentuais com 3° harmônico em relação às perdas com corrente senoidal também trazem resultados interessantes. Nota-se que o comportamento da evolução das perdas em função do percentual de corrente é bastante similar independente do material. Por exemplo, para corrente nominal,

percebe-se que as perdas por histerese nos dentes se reduzem em torno de 20% quando utilizando 3° harmônico com razão de $\hat{I}_3/\hat{I}_1 = 38\%$, assim como as perdas por corrente parasita nos dentes nesta condição aumentam em torno de 18%.

De modo geral, as perdas magnéticas totais no estator aumentam entre 0,4% e 3% quando é injetada corrente com componente de 3° harmônico na razão de $\hat{I}_3/\hat{I}_1 = 20\%$ e entre 2% e 8% com razão de $\hat{I}_3/\hat{I}_1 = 38\%$.

Analisando-se as simulações de perdas em função da frequência fundamental, percebe-se que a utilização de corrente com componente de 3° harmônico proporciona um menor incremento de perdas para frequências maiores de 60 Hz do que quando utilizando-se uma corrente puramente senoidal.

5. Ensaios

Neste capítulo são apresentados os resultados dos ensaios realizados com o protótipo (apresentado na seção 1.5) para comprovação experimental da teoria desenvolvida. Inicialmente foi realizado ensaio com tensão variável para determinação das perdas mecânicas, ligando o motor diretamente à rede através de um transformador eletromagnético de fases capaz de converter o sistema trifásico em um sistema pentafásico equilibrado e uma fonte de tensão trifásica variável.

Em seguida, foram realizados ensaios acionando o motor a partir de um inversor pentáfasico capaz de alimentar o motor com tensão e corrente contendo 3° harmônico, desenvolvido em [14], para que fossem analisados as induções magnéticas do entreferro e dos dentes do estator, assim como as perdas geradas quando utilizando indução senoidal e trapezoidal no entreferro.

5.1 DETERMINAÇÃO DAS PERDAS MECÂNICAS

As perdas na máquina podem ser descritas pelo somatório de perdas mecânicas, elétricas, magnéticas e adicionais, conforme equação (1) que é reescrita abaixo na equação (107). Porém, quando a máquina trabalha a vazio toda a potência consumida (P_t) é destinada à alimentação das perdas, as quais serão provenientes de perdas joule (P_j) no cobre geradas pela corrente de magnetização, as perdas mecânicas (P_{mec}) e perdas magnéticas (P_{mag}) do campo magnético produzido pela corrente de magnetização. Uma vez que a vazio o motor trabalhará em uma rotação muito próxima da velocidade síncrona, e que a frequência do campo e das correntes no rotor são a frequência relativa entre a frequência da rede e a velocidade síncrona, está será muito baixa e produzirá perdas baixíssimas, que podem ser desconsideradas. Sendo as perdas adicionais (P_a) baixas, considera-se elas também desprezíveis.

$$P_t = P_{mec} + P_j + P_{mag} + P_a \tag{107}$$

$$P_t - P_j = P_{mec} + P_{mag} \tag{108}$$

O ensaio para determinação de perdas mecânicas, consiste em acionar o motor em diversos níveis de tensão e levantar a curva de potência consumida (P_t) em função do percentual de tensão nominal aplicado. Armazenando-se, também, os valores *RMS* da corrente de alimentação, torna-se possível obter uma curva de perdas joule (P_j) em função da tensão e uma curva de perdas magnéticas (P_{mag}) e mecânicas (P_{mec}) em função do percentual de tensão, subtraindo-se da potência consumida as perdas joule, conforme equação (108).

Neste trabalho, o ensaio de perdas mecânicas foi realizado alimentando-se o motor diretamente da rede elétrica, utilizando apenas uma fonte trifásica variável para controlar o nível de tensão e umaconversor eletromagnético de fases para converter o sistema trifásico para um sistema pentafásico. Um conversor eletromagnético de fases é similar a uma transformador, porém as bobinas do secundário são conectadas de forma a entregar uma tensão pentafásica senoidal com defasagem de 72° entre as fases adjacentes em sua saída.

A Figura 52 apresenta as curvas ensaiadas de potência consumida, perdas joule e de corrente. Nota-se na curva que em 10% de tensão nominal, a potência consumida e perdas joule são iguais, tal se deve ao fato de neste nível de tensão não ser gerado torque suficiente para acelerar o motor. Percebe-se também que a corrente decresce com a redução do nível de tensão, até aproximadamente 30%, passando depois a crescer novamente. Para a determinação das perdas mecânicas, estes últimos valores não são utilizados.

Figura 52 - Curvas de potência consumida, perdas joule e corrente de alimentação ensaiadas

Com a curva de potência magnética e mecânica – curva com "*" na Figura 53, que é a diferença das curvas de potência consumida e perdas joule da Figura 52 – pode-se fazer uma aproximação desta curva por um polinômio e, estendendo esta curva à zero, obtém-se o valor das perdas mecânicas. Na Figura 53 é apresentada a curva ensaiada e a curva ajustada, calculada por um polinômio de 5^a ordem da forma da equação (109). É apresentada, também, a curva de perdas mecânicas.

$$P(V_{\%}) = P_{mec} + C_1 \cdot V_{\%} + C_2 \cdot V_{\%}^2 + C_3 \cdot V_{\%}^3 + C_4 \cdot V_{\%}^4$$
(109)

Figura 53 - Curvas de perdas mecânicas e magnéticas em função do percentual de tensão nominal.

Os coeficiente utilizados na equação (109) para obter a curva ajustada da Figura 53 são mostrado na Tabela 15. Percebe-se que o coeficiente constante da equação (109) representa as perdas mecânicas (P_{mec}), que para este protótipo são de aproximadamente 5,56 W, como também pode ser visto na Tabela 15.

Tabela 15 – Coeficientes das curvas de potência ajustada

P _{mec}	<i>C</i> ₁	C ₂
5,558	0,4075	$-2,6157 \cdot 10^{-3}$
	<i>C</i> ₃	<i>C</i> ₄
	$-13,7152 \cdot 10^{-6}$	127,0936 · 10 ⁻⁹

5.2 INDUÇÕES MAGNÉTICAS

Para a averiguação das induções magnéticas nos dentes e no entreferro do protótipo foram realizados ensaios acionando o protótipo a partir de um inversor *PWM* capaz de injetar corrente com componente de 3° harmônico, o que proporciona obter uma indução magnética trapezoidal no entreferro da máquina. O inversor utilizado foi desenvolvido pela referência [14].

Nestes ensaios, foram utilizadas duas bobinas de prova inseridas no interior do protótipo: uma, com 4 espiras, está posta sobre um pólo da máquina no entreferro e possibilita a captura da forma tensão induzida pela indução magnética no entreferro; outro, com 3 espiras, está inserida em torno de um dente do estator e possibilita a obtenção da tensão induzida pela indução magnética de um dente do estator da máquina. A tensão induzida na espira de prova do entreferro (U_g) relaciona-se com os harmônicos de indução magnética conforme equação (110) onde N_g é o número de espiras da bobina, l é o comprimento axial da máquina, ω é a frequência elétrica, r é o raio do entreferro, p é o número de pares de pólos da máquina e \hat{B}_{g1} e \hat{B}_{g3} são o 1° e 3° harmônicos de indução magnética no entreferro.

$$U_g = 2 \cdot N_g \cdot l \cdot \frac{\omega \cdot r}{p} \cdot \left(\hat{B}_{g1} \cdot \sin(\omega \cdot t) + \hat{B}_{g3} \cdot \sin(3 \cdot \omega \cdot t)\right)$$
(110)

Para a tensão induzida na bobina de prova em torno dos dentes a equação é semelhante, podendo ser calculada a partir do fluxo magnético no dente. Assim a tensão induzida na bobina de prova em torno do dente (U_t) será descrita pela equação (111). k_t é um fator de dispersão de fluxo magnético, N_t é o número de espiras da bobina, S_t é a área de secção transversal do dente, ω é a frequência elétrica, \hat{B}_{t1} e \hat{B}_{t3} são o 1° e 3° harmônicos de indução magnética no dente e σ_{ne} é o passo de ranhura em graus elétricos.

$$U_g = k_t \cdot N_t \cdot S_t \cdot \left(\omega \cdot \hat{B}_{t1} \cdot \cos(\omega \cdot t) \cdot \cos(\sigma_{ne}) + 3 \cdot \omega \cdot \hat{B}_{t3} \cdot \cos(3 \cdot \omega \cdot t) \cdot \cos(3 \cdot \sigma_{ne})\right)$$
(111)

Foram ensaiadas quatro situações alimentando o protótipo pelo inversor *PWM* e capturando os dados através de uma plataforma de aquisição de dados conectada a um computador. As situações são: senoidal 100% – foi injetada corrente senoidal em nível nominal na máquina; senoidal 190% – foi injetada corrente senoidal em nível de 190% da nominal; trapezoidal 100% – foi injetada corrente com componente de 3° harmônico de forma a obter uma forma de onda trapezoidal na indução magnética entreferro; trapezoidal 190% – foi injetada corrente com componente de 3° harmônico de forma a obter uma forma de onda trapezoidal na indução magnética entreferro; trapezoidal 190% – foi injetada corrente com componente de 3° harmônico de forma a obter uma indução magnética trapezoidal no entreferro. Ambos os ensaios trapezoidais apresentam 3° harmônico no entreferro com razão em torno de $\hat{B}_{g3}/\hat{B}_{g1} = 13\%$, o que possibilita compará-los com os resultados simulados no capítulo 4.

Nestes ensaios, foram armazenados os dados de tensão induzida nas espiras de prova do entreferro e no dente, além das tensão e corrente de alimentação que possibilitarão uma análise das perdas da máquina.

A análise comparativa dos harmônicos de indução magnética nos dentes e no entreferro foram realizadas comparando-se os valores medidos de tensão induzida nas bobinas de prova com os valores calculados pelas equações (110) e (111) utilizando-se os valores de harmônicos de indução magnética nos dentes – calculados conforme descrito na seção 4.1.1 – e de indução magnética no entreferro – calculados pelo FEM2000 conforme descrito na seção 4.1.

A Figura 6 e a Figura 7, do capítulo 2, já apresentaram a comparação das tensões induzidas no entreferro. Nelas é possível notar um bom grau de semelhança entre as curvas ensaiadas e calculadas, indicando a correção dos harmônicos calculados e do equacionamento da indução magnética no entreferro.

O comparativo das tensões induzidas para a bobina de prova em torno dos dentes são apresentados na Figura 54 para indução magnética senoidal no entreferro e na Figura 55 para indução trapezoidal no entreferro.

Figura 54 – Curva de tensão induzida em uma bobina de prova no dente do protótipo para injeção de corrente senoidal: (a) Corrente nominal, componente de 3° harmônico de indução magnética calculado em menos de 1%; (b) Corrente de 190% da nominal, componente de 3° harmônico de indução magnética calculado em aproximadamente 14%.

Figura 55 – Curva de tensão induzida em uma bobina de prova no dente do protótipo para injeção de corrente com componente de 3° harmônico: (a) Corrente nominal, componente de 3° harmônico de indução magnética calculado em aproximadamente 7%; (b) Corrente de 190% da nominal, componente de 3° harmônico de indução magnética calculado em aproximadamente 17%.

Analisando-se os gráficos da Figura 54 é possível observar um boa semelhança entre as tensões induzidas ensaiadas e calculadas para o caso em que é injetada corrente senoidal. Do mesmo modo, a análise dos gráficos da Figura 55 novamente revela uma boa semelhança entre as tensões induzidas ensaiadas e calculadas para o caso em que é a indução no entreferro é trapezoidal. Em ambos os casos de injeção de corrente em nível de 190% da nominal, observa-se um maior nível de distorção da onda por harmônicos de ordem superior, que não são considerados nas simulações, que leva em contam apenas a fundamental e 3° harmônicos.

Dos resultados obtidos, conclui-se que os harmônicos calculados para o campo de indução magnética do entreferro e dos dentes do estator estão corretos, assim como as suposições feitas a certa do comportamento deles poder ser descrito por uma série de Fourier de senos.

Apesar de não poder ter sido ensaiado, conclui-se que as suposições feitas a cerca do campo magnético da coroa do estator também estão corretas, assim como o cálculo dos harmônicos de indução magnética na coroa. Isto por que o fluxo magnético na coroa depende do fluxo magnético nos dentes, uma vez que as relações entre fluxo magnético e indução magnética são bem conhecidas e que a indução magnética nos dentes foi corretamente equacionada, conclui-se que o equacionamento da indução magnética média na coroa também está correto.

5.3 PERDAS MAGNÉTICAS

Um dos principais objetivos deste trabalho era a determinação das perdas magnéticas de motores pentafásicas com campo trapezoidal no entreferro. Como visto, as perdas magnéticas podem ser obtidas subtraindo-se as perdas joule e as perdas mecânica da potência consumida pelo motor trabalhando a vazio.

Dos ensaios para determinação das perdas mecânicas foram obtidos um conjuntos de dados de perdas magnéticas para diversos níveis de tensão quando alimentado por tensão senoidal. Dos ensaios realizados com alimentação pelo inversor *PWM* foram obtidos mais um conjunto de perdas magnéticas para a máquina com campo senoidal e trapezoidal no entreferro.

A Tabela 16 mostra os dados de tensão, corrente, potência consumida e perdas no cobre e magnéticas para os ensaios descritos na seção anterior (5.2), ou seja, injetando senoidal ou com 3° harmônico nos níveis de 100% e 190% da nominal. Dos dados obtidos, percebe-se que há uma redução no nível de perdas magnéticas e no consumo de potência da máquina.

Para o caso nominal, a redução nas perdas magnéticas fica em torno dos 33,5%, que se refletem em uma redução de aproximadamente 10,5% nas perdas totais da máquina, visto que a tensão e corrente de alimentação são praticamente iguais.

Para o caso em que há efeito de saturação - ou seja, injeção de corrente em nível de 190% da nominal, nota-se uma redução mais acentuada nas perdas, de 18,5% no total. Porém uma vez que o nível de corrente sofreu uma redução significativa, sendo perto de 9% menor quando há campo magnético trapezoidal no entreferro, tem-se que parte desta redução também se deve à redução nas perdas joule, o que levaria a uma redução mais próxima aos 10% se as correntes fossem em mesmo nível.

È importante notar ainda, que a redução nas perdas magnéticas caiu de próximo aos 33,5% para algo em torno, ou menor, do que 24%, o que indica que enquanto as perdas magnéticas são menores quando utiliza-se campo trapezoidal no entreferro ao invés de campo senoidal, elas também aumentam mais rapidamente com o aumento do nível de corrente.

	Tensão <i>RMS</i> [V]	Corrente <i>RMS</i> [A]	Potência Consumida [W]	Perdas no Cobre [W]	Perdas Magnéticas [W]			
Nominal								
Senoidal	60,7969	1,0563	65,7214	38,2915	21,8722			
$\hat{I}_3/\hat{I}_1 = 38\%$	62,2067	1,0695	58,8696	38,7702	14,5418			
Diferença [%]	2,32	1,25	-10,43	1,25	-33,49			
190%								
Senoidal	97,7970	2,1149	231,5946	76,6659	149,3711			
$\hat{I}_3/\hat{I}_1 = 38\%$	98,3771	1,9278	188,8417	69,8826	113,4015			
Diferença [%]	0,59	-8,85	-18,46	-8,85	-24,08			

Tabela 16 - Resultados dos ensaios e comparação de perdas para o protótipo alimentado pelo inversor.

Como pode-se perceber nos resultados apresentados na Tabela 16, a previsão de aumento de perdas magnéticas prevista pelo equacionamento de perdas do capítulo 3 e demonstrado nas simulações do capítulo 4 não pode ser comprovada para o protótipo. O motivo principal para a discrepância observada foi a indisponibilidade de dados mais confiáveis sobre as chapas usadas e dos coeficientes de perdas. Outro motivo é o fato de se tratar de um protótipo cujas chapas foram cortadas com ferramentas de corte a laser, o que pode ter contribuído para a alteração das características da chapa no que se refere a perdas. De um modo geral, há sempre um erro na avaliação teórica das perdas magnéticas, sendo que as diferenças esperadas em percentual estão abaixo do erro com que as perdas podem ser calculadas, que atualmente está em torno de 20%.

A título de comparação, foram aplicados fatores de multiplicação das perdas por histerese e por excesso por efeito de campos rotacionais retirados da referência [36] nos resultados simulados para o parâmetro D. Os fatores são de 1,5 para perdas por corrente parasita e de 1,2 e 1,8 para perdas por histerese nos dentes e na coroa, respectivamente. Na Tabela 17 são apresentados os resultados para alguns percentuais de corrente nominal. Como pode-se ver, a inserção dos fatores para consideração de campos rotacionais apenas pioraram a situação, indicando um aumento maior ainda das perdas magnéticas quando utilizando campo magnético trapezoidal no entreferro.

	Perdas Magnéticas [W]				
% de Corrente	100%	180%	190%		
Senoidal	30,3514	63,5221	66,6876		
$\hat{I}_3/\hat{I}_1 = 38\%$	31,7043	68,8654	72,5044		
Diferença [%]	4,46	8,41	8,72		

Tabela 17 – Perdas magnéticas totais considerando fator de perdas rotacionais – referência [36] – Parâmetros D

Analisando-se os dados das simulações da seção 4.2 – tabelas com os dados completos apresentadas no Anexo A – constata-se que os parâmetros que melhor chegaram perto foram os B8065 para o caso nominal. A Tabela 18 mostra um comparativo dos valores calculados para o conjunto de coeficientes B8065 e os resultados obtidos nos ensaios com alimentação pelo inversor (*PWM*) ou diretamente da rede elétrica (Conversos de fases). Percebe-se que o erro foi menor para o campo magnético senoidal quando utilizado o conversor eletromagnético de fases e para o campo magnético trapezoidal quando utilizado o inversor de frequência. O erro da predição das perdas magnéticas estando dentro da faixa de 20% pode ser considerado aceitável, uma vez que este é menor erro encontrado na literatura consultada.

	Perdas Magnéticas [W]					
		PV	VM	Conversor de Fases		
% de Corrente	Simulado B8065	Absoluto [W]	Erro [%]	Absoluto [W]	Erro [%]	
Senoidal	8,7730	21,8722	59,89	13,5825	35,41	
$\hat{I}_3 / \hat{I}_1 = 38\%$	8,9475	14,5418	38,42			

Tabela 18 – Perdas magnéticas totais para nível nominal – Parâmetros B8065

A Tabela 19 apresenta uma tabela comparando as perdas magnéticas calculadas utilizando-se o conjunto de coeficientes B8065 e as perdas obtidas dos ensaios com o conversor eletromagnético de fases. Uma vez que as simulações foram realizadas em função do percentual de corrente, e que este percentual varia um pouco diferente do percentual de tensão, foram escolhidos somente alguns valores em que os percentuais de corrente simulados e ensaiados são

próximos. Como a perda magnética ensaiada para 120% de tensão apresenta um valor bastante abaixo do valor para 100% de tensão, foi apresentado também um comparativo entre a perda obtida pela curva ajustada – Figura 53.

Como pode-se ver pelos valores da Tabela 19, as predições de perdas apresentam um valor próximo do valor encontrado nos ensaios apenas para uma faixa próxima da tensão e correntes nominais, entre 90 e 120%.

Tabela 19 - Comparativo das perdas simuladas para o material B8065 e as perdas medidas utilizando o conversor eletromagnético de fases

	Perdas Magnéticas [W]						
V % [%]	40	90	100	110	120	120*	140
% de Corrente	50	90	100	110	120	120*	150
Conversor de Fases	11,6208	13,6993	13,5825	11,6322	8,3151	13,8826	14,9245
Simulado B8065	2,5724	7,3624	8,7730	10,1790	11,5790	11,5790	14,2630
Erro [%]	77,86	46,26	35,41	12,49	39,25	16,59	4,43

A Tabela 20 mostra um comparativo das características de tensão, corrente, potência consumida e perdas para o protótipo acionado com tensão nominal através do conversor eletromagnético de fases e através do inversor de frequência injetando corrente senoidal. Nota-se que enquanto o nível de tensão são iguais, a alimentação com inversor apresenta uma corrente 15% maior, consome 32% a mais de potência, sendo que as perdas no cobre aumentam 25% graças ao aumento de corrente e as perdas magnéticas apresentam um aumento de 61%.

 Tabela 20 – Comparação de perdas para acionamento com inversor PWM e diretamente conectado a rede elétrica trifásica por meio de um conversor eletromagnético de fases

	Tensão <i>RMS</i> [V]	Corrente <i>RMS</i> [A]	Potência Consumida [W]	Perdas no Cobre [W]	Perdas Magnéticas [W]			
Nominal								
PWM	60,7969	1,0563	65,7214	38,2915	21,8722			
Conversor de Fases	60,2885	0,9178	49,7694	30,6293	13.5825			
PWM Conv.fases	0,84	15,09	32,05	25,02	61,03			

5.4 CONCLUSÃO DOS ENSAIOS

Pela análise dos resultados dos ensaios, e comparação com os resultados das simulações, observou-se que as suposições feitas acerca do comportamento dos campos magnéticos no entreferro, dentes e coroa do estator estavam corretas e foram comprovadas experimentalmente. Porém o modelo clássico de perdas magnéticas, expandida para considerar harmônicos não

apresentou bons resultados para todos os caso analisados, especialmente, quando se inclui o 3° harmônico.

Observou-se também que os melhores resultados foram conseguidos pelo modelo mais clássico de perdas, onde não são nem sequer consideradas as perdas magnéticas por excesso, ou seja, os conjuntos de parâmetros B, retirados da referência [33]. Obteve-se resultados satisfatórios para o caso em que o campo magnético no entreferro é senoidal, e mesmo assim para uma faixa de corrente próxima da nominal.

Considerando que uma estão corretamente calculados os valores dos harmônicos e que as diferenças entre as medições e os resultados dos cálculos são crescentes – não sendo unicamente resultado da utilização de fatores de perdas errados, conclui-se que o modelo de perdas utilizado não é completamente válido para a predição de perdas para o caso de campo magnético com pronunciado conteúdo harmônico, seja este produzido por injeção de corrente com conteúdo harmônico, seja provocado pela saturação.

Observou-se também uma significativa diferença entre as potências consumidas e perdas magnéticas quando acionando o motor pelo inversor *PWM* ou ligado diretamente a rede pelo conversor eletromagnético de fases, sendo a potência consumida em torno de 32% superior e as perdas magnéticas em torno de 61% superiores quando alimentado com o *PWM*. Deste modo constatou-se que há uma parcela de perdas geradas pelos demais harmônicos criados pelo inversor *PWM* que não são abrangidos pelo método de predição de perdas magnéticas proposto.

6. CONCLUSÃO

O presente trabalho tratou das perdas magnéticas em máquinas pentafásicas com campo magnético trapezoidal no entreferro. Um campo magnético trapezoidal no entreferro pode ser obtido pela inclusão do 3° harmônico na indução magnética. Foi demonstrado que o 3° harmônico pode ser obtido pela saturação magnética do ferro ou pela injeção de corrente com componente de 3° harmônico, a qual, pelas propriedades dos sistemas pentafásicos, sempre pode circular, independente da conexão do enrolamento

Uma vez que as perdas magnéticas no estator são dependentes da variação temporal do campo magnético nos dentes e na coroa do estator, foi realizado um estudo da relação da indução magnética no entreferro da máquina com os campos magnéticos nos dentes e na coroa do estator. Neste estudo foi mostrado como a indução temporal nos dentes e na coroa se relacionam com a indução no entreferro, tendo sido determinados coeficientes de proporcionalidade entre o campo no entreferro e na coroa e dentes para o 1° e 3° harmônicos. A fim de tornar a análise mais simples, foi considerado que o campo magnético nos dentes é puramente radial e na coroa como sendo puramente tangencial, sem serem consideradas parcelas de campo magnético rotacionais, as quais afetam principalmente a coroa.

Em seguida as equações clássicas das perdas magnéticas, divididas em perdas por histerese, perdas por corrente parasita e perdas por excesso foram estendidas de modo a considerar o efeito de harmônicos no campo magnético. Neste caso foi desconsiderada a existência de laços menores de histerese para uma indução magnética trapezoidal no entreferro.

Com as equações desenvolvidas, foram realizadas diversas simulações para a predição das perdas. Como não haviam dados específicos do material que foi construído o protótipo utilizado nas simulações – e nos ensaios – foram utilizados coeficientes de perdas retirados de diversas referências. Isto também permitiu uma análise de perdas magnéticas para diversos tipos de materiais, tornando a análise mais abrangente.

Os ensaios foram realizados para diversos percentuais de corrente nominal, variando entre 30 e 300%, sempre para os casos de corrente puramente senoidal e corrente com componente de terceiro harmônico nas razões de $\hat{I}_3/\hat{I}_1 = 20\%$ e de $\hat{I}_3/\hat{I}_1 = 38\%$. A utilização desta variação na corrente a vazio permite estabelecer vários níveis de saturação magnética.

Destes ensaios avaliou-se que as perdas magnéticas com a inclusão do 3° harmônico resultam em acréscimos entre 2 e 8% nas perdas totais para corrente nominal, sendo que as perdas por histerese nos dentes baixam em torno de 20% e as perdas por corrente parasita nos

dentes aumenta em torno de 20%, também para corrente nominal. Percebeu-se que este é um comportamento esperado independente do material utilizado. Porém, salienta-se que estes valores percentuais são difíceis de serem comprovados experimentalmente, visto que os ensaios de perdas em geral apresentam um erro maior do que esta variação nas perdas magnéticas totais.

Foram também realizadas simulações variando a frequência, afim de determinar o comportamento das perdas com a frequência. Estas simulações foram realizadas somente para corrente nominal, mas pode-se perceber que as perdas aumentam menos com o aumento da frequência quando injeta-se 3° harmônico na corrente e utiliza-se uma indução trapezoidal do que quando injeta-se corrente senoidal e se tem um campo magnético senoidal no entreferro.

Por fim realizaram-se ensaios com o protótipo a fim de verificar a validade dos resultados. Dos ensaios foi possível verificar a correção do equacionamento desenvolvido para o campo magnético no entreferro e nos dentes do estator pela similaridade das formas de onda obtidas dos valores calculados e ensaiados. O equacionamento proposto para a indução magnética na coroa não pode ser comprovado pelos ensaios pois não haviam bobinas de prova para medir tensão induzida pelo campo magnético da coroa, porém, uma vez que os campos magnéticos nos dentes e no entreferro estão corretos e que o fluxo da coroa é intimamente ligado ao fluxo nos dentes sobre um pólo, conclui-se que este também esta correto.

Dos ensaios também foi possível obter a potência consumida a vazio pelo protótipo e calcular as perdas magnéticas totais da máquina nesta condição. Os resultados dos ensaios demonstraram que há uma redução entre 10,5% e 18,5% na potência consumida pela máquina a vazio quando utilizado campo magnético trapezoidal no entreferro da máquina. Do mesmo modo, as perdas magnéticas apresentaram redução de 33,5% e 24% para corrente nominal e 190% da nominal, respectivamente. Assim, conclui-se que as perdas magnéticas são menores para campo trapezoidal no entreferro, mas apresentam um crescimento mais rápido com o aumento da corrente.

Pela análise dos resultados de potência consumida e perdas magnéticas obtidas dos ensaios acionando o protótipo pelo inversor de frequência *PWM* injetando corrente senoidal e acionando o protótipo através de uma fonte de tensão variável trifásica conectada a um conversor eletromagnético de fases constatou-se que há um considerável aumento – em torno de 61% - das perdas magnéticas que se refletem em um consumo em torno de 32% maior de potência da máquina.

As discrepâncias entre os valores de perdas magnéticas calculadas e ensaiadas devem-se em parte a utilização de fatores de perdas incorretos, pois como demonstrado pelas diversas simulações os valores dos coeficientes de perdas influenciam no valor absoluto da perdas, mas não no comportamento delas – ou seja na quantidade percentual que elas aumento ou diminuem conforme a nível de corrente.

Foi observado também, que as discrepâncias entre os valores calculados e ensaiados é tanto maior quanto maior for o nível de harmônicos, sejam estes injetados para obtenção de campo magnético trapezoidal no entreferro, seja produzido pela saturação magnética do ferro, ou mesmo pela utilização de uma alimentação *PWM*. Assim, conclui-se que os modelos clássicos de perdas magnéticas que foram utilizados como ponto de partida para o desenvolvimento das equações de perdas por histerese, perdas por corrente parasita e perdas por excesso não fornecem resultados corretos quando estendidas para incluir harmônicos, nem mesmo quando expandidos como foram nesta dissertação, para a predição de perda magnéticas quando o campo magnético no entreferro e nas partes ferromagnéticas da máquina contém um alto conteúdo harmônico.

Outra possível causa para a discrepância entre os valores calculados e ensaiados é o fato de terem sido utilizados valores fixos para os coeficientes de perdas. Em [37] demonstra-se que os coeficientes de perdas variam com o nível de indução, sendo nesta referência, cada coeficiente descrito como um polinômio em função do nível de indução magnética. È demonstrado também que quando são utilizados valores fixos paras os coeficientes de perdas, os erros entre os cálculos e medidas apresentam uma grande oscilação, podendo chegar a mais de 50%.

Além de o modelo clássico ter se mostrado inadequado para o cálculo de perdas magnéticas quando utilizando-se harmônicos, outras razões para as discrepâncias nos resultados são: utilização de fonte *PWM*; aproximações nos coeficientes de perdas utilizados nas equações; presença de campos rotacionais não considerados no equacionamento; e a medição indireta dos baixos valores de potência, que teve de ser obtida pela integração numérica de curva obtida da multiplicação de tensão e corrente registrado por osciloscópio.

Por fim, o resultado mais importante deste trabalho foi demonstrar, pelos resultados dos ensaios, que há uma redução significativa das perdas magnéticas na máquina de indução pentafásica quando utilizando campo magnético trapezoidal no entreferro, e que esta redução nas perdas magnéticas se traduz em um consumo de potência em torno de 10% menor. Assim, uma máquina pentafásica com indução magnética otimizada no entreferro apresenta torque em torno de 7% superior e consumo de energia em torno de 10% inferior a uma máquina com indução

magnética senoidal no entreferro, representando, deste modo, um bom ganho em eficiência o acionamento com campo magnético trapezoidal no entreferro.

6.1 TRABALHOS FUTUROS

Como trabalhos futuros propõe-se:

- Estudo do equacionamento das perdas magnéticas levando-se em conta laços menores de histerese e campos magnéticos rotacionais.
- Estudo e determinação da eficiência energética da máquina pentafásica utilizando campo magnético trapezoidal no entreferro, comparado a uma máquina pentafásica utilizando campo magnético senoidal.
- Estudo dos coeficientes de perdas das perdas magnéticas para máquinas elétricas. Determinação de ensaios e parâmetros para chapas utilizadas em motores, visto que há um grande percentual de erro entre os coeficientes atualmente ensaiados e os resultados obtidos nos cálculos de perdas magnéticas em motores.
- Estudo de otimização de projeto de máquinas pentafásicas levando-se em conta utilização de campo magnético trapezoidal no entreferro.
- Estudo comparativo de eficiência de máquinas de indução pentafásicas com campo trapezoidal com máquinas de indução trifásicas.
- Simulação utilizando *software* 3D com correntes induzidas e recurso de "*time stepping*" (recurso que simula a rotação do rotor da máquina em passos).
7. REFERÊNCIAS

- [1] E. E. Ward and H. Harer, "Preliminary investigation of an inverter-fed 5-phase induction motor," *Proc. Inst. Elect. Eng.*, vol. 116, pp. 980–984, Oct. 1984.
- [2] E. A. Klingshirn, "High phase order induction motors (Parts I and II)," *IEEE Trans. Power App. Syst.*, vol. PAS-102, no. 1, pp. 47–59, Jan. 1983.
- [3] E. Levi, R. Bojoi, F. Profumo, and H. Toliyat, "Multiphase induction motor drives—A technology status review," *IET—Electric Power Appl.*, vol. 1, no. 4, pp. 489–516, 2007.
- [4] H.A. Toliyat, "Analysis and simulation of five-phase variable-speed induction motor drives under asymmetrical connections," *IEEE Trans. Power Electron.*, vol. 13, no. 4, pp. 748–756, Jul. 1998.
- [5] H. A. Toliyat, M. M. Rahimian, and T. A. Lipo, "dq modeling of five phase synchronous reluctance machines including third harmonic of air gap mmf," in *Proc. IEEE Ind. Appl. Soc. Annu. Meet.*, Oct. 1991, pp. 231–237.
- [6] H. A. Toliyat, S. P. Waikar, and T. A. Lipo, "Analysis and Simulation of Five-Phase Synchronous Reluctance Machines Including Third Harmonic of Airgap MMF", *IEEE Trans. Industry Applications*, vol. 34, no. 2, pp. 332–339, Mar./Apr. 1998.
- [7] P. De Silva, J. Fletcher, and B.Williams, "Design of a five-phase induction motor using flux distribution optimisation," *3rd IET Int. Conf. Power Electron., Mach. Drives*, 2006, pp. 331–335.
- [8] J. Apsley, S. Williamson, A. Smith, and M. Barnes, "Induction motor performance as a function of phase number," *Proc. Inst. Elect. Eng.*— *Electr. Power Appl.*, vol. 153, no. 6, pp. 989–904, 2006.
- [9] L. Xu, "Rotor Structure Selections of Nonsine Five-Phase Synchronous Reluctance Machines for Improved Torque Capabiblity", *IEEE Trans. Industry Applications*, vol. 36, no. 4, pp. 1111–1117, Jul./Aug. 2000.
- [10] C. C. Chan, J. Z. Jing, G. H. Chen, X. Y. Wang, and K. T. Chau, "A Novel Polyphase Multipole Square-Wave Permanent Magnet Motor Drive for Electric Vehicles", *IEEE Trans. Industry Applications*, vol. 30, no. 5, pp.1258–1266, Sep./Oct. 1994.
- [11] K. N. Pavithran, R. Parimelalagan, and M. R. Krishnamurthy, "Studies on Inverter-Fed Five-Phase Induction Motor Drive", *IEEE Trans. Power Electronics*, vol. 3, no. 2, pp. 224–235, Apr. 1988.

- [12] H. A. Toliyat, L. Xu, and T. A. Lipo, "A Five-Phase Reluctance Motor with High Specific Torque", *IEEE Trans. Industry Applications*, vol. 28, no. 4, pp. 659–667, May/Jun. 1992.
- [13] H. A. Toliyat, T. Lipo, and J. C. White, "Analysis of a concentrated winding induction machine for adjustable speed drive applications (parts I and II)," *IEEE Trans. Energy Convers.*, vol. 6, no. 4, pp. 679–692, Dec. 1991.
- [14] C. C. Scharlau, L. F. A. Pereira, L. A. Pereira, and S. Haffner, "Performance of a five-phase induction machine with optimized air gap field under open V/f control," *IEEE Trans. Energy Convers.*, vol. 23, no. 4, pp. 1046–1056, Dec. 2008.
- [15] J. P. A. Bastos, and N. Sadowski, "Electromagnetic Modeling by Finite Element Methods", Marcel Dekker, 2003.
- [16] L. A. Pereira, C. C. Scharlau, L. F. A. Pereira, and J. F. Haffner, "General model of a fivephase induction machine allowing for harmonics in the air gap field," *IEEE Trans. Energy Convers.*, vol. 21, no. 4, pp. 891–899, Dec. 2006.
- [17] T. C. Green, M. M. Khater, B. W. Williams, M. M. El-Shanawany, and A. A. Hassanein, "A Five-Phase Switched Reluctance Motor: Design and Performance", *IEE Colloquium on Stepper Motors and Their Control*, pp. 7/1 – 7/4, Jan. 1994.
- [18] A. Michaelides, and C. Pollock, "Short Flux Paths Optimise the Efficiency of a 5-Phase Switched Reluctance Drive", *Conference record of the 1995 IEEE*, vol. 1, pp. 286–293, Oct. 1995.
- [19] H. A. Toliyat, and H. Xu, "A Novel Direct Torque Control (DTC) Method for Five-Phase Induction Machines", *Fifteenth Annual IEEE*, vol. 1, pp. 162–168, Feb. 2000.
- [20] P. W. Franklin, "Theory of the Bridge-Rectified Synchronous Generator with a Large Number of Stator Phases (parts I and II)", *IEEE Trans. On Power Apparatus and Systems*, vol. PAS-93, no. 1, pp. 137–148, Jan. 1973.
- [21] H. A. Toliyat, "Analysis and Simulation of Multi-Phase Variable Speed Induction Motor Drives Under Asymmetrical Connections", *Applied Power Electronics Conference and Exposition*, 1996. APEC '96, vol. 2, pp. 586–592, Mar. 1996.
- [22] H. Xu, H. A. Toliyat, and L. J. Petersen, "Five-Phase Induction Motor Drives With DSP-Based Control System", *IEEE Trans. Power Electronics*, vol. 17, no. 4, pp. 524–533, Jul. 2002.

- [23] F. Fiorillo, A. Novikov, "An improved approach to power losses in magnetic laminations under nonsinusoidal induction waveform", *IEEE Trans. Magnetics*, vol. 26, no. 5, pp. 2904– 2910, Set. 1990.
- [24] F. Fiorillo, A. Novikov, "Power losses under sinusoidal, trapezoidal and distorted induction waveform", *IEEE Trans. Magnetics*, vol. 26, no. 5, pp. 2559–2561, Set. 1990.
- [25] R. A. Newbury, "Prediction of loss in silicon steel from distorted waveforms", *IEEE Trans. Magnetics*, vol. mag-14, no. 4, pp. 263–268, Jul 1978.
- [26] G. Bertotti, M. Pasquale, "Physical interpretation of induction and frequency dependence of power losses in soft magnetic materials", *IEEE Trans. Magnetics*, vol. 28, no. 5, pp. 2787– 2789, Set. 1992.
- [27] H. Nam, K. H. Ha, J. J. Lee, J. P. Hong, G. H. Kang, "A study on iron loss analysis method considering the harmonics of the flux density waveform using iron loss curves tested on Epstein samples", *IEEE Trans. Magnetics*, vol. 39, no. 3, pp 1472–1475, May 2003.
- [28] G. Bertotti, A. Boglietti, M. Chiampi, D.Chiarabaglio, F. Fiorillo, M. Lazzari, "An improved estimation of iron losses in rotationg electrical machines", *IEEE Trans. Magnetics*, vol. 27, no. 6, pp. 5007–5009, Nov. 1991.
- [29] C. Mi, G. R. Slemon, R. Bonert, "Modeling of iron losses of permanent-magnet synchronous motors", *IEEE Trans. Industry Applications*, vol. 39, no. 3, pp. 734–742, May/Jun. 2003.
- [30] H. L. Schenk, F. J. Young, "Iron losses in induction motor teeth", *IEEE Trans. Magnetics*, vol. mag-17, no. 6, pp. 3385–3387, Nov. 1981
- [31] L. Dupré, M. De Wulf, D. Makaveev, V. Permiakov, A. Pulnikov and J. Mekebeek,
 "Modelling of Electromagnetic Losses in Asynchronous Machines", COMPEL, vol. 22, no.
 4, pp. 1051–1065, 2003
- [32] J. G. Zhu and V. S. Ramsden, "Improved Formulations for Rotational Core Losses in Rotating Electrical Machines", *IEEE Trans. Magnetics*, vol. 34, no. 4, pp. 2234–2242, Jul. 1998
- [33] A. Boglietti, A. Cavagnino, M. Lazzari and M. Pastorelli, "Predicting Iron Losses in soft Magnetic Materials With Arbitrary Voltage Supply: An Engineering Approach", *IEEE trans. Magnetics*, vol. 39, no. 2, pp. 981–989, Mar. 2003.
- [34] G. Bertotti, "General Properties of Power Losses in Soft Ferromagnetic Materials", *IEEE Trans. Magnetics*, vol. 24, no. 1, pp. 621–629, Jan. 1988.
- [35] C. Simão, "Estudo da Eficiência Energética de Dispositivos Eletromagnéticos e de Suas Alimentações", Tese de doutorado, UFSC, Florianópolis 2008.

- [36] R. Richter, "Elektrische Maschinen Algemeine Berechnungselemente Die Gleichstrommaschinen", Erster Band, 1967, Birkhäuser Verlag.
- [37] D. M. Ionel, M. Popescu, S. J. Dellinger, T.J.E. Miller, R.J.Heideman, M. I. McGilp, "On the Variation with Flux and Frequency of the Core Loss Coefficients in Electrical Machines", IEEE trans. Ind. Applications, vol. 42, no. 3, pp. 658–667, May/Jun 2006.

Anexo A – Tabelas de Dados

Anexo A.1 – Tabelas de Harmônicos

rabela z i – narmonicos de madção magnetica no entreferio.
--

% de	Send	oidal	$\frac{\hat{I}_3}{\hat{I}_1} =$	20%	$\frac{\hat{I}_3}{\hat{I}_1} = 38\%$		
corrente	\widehat{B}_{g1}	\widehat{B}_{g3}	\widehat{B}_{g1}	\widehat{B}_{g3}	\widehat{B}_{g1}	\widehat{B}_{g3}	
30	0,17800	-0,00002	0,17800	0,01176	0,17800	0,02236	
50	0,29700	-0,00014	0,29600	0,01948	0,29600	0,03702	
80	0,47200	0,00084	0,47200	0,03136	0,47200	0,05899	
90	0,52700	0,00241	0,52800	0,03612	0,52800	0,06673	
100	0,58000	0,00505	0,58200	0,04147	0,58200	0,07456	
110	0,62900	0,00855	0,63100	0,04723	0,63200	0,08246	
120	0,67500	0,01250	0,67700	0,05371	0,67900	0,09101	
130	0,71700	0,01686	0,72000	0,05984	0,72100	0,09904	
140	0,75600	0,02226	0,76000	0,06609	0,76200	0,10680	
150	0,79100	0,02878	0,79700	0,07321	0,79900	0,11423	
160	0,82300	0,03608	0,83000	0,08115	0,83300	0,12208	
170	0,85100	0,04434	0,85900	0,08886	0,86300	0,13060	
180	0,87600	0,05316	0,88500	0,09729	0,89000	0,13880	
190	0,89900	0,06272	0,90900	0,10618	0,91400	0,14656	
200	0,91900	0,07177	0,92900	0,11513	0,93500	0,15441	
210	0,93700	0,08056	0,94700	0,12432	0,95300	0,16272	
220	0,95400	0,08894	0,96300	0,13311	0,96900	0,17100	
230	0,96800	0,09710	0,97800	0,14112	0,98300	0,17847	
240	0,98200	0,10528	0,99100	0,14783	0,99600	0,18551	
250	0,99400	0,11358	1,00000	0,15322	1,01000	0,19164	
260	1,01000	0,12217	1,02000	0,16073	1,02000	0,19583	
270	1,02000	0,12962	1,03000	0,16658	1,03000	0,20043	
280	1,03000	0,13689	1,04000	0,17268	1,04000	0,20435	
290	1,03000	0,14242	1,04000	0,17710	1,05000	0,20850	
300	1,04000	0,14928	1,05000	0,18309	1,05000	0,21126	

% de	Send	oidal	$\frac{\hat{l}_3}{\hat{l}_1} =$	20%	$\frac{\hat{l}_3}{\hat{l}_1} = 38\%$		
corrente	\widehat{B}_{g1}	\widehat{B}_{g3}	\widehat{B}_{g1}	\widehat{B}_{g3}	\widehat{B}_{g1}	\widehat{B}_{g3}	
30	0,25719	-0,00001	0,25719	0,00566	0,25719	0,01077	
50	0,42913	-0,00007	0,42768	0,00938	0,42768	0,01783	
80	0,68198	0,00040	0,68198	0,01511	0,68198	0,02841	
90	0,76144	0,00116	0,76289	0,01739	0,76289	0,03214	
100	0,83802	0,00243	0,84091	0,01997	0,84091	0,03591	
110	0,90882	0,00412	0,91171	0,02275	0,91316	0,03972	
120	0,97529	0,00602	0,97817	0,02587	0,98106	0,04383	
130	1,03600	0,00812	1,04030	0,02882	1,04170	0,04770	
140	1,09230	0,01072	1,09810	0,03183	1,10100	0,05144	
150	1,14290	0,01386	1,15160	0,03526	1,15440	0,05502	
160	1,18910	0,01738	1,19920	0,03908	1,20360	0,05880	
170	1,22960	0,02135	1,24110	0,04280	1,24690	0,06290	
180	1,26570	0,02560	1,27870	0,04686	1,28590	0,06685	
190	1,29890	0,03021	1,31340	0,05114	1,32060	0,07059	
200	1,32780	0,03456	1,34230	0,05545	1,35100	0,07437	
210	1,35380	0,03880	1,36830	0,05988	1,37700	0,07837	
220	1,37840	0,04284	1,39140	0,06411	1,40010	0,08236	
230	1,39860	0,04677	1,41310	0,06796	1,42030	0,08596	
240	1,41890	0,05071	1,43190	0,07120	1,43910	0,08934	
250	1,43620	0,05471	1,44490	0,07379	1,45930	0,09230	
260	1,45930	0,05884	1,47380	0,07741	1,47380	0,09432	
270	1,47380	0,06243	1,48820	0,08023	1,48820	0,09653	
280	1,48820	0,06593	1,50270	0,08317	1,50270	0,09842	
290	1,48820	0,06859	1,50270	0,08530	1,51710	0,10042	
300	1,50270	0,07190	1,51710	0,08818	1,51710	0,10175	

Tabela 22 - Harmônicos de indução magnética na coroa do estator

% de	Send	oidal	$\frac{\hat{I}_3}{\hat{I}_1} =$	20%	$\frac{\hat{I}_3}{\hat{I}_1} =$	38%
corrente	\widehat{B}_{g1}	\widehat{B}_{g3}	\widehat{B}_{g1}	\widehat{B}_{g3}	\widehat{B}_{g1}	\widehat{B}_{g3}
30	0,35050	-0,00005	0,35047	0,02514	0,35044	0,04780
50	0,58369	-0,00027	0,58274	0,04166	0,58353	0,07931
80	0,92865	0,00176	0,92958	0,06713	0,92993	0,12633
90	1,03770	0,00498	1,03950	0,07719	1,03950	0,14274
100	1,14160	0,01036	1,14470	0,08839	1,14570	0,15943
110	1,23810	0,01754	1,24220	0,10062	1,24380	0,17614
120	1,32750	0,02560	1,33260	0,11417	1,33560	0,19416
130	1,41110	0,03452	1,41730	0,12702	1,41970	0,21145
140	1,48770	0,04545	1,49650	0,14006	1,49920	0,22769
150	1,55740	0,05869	1,56830	0,15475	1,57260	0,24346
160	1,61950	0,07354	1,63220	0,17106	1,63840	0,25980
170	1,67470	0,09040	1,68930	0,18703	1,69730	0,27759
180	1,72360	0,10841	1,74190	0,20452	1,75020	0,29477
190	1,76810	0,12784	1,78780	0,22272	1,79780	0,31103
200	1,80710	0,14620	1,82690	0,24116	1,83830	0,32717
210	1,84260	0,16398	1,86160	0,26001	1,87440	0,34445
220	1,87440	0,18090	1,89280	0,27797	1,90560	0,36147
230	1,90320	0,19811	1,92170	0,29433	1,93320	0,37702
240	1,92960	0,21495	1,94870	0,30820	1,95850	0,39145
250	1,95300	0,23233	1,97410	0,32048	1,98150	0,40332
260	1,97440	0,24910	1,99640	0,33323	2,00430	0,41272
270	1,99400	0,26472	2,01640	0,34579	2,02300	0,42195
280	2,01230	0,27924	2,03290	0,35787	2,04070	0,42949
290	2,02690	0,29303	2,04700	0,36949	2,05650	0,43705
300	2,03930	0,30628	2,05950	0,38044	2,06960	0,44516

Tabela 23 – Harmônicos de indução magnética nos dentes do estator.

Anexo A.2 – Tabelas de Perdas: Parâmetros A

te	Perdas	por Hister	ese na Cor	oa do Es	stator	Perdas por Histerese nos Dentes do Estator						
rent		Absolutas		Norma	alizada	A	bsolutas		Norma	alizada		
cor		[W]		[%	⁄o]		[W]		[%	6]		
6 de	Senoidal	20%	38%	20 %	38%	Senoidal	2.0%	38%	20 %	38 %		
•	Scholuar	2070	5070	Sen	Sen	Scholuar	2070	5070	Sen	Sen		
30	0,62919	0,65126	0,67136	103,51	106,70	0,32575	0,28950	0,26209	88,87	80,46		
50	1,41250	1,45440	1,49900	102,96	106,13	0,72958	0,64677	0,58684	88,65	80,44		
80	2,94020	3,04090	3,13310	103,43	106,56	1,51390	1,35100	1,22550	89,24	80,95		
90	3,50470	3,63390	3,74300	103,69	106,80	1,79600	1,60630	1,45970	89,43	81,27		
100	4,08650	4,24460	4,36940	103,87	106,92	2,07400	1,86130	1,70010	89,74	81,97		
110	4,65710	4,83170	4,98300	103,75	107,00	2,33860	2,10410	1,93280	89,97	82,65		
120	5,22000	5,41230	5,59110	103,69	107,11	2,58960	2,33220	2,15850	90,06	83,35		
130	5,75740	5,97700	6,15750	103,81	106,95	2,82820	2,55320	2,37360	90,28	83,93		
140	6,27930	6,52290	6,72930	103,88	107,17	3,04410 2,76310		2,58420	90,77	84,89		
150	6,76920	7,04930	7,26300	104,14	107,29	3,23450 2,94890		2,78470	91,17	86,09		
160	7,23490	7,53870	7,77130	104,20	107,41	3,39710	3,10730	2,96850	91,47	87,38		
170	7,66040	7,98210	8,23780	104,20	107,54	3,53140	3,24680	3,13720	91,94	88,84		
180	8,05460	8,39480	8,66870	104,22	107,62	3,64060	3,37100	3,29290	92,60	90,45		
190	8,43070	8,78790	9,06090	104,24	107,48	3,73050	3,47940	3,43660	93,27	92,12		
200	8,76630	9,12820	9,41450	104,13	107,39	3,80470	3,57310	3,56270	93,91	93,64		
210	9,07580	9,44430	9,72960	104,06	107,20	3,86930	3,65930	3,67890	94,57	95,08		
220	9,37200	9,73160	10,01700	103,84	106,89	3,92340	3,74220	3,78340	95,38	96,43		
230	9,62490	10,00300	10,27300	103,92	106,73	3,96600	3,82410	3,87850	96,42	97,79		
240	9,88040	10,23900	10,51300	103,62	106,40	4,00120	3,90480	3,96820	97,59	99,17		
250	10,10800	10,40700	10,76600	102,96	106,51	4,02960	3,98330	4,04950	98,85	100,49		
260	10,40200	10,76100	10,94700	103,46	105,25	4,06300	4,05400	4,12880	99,78	101,62		
270	10,59700	10,95100	11,13100	103,34	105,04	4,10040	4,11930	4,19600	100,46	102,33		
280	10,79400	11,14400	11,31300	103,24	104,81	4,14090	4,17500	4,25900	100,82	102,85		
290	10,82300	11,16700	11,49800	103,18	106,23	4,17390	4,22460	4,31690	101,21	103,43		
300	11,01900	11,36000	11,51200	103,10	104,48	4,20450	4,27030	4,36740	101,57	103,88		

Tabela 24 – Perdas por histerese na coroa e nos dentes do estator – Parâmetros A

e	Perda	as Parasita	s na Coroa	do Esta	tor	Perdas Parasitas nos Dentes do Estator						
rent		Absolutas		Norma	alizada		Absolutas		Norma	lizada		
cor		[W]		[%	⁄o]		[W]		[%	6]		
6 de	Senoidal	20%	38%	20%	38%	Senoidal	20%	38%	20 %	38 %		
•`	~~~~~~	_070	0070	Sen	Sen	~~~~~~	_070	0070	Sen	Sen		
30	2,12350	2,13280	2,15710	100,44	101,58	1,25170 1,30950 1,460		1,46080	104,61	116,71		
50	5,91200	5,89770	5,96410	99,76	100,88	3,47140	3,61920	4,04640	104,26	116,57		
80	14,93200	14,99800	15,16500	100,44	101,56	8,78730	9,21790	10,27500	104,90	116,93		
90	18,61500	18,77200	18,98300	100,85	101,98	10,97500	11,55600	12,87800	105,29	117,34		
100	22,54800	22,81700	23,07500	101,19	102,34	13,28900	14,06900	15,70600	105,87	118,19		
110	26,52200	26,83500	27,22600	101,18	102,66	15,64700	16,65100	18,60900	106,42	118,93		
120	30,54800	30,91200	31,45500	101,19	102,97	18,01700	19,29000	21,63200	107,07	120,07		
130	34,47500	34,98500	35,49900	101,48	102,97	20,39800	21,94700	24,63800	107,59	120,78		
140	38,33900	39,00500	39,68100	101,74	103,50	22,74000 24,61800 27,65500		108,26	121,62			
150	41,99000	42,93300	43,66200	102,24	103,98	25,02800 27,25600 30,63500		108,90	122,40			
160	45,48400	46,61300	47,50500	102,48	104,44	27,21900	29,82700	33,53900	109,58	123,22		
170	48,67000	49,98400	51,06000	102,70	104,91	29,32700	32,28500	36,42000	110,09	124,19		
180	51,62100	53,12800	54,38000	102,92	105,34	31,34600	34,75200	39,17900	110,86	124,99		
190	54,43200	56,13500	57,43000	103,13	105,51	33,35300	37,11500	41,80300	111,28	125,33		
200	56,95000	58,73200	60,19100	103,13	105,69	35,23400	39,34000	44,25000	111,66	125,59		
210	59,27900	61,14200	62,64500	103,14	105,68	37,06200	41,51000	46,67900	112,00	125,95		
220	61,52900	63,34200	64,89200	102,95	105,47	38,79900	43,59100	48,98200	112,35	126,25		
230	63,43400	65,44100	66,89800	103,16	105,46	40,50600	45,57400	51,11300	112,51	126,19		
240	65,37400	67,28600	68,79400	102,92	105,23	42,17500	47,40300	53,13700	112,40	125,99		
250	67,08600	68,59600	70,83100	102,25	105,58	43,81200	49,12500	54,92300	112,13	125,36		
260	69,37000	71,46200	72,30100	103,02	104,22	45,41000	50,79300	56,55300	111,85	124,54		
270	70,85700	72,96400	73,79700	102,97	104,15	46,94100	52,39300	58,02500	111,62	123,61		
280	72,36000	74,49000	75,29100	102,94	104,05	48,41100	53,85300	59,34700	111,24	122,59		
290	72,46400	74,59400	76,80600	102,94	105,99	49,73300	55,21500	60,61000	111,02	121,87		
300	73,98500	76,13900	76,88400	102,91	103,92	50,97800	56,49100	61,81400	110,81	121,26		

Tabela 25 - Perdas por corrente parasita na coroa e nos dentes do estator - Parâmetros A

e	Perdas po	or Excess	so na Coi	roa do E	Estator	Perdas po	or Excess	so nos De	entes do	Estator
rent	Α	bsolutas		Norma	lizada	Α	bsolutas		Norm	alizada
cor		[W]		[%	6]		[W]		[9	%]
6 de	Senoidal	20%	38%	20% 38%		Senoidal 20%		38%	20%	38%
•`	~~~~~	/		Sen	Sen	~~~~~	/	0070	Sen	Sen
30	0,14117	0,14345	0,14596	101,61	103,39	0,07142	0,06975	0,07174	97,66	100,45
50	0,30424	0,30759	0,31294	101,10	102,86	0,15351	0,14954	0,15407	97,41	100,37
80	0,60982	0,61947	0,63012	101,58	103,33	0,30761	0,30128	0,30993	97,94	100,75
90	0,71990	0,73331	0,74586	101,86	103,61	0,36274	0,35628	0,36684	98,22	101,13
100	0,83194	0,84930	0,86362	102,09	103,81	0,41750	0,41181	0,42531	98,64	101,87
110	0,94059	0,95972	0,97800	102,03	103,98	0,47024	0,46567	0,48241	99,03	102,59
120	1,04680	1,06790	1,09030	102,01	104,16	0,52076	0,51775	0,53912	99,42	103,53
130	1,14730	1,17250	1,19430	102,19	104,09	0,56936	0,56831	0,59348	99,82	104,24
140	1,24400	1,27290	1,29880	102,33	104,41	0,61479	0,61717	0,64647	100,39	105,15
150	1,33360	1,36890	1,39580	102,65	104,67	0,65684	0,66304	0,69731	100,94	106,16
160	1,41790	1,45730	1,48760	102,78	104,91	0,69500	0,70551	0,74544	101,51	107,26
170	1,49400	1,53690	1,57110	102,87	105,16	0,72957	0,74482	0,79188	102,09	108,54
180	1,56390	1,61030	1,64800	102,97	105,38	0,76088	0,78274	0,83555	102,87	109,81
190	1,62980	1,67980	1,71760	103,07	105,39	0,79035	0,81791	0,87644	103,49	110,89
200	1,68840	1,73940	1,78010	103,02	105,43	0,81705	0,85024	0,91400	104,06	111,87
210	1,74210	1,79430	1,83520	103,00	105,35	0,84234	0,88137	0,95082	104,63	112,88
220	1,79340	1,84410	1,88540	102,83	105,13	0,86580	0,91124	0,98547	105,25	113,82
230	1,83680	1,89100	1,92980	102,95	105,06	0,88812	0,93983	1,01730	105,82	114,55
240	1,88070	1,93200	1,97150	102,73	104,83	0,90958	0,96640	1,04750	106,25	115,16
250	1,91930	1,96100	2,01570	102,17	105,02	0,93013	0,99145	1,07390	106,59	115,45
260	1,96990	2,02310	2,04740	102,70	103,93	0,95044	1,01550	1,09780	106,84	115,51
270	2,00310	2,05580	2,07950	102,63	103,82	0,97024	1,03850	1,11940	107,03	115,37
280	2,03640	2,08880	2,11130	102,58	103,68	0,98960	1,05930	1,13860	107,05	115,06
290	2,03990	2,09190	2,14350	102,55	105,08	1,00690	1,07880	1,15690	107,13	114,90
300	2,07320	2,12510	2,14550	102,50	103,49	1,02340	1,09700	1,17440	107,20	114,76

Tabela 26 – Perdas por exces	sso na coroa e nos dentes	do estator - Parâmetros A
------------------------------	---------------------------	---------------------------

e	Perdas	Magnética	is na Coro	a do Est	ator	Perdas Magnéticas nos Dentes do Estator						
rent		Absolutas		Norma	alizada	I	Absolutas		Norma	ilizada		
cor		[W]		[%	6]		[W]		[%	6]		
6 de	Senoidal	20%	38%	20%	38%	Senoidal	20%	38%	20%	38%		
•`	~~~~~	/0		Sen	Sen	~~~~~	/		Sen	Sen		
30	2,89390	2,92750	2,97440	101,16	102,78	1,64890	1,66870	1,79470	101,20	108,84		
50	7,62880	7,65960	7,77610	100,40	101,93	4,35450	4,41550	4,78730	101,40	109,94		
80	18,48200	18,65800	18,92800	100,95	102,42	10,60900	10,87000	11,81000	102,46	111,32		
90	22,83900	23,14000	23,47200	101,32	102,77	13,13400	13,51800	14,70500	102,93	111,96		
100	27,46700	27,91100	28,30800	101,62	103,06	15,78100	16,34200	17,83100	103,56	112,99		
110	32,12000	32,62700	33,18700	101,58	103,32	18,45600	19,22100	21,02400	104,14	113,91		
120	36,81400	37,39200	38,13700	101,57	103,59	21,12700	22,14000	24,33000	104,79	115,16		
130	41,37900	42,13400	42,85000	101,82	103,56	23,79600	25,06900	27,60500	105,35	116,01		
140	45,86200	46,80100	47,70900	102,05	104,03	26,39900	27,99800	30,88600	106,06	117,00		
150	50,09300	51,35100	52,32100	102,51	104,45	28,92000	30,86800	34,11700	106,74	117,97		
160	54,13700	55,60900	56,76400	102,72	104,85	31,31100	33,63900	37,25300	107,44	118,98		
170	57,82400	59,50300	60,86900	102,90	105,27	33,58800	36,27700	40,34900	108,01	120,13		
180	61,23900	63,13300	64,69700	103,09	105,65	35,74800	38,90600	43,30700	108,83	121,15		
190	64,49200	66,60300	68,20900	103,27	105,76	37,87400	41,41300	46,11600	109,34	121,76		
200	67,40500	69,59900	71,38500	103,26	105,91	39,85500	43,76400	48,72600	109,81	122,26		
210	70,09700	72,38100	74,21000	103,26	105,87	41,77300	46,05000	51,30800	110,24	122,83		
220	72,69400	74,91800	76,79400	103,06	105,64	43,58800	48,24500	53,75100	110,68	123,32		
230	74,89600	77,33500	79,10100	103,26	105,62	45,36100	50,33800	56,00900	110,97	123,48		
240	77,13600	79,45700	81,27800	103,01	105,37	47,08600	52,27400	58,15300	111,02	123,50		
250	79,11300	80,96400	83,61300	102,34	105,69	48,77200	54,10000	60,04600	110,92	123,12		
260	81,74200	84,24600	85,29500	103,06	104,35	50,42400	55,86300	61,78000	110,79	122,52		
270	83,45700	85,97100	87,00800	103,01	104,25	52,01100	57,55100	63,34000	110,65	121,78		
280	85,19000	87,72300	88,71500	102,97	104,14	53,54200	59,08800	64,74400	110,36	120,92		
290	85,32700	87,85300	90,44700	102,96	106,00	54,91400	60,51800	66,08400	110,20	120,34		
300	87,07700	89,62500	90,54200	102,93	103,98	56,20600	61,85800	67,35600	110,06	119,84		

Tabela 27	' – Perdas magnéticas na cor	roa e nos dentes do esta	tor – Parâmetros A

		Perdas Ma	gnéticas no	Estator	
% de corrente	Α	bsolutas [W	′]	Normaliz	ada [%]
	Senoidal	20 %	38%	20%	38%
				Sen	Sen
30	4,54280	4,59620	4,76900	101,18	104,98
50	11,98300	12,07500	12,56300	100,77	104,84
80	29,09100	29,52800	30,73800	101,50	105,66
90	35,97300	36,65800	38,17700	101,90	106,13
100	43,24700	44,25300	46,13900	102,33	106,69
110	50,57600	51,84800	54,21200	102,52	107,19
120	57,94200	59,53200	62,46700	102,74	107,81
130	65,17500	67,20300	70,45500	103,11	108,10
140	72,26100	74,79900	78,59500	103,51	108,76
150	79,01300	82,21800	86,43800	104,06	109,40
160	85,44700	89,24900	94,01700	104,45	110,03
170	91,41200	95,78000	101,22000	104,78	110,73
180	96,98700	102,04000	108,00000	105,21	111,36
190	102,37000	108,02000	114,32000	105,52	111,68
200	107,26000	113,36000	120,11000	105,69	111,98
210	111,87000	118,43000	125,52000	105,87	112,20
220	116,28000	123,16000	130,55000	105,92	112,27
230	120,26000	127,67000	135,11000	106,17	112,35
240	124,22000	131,73000	139,43000	106,05	112,24
250	127,88000	135,06000	143,66000	105,61	112,33
260	132,17000	140,11000	147,07000	106,01	111,28
270	135,47000	143,52000	150,35000	105,95	110,98
280	138,73000	146,81000	153,46000	105,82	110,62
290	140,24000	148,37000	156,53000	105,80	111,62
300	143,28000	151,48000	157,90000	105,72	110,20

Tabela 28 – Perdas magnéticas no estator – Parâmetros A

te				Perd	as Percen	tuais na C	Coroa do	Estator	[%]			
de corren		Senoi	dal			$\frac{\hat{I}_3}{\hat{I}_1} = 2$	0 %			$\frac{\hat{I}_3}{\hat{I}_1} = 3$	8%	
%	Parasita	Histerese	Excesso	Total	Parasita	Histerese	Excesso	Total	Parasita	Histerese	Excesso	Total
30	46,75	13,85	3,11	63,70	46,40	14,17	3,12	63,69	45,23	14,08	3,06	62,37
50	49,34	11,79	2,54	63,66	48,84	12,04	2,55	63,43	47,47	11,93	2,49	61,90
80	51,33	10,11	2,10	63,53	50,79	10,30	2,10	63,19	49,34	10,19	2,05	61,58
90	51,75	9,74	2,00	63,49	51,21	9,91	2,00	63,12	49,72	9,80	1,95	61,48
100	52,14	9,45	1,92	63,51	51,56	9,59	1,92	63,07	50,01	9,47	1,87	61,35
110	52,44	9,21	1,86	63,51	51,76	9,32	1,85	62,93	50,22	9,19	1,80	61,22
120	52,72	9,01	1,81	63,54	51,93	9,09	1,79	62,81	50,36	8,95	1,75	61,05
130	52,90	8,83	1,76	63,49	52,06	8,89	1,74	62,70	50,39	8,74	1,70	60,82
140	53,06	8,69	1,72	63,47	52,15	8,72	1,70	62,57	50,49	8,56	1,65	60,70
150	53,14	8,57	1,69	63,40	52,22	8,57	1,67	62,46	50,51	8,40	1,61	60,53
160	53,23	8,47	1,66	63,36	52,23	8,45	1,63	62,31	50,53	8,27	1,58	60,38
170	53,24	8,38	1,63	63,26	52,19	8,33	1,60	62,13	50,45	8,14	1,55	60,14
180	53,23	8,30	1,61	63,14	52,07	8,23	1,58	61,87	50,35	8,03	1,53	59,90
190	53,17	8,24	1,59	63,00	51,97	8,14	1,56	61,66	50,23	7,93	1,50	59,66
200	53,10	8,17	1,57	62,84	51,81	8,05	1,53	61,40	50,11	7,84	1,48	59,43
210	52,99	8,11	1,56	62,66	51,63	7,97	1,52	61,12	49,91	7,75	1,46	59,12
220	52,91	8,06	1,54	62,52	51,43	7,90	1,50	60,83	49,71	7,67	1,44	58,83
230	52,75	8,00	1,53	62,28	51,26	7,83	1,48	60,57	49,51	7,60	1,43	58,55
240	52,63	7,95	1,51	62,10	51,08	7,77	1,47	60,32	49,34	7,54	1,41	58,29
250	52,46	7,90	1,50	61,86	50,79	7,71	1,45	59,95	49,31	7,49	1,40	58,20
260	52,49	7,87	1,49	61,85	51,00	7,68	1,44	60,13	49,16	7,44	1,39	57,99
270	52,31	7,82	1,48	61,61	50,84	7,63	1,43	59,90	49,08	7,40	1,38	57,87
280	52,16	7,78	1,47	61,41	50,74	7,59	1,42	59,75	49,06	7,37	1,38	57,81
290	51,67	7,72	1,45	60,84	50,28	7,53	1,41	59,21	49,07	7,35	1,37	57,78
300	51,64	7,69	1,45	60,77	50,26	7,50	1,40	59,17	48,69	7,29	1,36	57,34

Tabela 29 – Perdas percentuais na coroa do estator dadas em função das perdas totais – Parâmetros A

te	Perdas Percentuais nos Dentes do Estator[%]											
de corren		Senoi	dal			$\frac{\hat{I}_3}{\hat{I}_1} = 2$	0%			$\frac{\hat{I}_3}{\hat{I}_1} = 3$	8%	
%	Parasita	Histerese	Excesso	Total	Parasita	Histerese	Excesso	Total	Parasita	Histerese	Excesso	Total
30	27,55	7,17	1,57	36,30	28,49	6,30	1,52	36,31	30,63	5,50	1,50	37,63
50	28,97	6,09	1,28	36,34	29,97	5,36	1,24	36,57	32,21	4,67	1,23	38,11
80	30,21	5,20	1,06	36,47	31,22	4,58	1,02	36,81	33,43	3,99	1,01	38,42
90	30,51	4,99	1,01	36,51	31,52	4,38	0,97	36,88	33,73	3,82	0,96	38,52
100	30,73	4,80	0,97	36,49	31,79	4,21	0,93	36,93	34,04	3,68	0,92	38,65
110	30,94	4,62	0,93	36,49	32,12	4,06	0,90	37,07	34,33	3,57	0,89	38,78
120	31,10	4,47	0,90	36,46	32,40	3,92	0,87	37,19	34,63	3,46	0,86	38,95
130	31,30	4,34	0,87	36,51	32,66	3,80	0,85	37,30	34,97	3,37	0,84	39,18
140	31,47	4,21	0,85	36,53	32,91	3,69	0,83	37,43	35,19	3,29	0,82	39,30
150	31,68	4,09	0,83	36,60	33,15	3,59	0,81	37,54	35,44	3,22	0,81	39,47
160	31,85	3,98	0,81	36,64	33,42	3,48	0,79	37,69	35,67	3,16	0,79	39,62
170	32,08	3,86	0,80	36,74	33,71	3,39	0,78	37,88	35,98	3,10	0,78	39,86
180	32,32	3,75	0,78	36,86	34,06	3,30	0,77	38,13	36,28	3,05	0,77	40,10
190	32,58	3,64	0,77	37,00	34,36	3,22	0,76	38,34	36,57	3,01	0,77	40,34
200	32,85	3,55	0,76	37,16	34,70	3,15	0,75	38,61	36,84	2,97	0,76	40,57
210	33,13	3,46	0,75	37,34	35,05	3,09	0,74	38,88	37,19	2,93	0,76	40,88
220	33,37	3,37	0,74	37,49	35,39	3,04	0,74	39,17	37,52	2,90	0,75	41,17
230	33,68	3,30	0,74	37,72	35,70	3,00	0,74	39,43	37,83	2,87	0,75	41,45
240	33,95	3,22	0,73	37,91	35,99	2,96	0,73	39,68	38,11	2,85	0,75	41,71
250	34,26	3,15	0,73	38,14	36,37	2,95	0,73	40,06	38,23	2,82	0,75	41,80
260	34,36	3,07	0,72	38,15	36,25	2,89	0,72	39,87	38,45	2,81	0,75	42,01
270	34,65	3,03	0,72	38,39	36,51	2,87	0,72	40,10	38,59	2,79	0,74	42,13
280	34,90	2,98	0,71	38,59	36,68	2,84	0,72	40,25	38,67	2,78	0,74	42,19
290	35,46	2,98	0,72	39,16	37,21	2,85	0,73	40,79	38,72	2,76	0,74	42,22
300	35,58	2,93	0,71	39,23	37,29	2,82	0,72	40,84	39,15	2,77	0,74	42,66

Tabela 30 - Perdas percentuais nos dentes do estator dadas em função das perdas totais - Parâmetros A

Anexo A.3 – Tabelas de Perdas: Parâmetros B 8065

nte	Perdas po	or Histere	ese na Cor	oa do E	stator	r Perdas por Histerese nos Dentes do Estator				
rrei	A	Absolutas		Norma	alizada	A	bsolutas		Norn	nalizada
(0) ([W]		[%	6]		[W]		[%]
ó de	Senoidal	20 %	38 %	20%	38%	Senoidal	20%	38%	20%	38%
• 30	0.45172	0.46020	0.40510	<i>Sen</i>	Sen	0.04575	0.01/01	0.102.42	<i>Sen</i>	<i>Sen</i>
50	0,45173	0,46920	0,48518	103,87	107,40	0,24575	0,21581	0,19342	87,82	/8,/1
50	1,10070	1,13660	1,17510	103,27	106,77	0,59724	0,52303	0,46991	87,57	78,68
80	2,46760	2,56090	2,64650	103,78	107,25	1,33440	1,17710	1,05730	88,22	79,24
90	2,99410	3,11600	3,21910	104,07	107,51	1,61070	1,42430	1,28190	88,43	79,58
100	3,54590	3,69720	3,81710	104,27	107,65	1,88730	1,67520	1,51620	88,77	80,34
110	4,09490	4,26430	4,41160	104,14	107,73	2,15410	1,91740	1,74630	89,01	81,07
120	4,64310	4,83190	5,00790	104,07	107,86	2,41000	2,14760	1,97210	89,11	81,83
130	5,17220	5,38990	5,56950	104,21	107,68	2,65560	2,37270	2,18960	89,35	82,45
140	5,69090	5,93450	6,14160	104,28	107,92	2,87980	2,58840	2,40450	89,88	83,50
150	6,18170	6,46400	6,68010	104,57	108,06	3,07870	2,78080	2,61070	90,32	84,80
160	6,65170	6,95990	7,19670	104,63	108,19	3,24960	2,94570	2,80110	90,65	86,20
170	7,08370	7,41200	7,67400	104,63	108,33	3,39130	3,09160	2,97690	91,16	87,78
180	7,48620	7,83520	8,11720	104,66	108,43	3,50700	3,22210	3,14000	91,88	89,54
190	7,87200	8,24020	8,52250	104,68	108,26	3,60260	3,33650	3,29130	92,61	91,36
200	8,21790	8,59230	8,88950	104,56	108,17	3,68160	3,43550	3,42450	93,32	93,02
210	8,53790	8,92040	9,21770	104,48	107,96	3,75050	3,52690	3,54770	94,04	94,59
220	8,84530	9,21980	9,51850	104,23	107,61	3,80820	3,61500	3,65890	94,93	96,08
230	9,10850	9,50300	9,78630	104,33	107,44	3,85380	3,70230	3,76030	96,07	97,57
240	9,37520	9,75010	10,03800	104,00	107,07	3,89150	3,78830	3,85610	97,35	99,09
250	9,61330	9,92690	10,30500	103,26	107,19	3,92190	3,87230	3,94320	98,73	100,54
260	9,92110	10,30000	10,49600	103,82	105,79	3,95770	3,94800	4,02830	99,75	101,78
270	10,12700	10,50000	10,69100	103,68	105,56	3,99790	4,01810	4,10060	100,51	102,57
280	10,33400	10,70300	10,88300	103,57	105,31	4,04130	4,07800	4,16840	100,91	103,14
290	10,36500	10,72800	11,07800	103,51	106,88	4,07690	4,13140	4,23090	101,34	103,78
300	10,57100	10,93300	11,09400	103,42	104,95	4,10970	4,18070	4,28540	101,73	104,28

Tabela 31 – Perdas por histerese na coroa e nos dentes do estator – Parâmetros B 8065

e	Perdas	Parasitas	na Coroa	a do Est	ator	Perdas P	arasitas	nos Dent	tes do E	stator
rent	A	Absolutas		Norma	alizada	Α	bsolutas		Norma	ilizada
cor		[W]		[%	6]		[W]		[%	6]
% de	Senoidal	20 %	38%	20%	38%	Senoidal	20%	38%	20%	38%
•`		/ 0		Sen	Sen				Sen	Sen
30	0,19790	0,19877	0,20102	100,44	101,58	0,11665	0,12203	0,13614	104,61	116,71
50	0,55096	0,54963	0,55582	99,76	100,88	0,32351	0,33729	0,37710	104,26	116,57
80	1,39150	1,39770	1,41330	100,44	101,56	0,81892	0,85905	0,95754	104,90	116,93
90	1,73480	1,74950	1,76910	100,85	101,98	1,02280	1,07690	1,20020	105,29	117,34
100	2,10130	2,12640	2,15040	101,19	102,34	1,23850	1,31110	1,46370	105,87	118,19
110	2,47170	2,50090	2,53730	101,18	102,66	1,45820	1,55180	1,73420	106,42	118,93
120	2,84690	2,88080	2,93140	101,19	102,97	1,67900	1,79770	2,01600	107,07	120,07
130	3,21280	3,26030	3,30830	101,48	102,97	1,90100	2,04540	2,29610	107,59	120,78
140	3,57300	3,63500	3,69800	101,74	103,50	2,11920	2,29430	2,57730	108,26	121,62
150	3,91320	4,00110	4,06900	102,24	103,98	2,33250	2,54010	2,85500	108,90	122,40
160	4,23880	4,34410	4,42720	102,48	104,44	2,53660	2,77970	3,12570	109,58	123,22
170	4,53570	4,65820	4,75840	102,70	104,91	2,73310	3,00880	3,39410	110,09	124,19
180	4,81080	4,95120	5,06790	102,92	105,34	2,92130	3,23870	3,65120	110,86	124,99
190	5,07270	5,23150	5,35210	103,13	105,51	3,10830	3,45890	3,89580	111,28	125,33
200	5,30740	5,47340	5,60940	103,13	105,69	3,28350	3,66630	4,12380	111,66	125,59
210	5,52440	5,69810	5,83810	103,14	105,68	3,45390	3,86850	4,35020	112,00	125,95
220	5,73410	5,90310	6,04750	102,95	105,47	3,61580	4,06240	4,56480	112,35	126,25
230	5,91160	6,09870	6,23450	103,16	105,46	3,77490	4,24720	4,76340	112,51	126,19
240	6,09250	6,27070	6,41120	102,92	105,23	3,93050	4,41770	4,95200	112,40	125,99
250	6,25200	6,39270	6,60100	102,25	105,58	4,08300	4,57820	5,11840	112,13	125,36
260	6,46490	6,65980	6,73800	103,02	104,22	4,23200	4,73360	5,27040	111,85	124,54
270	6,60340	6,79980	6,87740	102,97	104,15	4,37460	4,88270	5,40750	111,62	123,61
280	6,74350	6,94200	7,01660	102,94	104,05	4,51160	5,01880	5,53080	111,24	122,59
290	6,75320	6,95170	7,15790	102,94	105,99	4,63480	5,14570	5,64850	111,02	121,87
300	6,89500	7,09570	7,16510	102,91	103,92	4,75090	5,26460	5,76070	110,81	121,26

Γabela 32 – Perdas por corrente	parasita na coroa e nos dentes	do estator - Parâmetros B 8065
---------------------------------	--------------------------------	--------------------------------

e	Perdas I	Magnética	as na Cor	oa do Es	stator	Perdas M	lagnética	s nos Den	tes do F	stator
rent	A	Absolutas		Norma	alizada	A	bsolutas	;	Norma	ılizada
cor		[W]		[9	⁄o]		[W]		[%	6]
% de	Senoidal	20 %	38%	20%	38%	Senoidal	20%	38%	20%	38%
•`				Sen	Sen				Sen	Sen
30	0,64963	0,66797	0,68620	102,82	105,63	0,36241	0,33785	0,32956	93,22	90,94
50	1,65160	1,68620	1,73100	102,10	104,80	0,92075	0,86032	0,84701	93,44	91,99
80	3,85920	3,95850	4,05980	102,58	105,20	2,15330	2,03620	2,01480	94,56	93,57
90	4,72890	4,86540	4,98830	102,89	105,48	2,63350	2,50120	2,48200	94,98	94,25
100	5,64720	5,82370	5,96760	103,12	105,67	3,12570	2,98630	2,97990	95,54	95,33
110	6,56660	6,76520	6,94890	103,02	105,82	3,61230	3,46920	3,48050	96,04	96,35
120	7,49000	7,71270	7,93940	102,97	106,00	4,08910	3,94530	3,98810	96,48	97,53
130	8,38500	8,65020	8,87770	103,16	105,88	4,55660	4,41810	4,48570	96,96	98,44
140	9,26380	9,56950	9,83960	103,30	106,21	4,99910	4,88270	4,98180	97,67	99,66
150	10,09500	10,46500	10,74900	103,67	106,48	5,41120	5,32080	5,46570	98,33	101,01
160	10,89000	11,30400	11,62400	103,80	106,73	5,78620	5,72530	5,92670	98,95	102,43
170	11,61900	12,07000	12,43200	103,88	107,00	6,12440	6,10040	6,37100	99,61	104,03
180	12,29700	12,78600	13,18500	103,98	107,22	6,42830	6,46080	6,79120	100,51	105,65
190	12,94500	13,47200	13,87500	104,07	107,18	6,71090	6,79540	7,18700	101,26	107,10
200	13,52500	14,06600	14,49900	104,00	107,20	6,96510	7,10180	7,54830	101,96	108,37
210	14,06200	14,61900	15,05600	103,96	107,06	7,20440	7,39540	7,89780	102,65	109,63
220	14,57900	15,12300	15,56600	103,73	106,77	7,42410	7,67750	8,22370	103,41	110,77
230	15,02000	15,60200	16,02100	103,87	106,66	7,62870	7,94940	8,52370	104,20	111,73
240	15,46800	16,02100	16,44900	103,58	106,35	7,82200	8,20600	8,80810	104,91	112,61
250	15,86500	16,32000	16,90600	102,86	106,56	8,00490	8,45040	9,06160	105,57	113,20
260	16,38600	16,95900	17,23400	103,50	105,17	8,18970	8,68170	9,29870	106,01	113,54
270	16,73100	17,30000	17,56800	103,40	105,01	8,37240	8,90080	9,50820	106,31	113,57
280	17,07700	17,64500	17,90000	103,33	104,81	8,55300	9,09690	9,69920	106,36	113,40
290	17,11800	17,68000	18,23600	103,28	106,53	8,71170	9,27710	9,87940	106,49	113,40
300	17,46600	18,02900	18,25900	103,22	104,54	8,86060	9,44520	10,04600	106,60	113,38

Tabela 33 – Perdas magnéticas na coroa e nos dentes do estator – Parâmetros B 8065

% de corrente		Perdas Ma	agnéticas n	o Estator	
% de corrente	Al	osolutas [V	V]	Normaliz	ada [%]
	Senoidal	20 %	38%	20%	38%
				Sen	Sen
30	1,01200	1,00580	1,01580	99,39	100,37
50	2,57240	2,54660	2,57800	99,00	100,22
80	6,01250	5,99470	6,07460	99,71	101,03
90	7,36240	7,36660	7,47030	100,06	101,47
100	8,77300	8,81000	8,94750	100,42	101,99
110	10,17900	10,23400	10,42900	100,55	102,46
120	11,57900	11,65800	11,92700	100,68	103,01
130	12,94200	13,06800	13,36300	100,98	103,26
140	14,26300	14,45200	14,82100	101,33	103,92
150	15,50600	15,78600	16,21500	101,80	104,57
160	16,67700	17,02900	17,55100	102,11	105,24
170	17,74400	18,17100	18,80300	102,41	105,97
180	18,72500	19,24700	19,97600	102,79	106,68
190	19,65600	20,26700	21,06200	103,11	107,15
200	20,49000	21,16800	22,04700	103,30	107,60
210	21,26700	22,01400	22,95400	103,51	107,93
220	22,00300	22,80000	23,79000	103,62	108,12
230	22,64900	23,55100	24,54400	103,98	108,37
240	23,29000	24,22700	25,25800	104,02	108,45
250	23,87000	24,77000	25,96700	103,77	108,79
260	24,57600	25,64100	26,53200	104,34	107,96
270	25,10300	26,20100	27,07600	104,37	107,86
280	25,63000	26,74200	27,59900	104,34	107,68
290	25,83000	26,95700	28,11600	104,37	108,85
300	26,32700	27,47400	28,30500	104,36	107,52

Tabela 34 – Perdas magnética	s no estator –	Parâmetros B	8065
------------------------------	----------------	--------------	------

				Perd	as Percen	ituais na C	Coroa do	Estator	·[%]			
% de sorrente		Senoi	dal			$\frac{\hat{l}_3}{\hat{l}_1} = 2$	0%			$\frac{\hat{I}_3}{\hat{I}_1} = 3$	8%	
0	Parasita	Histerese	Excesso	Total	Parasita	Histerese	Excesso	Total	Parasita	Histerese	Excesso	Total
30	19,56	44,64	0,00	64,19	19,76	46,65	0,00	66,41	19,79	47,77	0,00	67,56
50	21,42	42,79	0,00	64,21	21,58	44,63	0,00	66,22	21,56	45,58	0,00	67,14
80	23,14	41,04	0,00	64,19	23,32	42,72	0,00	66,03	23,27	43,57	0,00	66,83
90	23,56	40,67	0,00	64,23	23,75	42,30	0,00	66,05	23,68	43,09	0,00	66,78
100	23,95	40,42	0,00	64,37	24,14	41,97	0,00	66,10	24,03	42,66	0,00	66,70
110	24,28	40,23	0,00	64,51	24,44	41,67	0,00	66,10	24,33	42,30	0,00	66,63
120	24,59	40,10	0,00	64,69	24,71	41,45	0,00	66,16	24,58	41,99	0,00	66,56
130	24,83	39,97	0,00	64,79	24,95	41,24	0,00	66,19	24,76	41,68	0,00	66,43
140	25,05	39,90	0,00	64,95	25,15	41,06	0,00	66,22	24,95	41,44	0,00	66,39
150	25,24	39,87	0,00	65,10	25,35	40,95	0,00	66,29	25,09	41,20	0,00	66,29
160	25,42	39,89	0,00	65,30	25,51	40,87	0,00	66,38	25,23	41,01	0,00	66,23
170	25,56	39,92	0,00	65,48	25,64	40,79	0,00	66,43	25,31	40,81	0,00	66,12
180	25,69	39,98	0,00	65,67	25,72	40,71	0,00	66,43	25,37	40,63	0,00	66,00
190	25,81	40,05	0,00	65,86	25,81	40,66	0,00	66,47	25,41	40,46	0,00	65,88
200	25,90	40,11	0,00	66,01	25,86	40,59	0,00	66,45	25,44	40,32	0,00	65,76
210	25,98	40,15	0,00	66,12	25,88	40,52	0,00	66,41	25,43	40,16	0,00	65,59
220	26,06	40,20	0,00	66,26	25,89	40,44	0,00	66,33	25,42	40,01	0,00	65,43
230	26,10	40,22	0,00	66,32	25,90	40,35	0,00	66,25	25,40	39,87	0,00	65,27
240	26,16	40,26	0,00	66,41	25,88	40,25	0,00	66,13	25,38	39,74	0,00	65,13
250	26,19	40,27	0,00	66,47	25,81	40,08	0,00	65,89	25,42	39,68	0,00	65,10
260	26,31	40,37	0,00	66,68	25,97	40,17	0,00	66,14	25,40	39,56	0,00	64,95
270	26,31	40,34	0,00	66,65	25,95	40,08	0,00	66,03	25,40	39,48	0,00	64,88
280	26,31	40,32	0,00	66,63	25,96	40,02	0,00	65,98	25,42	39,43	0,00	64,86
290	26,15	40,13	0,00	66,27	25,79	39,80	0,00	65,59	25,46	39,40	0,00	64,86
300	26,19	40,15	0,00	66,34	25,83	39,79	0,00	65,62	25,31	39,19	0,00	64,51

Tabela 35 - Perdas percentuais na coroa do estator dadas em função das perdas totais - Parâmetros B 8065

				Perda	s Percent	tuais nos I)entes do	Estato	r[%]			
% de sorrente		Senoi	dal			$\frac{\hat{I}_3}{\hat{I}_1} = 2$	0 %			$\frac{\hat{I}_3}{\hat{I}_1} = 3$	8%	
	Parasita	Histerese	Excesso	Total	Parasita	Histerese	Excesso	Total	Parasita	Histerese	Excesso	Total
30	11,53	24,28	0,00	35,81	12,13	21,46	0,00	33,59	13,40	19,04	0,00	32,45
50	12,58	23,22	0,00	35,79	13,25	20,54	0,00	33,78	14,63	18,23	0,00	32,86
80	13,62	22,19	0,00	35,81	14,33	19,64	0,00	33,97	15,76	17,41	0,00	33,17
90	13,89	21,88	0,00	35,77	14,62	19,33	0,00	33,95	16,07	17,16	0,00	33,23
100	14,12	21,51	0,00	35,63	14,88	19,02	0,00	33,90	16,36	16,95	0,00	33,30
110	14,33	21,16	0,00	35,49	15,16	18,74	0,00	33,90	16,63	16,74	0,00	33,37
120	14,50	20,81	0,00	35,31	15,42	18,42	0,00	33,84	16,90	16,53	0,00	33,44
130	14,69	20,52	0,00	35,21	15,65	18,16	0,00	33,81	17,18	16,39	0,00	33,57
140	14,86	20,19	0,00	35,05	15,88	17,91	0,00	33,79	17,39	16,22	0,00	33,61
150	15,04	19,86	0,00	34,90	16,09	17,62	0,00	33,71	17,61	16,10	0,00	33,71
160	15,21	19,49	0,00	34,70	16,32	17,30	0,00	33,62	17,81	15,96	0,00	33,77
170	15,40	19,11	0,00	34,52	16,56	17,02	0,00	33,57	18,05	15,83	0,00	33,88
180	15,60	18,73	0,00	34,33	16,83	16,74	0,00	33,57	18,28	15,72	0,00	34,00
190	15,81	18,33	0,00	34,14	17,07	16,46	0,00	33,53	18,50	15,63	0,00	34,12
200	16,03	17,97	0,00	33,99	17,32	16,23	0,00	33,55	18,70	15,53	0,00	34,24
210	16,24	17,64	0,00	33,88	17,57	16,02	0,00	33,59	18,95	15,46	0,00	34,41
220	16,43	17,31	0,00	33,74	17,82	15,86	0,00	33,67	19,19	15,38	0,00	34,57
230	16,67	17,02	0,00	33,68	18,03	15,72	0,00	33,75	19,41	15,32	0,00	34,73
240	16,88	16,71	0,00	33,59	18,24	15,64	0,00	33,87	19,61	15,27	0,00	34,87
250	17,11	16,43	0,00	33,54	18,48	15,63	0,00	34,12	19,71	15,19	0,00	34,90
260	17,22	16,10	0,00	33,32	18,46	15,40	0,00	33,86	19,86	15,18	0,00	35,05
270	17,43	15,93	0,00	33,35	18,64	15,34	0,00	33,97	19,97	15,15	0,00	35,12
280	17,60	15,77	0,00	33,37	18,77	15,25	0,00	34,02	20,04	15,10	0,00	35,14
290	17,94	15,78	0,00	33,73	19,09	15,33	0,00	34,41	20,09	15,05	0,00	35,14
300	18,05	15,61	0,00	33,66	19,16	15,22	0,00	34,38	20,35	15,14	0,00	35,49

Tabela 36 - Perdas percentuais nos dentes do estator dadas em função das perdas totais - Parâmetros B 8065

Anexo A.4 – Tabelas de Perdas: Parâmetros B 5365

ie l	Perdas po	or Histere	ese na Cor	·oa do E	stator	or Perdas por Histerese nos Dentes do Estator					
rent	A	Absolutas		Norma	lizada	Α	bsolutas		Norn	nalizada	
cor		[W]		[%	6]		[W]		[%]	
6 de	Senoidal	20%	38%	20%	38%	Senoidal	20%	38%	20%	38%	
6	Scholdar	2070	3070	Sen	Sen	Scholuar	2070	3070	Sen	Sen	
30	0,25068	0,26077	0,27001	104,03	107,71	0,13937	0,12175	0,10864	87,36	77,95	
50	0,63307	0,65460	0,67769	103,40	107,05	0,35101	0,30576	0,27353	87,11	77,93	
80	1,46620	1,52380	1,57690	103,93	107,55	0,81001	0,71096	0,63583	87,77	78,50	
90	1,79290	1,86880	1,93330	104,24	107,83	0,98518	0,86686	0,77688	87,99	78,86	
100	2,13780	2,23280	2,30820	104,44	107,97	1,16170	1,02630	0,92513	88,34	79,63	
110	2,48310	2,59010	2,68320	104,31	108,06	1,33300	1,18100	1,07160	88,60	80,39	
120	2,82980	2,94960	3,06150	104,23	108,18	1,49820	1,32890	1,21610	88,70	81,17	
130	3,16600	3,30470	3,41930	104,38	108,00	1,65730	1,47410	1,35590	88,94	81,81	
140	3,49690	3,65270	3,78540	104,46	108,25	1,80310	1,61370	1,49460	89,50	82,89	
150	3,81120	3,99240	4,13130	104,75	108,40	1,93280	1,73860	1,62820	89,95	84,24	
160	4,11300	4,31150	4,46420	104,82	108,54	2,04450	1,84600	1,75190	90,29	85,68	
170	4,39130	4,60320	4,77250	104,83	108,68	2,13740	1,94130	1,86640	90,83	87,32	
180	4,65110	4,87690	5,05960	104,85	108,78	2,21330	2,02650	1,97290	91,56	89,14	
190	4,90070	5,13940	5,32260	104,87	108,61	2,27600	2,10140	2,07180	92,33	91,03	
200	5,12490	5,36800	5,56130	104,74	108,52	2,32800	2,16640	2,15910	93,06	92,75	
210	5,33270	5,58140	5,77500	104,66	108,30	2,37330	2,22630	2,24000	93,81	94,38	
220	5,53250	5,77640	5,97120	104,41	107,93	2,41140	2,28420	2,31300	94,73	95,92	
230	5,70390	5,96110	6,14600	104,51	107,75	2,44140	2,34160	2,37980	95,91	97,48	
240	5,87770	6,12240	6,31070	104,16	107,37	2,46620	2,39820	2,44290	97,24	99,05	
250	6,03310	6,23790	6,48500	103,40	107,49	2,48630	2,45350	2,50030	98,68	100,56	
260	6,23420	6,48170	6,61020	103,97	106,03	2,50990	2,50350	2,55650	99,75	101,86	
270	6,36890	6,61290	6,73780	103,83	105,79	2,53640	2,54970	2,60420	100,53	102,68	
280	6,50420	6,74620	6,86410	103,72	105,53	2,56510	2,58930	2,64900	100,94	103,27	
290	6,52440	6,76260	6,99220	103,65	107,17	2,58850	2,62460	2,69040	101,39	103,93	
300	6,65970	6,89680	7,00270	103,56	105,15	2,61020	2,65710	2,72640	101,80	104,45	

Tabela 37 – Perdas por histerese na coroa e nos dentes do estator – Parâmetros B 5365

e	Perdas l	Parasitas	na Coro	oa do Es	tator	Perdas Parasitas nos Dentes do Estator					
rent	Α	bsolutas		Norma	alizada	Α	bsolutas		Norma	ılizada	
cor		[W]		[%	6]		[W]		[%	6]	
6 de	Senoidal	20%	38%	20%	38%	Senoidal	20%	38%	20 %	38%	
•`	~~~~~			Sen	Sen	~~~~~			Sen	Sen	
30	0,15303	0,15370	0,15544	100,44	101,58	0,09020	0,09436	0,10527	104,61	116,71	
50	0,42604	0,42500	0,42979	99,76	100,88	0,25016	0,26081	0,29160	104,26	116,57	
80	1,07600	1,08080	1,09280	100,44	101,56	0,63324	0,66426	0,74043	104,90	116,93	
90	1,34140	1,35280	1,36800	100,85	101,98	0,79090	0,83275	0,92804	105,29	117,34	
100	1,62490	1,64430	1,66280	101,19	102,34	0,95765	1,01380	1,13180	105,87	118,19	
110	1,91120	1,93380	1,96200	101,18	102,66	1,12760	1,19990	1,34100	106,42	118,93	
120	2,20130	2,22760	2,26680	101,19	102,97	1,29830	1,39010	1,55890	107,07	120,07	
130	2,48430	2,52110	2,55810	101,48	102,97	1,47000	1,58160	1,77550	107,59	120,78	
140	2,76280	2,81080	2,85950	101,74	103,50	1,63870	1,77410	1,99290	108,26	121,62	
150	3,02590	3,09380	3,14640	102,24	103,98	1,80360	1,96410	2,20760	108,90	122,40	
160	3,27770	3,35910	3,42330	102,48	104,44	1,96150	2,14940	2,41690	109,58	123,22	
170	3,50730	3,60200	3,67950	102,70	104,91	2,11340	2,32660	2,62450	110,09	124,19	
180	3,71990	3,82860	3,91880	102,92	105,34	2,25890	2,50430	2,82330	110,86	124,99	
190	3,92250	4,04530	4,13860	103,13	105,51	2,40350	2,67460	3,01240	111,28	125,33	
200	4,10400	4,23240	4,33750	103,13	105,69	2,53900	2,83500	3,18880	111,66	125,59	
210	4,27180	4,40610	4,51440	103,14	105,68	2,67080	2,99130	3,36380	112,00	125,95	
220	4,43390	4,56460	4,67630	102,95	105,47	2,79600	3,14130	3,52980	112,35	126,25	
230	4,57120	4,71580	4,82090	103,16	105,46	2,91900	3,28420	3,68340	112,51	126,19	
240	4,71110	4,84880	4,95750	102,92	105,23	3,03930	3,41600	3,82920	112,40	125,99	
250	4,83440	4,94320	5,10430	102,25	105,58	3,15720	3,54010	3,95790	112,13	125,36	
260	4,99900	5,14970	5,21020	103,02	104,22	3,27240	3,66030	4,07540	111,85	124,54	
270	5,10610	5,25800	5,31800	102,97	104,15	3,38270	3,77560	4,18140	111,62	123,61	
280	5,21450	5,36800	5,42560	102,94	104,05	3,48870	3,88080	4,27670	111,24	122,59	
290	5,22190	5,37540	5,53490	102,94	105,99	3,58390	3,97890	4,36770	111,02	121,87	
300	5,33160	5,48680	5,54050	102,91	103,92	3,67360	4,07090	4,45450	110,81	121,26	

Tabela 38 - Perdas por corrente parasita na coroa e nos dentes do estator - Parâmetros B 5365

e	Perdas N	Magnética	s na Coro	oa do Es	stator	Perdas Magnéticas nos Dentes do Estator					
rent	A	Absolutas		Norma	alizada	Α	bsolutas		Norm	alizada	
cor		[W]		[%	6]		[W]		[9	%]	
6 de	Senoidal	20%	38%	20 %	38 %	Senoidal	20%	38%	20 %	38 %	
•	~ choium		0070	Sen	Sen			0070	Sen	Sen	
30	0,40371	0,41447	0,42546	102,67	105,39	0,22957	0,21611	0,21391	94,14	93,18	
50	1,05910	1,07960	1,10750	101,94	104,57	0,60116	0,56657	0,56512	94,25	94,01	
80	2,54220	2,60460	2,66970	102,46	105,02	1,44330	1,37520	1,37630	95,29	95,36	
90	3,13430	3,22160	3,30120	102,79	105,33	1,77610	1,69960	1,70490	95,69	95,99	
100	3,76270	3,87710	3,97100	103,04	105,54	2,11940	2,04010	2,05690	96,26	97,05	
110	4,39430	4,52390	4,64520	102,95	105,71	2,46060	2,38100	2,41260	96,76	98,05	
120	5,03120	5,17720	5,32820	102,90	105,90	2,79650	2,71890	2,77500	97,23	99,23	
130	5,65030	5,82580	5,97750	103,11	105,79	3,12730	3,05570	3,13140	97,71	100,13	
140	6,25970	6,46350	6,64490	103,26	106,15	3,44180	3,38780	3,48750	98,43	101,33	
150	6,83710	7,08620	7,27770	103,64	106,44	3,73640	3,70270	3,83580	99,10	102,66	
160	7,39070	7,67050	7,88750	103,79	106,72	4,00600	3,99540	4,16880	99,74	104,06	
170	7,89850	8,20520	8,45200	103,88	107,01	4,25080	4,26780	4,49090	100,40	105,65	
180	8,37110	8,70540	8,97830	103,99	107,25	4,47220	4,53090	4,79620	101,31	107,25	
190	8,82320	9,18460	9,46120	104,10	107,23	4,67960	4,77610	5,08420	102,06	108,65	
200	9,22890	9,60040	9,89880	104,03	107,26	4,86700	5,00130	5,34790	102,76	109,88	
210	9,60450	9,98750	10,28900	103,99	107,13	5,04410	5,21760	5,60380	103,44	111,10	
220	9,96640	10,34100	10,64700	103,76	106,83	5,20730	5,42550	5,84280	104,19	112,20	
230	10,27500	10,67700	10,96700	103,91	106,73	5,36040	5,62580	6,06310	104,95	113,11	
240	10,58900	10,97100	11,26800	103,61	106,42	5,50550	5,81420	6,27210	105,61	113,92	
250	10,86700	11,18100	11,58900	102,89	106,64	5,64350	5,99360	6,45820	106,20	114,44	
260	11,23300	11,63100	11,82000	103,55	105,23	5,78230	6,16380	6,63190	106,60	114,69	
270	11,47500	11,87100	12,05600	103,45	105,06	5,91910	6,32530	6,78570	106,86	114,64	
280	11,71900	12,11400	12,29000	103,38	104,87	6,05370	6,47010	6,92570	106,88	114,40	
290	11,74600	12,13800	12,52700	103,33	106,65	6,17250	6,60350	7,05810	106,98	114,35	
300	11,99100	12,38400	12,54300	103,27	104,60	6,28390	6,72800	7,18100	107,07	114,28	

Tabela 39 – Perdas magnéticas na coroa e nos dentes do estator – Parâmetros B 536	5

		Perdas Ma	agnéticas n	o Estator	
% de corrente	At	osolutas [V	V]	Normaliz	ada [%]
	Senoidal	20 %	38%	20%	38%
				Sen	Sen
30	0,63327	0,63058	0,63937	99,58	100,96
50	1,66030	1,64620	1,67260	99,15	100,74
80	3,98540	3,97980	4,04600	99,86	101,52
90	4,91040	4,92120	5,00620	100,22	101,95
100	5,88210	5,91720	6,02790	100,60	102,48
110	6,85500	6,90490	7,05780	100,73	102,96
120	7,82770	7,89610	8,10320	100,87	103,52
130	8,77760	8,88150	9,10880	101,18	103,77
140	9,70150	9,85130	10,13200	101,54	104,44
150	10,57400	10,78900	11,11400	102,04	105,11
160	11,39700	11,66600	12,05600	102,36	105,79
170	12,14900	12,47300	12,94300	102,66	106,53
180	12,84300	13,23600	13,77500	103,06	107,25
190	13,50300	13,96100	14,54500	103,39	107,72
200	14,09600	14,60200	15,24700	103,59	108,16
210	14,64900	15,20500	15,89300	103,80	108,50
220	15,17400	15,76700	16,49000	103,91	108,68
230	15,63500	16,30300	17,03000	104,27	108,92
240	16,09400	16,78500	17,54000	104,29	108,98
250	16,51100	17,17500	18,04800	104,02	109,31
260	17,01500	17,79500	18,45200	104,58	108,44
270	17,39400	18,19600	18,84100	104,61	108,32
280	17,77200	18,58400	19,21500	104,57	108,12
290	17,91900	18,74200	19,58500	104,59	109,30
300	18,27500	19,11200	19,72400	104,58	107,93

Tabela 40 – Perdas magnéticas no estator – Parâmetros B 5365

				Perd	as Percen	ituais na C	Coroa do	Estator	·[%]			
% de torrente		Senoi	dal			$\frac{\hat{I}_3}{\hat{I}_1} = 2$	0%		$\frac{\hat{I}_3}{\hat{I}_1} = 38\%$			
0	Parasita	Histerese	Excesso	Total	Parasita	Histerese	Excesso	Total	Parasita	Histerese	Excesso	Total
30	24,17	39,58	0,00	63,75	24,37	41,35	0,00	65,73	24,31	42,23	0,00	66,54
50	25,66	38,13	0,00	63,79	25,82	39,77	0,00	65,58	25,70	40,52	0,00	66,21
80	27,00	36,79	0,00	63,79	27,16	38,29	0,00	65,45	27,01	38,97	0,00	65,98
90	27,32	36,51	0,00	63,83	27,49	37,98	0,00	65,46	27,33	38,62	0,00	65,94
100	27,62	36,34	0,00	63,97	27,79	37,73	0,00	65,52	27,59	38,29	0,00	65,88
110	27,88	36,22	0,00	64,10	28,01	37,51	0,00	65,52	27,80	38,02	0,00	65,82
120	28,12	36,15	0,00	64,27	28,21	37,36	0,00	65,57	27,97	37,78	0,00	65,76
130	28,30	36,07	0,00	64,37	28,39	37,21	0,00	65,60	28,08	37,54	0,00	65,62
140	28,48	36,05	0,00	64,52	28,53	37,08	0,00	65,61	28,22	37,36	0,00	65,58
150	28,62	36,05	0,00	64,66	28,68	37,00	0,00	65,68	28,31	37,17	0,00	65,49
160	28,76	36,09	0,00	64,85	28,79	36,96	0,00	65,75	28,40	37,03	0,00	65,42
170	28,87	36,14	0,00	65,01	28,88	36,91	0,00	65,78	28,43	36,87	0,00	65,30
180	28,96	36,22	0,00	65,18	28,93	36,85	0,00	65,77	28,45	36,73	0,00	65,18
190	29,05	36,29	0,00	65,34	28,98	36,81	0,00	65,79	28,45	36,59	0,00	65,05
200	29,12	36,36	0,00	65,47	28,99	36,76	0,00	65,75	28,45	36,48	0,00	64,92
210	29,16	36,40	0,00	65,57	28,98	36,71	0,00	65,69	28,41	36,34	0,00	64,74
220	29,22	36,46	0,00	65,68	28,95	36,64	0,00	65,59	28,36	36,21	0,00	64,57
230	29,24	36,48	0,00	65,72	28,93	36,57	0,00	65,49	28,31	36,09	0,00	64,40
240	29,27	36,52	0,00	65,79	28,89	36,47	0,00	65,36	28,26	35,98	0,00	64,24
250	29,28	36,54	0,00	65,82	28,78	36,32	0,00	65,10	28,28	35,93	0,00	64,22
260	29,38	36,64	0,00	66,02	28,94	36,42	0,00	65,36	28,24	35,82	0,00	64,06
270	29,36	36,62	0,00	65,97	28,90	36,34	0,00	65,24	28,23	35,76	0,00	63,99
280	29,34	36,60	0,00	65,94	28,88	36,30	0,00	65,19	28,24	35,72	0,00	63,96
290	29,14	36,41	0,00	65,55	28,68	36,08	0,00	64,77	28,26	35,70	0,00	63,96
300	29,17	36,44	0,00	65,62	28,71	36,09	0,00	64,80	28,09	35,50	0,00	63,59

Tabela 41 – Perdas percentuais na coroa do estator dadas em função das perdas totais – Parâmetros B 5365

				Perda	s Percent	tuais nos E)entes do	Estato	r[%]			
% de torrente		Senoi	dal			$\frac{\hat{I}_3}{\hat{I}_1} = 2$	0%		$\frac{\hat{I}_3}{\hat{I}_1} = 38\%$			
0	Parasita	Histerese	Excesso	Total	Parasita	Histerese	Excesso	Total	Parasita	Histerese	Excesso	Total
30	14,24	22,01	0,00	36,25	14,97	19,31	0,00	34,27	16,47	16,99	0,00	33,46
50	15,07	21,14	0,00	36,21	15,84	18,57	0,00	34,42	17,43	16,35	0,00	33,79
80	15,89	20,32	0,00	36,21	16,69	17,86	0,00	34,56	18,30	15,72	0,00	34,02
90	16,11	20,06	0,00	36,17	16,92	17,62	0,00	34,54	18,54	15,52	0,00	34,06
100	16,28	19,75	0,00	36,03	17,13	17,34	0,00	34,48	18,78	15,35	0,00	34,12
110	16,45	19,45	0,00	35,90	17,38	17,11	0,00	34,48	19,00	15,18	0,00	34,18
120	16,59	19,14	0,00	35,73	17,61	16,83	0,00	34,43	19,24	15,01	0,00	34,25
130	16,75	18,88	0,00	35,63	17,81	16,60	0,00	34,41	19,49	14,89	0,00	34,38
140	16,89	18,59	0,00	35,48	18,01	16,38	0,00	34,39	19,67	14,75	0,00	34,42
150	17,06	18,28	0,00	35,34	18,21	16,12	0,00	34,32	19,86	14,65	0,00	34,52
160	17,21	17,94	0,00	35,15	18,42	15,82	0,00	34,25	20,05	14,53	0,00	34,58
170	17,40	17,59	0,00	34,99	18,65	15,56	0,00	34,22	20,28	14,42	0,00	34,70
180	17,59	17,23	0,00	34,82	18,92	15,31	0,00	34,23	20,50	14,32	0,00	34,82
190	17,80	16,86	0,00	34,66	19,16	15,05	0,00	34,21	20,71	14,24	0,00	34,95
200	18,01	16,52	0,00	34,53	19,42	14,84	0,00	34,25	20,91	14,16	0,00	35,08
210	18,23	16,20	0,00	34,43	19,67	14,64	0,00	34,32	21,17	14,09	0,00	35,26
220	18,43	15,89	0,00	34,32	19,92	14,49	0,00	34,41	21,41	14,03	0,00	35,43
230	18,67	15,61	0,00	34,28	20,15	14,36	0,00	34,51	21,63	13,97	0,00	35,60
240	18,88	15,32	0,00	34,21	20,35	14,29	0,00	34,64	21,83	13,93	0,00	35,76
250	19,12	15,06	0,00	34,18	20,61	14,29	0,00	34,90	21,93	13,85	0,00	35,78
260	19,23	14,75	0,00	33,98	20,57	14,07	0,00	34,64	22,09	13,86	0,00	35,94
270	19,45	14,58	0,00	34,03	20,75	14,01	0,00	34,76	22,19	13,82	0,00	36,01
280	19,63	14,43	0,00	34,06	20,88	13,93	0,00	34,82	22,26	13,79	0,00	36,04
290	20,00	14,45	0,00	34,45	21,23	14,00	0,00	35,24	22,30	13,74	0,00	36,04
300	20,10	14,28	0,00	34,39	21,30	13,90	0,00	35,20	22,58	13,82	0,00	36,41

Tabela 42 - Perdas percentuais nos dentes do estator dadas em função das perdas totais - Parâmetros B 5365

Anexo A.5 – Tabelas de Perdas: Parâmetros B 3565

nte	Perdas po	or Hister	ese na C	oroa do	Estator	Perdas por Histerese nos Dentes do Estator					
orre)	Α	bsolutas		Norm	alizada	Α	bsolutas		Norn	nalizada	
e co				200/	%]		[W]		200/	%] 200/	
% d	Senoidal	20 %	38 %	$\frac{20\%}{Sen}$	$\frac{38\%}{Sen}$	Senoidal	20 %	38 %	$\frac{20\%}{Sen}$	<u>38%</u> Sen	
30	0,16808	0,17500	0,18134	104,12	107,89	0,09461	0,08240	0,07334	87,10	77,52	
50	0,43325	0,44831	0,46448	103,48	107,21	0,24320	0,21120	0,18847	86,84	77,50	
80	1,02220	1,06330	1,10110	104,02	107,72	0,57169	0,50033	0,44636	87,52	78,08	
90	1,25550	1,30990	1,35610	104,33	108,01	0,69833	0,61273	0,54779	87,74	78,44	
100	1,50290	1,57120	1,62540	104,54	108,15	0,82648	0,72812	0,65485	88,10	79,23	
110	1,75150	1,82860	1,89580	104,40	108,24	0,95124	0,84053	0,76099	88,36	80,00	
120	2,00180	2,08840	2,16940	104,33	108,37	1,07190	0,94819	0,86603	88,46	80,80	
130	2,24520	2,34580	2,42890	104,48	108,19	1,18830	1,05420	0,96792	88,71	81,45	
140	2,48530	2,59850	2,69500	104,56	108,44	1,29530	1,15640	1,06920	89,28	82,55	
150	2,71380	2,84570	2,94700	104,86	108,59	1,39060	1,24800	1,16700	89,74	83,92	
160	2,93360	3,07840	3,18990	104,93	108,73	1,47280	1,32680	1,25770	90,09	85,39	
170	3,13660	3,29140	3,41520	104,93	108,88	1,54120	1,39680	1,34180	90,63	87,06	
180	3,32650	3,49160	3,62530	104,96	108,98	1,59720	1,45960	1,42010	91,39	88,91	
190	3,50900	3,68380	3,81810	104,98	108,81	1,64350	1,51470	1,49290	92,17	90,84	
200	3,67320	3,85140	3,99310	104,85	108,71	1,68180	1,56260	1,55720	92,91	92,59	
210	3,82540	4,00790	4,15010	104,77	108,49	1,71530	1,60680	1,61680	93,68	94,26	
220	3,97200	4,15110	4,29420	104,51	108,11	1,74340	1,64950	1,67080	94,61	95,83	
230	4,09780	4,28680	4,42280	104,61	107,93	1,76560	1,69190	1,72010	95,83	97,42	
240	4,22550	4,40540	4,54400	104,26	107,54	1,78400	1,73370	1,76670	97,18	99,03	
250	4,33970	4,49040	4,67230	103,47	107,66	1,79880	1,77460	1,80920	98,66	100,58	
260	4,48760	4,66980	4,76440	104,06	106,17	1,81630	1,81150	1,85070	99,74	101,90	
270	4,58670	4,76650	4,85850	103,92	105,93	1,83580	1,84570	1,88610	100,54	102,74	
280	4,68640	4,86470	4,95160	103,80	105,66	1,85710	1,87500	1,91920	100,97	103,35	
290	4,70120	4,87680	5,04610	103,73	107,34	1,87440	1,90110	1,94980	101,42	104,02	
300	4,80090	4,97570	5,05380	103,64	105,27	1,89050	1,92520	1,97660	101,84	104,55	

Tabela 43 – Perdas por histerese na coroa e nos dentes do estator – Parâmetros B 3565

e	Perdas I	Parasitas	na Coro	oa do Es	tator	Perdas Parasitas nos Dentes do Estator					
rent	A	bsolutas		Norma	alizada	Α	bsolutas		Norma	lizada	
cor		[W]		[%	6]		[W]		[%	6]	
% de	Senoidal	20 %	38%	20%	38%	Senoidal	20%	38%	20%	38 %	
•	~~~~~	_070		Sen	Sen	~~~~~	_0,0		Sen	Sen	
30	0,11851	0,11903	0,12038	100,44	101,58	0,06986	0,07308	0,08153	104,61	116,71	
50	0,32994	0,32914	0,33285	99,76	100,88	0,19373	0,20198	0,22582	104,26	116,57	
80	0,83330	0,83698	0,84632	100,44	101,56	0,49040	0,51443	0,57341	104,90	116,93	
90	1,03880	1,04760	1,05940	100,85	101,98	0,61250	0,64491	0,71871	105,29	117,34	
100	1,25840	1,27340	1,28780	101,19	102,34	0,74164	0,78514	0,87651	105,87	118,19	
110	1,48010	1,49760	1,51940	101,18	102,66	0,87324	0,92927	1,03850	106,42	118,93	
120	1,70480	1,72510	1,75550	101,19	102,97	1,00550	1,07650	1,20720	107,07	120,07	
130	1,92400	1,95240	1,98110	101,48	102,97	1,13840	1,22480	1,37500	107,59	120,78	
140	2,13960	2,17680	2,21450	101,74	103,50	1,26910	1,37390	1,54340	108,26	121,62	
150	2,34340	2,39600	2,43670	102,24	103,98	1,39680	1,52110	1,70970	108,90	122,40	
160	2,53830	2,60140	2,65120	102,48	104,44	1,51900	1,66460	1,87180	109,58	123,22	
170	2,71620	2,78950	2,84950	102,70	104,91	1,63670	1,80180	2,03250	110,09	124,19	
180	2,88090	2,96500	3,03480	102,92	105,34	1,74940	1,93940	2,18650	110,86	124,99	
190	3,03770	3,13280	3,20510	103,13	105,51	1,86140	2,07130	2,33290	111,28	125,33	
200	3,17830	3,27770	3,35910	103,13	105,69	1,96630	2,19550	2,46950	111,66	125,59	
210	3,30820	3,41220	3,49610	103,14	105,68	2,06830	2,31660	2,60500	112,00	125,95	
220	3,43380	3,53500	3,62150	102,95	105,47	2,16530	2,43270	2,73360	112,35	126,25	
230	3,54010	3,65210	3,73340	103,16	105,46	2,26060	2,54340	2,85250	112,51	126,19	
240	3,64840	3,75510	3,83930	102,92	105,23	2,35370	2,64550	2,96550	112,40	125,99	
250	3,74390	3,82820	3,95290	102,25	105,58	2,44510	2,74160	3,06510	112,13	125,36	
260	3,87140	3,98810	4,03500	103,02	104,22	2,53430	2,83470	3,15610	111,85	124,54	
270	3,95440	4,07200	4,11840	102,97	104,15	2,61970	2,92400	3,23820	111,62	123,61	
280	4,03830	4,15720	4,20180	102,94	104,05	2,70170	3,00540	3,31200	111,24	122,59	
290	4,04410	4,16290	4,28640	102,94	105,99	2,77550	3,08140	3,38250	111,02	121,87	
300	4,12900	4,24920	4,29070	102,91	103,92	2,84500	3,15260	3,44970	110,81	121,26	

Tabela 44 - Perdas por corrente parasita na coroa e nos dentes do estator - Parâmetros B 3565

e	Perdas N	Aagnética	s na Coro	oa do Es	tator	Perdas Magnéticas nos Dentes do Estator					
rent	A	bsolutas		Norma	lizada	Α	bsolutas		Norm	alizada	
cor		[W]		[%	6]		[W]		[9	%]	
6 de	Senoidal	20%	38%	20 %	38%	Senoidal	20%	38%	20 %	38 %	
0	Senorum		0070	Sen	Sen	Senorum	_070	0070	Sen	Sen	
30	0,28659	0,29403	0,30172	102,60	105,28	0,16447	0,15548	0,15487	94,54	94,17	
50	0,76319	0,77745	0,79733	101,87	104,47	0,43693	0,41318	0,41429	94,57	94,82	
80	1,85550	1,90030	1,94750	102,41	104,96	1,06210	1,01480	1,01980	95,54	96,02	
90	2,29440	2,35760	2,41550	102,75	105,28	1,31080	1,25760	1,26650	95,94	96,62	
100	2,76130	2,84460	2,91320	103,02	105,50	1,56810	1,51330	1,53140	96,50	97,66	
110	3,23160	3,32620	3,41520	102,93	105,68	1,82450	1,76980	1,79950	97,00	98,63	
120	3,70660	3,81360	3,92490	102,89	105,89	2,07730	2,02470	2,07330	97,47	99,81	
130	4,16910	4,29820	4,41000	103,10	105,78	2,32670	2,27910	2,34290	97,95	100,70	
140	4,62490	4,77530	4,90950	103,25	106,15	2,56440	2,53030	2,61260	98,67	101,88	
150	5,05720	5,24170	5,38370	103,65	106,46	2,78740	2,76910	2,87670	99,34	103,20	
160	5,47200	5,67980	5,84100	103,80	106,74	2,99180	2,99140	3,12940	99,99	104,60	
170	5,85280	6,08090	6,26480	103,90	107,04	3,17790	3,19860	3,37430	100,65	106,18	
180	6,20730	6,45650	6,66020	104,01	107,30	3,34650	3,39900	3,60650	101,57	107,77	
190	6,54670	6,81660	7,02320	104,12	107,28	3,50480	3,58600	3,82580	102,32	109,16	
200	6,85140	7,12910	7,35230	104,05	107,31	3,64810	3,75810	4,02670	103,01	110,38	
210	7,13370	7,42020	7,64620	104,02	107,18	3,78360	3,92340	4,22190	103,69	111,58	
220	7,40580	7,68610	7,91570	103,78	106,88	3,90870	4,08230	4,40440	104,44	112,68	
230	7,63800	7,93890	8,15620	103,94	106,79	4,02620	4,23520	4,57260	105,19	113,57	
240	7,87390	8,16050	8,38320	103,64	106,47	4,13770	4,37920	4,73220	105,84	114,37	
250	8,08360	8,31860	8,62520	102,91	106,70	4,24380	4,51620	4,87430	106,42	114,86	
260	8,35900	8,65800	8,79940	103,58	105,27	4,35050	4,64620	5,00680	106,80	115,09	
270	8,54110	8,83850	8,97700	103,48	105,10	4,45550	4,76970	5,12430	107,05	115,01	
280	8,72470	9,02180	9,15340	103,41	104,91	4,55880	4,88050	5,23120	107,06	114,75	
290	8,74530	9,03970	9,33250	103,37	106,71	4,64990	4,98250	5,33240	107,15	114,68	
300	8,92990	9,22490	9,34450	103,30	104,64	4,73550	5,07780	5,42630	107,23	114,59	

Tabela 45 – Perdas magnéticas na coroa e nos dentes do estator – Parâmetros	B 3565

		Perdas Ma	agnéticas n	o Estator	
% de corrente	At	osolutas [V	V]	Normaliz	ada [%]
	Senoidal	20%	38%	20 %	38%
				Sen	Sen
30	0,45105	0,44951	0,45659	99,66	101,23
50	1,20010	1,19060	1,21160	99,21	100,96
80	2,91760	2,91500	2,96720	99,91	101,70
90	3,60520	3,61520	3,68200	100,28	102,13
100	4,32940	4,35790	4,44450	100,66	102,66
110	5,05610	5,09600	5,21480	100,79	103,14
120	5,78390	5,83830	5,99810	100,94	103,70
130	6,49580	6,57720	6,75290	101,25	103,96
140	7,18930	7,30560	7,52220	101,62	104,63
150	7,84460	8,01080	8,26030	102,12	105,30
160	8,46380	8,67110	8,97050	102,45	105,99
170	9,03070	9,27950	9,63900	102,76	106,74
180	9,55390	9,85550	10,26700	103,16	107,46
190	10,05200	10,40300	10,84900	103,49	107,93
200	10,50000	10,88700	11,37900	103,69	108,38
210	10,91700	11,34400	11,86800	103,90	108,71
220	11,31500	11,76800	12,32000	104,01	108,89
230	11,66400	12,17400	12,72900	104,37	109,13
240	12,01200	12,54000	13,11500	104,40	109,19
250	12,32700	12,83500	13,50000	104,12	109,51
260	12,71000	13,30400	13,80600	104,68	108,63
270	12,99700	13,60800	14,10100	104,71	108,50
280	13,28300	13,90200	14,38500	104,66	108,29
290	13,39500	14,02200	14,66500	104,68	109,48
300	13,66500	14,30300	14,77100	104,66	108,09

Tabela 46 – Perdas magnéticas no estator – Parâmetros B 3565

				Perd	as Percen	ituais na C	Coroa do	Estator	·[%]			
% de torrente		Senoi	dal			$\frac{\hat{I}_3}{\hat{I}_1} = 2$	0%		$\frac{\hat{I}_3}{\hat{I}_1} = 38\%$			
0	Parasita	Histerese	Excesso	Total	Parasita	Histerese	Excesso	Total	Parasita	Histerese	Excesso	Total
30	26,27	37,26	0,00	63,54	26,48	38,93	0,00	65,41	26,37	39,72	0,00	66,08
50	27,49	36,10	0,00	63,59	27,64	37,65	0,00	65,30	27,47	38,34	0,00	65,81
80	28,56	35,04	0,00	63,60	28,71	36,48	0,00	65,19	28,52	37,11	0,00	65,63
90	28,82	34,83	0,00	63,64	28,98	36,23	0,00	65,21	28,77	36,83	0,00	65,60
100	29,07	34,71	0,00	63,78	29,22	36,05	0,00	65,28	28,97	36,57	0,00	65,55
110	29,27	34,64	0,00	63,92	29,39	35,88	0,00	65,27	29,14	36,36	0,00	65,49
120	29,48	34,61	0,00	64,08	29,55	35,77	0,00	65,32	29,27	36,17	0,00	65,44
130	29,62	34,56	0,00	64,18	29,69	35,67	0,00	65,35	29,34	35,97	0,00	65,31
140	29,76	34,57	0,00	64,33	29,80	35,57	0,00	65,37	29,44	35,83	0,00	65,27
150	29,87	34,59	0,00	64,47	29,91	35,52	0,00	65,43	29,50	35,68	0,00	65,18
160	29,99	34,66	0,00	64,65	30,00	35,50	0,00	65,50	29,55	35,56	0,00	65,11
170	30,08	34,73	0,00	64,81	30,06	35,47	0,00	65,53	29,56	35,43	0,00	64,99
180	30,15	34,82	0,00	64,97	30,08	35,43	0,00	65,51	29,56	35,31	0,00	64,87
190	30,22	34,91	0,00	65,13	30,12	35,41	0,00	65,53	29,54	35,19	0,00	64,74
200	30,27	34,98	0,00	65,25	30,11	35,38	0,00	65,48	29,52	35,09	0,00	64,61
210	30,30	35,04	0,00	65,34	30,08	35,33	0,00	65,41	29,46	34,97	0,00	64,43
220	30,35	35,11	0,00	65,45	30,04	35,27	0,00	65,31	29,40	34,86	0,00	64,25
230	30,35	35,13	0,00	65,48	30,00	35,21	0,00	65,21	29,33	34,75	0,00	64,08
240	30,37	35,18	0,00	65,55	29,95	35,13	0,00	65,08	29,27	34,65	0,00	63,92
250	30,37	35,20	0,00	65,57	29,83	34,99	0,00	64,81	29,28	34,61	0,00	63,89
260	30,46	35,31	0,00	65,77	29,98	35,10	0,00	65,08	29,23	34,51	0,00	63,74
270	30,43	35,29	0,00	65,72	29,92	35,03	0,00	64,95	29,21	34,45	0,00	63,66
280	30,40	35,28	0,00	65,68	29,90	34,99	0,00	64,90	29,21	34,42	0,00	63,63
290	30,19	35,10	0,00	65,29	29,69	34,78	0,00	64,47	29,23	34,41	0,00	63,64
300	30,22	35,13	0,00	65,35	29,71	34,79	0,00	64,50	29,05	34,22	0,00	63,26

Tabela 47 – Perdas percentuais na coroa do estator dadas em função das perdas totais – Parâmetros B 3565

				Perda	s Percent	tuais nos I	Dentes do	Estato	r[%]			
% de orrente		Senoi	dal			$\frac{\hat{I}_3}{\hat{I}_1} = 2$	0%		$\frac{\hat{I}_3}{\hat{I}_1} = 38\%$			
5	Parasita	Histerese	Excesso	Total	Parasita	Histerese	Excesso	Total	Parasita	Histerese	Excesso	Total
30	15,49	20,98	0,00	36,46	16,26	18,33	0,00	34,59	17,86	16,06	0,00	33,92
50	16,14	20,26	0,00	36,41	16,96	17,74	0,00	34,70	18,64	15,56	0,00	34,19
80	16,81	19,60	0,00	36,40	17,65	17,16	0,00	34,81	19,33	15,04	0,00	34,37
90	16,99	19,37	0,00	36,36	17,84	16,95	0,00	34,79	19,52	14,88	0,00	34,40
100	17,13	19,09	0,00	36,22	18,02	16,71	0,00	34,73	19,72	14,73	0,00	34,46
110	17,27	18,81	0,00	36,09	18,24	16,49	0,00	34,73	19,92	14,59	0,00	34,51
120	17,38	18,53	0,00	35,92	18,44	16,24	0,00	34,68	20,13	14,44	0,00	34,57
130	17,53	18,29	0,00	35,82	18,62	16,03	0,00	34,65	20,36	14,33	0,00	34,70
140	17,65	18,02	0,00	35,67	18,81	15,83	0,00	34,64	20,52	14,21	0,00	34,73
150	17,81	17,73	0,00	35,53	18,99	15,58	0,00	34,57	20,70	14,13	0,00	34,83
160	17,95	17,40	0,00	35,35	19,20	15,30	0,00	34,50	20,87	14,02	0,00	34,89
170	18,12	17,07	0,00	35,19	19,42	15,05	0,00	34,47	21,09	13,92	0,00	35,01
180	18,31	16,72	0,00	35,03	19,68	14,81	0,00	34,49	21,30	13,83	0,00	35,13
190	18,52	16,35	0,00	34,87	19,91	14,56	0,00	34,47	21,50	13,76	0,00	35,26
200	18,73	16,02	0,00	34,75	20,17	14,35	0,00	34,52	21,70	13,69	0,00	35,39
210	18,95	15,71	0,00	34,66	20,42	14,17	0,00	34,59	21,95	13,62	0,00	35,57
220	19,14	15,41	0,00	34,55	20,67	14,02	0,00	34,69	22,19	13,56	0,00	35,75
230	19,38	15,14	0,00	34,52	20,89	13,90	0,00	34,79	22,41	13,51	0,00	35,92
240	19,60	14,85	0,00	34,45	21,10	13,83	0,00	34,92	22,61	13,47	0,00	36,08
250	19,83	14,59	0,00	34,43	21,36	13,83	0,00	35,19	22,71	13,40	0,00	36,11
260	19,94	14,29	0,00	34,23	21,31	13,62	0,00	34,92	22,86	13,41	0,00	36,27
270	20,16	14,13	0,00	34,28	21,49	13,56	0,00	35,05	22,96	13,38	0,00	36,34
280	20,34	13,98	0,00	34,32	21,62	13,49	0,00	35,11	23,03	13,34	0,00	36,37
290	20,72	13,99	0,00	34,71	21,98	13,56	0,00	35,53	23,07	13,30	0,00	36,36
300	20,82	13,83	0,00	34,65	22,04	13,46	0,00	35,50	23,36	13,38	0,00	36,74

Tabela 48 - Perdas percentuais nos dentes do estator dadas em função das perdas totais - Parâmetros B 3565

Anexo A.6 – Tabelas de Perdas: Parâmetros C

ente	Perdas p	or Histere	ese na Cor	coa do E	stator	Perdas por Histerese nos Dentes do Estator				
orre	I	Absolutas		Norma	alizada	I	Absolutas		Norma	lizada
le c		[W]	-	[%	6]		[W]	-	[%	6]
% (Senoidal	20%	38%	20 %	38 %	Senoidal	20%	38%	20 %	38 %
20				Sen	Sen				Sen	Sen
30	0,003833	0,003974	0,004102	103,68	107,03	0,002031	0,001795	0,001617	88,38	79,64
50	0,008938	0,009216	0,009512	103,10	106,42	0,004724	0,004164	0,003761	88,15	79,62
80	0,019258	0,019949	0,020583	103,59	106,88	0,010144	0,009004	0,008130	88,76	80,15
90	0,023146	0,024040	0,024796	103,86	107,13	0,012132	0,010793	0,009764	88,96	80,48
100	0,027184	0,028286	0,029157	104,05	107,26	0,014104	0,012593	0,011454	89,29	81,21
110	0,031171	0,032395	0,033458	103,93	107,34	0,015994	0,014319	0,013101	89,53	81,91
120	0,035126	0,036482	0,037744	103,86	107,46	0,017796	0,015948	0,014706	89,62	82,64
130	0,038921	0,040477	0,041758	104,00	107,29	0,019516	0,017534	0,016244	89,84	83,24
140	0,042623	0,044355	0,045826	104,07	107,52	0,021079	0,019046	0,017757	90,36	84,24
150	0,046111	0,048110	0,049638	104,34	107,65	0,022461	0,020389	0,019202	90,78	85,49
160	0,049437	0,051613	0,053281	104,40	107,78	0,023644	0,021537	0,020531	91,09	86,83
170	0,052486	0,054796	0,056635	104,40	107,91	0,024624	0,022550	0,021754	91,58	88,35
180	0,055317	0,057766	0,059741	104,43	108,00	0,025422	0,023454	0,022885	92,26	90,02
190	0,058024	0,060601	0,062574	104,44	107,84	0,026080	0,024245	0,023933	92,96	91,77
200	0,060445	0,063061	0,065133	104,33	107,75	0,026623	0,024929	0,024852	93,64	93,35
210	0,062681	0,065348	0,067417	104,25	107,56	0,027097	0,025559	0,025702	94,33	94,85
220	0,064825	0,067431	0,069507	104,02	107,22	0,027494	0,026165	0,026467	95,17	96,27
230	0,066658	0,069399	0,071365	104,11	107,06	0,027806	0,026766	0,027164	96,26	97,69
240	0,068512	0,071114	0,073111	103,80	106,71	0,028065	0,027357	0,027822	97,48	99,14
250	0,070165	0,072339	0,074954	103,10	106,83	0,028273	0,027933	0,028419	98,80	100,52
260	0,072299	0,074919	0,076275	103,62	105,50	0,028519	0,028452	0,029002	99,77	101,69
270	0,073726	0,076304	0,077620	103,50	105,28	0,028794	0,028932	0,029497	100,48	102,44
280	0,075156	0,077708	0,078949	103,40	105,05	0,029091	0,029342	0,029960	100,86	102,99
290	0,075370	0,077881	0,080295	103,33	106,53	0,029334	0,029707	0,030387	101,27	103,59
300	0,076797	0,079292	0,080404	103,25	104,70	0,029559	0,030044	0,030759	101,64	104,06

Tabela 49 – Perdas por histerese na coroa e nos dentes do estator – Parâmetros C

e	Perdas I	Parasitas	na Coro	Perdas Parasitas nos Dentes do Estator						
rent	Absolutas			Normalizada		Absolutas			Normalizada	
cor	[W]			[%]		[W]			[%]	
% de	Senoidal	20%	38%	20%	38%	Senoidal	20%	38%	20%	38%
0`		~ ~ ~ ~		Sen	Sen	~~~~~~~~~	~ / ~		Sen	Sen
30	0,05849	0,05874	0,05941	100,44	101,58	0,03448	0,03607	0,04024	104,61	116,71
50	0,16283	0,16244	0,16427	99,76	100,88	0,09561	0,09968	0,11145	104,26	116,57
80	0,41126	0,41307	0,41768	100,44	101,56	0,24203	0,25389	0,28299	104,90	116,93
90	0,51270	0,51704	0,52285	100,85	101,98	0,30229	0,31828	0,35470	105,29	117,34
100	0,62104	0,62846	0,63554	101,19	102,34	0,36602	0,38749	0,43258	105,87	118,19
110	0,73048	0,73912	0,74989	101,18	102,66	0,43097	0,45862	0,51254	106,42	118,93
120	0,84137	0,85140	0,86637	101,19	102,97	0,49623	0,53130	0,59581	107,07	120,07
130	0,94953	0,96357	0,97773	101,48	102,97	0,56183	0,60449	0,67859	107,59	120,78
140	1,05600	1,07430	1,09290	101,74	103,50	0,62633	0,67805	0,76171	108,26	121,62
150	1,15650	1,18250	1,20260	102,24	103,98	0,68935	0,75069	0,84377	108,90	122,40
160	1,25270	1,28390	1,30840	102,48	104,44	0,74968	0,82151	0,92377	109,58	123,22
170	1,34050	1,37670	1,40630	102,70	104,91	0,80774	0,88922	1,00310	110,09	124,19
180	1,42180	1,46330	1,49780	102,92	105,34	0,86336	0,95716	1,07910	110,86	124,99
190	1,49920	1,54610	1,58180	103,13	105,51	0,91864	1,02230	1,15140	111,28	125,33
200	1,56860	1,61760	1,65780	103,13	105,69	0,97043	1,08350	1,21880	111,66	125,59
210	1,63270	1,68400	1,72540	103,14	105,68	1,02080	1,14330	1,28570	112,00	125,95
220	1,69470	1,74460	1,78730	102,95	105,47	1,06860	1,20060	1,34910	112,35	126,25
230	1,74710	1,80240	1,84260	103,16	105,46	1,11570	1,25520	1,40780	112,51	126,19
240	1,80060	1,85330	1,89480	102,92	105,23	1,16160	1,30560	1,46350	112,40	125,99
250	1,84770	1,88930	1,95090	102,25	105,58	1,20670	1,35300	1,51270	112,13	125,36
260	1,91060	1,96830	1,99140	103,02	104,22	1,25070	1,39900	1,55760	111,85	124,54
270	1,95160	2,00960	2,03260	102,97	104,15	1,29290	1,44310	1,59820	111,62	123,61
280	1,99300	2,05170	2,07370	102,94	104,05	1,33340	1,48330	1,63460	111,24	122,59
290	1,99590	2,05450	2,11550	102,94	105,99	1,36980	1,52080	1,66940	111,02	121,87
300	2,03780	2,09710	2,11760	102,91	103,92	1,40410	1,55590	1,70250	110,81	121,26

Tabela 50 – Perdas por corrente parasita na coroa e nos dentes do estator – Parâmetros	С

rente	Perdas po	or Excess	so na Coi	Estator	Perdas por Excesso nos Dentes do Estator					
	Absolutas			Normalizada		Absolutas			Normalizada	
cor	[W]			[%]		[W]			[%]	
6 de	Senoidal	20%	38%	20 %	38%	Senoidal	20%	38%	20%	38 %
0	Scholaul		0070	Sen	Sen	Scholaul		0070	Sen	Sen
30	0,00052	0,00053	0,00054	101,61	103,39	0,00026	0,00026	0,00026	97,66	100,45
50	0,00112	0,00113	0,00115	101,10	102,86	0,00056	0,00055	0,00057	97,41	100,37
80	0,00224	0,00228	0,00231	101,58	103,33	0,00113	0,00111	0,00114	97,94	100,75
90	0,00264	0,00269	0,00274	101,86	103,61	0,00133	0,00131	0,00135	98,22	101,13
100	0,00306	0,00312	0,00317	102,09	103,81	0,00153	0,00151	0,00156	98,64	101,87
110	0,00346	0,00353	0,00359	102,03	103,98	0,00173	0,00171	0,00177	99,03	102,59
120	0,00385	0,00392	0,00401	102,01	104,16	0,00191	0,00190	0,00198	99,42	103,53
130	0,00421	0,00431	0,00439	102,19	104,09	0,00209	0,00209	0,00218	99,82	104,24
140	0,00457	0,00468	0,00477	102,33	104,41	0,00226	0,00227	0,00237	100,39	105,15
150	0,00490	0,00503	0,00513	102,65	104,67	0,00241	0,00244	0,00256	100,94	106,16
160	0,00521	0,00535	0,00546	102,78	104,91	0,00255	0,00259	0,00274	101,51	107,26
170	0,00549	0,00565	0,00577	102,87	105,16	0,00268	0,00274	0,00291	102,09	108,54
180	0,00574	0,00592	0,00605	102,97	105,38	0,00280	0,00288	0,00307	102,87	109,81
190	0,00599	0,00617	0,00631	103,07	105,39	0,00290	0,00300	0,00322	103,49	110,89
200	0,00620	0,00639	0,00654	103,02	105,43	0,00300	0,00312	0,00336	104,06	111,87
210	0,00640	0,00659	0,00674	103,00	105,35	0,00309	0,00324	0,00349	104,63	112,88
220	0,00659	0,00677	0,00693	102,83	105,13	0,00318	0,00335	0,00362	105,25	113,82
230	0,00675	0,00695	0,00709	102,95	105,06	0,00326	0,00345	0,00374	105,82	114,55
240	0,00691	0,00710	0,00724	102,73	104,83	0,00334	0,00355	0,00385	106,25	115,16
250	0,00705	0,00720	0,00740	102,17	105,02	0,00342	0,00364	0,00394	106,59	115,45
260	0,00724	0,00743	0,00752	102,70	103,93	0,00349	0,00373	0,00403	106,84	115,51
270	0,00736	0,00755	0,00764	102,63	103,82	0,00356	0,00381	0,00411	107,03	115,37
280	0,00748	0,00767	0,00776	102,58	103,68	0,00364	0,00389	0,00418	107,05	115,06
290	0,00749	0,00768	0,00787	102,55	105,08	0,00370	0,00396	0,00425	107,13	114,90
300	0,00762	0,00781	0,00788	102,50	103,49	0,00376	0,00403	0,00431	107,20	114,76

Tabela 51 – Perdas por excesso na coroa e nos dentes do estator – Parâmetros C

rente	Perdas M	lagnética	is na Cor	stator	Perdas Magnéticas nos Dentes do Estator					
	Absolutas			Normalizada		Absolutas			Normalizada	
cor	[W]			[%]		[W]			[%]	
6 de	Senoidal	20%	38%	20%	38%	Senoidal	20%	38%	20 %	38 %
•	Senoruur	2070	0070	Sen	Sen	Scholaul	2070	5070	Sen	Sen
30	0,06284	0,06324	0,06405	100,64	101,93	0,03677	0,03812	0,04212	103,67	114,54
50	0,17289	0,17278	0,17493	99,94	101,18	0,10090	0,10440	0,11578	103,47	114,75
80	0,43276	0,43530	0,44058	100,59	101,81	0,25330	0,26400	0,29226	104,22	115,38
90	0,53849	0,54377	0,55039	100,98	102,21	0,31575	0,33038	0,36581	104,63	115,86
100	0,65128	0,65986	0,66787	101,32	102,55	0,38166	0,40160	0,44560	105,22	116,75
110	0,76511	0,77504	0,78694	101,30	102,85	0,44869	0,47465	0,52742	105,79	117,55
120	0,88034	0,89180	0,90812	101,30	103,16	0,51594	0,54915	0,61250	106,44	118,72
130	0,99266	1,00840	1,02390	101,58	103,14	0,58343	0,62411	0,69702	106,97	119,47
140	1,10320	1,12330	1,14350	101,83	103,66	0,64966	0,69937	0,78184	107,65	120,35
150	1,20750	1,23560	1,25730	102,33	104,12	0,71422	0,77352	0,86553	108,30	121,19
160	1,30740	1,34080	1,36720	102,56	104,57	0,77588	0,84564	0,94704	108,99	122,06
170	1,39850	1,43710	1,46870	102,76	105,02	0,83505	0,91451	1,02780	109,52	123,08
180	1,48280	1,52700	1,56360	102,98	105,44	0,89158	0,98349	1,10500	110,31	123,94
190	1,56320	1,61290	1,65070	103,18	105,60	0,94762	1,04950	1,17850	110,75	124,37
200	1,63520	1,68710	1,72950	103,17	105,77	1,00010	1,11160	1,24700	111,15	124,69
210	1,70180	1,75600	1,79960	103,18	105,75	1,05100	1,17210	1,31490	111,52	125,11
220	1,76610	1,81880	1,86370	102,99	105,53	1,09930	1,23010	1,37920	111,90	125,46
230	1,82050	1,87880	1,92100	103,20	105,52	1,14670	1,28540	1,43870	112,10	125,46
240	1,87600	1,93150	1,97510	102,96	105,28	1,19300	1,33650	1,49520	112,03	125,33
250	1,92490	1,96890	2,03320	102,28	105,63	1,23840	1,38460	1,54510	111,81	124,77
260	1,99020	2,05060	2,07520	103,04	104,27	1,28270	1,43120	1,59070	111,57	124,01
270	2,03270	2,09350	2,11780	102,99	104,19	1,32520	1,47580	1,63180	111,36	123,13
280	2,07560	2,13700	2,16040	102,96	104,08	1,36610	1,51650	1,66870	111,01	122,15
290	2,07870	2,14010	2,20360	102,95	106,01	1,40280	1,55440	1,70400	110,81	121,47
300	2,12220	2,18420	2,20590	102,92	103,94	1,43740	1,59000	1,73760	110,61	120,89
	-	Perdas M	agnéticas	no Estator						
---------------	----------	-------------	-----------	------------	-----------					
% de corrente	Abs	solutas [V	V]	Normaliz	ada [%]					
	Senoidal	20 %	38%	20%	38%					
				Sen	Sen					
30	0,09961	0,10136	0,10617	101,76	106,58					
50	0,27379	0,27718	0,29071	101,24	106,18					
80	0,68606	0,69929	0,73284	101,93	106,82					
90	0,85424	0,87416	0,91620	102,33	107,25					
100	1,03290	1,06150	1,11350	102,76	107,80					
110	1,21380	1,24970	1,31440	102,96	108,28					
120	1,39630	1,44090	1,52060	103,20	108,90					
130	1,57610	1,63250	1,72090	103,58	109,19					
140	1,75280	1,82270	1,92540	103,99	109,84					
150	1,92180	2,00910	2,12290	104,55	110,46					
160	2,08330	2,18650	2,31420	104,95	111,09					
170	2,23350	2,35160	2,49650	105,29	111,77					
180	2,37440	2,51050	2,66860	105,73	112,39					
190	2,51080	2,66240	2,82920	106,04	112,68					
200	2,63530	2,79870	2,97650	106,20	112,95					
210	2,75280	2,92810	3,11440	106,37	113,14					
220	2,86540	3,04900	3,24290	106,41	113,18					
230	2,96730	3,16420	3,35970	106,64	113,23					
240	3,06900	3,26800	3,47030	106,48	113,08					
250	3,16330	3,35350	3,57830	106,01	113,12					
260	3,27290	3,48180	3,66580	106,38	112,00					
270	3,35790	3,56930	3,74960	106,30	111,66					
280	3,44170	3,65360	3,82910	106,15	111,26					
290	3,48150	3,69450	3,90760	106,12	112,24					
300	3,55960	3,77420	3,94350	106,03	110,79					

Tabela 53 – Perdas magnéticas no estator – Parâmetros C

0	Perdas Percentuais na Coroa do Estator[%]											
% de sorrente		Senoi	dal			$\frac{\hat{I}_3}{\hat{I}_1} = 2$	0%			$\frac{\hat{I}_3}{\hat{I}_1} = 3$	8%	
0	Parasita	Histerese	Excesso	Total	Parasita	Histerese	Excesso	Total	Parasita	Histerese	Excesso	Total
30	58,72	3,85	0,52	63,09	57,95	3,92	0,52	62,40	55,96	3,86	0,51	60,33
50	59,47	3,26	0,41	63,15	58,60	3,32	0,41	62,34	56,51	3,27	0,40	60,17
80	59,95	2,81	0,33	63,08	59,07	2,85	0,33	62,25	57,00	2,81	0,32	60,12
90	60,02	2,71	0,31	63,04	59,15	2,75	0,31	62,21	57,07	2,71	0,30	60,07
100	60,12	2,63	0,30	63,05	59,21	2,66	0,29	62,17	57,08	2,62	0,28	59,98
110	60,18	2,57	0,28	63,03	59,14	2,59	0,28	62,02	57,05	2,55	0,27	59,87
120	60,26	2,52	0,28	63,05	59,09	2,53	0,27	61,89	56,98	2,48	0,26	59,72
130	60,25	2,47	0,27	62,98	59,03	2,48	0,26	61,77	56,82	2,43	0,25	59,50
140	60,24	2,43	0,26	62,94	58,94	2,43	0,26	61,63	56,77	2,38	0,25	59,39
150	60,18	2,40	0,25	62,84	58,86	2,39	0,25	61,50	56,65	2,34	0,24	59,23
160	60,13	2,37	0,25	62,76	58,72	2,36	0,24	61,32	56,54	2,30	0,24	59,08
170	60,02	2,35	0,25	62,61	58,54	2,33	0,24	61,11	56,33	2,27	0,23	58,83
180	59,88	2,33	0,24	62,45	58,29	2,30	0,24	60,82	56,13	2,24	0,23	58,59
190	59,71	2,31	0,24	62,26	58,07	2,28	0,23	60,58	55,91	2,21	0,22	58,34
200	59,52	2,29	0,24	62,05	57,80	2,25	0,23	60,28	55,70	2,19	0,22	58,11
210	59,31	2,28	0,23	61,82	57,51	2,23	0,23	59,97	55,40	2,16	0,22	57,78
220	59,14	2,26	0,23	61,64	57,22	2,21	0,22	59,65	55,11	2,14	0,21	57,47
230	58,88	2,25	0,23	61,35	56,96	2,19	0,22	59,38	54,84	2,12	0,21	57,18
240	58,67	2,23	0,23	61,13	56,71	2,18	0,22	59,10	54,60	2,11	0,21	56,92
250	58,41	2,22	0,22	60,85	56,34	2,16	0,21	58,71	54,52	2,09	0,21	56,82
260	58,38	2,21	0,22	60,81	56,53	2,15	0,21	58,90	54,32	2,08	0,21	56,61
270	58,12	2,20	0,22	60,53	56,30	2,14	0,21	58,65	54,21	2,07	0,20	56,48
280	57,91	2,18	0,22	60,31	56,16	2,13	0,21	58,49	54,16	2,06	0,20	56,42
290	57,33	2,16	0,22	59,71	55,61	2,11	0,21	57,93	54,14	2,05	0,20	56,39
300	57,25	2,16	0,21	59,62	55,56	2,10	0,21	57,87	53,70	2,04	0,20	55,94

Tabela 54 – Perdas percentuais na coroa do estator dadas em função das perdas totais – Parâmetros C

	Perdas Percentuais nos Dentes do Estator[%]											
% de sorrente		Senoi	dal			$\frac{\hat{I}_3}{\hat{I}_1} = 2$	0 %			$\frac{\hat{I}_3}{\hat{I}_1} = 3$	8%	
	Parasita	Histerese	Excesso	Total	Parasita	Histerese	Excesso	Total	Parasita	Histerese	Excesso	Total
30	34,61	2,04	0,26	36,91	35,58	1,77	0,25	37,61	37,90	1,52	0,25	39,67
50	34,92	1,73	0,21	36,85	35,96	1,50	0,20	37,66	38,34	1,29	0,19	39,83
80	35,28	1,48	0,16	36,92	36,31	1,29	0,16	37,75	38,62	1,11	0,16	39,88
90	35,39	1,42	0,16	36,96	36,41	1,23	0,15	37,79	38,71	1,07	0,15	39,93
100	35,44	1,37	0,15	36,95	36,51	1,19	0,14	37,83	38,85	1,03	0,14	40,02
110	35,51	1,32	0,14	36,97	36,70	1,15	0,14	37,98	39,00	1,00	0,13	40,13
120	35,54	1,27	0,14	36,95	36,87	1,11	0,13	38,11	39,18	0,97	0,13	40,28
130	35,65	1,24	0,13	37,02	37,03	1,07	0,13	38,23	39,43	0,94	0,13	40,50
140	35,73	1,20	0,13	37,06	37,20	1,04	0,12	38,37	39,56	0,92	0,12	40,61
150	35,87	1,17	0,13	37,17	37,36	1,01	0,12	38,50	39,75	0,90	0,12	40,77
160	35,99	1,14	0,12	37,24	37,57	0,99	0,12	38,68	39,92	0,89	0,12	40,92
170	36,17	1,10	0,12	37,39	37,81	0,96	0,12	38,89	40,18	0,87	0,12	41,17
180	36,36	1,07	0,12	37,55	38,13	0,93	0,11	39,18	40,44	0,86	0,12	41,41
190	36,59	1,04	0,12	37,74	38,40	0,91	0,11	39,42	40,70	0,85	0,11	41,66
200	36,83	1,01	0,11	37,95	38,72	0,89	0,11	39,72	40,95	0,83	0,11	41,89
210	37,08	0,98	0,11	38,18	39,05	0,87	0,11	40,03	41,28	0,83	0,11	42,22
220	37,29	0,96	0,11	38,37	39,38	0,86	0,11	40,35	41,60	0,82	0,11	42,53
230	37,60	0,94	0,11	38,65	39,67	0,85	0,11	40,62	41,90	0,81	0,11	42,82
240	37,85	0,91	0,11	38,87	39,95	0,84	0,11	40,90	42,17	0,80	0,11	43,09
250	38,15	0,89	0,11	39,15	40,35	0,83	0,11	41,29	42,27	0,79	0,11	43,18
260	38,21	0,87	0,11	39,19	40,18	0,82	0,11	41,11	42,49	0,79	0,11	43,39
270	38,50	0,86	0,11	39,47	40,43	0,81	0,11	41,35	42,62	0,79	0,11	43,52
280	38,74	0,85	0,11	39,69	40,60	0,80	0,11	41,51	42,69	0,78	0,11	43,58
290	39,34	0,84	0,11	40,29	41,16	0,80	0,11	42,07	42,72	0,78	0,11	43,61
300	39,45	0,83	0,11	40,38	41,23	0,80	0,11	42,13	43,17	0,78	0,11	44,06

Tabela 55 – Perdas percentuais nos dentes do estator dadas em função das perdas totais – Parâmetros C

Anexo A.7 – Tabelas de Perdas: Parâmetros D

ıte	Perdas po	or Histere	ese na Cor	oa do E	stator	or Perdas por Histerese nos Dentes do Estato				
irrei	A	Absolutas		Norma	alizada	Α	bsolutas		Norma	alizada
e co				200/	0				<u>ا ا ا</u>	0
% d	Senoidal	20%	38%	$\frac{20\%}{Sen}$	$\frac{38\%}{Sen}$	Senoidal	20 %	38 %	$\frac{20\%}{Sen}$	$\frac{38\%}{Sen}$
30	0,45173	0,46920	0,48518	103,87	107,40	0,24575	0,21581	0,19342	87,82	78,71
50	1,10070	1,13660	1,17510	103,27	106,77	0,59724	0,52303	0,46991	87,57	78,68
80	2,46760	2,56090	2,64650	103,78	107,25	1,33440	1,17710	1,05730	88,22	79,24
90	2,99410	3,11600	3,21910	104,07	107,51	1,61070	1,42430	1,28190	88,43	79,58
100	3,54590	3,69720	3,81710	104,27	107,65	1,88730	1,67520	1,51620	88,77	80,34
110	4,09490	4,26430	4,41160	104,14	107,73	2,15410	1,91740	1,74630	89,01	81,07
120	4,64310	4,83190	5,00790	104,07	107,86	2,41000	2,14760	1,97210	89,11	81,83
130	5,17220	5,38990	5,56950	104,21	107,68	2,65560	2,37270	2,18960	89,35	82,45
140	5,69090	5,93450	6,14160	104,28	107,92	2,87980	2,58840	2,40450	89,88	83,50
150	6,18170	6,46400	6,68010	104,57	108,06	3,07870	2,78080	2,61070	90,32	84,80
160	6,65170	6,95990	7,19670	104,63	108,19	3,24960	2,94570	2,80110	90,65	86,20
170	7,08370	7,41200	7,67400	104,63	108,33	3,39130	3,09160	2,97690	91,16	87,78
180	7,48620	7,83520	8,11720	104,66	108,43	3,50700	3,22210	3,14000	91,88	89,54
190	7,87200	8,24020	8,52250	104,68	108,26	3,60260	3,33650	3,29130	92,61	91,36
200	8,21790	8,59230	8,88950	104,56	108,17	3,68160	3,43550	3,42450	93,32	93,02
210	8,53790	8,92040	9,21770	104,48	107,96	3,75050	3,52690	3,54770	94,04	94,59
220	8,84530	9,21980	9,51850	104,23	107,61	3,80820	3,61500	3,65890	94,93	96,08
230	9,10850	9,50300	9,78630	104,33	107,44	3,85380	3,70230	3,76030	96,07	97,57
240	9,37520	9,75010	10,03800	104,00	107,07	3,89150	3,78830	3,85610	97,35	99,09
250	9,61330	9,92690	10,30500	103,26	107,19	3,92190	3,87230	3,94320	98,73	100,54
260	9,92110	10,30000	10,49600	103,82	105,79	3,95770	3,94800	4,02830	99,75	101,78
270	10,12700	10,50000	10,69100	103,68	105,56	3,99790	4,01810	4,10060	100,51	102,57
280	10,33400	10,70300	10,88300	103,57	105,31	4,04130	4,07800	4,16840	100,91	103,14
290	10,36500	10,72800	11,07800	103,51	106,88	4,07690	4,13140	4,23090	101,34	103,78
300	10,57100	10,93300	11,09400	103,42	104,95	4,10970	4,18070	4,28540	101,73	104,28

Tabela 56 – Perdas por histerese na coroa e nos dentes do estator – Parâmetros D

e	Perdas	Parasitas	na Coroa	a do Est	ator	Perdas Parasitas nos Dentes do Estator						
rent	A	Absolutas		Norma	lizada	A	Absolutas		Norma	ılizada		
cor		[W]		[%	6]		[W]		[%	6]		
% de	Senoidal	20%	38%	20%	38%	Senoidal	20%	38%	20%	38%		
•`	~~~~~	/		Sen	Sen	~~~~~~			Sen	Sen		
30	0,46750	0,46954	0,47488	100,44	101,58	0,27557	0,28828	0,32161	104,61	116,71		
50	1,30150	1,29840	1,31300	99,76	100,88	0,76422	0,79677	0,89082	104,26	116,57		
80	3,28720	3,30170	3,33850	100,44	101,56	1,93450	2,02930	2,26200	104,90	116,93		
90	4,09800	4,13270	4,17920	100,85	101,98	2,41620	2,54400	2,83520	105,29	117,34		
100	4,96400	5,02330	5,07990	101,19	102,34	2,92560	3,09720	3,45770	105,87	118,19		
110	5,83880	5,90780	5,99390	101,18	102,66	3,44480	3,66580	4,09680	106,42	118,93		
120	6,72510	6,80520	6,92490	101,19	102,97	3,96640	4,24670	4,76230	107,07	120,07		
130	7,58960	7,70190	7,81500	101,48	102,97	4,49070	4,83170	5,42400	107,59	120,78		
140	8,44040	8,58700	8,73570	101,74	103,50	5,00620	5,41970	6,08840	108,26	121,62		
150	9,24420	9,45160	9,61220	102,24	103,98	5,51000	6,00030	6,74430	108,90	122,40		
160	10,01300	10,26200	10,45800	102,48	104,44	5,99220	6,56630	7,38370	109,58	123,22		
170	10,71500	11,00400	11,24100	102,70	104,91	6,45630	7,10760	8,01780	110,09	124,19		
180	11,36400	11,69600	11,97200	102,92	105,34	6,90090	7,65070	8,62520	110,86	124,99		
190	11,98300	12,35800	12,64300	103,13	105,51	7,34270	8,17100	9,20290	111,28	125,33		
200	12,53800	12,93000	13,25100	103,13	105,69	7,75670	8,66080	9,74160	111,66	125,59		
210	13,05000	13,46100	13,79100	103,14	105,68	8,15920	9,13840	10,27600	112,00	125,95		
220	13,54600	13,94500	14,28600	102,95	105,47	8,54160	9,59670	10,78300	112,35	126,25		
230	13,96500	14,40700	14,72800	103,16	105,46	8,91750	10,03300	11,25300	112,51	126,19		
240	14,39200	14,81300	15,14500	102,92	105,23	9,28490	10,43600	11,69800	112,40	125,99		
250	14,76900	15,10100	15,59400	102,25	105,58	9,64520	10,81500	12,09100	112,13	125,36		
260	15,27200	15,73200	15,91700	103,02	104,22	9,99710	11,18200	12,45000	111,85	124,54		
270	15,59900	16,06300	16,24600	102,97	104,15	10,33400	11,53400	12,77400	111,62	123,61		
280	15,93000	16,39900	16,57500	102,94	104,05	10,65800	11,85600	13,06500	111,24	122,59		
290	15,95300	16,42200	16,90900	102,94	105,99	10,94900	12,15600	13,34300	111,02	121,87		
300	16,28800	16,76200	16,92600	102,91	103,92	11,22300	12,43600	13,60800	110,81	121,26		

Tabela 57 – Perdas por corrente parasita na coroa e nos dentes do estator – Parâmetros D

e	Perdas p	or Excess	so na Core	oa do Es	stator	r Perdas por Excesso nos Dentes do Estato					
rent	A	Absolutas		Norma	lizada	Α	bsolutas		Norma	lizada	
cor		[W]		[%	6]		[W]		[%	6]	
6 de	Senoidal	20%	38%	20%	38%	Senoidal	20%	38%	20%	38%	
•`		~ ~ ~ ~		Sen	Sen	~~~~~~~	~ ~ ~ ~ ~		Sen	Sen	
30	1,34250	1,36410	1,38800	101,61	103,39	0,33502	0,32718	0,33653	97,66	100,45	
50	2,89310	2,92500	2,97590	101,10	102,86	0,72011	0,70149	0,72275	97,41	100,37	
80	5,79910	5,89080	5,99210	101,58	103,33	1,44300	1,41330	1,45390	97,94	100,75	
90	6,84580	6,97340	7,09270	101,86	103,61	1,70160	1,67130	1,72090	98,22	101,13	
100	7,91120	8,07630	8,21250	102,09	103,81	1,95850	1,93180	1,99510	98,64	101,87	
110	8,94450	9,12640	9,30020	102,03	103,98	2,20590	2,18450	2,26300	99,03	102,59	
120	9,95450	10,15500	10,36800	102,01	104,16	2,44290	2,42880	2,52900	99,42	103,53	
130	10,91100	11,14900	11,35700	102,19	104,09	2,67090	2,66590	2,78400	99,82	104,24	
140	11,82900	12,10500	12,35100	102,33	104,41	2,88400	2,89510	3,03260	100,39	105,15	
150	12,68200	13,01700	13,27300	102,65	104,67	3,08120	3,11030	3,27110	100,94	106,16	
160	13,48400	13,85800	14,14600	102,78	104,91	3,26020	3,30960	3,49690	101,51	107,26	
170	14,20700	14,61500	14,94100	102,87	105,16	3,42240	3,49400	3,71470	102,09	108,54	
180	14,87100	15,31300	15,67100	102,97	105,38	3,56930	3,67180	3,91960	102,87	109,81	
190	15,49900	15,97400	16,33400	103,07	105,39	3,70760	3,83680	4,11140	103,49	110,89	
200	16,05500	16,54000	16,92700	103,02	105,43	3,83280	3,98850	4,28760	104,06	111,87	
210	16,56600	17,06300	17,45200	103,00	105,35	3,95140	4,13450	4,46030	104,63	112,88	
220	17,05400	17,53600	17,92900	102,83	105,13	4,06150	4,27460	4,62280	105,25	113,82	
230	17,46700	17,98300	18,35200	102,95	105,06	4,16620	4,40870	4,77230	105,82	114,55	
240	17,88400	18,37200	18,74800	102,73	104,83	4,26680	4,53340	4,91360	106,25	115,16	
250	18,25200	18,64800	19,16800	102,17	105,02	4,36330	4,65090	5,03760	106,59	115,45	
260	18,73300	19,23800	19,46900	102,70	103,93	4,45850	4,76370	5,14990	106,84	115,51	
270	19,04800	19,54900	19,77500	102,63	103,82	4,55140	4,87140	5,25100	107,03	115,37	
280	19,36500	19,86300	20,07700	102,58	103,68	4,64220	4,96930	5,34120	107,05	115,06	
290	19,39800	19,89200	20,38300	102,55	105,08	4,72350	5,06050	5,42720	107,13	114,90	
300	19,71500	20,20900	20,40300	102,50	103,49	4,80060	5,14610	5,50920	107,20	114,76	

Tabela 58 - Perdas por excesso na coroa e nos dentes do estator - Parâmetros D

e	Perdas N	Magnética	is na Coro	oa do Es	stator	or Perdas Magnéticas nos Dentes do Estator					
rent	A	Absolutas		Norma	alizada	I	Absolutas		Norma	lizada	
cor		[W]		[%	6]		[W]		[%	6]	
% de	Senoidal	20%	38%	20%	38%	Senoidal	20 %	38%	20%	38%	
•`		/ 0		Sen	Sen		/ 0		Sen	Sen	
30	2,26170	2,30280	2,34800	101,82	103,82	0,85634	0,83127	0,85155	97,07	99,44	
50	5,29530	5,36000	5,46400	101,22	103,19	2,08160	2,02130	2,08350	97,10	100,09	
80	11,55400	11,75300	11,97700	101,73	103,66	4,71190	4,61980	4,77320	98,04	101,30	
90	13,93800	14,22200	14,49100	102,04	103,97	5,72850	5,63960	5,83790	98,45	101,91	
100	16,42100	16,79700	17,11000	102,29	104,19	6,77140	6,70430	6,96900	99,01	102,92	
110	18,87800	19,29800	19,70600	102,23	104,38	7,80470	7,76770	8,10600	99,53	103,86	
120	21,32300	21,79200	22,30100	102,20	104,59	8,81930	8,82310	9,26340	100,04	105,04	
130	23,67200	24,24100	24,74200	102,40	104,52	9,81720	9,87040	10,39800	100,54	105,91	
140	25,96100	26,62600	27,22800	102,56	104,88	10,77000	10,90300	11,52500	101,24	107,01	
150	28,10700	28,93300	29,56600	102,94	105,19	11,67000	11,89100	12,62600	101,90	108,19	
160	30,14900	31,08000	31,80100	103,09	105,48	12,50200	12,82200	13,68200	102,56	109,44	
170	32,00600	33,03100	33,85500	103,20	105,78	13,27000	13,69300	14,70900	103,19	110,85	
180	33,72200	34,84500	35,76000	103,33	106,04	13,97700	14,54500	15,68500	104,06	112,22	
190	35,35400	36,57200	37,49900	103,45	106,07	14,65300	15,34400	16,60600	104,72	113,33	
200	36,81100	38,06300	39,06800	103,40	106,13	15,27100	16,08500	17,45400	105,33	114,29	
210	38,15400	39,44400	40,46100	103,38	106,05	15,86100	16,80000	18,28400	105,92	115,28	
220	39,44500	40,70100	41,73300	103,18	105,80	16,41100	17,48600	19,06500	106,55	116,17	
230	40,54100	41,89300	42,86600	103,33	105,73	16,93700	18,14400	19,78500	107,12	116,81	
240	41,65200	42,93500	43,93100	103,08	105,47	17,44300	18,75700	20,46800	107,53	117,34	
250	42,63400	43,67600	45,06700	102,44	105,71	17,93000	19,33800	21,07200	107,85	117,52	
260	43,92600	45,27000	45,88200	103,06	104,45	18,41300	19,89400	21,62800	108,04	117,46	
270	44,77400	46,11200	46,71200	102,99	104,33	18,88300	20,42400	22,12600	108,16	117,17	
280	45,62900	46,96600	47,53600	102,93	104,18	19,34100	20,90300	22,57500	108,08	116,72	
290	45,71600	47,04300	48,37000	102,90	105,81	19,74900	21,34700	23,00200	108,09	116,47	
300	46,57400	47,90400	48,42300	102,85	103,97	20,13300	21,76300	23,40300	108,10	116,24	

Tabela 59 – Perdas magnéticas na coroa e nos dentes do estator – Parâmetros D

		Perdas Ma	agnéticas n	o Estator	
% de corrente	Al	osolutas [V	V]	Normaliz	ada [%]
	Senoidal	20 %	38%	20%	38%
				Sen	Sen
30	3,11800	3,13410	3,19960	100,52	102,62
50	7,37690	7,38130	7,54750	100,06	102,31
80	16,26600	16,37300	16,75000	100,66	102,98
90	19,66600	19,86200	20,32900	100,99	103,37
100	23,19200	23,50100	24,07900	101,33	103,82
110	26,68300	27,06600	27,81200	101,44	104,23
120	30,14200	30,61500	31,56500	101,57	104,72
130	33,49000	34,11200	35,13900	101,86	104,93
140	36,73100	37,52900	38,75400	102,17	105,51
150	39,77700	40,82500	42,19200	102,63	106,07
160	42,65100	43,90100	45,48300	102,93	106,64
170	45,27600	46,72400	48,56500	103,20	107,26
180	47,69900	49,38900	51,44500	103,54	107,85
190	50,00700	51,91700	54,10500	103,82	108,20
200	52,08200	54,14700	56,52200	103,97	108,52
210	54,01500	56,24400	58,74500	104,13	108,76
220	55,85600	58,18700	60,79800	104,17	108,85
230	57,47800	60,03700	62,65100	104,45	109,00
240	59,09500	61,69300	64,39900	104,40	108,98
250	60,56400	63,01400	66,13900	104,04	109,20
260	62,33900	65,16400	67,51100	104,53	108,30
270	63,65800	66,53600	68,83800	104,52	108,14
280	64,97000	67,86900	70,11100	104,46	107,91
290	65,46500	68,39000	71,37200	104,47	109,02
300	66,70700	69,66700	71,82600	104,44	107,67

Tabela 60 – Perdas magnéticas no estator – Parâmetros D

0	Perdas Percentuais na Coroa do Estator[%]											
% de sorrente		Senoi	dal			$\frac{\hat{I}_3}{\hat{I}_1} = 2$	0%			$\frac{\hat{I}_3}{\hat{I}_1} = 3$	8%	
	Parasita	Histerese	Excesso	Total	Parasita	Histerese	Excesso	Total	Parasita	Histerese	Excesso	Total
30	14,99	14,49	43,06	72,54	14,98	14,97	43,52	73,48	14,84	15,16	43,38	73,39
50	17,64	14,92	39,22	71,78	17,59	15,40	39,63	72,62	17,40	15,57	39,43	72,40
80	20,21	15,17	35,65	71,03	20,17	15,64	35,98	71,79	19,93	15,80	35,77	71,50
90	20,84	15,23	34,81	70,87	20,81	15,69	35,11	71,61	20,56	15,84	34,89	71,28
100	21,40	15,29	34,11	70,80	21,38	15,73	34,37	71,47	21,10	15,85	34,11	71,06
110	21,88	15,35	33,52	70,75	21,83	15,76	33,72	71,30	21,55	15,86	33,44	70,85
120	22,31	15,40	33,03	70,74	22,23	15,78	33,17	71,18	21,94	15,87	32,85	70,65
130	22,66	15,44	32,58	70,69	22,58	15,80	32,69	71,06	22,24	15,85	32,32	70,41
140	22,98	15,49	32,21	70,68	22,88	15,81	32,25	70,95	22,54	15,85	31,87	70,26
150	23,24	15,54	31,88	70,66	23,15	15,83	31,89	70,87	22,78	15,83	31,46	70,08
160	23,48	15,60	31,61	70,69	23,38	15,85	31,57	70,80	22,99	15,82	31,10	69,92
170	23,67	15,65	31,38	70,69	23,55	15,86	31,28	70,69	23,15	15,80	30,76	69,71
180	23,83	15,70	31,18	70,70	23,68	15,86	31,01	70,55	23,27	15,78	30,46	69,51
190	23,96	15,74	30,99	70,70	23,80	15,87	30,77	70,44	23,37	15,75	30,19	69,31
200	24,07	15,78	30,83	70,68	23,88	15,87	30,55	70,29	23,44	15,73	29,95	69,12
210	24,16	15,81	30,67	70,64	23,93	15,86	30,34	70,13	23,48	15,69	29,71	68,88
220	24,25	15,84	30,53	70,62	23,97	15,85	30,14	69,95	23,50	15,66	29,49	68,64
230	24,30	15,85	30,39	70,53	24,00	15,83	29,95	69,78	23,51	15,62	29,29	68,42
240	24,35	15,87	30,26	70,48	24,01	15,80	29,78	69,60	23,52	15,59	29,11	68,22
250	24,39	15,87	30,14	70,40	23,97	15,75	29,59	69,31	23,58	15,58	28,98	68,14
260	24,50	15,92	30,05	70,46	24,14	15,81	29,52	69,47	23,58	15,55	28,84	67,96
270	24,51	15,91	29,92	70,34	24,14	15,78	29,38	69,30	23,60	15,53	28,73	67,86
280	24,52	15,91	29,81	70,23	24,16	15,77	29,27	69,20	23,64	15,52	28,64	67,80
290	24,37	15,83	29,63	69,83	24,01	15,69	29,09	68,79	23,69	15,52	28,56	67,77
300	24,42	15,85	29,55	69,82	24,06	15,69	29,01	68,76	23,57	15,45	28,41	67,42

Tabela 61 – Perdas percentuais na coroa do estator dadas em função das perdas totais – Parâmetros D

0	Perdas Percentuais nos Dentes do Estator[%]											
% de sorrente		Senoi	dal			$\frac{\hat{I}_3}{\hat{I}_1} = 2$	0 %			$\frac{\hat{I}_3}{\hat{I}_1} = 3$	8%	
	Parasita	Histerese	Excesso	Total	Parasita	Histerese	Excesso	Total	Parasita	Histerese	Excesso	Total
30	8,84	7,88	10,75	27,46	9,20	6,89	10,44	26,52	10,05	6,05	10,52	26,62
50	10,36	8,10	9,76	28,22	10,79	7,09	9,50	27,38	11,80	6,23	9,58	27,61
80	11,89	8,20	8,87	28,97	12,39	7,19	8,63	28,22	13,50	6,31	8,68	28,50
90	12,29	8,19	8,65	29,13	12,81	7,17	8,41	28,40	13,95	6,31	8,47	28,72
100	12,61	8,14	8,44	29,20	13,18	7,13	8,22	28,53	14,36	6,30	8,29	28,94
110	12,91	8,07	8,27	29,25	13,54	7,08	8,07	28,70	14,73	6,28	8,14	29,15
120	13,16	8,00	8,10	29,26	13,87	7,01	7,93	28,82	15,09	6,25	8,01	29,35
130	13,41	7,93	7,98	29,31	14,16	6,96	7,82	28,94	15,44	6,23	7,92	29,59
140	13,63	7,84	7,85	29,32	14,44	6,90	7,71	29,05	15,71	6,20	7,83	29,74
150	13,85	7,74	7,75	29,34	14,70	6,81	7,62	29,13	15,99	6,19	7,75	29,93
160	14,05	7,62	7,64	29,31	14,96	6,71	7,54	29,21	16,23	6,16	7,69	30,08
170	14,26	7,49	7,56	29,31	15,21	6,62	7,48	29,31	16,51	6,13	7,65	30,29
180	14,47	7,35	7,48	29,30	15,49	6,52	7,43	29,45	16,77	6,10	7,62	30,49
190	14,68	7,20	7,41	29,30	15,74	6,43	7,39	29,56	17,01	6,08	7,60	30,69
200	14,89	7,07	7,36	29,32	16,00	6,34	7,37	29,71	17,24	6,06	7,59	30,88
210	15,11	6,94	7,32	29,36	16,25	6,27	7,35	29,87	17,49	6,04	7,59	31,13
220	15,29	6,82	7,27	29,38	16,49	6,21	7,35	30,05	17,74	6,02	7,60	31,36
230	15,52	6,70	7,25	29,47	16,71	6,17	7,34	30,22	17,96	6,00	7,62	31,58
240	15,71	6,59	7,22	29,52	16,92	6,14	7,35	30,41	18,17	5,99	7,63	31,78
250	15,93	6,48	7,20	29,61	17,16	6,15	7,38	30,69	18,28	5,96	7,62	31,86
260	16,04	6,35	7,15	29,54	17,16	6,06	7,31	30,53	18,44	5,97	7,63	32,04
270	16,23	6,28	7,15	29,66	17,34	6,04	7,32	30,70	18,56	5,96	7,63	32,14
280	16,40	6,22	7,15	29,77	17,47	6,01	7,32	30,80	18,64	5,95	7,62	32,20
290	16,73	6,23	7,22	30,17	17,77	6,04	7,40	31,21	18,70	5,93	7,60	32,23
300	16,82	6,16	7,20	30,18	17,85	6,00	7,39	31,24	18,95	5,97	7,67	32,58

Tabela 62 – Perdas percentuais nos dentes do estator dadas em função das perdas totais – Parâmetros D

Anexo A.8 – Tabelas de Perdas: Perdas em Função da Frequência

cia		Perdas na Coroa do Estator									
equênc		Histerese		Cor	rente Para	sita		Excesso			
Fr	Senoidal	20 %	38%	Senoidal	20 %	38%	Senoidal	20%	38%		
5	0,34054	0,35371	0,36411	0,15658	0,15845	0,16024	0,00045	0,00056	0,00066		
10	0,68108	0,70743	0,72823	0,62634	0,63382	0,64097	0,00633	0,00707	0,00776		
15	1,02160	1,06110	1,09230	1,40930	1,42610	1,44220	0,02602	0,02656	0,02701		
20	1,36220	1,41490	1,45650	2,50530	2,53530	2,56390	0,06222	0,06177	0,06123		
25	1,70270	1,76860	1,82060	3,91460	3,96140	4,00600	0,10687	0,10801	0,10881		
30	2,04320	2,12230	2,18470	5,63700	5,70440	5,76870	0,14707	0,15014	0,15267		
35	2,38380	2,47600	2,54880	7,67260	7,76430	7,85180	0,19374	0,19960	0,20469		
40	2,72430	2,82970	2,91290	10,02100	10,14100	10,25500	0,27720	0,28791	0,29725		
45	3,06490	3,18340	3,27700	12,68300	12,83500	12,98000	0,40563	0,41405	0,42100		
50	3,40540	3,53710	3,64110	15,65800	15,84500	16,02400	0,56260	0,56745	0,57073		
55	3,74590	3,89080	4,00520	18,94700	19,17300	19,38900	0,71393	0,72529	0,73420		
60	4,08650	4,24460	4,36940	22,54800	22,81700	23,07500	0,83194	0,84930	0,86362		
65	4,42700	4,59830	4,73350	26,46300	26,77900	27,08100	0,95951	0,98418	1,00520		
70	4,76760	4,95200	5,09760	30,69100	31,05700	31,40700	1,16630	1,20200	1,23270		
75	5,10810	5,30570	5,46170	35,23100	35,65200	36,05400	1,45460	1,48480	1,50980		
80	5,44860	5,65940	5,82580	40,08600	40,56400	41,02200	1,77950	1,80270	1,82040		
85	5,78920	6,01310	6,18990	45,25300	45,79300	46,31000	2,07330	2,10980	2,13900		
90	6,12970	6,36680	6,55400	50,73300	51,33900	51,91800	2,29250	2,34040	2,37990		

Tabela 63 – Perdas na coroa do estator em função da frequência para corrente nominal – Parâmetros A

cia				Perdas no	os Dentes d	o Estator			
equênc [Hz]	I	Histerese		Cor	rente Para	sita		Excesso	
H	Senoidal	20%	38%	Senoidal	20%	38%	Senoidal	20%	38%
5	0,06034	0,07391	0,08694	0,09229	0,09770	0,10907	0,00145	0,00176	0,00206
10	0,27939	0,28061	0,28098	0,36914	0,39080	0,43627	0,00653	0,00681	0,00720
15	0,51850	0,46532	0,42503	0,83057	0,87929	0,98162	0,01304	0,01285	0,01327
20	0,69134	0,62042	0,56670	1,47660	1,56320	1,74510	0,02167	0,02031	0,02051
25	0,86417	0,77553	0,70838	2,30710	2,44250	2,72670	0,03992	0,03564	0,03408
30	1,03700	0,93064	0,85006	3,32230	3,51720	3,92650	0,07380	0,07280	0,07519
35	1,20980	1,08570	0,99173	4,52200	4,78730	5,34440	0,11984	0,12434	0,13289
40	1,38270	1,24080	1,13340	5,90630	6,25270	6,98040	0,16581	0,16645	0,17317
45	1,55550	1,39600	1,27510	7,47510	7,91360	8,83460	0,20319	0,20036	0,20688
50	1,72830	1,55110	1,41680	9,22860	9,76990	10,90700	0,24436	0,23676	0,24259
55	1,90120	1,70620	1,55840	11,16700	11,82200	13,19700	0,31343	0,29692	0,29769
60	2,07400	1,86130	1,70010	13,28900	14,06900	15,70600	0,41750	0,41181	0,42531
65	2,24680	2,01640	1,84180	15,59600	16,51100	18,43300	0,53862	0,54674	0,57593
70	2,41970	2,17150	1,98350	18,08800	19,14900	21,37700	0,64675	0,64452	0,66847
75	2,59250	2,32660	2,12510	20,76400	21,98200	24,54000	0,72865	0,71851	0,74188
80	2,76530	2,48170	2,26680	23,62500	25,01100	27,92200	0,81574	0,79583	0,81789
85	2,93820	2,63680	2,40850	26,67100	28,23500	31,52100	0,95410	0,91748	0,93023
90	3,11100	2,79190	2,55020	29,90100	31,65500	35,33800	1,15050	1,13480	1,17200

Tabela 64 – Perdas nos dentes do estator em função da frequência para corrente nominal – Parâmetros A

cia	Perdas no Estator											
equênc [Hz]	Ре	rdas na Coi	roa	Perc	las nos De	ntes	Per	das no Esta	itor			
Fr	Senoidal	20%	38%	Senoidal	20%	38%	Senoidal	20%	38%			
5	0,49757	0,51273	0,52502	0,15408	0,17337	0,19807	0,65165	0,68609	0,72309			
10	1,31370	1,34830	1,37690	0,65507	0,67821	0,72446	1,96880	2,02650	2,10140			
15	2,45690	2,51380	2,56150	1,36210	1,35750	1,41990	3,81900	3,87130	3,98140			
20	3,92970	4,01190	4,08150	2,18960	2,20390	2,33230	6,11930	6,21580	6,41390			
25	5,72420	5,83790	5,93540	3,21120	3,25360	3,46920	8,93540	9,09160	9,40460			
30	7,82730	7,97680	8,10600	4,43310	4,52060	4,85170	12,26000	12,49700	12,95800			
35	10,25000	10,44000	10,60500	5,85170	5,99730	6,46900	16,10200	16,43700	17,07400			
40	13,02300	13,25900	13,46600	7,45480	7,66000	8,28700	20,47800	20,91900	21,75300			
45	16,15400	16,43200	16,67800	9,23380	9,50990	10,31700	25,38800	25,94200	26,99400			
50	19,62600	19,95000	20,23600	11,20100	11,55800	12,56600	30,82800	31,50800	32,80200			
55	23,40700	23,78900	24,12900	13,38100	13,82500	15,05300	36,78800	37,61400	39,18200			
60	27,46700	27,91100	28,30800	15,78100	16,34200	17,83100	43,24700	44,25300	46,13900			
65	31,84900	32,36100	32,81900	18,38200	19,07400	20,85000	50,23100	51,43600	53,67000			
70	36,62400	37,21100	37,73800	21,15400	21,96500	24,02900	57,77900	59,17600	61,76700			
75	41,79400	42,44300	43,02600	24,08500	25,02700	27,40700	65,88000	67,47000	70,43300			
80	47,31400	48,02700	48,66800	27,20600	28,28800	31,00600	74,52000	76,31500	79,67400			
85	53,11500	53,91600	54,63900	30,56300	31,78900	34,86000	83,67800	85,70600	89,49800			
90	59,15600	60,04700	60,85200	34,16200	35,58100	39,06000	93,31800	95,62800	99,91300			

Tabela 65 – Perdas magnéticas no estator em função da frequência para corrente nominal – Parâmetros A

cia				Perdas na	Coroa do) Estator			
equêno [Hz]	I	Histerese		Corr	ente Para	sita		Excesso	
Fr	Senoidal	20%	38%	Senoidal	20%	38%	Senoidal	20%	38%
5	0,29549	0,30810	0,31809	0,01459	0,01477	0,01493	0,00000	0,00000	0,00000
10	0,59098	0,61621	0,63619	0,05837	0,05907	0,05973	0,00000	0,00000	0,00000
15	0,88647	0,92431	0,95428	0,13133	0,13290	0,13440	0,00000	0,00000	0,00000
20	1,18200	1,23240	1,27240	0,23348	0,23627	0,23894	0,00000	0,00000	0,00000
25	1,47750	1,54050	1,59050	0,36482	0,36918	0,37334	0,00000	0,00000	0,00000
30	1,77290	1,84860	1,90860	0,52534	0,53161	0,53761	0,00000	0,00000	0,00000
35	2,06840	2,15670	2,22670	0,71504	0,72358	0,73174	0,00000	0,00000	0,00000
40	2,36390	2,46480	2,54480	0,93393	0,94509	0,95575	0,00000	0,00000	0,00000
45	2,65940	2,77290	2,86290	1,18200	1,19610	1,20960	0,00000	0,00000	0,00000
50	2,95490	3,08100	3,18090	1,45930	1,47670	1,49340	0,00000	0,00000	0,00000
55	3,25040	3,38910	3,49900	1,76570	1,78680	1,80700	0,00000	0,00000	0,00000
60	3,54590	3,69720	3,81710	2,10130	2,12640	2,15040	0,00000	0,00000	0,00000
65	3,84140	4,00530	4,13520	2,46620	2,49560	2,52380	0,00000	0,00000	0,00000
70	4,13690	4,31350	4,45330	2,86020	2,89430	2,92700	0,00000	0,00000	0,00000
75	4,43240	4,62160	4,77140	3,28340	3,32260	3,36000	0,00000	0,00000	0,00000
80	4,72790	4,92970	5,08950	3,73570	3,78040	3,82300	0,00000	0,00000	0,00000
85	5,02330	5,23780	5,40760	4,21730	4,26770	4,31580	0,00000	0,00000	0,00000
90	5,31880	5,54590	5,72570	4,72800	4,78450	4,83850	0,00000	0,00000	0,00000

Tabela 66 - Perdas na coroa do estator em função da frequência para corrente nominal - Parâmetros B 8065

cia				Perdas nos	Dentes d	o Estator	r			
equênc [Hz]	I	Histerese		Corr	ente Para	sita	Excesso			
Fr	Senoidal	20%	38%	Senoidal	20%	38%	Senoidal	20%	38%	
5	0,04936	0,06171	0,07379	0,00860	0,00911	0,01017	0,00000	0,00000	0,00000	
10	0,24882	0,25000	0,25038	0,03440	0,03642	0,04066	0,00000	0,00000	0,00000	
15	0,47182	0,41881	0,37905	0,07740	0,08195	0,09148	0,00000	0,00000	0,00000	
20	0,62909	0,55841	0,50540	0,13761	0,14568	0,16263	0,00000	0,00000	0,00000	
25	0,78636	0,69801	0,63175	0,21501	0,22762	0,25411	0,00000	0,00000	0,00000	
30	0,94364	0,83761	0,75810	0,30962	0,32778	0,36592	0,00000	0,00000	0,00000	
35	1,10090	0,97722	0,88445	0,42142	0,44614	0,49806	0,00000	0,00000	0,00000	
40	1,25820	1,11680	1,01080	0,55043	0,58272	0,65053	0,00000	0,00000	0,00000	
45	1,41550	1,25640	1,13720	0,69664	0,73750	0,82333	0,00000	0,00000	0,00000	
50	1,57270	1,39600	1,26350	0,86005	0,91050	1,01650	0,00000	0,00000	0,00000	
55	1,73000	1,53560	1,38990	1,04070	1,10170	1,22990	0,00000	0,00000	0,00000	
60	1,88730	1,67520	1,51620	1,23850	1,31110	1,46370	0,00000	0,00000	0,00000	
65	2,04450	1,81480	1,64260	1,45350	1,53870	1,71780	0,00000	0,00000	0,00000	
70	2,20180	1,95440	1,76890	1,68570	1,78460	1,99220	0,00000	0,00000	0,00000	
75	2,35910	2,09400	1,89530	1,93510	2,04860	2,28700	0,00000	0,00000	0,00000	
80	2,51630	2,23360	2,02160	2,20170	2,33090	2,60210	0,00000	0,00000	0,00000	
85	2,67360	2,37320	2,14800	2,48550	2,63130	2,93750	0,00000	0,00000	0,00000	
90	2,83090	2,51280	2,27430	2,78650	2,95000	3,29330	0,00000	0,00000	0,00000	

Tabela 67 - Perdas nos dentes do estator em função da frequência para corrente nominal - Parâmetros B 8065

ia				Perd	as no Esta	ator				
equênc [Hz]	Per	das na Co	roa	Perda	as nos De	ntes	Perdas no Estator			
Fr	Senoidal	20%	38%	Senoidal	20%	38%	Senoidal	20%	38%	
5	0,31008	0,32287	0,33303	0,05796	0,07081	0,08396	0,36804	0,39368	0,41699	
10	0,64935	0,67528	0,69592	0,28322	0,28642	0,29103	0,93257	0,96170	0,98696	
15	1,01780	1,05720	1,08870	0,54922	0,50075	0,47053	1,56700	1,55800	1,55920	
20	1,41540	1,46870	1,51130	0,76670	0,70409	0,66803	2,18210	2,17280	2,17930	
25	1,84230	1,90970	1,96380	1,00140	0,92564	0,88586	2,84360	2,83530	2,84970	
30	2,29830	2,38020	2,44620	1,25330	1,16540	1,12400	3,55150	3,54560	3,57020	
35	2,78350	2,88030	2,95840	1,52230	1,42340	1,38250	4,30580	4,30370	4,34090	
40	3,29790	3,40990	3,50050	1,80860	1,69950	1,66130	5,10650	5,10950	5,16180	
45	3,84140	3,96910	4,07250	2,11210	1,99390	1,96050	5,95350	5,96300	6,03300	
50	4,41420	4,55770	4,67430	2,43280	2,30650	2,28000	6,84700	6,86430	6,95430	
55	5,01610	5,17590	5,30600	2,77070	2,63730	2,61980	7,78680	7,81330	7,92580	
60	5,64720	5,82370	5,96760	3,12570	2,98630	2,97990	8,77300	8,81000	8,94750	
65	6,30750	6,50100	6,65900	3,49800	3,35360	3,36040	9,80560	9,85450	10,01900	
70	6,99700	7,20780	7,38030	3,88750	3,73900	3,76120	10,88500	10,94700	11,14100	
75	7,71570	7,94410	8,13150	4,29420	4,14270	4,18230	12,01000	12,08700	12,31400	
80	8,46360	8,71000	8,91250	4,71800	4,56450	4,62370	13,18200	13,27500	13,53600	
85	9,24060	9,50540	9,72340	5,15910	5,00460	5,08550	14,40000	14,51000	14,80900	
90	10,04700	10,33000	10,56400	5,61740	5,46280	5,56760	15,66400	15,79300	16,13200	

Tabela 68 – Perdas magnéticas no estator em função da frequência para corrente nominal – Parâmetros B 8065

cia				Perdas na	Coroa do) Estator				
equêno [Hz]	I	Histerese		Corr	ente Para	sita	Excesso			
Fr	Senoidal	20%	38%	Senoidal	20%	38%	Senoidal	20%	38%	
5	0,17815	0,18607	0,19235	0,01128	0,01142	0,01155	0,00000	0,00000	0,00000	
10	0,35630	0,37213	0,38469	0,04514	0,04568	0,04619	0,00000	0,00000	0,00000	
15	0,53445	0,55820	0,57704	0,10155	0,10277	0,10393	0,00000	0,00000	0,00000	
20	0,71260	0,74426	0,76939	0,18054	0,18270	0,18476	0,00000	0,00000	0,00000	
25	0,89074	0,93033	0,96173	0,28210	0,28547	0,28869	0,00000	0,00000	0,00000	
30	1,06890	1,11640	1,15410	0,40622	0,41107	0,41571	0,00000	0,00000	0,00000	
35	1,24700	1,30250	1,34640	0,55291	0,55951	0,56582	0,00000	0,00000	0,00000	
40	1,42520	1,48850	1,53880	0,72217	0,73079	0,73904	0,00000	0,00000	0,00000	
45	1,60330	1,67460	1,73110	0,91399	0,92491	0,93534	0,00000	0,00000	0,00000	
50	1,78150	1,86070	1,92350	1,12840	1,14190	1,15470	0,00000	0,00000	0,00000	
55	1,95960	2,04670	2,11580	1,36540	1,38170	1,39720	0,00000	0,00000	0,00000	
60	2,13780	2,23280	2,30820	1,62490	1,64430	1,66280	0,00000	0,00000	0,00000	
65	2,31590	2,41890	2,50050	1,90700	1,92980	1,95150	0,00000	0,00000	0,00000	
70	2,49410	2,60490	2,69280	2,21160	2,23810	2,26330	0,00000	0,00000	0,00000	
75	2,67220	2,79100	2,88520	2,53890	2,56920	2,59820	0,00000	0,00000	0,00000	
80	2,85040	2,97710	3,07750	2,88870	2,92320	2,95610	0,00000	0,00000	0,00000	
85	3,02850	3,16310	3,26990	3,26100	3,30000	3,33720	0,00000	0,00000	0,00000	
90	3,20670	3,34920	3,46220	3,65600	3,69960	3,74140	0,00000	0,00000	0,00000	

Tabela 69 – Perdas na coroa do estator em função da frequência para corrente nominal – Parâmetros B 5365

cia				Perdas nos Dentes do Estator						
equêno [Hz]	I	Histerese		Corr	ente Para	sita	Excesso			
Fr	Senoidal	20%	38%	Senoidal	20%	38%	Senoidal	20%	38%	
5	0,02900	0,03658	0,04406	0,00665	0,00704	0,00786	0,00000	0,00000	0,00000	
10	0,15172	0,15248	0,15271	0,02660	0,02816	0,03144	0,00000	0,00000	0,00000	
15	0,29043	0,25657	0,23128	0,05985	0,06336	0,07074	0,00000	0,00000	0,00000	
20	0,38724	0,34209	0,30838	0,10641	0,11265	0,12576	0,00000	0,00000	0,00000	
25	0,48406	0,42762	0,38547	0,16626	0,17601	0,19649	0,00000	0,00000	0,00000	
30	0,58087	0,51314	0,46257	0,23941	0,25346	0,28295	0,00000	0,00000	0,00000	
35	0,67768	0,59866	0,53966	0,32587	0,34498	0,38513	0,00000	0,00000	0,00000	
40	0,77449	0,68418	0,61676	0,42562	0,45059	0,50303	0,00000	0,00000	0,00000	
45	0,87130	0,76971	0,69385	0,53868	0,57028	0,63664	0,00000	0,00000	0,00000	
50	0,96811	0,85523	0,77095	0,66504	0,70405	0,78598	0,00000	0,00000	0,00000	
55	1,06490	0,94075	0,84804	0,80469	0,85190	0,95103	0,00000	0,00000	0,00000	
60	1,16170	1,02630	0,92513	0,95765	1,01380	1,13180	0,00000	0,00000	0,00000	
65	1,25850	1,11180	1,00220	1,12390	1,18980	1,32830	0,00000	0,00000	0,00000	
70	1,35540	1,19730	1,07930	1,30350	1,37990	1,54050	0,00000	0,00000	0,00000	
75	1,45220	1,28280	1,15640	1,49630	1,58410	1,76850	0,00000	0,00000	0,00000	
80	1,54900	1,36840	1,23350	1,70250	1,80240	2,01210	0,00000	0,00000	0,00000	
85	1,64580	1,45390	1,31060	1,92200	2,03470	2,27150	0,00000	0,00000	0,00000	
90	1,74260	1,53940	1,38770	2,15470	2,28110	2,54660	0,00000	0,00000	0,00000	

Tabela 70 - Perdas nos dentes do estator em função da frequência para corrente nominal - Parâmetros B 5365

ia				Perd	as no Esta	ator			
equênc [Hz]	Per	das na Coi	roa	Perda	as nos De	ntes	Perc	las no Esta	ntor
Fr	Senoidal	20 %	38%	Senoidal	20%	38%	Senoidal	20 %	38%
5	0,18943	0,19748	0,20389	0,03565	0,04362	0,05192	0,22508	0,24111	0,25582
10	0,40143	0,41781	0,43088	0,17833	0,18064	0,18415	0,57976	0,59845	0,61504
15	0,63600	0,66097	0,68097	0,35029	0,31993	0,30202	0,98629	0,98090	0,98299
20	0,89314	0,92696	0,95414	0,49365	0,45474	0,43413	1,38680	1,38170	1,38830
25	1,17280	1,21580	1,25040	0,65031	0,60363	0,58197	1,82320	1,81940	1,83240
30	1,47510	1,52750	1,56980	0,82028	0,76659	0,74552	2,29540	2,29410	2,31530
35	1,80000	1,86200	1,91220	1,00350	0,94364	0,92479	2,80350	2,80560	2,83700
40	2,14740	2,21930	2,27780	1,20010	1,13480	1,11980	3,34750	3,35410	3,39760
45	2,51730	2,59950	2,66650	1,41000	1,34000	1,33050	3,92730	3,93950	3,99700
50	2,90990	3,00250	3,07820	1,63310	1,55930	1,55690	4,54300	4,56180	4,63510
55	3,32500	3,42840	3,51300	1,86960	1,79260	1,79910	5,19460	5,22100	5,31210
60	3,76270	3,87710	3,97100	2,11940	2,04010	2,05690	5,88210	5,91720	6,02790
65	4,22290	4,34860	4,45200	2,38250	2,30160	2,33050	6,60540	6,65020	6,78260
70	4,70570	4,84300	4,95610	2,65880	2,57730	2,61980	7,36450	7,42020	7,57600
75	5,21110	5,36020	5,48340	2,94850	2,86690	2,92490	8,15960	8,22710	8,40820
80	5,73910	5,90020	6,03370	3,25140	3,17070	3,24560	8,99050	9,07090	9,27930
85	6,28960	6,46310	6,60710	3,56770	3,48860	3,58210	9,85730	9,95170	10,18900
90	6,86270	7,04880	7,20360	3,89730	3,82050	3,93430	10,76000	10,86900	11,13800

Tabela 71 – Perdas magnéticas no estator em função da frequência para corrente nominal – Parâmetros B 5365

cia				Perdas na	Coroa do) Estator				
equênc [Hz]	I	Histerese		Corr	ente Para	sita	Excesso			
Fr	Senoidal	20%	38%	Senoidal	20%	38%	Senoidal	20%	38%	
5	0,12524	0,13093	0,13545	0,00874	0,00884	0,00894	0,00000	0,00000	0,00000	
10	0,25048	0,26187	0,27090	0,03496	0,03537	0,03577	0,00000	0,00000	0,00000	
15	0,37572	0,39280	0,40636	0,07865	0,07959	0,08049	0,00000	0,00000	0,00000	
20	0,50097	0,52373	0,54181	0,13982	0,14149	0,14308	0,00000	0,00000	0,00000	
25	0,62621	0,65466	0,67726	0,21847	0,22108	0,22357	0,00000	0,00000	0,00000	
30	0,75145	0,78560	0,81271	0,31459	0,31835	0,32194	0,00000	0,00000	0,00000	
35	0,87669	0,91653	0,94816	0,42819	0,43331	0,43819	0,00000	0,00000	0,00000	
40	1,00190	1,04750	1,08360	0,55927	0,56595	0,57234	0,00000	0,00000	0,00000	
45	1,12720	1,17840	1,21910	0,70783	0,71629	0,72436	0,00000	0,00000	0,00000	
50	1,25240	1,30930	1,35450	0,87386	0,88430	0,89428	0,00000	0,00000	0,00000	
55	1,37770	1,44030	1,49000	1,05740	1,07000	1,08210	0,00000	0,00000	0,00000	
60	1,50290	1,57120	1,62540	1,25840	1,27340	1,28780	0,00000	0,00000	0,00000	
65	1,62810	1,70210	1,76090	1,47680	1,49450	1,51130	0,00000	0,00000	0,00000	
70	1,75340	1,83310	1,89630	1,71280	1,73320	1,75280	0,00000	0,00000	0,00000	
75	1,87860	1,96400	2,03180	1,96620	1,98970	2,01210	0,00000	0,00000	0,00000	
80	2,00390	2,09490	2,16720	2,23710	2,26380	2,28930	0,00000	0,00000	0,00000	
85	2,12910	2,22590	2,30270	2,52550	2,55560	2,58450	0,00000	0,00000	0,00000	
90	2,25430	2,35680	2,43810	2,83130	2,86510	2,89750	0,00000	0,00000	0,00000	

Tabela 72 – Perdas na coroa do estator em função da frequência para corrente nominal – Parâmetros B 3565

cia				Perdas nos	Dentes d	o Estator			
equêno [Hz]	I	Histerese		Corr	ente Para	sita		Excesso	
Fr	Senoidal	20%	38%	Senoidal	20%	38%	Senoidal	20%	38%
5	0,02009	0,02547	0,03081	0,00515	0,00545	0,00609	0,00000	0,00000	0,00000
10	0,10736	0,10791	0,10808	0,02060	0,02181	0,02435	0,00000	0,00000	0,00000
15	0,20662	0,18203	0,16371	0,04635	0,04907	0,05478	0,00000	0,00000	0,00000
20	0,27549	0,24271	0,21829	0,08240	0,08724	0,09739	0,00000	0,00000	0,00000
25	0,34437	0,30338	0,27286	0,12876	0,13631	0,15217	0,00000	0,00000	0,00000
30	0,41324	0,36406	0,32743	0,18541	0,19629	0,21913	0,00000	0,00000	0,00000
35	0,48211	0,42473	0,38200	0,25236	0,26717	0,29826	0,00000	0,00000	0,00000
40	0,55099	0,48541	0,43657	0,32962	0,34895	0,38956	0,00000	0,00000	0,00000
45	0,61986	0,54609	0,49114	0,41717	0,44164	0,49304	0,00000	0,00000	0,00000
50	0,68874	0,60676	0,54571	0,51503	0,54524	0,60869	0,00000	0,00000	0,00000
55	0,75761	0,66744	0,60029	0,62318	0,65974	0,73651	0,00000	0,00000	0,00000
60	0,82648	0,72812	0,65485	0,74164	0,78514	0,87651	0,00000	0,00000	0,00000
65	0,89535	0,78879	0,70943	0,87040	0,92145	1,02870	0,00000	0,00000	0,00000
70	0,96423	0,84947	0,76400	1,00950	1,06870	1,19300	0,00000	0,00000	0,00000
75	1,03310	0,91015	0,81857	1,15880	1,22680	1,36960	0,00000	0,00000	0,00000
80	1,10200	0,97082	0,87314	1,31850	1,39580	1,55820	0,00000	0,00000	0,00000
85	1,17080	1,03150	0,92771	1,48840	1,57570	1,75910	0,00000	0,00000	0,00000
90	1,23970	1,09220	0,98229	1,66870	1,76660	1,97220	0,00000	0,00000	0,00000

Tabela 73 - Perdas nos dentes do estator em função da frequência para corrente nominal - Parâmetros B 3565

ia				Pere	das no Es	tator			
equênc [Hz]	Perd	las na Co	roa	Perda	as nos De	ntes	Perc	las no Esta	ator
Fı	Senoidal	20%	38%	Senoidal	20%	38%	Senoidal	20 %	38%
5	0,13398	0,13978	0,14439	0,02524	0,03092	0,03689	0,15922	0,17070	0,18129
10	0,28544	0,29724	0,30667	0,12796	0,12971	0,13242	0,41340	0,42695	0,43910
15	0,45437	0,47239	0,48684	0,25297	0,23110	0,21850	0,70735	0,70349	0,70534
20	0,64078	0,66522	0,68489	0,35790	0,32994	0,31568	0,99868	0,99516	1,00060
25	0,84467	0,87574	0,90083	0,47312	0,43969	0,42503	1,31780	1,31540	1,32590
30	1,06600	1,10390	1,13470	0,59865	0,56034	0,54656	1,66470	1,66430	1,68120
35	1,30490	1,34980	1,38640	0,73448	0,69190	0,68026	2,03940	2,04170	2,06660
40	1,56120	1,61340	1,65600	0,88061	0,83436	0,82613	2,44180	2,44780	2,48210
45	1,83500	1,89470	1,94340	1,03700	0,98773	0,98418	2,87200	2,88240	2,92760
50	2,12630	2,19360	2,24880	1,20380	1,15200	1,15440	3,33000	3,34560	3,40320
55	2,43500	2,51030	2,57200	1,38080	1,32720	1,33680	3,81580	3,83740	3,90880
60	2,76130	2,84460	2,91320	1,56810	1,51330	1,53140	4,32940	4,35790	4,44450
65	3,10500	3,19660	3,27220	1,76580	1,71020	1,73810	4,87070	4,90680	5,01030
70	3,46620	3,56630	3,64910	1,97370	1,91810	1,95700	5,43980	5,48440	5,60610
75	3,84480	3,95370	4,04390	2,19190	2,13690	2,18810	6,03670	6,09060	6,23200
80	4,24100	4,35870	4,45660	2,42040	2,36660	2,43140	6,66140	6,72540	6,88800
85	4,65460	4,78150	4,88710	2,65930	2,60720	2,68680	7,31380	7,38870	7,57400
90	5,08570	5,22190	5,33560	2,90840	2,85870	2,95440	7,99410	8,08070	8,29000

Tabela 74 – Perdas magnéticas no estator em função da frequência para corrente nominal – Parâmetros B 3565

cia				Perdas na	Coroa do) Estator				
equêno [Hz]	I	Histerese		Corr	ente Para	sita	Excesso			
Fr	Senoidal	20%	38%	Senoidal	20%	38%	Senoidal	20%	38%	
5	0,00227	0,00236	0,00243	0,05175	0,05237	0,05296	0,00000	0,00000	0,00000	
10	0,00453	0,00471	0,00486	0,10351	0,10474	0,10592	0,00002	0,00003	0,00003	
15	0,00680	0,00707	0,00729	0,15526	0,15711	0,15889	0,00010	0,00010	0,00010	
20	0,00906	0,00943	0,00972	0,20701	0,20949	0,21185	0,00023	0,00023	0,00022	
25	0,01133	0,01179	0,01215	0,25877	0,26186	0,26481	0,00039	0,00040	0,00040	
30	0,01359	0,01414	0,01458	0,31052	0,31423	0,31777	0,00054	0,00055	0,00056	
35	0,01586	0,01650	0,01701	0,36227	0,36660	0,37073	0,00071	0,00073	0,00075	
40	0,01812	0,01886	0,01944	0,41403	0,41897	0,42370	0,00102	0,00106	0,00109	
45	0,02039	0,02121	0,02187	0,46578	0,47134	0,47666	0,00149	0,00152	0,00155	
50	0,02265	0,02357	0,02430	0,51753	0,52371	0,52962	0,00207	0,00208	0,00210	
55	0,02492	0,02593	0,02673	0,56928	0,57608	0,58258	0,00262	0,00266	0,00270	
60	0,02718	0,02829	0,02916	0,62104	0,62846	0,63554	0,00306	0,00312	0,00317	
65	0,02945	0,03064	0,03159	0,67279	0,68083	0,68851	0,00352	0,00362	0,00369	
70	0,03171	0,03300	0,03402	0,72454	0,73320	0,74147	0,00428	0,00442	0,00453	
75	0,03398	0,03536	0,03645	0,77630	0,78557	0,79443	0,00534	0,00545	0,00555	
80	0,03625	0,03771	0,03888	0,82805	0,83794	0,84739	0,00654	0,00662	0,00669	
85	0,03851	0,04007	0,04131	0,87980	0,89031	0,90035	0,00762	0,00775	0,00786	
90	0,04078	0,04243	0,04374	0,93156	0,94268	0,95331	0,00842	0,00860	0,00874	

Tabela 75 - Perdas na coroa do estator em função da frequência para corrente nominal - Parâmetros C

cia				Perdas nos	Dentes d	o Estator				
equênc [Hz]	I	Histerese		Corr	ente Para	sita	Excesso			
Fr	Senoidal	20%	38%	Senoidal	20%	38%	Senoidal	20%	38%	
5	0,00039	0,00048	0,00057	0,03050	0,03229	0,03605	0,00001	0,00001	0,00001	
10	0,00188	0,00189	0,00189	0,06100	0,06458	0,07210	0,00002	0,00003	0,00003	
15	0,00353	0,00315	0,00286	0,09151	0,09687	0,10815	0,00005	0,00005	0,00005	
20	0,00470	0,00420	0,00382	0,12201	0,12916	0,14419	0,00008	0,00007	0,00008	
25	0,00588	0,00525	0,00477	0,15251	0,16145	0,18024	0,00015	0,00013	0,00013	
30	0,00705	0,00630	0,00573	0,18301	0,19374	0,21629	0,00027	0,00027	0,00028	
35	0,00823	0,00735	0,00668	0,21351	0,22604	0,25234	0,00044	0,00046	0,00049	
40	0,00940	0,00840	0,00764	0,24401	0,25833	0,28839	0,00061	0,00061	0,00064	
45	0,01058	0,00945	0,00859	0,27451	0,29062	0,32444	0,00075	0,00074	0,00076	
50	0,01175	0,01050	0,00955	0,30502	0,32291	0,36049	0,00090	0,00087	0,00089	
55	0,01293	0,01154	0,01050	0,33552	0,35520	0,39653	0,00115	0,00109	0,00109	
60	0,01410	0,01259	0,01145	0,36602	0,38749	0,43258	0,00153	0,00151	0,00156	
65	0,01528	0,01364	0,01241	0,39652	0,41978	0,46863	0,00198	0,00201	0,00212	
70	0,01646	0,01469	0,01336	0,42702	0,45207	0,50468	0,00238	0,00237	0,00246	
75	0,01763	0,01574	0,01432	0,45752	0,48436	0,54073	0,00268	0,00264	0,00273	
80	0,01881	0,01679	0,01527	0,48803	0,51665	0,57678	0,00300	0,00292	0,00300	
85	0,01998	0,01784	0,01623	0,51853	0,54894	0,61283	0,00350	0,00337	0,00342	
90	0,02116	0,01889	0,01718	0,54903	0,58123	0,64888	0,00423	0,00417	0,00431	

Tabela 76 - Perdas nos dentes do estator em função da frequência para corrente nominal - Parâmetros C

ia	Perdas no Estator									
Frequênc [Hz]	Perdas na Coroa			Perdas nos Dentes			Perdas no Estator			
	Senoidal	20%	38%	Senoidal	20%	38%	Senoidal	20 %	38%	
5	0,05402	0,05473	0,05539	0,03090	0,03278	0,03663	0,08492	0,08751	0,09202	
10	0,10806	0,10948	0,11081	0,06291	0,06650	0,07402	0,17097	0,17598	0,18483	
15	0,16215	0,16428	0,16627	0,09508	0,10007	0,11106	0,25723	0,26435	0,27733	
20	0,21630	0,21914	0,22179	0,12679	0,13344	0,14809	0,34309	0,35258	0,36988	
25	0,27048	0,27404	0,27736	0,15853	0,16683	0,18514	0,42902	0,44087	0,46250	
30	0,32465	0,32892	0,33291	0,19033	0,20031	0,22230	0,51498	0,52923	0,55521	
35	0,37884	0,38383	0,38849	0,22218	0,23384	0,25951	0,60102	0,61767	0,64800	
40	0,43317	0,43889	0,44423	0,25403	0,26733	0,29666	0,68719	0,70622	0,74089	
45	0,48766	0,49408	0,50007	0,28584	0,30080	0,33379	0,77350	0,79488	0,83386	
50	0,54225	0,54937	0,55601	0,31767	0,33427	0,37092	0,85992	0,88364	0,92694	
55	0,59683	0,60468	0,61201	0,34960	0,36783	0,40813	0,94642	0,97251	1,02010	
60	0,65128	0,65986	0,66787	0,38166	0,40160	0,44560	1,03290	1,06150	1,11350	
65	0,70576	0,71509	0,72378	0,41378	0,43543	0,48316	1,11950	1,15050	1,20690	
70	0,76054	0,77061	0,78001	0,44585	0,46913	0,52050	1,20640	1,23970	1,30050	
75	0,81562	0,82638	0,83642	0,47783	0,50274	0,55777	1,29350	1,32910	1,39420	
80	0,87083	0,88228	0,89295	0,50983	0,53637	0,59505	1,38070	1,41860	1,48800	
85	0,92593	0,93813	0,94952	0,54201	0,57015	0,63247	1,46790	1,50830	1,58200	
90	0,98075	0,99371	1,00580	0,57441	0,60429	0,67036	1,55520	1,59800	1,67620	

Tabela 77 – Perdas magnéticas no estator em função da frequência para corrente nominal – Parâmetros C

Frequência [Hz]	Perdas na Coroa do Estator									
	Histerese			Corrente Parasita			Excesso			
	Senoidal	20%	38%	Senoidal	20%	38%	Senoidal	20%	38%	
5	0,29549	0,30810	0,31809	0,03447	0,03488	0,03528	0,00429	0,00531	0,00628	
10	0,59098	0,61621	0,63619	0,13789	0,13954	0,14111	0,06016	0,06727	0,07375	
15	0,88647	0,92431	0,95428	0,31025	0,31395	0,31750	0,24744	0,25258	0,25682	
20	1,18200	1,23240	1,27240	0,55155	0,55814	0,56444	0,59165	0,58742	0,58222	
25	1,47750	1,54050	1,59050	0,86180	0,87210	0,88193	1,01630	1,02710	1,03470	
30	1,77290	1,84860	1,90860	1,24100	1,25580	1,27000	1,39850	1,42770	1,45180	
35	2,06840	2,15670	2,22670	1,68910	1,70930	1,72860	1,84230	1,89810	1,94650	
40	2,36390	2,46480	2,54480	2,20620	2,23260	2,25770	2,63600	2,73780	2,82670	
45	2,65940	2,77290	2,86290	2,79220	2,82560	2,85750	3,85730	3,93740	4,00350	
50	2,95490	3,08100	3,18090	3,44720	3,48840	3,52770	5,35000	5,39610	5,42740	
55	3,25040	3,38910	3,49900	4,17110	4,22090	4,26850	6,78910	6,89710	6,98180	
60	3,54590	3,69720	3,81710	4,96400	5,02330	5,07990	7,91120	8,07630	8,21250	
65	3,84140	4,00530	4,13520	5,82580	5,89540	5,96190	9,12440	9,35890	9,55840	
70	4,13690	4,31350	4,45330	6,75650	6,83720	6,91430	11,09100	11,43000	11,72200	
75	4,43240	4,62160	4,77140	7,75620	7,84890	7,93740	13,83300	14,12000	14,35700	
80	4,72790	4,92970	5,08950	8,82490	8,93030	9,03100	16,92200	17,14200	17,31100	
85	5,02330	5,23780	5,40760	9,96240	10,08100	10,19500	19,71500	20,06300	20,34100	
90	5,31880	5,54590	5,72570	11,16900	11,30200	11,43000	21,80100	22,25600	22,63100	

Tabela 78 - Perdas na coroa do estator em função da frequência para corrente nominal - Parâmetros D

cia	Perdas nos Dentes do Estator									
Frequênc [Hz]	Histerese			Corrente Parasita			Excesso			
	Senoidal	20%	38%	Senoidal	20%	38%	Senoidal	20%	38%	
5	0,04936	0,06171	0,07379	0,02032	0,02151	0,02401	0,00680	0,00827	0,00968	
10	0,24882	0,25000	0,25038	0,08127	0,08603	0,09605	0,03064	0,03196	0,03377	
15	0,47182	0,41881	0,37905	0,18285	0,19358	0,21610	0,06115	0,06029	0,06226	
20	0,62909	0,55841	0,50540	0,32507	0,34414	0,38418	0,10166	0,09529	0,09619	
25	0,78636	0,69801	0,63175	0,50792	0,53771	0,60029	0,18727	0,16719	0,15985	
30	0,94364	0,83761	0,75810	0,73140	0,77431	0,86441	0,34621	0,34150	0,35270	
35	1,10090	0,97722	0,88445	0,99552	1,05390	1,17660	0,56217	0,58328	0,62340	
40	1,25820	1,11680	1,01080	1,30030	1,37650	1,53670	0,77783	0,78083	0,81234	
45	1,41550	1,25640	1,13720	1,64570	1,74220	1,94490	0,95316	0,93989	0,97045	
50	1,57270	1,39600	1,26350	2,03170	2,15080	2,40120	1,14630	1,11060	1,13800	
55	1,73000	1,53560	1,38990	2,45830	2,60250	2,90540	1,47030	1,39290	1,39650	
60	1,88730	1,67520	1,51620	2,92560	3,09720	3,45770	1,95850	1,93180	1,99510	
65	2,04450	1,81480	1,64260	3,43350	3,63490	4,05790	2,52670	2,56480	2,70170	
70	2,20180	1,95440	1,76890	3,98210	4,21570	4,70630	3,03390	3,02350	3,13580	
75	2,35910	2,09400	1,89530	4,57130	4,83940	5,40260	3,41810	3,37050	3,48010	
80	2,51630	2,23360	2,02160	5,20110	5,50620	6,14690	3,82660	3,73320	3,83670	
85	2,67360	2,37320	2,14800	5,87150	6,21600	6,93930	4,47570	4,30390	4,36370	
90	2,83090	2,51280	2,27430	6,58260	6,96870	7,77970	5,39700	5,32350	5,49800	

Tabela 79 – Perdas nos dentes do estator em função da frequência para corrente nominal – Parâmetros D

Frequência [Hz]	Perdas no Estator								
	Perdas na Coroa			Perdas nos Dentes			Perdas no Estator		
	Senoidal	20%	38%	Senoidal	20%	38%	Senoidal	20%	38%
5	0,33425	0,34830	0,35965	0,07648	0,09149	0,10748	0,41073	0,43978	0,46713
10	0,78903	0,82302	0,85105	0,36073	0,36800	0,38019	1,14980	1,19100	1,23120
15	1,44420	1,49080	1,52860	0,71581	0,67268	0,65741	2,16000	2,16350	2,18600
20	2,32520	2,37800	2,41900	1,05580	0,99784	0,98578	3,38100	3,37580	3,40480
25	3,35560	3,43980	3,50710	1,48150	1,40290	1,39190	4,83710	4,84270	4,89900
30	4,41250	4,53210	4,63030	2,02130	1,95340	1,97520	6,43370	6,48560	6,60550
35	5,59990	5,76420	5,90170	2,65860	2,61440	2,68440	8,25850	8,37860	8,58610
40	7,20610	7,43520	7,62920	3,33630	3,27420	3,35990	10,54200	10,70900	10,98900
45	9,30890	9,53590	9,72380	4,01430	3,93850	4,05250	13,32300	13,47400	13,77600
50	11,75200	11,96600	12,13600	4,75070	4,65750	4,80260	16,50300	16,62300	16,93900
55	14,21100	14,50700	14,74900	5,65860	5,53100	5,69170	19,86900	20,03800	20,44100
60	16,42100	16,79700	17,11000	6,77140	6,70430	6,96900	23,19200	23,50100	24,07900
65	18,79200	19,26000	19,65500	8,00480	8,01450	8,40220	26,79600	27,27400	28,05800
70	21,98400	22,58100	23,09000	9,21780	9,19360	9,61100	31,20200	31,77500	32,70100
75	26,02100	26,59000	27,06600	10,34800	10,30400	10,77800	36,37000	36,89400	37,84400
80	30,47500	31,00200	31,43100	11,54400	11,47300	12,00500	42,01900	42,47500	43,43600
85	34,70100	35,38200	35,94300	13,02100	12,89300	13,45100	47,72200	48,27500	49,39400
90	38,28900	39,10400	39,78700	14,81000	14,80500	15,55200	53,09900	53,90900	55,33900

Tabela 80 – Perdas magnéticas no estator em função da frequência para corrente nominal – Parâmetros D

Anexo B – Gráficos

Anexo B.1 – Gráficos de Perdas: Parâmetros A

Figura 56 – Perdas por histerese na coroa do estator: superior: perdas absolutas; inferior: perdas em percentual, normalizadas em função das perdas com corrente senoidal – Parâmetros A

Figura 57 – Perdas por histerese nos dentes do estator: superior: perdas absolutas; inferior: perdas em percentual, normalizadas em função das perdas com corrente senoidal – Parâmetros A

Figura 58 – Perdas por corrente parasita na coroa do estator: superior: perdas absolutas; inferior: perdas em percentual, normalizadas em função das perdas com corrente senoidal – Parâmetros A

Figura 59 – Perdas por corrente parasita nos dentes do estator: superior: perdas absolutas; inferior: perdas em percentual, normalizadas em função das perdas com corrente senoidal – Parâmetros A

Figura 60 – Perdas por excesso na coroa do estator: superior: perdas absolutas; inferior: perdas em percentual, normalizadas em função das perdas com corrente senoidal – Parâmetros A

Figura 61 – Perdas por excesso na coroa do estator: superior: perdas absolutas; inferior: perdas em percentual, normalizadas em função das perdas com corrente senoidal – Parâmetros A

Figura 62 – Perdas magnéticas na coroa do estator: superior: perdas absolutas; inferior: perdas em percentual, normalizadas em função das perdas com corrente senoidal – Parâmetros A

Figura 63 – Perdas magnéticas nos dentes do estator: superior: perdas absolutas; inferior: perdas em percentual, normalizadas em função das perdas com corrente senoidal – Parâmetros A

Anexo B.2 – Gráficos de Perdas: Parâmetros B 8065

Figura 64 – Perdas por histerese na coroa do estator: superior: perdas absolutas; inferior: perdas em percentual, normalizadas em função das perdas com corrente senoidal – Parâmetros B 8065

Figura 65 – Perdas por histerese nos dentes do estator: superior: perdas absolutas; inferior: perdas em percentual, normalizadas em função das perdas com corrente senoidal – Parâmetros B 8065

Figura 66 – Perdas por corrente parasita na coroa do estator: superior: perdas absolutas; inferior: perdas em percentual, normalizadas em função das perdas com corrente senoidal – Parâmetros B 8065

Figura 67 – Perdas por corrente parasita nos dentes do estator: superior: perdas absolutas; inferior: perdas em percentual, normalizadas em função das perdas com corrente senoidal – Parâmetros B 8065

Figura 68 – Perdas magnéticas na coroa do estator: superior: perdas absolutas; inferior: perdas em percentual, normalizadas em função das perdas com corrente senoidal – Parâmetros B 8065

Figura 69 – Perdas magnéticas nos dentes do estator: superior: perdas absolutas; inferior: perdas em percentual, normalizadas em função das perdas com corrente senoidal – Parâmetros B 8065

Anexo B.3 – Gráficos de Perdas: Parâmetros B 5365

Figura 70 – Perdas por histerese na coroa do estator: superior: perdas absolutas; inferior: perdas em percentual, normalizadas em função das perdas com corrente senoidal – Parâmetros B 5365

Figura 71 – Perdas por histerese nos dentes do estator: superior: perdas absolutas; inferior: perdas em percentual, normalizadas em função das perdas com corrente senoidal – Parâmetros B 5365

Figura 72 – Perdas por corrente parasita na coroa do estator: superior: perdas absolutas; inferior: perdas em percentual, normalizadas em função das perdas com corrente senoidal – Parâmetros B 5365

Figura 73 – Perdas por corrente parasita nos dentes do estator: superior: perdas absolutas; inferior: perdas em percentual, normalizadas em função das perdas com corrente senoidal – Parâmetros B 5365

Figura 74 – Perdas magnéticas na coroa do estator: superior: perdas absolutas; inferior: perdas em percentual, normalizadas em função das perdas com corrente senoidal – Parâmetros B 5365

Figura 75 – Perdas magnéticas nos dentes do estator: superior: perdas absolutas; inferior: perdas em percentual, normalizadas em função das perdas com corrente senoidal – Parâmetros B 5365

Anexo B.4 – Gráficos de Perdas: Parâmetros B 3565

Figura 76 – Perdas por histerese na coroa do estator: superior: perdas absolutas; inferior: perdas em percentual, normalizadas em função das perdas com corrente senoidal – Parâmetros B 3565

Figura 77 – Perdas por histerese nos dentes do estator: superior: perdas absolutas; inferior: perdas em percentual, normalizadas em função das perdas com corrente senoidal – Parâmetros B 3565

Figura 78 – Perdas por corrente parasita na coroa do estator: superior: perdas absolutas; inferior: perdas em percentual, normalizadas em função das perdas com corrente senoidal – Parâmetros B 3565

Figura 79 – Perdas por corrente parasita nos dentes do estator: superior: perdas absolutas; inferior: perdas em percentual, normalizadas em função das perdas com corrente senoidal – Parâmetros B 3565

Figura 80 – Perdas magnéticas na coroa do estator: superior: perdas absolutas; inferior: perdas em percentual, normalizadas em função das perdas com corrente senoidal – Parâmetros B 3565

Figura 81 – Perdas magnéticas nos dentes do estator: superior: perdas absolutas; inferior: perdas em percentual, normalizadas em função das perdas com corrente senoidal – Parâmetros B 3565

Anexo B.5 – Gráficos de Perdas: Parâmetros C

Figura 82 – Perdas por histerese na coroa do estator: superior: perdas absolutas; inferior: perdas em percentual, normalizadas em função das perdas com corrente senoidal – Parâmetros C

Figura 83 – Perdas por histerese nos dentes do estator: superior: perdas absolutas; inferior: perdas em percentual, normalizadas em função das perdas com corrente senoidal – Parâmetros C

Figura 84 – Perdas por corrente parasita na coroa do estator: superior: perdas absolutas; inferior: perdas em percentual, normalizadas em função das perdas com corrente senoidal – Parâmetros C

Figura 85 – Perdas por corrente parasita nos dentes do estator: superior: perdas absolutas; inferior: perdas em percentual, normalizadas em função das perdas com corrente senoidal – Parâmetros C

Figura 86 – Perdas por excesso na coroa do estator: superior: perdas absolutas; inferior: perdas em percentual, normalizadas em função das perdas com corrente senoidal – Parâmetros C

Figura 87 – Perdas por excesso na coroa do estator: superior: perdas absolutas; inferior: perdas em percentual, normalizadas em função das perdas com corrente senoidal – Parâmetros C

Figura 88 – Perdas magnéticas na coroa do estator: superior: perdas absolutas; inferior: perdas em percentual, normalizadas em função das perdas com corrente senoidal – Parâmetros C

Figura 89 – Perdas magnéticas nos dentes do estator: superior: perdas absolutas; inferior: perdas em percentual, normalizadas em função das perdas com corrente senoidal – Parâmetros C

Anexo B.6 – Gráficos de Perdas: Parâmetros D

Figura 90 – Perdas por histerese na coroa do estator: superior: perdas absolutas; inferior: perdas em percentual, normalizadas em função das perdas com corrente senoidal – Parâmetros D

Figura 91 – Perdas por histerese nos dentes do estator: superior: perdas absolutas; inferior: perdas em percentual, normalizadas em função das perdas com corrente senoidal – Parâmetros D

Figura 92 – Perdas por corrente parasita na coroa do estator: superior: perdas absolutas; inferior: perdas em percentual, normalizadas em função das perdas com corrente senoidal – Parâmetros D

Figura 93 – Perdas por corrente parasita nos dentes do estator: superior: perdas absolutas; inferior: perdas em percentual, normalizadas em função das perdas com corrente senoidal – Parâmetros D

Figura 94 – Perdas por excesso na coroa do estator: superior: perdas absolutas; inferior: perdas em percentual, normalizadas em função das perdas com corrente senoidal – Parâmetros D

Figura 95 – Perdas por excesso na coroa do estator: superior: perdas absolutas; inferior: perdas em percentual, normalizadas em função das perdas com corrente senoidal – Parâmetros D

Figura 96 – Perdas magnéticas na coroa do estator: superior: perdas absolutas; inferior: perdas em percentual, normalizadas em função das perdas com corrente senoidal – Parâmetros D

Figura 97 – Perdas magnéticas nos dentes do estator: superior: perdas absolutas; inferior: perdas em percentual, normalizadas em função das perdas com corrente senoidal – Parâmetros D

Anexo C – Artigos Submetidos

Anexo C.1 – Analysis of the Influence of Saturation on the Airgap Induction Waveform of Five Phase Induction Machines

ANALYSIS OF THE INFLUENCE OF SATURATION ON THE AIRGAP INDUCTION WAVEFORM OF FIVE PHASE INDUCTION MACHINES

L. A. PEREIRA*, L. F. A. PEREIRA*, C. C. SCHARLAU[†], RICARDO S. DA ROSA[‡], S. L. HAFFNER*

*Departamento de Engenharia Elétrica

Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brasil

[†]Programa de Pós-Graduação em Engenharia de Automação e Sistemas Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brasil

[‡]Programa de Pós-Graduação em Engenharia Elétrica Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brasil

Emails: lapereira@ece.ufrgs.br, lfpereira@ece.ufrgs.br, cesarcs@gmail.com, ricardosr@gmail.com, slhaffner@gmail.com

Keywords— induction machine, saturation harmonics, airgap field, high phase machines, finite element analysis.

Abstract— The third harmonic of the airgap induction is more important in high phase machines than in conventional three phase machines, because it can be used to produce useful torque. The paper assesses the influence of saturation on the airgap induction waveform of five phase machines. It is shown that teeth and core saturation have opposite effects in what concerns the production of optimized airgap induction. The paper also shows that a third harmonic airgap field can exist even in the case of the five phase machine is connected in delta or star connected with neutral conductor. Finally analytical expressions for determination of the airgap induction including saturation effects are presented. The joint effect of stator current inject third harmonic and saturation is discussed.

List of Symbols

 $\widehat{I}_n\,$ - peak of nth component of the stator current;

- B_q airgap induction;
- B_{gf} FEM approximation of the airgap induction;
- B_{ga} Fourier approximation of the airgap induction;
- \widehat{B}_n peak of nth component of the airgap induction;
- \widehat{B}_{n}^{s} peak of nth airgap saturation harmonic induction;
- F_t total MMF produced by the stator windig;
- F_i MMF drop in the iron parts;
- F_g MMF drop in the airgap.

1 Introduction

Compared to three phase machines, high-phase machines have important advantages: greater reliability, less torque pulsation and higher torque/volume relationship (Toliyat et al., 1991a; Levi et al., 2007). In last decades a great number of papers have addressed the possibility of torque increase of converter fed high phase machines through the use of the third harmonic component of the airgap induction (Pereira et al., 2006; Jacob, 1998; Toliyat et al., 1991a; Toliyat et al., 1991b). In most published papers the third harmonic field is created through controlled injection of a third harmonic stator current component; saturation effects are in general disregarded or considered through approximation factors. However, saturation of iron parts can also produce a third harmonic airgap field in a way similar to three phase machines, as shown in this paper.

High-phase machines also open new interesting possibilities in what regards their control. In (Xu et al., 2002) the well-known principle of vector control has been extended to five-phase machines improving the resulting torque. An increase on the shaft torque of about 10% is reported through the use of the third harmonic airgap field produced by the third harmonic stator current. In (Pereira et al., 2006) a detailed description of the relationship between the stator current and the airgap induction of five phase machines is presented; the saturation is considered through a correction factor. The expressions derived can be used for reshaping the airgap induction to produce an optimized airgap waveform. In (Scharlau et al., 2008) a torque increase of 7% is obtained by flattening the airgap induction waveform and keeping the same peak induction and winding losses.

Considering saturation, a flattened induction waveform can be produced in the airgap, even without a corresponding third harmonic component in the stator current. However, the production of a third harmonic induction in the airgap changes the field distribution in all ferromagnetic parts of the machine. The iron losses distribution also changes as a consequence of reshaping the airgap induction. This issue deserves further investigation and has been disregarded so far.

This paper analyses the third harmonic airgap induction produced by saturation and by current injection. The influence of the saturation on the airgap field is investigated based on finite element analysis (FEA) of a prototype. It is shown that teeth saturation and stator core saturation has opposite effect on the waveform of the airgap induction. Core saturation contributes to increase the airgap peak induction while teeth saturation contributes to reduce the peak. It is also shown that for five phase machine a third harmonic airgap induction can exist even when the machine is star connected with a neutral conductor. The paper is organized as follows: in the introduction a brief overview of the state of the art is given; in section two the production of harmonic airgap field throug saturation and current injection is analysed, being this section divided into two subsections. In the last sections the conclusions are presented.

2 Production of Harmonic Airgap Field

For five-phase induction machines the most significant induction harmonic component that can effectively produce torque is the third one. This harmonic field can be generated by two means: saturation effects and/or current injection. In what follows these two ways of producing airgap harmononic field are presented and discussed. The main interest here resides in the airgap waveshape as it has a direct influence on the output torque and on iron losses.

2.1 Saturation third Harmonic Field

Saturation effects are always present in electrical machines. The saturation level of iron parts is limited by magnetic losses, therefore for each iron part the maximal induction is basically determined by the associated losses and on the experience of the machine designer (Müller et al., 2007). As a consequence of iron saturation, the airgap waveform changes and new harmonic fields are produced which are known as saturation harmon-This kind of harmonics are present even ics. when the current has only a fundamental component. Saturation produces odd harmonics whose phase relationship to the fundamental depends on the relative saturation level of the main iron parts (stator and rotor teeth, stator and rotor cores). Thus, under the influence of the saturation the airgap waveshape can be *flattened* (high saturated teeth, weak saturated core) or peaked up (weak saturated teeth, high saturated core)(Lee, 1961; Hsu et al., 1989). The influence of the iron saturation on the airgap induction was investigated in (Jacob, 1998) using static field plots obtained from FEA of three phase machines.

The analysis of saturation harmonics, presented in what follows, is based on a FE model of a prototype whose main data and parameters are given in (Scharlau et al., 2008). This machine was built in the frame of a TEFC 3/4 HP induction motor and the winding has integral pitch with 2 slots per pole and phase. In order to assess the generation of saturation harmonics the machine is fed by a set of symmetric sinusoidal currents. The field distribution is calculated for the time instant when the current in phase 1 is at the peak value. The currents in the remaining phases have values corresponding the angle displacement among the phases (72°) .

Under weak saturation condition the field has the distribution shown in Fig. 1 (a), which was obtained applying the no-load current density to the stator slots and no current to the rotor. This situation corresponds to the no-load condition. In this case the fundamental airgap induction predominates, stator and rotor teeth are both weak saturated and the same happens to the stator and rotor cores. This can be confirmed by the airgap induction shown in Fig. 1 (b), where the third harmonic produced by saturation is about 0.9%taking the fundamental as base value. Higher saturation harmonics have vanishingly small values. As can be recognized in Fig. 1 (b) the most salient harmonic components are the so called *slot har*monics, which for these machine are the 19th and the 21th induction harmonics with amplitude of 20.3% and 9.8% respectively. The maximal stator tooth induction is 1.17 T and the maximal stator core is 1.19 T. Considering the steady state operation, the frequency of the rotor field is very low being the induction in the rotor parts of less interest, given that the losses are very low too. The FE analysis reveals, however, lower induction values in the rotor side as in the corresponding stator parts. One of the reasons to generate a third harmonic field in the airgap is the reduction of the peak induction for the same fundamental induction. Thus, for the same peak induction a higher fundamental induction can be produced leading to a torque increase(Lyra and Lipo, 2002; Scharlau et al., 2008). Regarding this issue, the net peak reduction in the fundamental induction coming from saturation harmonics is about 1.2%. Therefore, for this machine under rated conditions there is only a small contribution coming from the saturation in what regards the airgap induction reshaping. However, the contribution increases with the saturation level, as illustrated in Fig. 4.

The saturation level of electrical machines can be evaluated based on the *saturation factor*, K_s , which represents the total fmm in relation to the airgap fmm, as follows:

$$K_s = \frac{F_t}{F_g} = \frac{F_g + F_i}{F_g}.$$
 (1)

The saturation factor for the rated no-load current is 1.25 while for the double no-load current it is 1.68.

When higher currents are imposed to the stator the iron parts begin to saturate and the saturation harmonics change their amplitude and phase relation to the fundamental. When the teeth saturate more than the core the third harmonic induc-

(a) Field distribution under weak saturation condition of iron parts. The maximal stator tooth induction is 1.17 T and maximal induction in section A is 1.19 T.

(b) Normal induction component in the airgap. The saturation third harmonic is 0.9%.

Figure 1: Field distribution (a) and normal component of the airgap induction (b) at no-load and weak saturation.

tion has 0° phase displacement in relation to the fundamental resulting in flatter airgap induction. This case is illustrated in Fig. 2 where the third harmonic induction is 7.8% and the net peak reduction is 8.6%. For the case considered, the saturation is obtained doubling the stator current. Fig. 2 (b) shows that for the prototype machine an apreciable effect can only be obtained with high magnetization currents and high saturation levels.

If the most saturated part is the stator core, the airgap induction will have a peaked up waveform, as shown in Fig. 3 which was also obtained doubling the no-load stator current and with no rotor current. This field distribution was obtained reducing the stator core section so as to saturate the core before the teeth become saturated. It is worthwhile to point out that the relative saturation of the iron parts depends on the specific machine design, being impossible to saturate the core without at same time saturate the teeth, at least to some extent. Due this fact the core saturation has been obtained reducing the core section to one half of the original size. In fact, in conventional machines the teeth are generally designed to become more saturated than the core. This design choice limits the overal iron losses arising from high saturation levels, given that the teeth

(a) Field distribution under heavy saturation condition of iron parts. The maximal stator tooth induction is 1.68 T and maximal induction in section A is 1.67 T.

(b) Normal induction component in the airgap. The saturation third harmonic is 7.8%.

Figure 2: Field distribution (a) and normal component of the airgap induction (b) at no-load and heavy saturation.

volume is in general lower than the core volume. In this case, the third harmonic induction wave has an oppposite phase relation to the fundamental (180° phase displacement) producing a peaked up airgap induction, as can be seen in Fig. 3 (b). For this condition the third harmonic is 14.3% and the net peak increase is 9.2%. The fifth harmonic component of the airgap induction plays a more important role here because it ammounts 5% and is in phase with the third harmonic. Therefore, its effect opposes the effect of the third harmonic, as it acts flatenning the airgap.

From Figs. 1, 2 and 3, it can be concluded that the saturation of the stator teeth and stator core have opposite effects in what concerns obtaining an optimized flat induction in the airgap. A flattened induction airgap can be only achieved if the teeth saturation predominates over the core saturation. The predominant effect depends on the specific design choice for the relative dimensions of stator core and stator teeth. It must be remarked that under balanced saturation condition between teeth and core the induction in the airgap will have a distribution similar to Fig. 1 with no noticeable saturation harmonic content, even at high saturation levels. This effect is similar to what happens in conventional three phase machines (Jacob, 1998). It can be also recognized

(a) Field distribution under heavy saturation condition of iron parts and reducing the stator core to one half of the original size. The maximal stator tooth induction is 1.43 T and maximal induction in section A is 1.87 T.

(b) Normal induction component in the airgap. The third harmonic is 14.3%.

Figure 3: Field distribution (a) and normal component of the airgap induction (b) at no-load and heavy stator core satured condition, stator core is more saturated than teeth.

from Figs. 1, 2 and 3 that the saturation level has practically no influence on the relative amplitudes of the slot harmonics. It must be finally remembered that the airgap induction in Figs. 1, 2 and 3 were obtained under the assumption that only fundamental currents flow in the stator winding and no current exist in the rotor circuit.

Saturation harmonics induce corresponding stator voltages in the machine phases which must be balanced by applied voltages of the same frequency, in order to preserve these harmonics in the airgap induction. Without these applied harmonic voltages, compensating currents of the same frequency create opposite fields in the airgap which practically eliminate the saturation harmonics. If the machine is star connected with neutral conductor, or mesh connected, the compensating currents can flow with no restriction. However, if the machine is star connected with no neutral connection the fifth harmonic compensating current and its multiples will be suppressed, preserving theses harmonics in the airgap induction. This is not true for the third harmonic current. Different from three phase machines, in five phase machines third harmonic currents can always flow regardless the kind of connection used. Therefore,

a third harmonic airgap induction requires always that a corresponding third harmonic voltage be applied to the stator.

For the design of high phase machines it is important to be able to estimate the effect of saturation on the overall machine performance. Besides the FEM, there are some analytical iterative procedures for the determination of saturation harmonics in three phase machines, most of them suited for the case where the airgap induction is flattened (heavy teeth saturation), see for example (Lee, 1961; Jacob, 1998; Chalmers and Dodgson, 1971). Approximate procedures for the determination of saturation harmonics without an iterative procedure also can be found in the literature. Accordingly to (Seinsch, 1992), for three phase machines, the third harmonic can be approximated through the following expression:

$$\frac{\widehat{B}_3^s}{\widehat{B}_1} \cong \frac{1 - \frac{1}{K_s}}{1 + \frac{3}{K_s}} \tag{2}$$

When applied to the five phase prototype, the latest expression leads to big deviations from the values obtained with FEM. Thus, the following alternative expression is proposed:

$$\frac{\widehat{B}_3^s}{\widehat{B}_1} \cong \frac{1 - \frac{1}{(k_1 K_s)^{k_2}}}{1 + \frac{3}{(k_1 K_s)^{k_2}}} \tag{3}$$

For the case of sinusouidal current the values $k_1 = 0.90$ and $k_2 = 0.75$ have been adapted and allow a very good agreement with the values obtained with FEM. Using this expression errors less than 1% when compared with FEM can be obtained. The production of saturation third hamonic induction as a function of the saturation factor is expressed by the lowest curve in Fig. 4, which was obtained using expression (3). Harmonic content in Fig. 4 refers to the case where the teeth saturation dominates. Accordingly to this curve, a flattened airgap induction can only be achieved under heavy stator teeth saturation $(K_s > 2.0)$ leading in practice to excessive magnetic and winding losses.

2.2 Current Injected Third Harmonic

Besides saturation effects, an optimized flattened airgap induction can be produced when the stator currents contain a third harmonic component with appropriated phase relationship to the fundamental. The required airgap induction can be assured under varying load conditions by applying voltages with appropriated harmonic content as stated in (Scharlau et al., 2008). Thus, the stator and rotor currents will change with the load in order to produce an airgap induction corresponding to the applied voltage. Alternatively, a flatenned airgap induction can be also produced by a current controlled pulse width modulated converter which im-

Figure 4: Third harmonic content for the prototype machine versus saturation factor calculated with FEM for three harmonic combination: 0%, 20% and 38%.

poses a prescribed current waveform. However, in this case not only the relative amplitude but also the phase relationsip between fundamental and third harmonic must be adjusted when the load condition and stator frequency change. Through appropriate control loops the fundamental and the third harmonic stator currents can be imposed independently, as described in (Xu et al., 2002). In this way, it is possible to analyse only the field at no-load togheter with the associated no-load current (magnetization current), assuming that the resulting airgap field will change very little with load. On the other hand, in order to produce the required airgap induction it is first of all necessary to determine the relation between stator current and airgap induction. Accounting only the fundamental and the third harmonic induction component, and disregarding saturation effects. the relationship between stator current components and airgap induction components is given by (Scharlau et al., 2008):

$$\frac{\widehat{I}_3}{\widehat{I}_1} - \frac{\widehat{W}_1 \widehat{B}_3}{\widehat{W}_3 \widehat{B}_1} \tag{4}$$

The factor \widehat{W}_n includes the effect of the winding distribution (winding factor) and the airgap effective permeance. For the five-phase proto type the relationship between \widehat{W}_3 and \widehat{W}_1 is $\widehat{W}_3 = 0.301 \widehat{W}_1$. In (Scharlau et al., 2008) it was demonstrated that an optimized flat airgap induction can be obtained imposing $B_3/B_1 \cong 0.13$. From (4) results for this combination $\hat{I}_3/\hat{I}_1 =$ 0.39. The FE analysis for the prototype machine shows that this induction harmonic combination can be obtained imposing $\widehat{I}_3/\widehat{I}_1 = 0.38$. This harmonic combination has been used in the analysis presented here. The stator current correspondig to $\widehat{B}_3/\widehat{B}_1 \cong 0.13$ is illustrated in Fig. 5 while the airgap induction at no-load and under normal saturation condition can be seen in Fig. 6. In this case, the fundamental current is the same as

Figure 5: Stator current at no-load to produce an optimized flat induction in the airgap. The current combination $\hat{I}_3/\hat{I}_1 = 0.38$ results in $\hat{B}_3/\hat{B}_1 \cong 0.13$.

Figure 6: No load airgap induction under injection of third harmonic current as shown in Fig. 5 and weak saturation condition resulting in $\hat{B}_3/\hat{B}_1 \simeq 0.13$.

in the preceeding cases, being a third harmonic current added to the fundamental. The effect of the saturation on the airgap induction is illustrated in Fig. 7, which was obtained doubling the stator current and keeping the same harmonic combination. Under the effect of saturation the third harmonic induction increased from 13% to 16.5% an the net peak has reduction changed from 13% to 14%. The harmonic content of the airgap induction with the saturation factor is illustrated in Fig. 4, where a intermediate combination $I_3/I_1 = 0.20$ has been also included for the sake of comparison. The increase in the third harmonic content in the airgap induction resulted from the saturation effects, in the same way as in the case where only the fundamental current flows. Thus, the saturation harmonic can be approximated by (2) using in this case $k_1 = 0.82$ and $k_2 = 0.70$. Expression (4) can be now modified to include the saturation effect as follows.

$$\frac{\widehat{B}_3}{\widehat{B}_1} \cong \frac{\widehat{W}_3\widehat{I}_3}{\widehat{W}_I\widehat{1}_1} + \frac{\widehat{B}_3^s}{\widehat{B}_1}$$

Figure 7: No load airgap induction under injection of third harmonic current as shown in Fig. 5 and heavy teeth saturation condition resulting in $\hat{B}_3/\hat{B}_1 \simeq 0.165$.

$$K_{31} = \frac{\widehat{B}_3}{\widehat{B}_1} \cong \frac{\widehat{W}_3 \widehat{I}_3}{\widehat{W}_I \widehat{1}_1} + \frac{1 - \frac{1}{(k_1 K_s)^{k_2}}}{1 + \frac{3}{(k_1 K_s)^{k_2}}}$$
(5)

Using the last expression with $k_1 = 0.82$ and $k_2 = 0.70$ the determination of airgap harmonic content for the prototype can be performed with an accuracy of 10% when compared with the values obtained with FEM (see Fig. 4).

3 Conclusion

The paper analysed the influence of the saturation of the iron parts in what regards the generation of an optimized airgap induction. It was demonstrated that saturation of the stator core increases the induction peak, while the teeth saturation contributes to produce a flattened waveform. Saturation harmonics can produce an appreciable flattening effect only when the teeth is more saturated than the core and under heavy saturation condition, which in most practical cases are associated with high losses. To mantain a third harmonic airgap induction a correponding applied voltage is also required, in order to prevent compensating currents and harmonic elimination. The paper also proposed approximate analytical expressions to evalute the saturation effects on the airgap field. This expressions can be applied for the design and control of five phase machines.

References

- Chalmers, B. and Dodgson, R. (1971). Waveshapes of flux density in polyphase induction motors under saturated conditions, *IEEE Transactions on Power Apparatus and Systems* **PAS-90**(2): 564–569.
- Hsu, J., Woodson, H. and Liou, S.-S. (1989). Experimental study of harmonic-flux effects in ferromagnetic materials, *IEEE Transactions* on Magnetics 25(3): 2678–2685.

- Jacob, A. (1998). Zum einfluss von zahnund jochsättigung auf die harmonischen des luftspaltfeldes, *Electrical Engineering* 81(3): 151–161.
- Lee, C. H. (1961). Saturation harmonics of polyphase induction machines, *IEEE Trans*actions on Power Apparatus and Systems, Part III 80(3): 597–603.
- Levi, E., Bojoi, R., Profumo, F., Toliyat, H. and Williamson, S. (2007). Multiphase induction motor drives - a technology status review, *Electric Power Applications, IET* 1(4): 489– 516.
- Lyra, R. and Lipo, T. (2002). Torque density improvement in a six-phase induction motor with third harmonic current injection, *IEEE Transactions on Industry Applications* 38(5): 1351–1360.
- Müller, G., Vogt, K. and Ponick, B. (2007). Berechnung elektrischer Maschinen, Wiley-VCH.
- Pereira, L. A., Scharlau, C., Pereira, L. F. A. and Haffner, J. (2006). General model of a five-phase induction machine allowing for harmonics in the air gap field, *IEEE Transactions on Energy Conversion* 21(4): 891–899.
- Scharlau, C., Pereira, L. F. A., Pereira, L. A. and Haffner, S. (2008). Performance of a five-phase induction machine with optimized air gap field under open loop v/f control, *IEEE Transactions on Energy Conversion* 23(4): 1046–1056.
- Seinsch, H. O. (1992). Oberfelderscheinungen in Drehfeldmaschinen. Grundlagen zur analytischen und numerischen Berechnung, Teubner Verlag.
- Toliyat, H., Lipo, T. and White, J. (1991a). Analysis of a concentrated winding induction machine for adjustable speed drive applications. i. motor analysis, *IEEE Transactions on En*ergy Conversion 6(4): 679–683.
- Toliyat, H., Lipo, T. and White, J. (1991b). Analysis of a concentrated winding induction machine for adjustable speed drive applications. ii. motor design and performance, *IEEE Transactions on Energy Conversion* 6(4): 684–692.
- Xu, II., Toliyat, II. and Petersen, L. (2002). Fivephase induction motor drives with dsp-based control system, *IEEE Transactions on Power Electronics* 17(4): 524–533.

Anexo C.2 – Magnetic Losses of Five Phase Induction Machines with Optimized Airgap Induction Waveform

MAGNETIC LOSSES OF FIVE PHASE INDUCTION MACHINES WITH OPTIMIZED AIRGAP INDUCTION WAVEFORM

L. A. PEREIRA*, L. F. A. PEREIRA*, C. C. SCHARLAU[†], RICARDO S. DA ROSA[‡], S. L. HAFFNER*

*Departamento de Engenharia Elétrica

Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sal, Brasil

[†]Programa de Pós-Graduação em Engenharia de Automação e Sistemas Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brasil

[‡]Programa de Pós-Graduação em Engenharia Elétrica Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brasil

Emails: lapereira@ece.ufrgs.br, lfpereira@ece.ufrgs.br, cesarcs@gmail.com, ricardosr@gmail.com, slhaffner@gmail.com

Keywords— induction machine, magnetic losses, high phase machines, airgap field.

Abstract— Five phase machines are able to produce higher output torque per active volume when the airgap induction has a trapezoidal waveform. However, this optimized waveform changes the field distribution in the main iron parts - teeth and cores; as a consequence the amount and distribution of magnetic losses also changes. Peak an mean values of the induction in iron parts change when compared to a sinusoidal distribution. The paper analysis the effect on the losses coming from the introduction of a third harmonic in the airgap induction producing an optimized induction waveform. Loss changes in stator teeth and stator core are estimated and compared for a prototype five phase machine. It is shown that some losses components decreases while other increases, being the net change dependent on the relative distribution of the losses. The analysis is performed taking the prototype as reference. The losses are estimated using a three terms analytical model including eddy-current, hysteresis and excess losses.

List of Symbols

 $A_{sc}\,$ - stator cross section;

- b_n mean tooth width;
- B_q airgap induction;
- B_t stator tooth induction;
- $B_{q\bar{l}}$ FEM approximation of the airgap induction;
- B_{gc} Fourier approximation of the airgap induction;
- \widehat{B}_n peak of nth component of the airgap induction;
- d magnetic iron sheet thickness;
- $h_{sc}\,$ stator core height;
- \widehat{I}_{ns} peak of nth component of the stator current;
- D stator inner diameter;
- **p** pole pair number;
- $\ell\,$ stator core length;
- $\widehat{\Phi}_{sc}$ maximal flux in stator core;
- $\sigma\,$ magnetic iron sheet conductivity;
- τ_n stator tooth pitch;
- τ_p pole pitch.

1 Introduction

Torque increase of converter fed high phase machines using a third harmonic component of the airgap induction has been reported in several published papers (Pereira et al., 2006; Jacob, 1998; Toliyat et al., 1991a; Toliyat et al., 1991b), where the third harmonic airgap field is created through controlled injection of a third harmonic stator current component and by saturation effects.

High-phase machines have important advantages over conventional three phase machines: greater reliability, less torque pulsation and higher torque/volume relationship (Toliyat et al., 1991a; Levi et al., 2007). High-phase machines also open new possibilities concerning their control. In (Xu et al., 2002) the well-known principle of vector control has been extended to five-phase machines improving the resulting torque. An increase on the shaft torque of about 10% is reported through the use of the third harmonic airgap field produced by the third harmonic stator current. In (Pereira et al., 2006) a detailed description of the relationship between the stator current and the airgap induction of five phase machines is presented; the saturation is considered through a correction factor. In (Scharlau et al., 2008) a torque increase of 7% is obtained by flattening the airgap induction waveform and keeping the same peak induction and winding losses.

The introduction of a third harmonic induction in the airgap changes not only the induction waveform in the airgap but also changes the field distribution in all ferromagnetic parts of the machine. The iron losses distribution also changes and as a consequence of reshaping the airgap induction. This issue has been not given the deserved attention in the published papers. The comparison and torque increase reported in the literature has been not related to the changes in magnetic losses. It must be remembered that the rated power and torque is limited by the overall losses and temperature rise in the windings. In fact, almost all kind of electrical machine can deliver higher output torque if the losses and inner temperature is allowed to increase above the rated value. Thus, higher power and torque have to be related to temperature rise and losses inside the machine. As a thumb rule one can state that equal losses will result in the same temperature rise. Torque increase is only meaningful if losses and temperature rise remains below the limits for a given machine.

This paper analyses the effects on the magnetic losses coming from the generation of an optimized rectangular induction waveform in the airgap. The analysis is based on Finite Element field plots of a prototype machine and on analytical expressions for the losses. The prototype data used in this paper are described in details in (Pereira et al., 2006) and (Scharlau et al., 2008). The harmonic airgap induction is produced by saturation and by current injection. The field distribution, the mean and peak induction in the iron parts are compared to the case where a sinusoidal airgap induction exists. The magnetic loss model includes three components: eddy current, hysteresis and excess losses. In order to reduce the computational burden and to simplify the analysis the field in the core is considered as alternating. In general the rotational characteristic is considered by a correction factor (Rudolf Richter, 1967). It is shown that some of the teeth and stator core loss components reduce while others increase. Thus, the overall net loss change depends on the relative distribution of the loss components. If the dominating loss component is the hysteresis loss, an optimized induction can lead to a reduction in the magnetic losses. On contrary, if the dominating loss component is the eddy current loss, magnetic losses will increase.

This paper is organized in the following way: after a brief introduction in section 1, the flux distribution in the iron parts is described in section 2; in section 3 the losses in the iron parts are described and expression for their determination are presented taking account of the airgap third harmonic; finally, in the last section the main conclusions are presented and discussed.

2 Induction in Iron Parts at No-load

In this section changes in the field distribution arising from the inclusion of a third harmonic in the airgap induction are analyzed taking a prototype machine as example. These changes are essential to estimate the corresponding changes in the iron losses. The changes in the field of rotor iron parts under steady state condition play a minor role in what respect the losses. The fundamental frequency of the rotor induction is $s \cdot f$ (s is the rotor slip) resulting in small losses. Hence no further attention will be given here to the rotor magnetic circuit; the analysis is restricted to the stator.

Induction machines are in general designed aiming to utilize the iron characteristics at best without producing excessive losses. High induction values leads to saturation producing higher losses, increasing the no-load current and decreasing the power factor and efficiency. The upper limit for the tooth induction depends on several factors: saturation effect on magnetization current, specific losses (W/kg) of the particular iron lamination, stator frequency, pole number and machine main dimensions. In addition the upper limit also depends to great extent on the manufacturer experience. Regarding the induction waveform conventional machines work only with the fundamental airgap field and the peak induction can be observed only at one point under one pole.

Accordingly to (Scharlau et al., 2008) an optimized airgap induction can be obtained imposing $\hat{B}_3/\hat{B}_1 \cong 0.13$. Using finite element analysis this harmonic combination requires $\hat{I}_{3s}/\hat{I}_{1s} = 0.38$ for the prototype. The field distribution and the resulting airgap induction are illustrated in Fig. 1. The third harmonic produces a flattening effect on the airgap wave shape. The net induction peak reduction in the fundamental wave produced current injection and saturation is 13%. Given that the field distribution does not change significantly from the no-load to the full load condition, the analysis will consider the field distribution in Fig. 1 in what follows.

2.1 Stator Tooth Induction

As can be seen in Fig. 1 (a) only a reduced number of teeth attain the peak value of the induction at a given time instant; hence, the full saturation is restricted to few teeth. The prototype machine has a constant tooth section so that the induction along the tooth height can be assumed constant. The tooth induction across the mean height of the tooth is depicted in Fig. 2 from which it can be seen that the field distribution is very similar to the distribution in the airgap; the induction harmonic content is practically the same. Therefore, for the sake of loss estimation, the airgap induction can be used as reference. The reduction in the maximal tooth induction is about the same as the reduction in the airgap induction. In Fig. 3 the maximal tooth induction is depicted versus the equivalent magnetization current $I_{\mu\nu}$ for three different harmonic combinations. The maximal tooth induction is reduced when the airgap induction contains a third harmonic component and the losses associated will consequently change.

(a) Field distribution at no load obtained with FEM imposing $\widehat{I}_{3s}/\widehat{I}_{1s} = 0.38$.

(b) No load airgap induction under injection of third harmonic current resulting in $\hat{B}_3/\hat{B}_1 \cong 0.13$.

Figure 1: Field distribution (a) and normal component of the airgap induction (b) at no-load for an optimized induction harmonic combination.

Figure 2: Induction across the mean height of the stator teeth for two different harmonic combinations calculated with FEM.

2.2 Stator Core Induction

The induction in each point of the stator core has a different amplitude and a different direction as the field plot in Fig. 1 (a) illustrates. In this way, it becomes difficult evaluate the field changes for different harmonic combinations. Considering this issue, it makes no sense to speak about sinusoidal or trapezoidal field distribution in the stator core. In what concerns the losses, however, a common

Figure 3: Maximal tooth induction for three different harmonic combinations calculated with FEM versus equivalent magnetization current I_{mo} expressed in percentual of the fundamental current.

practice is to take as reference value the peak induction over the section where the induction is approximately constant and attains the maximal value (Rudolf Richter, 1967). This section is indicated as section A in in Fig. 1 (a). Accounting the stator slot leakage flux trough a factor K_{δ} and defining $K_{13} = \frac{\tilde{B}_3}{\tilde{B}_1}$, the peak stator core induction is obtained integrating the airgap induction $B_g(\theta)$ as follows:

$$\hat{\Phi}_{sc} - K_{\delta} \int_{0}^{\pi} B_{g}(\theta) \frac{\ell D}{2p} d\theta$$

$$\hat{\Phi}_{sc} - K_{\delta} \frac{\ell D}{p} \widehat{B}_{1} \left[1 + \frac{K_{13}}{3} \right] \qquad (1)$$

$$\hat{B}_{sc} = \frac{\widehat{\Phi}_{sc}}{A_{sc}} = \frac{\widehat{\Phi}_{sc}}{h_{sc} \ell}$$

$$\widehat{B}_{sc} = K_{\delta} \frac{D}{h_{sc}p} \widehat{B}_1 \left[1 + \frac{K_{13}}{3} \right] = K_{\delta} \frac{D}{h_{sc}p} \widehat{B}_1 K_{sc}$$
(2)

with the factor K_{sc} defined as:

$$K_{sc} = \left[1 + \frac{K_{13}}{3}\right] \tag{3}$$

The factor K_{δ} expresses the relation between the flux crossing the airgap and the flux through the stator core. For practical purpose this factor ranges from 0.90 to 0.95. The increase in the core flux is given by the factor K_{sc} in (2). Imposing an optimized airgap induction with $\hat{B}_3/\hat{B}_1 \cong 0.13$ result in $K_{sc} \cong 1.043$. This means that for this combination there is practical no increase in the stator peak induction. As a consequence the changes in the iron losses will be very small. Fig. 4 shows the maximal stator flux against the equivalent magnetization current for three harmonic combination in

Figure 4: Maximal stator core flux for three different harmonic combinations as a function of the equivalent magnetization current I_{mo} current and calulated with FEM.

the airgap. It can be recognized that a significant flux and induction increase occurs only for heavy saturation levels. For the rated magnetization current an increase of 4.9% is obtained with FEM for the combination $\hat{B}_3/\hat{B}_1 \cong 0.13$.

3 Total Losses

The main losses of an induction machine are copper losses, iron losses, friction plus windage losses and stray losses. The effect of the inclusion of the third harmonic induction on these losses is discussed in what follows. It is worth to note that the correct estimation of magnetic losses remains a very difficult task; large discrepancies between calculation and measured values are common in practice. Usual design formulas can give only approximated values for the iron losses. Furthermore, they are heavily dependent on experimental factors valid for a specific iron sheet. The stray and the mechanical losses are practically not sensitive to the third harmonic induction wave and can be regarded as constant.

3.1 Basic Iron Losses

Traditionally the analytical loss model used to estimate iron losses includes a two term expression including hysteresis and eddy current effects. This model is based on empirical coefficients and result in large errors for high frequencies and high induction levels. The coefficients are in general obtained from tests using an Epstein apparatus or from manufacturer data, which are obtained under standard conditions. The application of these expressions for the case of electrical machines introduces additional discrepancies, as the condition are not the same as in the standard tests. Furthermore,

the manufacturing and punching process changes the magnetic properties and the specific losses of the iron sheets (Smith and Edey, 1995; Boglietti et al., 2001; Boglietti, 1999). Therefore, practical correction factors are needed in order to account specific machine designs (Ionel et al., 2006; Štumberger et al., 2003). A better iron loss model was introduced by (Bertotti, 1988) and is based on the introduction of a third loss component named anomalous loss or excess loss. This model is nowadays considered to give better loss prediction than the classical one. Thus, the iron losses can be classified into three categories: eddy current, hysteresis and excess losses. In (Mthombeni and Pillay, 2004) a method for determining the losses coefficients for each loss component is described, where is also stressed that the classical expressions can lead to big deviations from measured losses. The three term loss model has been applied for loss calculation with FEM resulting in improved accuracy at the cost of higher computational burden, see for example (Stumberger et al., 2003; Diaz et al., 2007; Belahcen and Arkkio, 2008). In this paper, a simplified approach will be applied allowing an approximate estimation of iron losses. The distribution of the total iron losses among these three categories depends on the specific design of the machine. In addition, for the same machine the losses distribution in each ferromagnetic part changes when the stator current waveform or the saturation condition changes. As the preceding analysis has shown, the introduction of a third harmonic in the airgap field changes the induction distribution in all ferromagnetic parts resulting in a new iron losses distribution. Therefore, introducing a third harmonic induction the total losses can be reduced or increased according to the dominating loss component (Hsu et al., 1991). Besides basic iron losses there are other losses in the machine which change with the inclusion of third harmonic induction: surface core losses (mainly in the rotor), tooth flux pulsation losses (in the rotor and stator teeth), tooth flux pulsation cage current losses (rotor cage), time harmonic induced losses arising from the converter switching frequency, high space harmonic losses. The determination of the changes in these additional losses are not considered here, as they normally consist of a small part of the total losses.

3.2 Eddy Current Losses

Eddy current losses are in general calculated from the specific losses expressed in W/kg, which and obtained from experimental tests on material samples. During these tests an alternating, homogeneous and unidirectional field is applied to the sample being the specific losses measured for a given frequency and maximal induction. However, in practical devices the field distribution is different from test conditions and correction factors are introduced (Smith and Edey, 1995; Ionel et al., 2006). The field in each tooth can be considered homogeneous while the field in the stator core alternates not only in magnitude but also in direction. The induction in stator core has a radial and a tangential component and both are time changing. In this way, the field in the tooth can be considered as a pure alternating field, while the field in the stator core is in part rotating (Belahcen and Arkkio, 2008). Considering the induction, B(t)), alternating with period T the mean eddy current losses per unit volume (W/m^3) is given as (Mthombeni and Pillay, 2004):

$$P_e = \frac{\sigma d^2}{12T} \int_0^T \left(\frac{dB(t)}{dt}\right)^2 dt \tag{4}$$

Considering that the tooth induction $B_t(t)$ has a waveform similar to the airgap induction at steady the eddy current loss, P_{et} , for one tooth can be stated as follows:

$$B_{\iota}(t) - B_g(t) \frac{\tau_n}{b_n} \tag{5}$$

$$B_t(t) = \frac{\tau_n}{b_n} \left[\widehat{B}_1 \sin\left(\omega t\right) + \widehat{B}_3 \sin\left(3\omega t - \varphi_3\right) \right]$$
(6)

$$P_{et} = \left(\frac{\tau_n}{b_n}\right)^2 \frac{\sigma d^2}{24} \left(\omega \widehat{B}_1\right)^2 \left[1 + \left(\frac{3\widehat{B}_3}{\widehat{B}_1}\right)^2\right] \quad (7)$$

In practical machine designs $\tau_n/b_n \cong 2$. According to the later equation the eddy current losses always increase when the airgap induction has harmonic waves besides the fundamental one. For the especial case of $\hat{B}_3/\hat{B}_1 \cong 0.13$ there will be an increase of about 15% in comparison to the case where only the fundamental wave exists in the airgap. On the other side, the phase relationship of the third harmonic and fundamental induction has no influence on this loss component.

The stator core induction is obtained integrating the airgap induction and introducing a leakage factor K_{δ} as in section 2.2. The mean stator core induction as a function of the time is given as follows:

$$B_c(t) - K_\delta \frac{2}{\pi} \frac{\tau_p}{h_{sc}} \left[\widehat{B}_1 \cos\left(\omega t\right) - \frac{\widehat{B}_3}{3} \cos\left(3\omega t - \varphi_3\right) \right]$$
(8)

From (4) results for the eddy current losses:

$$P_{ec} = \left(K_{\delta} \frac{2}{\pi} \frac{\tau_p}{h_{sc}}\right)^2 \frac{\sigma d^2}{24} \left(\omega \widehat{B}_1\right)^2 \left[1 + \left(\frac{\widehat{B}_3}{\widehat{B}_1}\right)^2\right] \tag{9}$$

For $\hat{B}_3/\hat{B}_1 \cong 0.13$ results an increase of less than 2% in the stator core loss. Therefore, an increase in the eddy current losses is observed, when the induction in iron parts is considered as alternating and a flattened airgap induction is imposed. The adittional losses are mainly located in stator teeth.

3.3 Hysteresis Losses

According to (Chen and Pillay, 2002) the hysteresis losses can be determined as follows when the field is considered as alternating and with no minor loops in the hysteresis curve, B_m being the induction peak, f the frequency and K_h the loss factor:

$$P_h = K_h f B_m{}^\beta \tag{10}$$

In most magnetic materials β ranges from 1.4 to 1.8. Manufactures in general use values of β and K_h based on their own practical losses measurements and specific correction factors. As shown previously, a flattened airgap induction is obtained imposing a third harmonic induction in phase with the fundamental wave ($\varphi_3 = 0$). Under this condition, the hysteresis losses in a tooth is obtained from:

$$P_{ht} = K_h f\left(\frac{\tau_n}{b_n}\right)^\beta \left(\widehat{B}_1\right)^\beta \left(1 - \frac{\widehat{B}_3}{\widehat{B}_1}\right)^\beta \quad (11)$$

The hysteresis losses can thus be reduced as a flattened airgap distribution reduces the peak induction B_m in the teeth. For the case where $\hat{B}_3/\hat{B}_1 \cong 0.13$ and assuming $\beta = 1.6$ a loss reduction about 20% takes place in comparison to the case where only a fundamental wave exists.

In the stator core, the phase angle φ_3 of the third harmonic wave is 180^o resulting for the hysteresis loss:

$$P_{hc} = K_h f \left(K_\delta \frac{2}{\pi} \frac{\tau_p}{h_c} \right)^\beta \left(\widehat{B}_1 \right)^\beta \left(1 + \frac{\widehat{B}_3}{3\widehat{B}_1} \right)^\beta$$
(12)

For $\hat{B}_3/\hat{B}_1 \simeq 0.13$ and assuming $\beta = 1.6$ results in an increase in hysteresis losses located in the stator core of about 7%.

3.4 Anomalous Losses

Considering an alternating induction, the anomalous losses are given as (Bertotti, 1988):

$$P_a = K_a \frac{1}{T} \int_0^T \left| \frac{dB(t)}{dt} \right|^{\frac{3}{2}} dt \tag{13}$$

From (6) the anomalous losses for the stator teeth are given by the following expression:

$$P_{at} = \frac{K_a}{T} \left(\frac{\omega \tau_n}{b_t}\right)^{\frac{3}{2}} \cdot \int_0^T \left|\widehat{B}_1 \cos\left(\omega t\right) + 3\widehat{B}_3 \cos\left(3\omega t - \varphi_3\right)\right|^{\frac{3}{2}} dt \quad (14)$$

The integral in (14) has no closed solution and has to be solved numerically. For $\hat{B}_3/\hat{B}_1 \cong 0.13$ results about the same losses than in the case where only the fundamental airgap wave exists. For $\hat{B}_3/\hat{B}_1 > 0.13$ the losses are higher and for $\hat{B}_3/\hat{B}_1 < 0.13$ slightly lower than in the case where only fundamental exist.

Using (8) the anomalous losses in the stator core becomes:

$$P_{ac} = \frac{K_a}{T} \left(K_\delta \frac{2}{\pi} \frac{\tau_p}{h_c} \right)^{\frac{3}{2}} \cdot \int_0^T \left| \widehat{B}_1 \sin\left(\omega t\right) + \widehat{B}_3 \sin\left(3\omega t - \varphi_3\right) \right|^{\frac{3}{2}} dt \quad (15)$$

For $\hat{B}_3/\hat{B}_1 \cong 0.13$ a loss increase of about 3.5% in the core is obtained. For $\hat{B}_3/\hat{B}_1 > 0$ the losses increase continuously when compared to the case where only the fundamental wave exists in the airgap.

Therefore, the inclusion of a third harmonic in the airgap with ratio $\hat{B}_3/\hat{B}_1 \cong 0.13$ leads to an increase in the anomalous losses. The extra losses are mainly located in the stator core.

The change in each loss component for the combination $\hat{B}_3/\hat{B}_1 \cong 0.13$ are resumed in Table 1. The values in the table are referred to the case where only the fundamental induction is produced in the airgap. The hysteresis losses were calculated assuming $\beta = 1.6$.

Table 1: Loss Changes for $\hat{B}_3/\hat{B}_1 \cong 0.13$

	stator core	stator teeth
eddy current loss	+1.7%	+15.2%
hysteresis loss	+7.0%	-20.0%
anomalous loss	+3.5%	0.0%

To estimate the resulting loss distribution, factors for each loss components have to be obtained experimentally.

4 Conclusion

The paper assessed the changes in magnetic losses in five phase induction machines when an optimized airgap induction is produced in the airgap. In order to simplify the analysis the field is considered as pure alternating; this assumption is valid for the stator teeth and in part for the stator core. The induction values were obtained from finite element analysis and the losses have been estimated with analytical expressions considering a three term model.

Under the assumptions made, the introduction of a third harmonic induction component in the airgap will always increase the eddy current losses in the stator teeth and also in the stator core; these losses are not influenced by relative phase between fundamental and third harmonic induction component. On the other hand, the hysteresis losses depends on the relative phase of the induction components, as it introduces minor loops in the hysteresis curve, changing the losses. For the machine analyzed the hysteresis losses decrease in the stator tooth and increases in the stator core. This result is mainly due the change in the peak induction. Considering that the amount of hysteresis losses in the teeth are higher than in the core, this change contributes to reduction in the overall losses. Finally, the anomalous losses show a light increase in the stator core and are practically the same in the teeth. The results allows to conclude that an overall reduction in the losses is only possible if the dominating losses are the hysteresis losses. A general conclusion about the change is dependent on the relative distribution of the losses components.

The paper showed that the inclusion of a third harmonic component in the airgap change the magnetic losses distribution, which can lead to higher temperature rise inside the machine. Therefore, a torque increase have to be weighted against the losses and temperature increase. This issue deserves deeper investigation with more accurate loss models.

References

- Belahcen, A. and Arkkio, A. (2008). Comprehensive dynamic loss model of electrical steel applied to fe simulation of electrical machines, *IEEE Transactions on Magnetics* 44(6): 886– 889.
- Bertotti, G. (1988). General properties of power losses in soft ferromagnetic materials, *IEEE Transactions on Magnetics* 24(1): 621–630.
- Boglietti, A. (1999). A first approach for the iron losses building factor determination, Industry Applications Conference, 1999. Thirty-Fourth IAS Annual Meeting. Conference Record of the 1999 IEEE, Vol. 1, pp. 489–493 vol.1.
- Boglietti, A., Cavagnino, A., Lazzari, M. and Pastorelli, M. (2001). Effects of punch process on the magnetic and energetic properties of soft magnetic material, *Electric Machines*

and Drives Conference, 2001. IEMDC 2001. IEEE International, pp. 396–399.

- Chen, Y. and Pillay, P. (2002). An improved formula for lamination core loss calculations in machines operating with high frequency and high flux density excitation, *Industry Appli*cations Conference, 2002. 37th IAS Annual Meeting. Conference Record of the, Vol. 2, pp. 759–766 vol.2.
- Diaz, G., Arboleya, P., Gonzalez-Moran, C. and Gomez-Aleixandre, J. (2007). Revision of the hysteresis and excess loss computation method as a means of improving the rotational loss estimate in induction motors, *Elec*tric Power Applications, IET 1(1): 75–81.
- Hsu, J., Liou, S., Lin, B. and Weldon, W. (1991). Losses influenced by third-harmonic flux in induction motors, *IEEE Transactions on En*ergy Conversion 6(3): 461–468.
- Ionel, D., Popescu, M., Dellinger, S., Miller, T., Heideman, R. and McGilp, M. (2006). On the variation with flux and frequency of the core loss coefficients in electrical machines, *IEEE Transactions on Industry Applications* 42(3): 658–667.
- Jacob, A. (1998). Zum einfluss von zahnund jochsättigung auf die harmonischen des luftspaltfeldes, *Electrical Engineering* 81(3): 151–161.
- Levi, E., Bojoi, R., Profumo, F., Toliyat, H. and Williamson, S. (2007). Multiphase induction motor drives - a technology status review, *Electric Power Applications, IET* 1(4): 489– 516.
- Mthombeni, L. and Pillay, P. (2004). Core losses in motor laminations exposed to high-frequency or nonsinusoidal excitation, *IEEE Transactions on Industry Applications* 40(5): 1325–1332.
- Pereira, L. A., Scharlau, C., Pereira, L. F. A. and Haffner, J. (2006). General model of a five-phase induction machine allowing for harmonics in the air gap field, *IEEE Transactions on Energy Conversion* 21(4): 891–899.
- Rudolf Richter (1967). Elektrische Maschinen -Erster Band, Birkhäuser Verlag.
- Scharlau, C., Pereira, L. F. A., Pereira, L. A. and Haffner, S. (2008). Performance of a five-phase induction machine with optimized air gap field under open loop v/f control, *IEEE Transactions on Energy Conversion* 23(4): 1046–1056.
- Smith, A. and Edey, K. (1995). Influence of manufacturing processes on iron losses, pp. 77–81.

- Toliyat, H., Lipo, T. and White, J. (1991a). Analysis of a concentrated winding induction machine for adjustable speed drive applications. i. motor analysis, *IEEE Transactions on Energy Conversion* 6(4): 679–683.
- Toliyat, H., Lipo, T. and White, J. (1991b). Analysis of a concentrated winding induction machine for adjustable speed drive applications. ii. motor design and performance, *IEEE Transactions on Energy Conversion* 6(4): 684–692.
- Štumberger, B., Goričan, V., Štumberger, G., Hamler, A., Trlep, M. and Jesenik, M. (2003). Accuracy of iron loss calculation in electrical machines by using different iron loss models, *Journal of Magnetism and Magnetic Materials* 254: 269–271.
- Xu, H., Toliyat, H. and Petersen, L. (2002). Fivephase induction motor drives with dsp-based control system, *IEEE Transactions on Power Electronics* 17(4): 524–533.